
NEAR-OPTIMAL BIN PACKING ALGORITHMS

by

DAVID STIFLER

B.A., Amherst

1967

JOHNSON

College

S.M.,,Massachusetts Institute of

1968

SUBMITTED IN PARTIAL FULFI

OF THE REQUIREMENTS FOR

DEGREE OF DOCTOR OF

PHI LOSOPHY

Technology

LLMENT

THE

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

June, 1973

Signature of Author.

Certified

...... , -.... .e *.* 0

Department of Mathematics

A A .a May 18, 1973

by.....

. , , _z Thesks Suoerv isor

Accepted by...... i - - -.... . *....0

Chairman, Department Committee

on Graduate Students
Archives

EAUG 8 1973

Page 2

ABSTRACT

The Bin Packing problem is a model for a number of problems
ocurring in industry and computer science. Suppose we are given
a list of pieces with sizes between 0 and 1, and a sequence of
unit-capacity bins. Our goal is to pack the pieces into as few
bins as possible. All known algorithms for finding optimal
solutions to this problem require exponential time. In this
thesis we study instead algorithms which generate near-optimal
solutions and which run in low-order polynomial time.

The previously analyzed FIRST FIT and BEST FIT packing
rules belong to a more general class of packing rules, the AAF
packing rules, which we show all have the same worst case
behavior. We extend these results to include the case when
numbers in the input list are restricted to any given
sub-interval of (0,1]. No algorithm which implements any
packing rule in the class can use less than 0(nlogn) time, and
we give implementations for several of the rules, including
FIRST FIT and BEST FIT, which realize this bound. We then
introduce linear time algorithms whose worst case behavior is
the same as that of the above algorithms in many restricted
situations and is never known to be worse.

It has previously been shown that if the input list is in
decreasing order, FIRST FIT can asymptotically require no more
than 5/4 times the optimal number of bins. We show that this
result extends to an even larger class of algorithms, the AF
algorithms, and generalize our proof to get results for lists
with numbers in restricted ranges. We then show that in fact
FIRST FIT and BEST FIT asymptotically require no more than 11/9
times the optimal number of bins, and this is the best bound
possible. Other algorithms are suggested that may do even
better.

Finally, we report the results of an empirical study using
randomly generated lists to get a picture of the average case
behavior of the algorithms studied. The average case behavior
is very much better than our worst case results might have led
one to expect.

Page 3

ACKNOWLEDGMENTS

The author wishes to thank Ron Graham and Mike Garey for

their interest in these results and suggestions for simplifying

some of the proofs. Thanks also to Daniel Kleitman who provided

encouragement and a receptive ear, and to Albert Meyer who

originally suggested that I pursue this topic, whose intuitions

led to some of my earlier results, and who supplied me with the

phrase "notorious for their computational intractability," which

I liked so much that I have managed to use it in every paper I

have written since, including this one. In particular, I wish

to express my thanks to my advisor Michael Fischer, who has been

a demanding task-master but in so being has helped me clarify

many of my ideas, and also taught me a lot about the writing of

readable proofs, some of which hopefully shows in this thesis.

He also has provided intuitions that led to new results, and was

the one who saw how my implementation of GROUP FIT led to an

nlogn implementation of FIRST FIT. And finally, I should like

to dedicate this thesis to my wife Susan, whose patience,

understanding, and chocolate chip cookies have seen me through.

TABLE OF CONTENTS

INTRODUCTION.

CHAPTER 1.
SECTION
SECTION

DEF
1.1.
1.2.

INITIONS AND
Definitions
NEXT FIT as

ILLUSTRATIONS...........
and Worst Case Measures.
an Illustration.........

CHAPTER 2. ANY
SECTION 2.1.

SECTION 2.2.
SECTION 2.3.

FIT ALGORITHMS
FIRST FIT, BEST FIT,

and their Generalizations..............
The Interval Problem.....................
Implementation of ANY FIT Algorithms......

CHAPTER 3.
SECTION
SECTION
SECTION
SECTION

CHAPTER
SECTI
SECTI

CHAPTER
SECTI
SECTI
SECTI

CHAPTER 6.
SECTION
SECTION
SECTION

CHAPTER
SECTI
SECTI

ANY
3.1.
3.2.
3.3.
3.4.

WORS
4.1.
4.2.

FIT DECREASING ALGORITHMS
Preprocessing Rules*......
A Proof Method............
Results for Arbitrary ANY
Results for FF, BF, and

Less Restricted Lists..

COMPARED.....

FIT Algorithms..

................ 0 0 0

T CASE BEHAVIOR OF AFD ALGORITHMS.
Lower Bounds.................. .

Weak Upper Bounds for all S C AF..

EXACT UPPER BOUNDS.........
5.1. A Weighting Function...
5.2. The 71/60 Theorem......
3.3. The 11/9 Theorem.......

OTHER OFF-LINE ALGORITHMS..
6.1. The GROUPING Rule......
6.2. The INCREASING Rule....
6.3. More Complicated Algori

EMPI
7.1.
7.2.

thms.

RICAL TESTS OF AVERAGE CASE BEHAVIOR.
The Experimental Environment.........
Average Case Results.................

Page 4

105
105
108
119

162
162
167

209
209
253
273

344
344
362
367

.375
375
380

398

400

BIBLIOGRAPHY..

B 10GGRAPHY... 0 0 00 *0 *0 0 0 * 0

FIGURES AND TABLES

GURE
GURE
GURE
GURE
GURE
GURE
GURE
GURE
GURE

GURE
GURE
GURE
GURE
GURE
GURE
GURE
GURE
GURE

GURE
GURE
GURE
GURE
GURE
GURE
GURE
GURE

FIGURE
F I GURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
F I GURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
F I GURE
FIGURE
F I GURE
FIGURE
FIGURE
F I GURE

FIGURE
F I GURE
F I GURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

Page

1.1
1.2
1.3
1.4

25
28
34
37

53
56
66
67
71
72
73
74
75
79
94

TABLES

TABLE 5.1
TABLE 5.2
TABLE 6.1
TABLE 7.1
TABLE 7.2
TABLE 7.3
TABLE 7.4

215
220
276
286
287
291
299
299
300

346
348
350
352
357
364
369
372
373

377
377
377
388
388
393
393
395

311
319
366
381
384
386
390

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

121
127
130
135
136
138
140
150
150
151
154
156
158
160
160

163
165
166
169
170
175
178
184

INTRODUCTION - Page 6

INTRODUCTION

Suppose you are a carpenter whose job i

and complicated structure. Your plans call

of various length pieces of wood, but your 1

sells standard 8 foot boards. Your problem:

of the boards you can buy and still be able

required lengths from them.

As a humble carpenter, you may not real

faced with a problem that occurs in more or

guises in many industrial situations (Brl).

that supply steel bars of different lengths

s to build a large

for a large number

ocal lumberyard only

figure out how few

to cut all the

ize it, but you are

less compl icated

Steel companies

for reinforcing

concrete; paper companies that produce rolls of newsprint cut to

widths as specified by a wide range of customers; even

television networks that wish to pack as many commercials into

station breaks as possible; all must come to grips with the same

issues. Computer programmers may find themselves with similar

worries in situations where memory space is costly and comes in

standard sized portions, such as tracks on a disk or pages in

low speed memory.

The problem has been called among other things

"stock-cutting," "box-packing," and, as we shall refer to it

here, "bin packing." in its simplest form it can be formally

described as follows:

INTRODUCTION - Page 7

Suppose we are given a list L =<a,,a,...,an> of numbers

in the range (0,1), and a sequence of unit-capacity bins, BINt,

BINz, ... , extending from left to right. Find an assignment of

numbers to bins so that for no bin does the sum of the numbers

assigned to it exceed 1, and such that the number of bins used,

that is, with at least one number assigned to them, is

minimized.

Unfortunately, as a carpenter you have little use for an

abstract formulation of your difficulties, and knowing that you

are in good company is not much solace. The only way vog can

see to find the minimal number of boards required is to examine

all possible ways of cutting boards Into your lengths, and then

choose the best one. You can't think of any substantial

short-cuts. It looks like a lot of work.

Such an offhand judgment of the complexity of the problem

turns out to be supported by theoretical results. The bin

packing problem is a member of a class of problems first

described by Cook [Col) and Karp [Kal], the polynomial complete

problems. This class is such that if there is a method for

solving any member of the class that takes time bounded by a

polynomial in the size of the input, then every one of of the

problems has such a polynomial time solution. Since problems

INTRODUCTION - Page 8

notorious for their computational intractability, such as the

traveling salesman problem and the question of whether a logical

expression is a tautology, populate this class, it seems

probable that in fact no member of the class can be solved in

polynomial time.

Indeed, although the industrial bin packers do have money

to spend on computers and IBM experts who can apply mathematical

programming technioues to the problem IGall, they have found

that although their investment pays for itself on reasonably

small problems, the time required by even these sophisticated

methods appears to grow exponentially with an increase in

problem size [Br1j.

Thus your carpenter's common sense is probably correct when

it tells you to forget about figuring out the absolute minimum

number of boards required, and to just use some simple

heuristics that intuitively would seem to be of help in keeping

the wastage down. You buy a board and cut the first length on

your list of specifications from it, starting a scrap pile with

the portion of the board left over. As you continue, you keep

the scrap pile ordered by size, and cut each new length from the

smallest scrap which is still long enough. If all scraps are

too short, you buy a new board. After a little experience with

this method, you find that you get better results if you first

preorder your list of specifications so that the lengths are in

INTRODUCTION - Page 9

decreasing order, with largest first.

When you are done, you notice that only about 2% of the

total amount of wood you had to pay for is left in bits and

pieces on the floor, and as you sweep it up, you think to

yourself, "This is minimal enough for me. Who needs

mathematical experts?"

Although the basic heuristic just described has been known

for quite some time under the name of BEST FIT IKnlI, it is only

in the last few years that researchers have attempted a rigorous

analysis of this and other intuitive heuristics that carpenters

and others might use when they are willing to settle for "almost

minimal." In the context of the abstract bin packing problem,

Ullman (Ull) and Demers [Del] studied BEST FIT and a similar

heuristic known as FIRST FIT, and showed that these could

require as many as 70% excess bins, but never any more than

that. Garey, Graham, and Ullman IGall studied the modification

to the method in which the list of lengths is first put in

decreasing order, and showed that this method could require as

many as 22.2% (2/9) excess bins, but no more than 25%. These

worst case results are a far cry from the observed average case

behavior, but they do have practical significance.

A bound of 25% gives a rigorous assurance that the method

can never be terribly bad. Moreover, knowing that more than

INTRODUCTION - Page 10

one algorithm has the same worst case behavior allows the

practical bin packer to tailor his choice of algorithm to his

particular situation. In the same vein, knowing that a simple

basic algorithm is sound, he may add special case heuristics

designed to meet the exigencies of the moment, and still have

confidence in the resulting algorithm, even though it is now far

too complicated to analyze. And the proofs of the worst case

results, dealing as they must with the issue of what it is about

an Input that can cause the algorithm to behave poorly, can

provide insights into precisely what these "exigencies of the

moment" are.

There Is also theoretical Importance in these results, for

they are examples of a fairly new approach to studying hard

problems, and can serve as a case study in how to analyze

heuristics whose goal is only to generate near-optimal

solutions. Some of the first work in bounding the worst case

behavior of near-optimal algorithms was done as early as 1966 by

Graham [Grl,Gr2), for a problem in multiprocessor scheduling

quite similar to the bin packing problem. However to date most

hard combinatorial problems have only been studied with the goal

of finding algorithms for optimal solutions. This author has

presented some tentative work on simple heuristics for

polynomial complete problems [Jol), but the field is still wide

open, and hopefully the wealth and variety of results about bin

INTRODUCTION - Page 11

packing will help inspire others.

It is hoped that this thesis may serve as a sort of

compendium for this "wealth and variety of results." The

research herein reported extends the previous results for FIRST

and BEST FIT to entire classes of algorithms, studies the

relation between the range of the numbers in the input list and

the behavior of the algorithms, and introduces new and faster

algorithms whose worst case behavior is comparable to that of

those already studied. In addition, it presents the results of

extensive empirical tests of the various algorithms, to indicate

how the worst case results actually do compare to the average

results on randomly generated lists.

Although in a general introduction of this type it would

not be appropriate to go Into detailed statements of all of our

results, we can present a general picture of the organization of

this rather massive opus:

The first two chapters are devoted to algorithms which,

like our original BEST FIT, operate on-line, without preordering

the Input list. Chapter 1 presents formal definitions of list,

packinz, and worst cae behavior, and illustrates these by

analyzing a fairly simple algorithm. Chapter 2 then turns to

FIRST and BEST FIT, and shows how they belong to a large class

INTRODUCTION - Page 12

of algorithms, all with the same worst case behavior. It also

characterizes the worst case behavior of these algorithms when

the numbers in the input list are restricted to an arbitrary

subinterval of (0,1]. Finally, all algorithms in the class are

shown to require 0(nlogn) time, where n is the length of the

input list, and linear time approximations to the algorithms are

introduced whose worst case behavior Is just as good.

Chapters 3 thru 5 deal with the above algorithms in the

case when the list is initially put in decreasing order. In

Chapter 3, we show that under certain restrictions on the range

of the numbers, many of these algorithms will give nearly

identical results when applied to the same list. These results

serve as useful lemmas for the next two chapters, which return

to the task of putting bounds on worst case behavior. Chapter 4

shows that the 25% bound for BEST FIT DECREASING extends to an

even larger class of algorithms than did the on-line result, and

finds a corresponding bound for the case when no number in the

input list is larger than a given maximum. Chapter 5 presents

what might be termed the major result of this thesis, by erasing

the gap between the 25% and 22.2% upper and lower bounds for

FIRST and BEST FIT DECREASING, and showing that in fact neither

algorithm can require more that 11/9 times the optimal number of

bins.

Chapter 6 briefly treats a number of other off-line

INTRODUCTION - Page 13

algorithms, including linear time algorithms which improve on

those presented in Chapter 2, and suggests some algorithms which

might be even better than FIRST FIT DECREASING. Included in

this chapter is a table which summarizes all our worst case

results and in so doing ranks the various algorithms.

Chapter 7 puts the rest of the thesis in perspective by

presenting the results of empirical tests of the various

algorithms on randomly generated lists.

One of our hopes for this thesis has failed to be realized.

This was that the proofs of our results, and the ideas involved

in them, might be of use to researchers investigating other

problems. Unfortunately, the best proofs we could find have

turned out to be quite domain dependent, and even worse, the

major proofs are exceedingly long. Although we are not prepared

to say that such length and complexity are inherent in the

nature of the problem, we fear this may well be the case.

Thus the reader will be faced with some rather difficult

proofs, especially in Chapters 3, 4, and 5. We have attempted

where possible to present the intuitions behind our

constructions, but under the necessity of insuring that the

results be at least checkable step by step, and while operating

within time constraints made worse by the sheer bulk of this

thesis, some of these intuitions may have become lost in the

INTRODUCTION - Page 14

details. Thus an interested reader may find It fruitful to skim

through the thesis as a first approximation, reading some of the

shorter arguments, and only then tackle the details of any of

the major proofs he may be particularly interested in.

SECTION 1.1 - Page 15

CHAPTER 1. DEFINTITIONS AND ILLUSTRATIONS

SECTION 1.1. Definitions and Worst Case Measures

In this section we shall present formal definitions of

1..1, Packing, bin Pack ing algori thm, and a method for

describing worst case behavior, along with a variety of

auxiliary concepts that will be of use in the presentation of

our results. In the next section we will illustrate these

definitions by studying a simple algorithm, NEXT FIT, whose

worst case behavior can be analysed in a straightforward manner,

and then show how a slight modification of the algorithm can

cause a marked improvement in this worst case behavior.

Our definitions will be considerably more complicated than

our original statement of the problem in the Introduction would

have suggested. This will make it easier for us to describe the

ideas involved in our proofs.

A list L will consist of a finite set PIECES(L) of pieces,

together with two maps:

rank : PIECES(L)---->O,2,... olPIECES(L)1,

size L: PIECES(L)---->(0, 1],

SECTION 1.1 - Page 16

where rankL(x) is a 1-1 function which gives the rank (i.e.,

position) of piece x in L, and size (x) gives its size. Usually

we can drop the subscript L without causing confusion. By W(L)

we will mean 2E-size(x).

This definition corresponds to our former notion of a list

as a sequence of real numbers, for we may also write L =

<a,..,a>, where n = IPIECES(L)I, and a- = sizeL rankL

We shall use the two notations interchangeably, the latter being

especially useful for giving examples of lists, such as "L =

<.01,.5,.25,.01>," and for talking about the concatenation 11.12

of two lists Li and L2.

Our definition of a packing will have considerably more

structure to it than the simple notion of a map from pieces to

bins, but can easily be shown to be equivalent: A packinz P of

a list L will consist of a natural number N(P), a set of

positions

POS(P) = J(j,h): 1 < j < N(P), 1 -1 hj

and a 1-1, onto partial function

pieceP: POS(P)---->PI ECES(L) ,

SECTION 1.1 - Page 17

satisfying

(1) For each j, 1 i j N(P),

size(piece (j,h)) < 1.
(j,h) e Domain(piecei)

An ordered packing of L obeys the additional properties:

(2) (j,h) v Domain(piece?) and h > 1

====> (j,h-1) E Domain(pieceP),

(3) (j,h) (j,h') e Domain(piecep)

====> rank(piece(j,h)) >

and h > h'

rank(piece P(j..h')).

We say that (j,h): h > 1 is the jal of Dositions in BINj,

with (j,1) the bottom position. If (j,h) Q Domain(piece) then

we say that position (j,h) is filled, and that piecep(j,h) fills

it and is contan-ed in BIN . Properties (2) and (3) assert that

in an ordered packing the pieces contained in BIN 3 fill the

bottom-most positions, and do so by order of rank. Most of the

packings we consider will be ordered packings of 5gme list

(though not necessarily the original list in Its original

order). We shall often display packings by means of pictures,

SECTION 1.1 - Page 18

with the bins drawn as upright rectangles, the pieces as

rectangles fitted within the bins by order of position,

piece?(j,1) on the bottom. See for instance Figures 1.1

in the next section.

In order to describe the contents of a bin, we intr

the following notation:

smaller

and 1.2

oduce

9..2.) =jb: b = piece (j,h) for some h

heibht.. = Icontip(j)l,

.1 .. =bees 1p ' size(b), and- T b citpCs)

Ap ... 0 = 1 - levelp(j).

BIN is used or non-emptv if levelp(j) > 0, otherwise it is

emptv. The rightmost non-empty bin in a packing will be called

the la-st bin.

Note that to any packing P of a list L there corresponds an

ordered packing P' of L which uses the same bins and has

contv, (J) = contp(j) for all BIN3 used in P. Merely reassign

the pieces within each bin so that packing properties (2) and

(3) are satisfied.

A sezment PI of packing P will be any set of consecutive

bins from P. #PI is the number of nonempty bins in PI.

cont(PI) =Ix: x f. contp(j) and BIN3 In P13. W(ji =

size(x). Since P may be considered a segment of itself,
3(0_cavMt 1')

SECTION 1.1 - Page 19

all these definitions apply to P as well, and so #P is the

number of bins used in P.

In general a bin packing algorithm is any method which,

given a list L, produces a packing P of L. However, the

algorithms we shall spend most of our time studying all fit into

a specific two-part format and will be called two-part

algorithms. The first part will be a reordering of the list

according to the preprocessing rule of the algorithm, the second

the generation of a packing of the reordered list using the

packin rule of the algorithm. A two-part algorithm is

completely specified by giving these two rules, and the precise

way in which they are applied Is as follows:

PART 1 (Reordering the list via the preprocessing rule):

Reorder L (construct a new rank function) to obtain a

permutation L' = < that obeys the preprocessing

rule.

PART 2 (Generation of a packing of L' via the packing rule):

1. Let P be a sequence of n empty bins. Set i = 1. P may

be thought of as a packing of the empty list, and in what

follows, as a packing of < >, with heightP(j) and

levelp(j) defined for P as above. At this initial step we have

heightp(j) = level ,(j) = 0, 1 < j < n.

SECTION 1.1 - Page 20

2. If i > n, halt and return P.

3. Let b E PIECES(L') be that piece with rank i. Using

the packing rule of the algorithm, which bases Its decision

solely on size(b) and the current values of levelr(j), choose a

j such that

b will fiLt in BINS (such that levelp(j) + size(b) < 1).

4. Set P = the packing of <b,,...,b{> obtained by putting

b in position (j,heightp(j)+1) of P and leaving all other pieces

in their old positions. Set i = i+1 and go to 2.

If the algorithm in question Is S, then a packing resulting

from the above will be called an S-jacking ofL. Note that it

is in fact an ordered packing of L', since each piece goes in

the first unfilled position above the positions in the bin

already filled with earlier pieces in the list.

Similarly, if S is any bin-packing algorithm (not

necessarily two-part), an S-packing of L will be any packing

generable by S applied to L. We then define

S(L) = MAktP: P is an S-packing of L

Note that we have explicitly allowed for the possibility that S,

whether two-part or not, may not be completely determined, and

hence might yield a number of different packings depending on

SECTION 1.1 - Page 21

which choices are made at the points in the algorithm when the

next step is not uniquely determined. However, since no packing

of L can use more than IPIECES(L)I bins, there must be some

S-packing which uses precisely S(L) bins.

To measure how "good" a particular packing P of L is, we

can compare #P with

L* = MIN P: P is a packing of L3

A packing P of L for which #P = L* (there must be at least one)

will be called an optimal packinz. We shall evaluate algorithms

as to the worst case behavior of the ratio S(L)/L*. For an

algorithm S, let

RS(k) = MAX (L)/L*: L is a list with L* = k3,

R[S] = lim sup R[S)(k).

R[S] is an asymptotic measure. Such a measure is required

because for small L*, edge effects may have a large effect on

the ratio. In all our results, the lim sup could actually be

shown to be a limit, although there might well be algorithms for

which this is not the case.

We shall also present results about restricted lists. If X

5 (0,1), then we define

SECTION 1.1

R [S, X] (k)

R [S,X)

= MAX (L)/L*: Range(sizeL) S X and L* = k1i

= lim sup RLS,XI(k).

A simple special

case we will

case will

write R[S,t]

be when X = (O,t]

for R[.S,(0,t].

for t < 1, in which

Note that R[S,1)

R[S3.

LEMMA 1.1. Suppose S

(A) If there exists a K such

a bin packing algorithm and

that for all IL with Range(sizeL)

5 X, S(L) (rL* + K, then R[S,X] < r.

(B) If there exists a K' and a sequence of lists L, with

* =Cl im L. =c,
r -0

>_ r .

Range(s IzeL) c X, and S(Ln) } rL. - K', then RES,X)

Proof. We shall

for all L with pieces

just prove (A).

in the required

(B) is similar. Since

range, S(L) < rL* + K,

have R[S,X](k) < r + K/k, and hence

R[S,X a lim sup RS,XJ(k) < r.

(0,1).

we

- Page 22

SECTION 1.2 - Page 23

SECTION 1.2. NEXT FIT as an Illustration

In this and the next chapter, we shall restrict our

attention to on-line algorithms, by which we mean two-part

algorithms in which the preprocessing rule is vacuous, and hence

PART 1 yields L' = L. Such algorithms are hence completely

specified by their packing rules. In this section we shall

examine a particularly simple one, so as to illustrate the

definitions presented in the previous section, without having to

face the complicated proof methods required for the more

interesting algorithms to follow. The NEXT FIT packing rule is

given by

NEXT FIT (NF): Let j = MAX j': BIN, is used in P1. If b

fits in BIN (size(b) + gapp(j) < 1), choose j, else choose j+1.

Note that this algorithm is not only on-line in the sense

that the pieces could be input one at a time and packed as they

are received, but It is also on-line with respect to the bins,

in that we are through with each bin as soon as the next one is

started. The value of R[NF) can be precisely determined:

SECTION 1.2 - Page 24

THEOREM 1.2. R[NF) = 2.

Proof. For the upper bound, let PN be the NF-packing of a

list L (There is only one possible packing since NF is

completely determined). If BIN3 is not the last bin in PN,

then

levelPN(j) + leve1PN(j+1)

> 1 - gapP (j) + size(piece ,(+1,1))

> 1.

Thus, W(L) > L#PN/2j. Since no bin in an optimal packing of L

can contain pieces whose total size exceeds 1.0 by packing

property (1), we must have L* > W(L). Thus we can conclude that

NF(L) = #PN < 2L* + 1, and the upper bound follows by Lemma 1.1.

For the lower bound, consider lists of the form

L = <1/2,<2N-1 repetitions of <1/(2N),1/2>>.

Figure 1.1 shows optimal and NF-packings of such lists,

demonstrating that L* = N+1, and NF(L) = 2N. The bound again

follows by Lemma 1.1. a

Note that since the e in Figure 1.1 can actually be made

arbitrarily small, we have the following:

OPTlMAL PAcKNG
L* = N +I\

I
2.

IA2

IRS

F - PAC KCING
AF (L) = ZN

ZA- B'IMS

2N-1
PtECES
?$17.E I/g

I t~ua

FIGURE 1.1. Lists L for which NF(L)/L* --- > 2.

I aim

YZZZZ/-/ ZZ

I
ztl*-1

SECTION 1.2 - Page 26

COROLLARY 1.2.1. R[NF,t] = 2, for 1/2 < t < 1.

