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ABSTRACT

Ten samples of Australian basalts, ranging from olivine melilite neph-
elinite to onartz tholeiite have been analyzed for their content of rare-
earths (REE) Sc, Cr, Co, Hf, Ta and Th.

The results of experimental studies in high-temperature, high-pressure
petrology have led to the hypothesis that basaltic magma is the result of
partial melting of upper mantle peridotite and that different degrees of
silica-saturation are due to different degrees of partial melting. This
study was an attempt to test the theories of Dr. D.H. Green concerning
specific degrees of partial melting from a specific source (pyrolite),
by using trace element geochemistry, particularly the REE, and certain
models of trace-element partitioning between minerals and liquid.

It was found that the nepheline-normative rocks could be generated
by this method, with the assumption of 1) partition coefficients, 2) chon-
dritic RE distribution in the source and 3) a total eouilibrium model.
Limits can then be placed on the degree of partial melting and the RE
content of the source: exact specification depends on which model one
chooses.

It was also determined that the tholeiitic rocks could not be ren-
erated in this manner and that the assumption of a chondritic distribu-
tion of REE in the source of the tholeiites was untenable.

Thesis Supervisor: F.A. Frey
Title: Associate Professor of Geochemistry
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Evaluation of Partial Melting Models of the Origin

of Some Australian Basalts: Trace Element Evidence

I. INTRODUCTION

The results of experimental studies in high-temperature, high-pressure

petrology (eg., Green 1973a,b, Irving 1971, Ito and Kennedy 1967) have lead

to the hypothesis that basaltic magma is the result of partial melting of

upper mantle peridotite and that different degrees of silica-(under)sat-

uration are due to different degrees of partial melting. Both the crys-

tallization behavior of basaltic magmas at high pressure (eg Green

1973ab, Green and Ringwood 1967) and the melting behavior of peridotites

(e.g., Kushiro et al., 1972, Kushiro et al. 1968, Green 1973a,b, and O'Hara

and Yoder 1967) have been extensively studied; attempts have been made to

synthesize this data, notably by Green and Ringwood (1967) with the pyro-

lite model. Green (1970b, 1971) has published a "petrogenetic grid",

sumarizing the petrogenetic implications of melting studies. This is

shown- in Figure 1, which indicates pressure (depth) of origin versus per-

cent melting of a pyrolite composition source. Figure 2 shows a more recent

version from Green (1973b), but for our purposes, the more detailed presen-

tation shown in Figure 3 from Green (1970b) will be more useful, since it

illustrates possible relationships between basalt magma types, indicates

possible P-T conditions, and therefore source mineralogy, and also indi-

cates paths of fractional crystallization and partial melting.

Trace-element geochemistry, particularly studies of the rare-earth

elements (REE) has been utilized as a tool to decipher igneous petrogene-
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Petrogenetic Grid from Green 1970a (Green's Caption):"A petro-
genetic grid for mantle-derived basaltic magmas. Various basalt
magma types are assigned to a % Melt, Pressure grid (implying
also specific % H2 0 and temperature of melting ... ) in which
they are regarded as partial melting products of a pyrolite com-
position containing 0.1% H2 0. The numbers placed with each basalt
type refer to the normative olivine content of this liauid at its
depth of origin- because of the expansion of the olivine crystal-
lization field at low pressure most basalts will precipitate
olivine before other phases if fractionation occurs at lower
pressures. The dashed boundaries marked with a mineral name show
that this mineral will occur among the residual phases remaining
after extraction of magma types to the left of the boundary.
Olivine is present in equilibrium, i.e. is a residual phase in
the pyrolite composition for all the magma types .... "

Figure 1:
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Figure 2: Petrogenetic Grid from Green 1973b (Greenis Caption): "Diagram
summarizing the petrogenetic applications of the melting studies
on pyrolite composition. The column to the left illustrates the
mineralogical character of the lithosphere and depth to the onset
of partial melting in the island arc situation and the normal

oceanic crust-mantle situation. In the right side of the diagrams,
the character of magma derived by partial melting of pyrolite is
plotted as a function of depth of magma segregation and degree of
partial melting. Numbers in parentheses adjacent to basalt names
refer to the normative olivine content of the partial melt. The
hatched areas illustrate the range of conditions over which quartz-
normative magmas may be derived by direct partial melting and
magma segregation from pyrolite. (A) is compiled for melting
under water-undersaturated conditions, with a water content in
the source pyrolite of about 0.2JQ. (B) is compiled for melting
under water-saturated conditions. The asterists denote the spe-
cific liquid compositions calculated at 10 kb and 20 kb in this
paper."



-12-

DEPTH Km

LOW VEL. ZONE LITHOSPHERE
01+0px4Ga+CpxtIlm- 01J Opxtdpx+Amph

: Phloge-elt .tGa +Sp
I n h4 14 +-o 11 01 Nephelinite YTrachy

01 neph
01-rich basanite Basanite

Alk. 01.Basalt

Alkali-picrite

01 Basalt

Tholeiitic Pierite
(30--35) 01 Tholeiite

(20-25)

basalt

Hi-Al - ,
Alk 01

Bas

Hi-Al 01
Basalt

Hi-Al 01
Tholeiite

(10-15)
01 Tholeiite

(15-20)

OCEAN
BASIN
0

10

.20

-30

DEPTH Km
80 60
a %

LOW VELOCITY ZONE OR : LITHOSPHERE . .-
ANOMALOUS MANTLE -

0L0px+Cpx+M~elt ~ '. 01+opx+AmphtCp - ' Crust
tGa I ; '9 * .---

?Alk 01 B

ol

Th

?Shoshoni .-:
asalt '.-,'. *, :

Alkali-rich'..-

C. *-. . .. *

ivine -Mgrich-; -Andesite .-
6 astid - to....

d site,* -'' to . -,' '.o
uartz --ar '. ',

oleiite .*-V-. . . % --
Thol te Tholeiite .

Olivine ' - ' , '.

Tholeiite ' - . -
(0-5)'

ISLAND
ARC

0

-10 %

E
LT

20 1
N
G

B

30

40

120 1q0

120 100E



-13-

Figure 3: Petrogenetic Grid from Green 1970b (Green's Caption): "Diagram-
matic synthesis of relationships between basalt magma types. The
rectangular boxes denote magmas related by crystal fractionation
processes operating at various depth or pressure regimes. They
are also derived by possible partial melting processes from a
pyrolite source. The appraximate mineralogy of the pyrolite source
at 115Oc, 9 kb; 12500c, 15 kb and 125oC, 27 kb is shown. This
is not necessarily the immediate subsolidus mineralogy involved
in the melting processes- both the mineralogy and the tempera-
ture of the solidus will be dependent on PH2 0's PLoad rela-
tionships."
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sis for different senuences of rocks: for the Hawaiian Islands (Schilling

and Winchester 1969, Reid and Frey 1971), for Gough Island (Zielinski and

Frey 1970), for Steens Mountain in Oregon (Helmke and Haskin 1973), etc.

This study is an attempt to determine what can be learned by combining the

results of experimental petrology and its implications regarding major

elements in igneous processes and trace-element studies of natural basalts.

Based upon the work of Green (1970a,b, 1973ab) on the melting of pyro-

lite as a source for basaltic magmas, limits can be placed on the degrees

of partial melting required to generate specific lavas. Using an equilib-

rium partial melting model, trace-element contents can be calculated from

the data on trace-element partitioning between solid phases and a liquid

phase. The analyses of natural basalts can then be compared with these

calculations to determine the fit of the model.

II. PREVIOUS WORK

The samples used in this study are ten basaltic rocks: six from the

Newer Volcanics in Victoria, Australia (Irving 1971, Singleton and Joyce

1969) and four from the Cenozoic volcanic province ,in Tasmania (Sutherland

1969). The nomenclature used in this paper follows that of Green (1970ab)

and is based on the normative mineralogy. Briefly:

Tholeiite: basalt with normative hypersthene
Quartz tholeiite: basalt with normative hypersthene and quartz
Olivine tholeiite: basalt with normative hypersthene and

olivine, hypersthene greater than 3%
Olivine basalt: basalt with normative olivine and with

0-3% normative hypersthene; no normative nepheline
Alkali olivine basalt: basalt with normative olivine and

nepheline; nepheline less than 5%
Basanite: basalt with normative olivine, nepheline and

albite, with nepheline greater than 5% and albite
greater than 2%

Olivine nephelinite: basalt-like composition with major
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normative olivine and nepheline; albite less than 2%,
normative orthoclase and/or leucite but no normative
larnite;

Olivine melilite nephelinite: basalt-like composition with
normative olivine, nepheline, leucite and larrn i,:
(Green 1970b, p. 221).

On this basis, the samples studied range from quartz tholeiite to olivine

melilite nephelinite and thus cover the Hawaiian spectrum, but from a con-

tinental environment. Sample locations are shown in Figure h. The sam-

ples were obtained from Dr. D.H. Green.

A. Sample Descriptions

Since all samples were obtained as powders, all petrographic data are

from Irving (1971) or Irving and Green (1974).

1. Quartz tholeiite 2177, Mt. Eckersley: this is the only quartz

tholeiite found in the province.

"The minor (15) normative quartz is possibly a primary
feature, but may alternatively be a consequence of the
secondary alteration particularly evident in this sam-
ple. The rock is relatively rich in plagioclase which,
with uncommon olivine (partly iddingsitized), form phe-
nocrysts in a medium-grained intersertal groundmass of
plagioclase, pale brownish clinopyroxene, opaque laths,
and interstitial turbid material (possible altered glass)
(Irving 1971)."

2. Olivine tholeiites: 69-1018 Mt. Gellibrand, 2152 Marida Yallock,

and 69-1026 Mt. Widderin:

"The tholeiites of ... Mt. Gellibrand are distinctly
richer in normative hypersthene and poorer in olivine
than the tholeiitic flows near Mt. Widderin, ... , and7
Marida Yallock .... The rocks of this second group are
transitional to olivine basalts. .... All these rocks
consist of plagioclase with pale greenish-brown clino-
pyroxene, granular or rod-like opaques and rare turbid
altered glass (?) .... Most of these rocks have a do-
leritic aspect .... (Irving 1971)."
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Map showing Victoria and Tasmania, Australia and the locations
of the ten samples used in this study.

2177 Mt. Eckersley
69-1018 Mt. Gellibrand

2152 Marida Yailock
69-1026 Mt. Widderin
69-1036 Mt. Frazer

2128 Mt. Porndon
2854 Scottsdale
2860 Scottsdale
2896 Flinders Island
2927 Happy Jack Marsh

Figure 4:
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3. Alkali olivine basalt 69-1036, Mt. Frazer:

"The alkali olivine basalts from Mt. Frazer ... all con-
tain olivine-rich7 lherzolite xenoliths /with Cr-diop-
side . The lavas consist of olivine phenocrysts in a
groundmass of olivine, plagioclase, titanaugite, titano-
magnetite and minor apatite (Irving 1971)."

4. Nepheline basanite 2128, Mt. Porndon:

"The rocks forming the conspicuous scoria and lava cones
of Mt. Porndon .. are nepheline basanites .... /The7
eruptive centre /3s7 characterized by the presence of
/6livine-rich7 lerzolite xenoliths /ith Cr-diopside7;
The majorityalso have wehrlite xenoTiths and pyroxene
and anorthoclase megacrysts. ... Microscopically, the
basanites are characterized by plagioclase of andesine-
labradorite composition and by groundmass containing a-
patite with interstitial brown glass and/or nepheline
(Irving 1971)."

No detailed petrogr-aphy is available for the Tasmanian rocks. For

a general review of the Tasmanian volcanics, including chemistry and

petrology, see Sutherland (1969). The olivine nephelinites 2854 (Scotts-

dale) and 2896 (Flinders Id.) and the olivine melilite nephelinite 2927

(Happy Jack Marsh) aU have lherzolite inclusions at the sample localities.

B. Chemical Analyses

Irving (1971) did extensive geochemical and high-pressure experimental

studies on the xenoliths, megacrysts and basalts from southeastern Austra-

lia; his major element analyses on the six Victorian rocks, along with the

major element analyses of the Tasmanian rocks supplied by Green (personal

communication) are shown in Table I, with the CIPN norms (calculated with

tihe USGS rock norm program M0015). Fe203/FeO weight percent ratios have

in each case been recalculated to 0.2 to counter the effects of oxidation

during or after eruption. Irving (1971) chose 0.2 because some of the

least oxidized rocks (samples that may be primary magmas, see below) have
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TABLE I

Major element analyses
NFE9R VOLCANICS OF VICTORIA

Rock Trpe Qtz Thol 01 Thol 01 Thol 01 Basalt Alk 01 Bas Basanite
Sample No 2177 69-1018 2152 69-1026 69-1036 2128
Locality Mt. Mt. Marida Mt. Ht. Mt.

Eckerslev Gellibrand Yallock Widderin Frazer Porndon

S102 53.53 50.70 50.11 h9.83 48.00 46.21
TiO 1.80 2.07 1.89 1.73 2.14 2.51
A12 ; 3  15.32 14.30 14.56 14.88 13.91 12.38
Fe,,o3 1.59 1.92 1.85 1.90 1.85 2.00
Fe; 7.94 9.60 9.26 9.51 9.27 9.98
MnO 0.11 0.16 0.17 0.17 o.16 0.18
MgO 6.52 7.95 8.48 8.49 11.39 11.71
Cao 8.38 8.90 8.75 8.60 8.35 8.56
Na2O 3.65 3.24 3.37 3.45 3.23 3.54
K20 085 0.81 1.15 1.09 1.18 2.01
P205 0.31 .0.35 0.40 0.34 0.51 0.90

Mg'~TI 59.4 59.6 62.0 61.4 68.6 67.6

H20 * 1*79 0.67 o.95 1.16 0.46 o.42
Fe203  4.32 2.23 6.52 6.20 4.55 3.50
100 Mg

68.0 60.3 74.7 '72.5 74.8 70.8

CIPW Norms

qz 1.06 - - - -

or 5.02 4.79 6.80 6.44 6.97 11.88
ab 30.89 27.42 28.52 29.20 24.98 14.96
an 22.91 22.08 21.21 21.90 19.97 11.96
1c - - -

ne - - - - 1.28 8.13
di 13.58 16.14 15.95 15.12 14.62 19.88

wo 6.95 8.26 8.18 7.75 7.57 10.29
en 16.24 13.57 8.06 6.23 4.92 6.66
fs 10.50 8.86 4.84 3.94 2.13 2.94

hy 20.11 14.54 5.13 2.79 - -

01 - 7.51 15.21 17.73 24.26 23.45
fo - 4.37 9.16 10.45 16.43 15.78
fa - 3.14 6.05 7.27 7.83 7.67

mt 2.31 2.78 2.68 2.75 2.68 2.90
il 3.42 3.93 3.59 3.29 4.07 4.77
ap 0.74 0.83 0.95 0.81 1.21 2.13

All major element chemical analyses from Irving 1971. Fe203/FeO ratios
have been recalculated to 0.2 to counter the effects of oxidation. * indi-
cates Fe203 as actually determined (Mg-value as determined).
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TABLE I Continued

Major element analyses
TASMANIA

Rock Type 01 Neph Neph 01 Neph 01 Melil
Sample No 2854 2860 2896 2927
Locality Scottsdale Scottsdale Flinders Happy Jack

Island Marsh

Sio2  39.31 39.14 42.17 38.05
TiO2  3.37 3.56 2.68 2.71
A12 03  9.5 13.h0 11.10 9.54
Fe 0 2.59 2.16 2.26 2.20
Fe 12.93 10.77 11.25 110.o
MnO 0.20 0.18 0.18 0.24
Mgo 13.90 5.25 11.97 16.34
CaO 11.20 13.72 8.64 13.14
Na 0 2.98 3.96 4.61 3.75
K2o 1.53 3.10 2.12 1.42
P205  2.30 -k.k5 2.77 1.34
100 Mp:
1MreI 6. 46.5 65.5 .72.5

H2 0 .
Fe20 3* 5.07 5.30 4.94 4.25
100 Mr 69.9 54.1 70.8 76.o
Mg4.FeII*

CIPW Norms

qz -M
or 7.19 14.56 12.56
ab -- 9.77 .
an 7.91 9.66 3.3k 5.02
le 1.47 2.99 - 6.60
ne 13.69 18.21 15.89 17.23
di 26.46 24.33 17.39 14.82

wo 13.66 12.30 8.97 7.71
en 8.68 6.16 5.64 5.25
fs 4.12 5.87 2.78 1.86

01 27.76 9.99 26.23 34.64
fo 18.24 4.87 16.99 24.91
fa 9.53 5.11 9.23 9.73

mt 3.76 3.14 3.28 3.20
11 6.42 6.78 5.10 5.16
ap 5.46 10.57 6.58 3.18
es -- - 10.24

All major element analyses from Green (personal communication). See other
notes on page 20.
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Fe203/FeO ratios approaching or approximately equal to 0.2; it is believed

that this value is appropriate for the Tasmanian rocks also. All samples

are considered as one suite since similar parent magmas are hypothesized

to be involved (Sutherland 1969). As an aid to visualizing the nomen-

clature and the major element abundances, a normative plot, of the type

used by Coombs (1963) is shown in Figure 5. Irving (personal communica-

tion) also did scme trace element analyses, and these are shown in Table II.

TABLE II

Trace element analyses of A.J. Irving (unpublished)

01 Thol 01 Basalt
69-1016 69-1026

Element Mt. Gellibrand Mt. Widderin

Sc 24 29

V 28 188

Cr 400 397

Co 60

Ni 196 247

Cu 48 53

Rb (XRF) 22 21

Sr " ' 427 471

Y " 26 55

Zr " 143 151

Zr 157 181

Ba 710 1670

La 23 67

Th (XRF) 2.7 3.8

Al ariayses are em ssion spectrography
All numbers are ppm.

Basanite Basanite
2131 2136

Mt. Porndon Mt. Porndon

20 19

235 21

570 444

76 69

318 261

53 52

43 52

847 897

29 31

309 336

265 262

505 542

68 65

5.2 6.2

unless otherwise indicated.
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Figure 5: Coombs plot
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C. Basalt Petrogenesis

For the Newer Volcanics, Irving (1971) concluded the following: only

the basanites and the olivine nephelinites could have been primary melts

of upper mantle peridotite. This conclusion is based upon the high

Mg/(Mg+Fe4 2 ) atomic ratios (the Mg-value) and the presence of lherzolite

nodules in these samples. Using data of Roeder and Emslie (1970) on the

partitioning of Fe and Mg between olivine and liquid, Irving derived the

following expression for the distribution of Fe and Mg between olivine and

liquid:
Xlqi.ol' XL /(XL +-K(100 - XL)),

where X is the Mg-value, and K . (Mg/Fe)L/(Mg/Fe)01 . Roeder and Emslie

(1970) determined K to b'e 0.3. Estimates of the chemical composition of

the undepleted upper mantle (g, Ringwood 1966, Nicholls 1967, Carter

1970) have Mg-values between 87.5 and 89.3. Olivines of these peridotitic

assemblages would have similar ratios; if the range Fo86 to Fo91 is consid-

ered, Irving's expression implies equilibrium with basaltic liquids with

Mg-values between 65 and 76. See either Kesson (1973) or Irving (1971)

for more details.

Basanite 2128 (and olivine nephelinites 2854 and 2896 and olivine

melilite nephelinite 2927) meet these criteria. Alkali olivine basalt

69-1036 does also, but Irving (personal communication) feels that some

xenocrystal olivine from the lherzolite xenoliths common in the hand

specimens (Irving 1971) may have been included in the analysis.

Recent experimental studies (e.g., Ito and Kennedy 1967, Green 1973a,

etc.) indicate that basanites with about 25% normative olivine and about

10% normative nepheline may be derived by small degrees (5-65) of partial
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melting of hydrous mantle peridotite at pressures of about 25 to 30 kb.

Experimental evidence also suggests that olivine nephelinite magmas may

be derived by extremely small degrees (less than 5%) of partial melting of

hydrous peridotite at pressures of 20 to 30 kb (Bultitude and Green 1968).

The tholeiites and olivine basalts of the Newer Volcanics are too Fe-

rich to be primary melts of a peridotite mantle produced by high degrees

(greater than 20%) of partial melting. The tholeiites have Mg-values of

59.4 to 59.6-and are poor or lacking in normative olivine and are most

likely low pressure (less than 5 kb) fractionates of more olivine-rich

tholeiitic magmas. The olivine basalts and the olivine tholeiites trans-

itional to them have slightly higher Mg-values (61.4 to 62.0) and very much

higher normative olivine contents (15.2 to 17.7%). Such differences are

explicable in terms of different degrees of partial melting of source peri-

dotite and thus different olivine/hypersthene proportions for parental mag-

mas, with the further complication of variable olivine or olivine plus

pyracene fractionation at low pressures. The quartz tholeiite is seen as

a low pressure fractionate also.

The major objective of this research was to utilize trace-element

data to evaluate melting models based on major-element data.

III. ANALYTICAL DATA

Table III shows the trace-element analyses along with the chondrite-

normalized values for the REE for all samples. The analytical determin-

ations were all done by instrumental neutron activation analysis, as de-

scribed by Gordon et al. (1968). The photopeaks used for analysis, counting

times and similar information can be found in Appendix I. Thet values shown



-27-

TABLE III

Trace element analyses

Rcok Type Qtz Thol 01 Thol 01 Thol 01 Basalt Alk 01 Bas
Sample No 2177 69-1018 2152 69-1026 69-1036
Locality Mt. Mt. Marida Mt. Mt.

Eckersley Gellibrand Yallock Widderin Frazer

Sc 19.550.O7 21.82*0.07 20.97-20.07 22.2*O.06  2h.21*0.06
Cr 245t3 229A3 293-3 * 24912 392*3
Co 52.7*o.h 65.h*o.h 102.90.6 106.1o*7.7 71.ato
La* 48.22.(O.5) 16.0*t(0.5) 5o0it.(0.1) 52.7(0.3) 23.9t(0.5)
Ce 81.7.3.0 29.8*1.6 100.83.5 156r6 h44.72.6
Nd 50.123.5 17.h*1.9 45.7*3.2 50.6=4.1 25.512.7
Sm 12.ltO.l h.63*.05 10.0.*0.1 12.29!0.07 5.540.004
Eu** 3.86.t(0.1O) 1.57t(o.02)3.03t(o.03)3.52t (0.09) 2.05--(0.05)
Tb 1.8310.09 0.72*0.07 1.57-tO.08 1.64to.06 0.93e o.05
Ho' 2.51mo.ho 0.7h0.27 1.92to.37 2.14*0.23 1.0oo.18
Yb** 5.Ot(0.2) 1.9t(o.2) 3.32t(0.3) 3.7t(0.*7) 2.4t0.9
Lu 0.78*0.13 0.2to.11 0.hl*o.12 0.sh-r0.22 0.h9to.22
Hf 3.60o.21 3.h8to.22 3.68-0.22 3.57to.18 4.15t0.18
Ta* 4.26(0.44) 3.30(0.21)3.87.(0.23)h.38t 0.07) 5.75t(o.18)
Th 2.51*0.18 l.91-0.17 2.81-0.19 2.62-*0.13 2.7820.13

Chondrite-normalized REE analyses

La 16t(1.5) h8.5t(1.5) 152(O.3) 160o(o.9) 72.51.*5)
Ce 92.8±3.h 33.9-l.9 115th 178t9 5123.3
Nd 83.25.8 29.0±3.1 76.2*5.h 8h.3*6.8 h2.hth.5
Sm 66.?v.5 25.50.3 55.to.5 67.9 .4 30.620.2
Eu 55.9(1.5) 22.7(0.3) hh1lo.h) 51.Ot(1.3) 29.8t(0.7)
Tb 3 9.o0Zt..8 15.3*1.5 33.ht1.*8 34.8",t.2 19.4+.1.1
Ho 35.925.7 10.6*3.8 27.25.2 30.5*3.3 14.9.2tP.6
Yb 25.0±(1.0) 9.6t(1.0) 16.6t(1.5) 16.72(3.5) 12.0*h.5
Lu 22.813.9 7.0t3.2 11.913.7 132b6.5 14.3t6.2

* WC contamination in sample produces anomalous Co abundance.
** .a; Eu, Yb (sometimes) and Ta are the -averages of two determinations from

different gamma-ray-peak; errors in parentheses indicate the net differences.
Chondrite values are from Haskin et al. (1968): La 0.330, Ce 0.880, Nd 0.600,
Sm 0.181, Eu 0.069, Tb 0.0h7, Ho ~~0717,' Yb 0.200, Lu 0.034.



TABLE III Continued

Trace element analyses

Rock Type Basanite 01 Neph Neph 01 Neph 01 Melil
Sample No 2128 2854 2860 2896 2927
Locality Mt. Scotts- Scotts- Flinders Happy Jack

Porndon dale dale Island Marsh

Se 19.61Wo.05 19.2010.06 10.46to0.0o i.61ro.05 23.32t0.07
Cr 385t3 b28±3 11.0*1.7 ShVth h94th
Co 71.3todh 77.tO. 5 44.2t0.3 83.2*0.5 83.3±0.5
La 48.4.(,) 61.84.J 100.91..]) 64.82(,.') 72.12(..3
Ce 82.53.8 116.7*3.3 133.1*6.6 11l.3t3.2 127.83.5
Nd h4.13.8 57.3*2.8 66.1*6.1 59.8?2.9 59.5t2.9
Sm__ 9.59I0.06 12.06t0.20 16.9820.ll 12.602o.17 12.14o.17
Eu 2.96t(o.14) h.02t(0.36) 6.3ht(o.17)h.20t(0.h2) 3.68.t(o.06)
Th 1.26*o.05 1.6c0o.08 2.55V0.08 1.63.0.07 1.77*O.08
Ho 1.11*0.21 * 1.50*0.22 ** *

Yb 1.07O0.l1 1.87.78 l.75*(o.2l)l.87t.O90 1.28Mo.85
Lu 0.35EtO.22 -0.lOtO.10 0.18.0.06 0.26*0.16 0.2920.5
Hf 7.48o.19 8.78*o.23 10.70*0.22 9.31*0.22 5.82*0.2h
Ta 11.3(0.l) 15.7t(0.6) ih.9t(o.5) 14-8-:(o.9 ) 13.0!(0.9)
Th 5.73t0.15 6.91*0.20 12.6*0.3 3.83to.16 13.6*0.3

Chondrite-normalized REE analyses

La 147;1 187:(. j 306t .3) 197401.3) 219.16.)
Ce 93.8*4.7 1331h 151*8 13024 145t4
Nd 73.6t6.3 95.5h.7 liOXi0 99.6th.8 99.2th.9
Sm 53 o. 66.6*'1.1 93.8to.6 69.6*1.0 66.610.9
Eu 42.99(2.0) 58.2*(5.2) 91.9*(2.5) 60.9*(6.1) 53.h1(0.87)
Tb 26.71.l 3h.0C1.6 5h.31.8 34.7-1.6 37.3t1.8
Ho 15.9*3.0 * 21.h3.1 * *

Yb 5.3k0.6 9.323.9 8.7-(1.0) 9.3*t.5 6.hh.2
Lu l0.4h6.3 3.0Z2.9 5.3t1.8 7.6th.7 8.5h.h

*** Due
for
See

to scheduling difficulties with the counting equipment, analysis
Ho in these three samples was not possible.
other notes on page 27.
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in Table III are derived from counting statistics after the method of

Wasson (quoted in Baedecker 1971). The chondrite normalized patterns

are shown in Figure 6 for the nephelinitic rocks and in Figure 7 for

the tholeiitic group.

In order to test the accuracy and precision of the analyses, three

separate analyses of BCR-1 were done. The data, corrected for flux vari-

ations, are presented in Table IV, with the average of the three, the

standard deviation of the three analyses, the error from counting statistics

and a survey of analyses of BCR-1 in the current literature.

Accuracy: For the following elements, the average of the three analyses

is within 5% of Flanagan's (1973) recommended values: Co, Nd, Sm, Eu, Yb and

Lu; for Ba, La, Ce, Th, Hf, Ta, and Th, the average is within 10%, for Sc

within 15% and for 1Ho, within 20%. The Cr analysis is out of line with

the literature values, being 39 too low. No obvious explanation presents

itself, but the low amount of Cr in the sample, along with the uncertainty

of the Cr content in the standard is probably responsible.

Precision: The standard deviation ( (xj - m)2  , mwmean) is

shown in column 5 of Table IV. Column 6 shows the error from counting

statistics (see Appendix II). It is of interest to compare the two: in

17 out of 22 cases, the error from counting statistics is greater than or

approximately equal to the standard deviation of the three analyses, indi-

cating that there can be high confidence in the analysis within the limits

of the counting statistics.

There seems to be a systematic error in Ce, in that the chondrite-

normalized Ce value is in every case but one (69-1026) lower than expec-

ted by interpolation between the La and Nd values, for no known reason.
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Figure 6: Chondrite-normalized REE patterns for the nephelinitic rocks:
&- -A Basantie 2128
O"'O Olivine nephelinite 2854
*'.''''* Olivine nephelinite 2896
0- -- O Nephelinite 2860
X-- - IX Olivine melilite nephelinite 2927

All data taken from Table III.
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Figure 7: Chondrite-normalized REE pattern for the tholeiitic rocks:
W -*- - Alkali olivine basalt 69-1036
+'''''*+ Olivine basalt 69-1026
O- - 0 Olivine tholeiite 2152

'' * 3Olivine tholeiite 69-1018
X--X Quartz tholeiite 2177

All data taken from Table III.
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TABLE IV

Analyses of BCR-1

Photopeak
(key) 1 2 3 average

37.21to.15
9.5±14.3

39.6 o,5
778 1137
677 ±134

24.5:2 o.5
25.7±0.4
50.3,t2.8
26.0 t2.4
6.49.to.oh
2.0 50.07
1.96±0.10
1.02Z0.14
1.I42t2.19
3.5710. 56
3.76to.28
0.537&0. O
5.03to.31
5.36to.52
1.3 to.5
0.7320.25
5. 81 .39

37.29
11.8
39.1

930
558
23.8
24.2
148 *9
29.3
6.44
2.01
1.76
1.17
1.39
3.12
3.21
0.567
4.71
5.84
0.5
o.88
5.5o

35.39
9.1

38.1
777
644

22.6
214.1
53.3
29.6
6.68
1.83
1.84
1.16
1.5 4
3.50
3.146
0.559
5.16
5.15

0.14
0.88
5 .63

36.63t1.07
10.1 *1.5
38.9 *0.8

828 S88
626 161
23.6:1.0 t
214.7 10.9r 2
50.8 X2.2
28.3 12.0

6. 54roo.13

1.1210,08
1.140.08
3.ho0o. 2h\
3.48to.28 3.bhtO.24
0.554t0.016
h.97:o.23 *
5.h5tO.3)5.21* o.59
0.7 k0.5
o.83to.o9
5.65to.16

All figures have been corrected for flux variations by means of an Fe

wire flux monitor. All such corrections were less than 31.

The plus/minus value in column one is the statistical error associated

with the analysis; it is identical for the three samples. The plus/

minus value with the average is the standard deviation of the three

analyses:
sigma e (m - xj) 2 / 2

II

Sc
Cr
Co
Ba
Ba
La
La
Ce
Nd
Sm
Eu
Eu
Tb
Ho
Yb
Yb
Lu
Hf
Hf
Ta
Ta
Th

889
320

1332
216
496
487

1595
1145
92

103
122

1108
298
81

283
396
208
133
482

1189
1222

313



TABLE IV Continued

Analyses of BCR-1 in the literature

1 2 3 h. 5 6 7 8

Sc 32 31.920.6 33*
Cr 19r5 17-6*
Co 36 35.8*0.7 38*
Ba 700 700 656th 646 697 675
La 26 26.1 25.2t1.0 24.4 26*
Ce 53 54.9 5h.2V-.2 53.9 54.3 54.3 53.7 53.9
Nd 28.8 30.5t.3 28.6 27.7 28.9 29.o 29
Sm 7.0 6.74 7.2310.37 6.62 6.38 6.72 6.74 6.6*
Eu 2.0- 1.96 1.970.oh 1.9h2 1.91 1.98 2.02 1.9h
Tb 0.96 1.15to.05 1.0
Ho 1.34*0.12 1 2**
Yb 3.6 3.68 3.h8to.12 3.38 3.35 3.39 3.49 3.36*
Lu o.55 0.590 0.526to.15 0.536 O.546 0.501 O.55
Hf 4.7 5.23t0.24 4.7*
Ta o.7h 0.9010.09 0.91
Th 6.o

References: Laul et al. 1972
Gast IE 3E17 1970 (average of 2)
Haskinet al. 1970 (average of 2)
PhilpotEs eal. 1970b
Arth 1973
Nakamura and Masuda 1973
Shimizu 1974
Flanagan 1973: * indicates an average value, ** a magnitude;
all others are recommended values.

-4 C'(
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The uncertainty in the Ce content of the standard may be responsible;

alternatively an unidentified interference may be present in the gamma-

ray spectrum.

Additional analyses of five samples from the Hawaiian Islands (sup-

plied by D. Clague) were done, but the results are not interpreted in this

thesis. They are shown as Appendix III, together with a literature survey

of similar data.