NEXT FIT, like all the algorithms we shall study, has the

property that if we restrict the maximum piece size to 1/2 or

smaller, we can achieve a considerable improvement in worst case

behavior. The practical significance of this is that, by

increasing the bin size with respect to maximum piece size, we

may lower the proportion of the total capacity of the bins in

the packing which goes unused. For instance, if we are cutting

various length pieces of wood from a standard size board, we can

expect to waste less wood if we double the size of the standard

length. The result for NEXT FIT is given in general form by

the following theorem:

THEOREM 1.3. R[NF,tI = 1/(1-t), for 0 < t 1/2.

Proof. For the upper bound, let PN be a packing of a list

L with Range(sizet) 5 (0,t]. Then since no piece in L has size

exceeding t, all bins in PN except the last must have level

exceeding 1-t, and hence W(L) > (1-t)(#PN - 1), so that L* >

W(L) > (1-t)(#PN - 1) and the bound follows by Lemma 1.1.

For the lower bound, choose any e > 0 and let n be large

enough so that (1-2t)/n i MIN(e,t). Consider lists of the form

SECTION 1.2 - Page 27

L = <2N repetitions of <t,<n+1 reps of (1-2t)/n)>>,

Figure 1.2 shows optimal and NF-packings of such lists.

Note that each bin In the NF-packing has level t + n((1-2t)/n) +

(1-2t)/n < 1 - t + C, and so we must have W(L) < NF(L) [1-t+6C).

The optimal packing is as shown, since the number of pieces of

size (1-2t)/n is 2N(n+1) > Nn, which is the number of such

pieces required to fill up the N bins containing two pieces of

size t, each of which requires exactly n of the pieces. the

first N bins all have level 1, and all the remaining bins except

the last have as many pieces of size (1-2t)/n as will fit and

hence have level exceeding 1-c. Thus W(L) > (L* - 1)(1-e).

Therefore

NF(L) >

(since t < 1/2), and so by Lemma 1.1,

Since 6 can be arbitrarily small, the

R[NF,t] 1

lower bound

- t - 66.

follows.

NEXT FIT can be generalized by the following packing rule:

(L*-)[1-]/[1t+ 6]
(L*-)(1 (1-) -691

OPTIMAL PACKIRG

seloVw4 %'ts

f-

N %

KE - PA cK 4

4
II

6"

70m"

7-4 BuasI SB

FIGURE 1.2. Lists L with Range(sizeL) C (0,t) * t . 1/2,

and NF(L)/L*

t

N laws

--- > 1/(1-t).

SECTION 1.2 - Page 29

NEXT-k FIT (NkF):

j = MIN j': size(b) j

Choose

gapp(jI') and j' > MAXfO,#P - k3.

NEXT FIT is thus the same as NEXT-1 FIT. For k > 2, we get

results which are a distinct improvement over those for NEXT

FIT, however once k = 2, no further increase in k causes any

further improvement in worst case behavior. The following Lemma

tells us a key fact about NkF-packings which will allow us to

derive the value of R[NkF,t] for k > 2 and t . 1/2.

LEMMA 1.4. Suppose k 2 2,

of a list L with Range(sizeL) C-

(A) levelPN(j) > (m-1)/m and

(B) BIN, contains at least m

MAXfgap,,(j'): j' > 0 and j-k <

m 2 2, and PN is an

(0,1/m]. Then if j

NkF-packing

< #PN,

pieces of size exceeding

j' < j8.

Proof. Since j < #PN, position (j+1,1) is filled in PN.

Let b = PiecepN(j+1,1). When b was assigned, we must have had

levelP(j) + size(b) > 1, so since size(b) _(1/m, we must have

had levelp(j) > (m-1)/m. Thus, since no piece has size > 1/m,

BIN must have at that time already contained at least m pieces.

By the NkF rule, these all must have had size exceeding

gapp(j'), for all j' > 0 such that j-k < j' < j. Since for no

bin does the gap ever increase, the lemma follows. a

SECTION 1.2 - Page 30

THEOREM 1.5. Suppose k } 2, 0 < t (1/2, and m = L1/tJ-

Then R[NkF, t) = 1 + 1/m.

Proof. For the upper bound, let PM be the NkF-packing of a

list L obeying with Range(sizeL) C (0,tl. We use Lemma 1.4 to

show that the following induction hypothesis holds for all j, 0

j < #PN-2.

(H1.5) Either ilevel p(j') } jm/(m+1) or

levelP(j') } (j+1)m/(m+1).

Since levelp (j') = 0 = 0-[m/(m+1)], (H1.5) holds
j=I

vacuously for j = 0. Suppose it holds for j < #PN-3. If
34-i J

levelpJ(j') < (j+1)m/(m+1), then by (H1.5) Eo.level -
P1 'I PH

jm/(m+1), so levelPN,(j+l) < m/(m+1). Let gapPN(j+l) = d. We

thus have d = 1/(m+1) + G for some 6 > 0, so by Lemma 1.4,

BINi+, contains at least m pieces of size exceeding d and hence

level (j+2) > md = m/(m+1) + me. Thus

level 0N

= klevelPN(j') + level p,(j+1) + level (j+2)

> jm/(m+1) + m/(m+1) - + m/(m+1) + me.

SECTION 1.2 - Page 31

> (j+2)Im/(m+1)I,

and so (H1.5) holds for j+1.

By induction (H1.5) holds for j = #PN-2, and hence L* >

W(L) > (#PN-2)m/(m+1), and the upper bound follows by Lemma 1.1.

We now turn to the task of giving examples to show that the

lower bound holds. (Theorem 3 of [Gal), although it is

presented without proof and refers to a different algorithm,

suggests that similar examples were known to the authors of that

paper. However, we have not seen their examples and this is

essentially an independent result.) We will first consider the

special case when 1/3 < t i 1/2 and hence m = Li/tj = 2, and

then show how to generalize our examples to show the bound holds

for 0 < t 1 1/3. To prove that the bound holds in the special

case, we present for each N > 0 lists L for which L* = 2N + 1,

and yet NkF(L) = 3N. From these it will follow by Lemma 1.1

that R[NkFt] > 3/2 = 1 + 1/m.

First, let us choose a d such that 0 < d < 1/t - 1/3.

Then, for 1 . i _ N, let d(i) = d-6 Z. There will be 6N pieces

which we shall index a - , for 1 k .i 2, 1 .i j 3, and 1 < i

. N. If we let a(k,j,i) = size(a -), the sizes of the pieces

are given by:

SECTION 1.2 - Page 32

The ranking

rank(ak' J%

= j', and k

of the pieces will be determined by

L-) <===> i < i', or i = i' and j <

< k'. In sequence notation we thus

rank(ay

j or i = I', j

have

L = <a(1,1,1),...,a(2,3,1),a(1,1,2),...,a(2,3,2),...,

a(1,1,N),...,a(2,3,N)>,

During the generation of

and a will fill up a new

have

the NkF-packing P, pieces a

bin for each j and i, and we will

levelp(3i-2)

levelp(3 i-1)

levelp(3i)

= a(1,1,i)

= a(1,2,i)

= a(1,3,i)

a(2,1, i

a(2,2, I

a(2,3, i

= 2/3

= 2/3

= 2/3

+ 2d(i),

+ 2d(i), and

+ d(i).

a(1,

a(2,

a(1,

a(2,

a(1,

a(2,

= 1/3

= 1/3

= 1/3

= 1/3

= 1/3

= 1/3

+ 5d(i)

- 3d(i)

+ d(i)

+ d(i)

- d()

+ 2d(i)

SECTION 1.2 - Page 33

This happens because after the first bin has two pieces, all

remaining pieces in the list exceed 1/3 - 2d(i) in size, and

after the third has two pieces, all remaining pieces exceed 1/3

- 3d(i+1) = 1/3 - d(i)/2 in size. Thus NkFL) = 3N, no matter

what k > 1 is. Figure 1.3 indicates how the packing would look.

However, now note that

a(2,1, i)

a(1,1, i)

a(2,

a(1,

2, i)

2,1)

+ a(2,3,i) = 1,

+ a(1,3,i-1) = 1,

Thus the pieces, with

a tN, I fit three

three exceptions will

and thus we have L* =

the exception of a 1 1

to a bin, for a total

require two additiona

2N + 1.

I,

of

l bi

a , ,and

2N-1 bins. The

ns between them,

For the general case, with 1/(m+1) <

present for each N > 0 a list L with NkF(

+ 1, with the desired bound again followi

This time we choose d such that 0 <

we let d(i) = de m(m+1)] for 1 (i < N.

pieces for each i have sizes

t (1/m for m 2 2, we

L) = (m+1)N and L* = mN

ng by Lemma 1.1.

d < l/t - 1/(m+1), and

Then we let the m(m+1)

and

for i > 1.

2. 3 5 (d)

FIGURE 1.3. NkF-Packing of list for Theorem 1.5 lower bound. 'V
ai
M9

C)
-1i

0
z
I-&

SECTION 1.2 - Page 35

a(1,1, i)

a(k,1, i)

a(1,m+1,i

a(k,j . i)

1 < j i m+1,

= 1/(m+1) +

= 1/(m+1) -

) = 1/(m+1)

= 1/(m+1) +

1 i k *i m,

(mt +1)*d(i),

(m+l).d(i),

- d(i), and

d(i), for al

except those

for 2 < k i m,

1 j,

ment

k,

ioned above.

Now if we order these pieces in an analagous way to the way

we ordered the pieces in the special case, NkF will yield a

packing in which all bins are filled only a little above the

m/(m+1) level, and (m+1)N bins are used. This is because, for

each I we first have

a(k,
$CAI

1,1) = m/(m+1)

=

+ (m+1)-(m-1)(m+1)]

m/(m+1) + 2d(i),

and there are no pieces left less than 1/(m+1) - d(i). Then

aa(k,j,i) =

,ra(k,m+1, i
Kaj

m/(m+1) + md(i),

= m/(m+1) + (m-2)

for 2 < I <

d(i).

for a total of m+1 bins for each i, yielding a grand total of

NkF(L) = (m+1)N.

m, and

SECTION 1.2 - Page 36

On the other hand, as in the special case, we can fit the

pieces together much more efficiently, because for 2 j k . m, i

> 1, we have

r- a(k,j,i) = 1 + [m-(m+1)]d(i) = 1-d(i),
JaI

and for all i > 1,

i-a(1,j,i) + a(m+1,1,i-1) = 1.

The only pieces left out of the mN-1 bins thus formed are

a I7+4t and a thru a > , and they require only two

additional bins. Thus the optimal packing yields L* = mM + 1.

G

As a result of Theorems 1.3 and 1.5, we can conclude that

for k > 2, NEXT-k FIT has better worst case behavior than NEXT

FIT for almost every t in the interval (0,1/2]. Figure 1.4

illustrates this by graphing R1NkF,t] and R[NF,t) as functions

of t in the given interval. We do not know the value of

R[NkF,t] for k > 2 and t C (1/2,1], however the upper bound

arguments in the proof of Theorem 1.2 clearly apply to NkF as

well as NF, and so we know that R[NkF,t] < 2 for all such t.

Examples we shall present in the next chapter will show that

R{NkF,t] > 1.7 for such t, and we conjecture that this is the

actual value.

24 (2~t]

F GURE 1.4. Comparison of R[NF, and R N2F, t O < t
9 1 -o

SECTION 1.2 - Page 38

To conclude this section, we consider the question of the

ratio L*/W(L). Since the upper bound proofs in Theorems 1.2 and

1.5 bounded NF(L) and NkF(L) in terms of W(L), and L* < S(L) for

all algorithms S, we have

COROLLARY 1.5.1. For all L with Range(sizeL) I (0,t), t >

1/2, L* < r2W(L)l - 1, and there are arbitrarily long lists

obeying these size restrictions which attain this bound.

For all L with Range(sizeL) g (Q,t] for m = Li/tj > 2, L* <

(1 + 1/m)W(L) + 2, and there are arbitrarily long lists obeying

these size restrictions with L* = F(1 + 1/m)W(L)] - 1.

Proof. The upper bounds follow as stated from the upper

bound proofs in Theorems 1.2 and 1.5. For an arbitrarily long

list attaining the first lower bound, choose f- such that 0 < E <

1/t - 1/2, and consider lists of length 2N made up entirely of

pieces of size 1/2 + c. For the second lower bound, choose a

such that 0 < G < 1/t - 1/(m+1) and consider lists of length mN

made up entirely of pieces of size 1/(m+1) + t. a

SECTION 2.1 - Page 39

CHAPTER 2. ANY FIT ALGORITHMS

SECTION 2.1. FIRST FIT, BEST FIT, and their Generalizations

In the last chapter we introduced a sequence of algorithms,

NEXT-k

for k >

lists w

the sam

size, i

improve

becomes

have be

pieces

FIT for k > 1

2 were shown

ith maximum p

e worst case

t seems likel

as k increas

inaccessible

en started, a

(if they fit)

. Although all

i

b

y

e

n

larger. From this po

the NEXT-k FIT algorithms

to have the same worst

ece size t . 1/2, and

ehavior no matter what

that their

d. This is

to further p

d thus each

for a longer

int of view,

ever became inaccesible to new

In order to guarantee that

during the generation of the Nk

it would be sufficient to take

average case

because unde

ieces until

bin would be

period of t

it would be

eces.

o bin ever b

packing of a

= IPIECES(L)

case behavior

conjectured to

the maximum pi

over

have

ece

behavior might

r NkF no bin

k additional bin

able to accept

ime if k were

ideal if no bin

s

new

ecomes Inaccessib

particular list

1; however, in

order to guarantee the same thing for all lists L, no matter

long, we would have to use a limiting algorithm, which might

called NEXT-00 FIT, but which has already been introduced in

literature [Gal,U11] as

how

be

the

SECTION 2.1 - Page 40

FIRST FIT (FF): Choose

= MINj': levelp(j') + size(b) < 1% (Assign b to the leftmost

bin into which it will fit).

In order to obtain a possible improvement in average case

behavior, we thus sacrifice our ability to output bins after a

sufficient number of new ones have started, and hence must keep

all of them around to the bitter end. This will have

consequences as far as the time required by an implementation of

the algorithm, but we shall postpone our discussion of such

matters until Section 2.3. The question of average case

behavior will be studied in Chapter 7.

A second algorithm which has been studied Gal,Del] and in

which all bins remain accessible until the packing is completed,

is given by the packing rule

BEST FIT (BF): Choose that j for which levelp(j) + size(b)

is closest to, without exceeding, 1. (Assign b so as to maximize

the level of the bin into which it goes.) If more than one j

yields this maximum, choose the least one.

The last part of the rule is not essential, but will aid us

in our later proofs by rendering the rule completely determined.

The results discovered by the earlier researchers [Gal,Ul1,Del)

MR11000ow-

SECTION 2.1 - Page 41

can be summarized in our terminology by the following:

THEOREM: R fFF, t]

R(FF,t)

R [BF, tJ

R [BF, t]

= 1 + 1/m, for m = L1/ti 2 2, and

= 17/10, for 1/2 < t < 1.

We see that except for the 17/10 result, these are exactly

the same bounds as we had for

have suspected for FIRST FIT.

that they should hold for BES

algorithm is almost as much a

FIRST FIT, since NEXT-2 FIT i

than the last two, and among

same as the best fit, at leas

exceeding 1-t. This suggests

FIRST FIT does not depend on

but on the fact that they obe

NEXT-k FIT, k > 2, as we might

It is almost equally reasonable

T FIT, for in a sense that

generalization of NEXT-2 FIT as is

s not concerned with the bins other

these two the first fit will be the

t until the second bin has level

that the behavior of BEST and

their particular choice strategies,

y certain general constraints.

One constraint they both clearly obey is the following:

CONSTRAINT 1: If BINj is empty,

b will not fit in any bin to the left

j cannot be chosen unless

of BIN*.

Constraint 1 will often be referred to as the ANY ELI

Con-straint, and we will denote by AE the set of all packing

rules which obey it. Any such packing rule, when thought of as

SECTION 2.1 - Page 42

an on-line algorithm, will be called an ANY FIT algorithm.

The first thing we can observe about AF algorithms Is the

following [Del]:

LEMMA 2.0. If S E AF and X S (0,1], then

R [S, X) > R [FF,X) .

Proof. This follows from the definitions and the fact that

for any list L there exists a permutation L' of L such that for

any S e AF, the S-packing of L' will use the same number of bins

as the FF-packing PF of L. Simply construct a rank function for

L' so that all elements of contPF(l) have lower rank than all

elements of contpF(2) etc. S will have to put the elements of

contp,(1) into BIN 1 , and then, since all the remaining pieces in

L' were to the right of BIN 1 in PF, none of them can fit in the

gap, so next the pieces from cont PF(2) all go in BIN 2 , and so

on. 9

Unfortunately, the converse to Lemma 2.0 is not true, and

obedience to the AF Constraint is not sufficient to guarantee

behavior as good as FIRST FIT. In particular, consider the

following algorithm:

SECTION 2.1 - Page 43

WORST FIT (WF): Let j

non-zero level. If b will

choose #P+1, (because b wil

be the index of a bin with minimum

fit in BINj, choose j; otherwise,

1 not f it in any non-empty bin).

WORST FIT can do as badly as NEXT FIT, and in fact will do

so on the lists we used for the proofs of Theorems 1.2 and 1.3,

and so is significantly worse than FF and BF. Hlowever, the

upper bound proofs we used for those theorems will also apply,

and so we do have

THEOREM 2.1: If S e AF and 0 < t < 1, then

R[S,t] < R[NF,t),

and moreover, there is an AF algorithm, namely WORST FIT, such

that, for all t, 0 < t < 1,

R[WF,t] = R [NF,t].

The ANY FIT constraint being insufficient, there must be

something further that distinguishes FIRST FIT and BEST FIT from

WORST FIT. That "something further" is the following:

CONSTRAINT

non-zero level,

bin to the left

2: if BINj is the unigu-e bin with lowest

j cannot be chosen unless b will not fit In any

of BINJ.

SECTION 2.1 - Page 44

Constraint 2 is really just a natural extension of

Constraint 1, despite its ad hoc appearance. This is because

the unique bin it mentions will usually just be the most

recently started one BIN*# , in other words, the bin which until

just a few pieces ago could not have any pieces placed in it

because of Constraint 1. The only time this might not be the

case would be after said bin had received enough pieces to no

longer have the lowest level. In fact it is only for technical

reasons involved in the proof of Theorem 2.6 that we did not use

"BI p " Instead of "unique bin with lowest non-zero level" in

the statement of the Constraint.

Constraint 2 will often be referred to as the ALMOST ANY

EI Constraint, since it allows b to be placed in almost any

non-empty bin. The set of all packing rules obeying both

Constraints 1 and 2 will be called AAE, and a member of AAF,

considered as an on-line algorithm, will be called an ALMOST ANY

FIT algorithm. Clearly, FF and BF belong to AAF, and just as

clearly, WF does not. However, a simple modification yields

SECTION 2.1 - Page 45

ALMOST WORST FIT (AWF): Let BINj be a bin wi

non-zero level, and BIN/ , j' # j, be a non-empty

level is such that no bin other than possibly BIN

non-zero level. Choose the first of the following

into which b will fit: BINy 1 BIN , BIN P+I

th mimimum

bin whose

has lower

three bins

Fixing an arbitrary AF algorithm so that it will obey

AAF Constraint may not seem as if it should make much

difference, but we find in Theorem 2.5 and 2.6 that it doe

least as far as the worst case is concerned. However, fir

shall prove some extremely useful lemmas about AF and AAF

algorithms and the packings they generate.

LEMMA 2.2. If P is an S-packing for

piecep(j,1) for some (j,1) E POS(P), then

gapp(j + 2
a C. cont (j')

rank(a) > rank(b)

S E AF,

for all

and b =

j , 1 . j' <

size(a) < size(b).

Proof. Immediate from the definition of AF, since

with rank > rank(b) are packed after b has been packed,

was the first piece to go in BIN*. 0

the

s,

st

at

we

p i eces

and b

SECTION 2.1 - Page 46

COROLLARY 2.2.1. If P and b are as

1 I j' < j, rank(pIecep(i',1)) < rank(b)

above, then for all j',

LEMMA 2.3. Sup

which has size > 1/m

= piecep,(j,1) for j

a11 P', 1ei' <) >

(a) levelp (j') >

(b) heightp(j') >

pose for m > 2 that

S e AF, and PS is

< #PS, then when b

L Is a list no piece of

an S-packing of L. If b

was assigned we had for

(m-1)/m and

m.

Proof. (a) follows from the facts that S

constraint and that no piece exceeds 1/m. (b)

and the fact that m-1 times 1/m cannot exceed

LEMMA

addition S

j3 . Then

obeys the AF

follows from (a)

(m-1)/m. a

2.4. Suppose L, S, and PS are as above and in

t AAF, 1 j < #PS, and d = MAXfgaPp5 (j'): 1 < j' <

BINj contains m pieces larger than d in PS.

Proof. Since j+1 #PS, Le

contain at least m pieces. Let

If h = 1, size(b) > gapPS(j

then at the time b was assigned,

contained fewer than m pieces.

mma 2.3 tells us that BIN must

b = pieceP5 (jih), 1 < h j m.

') by Lemma 2.2. If 2 < h < m,

although BINj was not empty, it

Thus by Lemma 2.3,

SECTION 2.1 - Page 47

piecep 5 (j+1,1) could not yet have been assigned and so BINj must

have been the rightmost non-empty bin at the time. Since

pieceps(j,1) had already been assigned, all previous bins must

already have had levelp(j') > (m-1)/m, again by Lemma 2.3.

Since BINj can have had levelp(j) at most (m-1)/m, It was hence

the unique bin with lowest non-zero level, and so b must have

been larger than all preceding gaps (and hence d) by the AAF

constraint. U

THEOREM 2.5. If S C AAF and m = Li/tJ > 2, then

R[S,t] = R[N2Ft] = 1 + 1/m.

Proof. The lower bound examples in the proof of Theorem

1.5 are such that any AF algorithm would yield the same packing

as N2F, for as we observed at the time, once a new bin is

started during the generation of the packing, all of the old

bins have gaps too small for any of the pieces remaining in the

list. Thus the lower bound follows by Lemma 1.1 as in that

proof.

For the upper bound, since Lemmas 2.3 and 2.4 say the same

thing (in fact, something even stronger) about AAF-packings as

Lemma 1.4 did about NkF-packings, we could proceed exactly as in

the proof of the upper bound in Theorem 1.5. However, since we

can say something slightly stronger about AAF-packings than

SECTION 2.1 - Page 48

about NkF-packings (Claim 2.5.1), and certain features of the

details will have added significance later on in Section 2.3, we

shall present the proof in its entirety. So let L be a list

with Range(sizel) (O,t), and let PS be an S-packing of L, with

#PS = S(L).

CLAIM 2.5.1

at most one bin

Except for the las

PS with level j m/

t bin (BIN*,), there is

(m+1).

For let BIN be the leftmost bin such that levelP 5 0i)

m/(m+1), and hence gapp5(j) > 1/(m+1). Then by Lemma 2.4, for

every j', j < j' < #PS, BINy contains m pieces all with size >

gapp5 (j) > 1/(m+1), and hence levelp 5 (j') > m/(m+1).

Thus all but

and hence L* > W(

follows by Lemma

two bins of PS have l

L) > [m/(m+1)]-[S(L) -

1.1. U

evel exceeding m/(m+1),

2], and the upper bound

Thus the worst case behavior of FF and BF is

indistinguishable from that of an arbitrary AAF algorithms when

lists are restricted to those whose maximum piece size is no

more than 1/2. There remains to be considered the case when we

allow pieces larger than 1/2. We were unable to derive a

precise for R[N2F,t] when 1/2 < t <, 1, but we are more fortunate

SECTION 2.1 - Page 49

with the AAF algorithms, which again have the same worst case

behavior as was previously proved for FIRST and BEST FIT:

THEOREM 2.6: If S e AAF and 1/2 < t < 1, then

R[S,t] = 17/10.

Lower Bound Proof. We will first show the lower bound, as

the example lists, from [Gal,U11], are similar to the ones we

used in proving Theorem 1.5, and in fact are the source of the

idea which led to the invention of those examples. For this

presentation, we have slightly modified the original examples so

as to emphasize the resemblance to the ones used in Theorem 1.5.

For each N > 0, we shall present a list L with 30N pieces,

such that S(L) = 17N and L* = 1ON + 1, and the lower bound will

follow by Lemma 1.1. This time, instead of having all our

pieces roughly the same size, they will be divided into three

classes, one with all pieces close to 1/6 in size, one with all

close to 1/3, and one with all close to 1/2. Each class will

contain 1ON pieces divided into N blocks of 10 pieces.

Turning to the details, we first choose a d such that 0 < d

< min(t-1/2,1/6), and for each i, 1 . i N, set d(i) =

de(1/18) . The i"' block of 1/6 size pieces will consist of

pieces aj , 1 < j _ 10, with size(aj) = a(j,i) and

SECTION 2.1 - Page 50

+ 33d(i)

- 3d(i)

- 7d(i)

- 7d(i)

- 13d(i)

+ 9d(i)

i) = a(9,)

a(1,

a(2,

a(3,

a(4,

a(5,

a(6,

a(7,

The 1ON pieces with lowest rank

pieces, ordered so that rank(a, g) <

or i = I' and j < j'. Now since

a(1,i) + a(2,i) + a(3,i) + a(4,i)

in our

rank(a

list L will be these

jg #)v) <===> i < i'I,

+ a(5,i) = 5/6 + 3d(i),

and

a(6,i) + a(7,i) + a(8,i) + a(9,i) + a(10,i) = 5/6 + d(i),

and since all the pieces that follow a I in the list L have

size exceeding 1/6 - 3d(i), and the smallest of the pieces that

follow a I- is a -+,, , with size a(5,i+1) = 1/6 - 13d(i+1) =

1/6 - (13/18)d(i) > 1/6 - d(i), we can conclude that S will be

forced to pack these pieces 5 to a bin, thus using up 2N bins.