IV. PARAMETERS INVOLVED IN MODELS FOR TRACE ELEMENT BEHAVIOR

A. ANATEXIS

ANATEXIS is a computer program for calculating trace-element concen-

trations in a melt phase and up to ten coexisting solid phases initially

present in specified weight fractions which are allowed to form the liauid

according to specified liquid weight fractions (i.e., melting proportions).

Both Doerner-Hioskins (Rayleigh fractionation) and Berthelot-Nernst equilib-

ria are calculated, using equations of Shaw (1970). The program was written

by R. Kay in 1970 and modified by F.A. Frey, R.A. Zielinski and D.N. Skibo

in July 1972. All computer runs were made on the MIT IBM 370/165. To run

ANATEIS, three basic quantites must be specified: the initial weight frac-

tions, the melting proportions and the partition coefficients for the spe-

cified phases. Other control variables which must be specified are the

initial melt percent, the final melt percent and the increment to be used.

When any phase is exhausted, the program automatically goes on to the next

element.

B. Initial Upper Mantle Mineralogy

Tnitial upper mantle mineralogy is dependent upon composition, pressure
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and temperature. Green and Ringwood (1963) presented calculated mineral-

ogies for several different anhydrous pressure-temperature regimes based

on pyrolite I. Later papers (e.g., Green and Ringwood 1970) have not pre-

sented any quantitative mineralogy: Green (1970b) gave approximat" mineral-

ogies for plagioclase pyrolite, pyroxene pyrolite and garnet pyrolite, but

stated that they were not necessarily the immediate subsolidus mineralogies

involved in the melting of pyrolite, since both the mineralogy and the tem-

perature of the solidus are PH20 and PLoad dependent. Therefore the starting

compositions used with ANATEXIS were derived in the following ways: 1) di-

rectly from Green and Ringwood (1963); 2) directly from Green (1970b); and

3) by using Doherty and Wright's (1971) Mineral Distribution program with

mineral compositions from Green (1973a and b).

Mineral Distribution is a program designed to calculate rock modes

and to model schemes of magmatic differentiation by the least-souares

solution of an overdetermi system of linear equations. The program fits

the chemical composition of a rock by calculating proportions of two or

more minerals that make up the rock. Mineral Distribution was used to

determine what combination of high-temperature, high-pressure olivine,

orthopyroxene, garnet and amphibole could best match pyrolite III (Green

1973a). Clinopyroxene was omitted and amphibole included since Irving's

(1971) model calls for a hydrous source, and Green's (1973b) phase diagram

for pyrolite with 0.2% H20 (Figure 8) has this mineralogy at pressures

above 20 kb. This approach is made difficult by the lack of appropriate

analyses. The mineral compositions used with the computer program are

shown in Table V and are from Green (1973a) for a 30 kb, 12500, 0.32.0.1%



Phase Diagram for pyrolite plus 0.2% H20 (Green 1973b) (Green's
Caption): "Experimental determination of solidus for water-
undersaturated (at P< 30 kb) melting of pyrolite minus 40%
olivine and of sub-solidus and above-solidus mineralogy for
a water content in pyrolite equivalent to approximately 0.2%.
The "dotted" curve shows the position of the solidus deduced
from preliminary data on amphibole stability in pyrolite and
in the melting interval of undersaturated basaltic compositions.
The data points are shown by heavy dots and the minerals present
in the subsolidus disappear during melting along the dashed
curves marked with the mineral names. Amphibole disappears at
the solidus (within the limints of the experimental points)
for P<30 kb."

Figure 8:
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TABLE V

Pyrolite:olivine 4 orthopyrocene + amphibole: I

Calculation

45.36

3.16

9.48

37.28

3.05

0.53

0.43

0.73

0.03

Difference

0.08

0.33

-0.72

0.40

0. o4

0.07

-0.22

-0.02

0.08

Solution: 52.28 25.63 -2.29 24.40

Olivine composition taken from Green 1973a, Table 5.

Orthopyrarene and garnet compositions taken from Green 1973a, Table 3.

Amphibole composition taken from Green 1973b, Table 6.

Adjustments have been made to the MgO and FeO values to reflect more
realistic equilibrium Mg-values.

The sum of the residuals soluared is .0.8554.

si02

A1203

FeO

MgO

CaO

Na20

H2 0

TiO
2

MnO

OL

41.20

0.00

12.40

46.40

0.00

0.00

0.00

0.00

0.00

OPX

55.85

3.40

7.10

31.27

1.70

0.20

0.00

0.50

0.00

GA

41.60

21.10

9.20

20.70

5.80

0.00

0.00

1.40

0.20

AMPH

42.89

11.35

5.68

22.48

1124

1.96

1.76

2.58

0.11

Pyolite

3.48

8.75

37.68

3.09

0.60

0.20

0.70

0.10
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H2 0 experimental run for the olivine, orthopyroxene and garnet, and from

Green (1973b) for an amphibole coexisting with olivine, orthopyroxene and

clinopyroxene. Adjustments have been made to the MgO and FeO values to

reflect more realistic equilibrium Mg-values.

The program yielded the results shown in the line labeled "solution"

in Table V. The column labeled "Difference" is the difference between the

composition to be matched (pyroite) i's- the best fi't-the-program came up with.

with ("Calculation"). The fit is good, with the sum of the residuals

squared being 0.85. This solution indicates that garnet is not involved,

and includes a very high percentage of amphibole (24.4%). This state of

affairs is not entirely satisfactory. To determine the effects of this

mineralogy on REE patterns, this composition was run with ANATEXIS, and

the results are shown in Figure 9.

For purposes of comparison, Green's mineral compositions (with unad-

justed Fe/Mg ratios) were also run with Mineral Distribution; the results

are shown in Table VI: the fit is not good; the olivine/orthopyroxene ratio

is quite different, and the amount of amphibole is one-third lower. Garnet

is still not involved. Mineral Distribution was rerun with an additional

constraint: if the water is all in the amphibole (1.6% H20 in the amphibole),

12% amphibole is expected in pyrolite with 0.2% H20. This changes the solu-

tion slightly (Table VII), this time including 1.7% garnet.

AU three of these starting compositions (1, 2, and 3 of Table VIII)

were run with ANATEKIS and the REE patterns which result are shown in

Figures 9, 10 and 11. The melting proportions were chosen to reflect the

belief that essentially amphibole alone is melting, since the phase dia-
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Figure 9: Chondrite-normalized REE pattern produced by a source with
composition 50% olivine, 25.6% orthopyraxene and 24.4% amphi-
bole (Table V), melting in the proportions 1:1:8.

45- - d 1.0% low p.c.

C-- -C 1.0%-High p.C.
O 0 7.5% low p.c.

-- 7.5% high p.c.
X a--- X ' 15.0% low p.c.
+ - + 15.0% high p.c.
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TABLE VI

Pyrolite =olivine + orthopyroxene + amphibole: II

AIPH Pyrolite Calculation

43.96 45.30 45.6

15.23 3.51 3.98

6.56 8.52 9.64

16.64 37.58 37.36

11.90 3.11 2.46

2.83 0.61 o.h8

1.72 0.21 0.28

1.11 0.71 0.31

0.11 0.11 0.02

0.00 0.41 0.07

Difference

-o.15

-0.46

-1.12

0.*22

0.66

0.13

-0.07

0.40

0.09

0.3k

Solution: 73.60 10.34 0.00 16.07

Olivine, orthopyraxene and garnet compositions taken from Green 1973a,
Table 3, with unchanged MgO and FeO values.

Amphibole composition taken frcm Deer, Howie and Zussman, analysis of a
Tinaquillo amphibole, v. 2, Table 43, column 5, p. 286, pargasite.

The sum of the residuals squared is 2.3065.

s'0 2

A12 03

FeO

MgO

CaO

Na2 0

1120

TiO2

MnO

Cr2 03

OL

kh.37

1.60

10.67

42.78

0.50

0.00

0.00

0.10

0.00

0.00

OPX

55.50

3.4o

7.10

31.00

1.70

0.20

0.00

0.50

0.00

0.60

GA

4o.89

20.85

9.02

20.25

5.82

0.00

0.00

- 1.hi1

0.00

1.81
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TABLE VII

Pyrolite . olivine + orthopyraccene + amphibole * garnet

AMPH Pyrolite

43.96 45.30

15.23

6.56

16.64

11090

2.83

1.72

1.11

0.11

0.00

3 .51

8.52

37.58

3.11

0.61

0.21

0.71

0.11

o.1

Calculation

45.92

3.82

9.63

37.53

2.14

0.38

0.21

0.31

0.01

0.12

Difference

-0.62

-0.31

-1.11

0.05

0.97

0.23

0.00

0.40

0.10

0.29

Solution: 71.56 14.79 1.65 12.00

Compositions used in this calculation are the same as those in Table VI.

This solution was determined by having the computer fit olivine, orthopyr-

oxene and garnet to an adjusted pyrolite. The adjusted pyrolite assumed

that 12.0% amphibole was an unrariable component of the mineralogy. The

computer fit was then recalculated to the form shown here.

The sum of the residuals squared is 2.9630.

OL

W4.37

1.60

10.67

42.78

0.50

0.00

0.00

0.10

0.00

0.00

si0
2

A12 03

FeO

MgO

CaO

Na20

H20

TiO
2

MnO

Or2 03

OPX

55.50

3.40

7.10

31.00

1.70

0.20

0.00

0.00

o.6o

GA

40.89

20.85

9.02

20.25

5.82

0.00

0.00

1.141

0.00

1.81
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TABLE VIII

Starting compositions used with ANATEKIS

OL OPX CPX GA AMPH S

50
73.6

71.4

57

68

58

62

51.1

72.5

66.6

67

50

25.6

10.3

14.8

17.5

8

22.

17

21.4

20.0

16.1

33

27

15.5

11

15

15

22.5

7.5

1.7

10

13

5

24.4

16.1

12.0

6

5

1

2

3

4

5

6

7

8

9

10

11

P Source

Min. Dist.: Table V

Min. Dist.: Table VI

Min. Dist.: Table VII

Min. Dist.: Table II

Green & Ringwood 1963

Green 1970b

Green & Ringwood 1963

.0 Carter 1970

Derived from no. h: see discussion
of tholeiitic rocks

Green & Ringwood 1963

See discussion of tholeiitic rocks

Chen (1971) for comparison only

gram for pyrolite plus 0.2% H20 (Figure 8) indicates that the solidus is

essentially defined by the amphibole breakdown curve. None of the patterns

produced resemble the patterns actually shown by any of the rocks. If Fig-

ures 9 and 10 are compared with Figure 6, it is fairly clear that those

patterns produced by starting compositions 1 and 2 are either too flat or

have a rise between Ho and Yb. Using starting composition 3 (the one with

1.7% garnet) the patterns produced (Figure 11) by the low set of partition

coefficients are too flat, and the patterns produced by the high set of

partition coefficients are too flat for the LREE and too steep for the

HREE. This last point is worthy of note: even the inclusion of small

17*3

12 11
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Figure 10: REE pattern produced by a source with composition 73.6%
olivine, 10.3% orthopyrarene and 16.1% amphibole (see
Table VI). -

gt - - 1. 0% low P.C.
0-- -D 1.0% high p.C.
O.- -- 7.5% low p.C.

.... -* 75% high pe.*
X- X- (15.0% low p.c.
+----+15.0% high p.c.
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Figure 11: REE pattern produced by a starting composition of 71.5%
olivine, 14.8% orthopyrccene, 12% amphibole and 1.7%
garnet (see Table VII).

4-- - ' 1.0% low p.c.
M--L- 1.0% high p.c.
O--- --O 5.0% low P.C.
0 - 5.0% high p.c.
X--X 10.0% low p.c.
+ *--- 10.0% high p.c.
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amounts of garnet completely negates the rise in the HREE produced by the

amphibole. Thus it would seem unlikely that any cobination of olivine,

orthopyroxene, amphibole and garnet would yield a REE pattern similar to

that shown by the rocks.

On the strength of this evidence, it is concluded that amphibole is

not in equilibrium with any of these magmas. Amphibole may not be an im-

portant phase at the solidus because of its immediate breakdown, as men-

tioned above. In any case, once the amphibole has melted, its previous

presence would be undetectable under conditions of total equilibrium

(Harris et al. 1972).

The three olivine-orthopyraene-clinopyrccene-garnet assemblages used

with ANATEIIS are derived from a) a Mineral Distribution type of fit of

Green's (1973a) mineral composition to pyrolite (see Table IX) (starting

composition 4 of Table VIII); b) from Table 3 in Green and Ringwood (1963)

(starting composition 5); and e) from the approximate mineralogy of Figure

2 in Green (1970b) (starting composition 6).

It is to be noted that the procedure followed here'is distinctly

different from that of Kay and Gast (1973), in that I am attempting to

follow the conclusions of Irving and Green as closely as possible in order

to test the applicability of their models (based on major element data) to

trace element data. Kay and Gast (1973) determined the best fit of upper

mantle models to their REE data by varying initial modal composition and

the degree of melting. It should be pointed out that Kay and Gast (1973)

base their results on Shaw's (1970) equation 1 (for fractional melting),

whereas I am using Shaw's equation 15, for batch melting, which I believe

to be closer to Green's theories and experimental research.



TABLE II

Pyrolite : olivine 4 orthopyroxene f clinopyroxene + garnet

OL OPX CPX GA Pyrolite Calculation Difference

S102  40.0 55.5 535 40.9 45.2 44.9 0.3

A1203  0.0 4.0 5.2 21.0 3.5 3.5 0.0

FeO 9.4 6.9 4.5 9.0 8.5 8.2 0.3

MgO 48. 30.8 18.1 20.0 37.5 37.8 -0.3

CaO 0.0 1.7 14.8 6.0 3.1 3.2 -0.1

Na20 0.0 0.0 1.9 0.0 0.6 0.3 0.3

TiO2  0.2 0.6 0.9 1.h 0.7 0.5 0.2

MnO 0.2 0.0 0.0 0.0 0.1 0.1 0.0

Cr 2 03  1.7 0.6 1.3 2.0 0.4 0.5 -0.1

Solution: 57.0 17.5 15.5 10.0

Compositions used in this calculation are taken from Green 1973a, Table 3

and Table 5. This is a hand-calculated fit.

The sum of the residuals squared is 0.42.
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Models for the source region of the tholeiitic rocks are discussed

in section V-B.

As a summary, Table VIII lists the major initial compositions used

in the computer runs with ANATEXIS.

0. Partition Coefficients

1. REE: A survey of the available literature (eg., Philpotts and

Schnetzlar 1968a,b, 1972; Schnetzlar and Philpotts 1968; Grutzek et al.

1973; Nagasawa et al. 1969; Jensen 1973; Masuda and Kushiro 1970) quickly

reveals that the relative values of the partition coefficients are known

with much more certainty than the absolute values; therefore, two sets of

partition coefficients were used in the computer runs: a high set and a

low set (see Table X), more or less covering the range of observed values.

Clinopyraxene: the two sets of partition coefficients were chosen

to cover the range found in natural systems. The low set is a bit lower

than that chosen by Kay and Gast (1973) but agrees with data of Frey

(unpublished) and some data of Schnetzlar and Philpotts (1970)* The high

set is clinopyroxene megacryst/host alkalie olivine basalt (Takashima,

Japan) data from Onuma et al. (1968), except for the Ho value, which is

interpolated.

Orthopyroxene: the two sets of orthopyroxene/liquid partition coeffi-

cients were determined by choosing a set of orthopyroxene/clinopyroxene

partition coefficients (Table XI) and then calculating

DOPX/1 = DcPx/1/DCPx/OPx

The low set so determined agrees somewhat with that of Kay and Gast (1973);

the high set agrees with Onuma et alv (1968) and Frey's unpublished New

Zealand megacryst/matrix data.



TABLE X

REE Solid/liquid partition coefficients

CPX OPX GA OL SP AMPH AP

Low Partition Coefficients-

La 0.02 0.0005 0.001 0.0005 0.526 0.167 52
Ce 0.04 0.0009 0.0033 0.0008 0.136 0.232 52
Nd 0.09 0.0019 0.0184 0.0013 0.167 0.436 81
Sm 0.14 0.0028 0.0823 0.0019 0.029 0.617 90
Eu 0.16 0.0036 0.1333 0.0019 0.016 0.692 50
tb 0.19 0.005;9 0.2568 0.0019 0.0148 0.740 69
Ho 0.195 0.0089 1.083 0.0020 0.0157 0.720 60
Yb 0.20 0.0286 4.0 0.0040 0.0204 0.390 37
Lu 0.19 0.038 7.0 0.0048 0.0200 0.310 30

High Partition Coefficients

La 0.084 0.0021 0.004 0.0021 2.2 * *
Ce 0.166 0.0040 0.0138 0.0033 0.255
Nd 0.382 0.0083 0.0780 0.0055 0.707
Sm 0.736 0.0147 0.4329 0.0098 0.153
Eu 0.753 0.0171 0.6275 0.0088 0.075
Tb 0.97 0.0303 1.311 0.0097 0.0758
Ho 1.03 0.0468 5.7 0.0103 0.083
Yb 1.01 0.1443 20.20 0.0202 0.1031
Lu 0.95 0.1900 35.2 0.0238 0.1000

* only one set of partition coefficients was used for amphibole
and apatite.

TABLE XI

REE Solid/solid partition coefficients

CPX/OPX CPX/GA CPX/OL CPX/SP

La .40 20 40 0.038
Ce 42 12 50 0.66
Nd 46 4.9 70 0.54
Sm 50 1.7 75 4.8

Eu 44 1.2 85 10.0
Tb 32 0.74 100 12.8
Ho 22 0.18 100 12.4
Yb 7 0.05 50 9.8
pu 5 0.027 40 9.w5
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Garnet: the garnet/liquid partition coefficients were determined by

the same method as the orthopyroxene/liouid coefficients. The garnet/

clinopyroxene partition coefficients were taken from mineral separate data

of Haskin et al. (1966), Philpotts et al* (1972) and Early (1973). The

Dgar/1 so calculated are consistent with an experimental study by Wilde-

1
man et al. (1973) and Kakanui garnet xenocryst/lava partition coefficients

(Philpotts et al. (1972).

Olivine: olivine/clinopyroxene partition coefficients were taken from

available pairs in the literature and the olivine/liquid partition coef-

ficients calculated. The low set is similar to Kay and Gast (1973) and the

high set to Higuchi and Nagasawa (1969) and Corliss (1970). .Since the

olivine/liquid (and orthopyroxene/liquid) partition coefficients are so

much less than 1, the exact value used in the calculations is not critical.

Amphibole: amphibole/liquid partition coefficients are based on pheno-

cryst/matrix data of Philpotts et al. (1972) and Higuchi and Nagasawa (1969)

and are consistent with data of Lopez (unpublished).

Spinel: clinopyroxene/spinel partition coefficients were taken from

Frey (1969) and spinel/liauid coefficients were calculated. Spinel par-

titioning of the REE is less well understood than that of the. previous

minerals, and seems to vary widely. Until more work is done with spinel,

little confidence can be placed in any particular set of partition coef-

ficients. Spinel was not considered by Kay and Gast (1973).

Apatite: apatite/liquid data is from Nagasawa (1970) and is from an

acidic matrix, but it is the only data available.

2. Other trace elements: In order to evaluate the models using the

1. Wildeman's data was a personal communication.



other trace elements determined in this study (Hf, Ta, Sc, Co and Th) and

in some unpublished work of Irving (personal communication)(V, Ni, Cu, Rb,

Sr, Y, Zr and Ba) for some of the rocks, a brief literature search was

conducted in an attempt to determine partition coefficients for these el-

ements. Table XII shows those partition coefficients chosen. A complete

presentation of the data found is made in Table XIII.

TAME XII

Trace-element (non-REE) solid/liquid partition coefficients

CPX OPX GA OL

Be 3.1 1.1 6.5 0.25

V 1.5 0.3 0.27 0

Cr 33

Co 1.5 3.3 2.6 3.3

Ni 3.3 6.3 0.6 10.8

Cu 0.023 0.1 0.2 0.06

Rb 0.05 0.02 0.02 0.01

Sr 0.017 0.016 0.014 0.016

Y 1.0 0.05 5.7 0.01

Zr 0.3 0 0.33 0.1

Ba 0.06 0.01 0.04 0.01

Hf 0 0 10 0

Ta 0 0 0 0

Th 0 0 0 0

See Table XIII for sources.



TABLE IIII

Non-REE trace element partitioning data

CPX OPI GA OL

Sc 3.3
2.9
3
2.8
3.3

V 1
1.0
1.9
T3

1.23
1 -2
0.15

01!

o.58
0.08

(2)
(3)
(11)

(3)
(11)

8.3
10.3

1.0

0.2
0.26
0.34
7.~27

(10)
(11)
(12)

(10)
(11)
(12)

Cr 33 (10)
12.5 (14)

(1)
(2)
(3)
(6)
(11)
(114)

(3)
(6)
(7)
(9)
(14)

2.1 (2)
3.5 -(3)
4.2 (11)

8 (3)
6.7 (7)
2.96 (9)
7.5 (11)
5.6 (13)
'6~2-

4.0 (10)
2.16 (11)
1.5 (12)

0.5 (7)
0.85 (9)
0.7 (10)
0.5 (11)
0.6 (12)
U~6~

0.33
0.17
0.25

(1)
(6)

o (14)

0.1 (14)

3.1 (1)
3.0 (4)

1.9-4.9 (5)
3.9 (6)

3.0-5.5 (14)

10
4.9-18.6

11.8
16.7
2.96

9.5-12
10.0-

(4)
(5)
(6)
(7)
(9)
(14)

0.071 (1)
0.2 (3)

0.1-0.7 (114)
0.1-

Rb o.5 (7)
0.045 (8)
0.05 (9)
0.06 (10)

0.2 (3)

0.025
0.022
0.01
5001

0.06 (12)

0.008 (7)
o.oo8 (8)
0.04 (9)
0.03 (10)
072

(7)
(8)
(9)

0-023 (1)
0 (4)

0.08-0.9 (14)

0
0.01
0.01
o.oo8

(4)
(7)
(8y
(9)

(1)
(2)
(3)
(6)
(10)

(3)
(10)
(14)

Co

Ni

1.2
1.1
2

2.0
1.1-2.5

1.5

6
1.8
3.3
2.2

1.2-5.0
33 

Cu
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TABLE XIII Continued

Non-REE trace element partitioning data

CPI OPX GA OL

Sr 0.11 (2)
0.2 (7)
0.166 (8) 0.015 (7) 0 (4)
O.2 (9) 0.02 (7) 0.015 (8) 0.014 (7)
o.15 (to) 0.017 (8) 0.015 (9) 0.014 (8)
0.02 (1.4) 0.01 (9) 0.009 (12) 0.02 (9)
'o.T6 .6 IM7.~0611[ 0.0U16

Y * 0.59 (10) 5.9 (10)
2.0 (14) 5.2 (12) 0 (4)

0.33 06(1)

Zr 0.02-0.6 (1) .033 0 ()

Hf0

Ba 0.05 (1)
0.0035 (2)
0.067 (8) 0.017 (8) 0.05 (1)
0.08 (9) 0.04 (9) 0 (4)
0.08 (10) 0.013 (8) 0.04 (10) 0.01 (8)

0.02-0.1 (14) 0.01 (9) 0.06 (12) 0.01 (9)
0.06 '00~T 0.01

Ta#
Tho 0.013 (2)

0.013 (9) 0.01 (9)
0

General notes: horizontal line indicates generally an average was used.
Absence of numbers means that no data was found in the literature.

* Y: geochemically Y behaves very similarly to Ho; since very little data
concerning Y was found, the high set of Ho partition coefficients was used.

** Zr: one value for ga/cpx was found: 1.1 (12); ga/1 was calaulated with
this value. In recognition of the similarity with Hf, 10 was also used.

$ Hf: My original assumption that all Hf partition coefficients were zero
lead to answers an order of magnitude off; therefore it was assumed that Hf
w d behave similarly to Lu; this is plausible since the ionic radius of
Rf* (0.91, Whittakqr and Muntus (1970)) is not too different from that of
Lu*3 (1.05) and Sc" (0.95) and we know that both Sc and Lu are enriched
in garnet. Therefore, the Hf partition coefficient for garnet was taken
as 10. For the other minerals, the partition coefficients were taken to
be zero. Hf may also enter the pyroxenes (Vlasov 1966), but as a first
order calculation, this was not taken into account.



TABLE XIII Continued

Non-REE trace element partitioning data

# Ta: no data was found concerning Ta: all partition coefficients were
assumed to be zero.

# Th: very little data was found for Th: all partition coefficients were
assumed to be zero due to the large size of the Th ion (1.08- 1.17A).

References:

(1) Paster et al. 1974
(2) Onuma eU-ai.1968

(3) Ewart e aT.~ 1973
(4) Gunn 1971
(5) Henderson and Dale 1970
(6) Dale and Henderson 1971
(7) DeLong 1974
(8) Philpotts and Schnetzlar 1970a
(9) Shaw 1973

(10) Gill 1974
(11) Taylor et al. 1969
(12) Colemanet~al. 1965
(13) Turekian~~andTarr 1960
(14) Wager and Mitchell 1951
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D. Melting Proportions

Melting proportions are difficult numbers to come by, since much of

the melting actually takes place by means of complex incongruent melting

reactions. For example,

orthopyrcacene -:olivine -liquid

garnet = orthopyraxene -(-liquid

clinopyrcacene w.clinopyroxene 4 orthopyraxeneliquid2

Experimental research (e.g., Ito, Green, Kushiro) indicates that phases

such as clinopyrorene, garnet and amphibole all disappear before orthopyr-

acene and olivine. Thus for the computer model, simple assumptions can

be made. The importance of these assumptions can be tested by varying the

melting proportions and comparing the resulting models. This was done using

three sets of melting proportions:

OL OPI CPI GA
1 .1 .1 .3 .5
2 .1 .1 .h .h
3 .1 .1 .5 .3

The results for all such tests are essentially identical until one of the

phases is exhausted, after which the pattern is determined by the three

remaining phases, as reouired by the equilibrium assumptions. Since it

is definite that olivine and orthopyroxene will be the last remaining phases

they were given the least weight in all computer runs. The figures reported

in the next section are based on Set No. 2, which is in agreement with the

hypothetical mineralogy in Green's (1973a) Table 5.
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V. DISCUSSION

The results of this study will be considered in two sections: first,

the rocks with greater than 5% normative nepheline (the basanites, the ol-

ivine nephelinintes and the melilite nephelinite) and second, the rocks

with less than 5% normative nepheline (the tholeiites, the olivine basalt

and the alkali olivine basalt).

A. Rocks with greater than 5% normative nepheline (2128, 2854, 2860, 2896
and 2927)

Green's (1970b, 1973a) experimental work has shown that 5 - 15% par-

tial melting of pyrolite with 0.2% H20 at 25 - 30 kb and 1200 - 13000C will

generate strongly undersaturated nephelinitic or basanitic magma. These

liquids (such as 2128, 285h, 2896 and 2927) are in equilibrium with oli-

vine, orthopyroxene, clinopyroxene and garnet as residual phases. With

the exception of nephelinite 2860, all of these rocks have Mg-values be-

tween 65 and 75 (see Table I) and have lherzolite inclusions; on the basis

of this evidence, they are thought to be primary melts of upper mantle

peridotite.

1. Basanite 2128: under pressures of 25 - 30 kb, the subsolidus

mineralogy of pyrolite with 0.2% H20 (see figure 8) is olivine, ortho-

pyroxene, garnet and amphibole (Green 1973b). As pointed out in section

IV, no pattern produced by this starting composition resembled any of

the patterns actually exhibited by the rocks. Therefore, it is assumed

that amphibole is not in equilibrium with any of the magmas investigated,

that is, that the percent melt involved is always higher than that required

for all the amphibole to disappear. Thus our assumption of equilibrium

batch melting allows us to ignore the initial presence of amphibole since
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the REE will redistribute themselves among the remaining phases (or phases

now present, since clinopyraxene is added when the amphibole melts incon-

gruently).

Thus the solid phases which are in equilibrium with the basanite mag-

ma are olivine, orthopyroxene, clinopyroxene and garnet (Green 1973a).

Using ANATEXIS with starting compositions 14, 5, and 6 from Table VIII

(these are the relevant ones, see above discussion and section IV-B),

with the high and low sets of partition coefficients, the best fits of the

calculated REE pattern with the rock (2128) pattern are shown in figures

12 and 13.

In determining the fit the following method was used. The chondrite-

normalized REE pattern is usually characterized by a negative slope (La/Yb

ratio greater than 1); however examination of the 2128 REE pattern shows

that there is a definite change in slope at Tb, and therefore the pattern

was characterized by two numbers, the La/Tb ratio and the Tb/Yb1 ratio.

These ratios were calculated for the computer-generated "melts" and the

ones with the closest match were chosen.

Table XIV gives a numerical comparison between the different models

and the basanite, and also illustrates the method used. Although all of

. L. Yb was used in these ratios, since using Lu presents problems:
the statistical error of the Lu-177 208.4 key peak is fairly large, and
often the determined value would cause a distinct ch'ange in slope between
Yb and Lu. Yb-175 has two peaks (282.6 and 396.1 key) which almost always
g;ve results well within the statistical errors of the two peaks. An av-
erage of the values determined from the two peaks was used in the calcu-
lations, with the minor exceptions of those rocks whose Yb content was
so low that the two Yb-175 peaks were not detectable; in these cases an
ajusted value of the Yb-169 63.3 key peak was used. (The adjustment was

made by comparing the Yb-169 peaks with the Yb-175 peaks in those samples
(by far the greater majority) for which both isotopes yielded integratable
peaks).
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Figure 12: Graphical comparison of the REE pattern of basanite 2128 and
the pattern produced by starting composition 6 (Model A).

---- 2128
X-------( Model A low p.C.

+- - Model A high p.c.
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Figure 13: Graphical comparison of the REE pattern of basanite 2128 and
the pattern produced by starting composition 4 (Model B).

*-0 2128
4--6 Model B low p.c.
V-0 Model B high p.C.
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TABLE XIV

Total equilibrium models for basanite 2128

Yodel B La Ce Nd Sm Eu

2128 147 93.8 73.6 53.0 42.7

SC4 0.9% low 80.0 62.6 39.3 25.2 20.9

Ri 1.837 1.500 1.873 2.103 2.053

M 157 123 77 49.4 41.0

R2 0.936 0.764 0.956 1.073 1.046

Model B Th Ho Yb Lu ave.

26.7

lw 15. 5

1.723

30.4

0.878

15.9

6.9

2.314

13.5

1.178

5.3

2.3

2.294

4.5

1.170

4.1

1.4

(2.929)

2.7

(3.8)

1.962

1.0001±0.144

Model B La Ce Nd Sm Eu

sc4 4.1% high 18.3 14.8 9.52 5.34 4.86

R1 8.033 6.338 7.731 9.925 8.827

M 159 128 82.7 46.4 42.2

R2 0.925 0.730 0.890 1.142 1.017

Model B Th Ho Yb Lu ave.

sch 4.11 high 3.38

R1 7.899

M 29.3

R2 0.911

1.148

1o.61

12.8

1.227

0.53

10.095

4.6

1.152

0.3

(13.667)

2.7

(3.8)

8.682

0.99921:0.166

Notes for Table XIV are on page 70.

II

2128

sc4 0.9%

R1

M1

R2
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TABLE XIV Continued

Total equilibrium models for basanite 2128

Model C La Ce Nd Sm EU

2128 147 93.8 73.6 53.0 42.7

Sc5 0.9% low 85.8 69.8 45.5 27.9 22.5

R1 1.702 1.347 1.626 1.900 1.911

M 167 136 88.5 54.3 43.8

R2 0.874 0.692 0.836 0.976 0.982

Model C Tb Ho 7b Lu ave.

2128 26.7 15.9 5.3 4.1

SC5 0.9%low 15.8 5.96 1.86 1.09

R1 1.709 2.684 2.688 (3.761) 1.946

M 30.7 11.6 3.6 2.1

R2 0.879 1.379 1.381 (4.7) 1.09820.378

Model C La Ce Nd Sm Eu

SC5 4.3%high 18.8 15.8 10.8 5.91 5.22

R1 7.77 5.95 6.85 8.97 8.24

M 164 138 94.2 51.5 45.5

R2 0.890 0.609 0.787 1.029 0.945

ModelC Tb Ho 7b Lu ave.

S05 4.3%high 3.47 1.30 0.42 0.25

R3 7.78 12.3 11.9 (16.4) 8.72

M 30.3 11.3 3.7 2.2

R2 0.891 l.455 1.351 (4.5) 0.995%,0.282

Notes for Table XIV are on page 70.
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TABLE IV Continued

Total eauilibrium models ftor basanite 2128

Model A La Ce Nd Sm Eu

2128 1h7 93.8 73.6 53.0 h2.9

sc 6 0.6% low io6 78.5 h6.8 30.9 26.h

Ri 1.387 1.195 1.573 1.715 1.625

m 151 112 66.9 44.1 37.7

R2 0.974 0.838 1.100 1.202 1.138

Model A Tb Ho Yb Lu ave.