Following these 1/6 size pieces will be the N blocks of 10

size 1/3 pieces, those In block i being b1 - , 1 < j < 10, with

size(b -t) = b(ji) and

= 1/6

= 1/6

= 1/6

= 1/6

= 1/6

= 1/6

= a(8, = a(10,i) = 1/6 - 2d(i)

--.1

SECTION 2.1 - Page 51

b(1,

b(2,

b(3,

b(4,

b(5,

b(6,

b(7,

= 1/3 + 46d(i)

= 1/3 - 34d(i)

= 1/3 + 6d(i)

= 1/3 + 6d(i)

= 1/3 + 12d(i)

= 1/3 - 10d(i)

= b(8,i) = b(9,i) = b(10,i) = 1/3 + d(i)

These 1ON pieces will follow the a - 's in L,

accordance with an analagous ranking property

previous bins in the S-packing are filled to

5/6, the bj['s will all go in new bins, and

up 5N of these new bins since

b(1,

b(3,

b(5,

b(7,

b(9,

b(2, i)

b(4,)

b(6, I

b(8,i)

b(10, i)

and be ordered in

. Since all the

level exceeding

in fact will fill

= 2/3 + 12d(i)

= 2/3 + 12d(i)

= 2/3 + 2d(i)

= 2/3 + 2d(i)

= 2/3 + 2d(i)

and as before, after each of these bins has two pieces,

is too small for the remaining pieces in the list.

At the end of the list are the N blocks of 10 piec

the gap

es, c z

SECTION 2.1 - Page 52

thru ce,-, , all of size 1/2 + d

the previous bins, and will not

they will take up 1ON bins in t

of 17N = S(L). See Figure 2.1.

However,

note that

(I). These will not go in any of

go two to a bin themselves, so

he S-packing, giving us a total

a much more efficient packing is possible. For

a(1,i) + b(2,i) +

a(2,i) + b(1,1-1)

c(2,i) =

+ c(1,1) = 1, for 2 -. i1 < N,

and for 3 < j < 10, 1 1 i _ N,

a(ji) + b(ji) + c(ji) =

This leaves a , b3N and c unpacked,

require only two more bins, for a total of 1ON

and so S(L) = (17/10)L* - 17/10, and the lower

17/10, follows by Lemma 1.1. 9

but they will

+ 1, as claimed,

bound R[S,t] >

Since the lists presented in the above proof would be

packed by NkF for all k > 2 in the same way that they are packed

by S, we have

1 , for 1 - i < N,

al0, 4660at,)

0431)'

ak (, 11),1) Q(a IVA)

C2.. N ek 0
OL ~ 2t 10 (jt

5~4 BINS

cOA C60,1)

/NlCoio tJ)

FIGURE 2.1. S-Packing of lists for which S(L)/L* --- > 17/10, SEAAF.

SECTION 2.1 - Page 54

Corollary 2.6.1. For k > 2, t >

17/10 _. R[NkF,t]

1/2,

< 2.

The upper bound

Ullman [Gal,Ull for

by Demers [Del]. We

algorithm, by slightl

original proof.

of R[S,t] ,. 17/10 was originally

S = FIRST FIT, and extended to S

now extend it to S and arbitrary

y tightening the arguments in Ul

proved by

= BEST FIT

AAF

lman's

Upper Boun-d Proof. Let L be an arbitrary list with

Range(sizeL) G (O,t), P* an optimal packing of L, and PS an

S-packing of L using S(L) bins. The general strategy of the

proof will be to define a weighting function on the pieces, and

then compare the total weight per bin in the optimal packing P*

and in the S-packing PS. We will show that each bin in P*

contains no more than a total "weight" of 17/10, and yet the

total weight of all the pieces must be at least S(L) - 2. From

this we will conclude that

S(L) - (17/10)L* + 2,

SECTION 2.1 - Page 55

and hence by Lemma 1.1 that the upper bound, R[S,t] < 17/10,

holds, thus completing the proof of Theorem 1.6.

Actually, we have used this type of procedure before in our

upper bound proofs for Theorems 1.2, 1.3, 1.5, and 2.5. There

we used the elementary weighting function W(b) = size(b). In

this proof the weighting function f will be more complicated, in

fact, a piecewise linear function of the piece size, described

graphically in Figure 2.2, and formally by the following: If a

E PIECES(L), then

f(a) = (6/5)size(a), for 0 < size(a) 4,' 1/6

f(a) = (9/5)size(a) - 1/10, for 1/6 . size(a) . 1/3

f(a) = (6/5)size(a) + 1/10, for 1/3 size(a) < 1/2

f(a) = 1, for 1/2 < size(a) (1

We shall proceed by a series of Claims. In our arguments,

we shall represent members of PIECES(L) by subscripted variables

ai, but the subscripts are not assumed to bear any relation to

the rankings of the corresponding pieces in L. They are merely

introduced for the sake of distinguishing the various pieces the

argument Is dealing with.

Weighting function f for Theorem 2.6.

f~tL.

1.0

7

2.

S

Size(a)

FIGURE 2.2.

SECTION 2.1 - Page 57

CLAIM 2.6.1. If fsize(a) < 1, then

,: f(ai) < 17/10.

Proof of Claim. We assume the pieces are ordered by

decreasing size. If size(a1) <. 1/2, then for all the pieces we

must have f(ai)/size(ai) . 3/2, so the Claim is immediate unless

size(ai) > 1/2. Assuming this to be the case, we now show that

if

, slze(ai) < 1/2, then Zf(a) 7/10.

Now since the slope of f is the same in the region (0,1/6]

as it is in [1/3,1/2), any ai with size in (1/3,1/23 can be

replaced without loss of generality by two pieces, one of size

1/3 and the other of size size(ai) - 1/3, and we may therefore

assume that size(ai) < 1/3 for 2 _ i < n. Moreover, if aj and

ak both have size < 1/6, they can be combined into one piece

with size = size(a) + size(ak), with no loss, and possibly an

increase, in the total weight of the pieces. Thus we may also

assume that all of the ai's except a, have sizes in the range

(1/6,1/33.

This reduces the proof to the consideration of four cases:

SECTION 2.1 - Page 58

(1) n = 2, size(a,) < 1/3,

(2) n = 3, size(a 3) 1/6 < size(a2) < 1/3,

(3) n = 3, 1/6 < size(a 3) < size(a.) j 1/3, and

(4) n = 4, size(a) < 1/6 < size(a) < size(al) 1/3.

Since the first and second cases will follow from the

third, we shall restrict our attention to that case and the

fourth. In(3), f(a2) + f(a) = (9/5)(size(az)+size(a3)) - 1/5.

Since size(a 2) + size(a3) . 1/2, we have f(a.) + f(a3) . 7/10,

as desired. In(4)

f(a1) + f(a.) + f(a4)

S (6/5)size(a4) + (9/5)(size(a2)+size(a3)) - 1/5

. (9/5)(size(a2)+size(a3)+size(ag)) - 1/5

S (9/5)(1/2) - 1/5 = 7/10,

so Claim 2.6.1 holds.

Thus we can conclude as claimed that the total weight under

f of the pieces In any bin of the optimal packing P* can be no

more than 17/10, and hence the total weight under f of all the

pieces in L can be at most (17/10)L*.

We now turn to the S-packing PS. Let us define the

coarseness of BINj in PS, 1 < j S #PS, to be MAX gapp(j'): 1 <

j' < ji. The coarseness of BIN, is by convention 0.

SECTION 2.1 - Page 59

CLAIM 2.6.2. If BINj has coarseness d, b = piece,5 (j,h'),
qi-I

and 2 size(piece (j,h)) : 1/2, then size(b) > d.
hst PS

Proof of Claim. When b was assigned to BINJ during the

generation of PS, we had levelp(j) = ;.size(pieceps(j,h)) (

1/2, and so BINj was either empty, or had non-zero level < 1/2.

In the latter case, since there cannot have been two non-empty

bins with levels (1/2 at the time without the rightmost having

had its bottom piece placed in violation of the AF Constraint,

BINj must at that time have been the unique bin with lowest

non-zero level. Thus either Constraint 1 or 2 applied, and b

cannot have fit in any bin to the left of BINj, and hence

size(b) > MAX gapp(j'): 1 -<. i' < ji > d by definition of

coarseness and the fact that gaps never get any bigger during

the generation of a packing. I

CLAIM 2.6.3. Suppose some BIN', 1 j . #PS, has

coarseness d < 1/2, and contp 5 (j) - ai,.a If size(a)

> 1-d, then "if(ai) 1 1.
(.&I-

Proof of Claim. If size(ai) > 1/2 for any i, the result Is

immediate, since f(ai) = 1. We may therefore assume that

size(ai) < 1/2 for all I, and hence, since 07size(ai) > 1-d >

SECTION 2.1 - Page 60

1/2, that n > 2. Note that this means by Claim 2.6.2 that at

least two of the a['s [piece,5 (j,1) and piecep5 (J,2)] have size

> d. In the following let a, be a piece with maximum size in

contp5 (j), and a2 be a second piece with size > d. We consider

several cases, depending on the range of d.

Case 1: d j 1/6. Then L 2size(a) 1-d L 5/6. Since

f(a)/size(a) > 6/5 in the range 0 < size(a) < 1/2, we

immediately have f(ai) > (6/5)(5/6) = 1.

Case 2: 1/6 < d < 1/3. We consider subcases, depending on

the value of n.

n = 2: If both a, and az have size L 1/3, then

f(a1) + f(a2) 2 2[(6/5)(1/3)+(1/10)] = 1. Both cannot have size

< 1/3, since then size(a1) + size(a 2) < 2/3 < 1-d, which is

impossible. The only other possibility is

1/6 < d < size(az) < 1/3 _.i size(a1) < 1/2,

in which case f(a1) + f(az)

= (9/5)size(a2) - 1/10 + (6/5)size(a1) + 1/10

= (6/5)(size(a,) + size(az)] + (3/5)size(a2)

> (6/5)(1-d) + (3/5)d

> 1 + 11/5 - (3/5)dl 2 1, since d < 1/3.

SECTION 2.1 - Page 61

n > 3: As in the previous

1/3, the result is immediate.

then as above we have

1/6 < d < size(a1) < 1/3 < size

> (6/5)size(a1) + 1/10 + (9

+ (6/5) size(aj)

> (6/5) size(ai)I + (3/5

> (6/5)(1-d) + (3/5)d = 1

if none of the ai's have size L

1/6 d < size(a 2) < size(a1) <

> (9/5) ISize(al)+size(ag))

+ (6/5) -Esize(aO)

> (6/5)(1-d) + (3/5)(2d) -

Case 3:

1/3 < d < s

the result

case, if two of the ai have size

If only one has size 2 1/3,

(a,) j 1/2, and so

/5)size(al) - 1/10

)size(a2)

+ 1/5 - (3/5)d > 1.

1/3, then we have

1/3, so :27 f(a;)

- 1/5

f(a)

1/5 = 1 + (6/5)(d-d) = 1.

1/3 < d < 1/2. We must have in this case

ize(a 2) -<, size(a,), and as argued in Case 2, n = 2,

is immediate.

This exhausts the possibilities and completes the proof of

Claim 2.6.3. 0

SECTION 2.1 - Page 62

Claim 2.6.4. If some BIN 3 , 1 1 j < #PS, has coarseness d <

1/2, contps(i) = Fa,...,a, and _tf(a-) = 1 - b, where b > 0,

then either

(A) n = 1 and size(a5) _ 1/2, or

(B) 2_ size(a) . 1 - d - (5/9)b.
L-

Proof af

in contpSMj.

CIaijm. Again let af be a

If size(a 1) > 1/2, it is

piece with maximum size

impossible that b > 0.

Therefore,

by Claim 2

d, so let

fail to ho

let xl and

size(at),

size(al) +

would then

thus by th

+ f(x1) +

if (A) does not hold, we may assume that n > 2, and

.6.2 that at least two of the ai's have size exceeding

a2 be a second such piece different from a,. (R) can

ld only if c = 1 - d - size(aL) > 0. In this case,

x2 be two invented pieces designed so that size(xl) >

size(x2) > size(a2), size(xl) + size(x2) = size(a,) +

c, and neither x1 nor x2 exceeds 1/2 in size. We

have size(a i) + size(xl) + size(x2) = 1 - d, and

e arguments used in the proof of Claim 2.6.3, f(aL)

f(x2) > 1. But since the slope of f in the range

does not

f(a.) +

exceed

(9/5)c.

9/5, it follows that f(x1) + f(x2) (

Therefore, c > (5/9)b, and (B) holds.

(0, 1 / 2]

f(a,) +

Il

SECTION 2.1 - Page 63

CLAIM 2.6.5. f(a) >
4(PtECES CL)

S(L) - 2.

Proof of.Cfaim. Suppose that In PS, B

< ... < dm, are all the bins which contain

but for which f(a) = 1 - b, for
gt &co*AfPS C 3k)

the coarseness of BIN Jk By the definitio

dk's would form an non-decreasing sequence

by Claim 2.6.2, BIN 5 must have a bottom p

and hence could not have 2.f(a) < 1. By

2.6.4 and the definition of coarseness, we

IN , ... ,996 BINX6 , 1

at least one piece,

bk > 0. Let dk be

n of coarseness, the

. No d. > 1/2, since

iece of size > 1/2,

Claims 2.6.3 and

thus have

dk dkl + (5/ 9)bV_ , for 1 < k < m, and so

~Ik

,5 b. < (9/5) (dk-dg...)

< (9/5)(dA -di) < (9/5)(1/2) < 1.

Since b cannot exceed 1, we thus have

b . 2,
kat

and so f(a) > #PS - bk > S(L) - 2.
Oa PIEC5(O

SECTION 2.1 - Page 64

Thus Claim 2.6.5 is proven.

We now can complete the upper bound proof. By Claim 2.6.1,

45-f (a) < (17/10)L*.

Thus by Claim 2.6.5, S(L) < (17/10)L* + 2. Since L was an

arbitrary list with Range(size1) ! (0,t), Lemma 1.1 thus tells

us that R[S, t] . 17/10. 1

There is an intuition behind the number 17/10 that appears

in Theorem 2.6. It is based on an observation about our worst

case examples: pieces of size about 1/J can be made to go J-1

per bin, If we are clever enough, but we do not seem to be able

to get away with fewer than j-1. The number 17/10 is then

derived as follows:

Let a sequence of integers D = <j1 ,...,jH> be called a

subdivision of .;1 if 1(571/jj = 1, and let total(D) =

71/(j-1)1. For each subdivision of 1 D with IDI } 3, we can

construct a series of worst case examples made up of pieces of

sizes near 1/j for each ji in the subdivision, which by Lemma

1.1 can be used to show that R[S] } total (D).

The justification for the upper bound comes from the fact

(easily derived) that

SECTION 2.1 - Page 65

MAXitotal(D): D is a subdivision of 1 and IDI > 31 = 17/10

where the subdivision that realizes this max is <2,3,6>. If we

further restrict the subdivisions by requiring that all the

be such that 1/ji < t < 1/2, the MAX becomes 1 + 1/m where m =

L1/tJ, and so this idea also helps to explain our results for

restricted lists.

One would hope that some simple argument, based perhaps on

the above intuition, will eventually be discovered to replace

the present rather complicated proof of Theorem 2.6. One

problem, however, is that a number of would-be lemmas are just

not true. For instance, decreasing the size of all the pieces

in a given list may actually increase the number of bins used in

the FF-packing, as may simply deleting a single piece. Figure

2.3 presents an example of the first type of misbehavior, and

Figure 2.4 an example of the second. These examples originally

appeared in [Gr3J.

The results of this chapter provide us with a wide variety

of algorithms which are competitive with FIRST and BEST FIT as

far as worst case behavior. This allows the practical

bin-packer to make his choice of which algorithm to use on the

basis of other considerations. An application of Theorems 2.1,

FF- PACKING of

L = <.760, .395,

.241, .200,

.7.00

.395~

A3,5

.395,

. 105,

.379

3

379,

105,

.379,

.040>

FF-PACKING of

L = <.759, .394,

.200, .199,

I

.39sf

.9

FIGURE 2.3. Example showing that decreasing

can increase the number of bins

the sizes of the pieces

used by FIRST FIT.

.394,

.104,

.378,

.104,

.378,

.040>

MO)

FF-PACKING of

L = <.55, .70,

.45, .15,

FF-PACKING of

L = <.55, .70,.55, .10,

.30, .20> .45, .15,

.55,

.30, .20>

1 2

FIGURE 2.4. Example showing that deleting a piece from L can

increase the number of bins used by FIRST FIT.
o>

CM
-j

*3o.2$
S s

S55

.30

.s

SECTION 2.1 - Page 68

2.5, and 2.6 in all their generality goes as follows:

The completely determined nature of the FIRST and BEST FIT

algorithms raises an objection to their use in certain practical

situations, especially when the environment is dynamic. For

instance, suppose we have a computer system with a large amount

of relatively slow storage, and a relatively small amount of

high-speed core storage, and suppose the slower storage is

divided into a number of pages of a fixed size, which currently

are filled to various levels.

A bin packing situation would arise if a sequence of new

files of various length were being input, each file having to be

assigned to some page of the low-speed storage. One of our

goals might well be to keep the number of pages used low, but we

might also be acting under an additional constraint, that of

time. Presumably we can keep a small fixed number of pages in

core at one time; however, there may be no way to predict which

pages will be in high speed memory when a given file is to be

stored, and so a deterministic algorithm might choose a page not

currently in high speed memory, which then must be fetched at

high cost. Therefore, partially determined algorithms, which

allow a wide choice of possible assignments at any given point,

may be more desirable, so that we may use pages already in

high-speed memory whenever possible. Our results tell us that

we can, without making a sacrifice in worst case behavior, use

SECTION 2.1 - Page 69

the following very unrestrictive packing rule instead of FIRST

FIT:

ALMOST ANY FIT: Choose any j such that b fits in BIN% and

Constraints 1 and 2 are not violated.

ALMOST ANY FIT is the least restrictive rule in AAF.

ANY FIT, thought of as the least restrictive rule in

guarantee only slightly worse behavior than FF, with

difference diminishing as the size of the pieces (fil

decreases with respect to bin (page) size.

Similarly,

AF, would

the

es)

Note however that, although we now know that a wide variety

of algorithms have the same worst case behavior, we cannot be

certain they will all behave the same way on a given list. In

fact, the variations can be quite extreme. Figures 2.5 thru 2.9

give examples of lists yielding the most extreme ratios

S1(L)/S2(L) for S1 and S2 among the algorithms we have studied.

Summarizing, we have

THEOREM 2.7. There are lists L with L* arbitrarily large

such that (for k > 2):

BF(L) BF(L) BF(L) 4
(A) ----- = ------ =------= -

FF(L) NkF(L) AWF(L) 3

SECTION 2.1 - Page 70

FF(L)
(B) -----

BF(L)

AWF(L)
(C)

FF(L)

FF(L)
(D)

AWF(L)

NkF(L)
(E) ------

FF(L)

NkF(L) AWF(L) 3
----- ------ = -

BF(L) BF(L) 2

5

9
---- > -

8

NkF(L) 3
---------- > -

AWF(L) 2

We conjecture that these are the best bounds possible and

that there are no lists L for which N2F(L) < FF(L).

SECTION 2.1 - Page 71

-(N+3)
d(l) = 3 , d(i) = 3d(i-1), 1 < i (N

BLOCK i: <1/2 - 2d(i), 1/2 + 4d(i), 1/4 + d(i), 1/4 + d(i),

1/2 - 4d(i), 1/4 + 2d(i), 1/4 + 3d(i), 1/2 - 5d(i)>

FF & NkF & AWF - PACKINGS of

I

BLOCK i:

- 5d)

-L +24)

3 Bins

All Bins have gaps (

BF - PACKING of BLOCK i:

4 Bins

1/4 + 2d(i)

size of all

< 1/4 + d(i+1) <

remaining pieces

'///////

.L +c(~

FIGURE 2.5. Building BLOCKS

BF(L) BF(L)

of lists L for which

BF(L) 4

FF(L) NkF(L) AWF(L) 3

7/ +

SECTION 2.1 -

d(1) = 1/32, d(i) = d(i-1)/4, 1 < i < N

BLOCK i: <1/2 - d(i), 1/2 + 2d(i), 1/2 - 2d(i),

BF - PACKING of

- d (i)

BLOCK i:

1/2 + d(i)>

2 Bins

FF & NkF & AWF - PACKINGS of

FIGURE 2.6. Building BLOCKS of lists L for which

FF(L) NkF(L) AWF(L) 3
--- =-----------=-----------= - 4

FF)BF(L) BF(L) 2

BLOCK i: 3 Bins

Page 72

I
+ da)

Zia)

B F (L)

SECTION 2.1 - Page 73

L = (1/2 + F, ... 1/2 + G,

2N Pieces

FF & AWF - PACKINGS:

I - 4

1/2 -- , ... , 1/2 -C>

2N Pieces

FF(L) = AWF(L) = 2N

zi4 +&t

NkF - PACKING: NkF(L) = 3N - k/2 (we assume k is even)

Z9 -k BIAS k ws

FIGURE 2.7. Lists L for which
NkF(L)

FF(L)

NkF(L)

AWF(L)

for k even (Similar eamples exist for k odd).

3
> -

2

SECTION 2.1 - Page 74

1 1 1 1 1 1 1 1
L = <-+46,...-+4*,-+26,...-+2e,--4e, , --- 21>

2 2 2 2 2 2 2 2

2N Pieces 2N Pieces 2N Pieces 2N Pieces

FF - PACKING: FF(L)

2 Bl 4S

+-

AWF - PACKING: AWF(L) = 5N

UM-1 aimis

L for which AWF(L)/FF(L) = 5/4.

= 4N

2.

FIGURE 2.8. Lists

SECTION 2.1 - Page 75

1 1 1
L = <-+2 ,...,-+2 ,-+ ,

2 2 2

1
... ,0~-+

2

11 1 1

2 N N p

4N Pieces 4N Pieces 4N Pieces 4N Pieces

AWF - PACKING: AWF(L)

-+26

4W BIO

FF - PACKING:

4k ils

FIGURE 2.9. Lists L for which FF(L)/AWF(L) --- > 9/8.

1
,...,-

= 8N + 1

I-
4

F F(L)

J.'

9N + 1

I
Cc

; -'

I.

4-'
..L. ~

.4

SECTION 2.2 - Page 76

SECTION 2.2. The Interval Problem

In our analysis to date we have only considered worst case

behavior for lists with piece sizes restricted to intervals of

the form (0,t]. In this section, we consider the more general

problem of lists with piece sizes restricted to an arbitrary

interval X -- (0,1] and derive the values of R[FF,X) for all such

X. These values will also hold if FF is replaced by any S8

AAF, but in certain cases the proof for FF is slightly simpler,

and we shall leave the extensions, which would procede much the

same way we extended Ullman's 17/10 result, to the reader. We

summarize our results in the following overall Theorem:

THEOREM 2.8. Let X E fkp,q),(p,q),[p,q),[pq)} be a

subinterval of (0,1], and let m = L1/4J.

1. If q < 1/2, and

A) If p = 1/(m+1) and X = (p,q) or (p,q],

or p > 1/(m+1),

then R[FF,X) = 1.

SECTION 2.2 - Page 77

B) If p = 1/(m+1),

then R[FF,X]

C) If p < 1/(m+1),

then R[FF,X]

11. If q > 1/2, and

A) If p > 1/2,

then R[FF,X]

B) If 1/ 4 p < 1/

then R[FFX)

C) If 1/6 . p < 1/

then R[FF,X]

D) If 0 < p < 1/6,

then R FF,X1

and

=

[p,q) or [p,q),
1/[m+1+2/(m-1)].

= 1 + 1/m.

2,

=

4,

or

=U

1.

3/2.

5/3.

= (0,q) or (0,q),

17/10.

Proof. Case IA is immediate, since in the FF-packing every

bin except possibly the last will contain m pieces, and in the

optimal packing no bin can contain more than m pieces. Thus

FF(L) = L* = EPIECES(L)/ml.
IC and IlID are immediate consequences of Theorems 1.5 and

1.6, respectively. We treat the remaining cases individually.

Case IE. To show the lower bound, we construct arbitrarily

long lists made up of k(m-1)(m+1)m pieces of size 1/(m+1), which

we will call small-pieces, and k(m+1)m biz-oieces of size

SECTION 2.2 - Page 78

+ d

and

< q, where d > 0

FF-packings when

<k(m+1)m repetitions of <1

. Figure 2.10 illustrates the

the pieces are ordered

/(m+1) + d,<m-1 reps of 1/(m+1)>>>.

Note that

FF(L)/L* = (m.+m)/(m L+1) = 1 +

= 1 + 1/(m+(m+1)/(m-1)]

(r-1)/(in +1)

= 1 + 1/[m+1+2/(m-1)).