2128

SC 6 0.6% low

R1

m

R2

26.7

20.6

1.296

29.4

0.908

15.o9

11*3

1.407

16.1

0.988

5.3

h.3

1.23

6.1

0.869

4.1

2.7

(1.519)

3.9

(1.051)

1.377

0.99988.0.143

Model A La Ce Nd Sm E

So 6 2.8% high 23.4 18.3 11.1 6.38 6.02

R1 6.24 5.14 6.67 8.31 7.14

m 147 115 69.8 h0.1 37.8

R2 0.993 0.817 1.o6o 1.322 1.138

Model A Tb Ho Yb Lu ave.

SC6 2.8% high 4.45

Ri 6.07

M 28.0

R2 0.964

2.53

6.32

15.9

1.006

1.*06

4.72

6.66

0.751

o.67

(6.119)

4.2

(0.976)

6.29

1.ooot o.167

Notes for Table XIV are on page 70.

4.
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TABLE XIV Continued

Total equilibrium models for basanite 2128

Notes for Table XIV: This table shows the best fits for basanite
2128 using all relevant starting compositions (see Table VIII).
The first line in each section (labeled "2128") gives the REE
chondrite-normalized abundances in the basanite; each page of
the table tabulates a different starting composition, both
high and low sets of partition coefficients.

SC is starting composition.

Rl is the ratio of the rock to the calculated pattern

M is the computer-generated value multiplied by the average
value of R1 (the Model).

R2 is the ratio of the rock to the model.

Percent figures are the percent of partial melting required by the
model.

The plus/minus values are one standard deviation.

Parentheses indicate values not included in computing the average.

Although Lu is fit well by model A, it was not included in the ave-
rages for consistency with the other starting compositions.
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the models fit well on the average of all the elements, the standard de-

viation indicates the actual closeness of the fit.

The model with the best fit (smallest standard deviation), which I

will call "Model A", uses starting composition 6 (Table VIII) with low

partition coefficients, and calls for a 0.6% melt. Assuming that the

mantle REE pattern is not fractionated with respect to chondrites, this

indicates an upper mantle RE content of 1.h x chondrites. If high parti-

tion coefficients are used, 2.8% melt is needed, and the RE content of

the upper mantle is 6.3 x chondrites. The fit is still acceptable.

Using starting composition h, "Model B", with low partition coeffi-

cients, the data can be matched almost as closely as with Model A: the

standard deviation is 0.144 versus 0.143. This model produces 0.9% melt,

and calls for an upper mantle REE content of 2.0 x chondrites. If we shift

to the high partition coefficients, percent melt rises to 4.1 and the REE

content of the upper mantle changes to 8.7 x chondrites. The fit is still

acceptable, and very comparable to the previous model.

It should be noted here that these are limits that the models place

on the percent melt and RE content of the upper mantle: since the partition

coefficients could be anywhere between the high and low values I have chosen,

the percent melt and RE content of the upper mantle will fall within the

limits indicated in each model.

Starting composition 5*(the one closest to Chen's (1971) mantle min-

eralogy does not yield satisfactory results: the average fit is acceptable,

but the standard deviation is too high. It is interesting to note that the

parameters generated by this model (percent melt and upper mantle REE con-

tent) are very similar to those required by the two models which do fit the

*Model C
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data well.

Although I feel that total equilibriumi follows Green's experiments

more closely than surface equilibrium, it is worthwhile to consider sur-

face equilibrium, if only to look at the complete picture. Reality may

well be somewhere in between these two models.

Both Models A and B were examined. Model A gave good results: low

partition coefficients required 1% melting and l.5 x chondrites. The

standard deviation is 0.118, quite good a fit. With high partition coef-

ficients, 4% melting and an upper mante RE content of 6.3 x chondrites

are required. The fit isn't quite as good, with a standard deviation of

0.148. This data is presented in Table XV and Figure 14. Note that Lu

is fit with this model.

Interestingly, Model B did not yield an acceptable fit: with low

partition coefficients the standard deviation was 0.254 and with high par-

tition coefficients, 0.264 if Lu is included, and 0.182 and 0.206 respec-

tively if we leave out Lu.

Other trace elements: Several other trace elements were determined in this

study: Sc, Cr, Co, Hf, Ta and Th. The following is an attempt to fit these

data to the two models.

Using estimates of Lopez-Escobar et al. (1974) for upper mantle abun-

dances of Sc and Co, and of Shaw (1973) for Th, and using chondritic av-

erages of Ehmann and Rebegay (1971) for Hf, and of Ehmann (1971) for Ta,

(in each case times the appropriate facter determined above from the REE

models), we can calculate the expected abundances of these trace elements

and compare the results with the analytical determinations. For these

calculations, the partition coefficients discussed in section IV-C-2
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TABLE XV

Surface equilibrium model for basanite 2128

Model A La Ce Nd Sm EU

2128 147 93.8 73.6 53.0 42.7

1.0% low 94.6 77.2 47.7 31.5 26.8

Ri 1.555 1.216 1.545 1.682 1.600

M 137 112 68.3 45.7 38.9

R2 1.065 0.838 1.079 1.159 1.102

Model A Tb Ho Yb Lu ave.

26.7

20.0

1.283

30.2

0.883

15.9

11.3

1.406

16.14

0.969

5.3

4.3.

1.236

6.2

0.855

4.1

2.7

1.538

3.9

1.051

1.h53

1.0001O.118

Model A La Ce Nd Sm Eu

.0% high 23.6 19.3 11.7 6.54 6.14

R1 6.239 4.860 6.291 8.104 6.987

M 1ls9 122 73.8 41.3 38.8

R2 0.986 0.768 0.998 1.283 1.103

Model A Tb Ho Yb Lu ave,

4.0% high

Ri

14

R2

4.46

5.987

28,2

o.946

2.44

6 .516

1.032

0.998

5.311

6.3

O0.841

0.628

6.529

14.o

1.024

6.313

0.99790 .148

2128

1.0% low

R1

R2
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Figure 1): Graphical comparison of the REE pattern of basanite 2128 and
the pattern produced by a surface equilibrium model using
starting composition 6. (Model A)

0- 2128
)(-, -- O-. X low P.C.

&--& high p.c.
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were used. See Table XII. The results are shown in Table XVI, and are not

too bad, considering the assunmtions involved. Th agrees quite well using

the models with the low percent melting; Sc is off by less than a factor

of two, Co and Hf by about a factor of two, and Ta by a factor of three.

TABLE XVI

Basanite 2128 models: other trace elements

Model / Sc Co Hf Ta Th N

2128:Roy 19,6 71.3 7.5 11.3 57
Irving 19.5 72 5.7

Model A 0.6 13.8 36.6 0.7 3.9 8.3 1.4

2.8 14.6 37.1 3.3 3.9 1.8 6.3

Model B 0.9 11.1 35.5 1.0 3.7 5.6 1.9

4.1 11.9 36.0 .5 3.6 1.2 8.7

Upper Mantle 16 o 0.26N 0.017N 0.05

% is the percent of melting required by the model.
N is the chondrite factor required by the REE models.

It is worth examining these results and the assumptions that led to

them. The question of how well the partition coefficients are known has

been dealt with in section IV-C, to some extent, by means of Table XIII.

The other important assumption is the abundance of the element in the

upper mantle. Each of the five elements will be considered in detail below.

Sc: The initial calculations used Lopez-Escobar' (1974) estimate

of 16 ppm for the abundance of Sc in the upper mantle. Alternatively,

we can derive a value for oyrolite by combining a value for the abundances

in tholeiitic basalt and in peridotite.
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Sc in ultramafics:

Turekian et al. 1961: 15 ppm
Vinogradcv~1962: 5
Goles 1967: 16
Fisher et al. 1969: 20
Fronde1~T9W-: 4.7-12

Sc in tholeiites:

Turekian et al. 1961; 30 ppm
Hamilton TI6T:" 24
Vinogradov 1962: 42
Prinz 1967: 29
Norman et al. 1968: 30
Fronde1~T9W. 35-50
Ewart et al. 1973: 4o
Helmke't251. 1973: 25
This papir~Tappendix III) 31

Pyrolite = 0.75 peridotite + 0.25 tholeiite (Ringwood 1966)

Therefore, using an average of 12 ppm Sc for the peridotite and an average

of 34 ppm Sc for the tholeiite, 0.75 (12)+0.25 (34)=17.5. Thus Sc in

pyrolite comes to about 17.5 ppm; this raises our results by 9% (Table XVII).

TABLE XVII

Basanite 2128 Sc model: revised

Model % Se

Basanite 2128 19.6

Model A 0.6 15.
2.8 16.o

Model B 0*9 12.2
4.1 13.0

These results are a little closer than the earlier ones. It is worth

noting here the existence of "Sc provinces", found in the abundance of Sc

in crustal rocks, which Frondel (1969) believes reflect inhomogeneities in



-78-

the Se abundance in the upper mantle. Thus this match may be fortuitous;

at the same time the existence of Sc inhomogeneitites in the mantle makes

the use of averages somewhat dubious.

Co: A brief survey of the literature found the following values for

the abundance of Co in ultramafic rocks:

Turekian et al. 1961: 150 ppm
VinogradoV~1962: 200
Goles 1967: 110
Fisher et al. 1969: 110

and the following *alues for the abundance of Co in tholeiites:

Turekian et al. 1961: 48 ppm
Hamilton T617 45
Vinogradov 1962: 45
Prinz 1967: 44
Gunn 1971: 74
Helmke et al. 1973: 35
Ewart eTaT71973: 30
This pipeor~appendix III) 58

Using values of 110 ppm for the ultramafic componenet and 45 ppm for the

tholeiitic component, pyrolite would have about 88 ppm Co. Using Vino-

gradovts values, pyrolite would have 160 ppm Co. Using both of these

values for Co, the abundance in the source, we get the results shown in

Table XVIII. Vinogradov's values are in parentheses.

- TABLE XVIII

Basanite 2128 Co model: revised

Model % Co

Basanite 2128 71.3

Model A 0.6 29.5 (53.6)
2.8 29.7 (54.0)

Model B 0.9 28.h (51.6)
4.1 28.8 (52.4)
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Using Vinogradovr's numbers brings us closer to the rock value, while using

a more average value brings us further away.

Hf: One note on the partition coefficients: the bulk partition coef-

ficient (D0 in Shaw's (1970) equations) for Hf comes to 0.5 for Model A

and 1.0 for Model B. Helmke and Haskin (1973), in considering fractional

crystallization models for the Steens Mtn basalts, calculate a bulk distri-

bution coefficient of 0.56 for Hf when the average of fifty-two lavas is

used; other calculations of theirs have Hf bulk partition coefficients be-

tween 0.18 and 0.66. This seems to lend some support to the values of

0.5 and 1.0 used in this thesis.

Hf in ultramafics:

Turekian et al. 1961: 0.6 ppm
Goles 19677 - o.6
Brooks 1970: 1.0

Hf in tholeiites:

Turekian e al. 1961: 2.0 ppm
Brooks 1970: 3.3
Helmke et al. 1973: 4.8
This padperppendix III) 4.9

Using Brooks' numbers, Hf in pyrolite is 1.55 ppm; using Goles' and

Helmke and Haskin's numbers, Hf in pyrolite is 1.85 ppm. Using 1.7 as an

average yields the folling results (Table XIX). This change in C does

not really change the results.

One problem arises when the Hf content of the nephelinites is compared

with the Hf content of the tholeiites: if the tholeiites are to be derived

from a source of identical chemical composition (but'different mineralog-

ical composition) to that of the nephelinites, then if Hf is in the garnet

phase for the nephelinites and doesn't go into the other phases, then the
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Basanite 2128 Hf models revised

Model % Hf

Basanite 2128 7.5

Model A 0.6 3.4
2.8 3.4

Model B 0.9 1.7
4.11 1.7

Hf content of the nephelinites should be less than the lif content of the

tholeiites. A glance at Table III indicates that this is not the case.

One possibility is that the two types of basalts come from different types

of mantles; this is discussed briefly under Conclusions.

Ta: There is not much data available for Ta.

Ta in ultramafics:

Turekian et al. 1961: 1.0 ppm
Vinogrado~71W: 0.02

Ta in tholeiites:

Turekian et al. 1961: 1.1 ppm
Vinogrado;l"96I: 0.5
This paper (appendix III) 2.5

Therefore Ta in pyrolite is about 1 ppm (Using Turekian et al.) or about

0.h ppm (using Vinogradov). We get the following results (Table XX).

This improves the results of the calculation somewhat (compare

Table XX with Table XVI) and gives support to the high partition coeffi-

cient models. The uncertainty in Co more than covers the range allowed

by the models.

Th: The following data was collected for Th:



-.81..

TABLE XX

Basanite 2128 Ta model: revised

Model % Ta* Ta

Basanite 2128 11.3

Model A 0.6 163 60
2.8 36 13

Model B 0.9 116 43
4.1 24 9

* using Turekian et al. 1961
-* ising Vinogradov Mf2

Th in ultramafics:

Turekian et al. 1961: 0.004 ppm
VinogradcF~177: 0.005
Goles 1967: 0.06
Green et al. 1968: 0.036- 0.1
Rogers~e&~CET_. 1969: 0.05

Th in tholeiites:

Turekian et al. 1961: 4 ppm
VinogradcW_1"96: 3
Rogers et al. 1969: 0.69

it 0 =@ .95
This paper (appendix III) 1.4

Using 0.06 for peridotite and 1.0 for tholeiites, we get 0.29 ppm Th in

pyrolite. The results of the calculations are shown in Table XXI.

This value for Co improves our results if we consider the high per-

cent partial melting (which means the high set of REE partition coeffi-

cients in our model), as did Ta.

As one last calculation, if we consider a chondritic abundance of

Th we can get another estimate of C ,. Using data of Margan (1971) and

estimates of Wakita et al. (1967) and Green et al* (1968) of the chon-
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TABLE XXI

Basanite 2128 Th model: Revised I

Model % Th

Basanite 2128 5.7

Model A 0.6 48
2.8 10

Model B 0.9 32
4.1 7

dritic abundance of Th and multiplying by the factor determined from the

REE models, we get the following results (Table XXII).

TABLE XXII

Basanite 2128 Th model: revised II

Model % Th N

Model A 0.6 11.7 1.4
2.8 11.4 6.3

Model B 0.9 10.9 1.9
4.1 lo6 8.7

where Co=0.05N, where N is the
chondrite factor.

This brings us further from the rock value, but not much. Rogers et al.

(1969) discuss Th provinces; if Th provinces do indicate Th inhomogen-

eities in the mantle, then the same coiments made about Sc provinces

are relevant here.

In general these five trace elements support the partial melting

models put forth above, although discrepancies certainly do exist, and

further work along these lines is definitely required.
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Irving (personal communication) did some trace element analyses of

two samples of the Mt. Porndon basanite, which are shown in Table II. We

will consider this data briefly to see if it supports the REE models.

V: V in ultramafics:

Turekian et al. 1961: hO ppm
Vinograd~l9622: 40.
Fisher et al. 1969: 100

V in tholeiites:

Turekian et al. 1961: 250 ppm
Hamilton T(6T 300
Vinogradov 1962: 200
Prinz 1967: 339
Ewart et al. 1973: 300

Using 60 ppm for the V content of peridotite and 300 ppm for the tholeiite

yields 120 ppm V for pyrolite. The results are shown in Table XXIII.

TABLE XXIII

Basanite 2126 V model

Model % v

Basanite 2128 223

Model A 0.6 517
2.8 494

Model B 0.9 503
4.1 474

V is off by a factor of two.

Ni: Ni in ultramafics:

Turekian et al. 1961: 2000 ppm
Vinogrado~1l62: 2000
Goles 1967: 1500
Fisher et al. 1969: 1600
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Ni in basalts:

Turekian et al. 1961: 130 ppm
Hamilton IEI6TF 70
Vinogrador 1962: 160
Prinz 1967: 16h
Gumn 1971: 111-820
Ewart et al. 1973 24

Using 1600 ppm Ni in peridotite and 100 ppm Ni in tholeiites we get about

1200 ppm Ni in pyrolite. Lopez-Escobar (1974) and Shaw (1973) give esti-

mates of'1500 ppm Ni in the upper mantle. Using both these estimates we

get the results shown in Table XXIV.

TABLE XXIV

Basanite 2128 Ni model

Model Ni* Ni±

Basanite 261-318

A 147 184

B 154 193

* C f-1200 ppm Ni
0 Co :.1500 ppm Ni

Percent melt differences
insignificant.

The qalculation is off by a factor of two; there is less difference between

the two models than between the two Co values.

Cu: Cu in ultramafics:

Turekian et al. 1961: 10 ppm
Vinogrado7'176Z: 20
Goles 1967: 30



Cu in basalts:

Turekian et al. 1961: 87 ppm
Vinogrado~192: 100
Hamilton 1961: 143
Prinz 1967: 207

Using 175 ppm Cu in tholeiites and 30 ppm Cu in peridotite yields 66 ppm

Cu in pyrolite. The results are shown in Table XXV.

TABLE XXV

Basanite Cu model

Model % Cu

Basanite 53

A 0.6 929
2.8 881

B 0.9 851
4.1 793

This calculation is further off than any other, well over an order of mag-

nitude. The partition coefficients indicate that almost all of the Cu will

go into the liquid, while the abundance data indicate that a bulk distribu-

tion coefficient of about 3 would be required. Alternatively, my estimate

of the upper mantle abundance of Cu may be at fault. If we back-calculate

C using the basanite value and the given partition coefficients, we get0

an upper mantle abundance of 3.7 ppm Cu, much lower than indicated by

any of the ultramafic analyses. Cu is the least understood of the elements

discussed here, and these calculations highlight this fact, a sulfide may
be involved.

Rb: Rb in ultramafics:

Turekian et al. 1961: 0.2 ppm
Vinogradov~1"96'2: 2
Goles 1967: 1.
Heier 1970: 0.09-0.16
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fb in basalts:

Turekian et al. 1961: 30 ppm
VinogradoVW1962: 45
Prins 1967: 0-2
Heier 1970: 8
Gunn 1971: 8

Therefore, using 0.2 ppm for Rb in peridotite and 8 ppm for Rb in thol-

elite, we get 2.1 ppm Rb in pyrolite. The results are shown in Table XXVI.

TABLE XXVI

Basanite Rb model

Model % Rb

Basanite 43-52

A 0,6 86
2,8 46

B 0,9 76
k,.. 36

The calculations fit the data quite well.

Sr: Sr in ultramafics:

Turekian et al. 1961: 1 ppm
Vinogrado197: 10
Goles 1967: 20

Sr in basalts:

Tvrekian et al. 1961: -465 ppm
Hamiton T96T" 560
Vinogradov 1962: WL4O
Prins 1967: 652
OwuMn 1971: 3

Using 20 ppm Sr for peri4etite and 500 Rpr Sr for tholeiite yields 140 ppm

Br in pyrolite, Shaw (1973) estimates 25 ppm Sr in the mantle. Using both

estimates we get the results shown in Table X[Vl,
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TABLE XXVII

Basanite Sr model

Model % Sri Sr

Basanite 847-897

A 0.6 3189 569
2.8 2181 389

B 0.9 2966 529
4.1 1823 325

* dO=140 ppm

** 0o=25 ppm

The calculations with the model pyrolite are off by a factor of 2 to h;

the calculations using Shawls estimate fit the datafairly well.

T: Y in ultramafics:

Turekian et al. 1961: 0.1 ppm
Goles 1967 ~ 5
Herrmann 1970: 0.54-5..

Y in basalts:

Turekian et al. 1961: 21 ppm
Hamilton 1-61"~ 46
Vinogradov 1962: 20
Prinz 1967: 32
Herrmann 1970: 24

Using 2.5 ppm Y for peridotite and 30 ppm Y for tholeiite we get 9.h ppm

Y for pyrolite. The results of the calculations are shown in Table XXVIII.

Model A is a bit low, while model B is low by a factor of 2. Considering

the variation in the data on which these calculations are based, this is

good agreement.

Zr: Zr in ultramafics:

Turekian et al. 1961: 45 ppm
Vinogradc9~17I2: 30
Brodcs 1970: 26
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, TABLE XXVIII

Basanite Y model

Model % Y

Basanite 30

A 0.6 22
2.8 24

B 0.9 14
4.1 15

Zr in basalts:

Turekian et al. 1961:
HAmilton T761=-
Vinogradov: 1962:
Prinz 1967:
Brooks 1970:

140
-146
100
202
190

ppm

Using 34 ppm Zr for peridotite and 170 ppm Zr for thoeliite yields 68 ppm

Zr in pyrolite. Using the two different ga/1 partition coefficients, the

results are shown in Table XXIX.

TABLE XXII

Basanite Zr model

Model - % ZrI Zr**

Basanite 323 (XRF)
263 (Emis. Spec.)

A 0.6 553 116
2.8 488 132

B 0.9 475 63
4.1 408 70

Zr" : Dga/-L 0.33
Zr": Dga/1 10.0

Agreement is within a factor of two for Zr*,

Zr",

Ba: Ba in ultramafics:

Ttrekian et al. 1961:
Vinogradov'167:
Goles 1967:
Puchelt 1972:

and between two and five for

0.4 ppm
6
0.4 -

25

II
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Ba in basalts:

Hamilton 1961: 420 ppm
Prinz 1967: 175-215
Gum 1971: 138
Puchelt 1972: 246

Therefore, using 5 ppm Ba in peridotite and 240 ppm Ba in tholeiite we get

64 ppm Ba in pyrolite. The results are shown in Table XXX.

TABLE III

Basanite Ba model

Model % Ba

Basanite 527

A 0.6 2590
2.8 1400

B 0.9 2160
.i 1060

The calculations are high be a factor of 2 to 5. Shaw (1973) estimates

Ba in the mantle to be 0.4 ppm. Using this value for Co brings the cal-

culated value down to 10 to 20, even worse than the original assumption.

Thus of Irving's eight analyses (V9 Ni, Cu, Rb, Sr, Y, Zr, Ba) all

but Cu fit the data within a factor of 2 in one of the models.

2. Olivine nephelinites 285' and-2896: these two rocks have almost

identical REE patterns (see Figure 6), and therefore I am discussing them

together. Examination of the RE patterns reveals a change in slope at Eu

(Ho was not determined due to counting schedule problems). Following a

procedure similar to that outlined above, La/Eu and Eu/Yb ratios were

calculated and one starting composition gave acceptable resnlts: 6,
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better than with 2128. Starting composition 4 did not yield any patterns

which fit the rock data well, and is considered marginal.,

The model with the best fit is again model A: using low partition

coefficients 0.8% melt is needed, with the upper mantle having a RE con-

tent 2.1 x chondrites; using high partition coefficients, 3.5% melt is

required, with an upper mantle RE content of 9.0 x chondrites. Model

B with low partition coefficients produces 1.3% melt, from an upper mantle

2.9 x chondrites; with high partition coefficients 5.3% melt is called

for from a mantle with a RE content 11.9 x chondrites. The two models are

compared numerically in Table XXXI, and graphically in Figure 15; olivine

nephelinite 2896 is shown in Figure 16 for example only.

Table XXXII shows the Sc, Co, Hf, Ta and Th data, and how they fit

the model. Sc and Th and off by less than a fac tor of two, Hf and Co are

off by a factor of two and Ta by a factor of three: the same results as for

basanite 2128. The figures in parentheses incorporate the changes discus-

sed in the Hf and Sc sedtions under basanite 2128 above.

TABLE YTII

Olivine nephelinite 2854 models: other trace elements

Model % Sc CO Hf Ta Th N

2854 19.2 77.2 8.8 15.7 6.9

A 0.8 13.8 (16.3) 32.5 1.1 (3.4) 4.5 6.3 2.1

3.5 14.9 (17.4) 33.1 4.5 (3.3) 4.4 1.4 9.0

B 1.3 11.2 (13.7) 31.7 0.7 (1.7) 3.7 3.8 2.9

5.3 12.2 (l4.7) 32.5 3.0 (1.6) 3.8 0.9 11.9

See text for meaning of parentheses.
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TABLE XXXI

Total equilibrium models for olivine nephelinite 285h

Model B La Ce Nd Sm Eu

2854 187 133 95.5 66.6 58.2

sch 1.3% low 60.8 50.2 34.1 23.1 19.5

Ri 3.078 2.649 2.798 2.887 2.986

M 173 1h9 97.h 65.9 55.6

R2 1.091 0.930 0.980 1.011 1.048

Model B Tb Ho Yb Lu ave.

34.0

low 1.7

2.310

42.0

0.809

(20.0)

6.78

(2.94)

17.3

1.156

9.3

2.3

4.0

6.6

1.409

3.0

1.4

2.1

4.0

0.75

2.855

1.0022!:0.200

Model B La Ce Nd Sm Eu

Sch 5.3% high 15.1 12.7 8.71 5.17 4.74

R1 12.36 1o.h9 10.96 12.89 12.28

M 180 151 103 61.3 56.2

R2 1.039 0.881 0.927 1.086 1.036

Model B Tb Ho Yb . Lu ave.

sch 5.3% high 3.37

R1 10.09

N 40.0

R2 o.850

1.53

(13.07)

(18.2)

(1.099)

0.55

16*89

6.5

1.431

Ho is an interpolation, since it could not
scheduling difficulties with the detector.
xIV.

0.33

8.99

.0

0.75

11987

0.99996± 0.207

be determined due to
See notes to Table

II

2854

Sc4 1.3%

Ri

M

R2
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TABLE XXI Continued

Total equilibrium models for olivine nephelinite 2854

Model A La Ce Nd Sm En

2854 187 133 95.5 66.6 58.2

sc6 o.8% low 87.7 68.0 42.9 29.3 25.2

Ri 2.13 1.95 2.24 2.29 2.34

M 186 144 90.8 62.0 53.h

R2 1.007 0.924 1.057 1.081 1.105

Model A Tb Ho Yb Lu ave.

2854

S06 0.8% low

R1

M

R2

34.o0

19.9

1.71

42.1

0.808

(20.0)

11.2

(1.79)

23.5

o.851

9.3

4.35.

2.16

9.21

1.010

3.0

2.71

(1.10)

5.7

(o.526)

2.127

0.999±.0.103

Model A La Ce Nd Sm Eu

SC6 3.5% high 20.6 16.3 lo.h 6.23 5.91

Ri 9.078 8.160 9.183 10.69 9,848

M 185 146 93.3 5.9 53.0

R2 1.011 0.911 1.024 1.191 1.098

Model A Tb Ho Yb Lu ave.

sc6 3.5% high

R1

M

R2

4.414

7.658

39.8

,.854

2.63

(7.60)

23.6

0.847

1.14

8.158

10.2

0.912

0.73

(4.098)

6.6

(o.h57)

8.968

1.,ooh35:1.#o.110
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Figure 15: Graphical comparison of the REE pattern of olivine nephelinite
2854 and the pattern produced by Model A,

*- 2854
X-----K Model A low p.c.
4 ''*. Model A high p.c.
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Figure 16: Example of the fit of the Model A pattern to the REE pattern
of olivine nephelinite 2896; R2=1.000-.0.122. Ho is an inter-
polation, since Ho could not be determined due to scheduling
difficulties with the detector. Small horizontal lines are
error'bars.

*- 2896
o.Q-- model (0.8%, Model A low p.c.)



-96-

H, 1, W,

'o

140



-m97-

3. Olivine melilite neohelinite 2927: This REE pattern has its change

in slope at Tb; the method described above (La/Tb and Tb/Yb ratios) was used,

with one problem being that the heavy RE trend is not as well defined as

I would have liked. Figure 17 shows two lines for the HREE trend: one

passing through the center of Yb and through the lower section of the Lu

error bar, and the other passing through the upper Yb limit and close to

the center of the Lu analysis. The same two starting compositions (4 and

6) yield satisfactory models of this rock: model A using low partition co-

efficients and 0.5% melt requires an upper mantle RE content 1.9 x chondrites;

nsing high partition coefficients and 2.7% melt requires an upper mantle

RE content 8.h x chondrites. Model B with low partition coefficients re-

quires 0.7% melt and an upper mantle RE content of 2.h x chondrites; with

high partition coefficients it requires 3.7% melt and an upper mantle RE

content 11.0 x chondrites. Starting composition 5 does not yield satis-

factory results. These two models are compared numerically in Table

XXXIII and graphically in Figure 17.

Table XXXIV shows the Sc, Co, Hf, Ta and Th data. In general the

agreement between the models and the data is slightly worse than the two

previous cases.

4. Nephelinite 2860: Green (personal communication) hypothesizes

that nephelinite 2860 might be a low pressure fractionate of olivine

nephelinite 2854, since they are from the same locality and have similar

iajor element chemistry, with the very notable exception of MgO. Using

the Doherty-Wright (1971) Mineral Distribution program with three dif-

ferent olivines and three different olivine plus clinopyrcene pairs



Figure 17: Graphical comparison of the REE pattern of olivine melilite
nephelinite 2927 and the patterns produced by models A and B.

*--. 2927
X' Model A low P.c.
4''''*i' Model A high P.c.
As-- Model B low p.c.
0-- Model B high p.c.
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TABLE XXXIII

Total equilibrium models for olivine melite nephelinite 2927

Model B La Ce Nd Sm Eu

2927 219 145 99.2 66,6 53.4

sc4 0.7% low 95.1 71.3 42.5 26,h 21.7

Ri 2.303 2.034 2.334 2,523 2.461

M 228 171 102 63,3 52.1

R2 0.961 0.848 0.973 1,052 1.025

Model B Tb Ho Yb Lu ave.

2927

S04 0.7% low

R3I

M

R2

37.7

15.9

2.371

38.2

0.987

(21)

6.9

(3.0)

16.6

(1.265)

6.4

2.3

2.771

5.5

1.155

(4,4)

1,o

(3,14)

3,3

(1,033)

2.3995

1.00001t:0.094

Model B La Ce Nd Sm Eu

So4 3.7% high 19.7 15.6 9.83 5,h0 4.90

R1 11.12 9.29 10.09 12,33 10.90

K 217 172 111 59,6 54.1

R2 1,009 0.843 0.894 1,117 0.987

Model B Tb Ho Yb Lu ave.

sch 3.7%

R1

14

R2

high 3.39

11,12

37,4

1,008

1.47

(14.3)

16,2

(1,30)

HO is an interpolation, since it
pheduling difficulties with the
XIV.

o.52

12.38

5,72

1.122

could not
detector,

0,31

(14,19)

3,4

(1.29)

11.033

0.99726t0.104

be determined due to
So@ notes to Table

II
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TABLE XXXIII Continued

Total equilibrium models for olivine melilite nephelinite 2927

Model A La Ce Nd Sm Eu

2927 219 145 99.2 66.6 53.4

SC6 0.5% low 119 85.1 49.0 31.8 27.0

R1 1.84 1.70 2.02 2.11 1.96

M 220 158 90.7 58.9 5o.0

R2 0.995 0.918 1.092 1.138 1.060

Model A Tb Ho Yb Lu ave.

2927

sc6 0.5% low

R1

M

R2

37.7-

20.9

1.80

38.7

0.97h

(21)

11.3

(1.86)

21.0

(1.000)

6.4

1.49

7.9

0.810

(h.h)

2.7

(1.63)

4.9

(0.897)

1.86

0.988:0.107

Model A La Ce Nd Sm En

SC6 2.7% high 24.6 18.6 11.2 6.41 6.0A

R1 8.69 7.79 8.84 io.45 8.77

M 207 157 94.5 55.0 51.0

R2 1.06 0.92 1.05 1.22 1.04

Model A Tb Ho Yb Lu ave.

S06 2.7% high

RI

M

R2

8.47

36.5

1.03

2.52

(8.33)

21.1

(1.00)

1.05

6.1

8.8

0.73

0.666

(6.606)

5.6

(1.5)

8.h

1.01*0.153
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TABLE XXXIV

Olivine melilite nephelinite 2927 models: other trace elements

Model % Sc Co Hf Ta Th N

2927 23.3 83.3 5.8 13.0 13.6

A 0.5 13.8 (16.3) 32.5 1.0 (3.4) 6.3 10.0 1.9

2.7 14.6 (17.1). 32.9 4.2 (3.3) 5.3 1.9 8.4

B 0.7 11.1 (13.6) 31.6 0.6 (1.7) 5.8 7.1 2.4

3.7 11.8 (14.3) 32.2 2.8 (1.7) 5.a 1.4 11.0

See text for meaning of parentheses (under basanite 2128).

(taken from Irving 1971, Green 1973a and b), it was determined that neph-

elinite 2860 could be roughly matched to olivine nephelinite 2854 by frac-

tional crystallization of approximately 30% olivine. Table XXIV shows one

of the computer fits. The match is not especially good; in all the three

cases where both olivine and clinopyroxene were used, clinopyroxene was

added to 2854 to yield 2860, but not improving the match in general. See

Table XXVI as an example.

The effect of crystallization of 30% olivine on the RE pattern can be

calculated using the equation from Gast (1968). The choice of high or

low partition coefficients makes negligible difference under these circum-

stances. Figure 18 shows the 2860 RE pattern and the calculated pattern.

The fit is not acceptable.

Locking at the K2 0, P205 and Th data, it seems a reasonable conclu-

sion that obtaining 2860 from 2854 requires approximately 50% crystalliza-

tion of certain phases not incorporating these elements. With this assump-
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TABLE X0V

Derivation of 2860 from 2854: olivine

Calculation

4l.71

13.07

15.60

5.38

15,.9

h.12

4.66

Difference

1.o4

1.57

-1.89

0.36

0.21

-0.77

Solution: 131.81 -31.80

Olivine composition from Irving 1971.