To prove the upper bound, suppose we have a list L of n

pieces, with Range(sizeL) C [1/(m+1),1/m), for which the ratio

FF(L)/L* is the maximum for all lists of n or fewer pieces. Let

SMALL-PIECES = b E

BIG-PIECES = b e

PI ECES(L):

PI ECES(L):

and let S = ISMALL-PIECES1, B = |BIG-PIECESI. Essential

we need to know about a piece in order to determine how

behave in a packing is whether it is a big-piece or a

small-piece. Any bin containing a big-piece can contain

m-1 other pieces, and if a bin contains only m-1 pieces,

other piece will fit. On the other hand, any bin contal

small pieces has room for one more small-piece and no

1/(m+1)

optimal

size(b)

size(b)

only

any

ning

I/ (m+1)i

1/ (m+1)l

OPTIMAL PACKING

G

m

(A

FF- PACKING
FF() = K i+-)

-V

LA

K-M (-M- 1)

FIGURE 2.10. Lists L with Range(sizeL)S

FF(L) 1
---- = 1 +- ---------------
L* (m+1) + 2/(m-1)

1
Lm+1 m+1

and

Umtt) BIAS Kw(yn+t) 13105

SECTION 2.2 - Page 80

big-pieces, and no bin can contain more than m+1 pieces. Thus

given a set of pieces, the "worst" way in which they can be

ordered as far as FF is concerned is so that as many bins as

possible are forced to contain only m pieces. If B > S/(m-1),

it is clear that we can order the list so that no bin in the

FF-PACKING contains more than m pieces. We shall use this

informationin what follows.

The number of bins used in the optimal packing is clearly

S S - (m+1) LS/ (m+1)j + B

m+ 1 m

If we increase the size of the S - (m+1)LS/(m+1)J leftover

small-pieces, we will not change the number of bins in the

optimal packing, and can only increase the number of bins used

in the FF-packing of the worst case ordering of the pieces, so

we can assume S is divisible by m+1 and

L* = S/(m+1) + rB/ml.

By adding rB/ml(m)-B big-pieces, we will again not increase the

optimal packing, and can only increase the number of bins used

in the FF-packing of the worst case ordering of the list, so let

L' be the list in worst case order after these pieces are added

to L, and let B' be the new number of big-pieces, n' = S+B' the

KMMFAMM@MMMMk&

SECTION 2.2 - Page 81

new total. we now

= S/(m+1)

Clearly FF(L')

FF(L')

L'*

have that m divides B', n' < n+m-1, and

+ B'/m = sm+B'(n+1)3/[m(m+1)]

2 (S+B')/(m+1).

f(S+B')/ml * (S+B')/m + 1, so

S+B' Sm+B'm+B'
K ----- - -

m m(m+1)

(Sd+B')(m+1)

(S+B')(m+1) - S

m+1

S+B'

m+1

n

S
1 + --------------- +

(m+1)(S+B') - S

1
< 1 -----------------

(m+1)(1+B'/S) - 1

m+1

n'

m+1
+ --

n'g

Now suppose B' i S/(m-1) - 3. Then B' < LS/(m-1)J - 2, so

LS/(m-1)J - B' > 2, and there are at least 3(m-1) small-pieces

which cannot be put in an m-piece bin with a big-piece (there

are not enough big-pieces), and since m > 2, there are certainly

at least m+1 of them. Therefore, by removing m+1 small-pieces

from our set of n' pieces, we get a set of n' - (m+1) K (m+n)

- (m+1) = n-1 pieces, for which the ratio of the number of

bins in the FF-packing of the worst case permutation of the list

SECTION 2.2 - Page 82

to the optimal number of bins would be

FF(L') - 1 FF(L') FF(L)
> >

- 1 L'* L*

contradicting our hypothesis that L yielded the maximum ratio

over all lists with n or fewer pieces (unless FF(L)/L* < 1, in

which case there would be nothing to prove anyway). Thus we may

assume that B' > S/(m-1) - 3, and hence B'/S > 1/(m-1) - 3/S, so

that

FF(L') 1 m+1
--- 1+-------------------------+

L'* (m+1)(1+1/(m-1)-3/S) - 1 n'

1 m+1
< 1 +- -------------------- +

2 3(m+1) n'
m + 1 +

m-1 S

Now B' < S/(m-1) - 3, so that n' = S+B' < S(1+1/(m-1)) - 3, and

hence S > [(m-1)/m]~).n'+3j > n'/2. Therefore,

FF(L') 1 m+1
< 1 + --------------------+ -

L'* 2 6(m+1) n'
m + 1 +

m-1 n

1
<1 + --------------- + e

m + 1 + 2/(m-1)

SECTION 2.2 - Page 83

for any C >

bound holds

0, given

for R[FF,

sufficiently

X1, and Case

large

IB is

n, and so the upper

proved. [

Cas-e LA. This case follows from the fact that for all L

with Range(sizel) 5 [1/2,1j, FF(L) = L*. If L contains no

pieces of size 1/2 this is obvious, since FF will pack the

pieces one per bin and an optimal packing can do no better.

Furthermore, since there can be no more than one bin in a

FF-packing with level < 1/2, pieces of size 1/2 will be packed

two to a bin under FF, and again the optimal packing can do no

better. 0

Case 11j. In this case the interval X must contain number

both larger and smaller than 1/2, but none smaller than 1/4. W

wish to prove that R[FF,X) = 3/2.

For the lower bound on R[FF,X), simply consider a list L o

N pieces of size 1/2 + c, and N pieces of size 1/2 -E , with al

the smaller pieces coming first, and e small enough so that all

the sizes are in the given interval X. Then FF(L) = 3N/2, L* =

N, and R[FF,X] > 3/2 follows by Lemma 1.1.

For the upper bound, we will perform a discrete version of

the upper bound proof for Theorem 2.6. Define a weighting

function f as follows:

s

e

f

l

SECTION 2.2 - Page 84

f(a) 1, if

1/2, if

1/4, if

1/2 < s

1/4 < s

size(a)

Now let L be a list wit

packing of L, and PF be the

by a series of Claims.

Claim

f f(a)i

Proof

decreasing

n:

ize(a) 1,

ize(a) 1/2,

= 1/4.

h Range(sizeL) C- X, P* be an optimal

FF-packing of L. We again proceed

2.8.1. If ssize(ai) 1, then

3/2.

of Claim. Assume the a 's are indexed according to

size. There are four cases depending on the value of

If n = 1, then

If n = 2, then

f(a,) + f(a2) < 1 +

If n = 3, then

for two there piece

If n = 4, then
4

:lf(ai) = (4)(1/4)

f(a,) : 1 by definition of f.

size(a 2) cannot exceed 1/2, so

1/2 = 3/2.

size(a 1) j 1/2, else there would

s, so f(a-) < (3)(1/2)= 3/2.

all four pieces must have size =

= 1. 9

not be room

1/4, and

SECTION 2.2 - Page 85

Now let the coarseness of BINj in PF b defined, as in

Theorem 2.6, as MAX gappf(j'): 1 j j' < jI.

CLAIM 2.8.2. If contpF(j) = a levelp(j) > 3/4,

and BIN* has coarseness d < 1/4, then f(a) > 1.

Proof of Claim. Assume again that the pieces are indexed

in order of decreasing size. If size(a1) > 1/2, we are done,

since f(al) = 1. If size(a1) < 1/2, there must be an a,, and if

size(a1) > 1/4 we are done, since f(a,) + f(a2) = (2)(1/2) = 1.

If size(al) j 1/2 and size(a.) = 1/4, there must be an a. with

size = 1/4. If then size(at) > 1/4, we are done since f(aL)

= 1/2 + (2)(1/4) = 1. If size(a,) = 1/4, then there must be an

a and so ALf(ai) = (4)(1/4) = 1. This exhausts the

possibilities.

CLAIM 2.8.3. If cont (j) = a, levelpg(0) >

1/2, and BINj has coarseness d, 1/4 < d < 1/2, then 2Lf(ai) >
Lei

1.

Proof of Claim. Assume again that the a 's are indexed in

order of decreasing size. By the first fit rule, all the a('s

must have size > d > 1/4. If size(a1) > 1/2, we are done since

f(a1) = 1. If not, then there must be an a2 , and f(a,) + f(a,)

SECTION 2.2 - Page 86

= (2)(1/2) = 1. J

4-Zi f(a) > FF(L) - 2.
aCiCPIEC E5LQ

Proof of Claim. The coarsenesses of

increasing sequence, and if level pF(j) <

coarseness of BINJ+t is at least d. Thus

one bin with coarseness < 1/4 and level (

bin with coarseness < 1/2 and level _ 1/2

non-empty bin with coarseness > 1/2 must

size > 1/2 and so have f(a5) = 1. Thus,

imply that all but at most two bins have
C

Claim fol lows.

the bins of PF fo

1-d, then the

there can be at m

3/4, and at most

Moreover, any

contain a piece a,

Claims 2.8.2 and 2

f(a) } 1.
ficevitpgfq)

To complete the upper bound proof for Case IIB, we simply

note that by Claim 2.8.1, f(a) < (3/2)L*, so that by
AePtECE5 CC

Claim 2.8.4, FF(L) < (3/2)L* + 2. Lemma 1.1 then applies. J

Case .J.. In this case the interval X must contain numbers

both larger than 1/2 and smaller than 1/4, but none smaller than

1/6. We wish to prove R[FF,X' = 5/3.

The lower bound examples are generated using the same

method used in Theorems 1.5 and 2.6, so we will just describe

the lists and leave the reader to work out the details. There

CLAIM 2.8.4.

rm an

ost

one

of

.8.3

The

SECTION 2.2 - Page 87

will be three types of pieces, one of pieces of size slightly

less than 1/4, one of pieces of size slightly more than 1/4, and

one of pieces all slightly bigger than 1/2. Again we will be

grouping the pieces into blocks, with N blocks, each containing

6 pieces of each type. Choose a d, 0 < d < min (1/4)-p,1/20

and let d(i) = de(5) for 1 < i < N. The pieces of the three

types corresponding to block I will be a -, b, and c , 1 .

j < 6, with sizes

a(1

b(1

c(1

= a(2,i

= b(2,i

= c(2,i

= a(6,

= b(6,

= c(6,

1/4

1/4

1/2

d (i

4d(

d(i

),

i),

In sequence notation,

b(2,1),

a(3, 1),

b(3,1)

a (4 ,1)

b(2,N), b(3,N)

a(3,N), a(4,N)

... , c(6,N)>.

the list will be

b(4,1), a(1,1)

,b(6,1), a(5,1)

b(4,N), c(1,1)

b(6,N), a(5,N)

<b(1,1)

b(5,1)

1,1),

,

,f

,

,f

a(2,1),

a(6,1)

a(2,1),

a(6,N),

SECTION 2.2 - Page 88

The reader may verify that this insures that under FF the a 's

and b * 's will go three to a bin, for a total of 4N bins, and

the c- 'is will take up another 6N bins for a total of FF(L) =

10N, whereas there _I a packing of the pieces into 6N + 1 bins,

using our usual tricks, and so by Lemma 1.1 R[FF,X] 2 10/6

5/3, as desired.

For the upper bound, we will perform another discrete

version of the upper bound proof for Theorem 2.6. Since there

is nothing particularly new about the details, we shall simoly

define the weighting function and state the claims, leaving the

rest to the reader. The weighting function is given by:

f(a) 1, if 1/2 < size(a) < 1,

2/3, If 1/3 < size(a) < 1/2,

1/3, if 1/6 < size(a) < 1/3,

1/6, if size(a) = 1/6.

Now let L be a list with Range(sizeL) _C X, P* an optimal packing

of L, PF the FF-packing of L, and define coarseness as in Case

jiB. The claims used to prove the upper bound are then simple

analogues of those used in Case IIB:

SECTION 2.2 - Page 89

Claim 2.8.5. If 4 fsize(aj) j 1, then

f _ (aL 0 5/ 3.
LalI

Claim 2.8.6. If cont pF(j) = fa, .. ,a

and BIN, has coarseness d < 1/6, then f(a;)j Li

levelpF (j) > 5/6

> 1.

CLAIM 2

and BINS has

Claim 2

and BIN3 has

.8.7. If contyy(j) = la ,....,a n ,

coarseness d, 1/6 < d < 1/3, then

.8.8. If contpF(j) =

coarseness d, 1/3 < d < 1/2, then

levelpF(J)

Sf(a;) >

levelp,

f(a) >

Claim 2.8.9. f(a) > FF(L)
6E PIEMEC L)

The upper bound

2.8.8 via Lemma

for Case IIC then follows

1.1. U

from Claims 2.8.5 and

Thus we have proved all the cases of Theorem 2.8 and so the

whole Theorem is proved. f

The type of analysis done in this section could be extended

to the problem of finding the worst case behavior when the

pieces of L are restricted to a finite union of intervals, for

instance, finding the value of R FF,XI when X = (0,1/5) U

2/3,

1/2,

- 3.

SECTION 2.2 - Page 90

[1/2,2/3). In this case the value is 8/5, and similar results

could be obtained for other combinations of intervals. However,

if Theorem 2.8 is any indication, the general solution would

just be an incredibly long list of special cases, and we shall

leave the complete solution to even the problem of the union of

two intervals to later researchers.

MMMMMMWIMMWM

SECTION 2.3 - Page 91

SECTION 2.3. Implementation of ANY FIT Algorithms

In this section we begin by considering the problem of

implementing the ANY FIT algorithms, with an eye toward

determining how much time is required to generate the S-packing

of a list L as a function of list length n. We prove that under

certain reasonable assumptions about the implementation, all AF

algorithms require time proportional to nlogn, and show that the

four AF algorithms (FF, BF, WF, and AWF) that we have explicitly

defined all can be implemented in 0(nlogn). We then consider

ways of modifying the algorithms so that they take only linear

time, and yet do not suffer from a degradation of worst case

behavior.

We must talk about the "implementation" of our 2-part

algorithms because they have only been specified by rules, not

explicit programs, and there may be more than one way to

accomplish the desired effect of a given rule. That is, we have

so far left open the problem of how to permute a given list so

that it satisfies a preprocessing rule, or how to determine,

given a set of bin levels and a piece size, which bin satisfies

the requirements of a packing rule.

Although all the algorithms we have studied so far have

been assumed to operate on-line, with the pieces packed one at a

time as they are input, we shall for the sake of the generality

SECTION 2.3 - Page 92

of our lower bound proof consider implementations which need not

output any information about the packing until they have seen

the entire list, but then must output a complete specification

of the packing (or set of packings in the case of incompletely

determined packing rules) that could result if the packing rule

was applied as specified in our PART 2 program. The

implementations to which we shall restrict our attention will be

branchiny- implementations, ones which select the packing(s) by a

sequence of yes-no tests, the result of each test determining

either what test to make next or what packing(s) to output.

To be specific, given a list of length n, the S-packing

(for S a 2-part algorithm) is a sequence on n bins (some

possibly empty). There are thus only a finite number of

possible packings of lists of length n, each corresponding to a

sequence of n disjoint sets whose overall union is

where the j'th set consists of the ranks of the pieces in BIN

of the packing. A branching implementation of a bin packing

algorithm S for lists of length n will be a binary tree, whose

internal nodes correspond to yes-no tests and whose leaves

correspond to sets of possible packings of lists of length n.

The tree must obey the property that any input list L of length

n determines a path from the root to a leaf node by determining

the answers to the tests at the internal nodes, and the leaf

node at the end on the path corresponds to the set of packings

SECTION 2.3 - Page 93

generable by S applied to L. The cost for L of the

implementation will be the number of internal nodes in the path.

This is the same type of theoretical framework within which

the problem of sorting has been extensively analyzed, and all

practical implementations of the algorithms would seem to fit

into it, although of course the underlying tree structure will

be implicit. Moreover, it is not unreasonable to expect that

actual running times of such implementations would be

proportional to the c.ost, as defined here.

We now briefly describe implementations of FF, BF, WF, and

AWF, all of which do operate on-line, packing one piece at a

time, and still have worst-case cost bounded by a constant times

nlogn.

For FIRST FIT, we initially construct a binary tree of

depth ilog~nl with n leaves corresponding to the n initially
empty bins, in sequence from left to right. The nodes of the

tree are all labeled 1. As the packing progresses the labels

will be updated, so that when a new piece is to be assigned, the

label at each leaf will be the gap of the corresponding bin, and

the label at each internal node will be the max of the labels of

its two offspring, and hence the size of the largest gap over

all the bins which descend from that node. See Figure 2.11 for

an example of the state of the tree when a piece is about to be

1.0

FIGURE 2

2. 3 4 5

.11. Tree Directory for

I
the implementation

If~
.7

of FIRST -0FIT, n = 7. 0
On
to

SECTION 2.3 - Page 95

assigned.

To assign a piece, we merely start at the root of the tree

and traverse to a leaf by always taking the leftmost branch

which is labeled with a number larger than the piece size. This

will require at most Flog2nl comparisons (yes-no tests). After

assigning the piece we must update the tree, and this will

require an additional flogZ n comparisons. We first update the

label of the leaf node to reflect the updated gap of the

corresponding bin, and then proceed back up the path, relabeling

each internal node with the max of its two (one possibly

updated) offspring. Thus the total cost of the implementation

for _nU list L of length n is at most 2nflogtn).

Note that the tree structured directory in the above

implementation is not to be confused with the tree structure of

the branching implementation itself, which of course would be

much more immense if it were all explicitly drawn out. The

above implementation is not completely on-line, since we must

know the length of the list in advance. For the other three

algorithms, this piece of information is unnecessary (except

insofar as that in a practical situation we are subject to

storage constraints).

For BF, WF, and AWF, which unlike FF do not depend

predominantly on the order of the bins in the original left to

right sequence in making their assignments, we may use

SECTION 2.3 - Page 96

structures such as AVL trees [Adl] or trees of bounded balance

[Nil] for our bin directories. These can keep the bins sorted

by gap, and can be searched (to find the appropriate fit) and

updated, both in time 0(logn). The details are left to the

reader.

Summarizing, we have

THEOREM 2.9. For S any one of FF, BF, WF, and AWF there

exists an implementation of S and a constant k such that if L is

any list and its length is n, the cost for L of the

implementation is at most knlog n.

In the light of the following, we cannot expect to do much

better:

THEOREM 2.10. There exists a k such that for all n > 4,

and any implementation of any AF algorithm for lists of length

n, there exists a list L for which the cost is at least knlogin.

Proof. Let j = Ln/23. We shall assume n is even and j =

n/2, but if n is odd, merely add a piece of size 1 to the lists

we present. Consider the set of lists represented by

SECTION 2.3 - Page 97

is any permutation of

<1/2+d,1/2+2d,...,1/2+jd>, and

are j! such lists, each is pac

algorithms, and each yields a

For consider the operatio

first j pieces are all larger

thru BINj in the order they ap

has size 1/2-d, and the only n

be the one containing the piec

the particular permutation, an

constraint. Then the next pie

the piece of size 1/2+2d, and

0 < d < 1/2j. Note that there

ked the same way by all AF

packing different.

n of S on one of the lists. The

than 1/2, so they go into BIN,

pear in the list. The next piece

on-empty bin it will fit in will

e of size 1/2+d, which depends on

d it must go there by the AF

ce will only fit in the bin with

so on. Thus the bins which the

last j pieces go into are completely determimed by the

permutation of the first j.

Therefore the tree representing the branching

implementation must have at least j! = Ln/21! distinct leaf

nodes, and hence the path to at least one of them must contain

at least Tlogg(Ln/2j!>l internal nodes. The list whose

S-packing corresponds to that leaf thus costs at least that

much. By Stirling's formula there exists a k such that for all

n, this exceeds knlogin. 9

where <x,,..,xd>

SECTION 2.3 - Page 98

The intuition behind the above result is that all AF

algorithms implicitly require some form of sorting in their

implementation. If we wish to develop linear time algorithms,

we must somehow avoid this problem.

We in fact already have discussed a number of linear time

algorithms: NEXT-k FIT for k 1 1. These avoid the growth in the

cost of sorting by putting a fixed bound on the number of bins

that need be considered, and consequently NkF has an upper bound

of kn on the number of comparisons required for a list of length

n. Moreover, by Theorems 1.5 and 2.5, for k > 2, NkF has the

same worst case behavior as FF, at least when the maximum piece

size is 1/2.

The remainder of this section will be devoted to another

way of avoiding the problems with sorting, while still not

suffering from a degradation of worst case behavior. In

addition, as we shall see in Chapter 7, this method can be

adapted to yield very good average case results, while still

taking only linear time.

The basic idea is to replace the direct comparisons of

piece size versus bin gap or bin gap versus bin gap by

comparisons against some fixed standards which serve to classify

the pieces and gaps into groups all of whose members have

similar sizes.

Let a schedule of intervals be a set

0, xk = 1, and x < xi, 1 J i < k.

a partition of the unit interval [0,1]1

SECTION 2.3 - Page 99

X = fxJ',...,x , where

X will be thought of

into the subintervals

Ix , *Y .x Ot 0X 3 *** IX '- .x ' ' l

[x;,xz i) will be called interval X, with interval X. being

fj11.
Given a schedule of intervals X,

packing rule:

we have the following

GROUP-X FIT (GXF): To

MIN~i: xi .. size(b) and for

gapp(j) C Xi. Choose BIN

the constraint that if BINW

o3.

assign piece b,

some j, 1 _. j <

such that gapp(j

is empty, j = MI

let i'

X L

': l

n

NJ

subject to

evelP(j') =

The final constraint is present only to insure that no

piece is assigned to a bin which is to the right of an empty

bin, a fact that does not in this case influence the number of

bins used by the packing, but which will make our proofs more

straightforward. Note that i' is chosen so that b will fit in

A0y BIN3 such that gapp(j) E X.1.

If Schedule X has k subintervals, GXF can be implemented

SECTION 2.3 - Page 100

using k stacks, STACK1 , ... , STACK, one for each interval, and

storing BIN* (more precisely a pointer to a representation of

BINj) on STACK(if gapp(j) 6 Xi.

Initially, all bins are on STACKk, ordered by index with

BIN, on top. When b is to be assigned, we first find

i"l = MIN i: xi }_ size(b)),

by a binary search using no more than ilog2 kl comparisons. We

then search for

i' = MINii } i": STACK is not empty?,

pop the top bin on STACKii, and put b in the required position

of that bin. Lastly, we find the proper stack on which to place

the updated bin by a second binary search, again using no more

than [log 2 kl comparisons.

Although the algorithm is clearly 0(n) for fixed k, we

would like an implementation which is 0(nlogk), so that even for

large k the constant of proportionality would not be

unmanageable. Thus we cannot find i' given i" by testing each

stack in turn for non-emptiness, as this can require a number of

tests linear in k.

Instead, we consider the stacks to be laid out in a line,

SECTION 2.3 - Page 101

and construct a binary tree over them with the stacks as leaf

nodes, much as we did in our implementation of FF, only now the

leaves correspond to stacks rather than individual bins, and

each internal node of the tree need only store the information

as to whether there is a non-empty stack beneath it in the tree.

It is a simple matter to update the tree in 0(logk) when a stack

is changed, and also to use the tree as a directory and find i'

given i" using only 0(logk) tests at internal nodes.

Thus the total cost of each piece assignment is 0(logk) and

the whole packing costs 0(nlogk).

Note that GXF operates by leaving a margin of safety. If

we define mesh(X-) to be MAX x4.1 - xi: 1 j i < IXIt, then if

gapp(j) > size(b) + mesh(X) we know that b can be assigned to

BIN5 under GXF. On the other hand, if size(b) > gap (j) -

mesh(X), it may be impossible to assign b to BIN even though it

does fit. However, subject to the margin of error, GXF does try

to put b in a bin so as to minimize the gap left. Thus as

mesh(X) approaches 0, GXF becomes more and more like BF, and we

would expect its average case behavior to improve. (Note the

similarity to the situation with NkF, which as k increases

becomes more and more like FF and is expected to have better and

better average case behavior).

When we turn to the question of worst case behavior, we

SECTION 2.3 - Page 102

find that GXF is as good as BF for a surprisingly small schedule

of intervals X (just as NkF was as good as FF from a worst case

point of view as soon as k = 2). We shall reach this conclusion

after presenting as series of lemmas. Our first Lemma

formalizes the most important fact about the way the algorithm

operates:

LEMMA 2.11. Suppose y,z e X, y < z, and b is a piece in a

list being packed by GXF, with size(b) j y. If when b was

assigned there was a j' such than gapp(j') e [y,z), then b was

not assigned to any BIN 5 with gapp(j) > Z.

Prof. Suppose y = xi , z = xj. Then when b was

assigned, BINy was on some STACK,. , il < i' < i2, and BIN was

on some STACK*, i I i2. Since size(b) j x. , STACK-, could have

been chosen only if all STACKi", il i. i" < i, were empty, and

this is not the case. 9

Using Lemma 2.11, we can prove analogues of Lemmas 2.3 and

2.4 for AAF algorithms, under a weak restriction as to the

nature of X:

SECTION 2.3 - Page 103

LEMMA 2.12. Suppose for m > 2

a list with Range(sizeL) 5 (0,1/m),

L. If b = piecep(j,1) for j < #PX,

had for all j', 1 < j' < j,

(a) levelp(j') > (m-1)/m and

(b) heightp(j') > m.

that f1/m,1/(m+1)) C X, L is

and PX is a GXF-packing of

then when b was assigned we

Proof of_ Lemma. For (a), suppose for some j' < j

level (j') ((m-1)/m when b was assigned. BIN, can not have

been empty at the time, since J' < j and BIN3 is at the top of

the empty bin stack. Thus gapp(j') E [1/m, 1), gap,(j) I F11,

and size(b) _ 1/m, so Lemma 2.11 would tell us that b did oj;. go

in BIN 3 , a contradiction. (b) follows from (a) since at least m

pieces of size _ 1/m are required to yield a level > (m-1)/m. I

LEMMA 2.13.

addition 1 < j <

1/(m+1). Then B

Suppose L,

#PX and for

IN' contains

X, and PX are as above and in

some j', 1 . j' < j, gapp(j') >

m pieces larger than 1/(m+1) in PX.