This is one of the three olivines used in this attempt; the

other two calculations reouired the removal of 29.9 and 28.9%

olivine.

The sium of the residuals squared is 7.2832.

2854

9.92

15.87

1458

-.11.75

3.54

A1203

FeO

MgO

Cao

Na2 0

TiO
2

olivine

39.75

0.0

16.75

43.52

0.0

0.0

0.0

2860

42.75

14.64

13.70

5.74

14.99

4.33

3*89
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TABLE XXXVI

Derivation of 2860 from 2854: olivine-clinopyrrxene

2854 CPI OL 2860 Calculation Difference

SiO2  41.24 51.12 39.75 42.75 42.54 0.21

A1203  9.92 6.96 0.0 14.64 12.78 1.86

FeO 15.87 5.41 16.75 13.70 14.71 -1.01

MPgO 14.58 15.03 43.52 5.74 5.53 0.22

CaO 11.75 19.1J 0.0 14.99 16.07 -1.08

Na20 3.13 1.49 0.0 4.33 3.97 0.36

Tio2  3.54 0.89 0.0 3.89 4.43 -0.53

Solution: 122.94 8.50 -3l.42

The olivine and clinopyroxene compositions used in this calculation are

taken from Irving 1971; they are a coexisting pair.

This is one of three olivine-clinopyroxene pairs used in this attempt;

the other two calculations required i) the removal of 33.99% olivine and

the addition of 20.23% clinopyroxene; and ii) the removal of 29.84% oli-

vine and the addition of 11.02% clinopyroxene.

The sum of the residuals squared is 6.1491.
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Figure 18: Graphical comparison of the REE pattern of nephelinite 2860 and
four attempts to match the pattern by fractional crystalliza-
tion. 0- 2860

X'" X 2854 - AMPH
+-'t 2854 - 30% OL

'6--42854 - OPX - PLAG
0-'O 2854 - 1.3% AP - OPX - PLAG
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tion, an attempt was made to calculate the bulk composition of the crys-

tallizing phases. See Table XXXVII for the results.

TABLE XXVII

Derivation of 2860 from 2854: Bulk chemical change

2851 2860

S102  39.31 - (0.5) 39.14 19.74 39.7

TiO2  3.37 3.56 1.59 3.2

A1203  9.45 13.4o 2.75 5.5

Fe203  2.59 2.16 1.51 3.0

FeO 12.93 10.77 7.54 15.1

MnO 0.20 0.18 0.11 0.2

MgO 13.90 5.25 11.27 22.6

CaO 11.20 13.72 4.34 8.7

Na20 2.98 3.96 1.00 2.0

K20 1.53 3.10 0.00 0.0

P 2 - 2.30 4.45 0.00 0.0
29065 1000

Several different procedures were tried in an attempt to figure out a pos-

sible mineralogy for this composition. First it was assumed that all of

the TiO2 and Fe2 03 with sufficient FeO would form an ilmenite-magnetite

solid solution (as implied in Table XXXV). Theriplagioclase was formed

to use the Na2 0, A12 03 and some of the CaO, or alternately, all of the

A12 03 and sufficient CaO to form anorthite. Olivine was then formed with

the remaining S102 and the MgO (requiring about 25% olivine, very similar
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to the Wright-Doherty results). Other attempts were made using diopside

to remove CaO. The end result is that in every attempt a sizable fraction

of the composition could not be taken care of, indicating that the deri-

vation of 2860 from 2654 most probably involves some phases not considered.

Table XXXVIII compares the other trace element data.

TABLE XXXIII

Comparison of 285h-2860: other trace elements

Sc Cr Co Hf Ta Th

2854 19.2 428 77.2 8.78 15.7 6.91

2860 1o.5 11 4.2 10.70 14.9 12.6

The evidence is ambiguous: Co will be enriched in olivine, indicating that

olivine crystallized out; Ni data would be invaluable in confirming this

and in setting limits on the amount of olivine that would have had to

crystalize out. Sc and Cr will both go into clinopyroxene: both go down,

indicating crystallization of clinopyroxene, in conflict with the major

element data. Using Gast's (1968) equation for fractional crystallization,

we can estimate 25% of the residue (the crystallizing phases) to be clino-

pyroxene. Cr indicates only 11%, but Cr may very well be going into a

spinel phase, throwing this calculation off. Hf and Ta are approcimately

the same in the two rocks, indicating the bulk solid/liquid distribution

coefficient is approximately one. Since Hf and Ta are not taken into the

olivine or clinopyrorene, perhaps they are being taken into the opaques.

Th (and K20, P205 and La), as mentioned above has increased by a factor

of two, indicating at least 50% crystallization of minerals not containing
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these elements.

Several other attempts were made to match the REE pattern, using some

less likely minerals: amphibole was considered; apatite, orthopyroxene and

plagioclase were tried; the calculated patterns are shown in figure 18, and

none of them matches the peculiar LREE pattern shown by 2860.

As one final exercise to find out about the residual phases, the REE

were compared, and a bulk distribution coefficient calculated; see Table

XXXIX and figure 19.

TABLE XXXIX

Derivation of 2860 from 2854: REE bulk distribution

2854 2860 cI/c a

La 187 306 1.636 0.290

Ce 133 151 1.135 0.817

Nd 95.5 110 1.152 0.796

Sm 66.6 93.8 1.408 o.506

Eu 58.2 91.9 1.579 0.341

Tb 34.0 5h.3 1.597 0.325

Ho 20.0 21.4 1.070 0.902

Yb 9.3 (7,6)*8.7 (1.14) (0.8%5)

Lu 3.0 5.3 1.767 0.179

a =c1+n(CL/Co)/ln F, where F-.rO50

* Yb value of 2854 may be lower than 9.3 x chon.
see figure 12. About 7.6 x chon would fit a line
between En and Lu, which would be within the error
bars of Tb and Yb. The a value in parentheses uses
7.6 x chon.
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Figure 19: Derivation of 2860 from 285h: REE bulk distribution coef-
ficients, calculated in Table ]MIX.
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The bulk distribution coefficient for all nine elements is less than one,

but has a peculiar shape. No attempt was made to fit this data to a min-

eralogy, since it is probable that a spinel is one of the crystallizing

phases, and spinel partition coefficients are very poorly known (they seem

to vary over several orders of magnitude).

In summary, I have not been able to satisfactorily explain the REE

pattern in nephelinite 2860.

5. Summary of results for the "nephelinites": If we begin with the

assumptions that: 1) partition coefficients are nonvarying and as shown in

Table XII; 2) the REE abundances in the source region have chondritic rel-

ative abundances; and 3) the melting proceeds under total equilibrium; then

the results of this study can be summarized as shown in Table IL, which

shows the best fits for the nepheline-normative rocks, for both models

using both sets of partition coefficients.

Several trends can be seen in Table XL. In terms of percent melt

reouired, the olivine melilite nephelinite is least, the basanite next,

and the olivine nephelinite most. Using Green's models, one would have

expected olivine melilite nephelinite < olvine nephelinite (basanite, if

the three had come from the same source region. In terms of upper mantle

RE content, the basanite requires the lowest concentrations, the olivine

melilite neohelinite a medium amount, and the olivine nephelinites the

most, though the difference between the olivine melilite nephelinite and

the olivine nephelinites is usually less than between the basanite and the

olivine melilite nephelinite. In going from low partition coefficients to

high partition coefficients, both the percent melt and the RE content of
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TABLE XL

Summary for nephelinitic rocks

Model A: (sc6):

58% olivine

Rock

Basanite 212

01 Nephelini

01 Mel Neph

22% orthopyroxene 15% clinopyroxene 5% garnet

REE Upper Mantle
% melt Content (x chon)

8 0.6 - 2.8 1.4 - 6.3

te 2854 0.8 - 3.5 2.1 - 9.0

2927 0.5 - 2.7 1.9 - 8.4

Model B: (SCh):

57% olivine 17.5% orthopyroxene 15.5% clinopyroxene 10% garnet

REE Upper Mantle
Rock % melt Content (x chon)

Basanite 2128 0.9 - 4.1 1.9 - 8.7

01 Neph 2854* 1.3 - 5.3 2.9 - 11.9

01 Mel Neph 2927 0.7 - 3.7 2.4 - 11.0

Assumptions:

1) Partition coefficients are nonvarying and as shown in Table XII;

2) The REE abundances in the source region are relatively chondritic;

3) Melting proceeds under total equilibrium.

* This fit must be considered marginal.
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of the upper mantle increase.

In comparing the models we find that for basanite 2128, model A with

low partition coefficients fits best, with model B with low partition co-

efficients very close; olivine nephelinite 2854 fits best with model A with

low partition coefficients, and doesn't really fit well with model B, high

or low partition coefficients; and olivine melilite nephelinite 2927 fits

best with model B with low partition coefficients. The main difference

between these models is the clinopyroxene/garnet ratio: in model A it is

3.0, and in model B it is 1.55. Thus the general trend is that the bas-

anite has a higher clinopvroxene/garnet ratio than the olivine melilite'

nephelinite. This is in agreement with the findings of Kay and Gast (1973)

who found the best fits for alkali basalts required a ratio of about 5,

the nephelinites a ratio between 1.0 and 1.5, and the potassic basalts a

ratio of about 0.3. Looking at the other trace elements, things are am-

biguous: we find that usually Co, Hf and Th overlap between model A and

model B, with no clear preference for either degree of melting (sometimes

high and sometimes low fits better). The Se and Th models do not over-

lap (exceot for 2927); but the difference between the two models is not

great. Usually model A is a little bit closer than model B, even for

2927. Considering Irving's data for the Mt. Porndon basanite, the re-

sults are still ambiguous: of the seven elements that can be fit by the

models, for four of them (VT, Rb, Sr and Ba), the models overlap, and three

fit better with high percent melting and one with low percent melting. Of

the other three elements, Ni calculations are about the same for the two

models, for Y, model A is better, and for Zr, model B is better.
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Reasons for these discrepancies are not immciately clear: one pos-

sibility is that surface equilibrium may be involved to a greater or lesser

extent. Surface equilibrium was considered for basanite 2128, generally

not changing the results very much: the percent melt was raised (from 0.61

to 1.0% and from 2.8% to 4.0%) and the "x chondrites" factor was also

rasied slightly. Thus this does not seem to be too critical a factor for

the REE.

It is appropriate at this time to compare the models presented here

with those of Kay and Gast (1973).

TABLE XLI

- Comparison of Kay and Gast (1973) and this thesis

Nephelinites: % melt: 0.65 - 1.5; x chon: 2.h - .5 K and Gast (1973)
Alkali basalts: 1 melt: 0.8 - 2.9; x chon: 1.9 1 Kay

Nephelinites: low p.c.: 0.8 - 1.3%; 2.1 - 2.9 x chon
high p.c.: 3.5 - 5.3%; 9.0 - 11.9 x chon

This thesis

Basanite: low p.c.: 0.6 - 0.9%; 1.h - 1.9 x chon
high p.c.: 2.8 - 4.1%; 6.3 - 8.7 x chon

If the low partition coefficient models of this thesis are considered, the

results presented here and those presented by Kay and Gast (1973) are in

good agreement. My high partition coefficient models on the other hand

differ considerably (as would be expected, considering the partition coef-

ficients used by Kay and Gast). Thus I feel that my work generally agrees

with the conclusions of Kay and Gast (1973). This also supports my conten-

tion that surface eouilibrium vs. total eauilibrium modeling does not make

very much difference in the conclusions one comes to with respect to under-

saturated basalts.
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In conclusion, it can be shown that the partial melting of a pyrolite

source can generate strongly undersaturated nephelinitic or basanitic magmas

when the REE are considered. The other trace elements considered here (Sc,

Co, Hf, Ta and Th) on the whole support this hypothesis, but with consid-

erably less consistency. Although the RE patterns may indicate possible

source mineralogies, it is not possible at this time to distinguish between

several acceptable models on this basis (due to the uncertainty in parti-

tion coefficients and melting models). When more is known about both the

RE content of the upper mantle, and about the behavior of partition coef-

ficients as a function of composition under upper mantle conditions, per-

haps a definitive statement can be made.

B. Rocks with less than 5% normative nepheline (69-1036, 69-1026, 2152,
69-1018 and 2177)

If Figure 3 (page 14) is referred to, it can be seen that the low

A1203 olivine tholeiites can be derived either i) by 25 - 30% melting of

pyrolite at 13 - 18 kb, or ii) by 35 - hO% melting of pyrolite at 18 - 27

kb, followed by subsecuent crystallization of olivine and aluminous ensta-

tite. This to investigate the origin of the tholeiitic rocks it is neces-

sary to have a mineralogy for pyrolite under these conditions. Two sources

were used: Green and Ringwood (1963) and Carter (1970); see Table VIII, page

46, starting compositions 7 and 8.

Considering the first derivation mentioned above: Green's olivine

tholeiite has 20 - 28% normative olivine and 5 - 15% normative hypers-

thene. Olivine tholeiite 69-1018 has 14.5% normative hypersthene and 7.5%

normative olivine. Therefore if olivine tholeiite 69-1018 has fractionated

from Green's olivine tholeiite, it has crystallized and lost 13 - 22% oli-
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vine (Irving 1971) (we already determined that olivine tholeiite 69-1018

could not be a primary melt of upper mantle peridotite, see discussion of

basalt petrogenesis). This derivation can be checked as follows: the REE

pattern for a 22 - 32% partial melt of pyroxene pyrolite can be calculated,

and this pattern can be mathematically subjected to crystallization of

13 - 22% olivine.

The first question is: with what mineralogy would this melt be in

equilibrium. Green (1970b) states that "Tholeiitic magmas results if the

degree of melting is sufficient to eliminate clinopyroxene from the resi-

dual phases (p. 230, Green's emphasis)." Thus, the tholeiitic magma will

be in enuilibrium with olivine and orthopyroxene. This initial mineralogy

(pyroxene pyrolite) has an olivine/orthopyroxene ratio approximately eoual

to three. Therefore, ANATEXIS was run with an initial mineralogy of 67%

olivine and 33% orthopyroxene, melting in equal proportions (at 30% melt

the olivine/orthopyroxene ratio will be three).

The REE patterns produced by ANATEXIS for the melting interval 15%

to 35% are essentially flat: the La/Eu and Eu/Yb ratios vary from 1.01 to

1.00 and 1.05 to 1.01 respectively for low partition coefficients, and from

1.05 to 1.02 and from 1.25 to 1.07 respectively with high partition coef-

ficients. This can be compared with the REE patterns of the rocks, shown

in Figure 7 (page 33) and summarized below in Table XLII. Thus we see that

none of the tholeiitic rocks can be derived solely from olivine and ortho-

pyroxene. The REE patterns of the rocks just cannot be matched by the

eauilibrium melting of just these two minerals. This analysis applies

also to the second possible derivation mentioned above, since this method
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TABLE XLII

Summary of REE patterns of the tholeiitic rocks

Sample La/Eu Eu/Yb La/Tb Tb/Yb

69-1036 2.i3 2.48 h.86 1.24

69-1026 3.14 3.5 4.60 2.04

2152 3.45 2.65 4.55 2.01

69-1018 2.14 2.36 3.17 1.60

2177 2.61 2.24 3.74 1.56

also leads to equilibrium with only olivine and orthopyracene. Fractional

crystallization of olivine or olivine plus clinopyroxene will not change

the patterns sufficiently to match the rock patterns.

It remains to be seen if a method can be found that will match the

tholeiitic rock patterns.

If we go back to the starting composition used with the nephelinitic

rocks, what can we find out? Using starting composition 4 (57% olivine,

17.5% orthopyroxene, 15.5% clinopyroxene and 10% garnet) (model B), the

La/Eu and Eu/Yb ratios were calculated for both high and low partition

coefficients (see Figure 20 for the RE patterns): none of the calculations

fit the rock data. When La/Eu is similar, the Eu/Yb ratio is much higher,

indicating that a good match cannot be made. Either the LREE or the HREE

will be completely out of line. This also holds. true if one considers the

La/Tb and Tb/Yb ratios. Using starting composition 6 (58% olivine, 22% or-

thopyroxene, 15% clinopyroxene and 5% garnet) (model A) the same problem

occurs: it is not possible to match both sections of the REE patterns.



-119-

Figure 20: REE patterns produced by partial melting of garnet peridotite:
0.5 to 27.0% melt. Solid lines indicate low partition coeffi-
cients. One curve for high partition coefficients is indicated
by the dashed line, equivalent to 0.5% melt. Generally, the
high partition coefficient curves behave similarly to the low
partition coefficient curves, quickly flattening out, so that
results for high degrees of melting are virtually identical for
the two sets of partition coefficients. (The Yb abd Lu falues
for the high partition coefficient curve are off scale.)
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The other starting caposition (no. 5: 68% olivine, 8% orthopyroxene, 11%

clinopyracene and 13% garnet) yields the same results. Thus it has been

shown that the tholeiites cannot be produced 'with garnet in the source

region: garnet's affinity for the HREE is too strong, and causes the slope

of the HREE trend to be too steep to be able to match the tholeiitic trend.