Proof of Lemma. Since

BINj must contain m pieces.

When b was assigned, BI

pieces, and hence had gapp(j

we know that gapp(j') < 1/m,

J+1 < #PX, Lemma 2.12 tells us that

Let b = Piecepx(j,h), 1 < h < m.

N3 contained no more than m-1

) > 1/m. But again by Lemma 2.12,

and hence by assumption e

SECTION 2.3 - Page 104

[1/(m+1),1/m). Thus if size(b) . 1/(m+1), Lemma 2.11 would not

allow b to go in BIN>, and hence in fact size(b) > 1/(m+1).

THEOREM 2.14. For m = [1/tJ 2 and T1/(m+1),1/m3 C x

R[GXF,t] = 1 + 1/m.

Proof. The lists used to prove the same lower bound for

NkF, k > 2, in Theorem 1.5 are such that for any X 2

71/(m+1),1/m1, GXF will generate the same packing as NkF (and

for no X can GXF do any better than NkF), and so R[GXF, t]

R[NkF,t) 2 1 + 1/m. The upper bound when X is as stated follows

from Lemma 2.13 just as the upper bound in Theorem 2.5 followed

from Lemma 2.4. 0

Thus for t (1/2, and X the corresponding two-element set,

we have R[GXF,t] = R[BF,t). Although we cannot prove it, we

conjecture that if t > 1/2 and (1/6,1/3,1/2 C- X, then we also

have R[GXF, t] = RLFFt3 = 17/10.

SECTION 3.1 - Page 105

CHAPTER 3. ANY FIT DECREASING ALGORITHMS COMPARED

SECTION 3.1. Preprocessing Rules

In this and the next three chapters we consider 2-part

algorithms in which the preprocessing rule is no longer vacuous,

and which thus can no longer be considered to be "on-line"

algorithms. To simplify our proofs about such algorithms, let

us first state a rather trivial extension of Lemma 1.1:

LEMMA 3.1. Supppose SP is a 2-part algori

rule S and preprocessing rule P, and X G (0,1].

(A) If there exists a K such that for all 1

Range(sizeL) C X and rankL obeying P, we have S

then R[SP,X) 3. r.

(B) If there exists a K' and a sequence of

limit Ln* = c, Range(size) ! X, rankL obeys

rLA* - K', then R SP,X] > r.

thm with packing

ists L with

(L) (rL* + K,

lists L. with

P, and S(Lt) >

The preprocessing rule to which we shall devote most of our

attention is the following:

SECTION 3.1 - Page 106

DECREASING RULE: L

size(a) > size(

in decreasing

==> rankL (a)

order, that is,

< rank (b).

A list L = <bi,b,,...,bn> which obeys this rule will have

b, > b2 s.. > be.

If S is a packing rule, the algorithm specified by S and

the DECREASING RULE will be called §_ DECREASING or simply SQ.

In Chapters 3, 4, and 5 we will be concerned with the case of SD

where S e AF, and we shall call the class of such algorithms

AFD. The use of the DECREASING rule for preprocessing tends to

lessen the difference between such algorithms. Recall that for

Theorem 2.7 we exhibited lists L with Range(sizeL) E (1/4,11

such that FF(L)/BF(L) = 3/2, and other lists such that

BF(L)/FF(L) = 4/3. In [Gall it was shown that if L is a list in

decreasing order, with Range(sizeL) C [1/5,1], then FF(L) =

BF(L). But then, FF and BF do have the same worst case

behavior. Perhaps even more surprising, in light of Theorem

2.1, is the fact that if Range(size L) S (1/4,11, then for all S

E AF

FF(L) S(L) j FF(L) + 1.

SECTION 3.1 - Page 107

This chapter will be devoted to proving these results and

others of the same type, which in addition to any interest they

might inspire on their own, have applications in the next two

chapters when we prove upper bounds on R[SDt].

SECTION 3.2 - Page 108

SECTION 3.2. A Proof Method

The results we wish to prove in this chapter are all of the

form S(L) < K where S is an AF algorithm and L a list in

decreasing order. In the current section we develop a method

for proving such results by induction. Informally, in our

proofs we shall show that at each step of the generation of the

S-packing of L, there is a way of extending the current packing

to a packing of the whole list which uses no more than K bins.

More formally, if L = <a,...,a> in sequence notation, for

each i, 1 i < n+1 let

L= (a1 ,... ,a j. >

L =<

Then we have L = LieL1, 1 I i j n+1.

In accord with our description of PART 2 of a 2-part

algorithm in Chapter 1, we may think of the generation of an

S-packing of L as actually the generation of a sequence of

packings P1 ,...,a , where PI is a sequence of n empty bins

making up a packing of L, = 0, and in general each Pi is a

sequence of n bins constituting a packing of Li, with RA4 being

the final S-packing of L.

A property of this sequence is that for 1 (i _ n, Pi is a

SECTION 3.2 - Page 109

subpackin of Pi.N , that is, for all (j,h) C Domain(piecep),

piecepL,,(jh) = piecep.(j,h). What we shall show by induction

is that for all i, 1 . i j n+1, there is a packing Qi of L with

#Qi < K and such that P' is a subpacking of Q'. The basic

mechanism behind the induction will be to compare where the

piece with rank 1 in L- goes in Pi., with its position in Q,

and if they are not the same position, to switch pieces around

in Q- to obtain a packing Q,.1 of L of which P ,, is a

subpacking.

It will be easier to talk about our induction, however, if,

instead of explicitly spelling out the entire packing Q', we

merely tell how to construct it, given P-. To this end we

define the concept of an assignment function or a.f. Suppose P

is a packing of list L1, and L2 is a second list. Let

EMPTYPOS(P) = POS(P) - Domain(piecep). An assignment function

of L2 into P is any 1-1 map

f: PIECES(L2) ---- > EMPTYPOS(P),

satisfying

SECTION 3.2 - Page 110

(A) For all BIN J in P,

gap P(j) }_ size(b),
b s.t. for some h

f(b) = (j,h)

Thus if f is an a.f., all the pieces that map to a given

bin of P will fit together in the gap of that bin. Let #f =

MAXj: there exist h and b such that f(b) = (j,h) I. Note that

if we were to place each piece b of L2 into position f(b) in P,

we would obtain a (not necessarily ordered) packing of L1l6L2,

using no more than MAX #P,#f3 bins.

As an instructive example,

the straightforward map

consider for each i, 1 < i I n,

f[:PIECES(L'j)--->EMPTYPOS(P),

given by

S=-1f*(b) = piece P~ (b) = the position b fills

in the final packing,

SECTION 3.2 - Page 111

where the Pi's are as defined for the generation of an S-packing

of L. Each fi so defined is an a.f. from L. into P(, with #fi <

S(L). The basic lemma we shall use in our proofs will be the

converse of this example:

LEMMA 3.2. Suppose S e AF, L is a list with L', Lj defined

as above. If for all i, 1 j i J |PIECES(L)I, and any sequence

of P 's involved in the generation of an S-packing of L there

exists an a.f. f; from L" into Pi such that #fi (K, then S(L) I

K.

Proof. Let n = |PIECES(L)I. Suppose an S-packing uses

more than K bins. Then at some time during its generation a

piece b must have been put in position (K+1,1). Let rank(b) =

i. Then by assumption there is an a.f. fi of L'[into Pi, where

P is the packing into which b was placed by the algorithm. But

by definition of a.f., fi(b) = (j,h) is an unfilled position of

Pi, and b will fit in the gap in BIN. Since #fi i K, j < K+1,

so BIN 3 is to the left of BINK+1. Thus b cannot have been

placed in position (K+1,1) without violating the AF constraint,

and the Lemma is proved by contradiction. 0

SECTION 3.2 - Page 112

Thus our proof method, restated in terms of a.f.'s, will be

to inductively define maps fi with #f' . K, and then prove by

induction that they are indeed a. f.'s, so that Lemma 3.2 will

apply with the desired result.

f*, since it will initialize the induction, is of special

significance. Since it is an a.f. of L into an empty packing,

it will be piece3p for some base packing BP of L. The

properties of this base packing will have a direct bearing on

the induction as it proceeds.

For instance, we shall always have Range(fi) C Range(f,) =

Domain(piecegp). Moreover, BP will be what we shall call a

semi-ordered packing, which means that it obeys packing

properties (1) and (2) but not necessarily (3), and hence,

although only the bottom-most positions in each bin are filled,

they are not necessarily filled in order of increasing rank.

Some additional concepts we shall need:

If P is a semi-ordered packing, let

TOP(P) = (j,h) 9- Domain(piecep):

(j,h+1) Domain(piecep)3,

NONTOP(P) = Domain(piecep) - TOP(P).

SECTION 3.2 - Page 113

We shall omit the argument (P) whenever no confusion will

result. By packing property (2) each non-empty bin of P has

exactly one TOP position.

If p is a 1-1 partial map from NX N to PIECES(L), a

capacity M&a for p is a map

CAP:N X N---->G},

such that

(1) If (j,h) / Domain(p), CAP(j,h) = 0,

(2) If (j,h) E Domain(p),

CAP(jh) 2 size(p(j,h)),

(3) For all j 2. 1, 2fLCAP(jh) < 1.

CAP defines a capacity for each position. Note that if p

has a capacity map, then by capacity map properties (2) and (3),

p = piece? for a packing P of L.

We shall initialize our inductions by defining both a base

packing BP and a capacity map CAP, and the above observation

will allow us to save some time in showing that both

constructions satisfy their respective definitions. The

following series of lemmas then become applicable.

SECTION 3.2 - Page 114

LEMMA 3.3. Suppose B

K < n = IPIECES(L)I

Bp 11 Then the map f

(b) = piece-I(b),

a.f. from L = L

P is a semi-ordered packing of L with

, and CAP is a capacity map for

defined for all b 9 PIECES(L) by

into P,, with #f, j K.

Proof.

definition

f, is 1-1 since piecegg is.

the empty packing with n bins,

Since PI is by

EMPTYPOS(PI) = i(j,h): 1 j n,

Thus, since K < n,

--- > EMPTYPOS(P),

and all we need verify is

holds. But this follows

obeys capacity map proprt

that assignment function property (A)

immediately from the fact that CAP

ies (2) and (3). D

LEMMA 3.4. Suppose there exists a semi-ordered packing BP

L with #BP (K, CAP is a capacity map for piece p, and L is

decreasing order, then for each i, 1 <,' i < IPIECES(L)I, there

sts a 1-1 map

#BP <

piece

fi

is an

h >1 1

f :PIECES(L)

of

in

exi

SECTION 3.2 - Page 115

f{: PIECES(L'j)----> EMPTYPOS(Pj),

with #f(< K and satisfying

(P3.4) For each b E PIECES(L'[), si

Proof. fl is the map defined in

(P3.4) since by definition of CAP and

size(piecep(f1 (b))) = size(b). We de

IPIECES(L)I, and prove it also satisfi

following inductive procedure:

Suppose fi is defined and satisfi

piece b with rank 1 in PIECES(L{) goes

P'+j. Then for each c e PIECES(L+) WE

f. (c) =14-I

ze(b) < CAP(fi(b)).

Lemma 3.3, and obeys

f,. ,CAP(f 1 (b)) >

fine fi, 1 < i <

es the Lemma, by the

es the Lemma, and that

into position (jl,hl)

define

if fi(c) = (jl,hl),

otherwise.

Since fi is 1-1 and b is not in PIECES(L), f.,., will be 1-1.

Since Range(f-) G EMPTYPOS(P), #f j K, and the only position

in EMPTYPOS(P) - EMPTYPOS(Pi4) is (jl,hl), we will have

Range(f-) 9 EMPTYPOS(Pi+1) and #f.,1 K K. Thus all we need

show is that fi+ obeys (P3.4).

Since f' obeyed (P3.4), only a c e PIECES(LZ+) for which

f (c) A f((c) could violate (P3.4) for fi. . By the

the

in

f i(b),.

f. (c),

SECTION 3.2 - Page 116

definition of fi+1 fro

f-(b), where b is the

rank(c) > rank(b) and

have

size(c) (size(b)

by (P3.4) for f . Thus

n f[, the only such c must have fZ4 ,(c)

piece with rank 1 in L-' . But then
i

since L is in decreasing order, we must

(hCAP(ff(b)),

(P3.4) holds for fi.

LEMMA 3.5. If BP is a semi-ordered packing of L, CAP is a

capacity map for piecegp,

f:PIECES(Li)----> EMPTYPOS(P-)

is a 1-1 map obeying (P3.4), and P- obeys

(P3.5) If (jh) E NONTOP(BP) is filled in Pi by a piece b,

then size(b) j CAP(j,h),

then f is an a.f. from Li into P-.

Proof. All we must show is

function property (A). Let BIN'

positions are in the range of f.

positions. We must show that

that

be a

Let

f obeys assignment

bin in Pi, some of whose

R(j) be the set of these

SECTION 3.2 - Page 117

gap.(j) } size(b),

But the fact that R(j) is non-empty means that at least one

position in BINJ with non-zero capacity is unfilled in P(, by

(P3.4) for f. Thus the TOP(BP) position in BIN cannot be

filled, and so, if F(j) is the set of positions in BINj which

are filled in Pi, we must have F(j) S NONTOP(BP). Thus we have

(j) = 1 - .~ size(piece

S1 -C% e CAP(jth),.

}_ CA P(j , h),

2 size(b),
-M j

Lemmas

results of

l emma:

. (j h)),

[by (P3.5)1.,

by capacity map

property (3)]

[by (P3.4)1. f

3.2 thru 3.5 together reduce the problem of proving

the form S(L) < K to that of applying the following

gapp ?

SECTION 3.2 - Page 118

LEMMA 3.6. Supppose BP is a semi-ordered packing of a

decreasing list L with #BP j K, CAP is a capacity map for

piece,, and S E AF. Then if for all i, 1 < i . |PIECES(L)i,

and any sequence of Pi's involved in the generation of an

S-packing of L, Pi obeys property (P3.5), we have S(L) I K.

Proof. Since the Pi's obey (P3.5), by Lemmas 3.4 and 3.5,

there is a sequence of a.f.'s f , 1 < i _< IPIECES(L)I, with #fi

_. K, so the result follows by Lemma 3.2. 9

SECTION 3.3 - Page 119

Results for Arbitrary ANY FIT algorithms

in this section we shall

lists L with Range(size) C (1

and a generalization thereof.

properties of an AF-packing of

LEMMA 3.7. Suppose L is

AF, and PS is an S-packing of

and d = MAX gapp(j'): 1 j'

#PS,

(1) BINjV contains at least

prove the result about decreasing

/4,1) mentioned in Section 3.1,

Let us first look at some of the

a decreasing list:

a list in decreasing order, S E

L. If size(pieceps(j,1)) < 1/m,

< j , then for every j", j j j" <

m pieces of size > d, and

(2) for 1 i h < m,

size(piece., (j",h)) I size(piece PS j"+1,1).

Proof. Since BINjt is not the last bin, we know there

exists a piece b = pieceps(j"+1,1). Let a = piece ps(j",1). By

Lemma 2.2 and its Corollary, and the fact that L is in

decreasing order,

d < size(b) (size(a) (1/m.

By packing property (3) and the fact that L is in decreasing

order, we know that all the pieces in BINy have size < 1/m.

Thus if BINy' contained fewer that m pieces with rank less than

that of piece b, Lemma 2.2 would be violated. Hence by packing

SECTION 3.3.

SECTION 3.3 - Page 120

property (3) the bottom m positions of BINy? must be filled with

pieces of smaller rank (and hence no smaller size) than piece b.

Both (1) and (2) follow. 9

In particular, if Range(sizeL) S (1/4,1], we can partition

PIECES(L) into the three sets:

A-PIECES(L) = ia Z PIECES(L): size(a) t (1/2,1]3,

B-PIECES(L) = ib t PIECES(L): size(b) 6 (1/3,1/2]3,

C-PIECES(L) = c f PIECES(L): size(c) f (1/4,1/3).

For X f fA,B,C1, let us call an element of X-PIECES(L) an

X-Diece, a bin whose bottom piece is an X-piece an X-bin, and

let us drop the argument on X-PIECES(L) whenever no confusion

will arise. We now consider the construction of the S-packing

of L (see Figure 3.1):

S first assigns the A-pieces to the first IA-PIECESI bins,

one per bin in order of decreasing size. This yields a sequence

of A-bins, whose gaps form an increasing sequence, are less than

1/2, and hence have room for only one more piece from L.

Next the B-pieces are assigned, and those which do not go

into the gaps in A-bins fill up a series of B-bins, each B-bin

receiving two B-pieces before the next is started. Hence the

B-bins have gaps in an increasing sequence, and all except the

C

I P I HI

2 3

B

izz2z

5

B B

8

C

C

C

9

C

C

C

C

C

1'1

1
F I GURE 3.1. S-Packing of decreasing list L with Range(sizeL) (-, i

4

A C

C
A I J B I I a I 1 5 11 E;

SECTION 3.3 - Page 122

rightmost B-bin contain two B-pieces, have gaps less than 1/3,

and hence have room for at most one more piece from L.

Finally, the C-pieces are assigned. if the last B-bin had

only one B-piece, its gap exceeded 1/2, and by Lemma 3.5 no

C-bin will be started until that B-bin's second position is

filled. Then the C-pieces which do not go into the gaps of A-

or B-bins will fill up successive C-bins, each receiving three

C-pieces before the next is started.

Suppose we define an order relation on positions by

(j,h) < (j',h') <===> j < j' or j = j' and h < h',

we then have

LEMMA 3.8. Suppose S f AF, L is a list in decreasing order

with Range(sizeL) ! (1/4,11, and PS is an S-packing of L. If

(jh) f NONTOP(PS), (j',h') I Domain(piecer.), and (j,h) (

(j',h'), then size(pieceP5 (j,h)) > size(piece,_(j',h')).

Proof. If j = j', the result follows from packing property

(3) and the fact that L is decreasing. If j < j', consider

BINj. If it is an A-bin, then it can contain at most two pieces

so we must have h = 1, and piece P(jh) is the A-piece. But as

SECTION 3.3 - Page 123

we have seen that A-piece must have been assigned before any

piece went into a bin to the right such as BINj/. If BINj is a

B- or C-bin, then we must have h _ 2, and BINj received its

bottom two pieces before any piece went in a bin to the right.

Thus in either case piecePS(j',h') has higher rank than

piecep 5(jh) and hence can have no larger size. f

We are now ready to prove our result:

THEOREM 3.9. If S e AF and L is a decreasing list with

Range(sizeL) .g (1/4,1], then

FF(L) (S(L) (FF(L) + 1.

Lower Bound Proof. Let our base packing BP simply be an

S-packing of L, so that clearly #BP < S(L). Then define a

capacity map for pieceop by simply letting CAP(j,h) =

size(pieceep(jh)) for each (j,h) E Domain(piecegp), and

CAP(j,h) = 0, otherwise. By Lemma 3.8, CAP obeys

(P3.9) If (jh) E NONTOP(BP), (j',h') E Domain(piecegp), and

(jh) < (j',h'), then CAP(j,h) ._ CAP(j',h').

SECTION 3.3 - Page 124

(Property (P3.9) i

Range(sizeL) E (1/

the only place where the fact that

i] is used in this lower bound proof).

Let P, * . .. P., 1 be the sequence

the generation of the FF-packing of L.

must show is that, for 1 < i (n = (PIE

property (P3.5), which we recall says t

NONTOP(BP), and Pj has a piece b in pos

(CAP(j,h).

(P3.5) clearly holds for P1 since

filled. Suppose it holds for some Pi,

pieces already assigned positions in Pg

positions in P , the only piece that

of (P3.5) for Pil is the piece b with

only if in P,+1 that piece goes into a

NONTOP(BP), and size(b) > CAP(jl,hl).

Now since (P3.5) holds for Pi, by

exists an a.f. fZ from L' into Pi obeyi

(j',h') = fj(b). There are two cases:

of packings

By Lemma 3.

CES(L)I, P-

hat if (j,h)

ition (j,h),

involved in

6, all we

obeys

e-

then s

no positions in P1

1 (i < n. Since t

retain the same

could cause a viola

rank 1 in LL, and t

position (jl,hl) e

Lemmas 3.3 and 3.4

ng property (P3.4).

ize(b)

are

he

tion

hen

there

Let

Case 1. (j',h') > (jlhl). Then by (P3.4) for f and

(P3.9), size(b) < CAP(j',h') < CAP(jlhl), so (P3.5) is not

violated for i+1.

SECTION 3.3 - Page 125

Case 2. (j',h') < (jlhl). (jlhl) must be the

bottom-most unfilled position in BIN, in P . (j',h') must also

be unfilled since it is in the range of an a.f. Thus we cannot

have j' = jil, h' < hl, and so we must have j' < j. By a.f.

property (A), b would have fit in BIN3I in P[, and hence could

not have gone to the right to BINgj without violating the FF

packing rule, so this case is impossible.

Thus by induction (P3.5) is satisfied for all i, 1 < i ,i n,

and the desired lower bound follows via Lemma 3.6. 9

Upper Bound Proof. For this proof we reverse the roles of

S and FF. We cannot, however, use the exact same arguments as

in the lower bound proof. For instance, in Case 2 above, S, as

opposed to FF, might well place a piece b to the right of a bin

into which it would fit, as long as b does not go into a bottom

position. Thus, although we will use the FF-packing PF of L as

a basis for our construction of our base packing BP, the

construction will be a bit more complicated than before, as will

be our definition of CAP.

To save time, we shall define pieceag and

CAP:N K N --- > Q in parallel. First let us divide PF into three

(possibly vacuous) segments. Let PFA be the A-bins of PF, PFB

SECTION 3.3 - Page 126

the B-bins, and PFC the

Figure 3.2.

piece B and

C-bins. Let j3 = 1 + #PFA + #PFB.

CAP are defined as follows:

BINj is i

piecegp(j

n segment PFA,

,h) = b, CAP(j

and b fills

,h) = size(b)

position (j,h) in

.

BI NW is in segment PFB,

1, set pieceB?(j,1) = b,

2, set pieceep(j, 2) = b,

3, set pieceBp(j+1,h') =

= j3, h' = 1,

f j+1 < j3, h' = MIN13,1

and b fills position (j,h) in

CAP(j,1)

CAP(j ,2)

b, CAP(j

= size(b),

= CAP(j,1)

+1,h') = size(b), where

+height g(j+1)3

If BIN is in segment PFC, and b fills position (j,h) in PF,
j.

and

set piece6g(j,1)

set piece p(j ,h)

= b,

= b,

CAP(j ,1)

CAP(j,h)

= size(b),

= CAP(j,1).

For all other positions, CAP(j,h) = 0, and piece is

undefined.

See

If

PF, set

If

PF, and

h=

h =

h =

if j+1

FIRST FIT PAcKNG PF or L:
PfA

I z

PF3

BA'SE- PAC-iiNG BP 6 L:
BPA

2. 3

3PB

Cl ca

C16

C.

B3pc

c,

J3

FIGURE 3.2. FIRST FIT Packing and BASE Packing of L.

(Pieces with changed positions are labeled c.).

C 3 cZ

C,

CS

C7

C'

Cs

J3

C13

C'&.
Cl'

77o
i 0/

C4

/

Cl"L

SECTION 3.3 - Page 128

The next three claims will establish that piece,,p defines a

semi-ordered packing BP, with POS(BP) = (j,h): 1 j j FF(L)+1,

h > 1), and that CAP is a capacity map for piece , thus setting

us up for an application of Lemma 3.6.

CLAIM 3.9.1. pieceop is a 1-1 partial map from N (N to

PIECES(L) satisfying packing property (2).

Proof of Claim. Range(piece o) = PIECES(L) since no bin in

PF could have contained more than three pieces of size exceeding

1/4. That pieceap is 1-1 and that packing property (2) is

obeyed will

to get BP (

The bi

BPA of BP.

and remain

in PF have

each bin of

the right,

a new bin b

be evident when we examine what has been done to

See Figure 3.2):

ns of PFA have remained unchanged and make up segment

The bins of PFB have become the bins of BPB in BP,

unchanged except that all third pieces in these bins

been shifted one bin to the right in BP. Finally,

PFC has had its entire contents shifted one bin to

thus making up segment BPC. This in essence creates

etween BPB and BPC, BINj3 , which will either be empty

or contain a single

business in the def

to insure that a 3r

bottom position in

piece in position (j3,1). The complicated

inition of piece p for the PFB, h = 3 case is

d piece in BIN 3 1 in PF will go into the

BIN 3 in BP, or that if BIN 3 . 1 contains only

SECTION 3.3 - Page 129

1 piece in PF (by Lemma 3.7 this latter case can only occur if

PFC is vacuous) a third piece in BIN33-2 in PF will go in

position (j3-1,2) in BP, thus insuring that piece is 1-1 and

obeys packing property (2). a

CLAIM 3.9.2. CAP is a capacity map for piecerg.

Proof pof Claim. That CAP obeys capacity map property (1)

is immediate from its definition. For (2), note that the only

time CAP(j,h) A size(piecegp(j,h)) is when CAP(j,h) = size(b)

for b = piece (j,1) and c = piece (jh) was above b in the

same bin in PF. By packing property (3) for PF and the fact

that L is in decreasing order, we have that size(c) < size(b) =

CAP(j,h), and so capacity map property (2) is satisfied. All

that remains is property (3):

If BIN is in BPA,
j)

!; CAP(jh)
het

size(b) (1
b a c(j)

If BIN is in BPB, then s

the only problem that could ar

non-zero, that is, if position

d in PF and BIN' contained at

Figure 3.3. Let a = piece (j
PIC

ince CAP(j,2) + CAP(j,1) j 2(1/2),

ise would be if CAP(j,3) were

(j-1,3) were filled by some piece

least two pieces in PF. See

-1,1), b = piece (j-1,2), and c =

SECTION 3.3 - Page 130

S

S

b 2

C

FIGURE 3.3

piecepF(j,l). Then size(a) I size(b) by packing property (3),

and size(b) > size(c) by Lemma 3.7 applied to PF. Thus 1 >

size(a) + size(b) + size(d) > 2size(c) + size(d) = ;!CAP(j,h).
h11

If j = j3, the only position in BINj with possibly non-zero

capacity is (j,1), and CAPCj,1) 1/3, since the third piece in

BIN in PF must be a C-piece.

If BINj is in BPC, then CAP(j,1) 1 1/3, and

* 0 0

0o

,fCAP(j..h) 3CAP(j,.1) < 1.

SECTION 3.3 - Page 131

For j > #BP, &fCAP(j,h) = 0, and so capacity map property

(3) is satisfied and Claim 3.9.2 is proven.

CLAIM 3.9.3. BP is a semi-ordered packing

with #BP < FF(L)+1.

Proof of Claim. Capacity map properties (2) and (3) for

CAP imply that BP obeys packing property (1), so Claims 3.9.1

and 3.9.2 together imply that BP is a semi-ordered packing.

Since pieceep is undefined for all (j,h) with j > #PF+1 =

FF(L)+1, #BP K FF(L)+1. I

Claims 3.9.2 and 3.9.3 set us up for an application of

Lemma 3.6 to derive our desired result. All that remains is an

induction on property (P3.5). The next two claims give us the

information about CAP and BP which will enable us to perform the

induction:

CLAIM 3.9.4. If (jh) C NONTOP(BP), CAP(j,h) = CAP(j,1).

Proof of Claim. If BINj is in BPA, then it has room for at

most one piece besides its A-piece, hence position (j,1) is the

only possible member of NONTOP(BP) and the Claim is satisfied

trivially.

SECTION 3.3 - Page 132

If BIN3 is in BPB and (j,2) E NONTOP, then the bin contains

three pieces in BP, and so must have contained at least two

pieces in PF, and so CAP(j,2) was defined as CAP(j,1) in the h =

2 case for PFB.

BINj3 can contain at most one piece in BP and so has no

NONTOP positions.

If BIN 3 is in BPC, then by definition CAP(j,h) = CAP(j,1)

for all (j,h) which are filled in BP. j

CLAIM 3.9.5. If (j,h

Domain(piecegp), and (j,h)

CAP(j',h'). IThis is the

proof.|

CAP(j

packi

order

) C NONTOP(BP), (j',h') F

< (j',h'), then CAP(j,h) >

same as (P3.9) in the lower bound

Proof of Claim. We first consider the case j = j', h

If BIN is in BPA, then CAP(j,h') = size(piece p(j,h'

,h) = size(piecepF(j,h)) and the result follows from

ng property (3) and the fact that L is in decreasiing

.

(h':

)) and

If BIN is in BPB, all positions that are filled by the

same pieces in both PF and BP have capacities equal to CAPj,1).

Thus the only problem that could arise would be if there were a

piece c in position (j-1,3) in PF, and size(c) >

size(piecepF(jh1)) > 1/3. But this is impossible since such a

SECTION 3.3 - Page 133

piece c would have to be a C-piece by size constraints.

j cannot be j3, since BtNj3 contains no NONTOP positions.

If BIN is in BPC, all nonzero capacities are equal.
J

Thus the Claim holds if j = j'. The only other possibility

is j < j', in which case by Claim 3.9.4, CAP(jh) = CAP(j,1),

and by the above, CAP(j',h') < CAP(j',1). So by definition of

CAP all we must show is that if j < j', and j A j3,

size(piece a(j,1)) > size(pieceep(j ',1)).

If j' = j3, then BINS is either an A-bin or B-bin in BP,

and since pieceBpj 3,1) must be a C-piece, the conclusion is

immediate.

If j' j3, then d(j) < d(j'), where d(i) = i, if i < j3,

and i-1 if i > j3. Since we have piece1P(i,1) = piecep,(d(i),1)

for i F fj,j'j, the result follows from Lemma 1.2 and the fact

that L is in decreasing order. 9

We are now ready to complete the upper bound proof for

Theorem 3.9. Let P,, ... , P,+ be any sequence of packings

involved in the generation of an S-packing of L. By Lemma 3.6

all we need shows that for all i, 1 < i j |PIECES(L)I = n,

(P3.5) holds for PL, that is, no NONTOP(BP) position in Pe is

filled by a piece larger than the position's capacity. (P3.5)

holds for P1 since no positions in P, are filled. Suppose it

SECTION 3.3 - Page 134

holds for P{ with

exists an a.f. f{

Since (P3.5)

violated for Pi~j

in P,'+ into a NO

CAP(jlhl). Let

i < n. Then by Lemmas 3.4 and 3.5 there

from L" to PZ satisfying (P3.4).

holds for Pi, the only way (P3.5) could be

would be if the piece b with rank 1 in Lf went

NTOP(BP) position (jl,hl) and size(b) >

(j',h') = f (b). Again there are two cases:

Case 1. (j'

3.9.5, size(b) _

violated for Pi. 1

,h') 2 (jlhl). Then by (P3.4)

CAP(j',h') < CAP(jl,hl), so (P3

for i

.5) is

and Claim

not

Case 2. (j',h') < (jl,hl). Since (jl,hl) must be the

bottom-most unfilled position in BIN I in PZ, and (j',h') must

also be unfilled, we must have j' < j. See Figure 3.4. Since b

would fit in BINr by a.f. property (A) for f(, b cannot go in

position (jl,1) without violating the AF constraint, so hl > 1.

But then position (jl,1) must be filled in P by some piece c p

b, and by (P3.5) for i, size(c) . CAP(jl,1). Furthermore, Claim

3.9.4 tells us that CAP(jl,hl) CAP(jl,1), and the fact that L

is decreasing tells us that size(b) < size(c). Therefore

size(b) (CAP(jl,hl) and (P3.5) is not violated in this case

either.

SECTION 3.3 - Page 135

CAP(i)

131%'

FIGURE 3.4

Thus by induction

and the upper bound of

(P3.5) is

Theorem 3.

satisfied for

9 follows via

all i, 1 <

Lemma 3.6.

Figure 3.5 gives an example of a decreasing list L with

Range(sizeL) G (1/4,1] for which WF(L) = FF(L)+1, so Theorem 3.9

gives the best bounds possible.

The significance of the fact that

Theorem 3.9 was that this insured that

so we could prove that property (P3.9)

Generalizing Lemma 3.8, we have the fol

Range(sizeL) 9 (1/4,1] in

Lemma 3.8 would hold and

held for CAP.

lowing:

Room

b

< . n,

a

a 0 0

SECTION 3.3 - Page 136

FF - PPCKING

"/33

33

I

WF6CKIrNG

FIGURE 3.5. Decreasing 1list L with Range(size) C (-,1]
4

and WF(L) = FF(L) + 1.

SECTION 3.3 - Page 137

LEMMA 3.10. Suppose L is a list in decreasing order with

Range(sizeL) G (1/(2m+2),1/m), S E AF, and PS is an S-packing of

L. Then if (j,h) 6 NONTOP(PS), (j',h') f Domain(piecep), and

(j,h) * (j',h'), we have size(piece p (j,h)) >

size(pieceP5(j',h')).

Proof. If j = j' the result is immediate by packing

property (3), so we may assume j < j'. We then have

size(piecePS5(j+1,1)) 2 size(piecePSj',)

size(piecepS(j',h')), by Corollary 2.2.1 and packing property

(3), so it is enough to show that size(pieceP5 (j,h)) >

size(pieceP 5(j+1,1). See Figure 3.6. Let b and c be the

respective pieces, and let k be such that size(c) E

(1/(k+1),1/k3. Then by Lemma 3.7, size(b) > size(c) unless h >

k.
k

But if h > k, then :Esize(

leaving a gap : 1/(k+1) 1/(m+1)

one piece with size > 1/(2m+2).

TOP(PS), contrary to hypothesis.

size(b) > size(c) as required. f

piece PS (j.i)) > k/(k+1),.

, and hence room for at most

So h must be k+1, and (j,h)

So we must have h < k and

We shall prove a generalization of Theorem 3.9 using Lemma

3.10 and the following observation:

SECTION 3.3 - Page 138

+-

-Piece

P'ece PS (' i)

BtI4~

FIGURE 3.6

LEMMA 3.11. If L is

Range(sizes) G (1/(m+1),1

yield the same packing of

a list in decreasing order with

/m3, then for any S L AF, S and FF

L.

Proof. By Lemma 2.6, BINZ cannot be started until BIN,

contains m pieces, but by size constraints BIN, can contain no

more than m pieces. Thus S will proceed by putting the first m

pieces in BIN,, then the next m is BIN 2 , etc., until all the

pieces are used up. This will be true for all S V AF, and in

particular for FF C AF. 1

pltct P5 (jA.

BINje j

SECTION 3.3 - Page 139

THEOREM 3.12. If L is a list in decreasing order with

Range(sizeL) S (1/(2m+2),1/m3 for m L 1, and S E AF, then

FF(L) (S(L) j FF(L) + m.

Lowe r

CAP(j,h) =

otherwise.

exactly as

Bound Proof. Let BP be an S-packing of L and define

size(piece3p(j,h)) for (j,h) S Domain(piecep), 0

By Lemma 3.10 CAP obeys (P3.9) and we can procede

in the lower bound proof for Theorem 3.9. 9

Upper

proof, and

First, let

Bound Proof. Again this

we must construct a more

is the more complicated

complicated BP and CAP.

k-PIECES(L) = Fx 6 PIECES(L): size(x) d (1/(k+1),1/kli,

and define k-piece and k-bin as we previously defined A-piece

and A-bin, etc.

Now, let PF be the FF-packing of L, and divide it into

segments PFIkI, m < k < 2m+1, where PFIkI is made up of all the

k-bins of PF. (See Figure 3.7). We once more define piece,

and CAP in parallel, after first setting POS(BP) = F(j,h): 1 j j

< #PF+m, h > I .

SECTION 3.3 - Page 140
FF-PACKING PF of L (PF[6] is vacuous):

3 4
4 4 4

PF [S]

C7
?S5 7

S s 7
.7.......

5

PFO]

--

7 7

7 7
7 7

ft7 7

7 7 7
7 17 7

/

(imagined INTERMEDIARY PACKING):

MPE33 BP tf)

3

33 4 4 '

B3P C-i)

~Z2~
S

£

S

S

S

7
7
7

7

.7
7
7W 1
7

7

±

7

77--E7
7
7

BASE PACKING BP of L (Positions with same capacity are outlined):

S 7

57
7

S

7

7

/

/

13P)

7 7

7 7

7

7'

7

7

FIGURE 3.7. FF and BASE PACKINGS of L, with imagined intermediary.

K,/-
3

3

3

4

4

13

4

'I

'9

4

eP 15]

ap C-J lap (C)

SECTION 3.3 - Page 141

If BIN5 is in PF~m), and b = piecePF(j,h), set pieceSp(iih)

= b, CAP(j,h) = size(b).

If BINj is in PF~k) for k > m, b = piece F(j,h), and If h <

k, set

piece5P(j+k-m-lh) = b,

CAP(j+k-m-1,h) = size(piece ,(j,1).

If h > k and BIN+ is a k-bin in PF, the

bottom k positions in BINj are filled with k

leaving room for only one more piece, so h =

PieceBp(j+k-m,h') = b,

CAP(j+k-m,h') = size(b),

where h' = MIN k+1,1+heightpF(j+1)}.

If h > k and BINJ+ 1 is not a k-bin in PF,

constraints h-k < 2m+1-k < m+1, and also by

size(b) < 1/(k+1) j 1/(m+1), and so (h-k)(si

piecep(j+k-m,h-k) = b,

CAP(j+k-m,h-k) = size(piecePF(j ,k+1).

n by Lemma

-pieces in

k+1. Set

2.6 the

PF,

then by size

size constraints,

ze(b)) j 1. Set

Otherwise, CAP(j,h) = 0 and piecesp(j,h) is undefined.

CLAIM 3.12.1. piecelp is a 1-1 partial map from N XN to

PIECES(L) satisfying packing property (2).

SECTION 3.3 - Page 142

ProofJf Claim. We shall explain with the aid of Figure

3.7 just what this construction does, and leave the rest to the

reader. Basically, we can imagine the construction as a two

step transformation on PF.

In the first step, each segment PF~k), m+1 < k < 2m+1, is

shifted k-m-1 bins to the right, becoming BP~k). This

introduces a "new" bin, BIN , between each pair of segments

BP~k) and BP~k+1), m+1 K k < 2m+1.

In the imagined second step, for each k, m+1 < k < 2m+1,

and each BiNj in segment BP~k) the pieces in positions above the

k'th (bins in segment BPC2m+1) can have no pieces above the

2m+1'st due to size constraints) are all transferred to the

bottom-most non-empty positions in BINj4 , with the excess

pieces from the last bin in BP(k] going into BIN .

The reader may verify that this is the net effect of our

construction and hence pieces, is a 1-1 map with Range =

PIECES(L) and obeying packing property (2). 0

CLAIM 3.12.2. CAP is a capacity map for piece .

Proof gf Claim. Capacity map properties (1) and (2) are

trivial consequences of the definition and packing property (3)

for PF. So all we must show is that capacity map property (3)

holds, i.e., that for all j L 1 2L-CAP(jh) j 1.

SECTION 3.3 - Page 143

In

is true

if

The

for some

our definition of CAP, we have already shown that this

if j = jEk) for some k, m+1 (k < 2m+1.
do

j > #PF+m, then by definition :CAP(j,h) = 0.

only other possibility is if BIN is in segment BP~k)

k. If k = m, then

CAP(j,h)
h= i

size(b) < 1,
b a cal F (q)

by definition of CAP and packing property (1) for PF.

If k > m, the only problem that could arise would be if

position (j,k+1) were filled in BP, say by piece b, since all

the k lower positions have CAP _ 1/k. But in this case we have

CAP(j,h) = k-size(piecepr(j-k+m+1,1)) + size(c)

Ic

<K sizepiece (j-k+mh)) + size~c) < 1,

by Lemma 2.6 and packing property (1) for PF. U

CLAIM 3.12.3. BP is a semi-ordered packing

with #BP < FF(L)+m.

SECTION 3.3 - Page 144

Proof jf Claim. That BP is a semi-ordered packing follows

from Claims 3.12.1 and 3.12.2. Since in our construction we

created "new" bins BINA, only for m+1 < k < 2m, there were

only m such bins, so #BP (#PF+m = FF(L)+m. f

CLAIM 3.12.4. If (j,h) E NONTOP(BP) and BIN is not in

BP~m], CAP(j,h) = CAP(j,1).

Proof of Claim. By inspection.

CLAIM 3.12.5. (P3.9)

Domain(pieceep), and (j,h

CAP(j ',h').

If (jh) f

. (j', h'1),

NONTOP(BP), (j',h') E

then CAP(jh) >

Proof Q

is in BP(2m+

positions in

definition.

If BIN3

property (3)

If BINS

be if h < h'

the left of

CAP(j,h') =

f Claim. if j

1), the result

these bins in

is

BP

' and j = jiki for some k, or BIN

immediate since all nonempty

have the same capacity by

is in BP[m), then the result follows from packing

for PF.

is in BPCk), m < k < 2m+1, the only problem would

and c = piecepg(j,h') were from the bin in PF to

the bin that piece ep(j,l) came from, in which case

size(c). However, in that case c was the k+1'st

SECTION 3.3 - Page 145

piece in its orignial bin and hence had size < 1/(

size(piece8P(j,1)) = CAP(j,h), since b = piece o(j

k-piece.

k+1)

,1)

<

is a

So the

Claim 3.12.4

size(pieceop

in BP~k) and

immediate si

k'-piece. I

If BIN5

then by pack

size(piecegp

the previous

If on t

= j [k') o

E NONTOP(BP)

in a NONTOP(

piece p(j 1,1

PF and still

piecePE(c) a

Claim holds if j = j'. If

it will be sufficient to

(j,1)) > size(piece P(j'.,1

BINjt is is BPCk'] for k'

nce piece p(j,l) is a k-pi

f k' = k, the result follo

is in segment BP(k) and j

ing property (3) for PF si

(j'-1,1)) which is in turn

argument since BIN 1._ is

he other hand j = j(k) for

r BINj/ in BP[k') for some

, (j,1) E NONTOP(BP) and h

PF) position in BINj-+, i

) cannot have come from a

gone to BINj3 , j' > j, in

nd the result follows by

j < j', by the above and

show that CAP(j,1) =

) = CAP(j',1). If BINJ is

> k, then the result is

ece and piecebp(j',l) is a

ws from Corollary 2.2

' = j[k') for some k'

ze(piece BP(j'1)) <

_ size(piece.,(j,-1))

in segment BP k').

some k, then we must

k' > k. Then since

ence b = piece,(j,1)

n PF. Moreover, c =

bin with index -< J-k+

BP. Thus piecePE(b)

Lemma 3.10 for

.1.

> k,

by

have

(j ,h)

was

PF.

the possibilities, so Claim 3.12.5 is proven.This exhausts

SECTION 3.3 - Page 146

To complete the upper bound proof, suppose PI , ..., P%+J

any sequence of packings involved in the generation of an

S-packing of L. By Lemma 3.6

holds for all i, 1 j i (n = I

Let il = MlN rankL(x): si

no such pieces the upper bound

Now note that for all BINj in

Domain(piecePF), piece 0p(j,h)

for Pi for all i < i1, since b

rank < il goes in position pie

by capacity map property (3) C

The induction for il < i

the induction for the upper bo

Claims 3.12.4 and 3.12.5 are i

3.9.4. Thus (P3.5) holds for

bound follows

all we need do is show that (P3.5)

PIECES(L)I.

ze(x) (1/(m+1)I. (if there are

holds trivially by Lemma 3.11.)

segment BP[m] and (j,h) E

= PiecepF(j,h). Thus (P3.5) holds

y Lemma 3.11 each piece x with

ce (x) under packing rule S, and

AP(piece 3P(x)) . size(x).

-. n now proceeds precisely as did

und proof of Theorem 3.9, since

dentical to Claims 3.9.3 and

all i, 1 K i -< n, and the upper

via Lemma 3.6. 0

We know of no examples of lists which realize the upper

bound of Theorem 3.12. We conjecture that that the actual upper

bound is FF(L) + 1 for m < 3, and FF(L) + 2 for m > 4. To prove

such a strong result, one must construct a much more compact

base packing than the one constructed in the Theorem 3.12 upper

bound proof, but this would seem possible granted all the open

spaces in the one we did construct. In fact the construction is

SECTION 3.3 - Page 147

easy; proving that the base packing constructed has the proper

number of bins is the hard part, and we have yet to verify all

the details. Fortunately, in applications of Theorem 3.12 we

are only interested in the fact that S(L) can only exceed FF(L)

by a constant number of bins independent of the value of L*, and

so we do not need to have the best possible bound.

However, as it turns out, in our applications the lists L

with which we shall be dealing all have Range(sizeL) 6

(1/(m+2),1/1ml for some m > 2, and for such restricted lists we

do have an easy improvement on Theorem 3.12:

COROLLARY 3.12.1. If L is a list in decreasing order with

Range(sizeL) S (1/(m+2),1/m) for m > 2, and S E AF, then

FF(L) < S(L) < FF(L) + 1.

Proof. If L is as hypothesized, the base packing BP

constructed for it in the proof of Theorem 3.12 will have BP~k)

vacuous for all k > m+2, and the only "new" bin that can be

non-empty is BINjC,,,3 . Thus #BP (#PF + 1 = FF(L) + 1. Since

the remainder of the proof shows that S(L) < #BP, the result

follows. 0

SECTION 3.3 - Page 148

A second corollary shows that the AAF algorithms still

maintain a slight advantage over the worst of the AF algorithms:

Corollary 3.12.1. If L is a list in decreasing order with

Range(sizeL) 5 (1/(2m+2), 1/r] for m L 1, and S E AAF, then S(L)

= FF(L).

Proof. All that is needed is a slight modification (whose

details we omit) on the lower bound proof for Theorem 3.12

(actually Theorem 3.9) to show that it will work even if FF is

replaced by an arbitrary AAF algorithm. Thus we have for St

AAF and S' E AF, S(L) < S'(L). Setting S' = FF gives the

desired result. 9

SECTION 3.4 - Page 149

SECTION 3.4. Results for FF, BF, and Less Restricted Lists

The near-equality concluded in Theorems 3.9 and 3.12 need

not hold if the pieces in L are not restricted to the required

range. However, there is still no evidence of the superiority

or inferiority of any particular AFD algorithm. For instance,

recall that in a sense WORST FIT was the worst AF algorithm,

considerably worse than FF. However, WORST FIT DECREASING seems

to be on equal footing with FFD. For every list we have tried

we have found that

8/9 < FFD(L)/WFD(L) . 9/8,

and both the bounds can be attained, as seen in Figures 3.8 and

3.9. Note that in these examples we still have Range(sizel)S

[1/5,1). In (Gal) Graham shows that for such lists FFD(L) =

BFD(L). Using Lemma 3.6 we can prove both this result and an

extension, mainly that if Range(sizeL) G [1/6,1), BFD(L) <

FFD(L).

First we prove a fact analagous to Lemma 3.11:

SECTION 3.4 - Page 150

WFD-PACKING

WFD(L) =

4 c

2.C

4N Bias

FIGURE 3.8.

FFD-PACK

FFD(L

8N

49

FFD-PACK

FFD(L

44

Lists L with FFD(L)/WFD(L)

ING

.3

FIGURE 3.9.

8N

--

WFD-PACKI

WFD(L)

3

Lists L with FFD(L)/WFD(L) = 8/9.

I NG

) = 9N

4N

e

N

= 9/8.

= 9N

4N

SECTION 3.4 - Page 151

LEMMA 3.13. Suppose L is in decreasing order and

Range(sizeL) 5 (1/3,1). Then FF and BF yield identical

packings.

Proof. Under the hypothesis, L is made

and B-pieces, as defined in Section 3.3. By

A-pieces of L go in the same positions under

Suppose all the pieces in L with rank (rank

positions under both rules, and let P be the

these pieces. See Figure 3.10. Let BINj be

A A

13

13 B

up entirely of A-

Lemma 3.11, all the

both FF and BF.

(b) go in the same

mutual packing of

the bin that the FF

70

FIGURE 3.10. Mutual Packing P

SECTION 3.4 - Page 152

rule would choose for b

not have fit in any bin

place b in BIN' also.

non-empty BIN j with j'

have level exceeding 2/

2.2.1 contain one piece

piece(j,1), hence have

since b will not fit in

again the BF as well as

contain

possibi l

and FF.

If BIN) is empty in P, then b could

to the left, and so BF will have to

f BIN' contains one piece in P, then all

> j either contain two pieces and hence

and no room for b, or by Corollary

of size no larger than that of

gap at least as large as BINJ. Thus

any bin to the left of BINJ, BINj is

the FF. Since BINS itself cannot

two pieces and still have room for b, this exhausts all

ities, so b will be assigned to the same bin by both BF

The Lemma follows by induction. 0

We shall first show how, with the aid of Lemma 3.13, to

adapt our by now standard method to the proof of Graham's

result, by giving the proof of the half of the result that

cannot be improved upon, and follow with our improvement on the

other half.

THEOREM 3.14. If L is a list in decreasing order with

Range(sizeL) C [1/5,1], then FF(L) (BF(L).

SECTION 3.4 - Page 153

Proof. Let our base packing BP be the BF-packing of L, so

that #BP = BF(L), and define CAP(j,h) = size(piecebf(jh)) for

(j,h) C Domain(piece3 p), 0 otherwise. By Lemma 3.6 we must show

that property (P3.5) holds for all P , 1 i i . n = |PIECES(L)j,

where the P(are the packings involved in the generation of the

FF-packing.

Let il = MIN TrankL(x): size(x) . 1/31 (if there are no such

pieces the Theorem is immediate via Lemma 3.13). By Lemma 3.13,

(P3.5) will hold for all P', 1 (i < i1.

CLAIM 3.14.1. If (j,h), (j',h') C EMPTYPOS(Pi I), (j,h)6

NONTOP(BP), (j',h') f- Domain(piece g), and (j,h) < (j',h'),

then CAP(j,h) > CAP(j',h').