This finding agrees with Helmke and Haskin's (1973) conclusion that a max-

imum of 1.5% garnet could be present in the source region of the Steens

Mtn tholeiites.

As a third attempt, starting compositions with only olivine, orthopyr-

oxene and clinopyroxene were considered. This says, in effect, that the

degree of melting required is higher than that required to eliminate all

the garnet from the source. This is supported by the Ta data, shown in

Figure 21, where those rocks which can be produced by a source with garnet

have a trend very different from the tholeiitic rocks. If we begin with

starting composition 4, and assume that the garnet and clinopyroxene melt

in equal proportions (0.h) and the olivine and orthopyraxene also melt in

equal proportions (0.1), then the garnet would be exhausted at 25% partial

melting. The composition at this point would be 72.5% olivine, 20.0

orthopyroxene and 7.5% clinopyroxene. If these three remaining minerals

melt in the proportions olivine: orthopyroxene:clinopyroxene::1:1:3, we can

calculate the resulting REE pattern. The pattern is essentially flat:

La/Yb varies from 1.04 to 1.15, with the change in slope at Eu (or Tb)

being less than 5%, generally about 1%. Figure 20 shows these patterns.

Other three phase starting compositions were tried; principally Green and

Ringwood's (1963) pyroxene pyrolite mineralogy (66.6% olivine, 16.1% ortho-
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Figure 21: Plot of Ta vs. Yb: note the two trends: the high Ta points
are the nephelinitic rocks, whose REE pattern can be reproduced
by a source with garnet; the low Ta points are the tholei-
itic rocks, whose REE pattern cannot be duplicated by a source
with garnet. It is known that Yb is partitioned into garnet.

V Nephelinites
X Tholeiites
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pyraoene and 17.3% clinopyroxene). This did not yield acceptable results:

in every case the REE pattern is much too flat. The tholeiitic rocks have

Eu/Yb ratios varying between 2.2 and 3.1; the calculated patterns vary

between 1.0 and 1.5. Thus an olivine-orthopyraxene-clinopyroxene assem-

blage cannot control the HREE in these rocks. (This was further verified

by considering 10 other starting compositions, varying from 53.9% olivine,

22.5% orthopyroxene and 23.6% clinopyroxene to 87.9% olivine, 7.4% ortho-

pyroxene and h.7% clinopyroxene).

Another possible source for the tholeiites is olivine, orthopyraxene,

clinopyraxene and spinel. Two spinel-bearing assemblages were considered:

Green and Ringwood (1963) (see Table VIII: SC 7) and Carter (1970) (SC 8).

Using the spinel partition coefficients shown in Table X, we find that

neither of these two compositions can produce the required patterns. One

problem here is that spinel partition coefficients seem to vary over sev-

eral orders of magnitude; however, spinel is not likely to be important

in the production of these basalts.

The soecific figures quoted above refer to total eauilibrium melting.

The results do not change significantly when surface eauilibrium is con-

sidered. In each case the ratios are almost the same, and the difference

decreases with increasing percent of melting.

We seem to have come to a dead end: four different mineralogical assem-

blages have been tried (olivine and orthopyroxene; olivine, orthopyroxene

and clinopyroxene; olivine, orthopyraoene, clinopyraene and spinel; and

olivine, orthopyroxene, clinopyracene and garnet) and none of them produce

a REE pattern which comes very close to the patterns exhibited by the rocks.
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When high degrees of melting required by Green's hypotheses are considered,

the original composition (mineralogically) of the source makes only small

differences in the calculated equilibrium REE pattern.

It can also be shon that the tholeiitic patterns cannot be produced

by fractional crystallization from one of the nephelinitic magmas. The

nephelinitic magmas have REE contents equal to or higher than the tholei-

ites. Unless one calls into account some mineral like apatite (which pro-

duces a Eu anomaly) or a RE mineral like monazite, fractional crystalliza-

tion would tend to raise the RE content higher.

If we consider fractional crystallization from the tholeiitic magmas

(high degrees of partial melting) produced by ANATEIS, it is clear that

olivine alone will not steepen the curve as required, although it will raise

it absolutely. If we consider olivine and clinopyroxene, it is possible

to calculate that if 90% of the liquid crystallized as 16.5% clinopyraxene

and 83.5% olivine, the REE pattern would match the given rock (olivine thol-

eiite 69-1018) quite well (considering only the La/Yb ratio). This assumes

high partition coefficients for both steps of the process (melting of peri-

dotite and crystallizing olivine and clinopyroxene), and that the RE content

of the upper mantle is one times chondrites. Raising this to two times chon-

drites shifts the parameters to 80% crystallization, the crystals being 24.6%

clinopyroxene and 75.4% olivine. Raising the RE content of the upper mantle

to five times chondrites requires appraximately 60% crystallization of 55.9%

elinopyroxene and 43.6% olivine. This is still a high percentage of the rock

to fractionally crystallize. (No attempt has been made to examine this pro-

cess on a major element basis.)

The only obvious assumption that might be wrong is that of the chon-

dritic abundance pattern of the source. It might alternatively be frac-

tionated with respect to chondrites, and therefore be able to modify the

slope of the REE pattern, necessarily extensively. One point against this
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is that neither Kay and Gast (1973) nor this thesis was required to do this

for the nephelinitic rocks. If we are to reconsider our conclusions regarding

the nephelinitic rocks with this modification, we find that the degree of

melting required to match the patterns will be raised, probably significantly.

Any estiin tes of how much the degree of melting would be raised would have

to assume a) an assemblage to be in equilibrium with a certain rock, and b)

a degree of melting which would produce this particular rock. Then a "frac-

tionation factor" can be calculated for each of the REE. This procedure was

followed by Hertogen and Gijbels (1974), using an olivine-orthopyroxene-clino-

pyroxene-horhblende-apatite source. They assumed their most undersaturated rock

to be the product of 5% melting and then calculated CO from this assumption.
They were able to generate both the tholeiitic rocks and the nephelinitic

rocks of their suite by this method. When I attempted this procedure, I

was unable to reporduce the nephelinitic rocks.

Summary for the tholeiitic rocks: Considering source mineralogies: ol-

ivine and orthopyrarene; olivine, arthopyraxene and clinopyraene; olivine,

orthopyroxene, clinopyroxene and spinel; olivine, orthopyroxene, clinopyroxene

and garnet, no pattern like those exhibited by the tholeiitic rocks can be pro-

duced within the limits of our assumptions. This indicates that the REE pat-

tern of the source is not chondritic, in agreement with Hertogen and Gijbels

(1974). One point worth consideration is the typicalness of these tholeiitic

rocks. Comparison of Table XLIII with Table III shows that only 69-1018 can

be considered to be a typical tholeiite in terms of REE abundance. This agrees

with the data shown in Figure 5, the Coombs plot, where 69-1018 is solidly in

the olivine tholeiite part of the diagram. However, while the REE patterns of

2152 and 69-1026 are definitely steeper than typical patterns, the slopes of

2177 and 69-1036 (and 69-1018) are quite similar to the typical pattern. I

feel that there is enough similarity between the five basalts that when we

can explain the origin of one of them, we will probably be able to explain

them all.
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TABLE XLIII

Typical tholeiitic REE patterns

1

64.2

60.2

53.3

40.3

31.9

24.9

21.4

16.8

14.5

2

7603

61.6

50.8

3909

28.6

24.5

19.1

17.4

15.5

3

16.1

25

21.3

20.7

18.4

14.0

8.2

5.3

5.6

4

27.5

35.2

30.9

26.7

24.3

19.0

11.1

8.1

7.5

1. Helmke and Haskin (1973): average of 52 Steens Mtn
tholeiites.

2. Helmke and Haskin (1973): BCR-1,

3, 4, 5. Schilling (1966), Schmitt and Smith (1961) and
Wildeman (1971) unpublished: column 3 is the lowest
of 9 tholejites, column 4 the average, and column 5
the highest; all 9 samples were Hawaiian.

6. Frey et al. (1968): Deccan basalt.

In the analyses reported above, La/Yb varied from 2.37 to
6.14, the average being 3.77.

La

Ce

Nd

Sm

Eu

Tb

Ho

Yb

Lu

5

42.5

43.6

37.5

31.0

30.4

25.5

13.7

11.5

10.3

6

135

162

70

45

33

23

21

22

17
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VI. CONCLUSIONS

1) Amphibole is not in eauilibrium with the rocks studied in this

thesis.

2) The REE patterns of the highly undersaturated, nephelinitic rocks

considered in this study can be generated by a partial melting model, be.

ginning with reasonable partition coefficients and a reasonable source

composition (both mineralogically and REE-wise). The degree of partial

melting required, while generally in agreement with Green's models, is

in detail slightly different.

3) The REE patterns of the tholeiitic, less undersatur*d basalts

considered in this study cannot be produced except by foregoing a chon-

dritic RE abundance pattern in the source region.

Two possibilities to reconcile the last two conclusions exist:

A) The two basalt types come from very different mantles, in terms

of REE abundance; this is possible, since consensus attributes the under-

saturated basalts to greater depths than the tholeiitic rocks. This leaves

ul s with the problem of generating these two distinct mantles.

B) Revising the model in such a way as to account for the tholeiitic

rocks and then finding out whether such a model could generate the neph-

elinitic rocks. This may well be the proper alternative: by abandoning

the chondritic REE distribtuion one may be able to develop a self-consis-

tent set of models for trace elements and major elements for all basalt

types.

FURTHER WORK

Several very basic problems were encountered in interpreting the data
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in this thesis. For example, the behavior of partition coefficients for

the REE as a function of comoosition, temperature and pressure is not well

understood. Thus one can only handle the situation in a gross way by

using a range of partition coefficients. It would be of great use if

RE abundances and distributions could be measured in minerals under ex-

perimental petrological conditions. This is just as true for the other

trace elements considered in this study.

Another basic difficulty was the lack of information on upper mantle

abundances of trace elements. This is obviously a very difficult question

to which we may never know the complete answer, but this sort of informa-

tion would be very useful.

As a last suggestion, further work should be done on the origin of

continental tholeiites. Petrological studies so far seem to have concen-

trated on the more undersaturated basalts.
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APPENDIX' I

Analytical Details

All irradiations were done at the MIT Nuclear Research Reactor in

Cambridge, Massachusetts between July 17, 1973 and October 29, 1973. The

counting schedule was as follows:

Count Cooling Time Counting Time Detector

1 app. 5 days 2 hrs LEPS
2 " 8 d 2 h 18cc

3 " 15d 4 h LEPS
h " 30 d 8 h 18cc

The following elements were determined:

TABLE Al-I

Nuclide Energy Count
(key)

Sc-46 889.4 4
Cr-51 320.0 h
Co-60 1332.4 4
Ba-131 216.1 4
Ba-131 496.3 4
La-lho 486.8 2
La-lho 1-595.4 2
Ce-lh1 165.4 3
Nd-1h7 '91.4 3
S*-153 103.2 1
Eu-152 121.8 4
Eu-152 1407.4 h
Tb-160 298.6 4
Ho-166 80.6 1
Yb-169 63.3 .1
Yb-169 63.3 3
Yb-175 282.6 2
Yb-175 396.1 2
Lu-177 208.4 2
Hf-181 48 2.2 4
Ta-182 1189.0 4
Ta-182 1221.6 4
Th-232 311.8 4

All data from Dams and
Adams(1968 ).
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APPENDIX II

Counting statistics and statistical error

I I

The area under the photopeak is nade up of two components: the counts

due to the element of interest and the background; therefore, when doing

peak integration it is necessary to subtract out the component due to

background.
n

A Fai - B,

-n
where A is the area of interest, ai the counts in channel i, and B the

total background. Background is, assumed to be linear beneath the peak

since there is little evidence to justify fitting a higher-order curve to

the raw data. For purposes of calculation, the background is taken as the

average of the two points on either side of the peak:

bn +b.n

where bn is the count n channels higher than the center of the peak, and

b-n the count n channels lower than the center of the peak. B' is then

multiplied by the number of channels used in the integration, 2n+l. Thus

the area under the peak, A, is eeual to

bn+b-n
(1) A ai - ( 2)(2n41)

-n
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Statistical error in the number of counts in any channel is equal to

the square root of the number of counts in that channel (Friedlander et al.

1964). The error in the first term on the right side of equation 1 is

then nfai.
-n

The error in a constant times an uncertain number is that constant times the

error: c(B±b)m cB cb. Therefore the error in the background is

J(2n+1) 2 (bn4-bn)/h

The error in the difference between two uncertain number is

X x - Y1 y . I - Y 2

Therefore the error in the peak integration is

n4 ai+(2n4l)2 (bn4 b )/4
-n

In doing the analysis, the area of the sample peak is compared to the

area under the same peak in the standard; the error in this calculation is

1M' (.± (yx ) (1) ) .

For a more detailed discussion of statistical error, see Baedecker

1971, Denechaud 1969, or Quittner 1972.
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APPENDIX III

TABLE A3-I

Trace element analyses of Hawaiian samples

A7-43-51 A7-55-29 72 HIG-37-1 A7-44-5 A7-51-20

So 36.3 25.8 34.4 33.5 23.4
Cr 319 496 585 52 205
Co 65.2 51.4 82.4 54.7 35*2
La 7.7 12.3 15.8 15.5 21.1
Ce 16.2 29.0 29.6 41.6 49.8
Nd 14 30 19 31 35
Sm 4.2 5.2 5.1 7.9 8.2
Eu 1.69 1.65 2.04 2.25 1.97
Tb 0.82 0.72 1.0 1.1 0.81
Ho 0.83 1.1 1.0 1.5 1.2
Yb 2.5 2.3 2.2 3.3 2.6
Lu 0.25 0.34 0.31 0.51 0.36
Hf 3.1 4.9 3.5 7.1 6.3
Ta 2.6 0.8 5.0 2.4 1.6
Th 0.92 1.5 2.1 1.2 1.5

Chondrite-normalized REE analyses

La 23 37 48 47 64
Ce 18 33 34 47 57
Nd 23 50 32 52 59
Sm 23 29 28 44 45
Eu 24 24 30. 33 .28
Tb 17 15 21 24 17
Ho 12 15 14 21 18
Yb 12 11 11 17 13
Lu 7 10 9 15 10

Additional information:
Sample Location K?0 TiO9  Fe0 3  CaO

A7-43-51 34046.7'N 171*49.8'E 0.46 2.09 12.68 10.31
A7-44-5 35034.9tN 170*57.2'E 0.63 3.45 15.54 9.61
A7-51-20 3304l6'N 171033.1'E 0.67 3.63 12.62 16.09
A7-55-29 32008.2'N 172015.71E 0.47 2.54 12.45 9.26
72 HIG-37-1 25*13.3'N 167047.9'W 0.58 2.44 13.76 10.32

These samples and this data courtesy of David Clague.
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Figure A3-1: Chondrite--normalized REE patterns for the five Hawaiian rocks.

A-A A7-43-51
0- -- HA7-55-29

- - 7 72 HIG-37-1
**----e dA7-44-5
)(~*-'X A7-51-20
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TABLE A3-II

REE analyses of Hawaiian rocks from the literature

9948 10396 10398 10403 2201

La 5.30 8.hi 6.24 8.78 7.22
Ce - - - - 25.83

Nd 12.78 19.31 1659 20.9 20.11
Sm 3.74 5.26 4.09 5.06 h.94
Eu 1.28 2.03 1.31 1.77 1.77
Tb 0.663 1.00 0.728 0.868 0.847
Ho 0.574 0.746 0.666 0.787 0.852
Yb 1.26 1.81 1.45 2.06 1.85
Lu 0.191 0.2h6 0.199 0.288 0.299

Pelee's Hair C-61 KI-22 Kilauea

La l1.h2 9.7 10.5 1h.04
Ce 33.68 22 35 38.h
Nd 20.12 18.8 17.8 22.5
Sm 5.l 5.2 5.2 5.62
Eu 1.81 2.1 1.27 2.10
Tb 1.20 1.19 0.66 0.872
Ho 0.825 0.96 o.64 0.938
Yb 1.67 2.3 1.05 153
Lu 0.238 0.35 0.20 0.275

Sources:
9948 Tholeiite, Koolau series, Schilling 1966

10396 " " "

10398 ""
100h3 "

2201 n Mauna Loa
Pelee' s Hair " Halemauman
C-61 Kohala
KI-22 Kilauea Iki, Schmitt and Smith 1961
Kilauea Wildeman 1971, unpublished
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