Proof of Claim. If j = j' the result follows from packing

property (3). Suppose j < j' and the Claim fails. Let b =

piece p(j,h), b' = pieceep(j',h'). Then we have by definition

of CAP that size(b') > size(b) and hence rank(b') < rank(b).

And note that neither piece is an A- or B-piece since their

positions are empty in the packing P i of all A- and B-pieces.

Now let bl = piece s(j',1) and c = piece p(j,h+1). We know

that the latter exists because (j,h) f NONTOP(BP). At this

point we are not sure whether the former is distinct from b',

but by packing property (3) and our hypothesis we know rank(bl)

SECTION 3.4 - Page 154

< rank(b') < rank(

size(b) + size(c)

distinct from b'.

Since j < j',

with two B-pieces.

both not A- or B-p

is too much for th

BIN is an A-bin.

contain more than

& * a

b)

I

< rank(c).

2/5, and bl

Thus by Lemma 1.2,

is a B- or A-piece,

size(bl) >

and hence

this means that BIN* is an A-bin or a B-bin

It cannot be the latter since b and c are

ieces, and have total size at least 2/5 which

e gap of less than 1/3 above two B-pieces. So

Let a be its A-piece. Since no A-bin can

two additional pieces of size 2 1/5, we thus

C

b

BINj
0 a a

1 ?:7
. . .

BINjy

FIGURE 3.11

have h = 2. See Figure 3.11. Moreover, since both b and c slo

fit, we must have size(a) < 3/5.

Consider piece (j',2) = b2, which again may or may not be

62

SECTION 3.4 - Page 155

b', but must have rank(b2) _ rank(b'). When b2 was assigned by

BF, neither b nor c had been assigned, and so gapp(j) = 1 -

size(a) I 1 - size(bl) = gapp(j'). Thus the only way BINj/

could have been chosen by BF was if b2 did not fit in BIN', and

so size(b2) > 1 - size(a) > 2/5.

But then size(bl) + size(b2) > 4/5 and there is no room

left in BIN for b', a contradiction. So the Claim did not

fai-1.0

We can now proceed exactly as in the lower bound proof for

Theorem 3.9, with Claim 3.14.1 substituting for (P3.9), and show

that (P3.5) holds for il < i _. n. Theorem 3.14 follows via Lemma

3.6. 0

THEOREM 3.15. If L is a list in decreasing order with

Range(sizeL) C (1/6,1), then BF(L) j FF(L).

Proof. Let BP be the FF-packing of L, so that #BP = FF(L),

and define CAP in the usual way. If there are no pieces in L

other than A- or B-pieces we are done by Lemma 3.13, so assume

there are such pieces and let il = MINirankL(x): size(x) . 1/3}1.

Let P,, ... , P, 1 be the sequence of packings involved in the

generation of the BF-packing of L, where n = IPIECE(L)I. By

Lemma 3.13, property (P3.5) holds for all Pg, 1 :. i < iil.

SECTION 3.4 - Page 156

CLAIM 3.15.1

NONTOP(BP), (j',h

CAP(j,h) > CAP(j'

. If (j,h), (j',h') E EMPTYPOS(P I), (j,h)

') C Domain(pieceBP), and (j,h) .. (j',h'), then

.h').

Proof of. Claim 315.,1. If j = j' the Claim follows from

packing property (3). Suppose j < j' and the Claim fails.

Letting b = piecep(j,h) and b' = pieceDP(j',h'), we then have

size(b') > size(b) and hence rank(b') < rank(b). Let c =

pieceb(j,h+1) (we know such a piece exists because (j,h)

NONTOP(BP)). See Figure 3.12.

9 0 *

W////////
C

b

B1Nj
i . 0 * * .

FIGURE 3.12

SECTION 3.4 - Page 157

When b' was assigned we must have had gapp(j) . size(b) +

size(c) >_ 2/6 = 1/3, so the fact that b' went to the right to

BIN" under FF means that size(b') > 1/3. But this means b' is

an A- or B-piece, which is impossible since its position is

empty in Pi , the packing of all A- and B-pieces. So the Claim

in fact could not have failed. j

We now can proceed with the induction on property (P3.5).

Suppose (P3.5) holds for some i, il < i < n. Then as usual by

Lemmas 3.4 and 3.5, there is an a.f. fi from Lj to Pi obeying

(P3.4), and the only way that (P3.5) can be violated for P,+, is

if the piece b with rank 1 in L goes into a NONTOP(BP) position

(jl,hl) in P with CAP(jl,hl) < size(b). Let (j',h') = f((b).

There are two cases:

Case- 1.

unfilled in Pi

for I we have

noqt. violated.

(j1,hl) < (j',h

and hence PA ,

size(b) _. CAP(j

'). Then since both positions are

Claim 3.15.1 applies and by (P3.4)

',h') < CAP(jlhl), so (P3.5) is

Case-2. (jl,hl) > (j',.h').

we must have jl > j', and by a.f.

in BIN-'. The fact that it went

means that gapp,(j1) < gapp (j').

Then by our standard argument

property (3), b would have fit

to the right to BINgI under BF

SECTION 3.4 - Page 158

We cannot have hl = 1 for then we would have gapp.(jl)

which is the largest possible gap. We also cannot have hl

since in that case gapp;(jl) = 1 - size(piecep,(jl,1)) L 1

size(piecep,(j', 1)) L gapp;(j'), by Lemma 1.2. Thus hl > 3

BIN 3 i must already contain at least two pieces in Pi. See

Figure 3.13.

~8~p(Y)

0 0 9 0 0 *

= 1,

= 2,

and

~ I.3

0 * a

Bly

FIGURE 3.13

If (jlhl) C NONTOP(BP), then (jl,h) for

must also be in NONTOP, and so must contain in

larger than their capacities by (P3.5) for Pi.

the sum of the capacities of the unfilled posi

map property (3). Since (jl,hl) E. NONTOP and

there must be at least two such. Thus gapp-(j

all 1 (h < hl

Pj pieces no

Thus gapp;(jl) >

tions, by capacity

is unfilled in Pi,

1) > 1/3.

SECTION 3.4 - Page 159

Furthermore, if the bottom two pieces in BINi, were A- or

B-pieces, the bin could not have so large a gap. Thus b2 =

piecep (j,2) must have size(b2) j 1/3. Since b2 was placed by

the FF rule in BINjj to the right of BIN3' , this means we must

have gapp,(j') < 1/3.

But now we have a contradiction, for we have

gapp.(j') < 1/3 gap .(j1),

and so b, which would have fit in BINy , would violate the BF

rule if it were assigned to BINg . So this case is impossible

if (jl,hl) E NONTOP(BP), no matter what the size of b.

Hence (P3.5) holds for P , and by induction for all i, il

< i < n. Since we already knew it held for 1 < i i 11, the

theorem follows via Lemma 3.6. a

Theorems 3.14 and 3.15 are the best results possible as

shown by the examples given in Figures 3.14 and 3.15 (from

[Gal]), the first giving lists L with Range(sizel) G (1/5-e,1)

and FFD(L) = (11/10) BFD(L), the second giving lists L with

Range(sizeL) 5 [1/6 -(,1) and BFD(L) = (10/9).FFD(L). We shall

have an important application of Theorem 3.15 in Chapter 5.

SECTION 3.4 - Page 160

BFD-PACKING FFD-PACKING

BFD(L) = 1ON

.

42MBI

SN

FFD(L) = 11N

StA

FIGURE 3.14. Lists L for which FFD(L)/BFD(L) =

FFD-PACKING BFD-PACKING

FFD(L) = 9N

2

BFD(L) = 1ON

-'m
(L

2.
3 1 i;-

BFD(L)/FFD(L) = 10/9.

'N

11/10.

Lists L for whichFIGURE 3.15.

SECTION 3.4 - Page 161

One minor difference between our results about FF and BF in

this section and those about FF and an arbitrary S E AF in the

last is the type of interval to which piece sizes are

restricted: half open for the latter, and closed for the former

- (1/4,1) vs [1/5,1) for instance. As a matter of fact, one may

replace the "(11 by a "I" in both Theorems 3.9 and 3.12. However

the details are slightly messy and the extension unnecessary for

our later applications, so we settled for the weaker result.

SECTION 4.1 - Page 162

CHAPTER 4. WORST CASE BEHAVIOR OF AFD ALGORITHMS

SECTION 4.1 Lower Bounds

The previous chapter was devoted to comparisons between the

packings that various AF algorithms might generate when applied

to a given decreasing list. In this and the next chapter we

return to our main type of analysis, comparing the packings the

algorithms generate with optimal packings. Our goal is to find

the values of RCSD,t] for 0 < t < 1 and S C AF, as we have

already done in Chapter 1 for R(S,t].

For all t C (0,1), the best lower bounds on worst case

behavior known are given by examples which yield the same

packings under all S f AF. These examples are much less

involved than the ones we encountered in the on-line situation,

and can be presented without much further explanation.

Figure 4.1 shows decreasing lists L with arbitrarily large

L* such that if S E AF, S(L)/L* = 11/9. This example originally

appeared in (Gal). Note that the value is considerably lower

than the 17/10 (or worse for S £ AF - AAF) encountered in the

on-line case.

When we restrict ourselves to decreasing lists with

Range(size) C (0,t] for 0 < t i 1/2, we can exhibit lists for

which

SECTION 4.1 - Page 163

OPTIMAL PACKING

L*= 9N

(* (4

(0 INSs

SD-PACKING

SD(L) = lN

f 24 ,I.

3NJ

FIGURE 4,1. Lists L for which SD(L)/L* = 11/9, for all SE AF.

SECTION 4.1 - Page 164

S(L) m +2m-1 m+3 2

L* m(m+1) m+2 m(m+1)(m+2)

where m = L1/tj, again a distinct improvement over the on-line

case. See Figure 4.2.

For m = 2,3,4,5,6, these numbers are 7/6, 7/6, 23/20,

34/30, and 47/42. We had originally conjectured that these were

the actual values of R[SD,t), until in the course of trying to

prove this bound for t = 1/2, we found the example shown in

Figure 4.3, for which, although no piece exceeds even 1/3 in

size, SD(L)/L* = 71/60 > 7/6.

We can combine the information given in these figures into

the following:

THEOREM 4.1: If S E AF, then

R(SD,t] > 11/9, for t > 1/2,

> 71/60, for 8/29 < t (1/2,

> 7/6, for 1/4 < t < 8/29,

m+3 2
_---- - ----------- , for m = L1/ti 1 4.

m+2 m(m+1)(m+2)

OPTIMAL PACKING
L* = R(-m+i)

SD- PACKNG
) = M-v+ 7zm -1I

GAP=

W//////
er +-e

.- L.,

nm(ti) Bus

A

LA

GFrp= (yn 4-)e

Nm

FIGURE 4.2. Lists L with Range(sizeL)C (O,t), wt Li t),.
SD(L) m 2 + 2m - 1

for which ------ =------------ for all SFEAF.

L* m(m+1)

OPTIMAL PAcKNG
L* = 6o0N

S
GAP =,3r

+G
zq,

-

2-0 N

FIGURE 4.3. Lists L with Range(size) 5

for which SD(L)/L* = 71/60,

for all SCAF.

5D - PAC KING

CAPC

3ON

8
(0,-- +4,

29

GP= 2986

SECTION 4.2 - Page 167

SECTION 4.2. Weak Upper Bounds for all S f AF

We now turn to the problem of obtaining upper bounds on the

worst case ratios. We conjecture that the the upper bounds are

in fact the lower bounds given above, and that, unlike the

on-line case, the results hold for all S F AF, not just S E AAF.

This is in part suggested by our results from Chapter 3, which

showed how use of the DECREASING rule to pre-order the list has

an equalizing effect on the AF algorithms. Unfortunately, we

have only been able to prove that the upper bound equals the

lower for certain particular algorithms, such as FIRST FIT, and

for certain ranges of t. These proofs will be presented later

on in Chapter 5. In the current chapter we will prove that, for

all t, 0 < t < 1, upper bounds which are very close to the above

lower bounds do hold for all AF algorithms.

First we shall prove some very useful Lemmas about packings

of decreasing lists by AF algorithms, which will have

applications in both this and the next chapter. The first

originally appeared in [Gal]:

SECTION 4.2 - Page 168

LEMMA 4.2. Suppose S E AF, 1 < r < 2, and K > 1. Then if

there exists a decreasing list L with Range(sizeL) £ (O,t] and

S(L) > rL* + K, there exists a decreasing list L' with S(L') >

rL* + K and Range(size') S ((r-1)/r,t], and moreover, such a

list can be obtained from L by deleting all pieces of size (

(r-1)/r.

Proof.

Range(sizeg'

Let PS be an

two segments

BINs(L . Se

froni L2, the

2.1, for all

L* > W(L) >

contrary to

from L1, so

Divide L into two sublists L = L1*L2, where

) !- ((r-1)/1,t] and Range(sizet2) C (0,(r-1)/r).

S-packing of L using S(L) bins, and divide it i

, PSI the set of the first S(L)-1 bins, and PS2,

e Figure 4.4. If the bottom piece in BIN is

n size(piece P(S(L),l)) . (r-1)/r, and so by Lem

j < S(L), levelPS(j) > 1 - [(r-1)/r] = 1/r. Th

w(PS1) > (1/r)(S(L)-1) and so S(L) < rL* + 1,

hypothesis. Thus the bottom piece in BINSLL) is

S(L1) = S(L) and L' = Li is our desired list. r

nto

ma

us

LEMMA 4.3. Suppose S

list with Range(sizeL2) G;

S(L1) < L* + k ===> S(

E AF, and L

(O,1/n] for n

L) ([(n+1)/n]

= Lie

> 1.

L* +

L2 is a decreasing

Then

(k+1).

II

SECTION 4.2 - Page 169

Psi PS2.

FIGURE 4.2. Diagram for Lemma 4.2.

Proof. Let PS be an S-packing of L using S(L) bins.

Divide it into three segments as shown in Figure 4.5. PS1 is

the set those BIN3 with j j MIN(L*,S(L)-1 , PS2 those BINj, L*

< j MINL*+k,S(L)-11, PS3 is those BIN with L*+k < j

S(L)-1, and PS4 is BIN(L)

If PS3 is vacuous we are done, for we would have S(L) =

#PS1 + #PS2 + #PS4 = L* + k + 1. So we may assume PS3, and

hence PS2, is not vacuous, and hence has #PS3 = S(L) - L* - k -

1. Let d = max gapPS(j): BINj in PS11. Thus w(PS1) >

(1-d)(#PS1) = (1-d)L*. Since S(L1) < L* + k, no bottom piece in

any bin in PS3 can be from L1. Thus by Lemma 3.6, each bin in

PS3 must contain at least n pieces of size > d, and so w(PS3) >

PS3

>~ >d.

L*tk+ I SC)-l

FIGURE 4.5. Diagram for Lemma 4.3.

PSI
tA

4£'

PS2

BII~~
. 9 9 0 6 *

.

SCL)

PS4

L +k

SECTION 4.2 - Page 171

(nd)(#PS3) = (nd)(S(L)-L*-k-1). We thus conclude

L* > W(L) > w(PS1) + w(PS2)

> (1-d)L* + (nd)(S(L)-L*-k-1)

> L* - (n+1)(d)L* + (nd)(S(L)-k-1)

and so S(L) < ((n+1)/n]L* + (k+1).

Lemmas 4.2 and 4.3 allow us to restrict our attention to

lists all of whose pieces are bigger than a given constant -

just the type of lists to which our results of Chapter 3 apply.

We will thus be able to use those results to show that an upper

bound on the worst case behavior of one algorithm extends to an

upper bound for another. Thus, in fact, all the major work in

this section will concern the FF algorithm, with the results

being extended to arbitrary S E AF via Theorems 3.9 and 3.12.

The next two lemmas are about FF and are of technical

importance in both this and the next chapter. First recall our

definitions of A- and B-pieces and A- and B-bins in Section 3.3.

An A-piece has size in the range (1/2,1), and a B-piece in

(1/3,1/2), and an A-bin is a bin whose bottom piece is an

A-piece, similarly for B-bin. We then have:

SECTION 4.2 - Page 172

LEMMA 4.4. Suppose L is a list in decreasing order and PF

is the FF-packing of L. If piece pF(j,1) is an A-piece a, piece

b is in a bin to the right of BIN 3 in PF, and size(a) + size(b)

_ 1, then there is a b' = piece P(j,2) with rank(b') < rank(b)

and hence size(b') 2 size(b).

Proof. When b was assigned by FF, it went to the right of

BIN 3 . Since it would have fit in BINj had that bin contained

only piece a at the time, the FF rule would have been violated

unless position (j,2) were already filled by some piece b' =

PiecePF(j, 2). But then we must have rank(b') < rank(b).

LEMMA

Range(size

Proof

FF-packing

Let

4.5. Suppose L is a list in decreasi

L) ! (1/3,1]. Then FFCL) = L*.

ng order with

Let P* be an optimal packing of L, and PF

Note that the only pieces in L are A- and

the

B-p i eces.

B-PI ECES(L):

B-PIECES(L):

in an A-bin

in an A-bin

= b 6

= bC

in PF3,

in P*3,

.

.

SECTION 4.2 - Page 173

and label the elements of Y* bI, b2, ..., b

increasing rank. For each b let BIN 1(5) b

containing it in P*, and a the A-piece in

A-bin can contain more than one B-piece, th

are all distinct.

Now define sets B(j) as follows: B(O)

k in order of

e the A-bin

BIN u) . Since

e 1(j), 1 < j <

= 0, and for 1 j j <

B(j) = Tb P YF: rank(b) . rank(b)I .

Note that for 0 (j < k,

Lemma using an induction

B(j) =

on the

B(j+1). We shall prove the

following hypothesis:

(H) IB(j) I j .

The hypo

Suppose

the firs

j. Thus

A-bins i

rank < r

the othe

rank(b)

IB(j-1)I

thesis holds for

it holds for j-1

t j-1 pieces in

if bj 4 YF and

n PF, by Lemma 4

ank(bj) for all

r hand, if be

which is in B(j

+ 1 j.

j = 0, since IB(0)I = 0 by definition.

. Now since b is no larger than any of

Y*, size(bj) + size(a) j 1 for 1 . i <

hence in a B-bin to the right of all

.4, piecep(I(i), 2) is a B-piece with

i, 1 i < . j, and hence IB(j)I I j. On

YF, then b is a B-piece wi th rank <

) but not in B(j-1), so IB(j)I 1

no

k,.

SECTION 4.2 - Page 174

Thus by induction (H) holds for j = k, and so |YFI > IY*I,

and at least as many of the B-pieces are in A-bins in PF as are

in A-bins in P*. Thus there are no more B-pieces in B-bins in

PF than there are in P*. Since under FF these are packed 2 to a

bin by Lemma 3.7, and this is the most efficient way possible,

we thus conclude that PF has no more B-bins than P*. And since

both packings have the same number of A-bins, we can only

conclude that FF(L) = #PF < #P* = L*. The lemma follows. I

We are now prepared to prove the major result of this

chapter, that if S E AF, R(SD] . 5/4, an upper bound only

slightly bigger than the lower bound of 11/9 given in Theorem

4.1. The following two lemmas use Lemmas 4.2 and 4.3 and

Theorem 3.9 to reduce the problem to one about FF:

LEMMA 4.6. Suppose L = L1L2*L3 is a list in decreasing

order with Range(sizeU1) G (1/4,1], Range(size) 9 (1/5,1/4],

and Range(sizela) 9 (0,1/5], and that S - AF. If FF(L1) (

(LleL2)*, then S(L) (5/4)L* + 2.

Proof. By Theorem 3.9, S(L1) ,. FF(L1) + 1 < (Ll.L2)* + 1.

Thus by Lemma 4.3, since Range(sizeL2.L3) S (0,1/41, S(L) <

(5/4)L* + 2. 9

SECTION 4.2 - Page 175

LEMMA 4.7. Suppose L and S are as above. If

FF(L1) + FF(L2) j (5/4)L* + 2, then S(L) j (5/4)L* + 3.

Proof. By Lemma 4.2 it is sufficient to show that S(Ll*L2)

< (5/4)L* + 3. Let PS be an S-packing of Li L2 using S(Ll L2)

bins, and divide it into segments PSI and PS2 as shown in Figure

4.6. PSI is made up of the bins containing pieces from Li, and

PSI PS2.

FIGURE 4.6. S-PACKING PS of L.

PS2 the remaining non-empty bins.

By Theorem 3.9, #PS1 _ FF(L1) + 1. By Lemma 3.7, each of

the bins of PS2 except possibly the last must contain 4 pieces

from L2. Since no packing of pieces with size 9 (1/5,1/4] can

be more efficient than that, we must have #PS2 < FF(L2). Thus

SECTION 4.2 - Page 176

S(L1e L2) = #PS1 + #PS2 < FF(L1) + FF(L2) + 1

. (5/4)L + 3.

In light of Lemmas 4.6 and 4.7, the desired upper bound

will follow from the next Theorem:

THEOREM 4.8. Suppose L = Lle

order with Range(sizeL1) S (1/4,1)

(1/5,1/4]. Then

FF(L1) > L* ===> FF(L1) +

L2 is a list in decreasing

and Range(sizeL) t

FF(L2) ((5/4)L* + 2.

Proof. The basic strategy of this proof is to show that if

FF(L1) > L*, then any optimal packing of L is too crowded with

pieces from Li for there to be very many pieces from L2 around.

So assume FF(L1) > L*, and let L = LA-LB.LC-LD, where

Range(size LA) G

Range(sizegLA) S

Range(sizeV) C

Range(sizeLD) &

(1/2,13,

(1/3,1/2)

(1/4,1/3)

(1/5,1/4)

PIECES(LA) =

PIECES(LB)

PIECES(LC)

PI ECES(LD)

A-PIECES(L),

= B-PIECES(L),

= C-PIECES(L),

= D-PIECES(L).

SECTION 4.2 - Page 177

Thus we have Li = LA*LB*LC, and L2 = LD. A piece from

X-PIECES(L) will be called an X-Diece, and a bin in a packing

whose bottom piece is an X-piece will be called an X-bin, for

each X 6 JA,BC,D3. Since each A-bin can contain at most one

A-piece a, we can identify it with that A-piece and call it the

a-bin. This will allow us to compare the contents of particular

a-bins between two different packings involving LA. A non-empty

bin other than an A-bin will sometimes be referred to as a

non-A-bin.

Now let P be the FF-packing of L1, and choose QMAX and Q so

that QMAX < #P, and Q is an ordered packing of Li with MAX j:

level (j) > 01 . QMAX, and such that if in P BIN is the a-bin

for a c A-PIECES, then BINj is also the a-bin in Q. There must

be such packings since by assumption Li* < L* < FF(L), and any

packing can have its bins rearranged so that its A-bins appear

as required. For instance (and this trick will be applied later

in the proof), we could get such a Q by taking an optimal

packing of L and removing all the D-pieces.

Now divide P into segments PA, PB, and PX, and Q into

segments QA and QB as follows (see Figure 4.7):

SECTION 4.2 - Page 178

PA PiD

IK
. * . 4 4 0

0 6
I

FIGURE 4.7. Packings P and Q of Li.

P .a

Qa
0 60

1A-Psesl I

OA

SECTION 4.2 - Page 179

PA = A-bins of P = fBINj: 1 < j _<,. IA-PIECES|),

PB = {BINJ: IA-PIECESI < j < QMAX 3,

PX = BINj: contp(j) A 0 and j > QMAX,

QA = A-bins of Q = IBIN : 1 i j I IA-PIECESII,

QB = JBINi: |A-PIECESI < j < QMAX .

Note that some of the bins in QB may be empty, since we can

have QMAX > #Q; but since #P > QMAX, segment PX is not vacuous.

Moreover, PX cannot contain any B-pieces, since if it did we

would have FF(LAeLB) > QMAX > L* > (LA.LB)*, in violation of

Lemma 4.5. Thus we have

CLAIM 4.8.1. A , cont(PX)E C-PIECES.

Now let 13= B-PIECES(L) U C-PIECES(L), and define the

following subsets of 13:

= 13 - cont(QA),

= 13 - cont(PA),

dL = x- 13 Acont(PA): the A-bin containing

x in P has an A-piece with size < 3/5, and

contains no element of 1 in Q3.

SECTION 4.2 - Page 180

Letting e = piecep(QMAX+1,1), we have size(e) < 1/3 < 2/5 by

Claim 4.8.1. Thus e would have fit as the second piece in any-

A-bin whose A-piece had size < 3/5. Consequently, by Lemma 4.4,

each such A-bin must contain a $-piece with rank < rank(e).

There can be no more than one by size constraints, so we have

CLAIM 4.8.2. If a a A-PIECES, size(a) < 3/5, and the a-bin

contains not-pieces in Q, then it contains exactly one element

of a in P.

We wish to show that the crowding of Q, due to the fact

that it uses fewer bins than B and that the A-bins which contain

elements of & in P contain no'$-pieces in Q, is all concentrated

in segment QB. To this end we shall define a 1-1 map f from

-P& to a.

The definition procedes as follows: We say that a piece x

points to a piece y if x = piece (J,2) and y = piecep(j,2) for

BIN5 an A-bin. A chain of distinct pieces is a sequence

<X I,,.,xK) such that for 1 (i < k, xi points to xi, . A loop

is a chain <x,,...,xy> in which xi points to xi. A maximal

chain is a chain which is not a loop and not a proper

subsequence of any other chain. If <x,,...,xk> is a maximal

chain, x, is its head, and xK is its tail.

For each x & -Q , define

SECTION 4.2 - Page 181

f(x) = tail of maximal chain headed by x.

CLAIM 4.8.3. f is a 1-1 map from 'Pod to(Q satisfying

(A) xg1 ===> size(f(x)) > size(x),

(B) xE6 ===> size(f(x)) L size(e).

Proof of Claim. If x is not pointed to by any piece, then

x must be the head of some maximal chain, even if the chain is

only <x>, which would occur if x itself did not point to

anything. Now if x frp, x is not in an A-bin in P, so cannot

be pointed to. Similarly, if y &0,, pieceQ(j,2) is not defined

for BIN, the A-bin containing y in P, and so y is not pointed

to. Thus f is well-defined. Since no piece can be pointed to

by more than one other piece, f is clearly 1-1.

That Range(f)S d) and properties (A) and (B) hold follow

from a simple induction. Let <xI,...,xg> be a maximal chain

headed by x1 sj-udL. Our induction hypothesis is

(H) If xef , size(xi) > size(x,).

If x, eQ , size(x.) > size(e).

SECTION 4.2 - Page 182

For i = 1, (H) holds trivially if xi-> , and

x1 eQ . Suppose it holds for x and x

pieceQ(j, 2) for BIN' the a-bin for some a e A

by Claim 4.8.2

Then xi =

-PIECES, so

size(x,)

SI ze (e)

ze(a)

ze(a)

size(xj)

size(x)

+ size(a)

+ size(a)

Since x, [e)

b = piecep(j

Hence xi poil

cannot point

is

2)

its

to

not in cont(PFA), by lemma 4.

with size(b) } size(x1) [size

to b. Since <xl,...,xk> is a

anything, so i < k, b = xo,

4 there is a piece

(b) > size(e)].

maximal chain, x

and (H) holds for

xi~4 .

Thus by induction xks(, and f(x1) = x. obeys (A) (B),

and Claim 4.8.3 is proved. f

From this point on we shall ignore any pieces in &-

Range(f). The bins of QB will be crowded enough without them.

In order to further emphasize this crowdedness, we shall use f

to show that QB must contain a number of "big" pieces. For the

moment let us return our attention to segment PB of P. Let

r = MAX j: BINj in PB and heightp(j) -23

BOT = Ipiecep(j,h): IA-PIECES(L)i < j . r, h < 21

- 5piece (r,2)3

1,

1].

SECTION 4.2 - Page 183

TOP = ipiecePj,3)

See Figure 4.8. Now

two pieces in the bin

by Lemma 3.7, each b

piece in a bin to the

rank(b) for all b C T

comparatively small.

: IA-PIECES(L)i < j < ri.

since the sums of the sizes of the bottom

s of PB must form a non-increasing sequence

& TOP would fit in gapP(r). Thus every

right of BINV in P must have rank <

OP, and so the pieces in TOP must all be

Now let

BIG = f(BOT),

SMALL = Iz c Range(f):

size(x) +

These two names will take

next two claims:

there exist x A

size(y) + size(z

on significance

y c BIG with

) th li .

in the light of the

CLAIM 4.8.4. BIG!9 B-PIECES(L).

Proof P-j Claim. If piece (r,1) were a C-piece, then by

packing property (3) so would be piecep(r,2) and we would have

levelP(r) < 2/3. Thus piece e would have fit in BIN, and could

not have gone on to BINQAX , contrary to the definition of e.

Thus pieceP(r,1) is a B-piece, and hence by Lemma 3.7, so are

all the other elements of BOT. The Claim follows by Claim

PB

t30-r

boT

77-W --

ITb5p

SO~T T301

1301T

tcol

Bc~T

Bw -

elements of BOT and TOP labeled.

0 0 0

BIN (h13IN *RA

FIGURE 4.8. P with

SECTION 4.2 - Page 185

4.8.3A. a

CLAIM 4.8.5. SMALL - f(TOP).

Proof _ff Claim. Let bl = pieceP(r,1), b2 = piecep(r, 2).

size(bl) < MINfsize(x): x e BIGI by Lemma 3.7 and Claim 4.8.3A,

and size(b2) K size(bl) by packing property (3). Therefore, if

x r SMALL, size(x) + size(bl) + size(b2) (1, and so

size(x) (1 - size(bl) - size(b2) = gapp(r).

Consider y = ft (x). There are four possibilities:

£ contP(j) for

e BOT U fb23,

- TOP.

some j > r,

If y a contp(j) for j > r, then by the FF rule, size(y) >

gapp(r) > size(x), contradicting Claim 4.8.3A, so y f W(x).

[As a special case note that size(e) > gapp(r).]

If yt&L , by Claim 4.8.3B, size(x) = size(f(y)) > size(e) >

gapp(r), so y $ f (x).

If y e BOT U 1b2j, by Lemma 3.7 size(y) > size(e), so again

(1)

(2)

(3)

(4)

SECTION 4.2 - Page 186

by Claim 4.8.3A, y

Thus y = f-I (x

f (x).

===> y FE TOP, and the Claim is

We now do some explicit counting of the pieces in Range(f).

heightp(j)

heightP(j)

CLAIM 4.8.6.

(A) p2 + p3 = #QB,

(B) IRange(f)| = 2

(C) IBIGI = 2(p2 +

(D) JRange(f) - BIGI

Proof of Claim.

contain more than 3

Lemma 3.7 says that

pieces. Since #PB =

4.8.3, (C) follows f

follows from (B) and

(p2) +

ITOPI

= 3

3(p3)

) - 1,

(

+ Icont(PX)| + 16l,

p3) - 21TOPI

+ Icont(PX) I

+ 1

+ iaj.

Range(size L)i (1/4,11, so no bin can

pieces in P. BINQ"AX+ is not empty, so

every bin in PB must contain at least two

#QB, (A) holds. (B) follows from Claim

rom the definitions of BIG and TOP, and (D)

(C). a

Let

proven.

p2

p3

=

=

BIN'

BIj

PB and

PB and

= 211,

= 33 1.

SECTION 4.2 - Page 187

We now return to the packing Q. Even though crowded, some

of its bins may still have room left over for one or more

D-pieces. Let DMAX be the maximum number of pieces of size >

1/5 that could be placed in the gaps in the first QMAX bins of

Q. To compute an upper bound on DMAX, let us classify the bins

of Q as to their contents. Let

IA-PIECES I,

IA-PIECESI,

IA-PIECESI,

level (j)

level (j)

levelo(j)

4/51.,

(3/ 5,4/5)1,

3/5 I

B(ik) = BINJ in QB:

lcont (j) (1 BiGI =k,

Icont (j) (\ Range(f)i

In addition, let a(i) = IA(i)I, b(i,k) = IB(i,k)l. Then we have

8.7.
3

2: [a(1

+

i),

3,k)

)+b(

2 [a

3 [b

+ 'g -b(2,k)

3,0)+b(2,2),

2)+b(2,1)+b(

1,1)+b<1,0)

+ 4 b(1,k) + b(0,0).

0)o

4 [b(0, 0).

A(1)

A(2)

A(3)

= BINj
= B I Ni

= BIN;

= ~BIN

C

(A)

(B)

(C)

LAIM 4.

#QA

#QB

DMAX

Proof of Claim. (A) is immediate.

contain more than 3 pieces from L1, the

non-zero is if 0 < k < i (3. b(3,3) =

would have a total size exceeding 3(1/3)

the right hand side of (B) contains all

(B) holds.

(C) follows due to size constraints

have room for k D-pieces, it must have a

k/5. Let us consider the maximum possib

of bins.

A(1): gap 1 1/5,

SECTION 4.2 - Page 188

Since no bin can

only way b(i,k) can be

0 since three BIG-pieces

by Claim 4.8.5. Thus

non-zero b(i,k)'s and so

in order for a bin to

gap in Q of more than

le gaps for each class

at most 0 D-pieces.

5, at

2, at

- 2/3

- 1/3

- 3/4

- 2/3

- 1/3

- 2/4

- 1/3

- 1/4

most 1

most 2

- 1/4

- 2/4

= 1/4,

= 1/3,

- 1/4

= 1/2,

= 2/3,

= 3/4,

D-piece.

D-pieces.

= 1/12, at

= 1/6, at m

at most 1.

at most 1.

- 5/12, at

at most 2.

at most 3.

at most 3.

most 0.

ost 0.

most 2.

B(0,0): gap : 1, at most 4.

gap

gap

gap

gap

gap

gap

gap

gap

gap

gap

SECTION 4.2 - Page 189

(C) is simply a summary of this case analysis, since as argued

above the sets listed form a partition of the bins of QA and QB.

0

In order for the above bound on DMAX to have much meaning,

we must know something more about the values of the a(i)'s and

b(i,k)'s. To do this we shall use the information we got about

Range(f) in Claim 4.8.6. For convenience, let us use the

following shorthand notation:

B(3

B(2

B(1

=B(3,k),

= U b(2,k),

= (b(1,k),
keo

We are especially

containing a BIG-piece

proof of Claim 4.8.7,

for any D-pieces. We

To this end, let

b(3)

b(2)

b(1)

= IB(3)J,

= IB(2)J,

= IB(1)|.

interested in counting the 3-piece bins

, B(3,1) U B(3,2), for as we saw in the

these are the bins that do not have room

shall show that there are many of them.

IN = Ix BIG fcontQ(j): BINS e B(3) ,

SECTION 4.2 - Page 190

By obtaining a value for IINI, the number

of B(3), we can then get a lower bound on

bins containing BIG-pieces. An intuitive

the value of

Recall

the number o

and each of

BIG-pieces.

the number P

and hence tw

total contri

reason for a

of BIG-pieces

the number of

argument about

IINI goes as follows:

that PB was m

f BIG-pieces

the 2-piece b

Thus for eac

B contains, t

o additional

bution of 2(1

n increase in

ade up entirely o

in 3-piece bins i

ins (except for B

h piece that QB c

here must be an a

BIG-pieces in IN.

cont(PX)I + I&l).

the number of 3-

f

n

IN

on

dd

pi

2- and 3-piece

PB is simply 21

r) contains 2

tains in excess

itional 3-piece

This makes for

Another

ece bins

pos

in

bins,

TOP',

of

bin,

a

sible

QB is

that some bin which is not a

pieces. Such deficient bins

added to IN for each piece t

a bin which is not a 3-piece

an additional piece is added

deficient. Thus each of the

containing three pieces from

(2-k)]b(i,k) to lINJ. Let

3-piece bin contains fewer than 2

will thus cause two pieces to be

hey are deficient. And finally, if

bin does not contain 2 BIG-pieces,

to IN for each BIG-piece the bin is

classes B(i,k), i < 2, of bins not

Range(f) will contribute [2(2-i) +

EXTRA = 'k 2I([2(2-i)+(2-k)]b(i,k)

- 6b(0,0)+4b(1,0)+3b(1,1)+2b(2,O)+b(2,1).

bins

such

SECTION 4.2 - Page 191

The next two claims summarize these arguments and give more

formal proofs.

CLAIM 4.8.8. b(3) - p3 = jcont(PX)j

+ 2b(OO)

Proof of Claim. By claims 4.8.6A and 4.8.7B,

p2 + p3 = b(0,0) + b(1) + b(2) + b(3).

By Claim 4.8.6B and the definition of the b(i,k)'s,

b(1) + 2b(2) + 3b(3) = |range(f)I

= 2(p2) + 3(p3) + jcont(PX)I

Claim 4.8.8 follows from combining these two equations.

CLAIM 4.8.9. |iNt = 2C|cont(PX)|+ila+ITOPIJ) - 1 + EXTRA.

Proof of Claim. Let

IN' = ix [Range(f)-B IGJ

OUT' = Ix & Range(f)-BIGI

(IcontQ(j):

AOcontQ(j):

BINJ 6 B(3)3,

BIN* B(3)3.

+ iai

+ b(1).

+ aIl.

SECTION 4.2 - Page 192

As immediate consequences of

I INI + I IN' I

IIN'I + IOUT'I

lOUT' I

the definitions we have

= 3b(3),

= IRange(f)-BIGI,

= 2b(2,O) + b(2,1) + b(1,0)

Combining we get

I INI = 3b(3) + 2b(2,O) + b(2,1) + b(1,0) - IRange(f)-BIGI.

But by Claims 4.8.6B

IRange(f)-BIG I

and 4.8.8,

= 3(p3)

3b(3) - 3(p3) = 3[cont(PX)|

Claim 4.8.9 follows by

- 21TOPI + 1 + Icont(PXI

+ 1(1 + 2b(0,O) + b(1)J.

substitution.

We now can give a lower bound on the number of 3-piece bins

containing BIG-pieces:

CLAIM 4.8.10.

b(3,1) + b(3,2) L 2{|cont(PX)I+IdI

+ Ida,

+ ITOPI + EXTRA - 1.

SECTION 4.2 - Page 193

Proof. of Claim. By the definitions, we have IINI

b(3,1) + 2b(3,2).

b(3,1) + b(3,2)

But by Claim 4.8.5

Therefore,

= lINI - b(3,2).

and the definition of

b(3,2) < ISMALLI . ITOPI.

Using this

substitute

to substitute for b(3,2) and Claim 4.8.9

for IINI yields the desired result.

We are now ready to get a more meaningful bound on DMAX.

CLAIM 4.8.11. DMAX < QMAX - 2lcont(PX)|

Proof of Claim. By Claim 4.8.7 we

= #QA + #QB = b(3,2) + b(3,1)

+ 22 b(2,k)
IC 00

+ b(3,o0) + A a(i)
a iet

+ 9 b(1,k) + b(0,0).

to substitute for b(3,2)

SMALL,

+ 1.

QMAX

have

Using Claim 4.8.10 + b(3,1) we get

SECTION 4.2 - Page 194

QMAX ,> 2tcont(PX)| - 1 + ITOPI + iait + b(3,O)

+ a(i) + 3b(2,O) + 2b(2,1) + b(2,2)

+ 4b(1,1) + 5b(1,0) + 7b(OO).

> 2jcont(PX)l - 1

+ [a(1)+b(3,0)+b(2,2)) + 2ra(2)+b(2,1)+b(2, 0)]

+ 3[b(1,1)+b(1,0)]

since ial = a(2) by Claim 4.8.2.

yields QMAX > 2|cont(PX)I

+ 4[b(0,0)1,

But by Claim 4.8.7C,

- 1 + DMAX, and Claim 4.8.11

The next claim will

CLAIM 4.8.12.

complete the proof of Theorem 4.8:

FF(L1) + FF(L2) < (5/4)L* +

Proof of Claim. Suppose QMAX and Q were obtained as

Let P* be an optimal packing of L = Lla L2. Obtain Q

from P* by removing all the D-pieces (the pieces

QMAX = L* < #P. By the definition of DMAX and Claim 4.8.11, we

then have

this

fol lows.

foIl ows:

of L2). Set

SECTION 4.2 - Page 195

jPIECES(L2)1 (DMAX < L* - 2|cont(PX)I

Now since by Claim 4.8.1 all pieces in cont(PX) have size

in (1/4,1/3], and by definition Range(size) 5 (1/5,1/4),#

3.7 tells us that

[cont(PX)31#Px=

FPIECES(L2
FF(L2) =----------

4

Thus FF(L1)

Icont(PX) I
< ---------- +

3

L*-2|cont(PX) +1
< ---------------- +

+ FF(L2) = #PA + #PB + #PX + FF(L2)

= L* + #PX + FF(L2)

K (5/4)L* + 2 - Icont(PX)|/6 < (5/4)L*

and both Claim 4.8.12 and Theorem 4.8 are proven.

The immediate application of Theorem 4.8

claimed upper bound on R[SD):

is to prove our

+ 1.

Lemma

+ 2,

SECTION 4.2 - Page 196

THEOREM 4.9. If S C AF,

R [SD,

t r (0,1), then

t] 5/4.

Proof. Let L be an arbitrary list in decreasing order, and

divide it into segments L1L2*L3, where Range(sizeg) (1/4,1),

Range(sizeL2) S (1/5,1/4], and Range(sizej) 9 (0,1/51. If

FF(L1) < (L1*.L2)*, then by Lemma 4.6, S(L) (5/4)L* + 2. If

not, then by Theorem 4.8, FF(L1) + FF(L2) < (5/4)L* + 2, and so

by Lemma 4.7, S(L) < (5/4)L* + 3. Thus the latter inequality

holds in any case, and the Theorem follows via Lemma 3.1. 9

The bound given in Theorem 4.9 is slightly higher than our

best lower bound of 11/9, and even worse when compared to 7/6,

our best lower bound for t < 1/2. However, by a second

application of Theorem 4.8 we have the following result for more

restricted lists:

THEOREM 4.10. If S C AF, t e (1/3,1), then

RfSD,(1/4,t]) = 7/6.

Proof. For the lower bound, consider

Figure 4.2 with m = 2 and 0 < t < t - 1/3.

arbitrarily large L*, and yet for all)

the lists given in

These lists can have

SECTION 4.2 - Page 197

FF(L)/L* = 2z +2-2-1)/(2 +2) = 7/6.

For the upper bound, by Lemma 3.1 all we need prove is that

S(L) ((7/6)L* + 2 for all decreasing lists L with Range(sizeL)

5 (1/4,1). So let L be such a list. Since by Theorem 3.9 S(L)

< FF(L) + 1, it is enough to prove that FF(L) < (7/6)L* + 1. If

SS(L) < L* we are done, so assume FF(L) > L*.

Now, suppose that in the Theorem 4.8 construction we took

Li = L, QMAX = L*, and Q = an optimal packing of L. Then Claim

4.8.11 tells us that

Icont(PX)H < (L* + 1)/2.

It then follows from Claim 4.8.1 and Lemma 3.7 that

FF(L) = L* + #PX . L* + Ficont(PX)|/31

L* + ri(L*+1)/21/3l

(7/6)L* + 1.

Now the major complication in the proof of Theorem 4.8 was

the presence of the A-pieces in L and hence A-bins in P and Q.

It was due to them that we had to define f and worry about the

SECTION 4.2 - Page 198

set L1. If there had been no A-pieces, and hence Range(sizel) 5

(1/5,1/21, we could have simply used x in place of f(x) in our

arguments, since PA and QA would be vacuous and hence f=f =d.
We now generalize this simpler situation and derive improved

upper bounds on R[SDt] for all t 4 (0,1/23.

First we need analogues of Lemmas 4.6 and 4.7. We omit the

proofs except to note that they are analagous to those of the

lemmas they imitate, with the reference to Theorem 3.9 replaced

by a reference to Corollary 3.12.1:

LEMMA 4.11. Suppose L = Ll'L2*L3 is a list in

order with Range(size) ! (1/(m+2),1/m), Range(size

(1/(m+3),1/(m+2)J, and Range(sizegj) ! (0,1/(m+3)],

If FF(L1) < (Lie L2)*, then S(L) 1. [(m+3)/(m+2)]L* +

LEMMA 4.12. Suppose L and S are as above. If

FF(L1) + FF(L2) ({(m+3)/(rm+2)]L* + 2, then S(L) <

1(m+3)/(m+2)]L* + 3.

Continuing, we next have an analogue of Theorem

THEOREM 4.13. Suppose L = L1*L2 is

order with Range(sizeg) S (1/(m+2),1/mJ

(1/(m+3)). Then

decreasing

L2) !;

and S 6 AF.

2.

4.8:

a list in decreasing

and Range(size) .-

SECTION 4.2 - Page 199

FF(L1) > L* ===> FF(L1) + FF(L2) j C(m+3)/(m+2)JL* + 2.

Proof. Our basic strategy is the same. Assume FF(L1)

L*, and let L = Lm] L~m+1) Ljm+2], where L~m+2) = L2, and

Range(sizegg) G (1/(m+1),1/m), Range(sizeLE+,)!G

(1/(m+2),1/(m+1)]. Let k-pieces(L) = PIECES(LCk]), m j k <

This is basically the notation used in the proof of Theorem

3.12.

Now let P be the FF-packing of L1, and choose QMAX and Q

that QMAX < #P, and Q is an ordered packing of Li with MAXFj:

levelQ(j) > 01 QMAX. By QB we shall mean the first QMAX bi

of Q, but note that some of these may well be empty. Divide

into segments PB and PX as follows:

= BINJ

= BI Nj

1 < j

QMAX

m+2.

so

ns

P

< QMAXI ,

< j (#P1.

CLAIM 4.13.1. 0Acont(PX) C (m+1)-PIECES.

Proof f.. Claim. cont(PX)

imply L* < QMAX < #P, contrary

an m-piece, then by Lemma 3.7 I

is impossible since no bin can

cannot be empty since that would

to hypothesis. If PX contained

PIECES(L1)j > m*QMAX > mL*, which

contain more than m m-pieces. j

SECTION 4.2 - Page 200

We now shall procede at a rather rapid rate when the claims

are simple analogues of those in Theorem 4.8, not repeating the

explanatory material or going into the details of the proofs.

However, in certain cases the more general nature of the claims

will require a different type of argument, and these we shall

present. To begin, let

r = MAX j: BIN in PB and heightP(j) = MI,

BIG = {piecep(j,h): 1 i j r, h J m1

- lpiecep(rh): h > 13,

TOP = 1piecep(j.m+1): 1 < j < r.,

SMALL = z F PIECES(L1): there exists X ! BIG with

IXI = m and size(x) + size(z) i1 ,

p[m] = |(j: BIN 5 in PB and height(j) = m3i,

p[m+1) = Ilj: BIN in PB and heightp(j) = m+13 .

CLAIM 4.13.2. BIG 6 m-PIECES(L).

CLAIM 4.13.3. SMALL Cr TOP.

SECTION 4.2 - Page 201

CLAIM 4.13.4.

(A) p[m] + p(m+1] =

(B) IPIECES(L1) =

(C) IBIGI = m(p[m]

(D) IPIECES(L1)-BIGI

QMAX.

m(p~m]) + (m+1)p~m+1]

+ ITOPI) - (m-1),

= (m+1)P[m+1) - m|T

+ Icon

+ Icont(PX)|,

P1 + (M-1)

t(PX)I.

Now partition the bins of QB as follows:

B(ik) = BIN in QB: heightQ(j) = i, and

tcontq(J) (BIGI =k),

letting b(i,k) = IB(ik)I, B(i) = 0 B(i,k), and b(

Let DMAX be the maximum number of pieces of size >

could be placed in the gaps of the first QMAX bins

CLAIM 4.13.5.

(A) QMAX =;

(B) DMAX <

i) = IB(i)I.

1/(m+3) that

of Q.

b(m+1,k) + b(i,k),

(m+2-i)b(i,k) + ejI. (m+1-i)b(i,k)3.
KIN +L- fL

Proof of Claim. (A)

m+1 BIG-pieces. For (B),

pieces of size > 1/(m+3),

is immediate since no bin can contain

since no bin can contain more than m+2

there is an easy upper bound on DMAX

O

SECTION 4.2 - Page 202

fA +1

of '-(m+2-i)b(i). However,

m-piece must have total size

1

m+ 3

since

f rom

m+1- i

would

1 (2m+ 4

m+1 (m+3)(m+1)

note that an (m+2)-piece and an

exceeding

2
> m+20

m+ 2

2m2 + 8m + 8 > 2m + 8m + 6. Thus a bin with i pieces

L1, m+2-i of which are BIG-pieces can only have room for

(m+3)-pieces, since if m+2-i such pieces were added, it

yield a level exceeding

i-(m+2-i)
+ ---------

m+2

2(m+2-i)
> --------

m+2

i-(m+2-i)
+ ---------

m+2

The result follows from this observation. 3

The next two claims are

4.8.8 and 4.8.9, proved and

way:

exact generalizations of Claims

intuitively explained in the same

CLAIM 4.13.6.

b(m+1) - pLm+1) = Icont(PX)I + 2.(m-i)bi).

m+2-i

m+3

m+2-i

m+1
= 1.

SECTION 4.2 - Page 203

Define IN = Tx * B

CLAIM 4.13.7.

BIN C B(m+1).

I INI = m(cont(PX)I

+ ~ Im
-- o KqIc

+ ITOPI) - (m-1))

(m-i)+(m-k)lb(i,k).

CLAI M 4.13.8.

[IINI - ITOPIJ
b(m+1,k) >

m-1

Proof o .Claim. By definition of

lINI = kb(m+1,k)

= (m-)2 b(m+1,k)

By Claim 4.13.3 and the d

+ b(m+i,m)

" 02.

015 (m-- k) b(m+1, k).

efinition of SMALL, b(m+1,m) (ITOPI.

The Claim follows.

CLAIM 4.13.9. DMAX < QMAX - [m/(m-1)]-Icont(PX)l

4.13.7, and 4.13.8,

I N,

+ i.

IG(Icontq(j):

Claims 4.13.5,Proof _qf_ Claim. By

SECTION 4.2 - Page 204

QMAX }_ b(m+1,0) + b(i,k)

mlcont(PX)| + (m-1)ITOPI - (m-1) +,L2 (m(m-i)+(m-k)]b(i,k)
(%0 WE*.

m-1

Hence, QMAX - jm/(m-1)]cont(PX)I + 1 >

m(m-i) + (m-k) + (m-1)
---------------------- b(i,k) + b(m+1,0),

m-1

The proof is thus reduced to comparing the coefficients of the

b(i,k)'s given above (the QMAX coefficients) with those given

for the upper bound on DMAX given in Claim 4.13.5B. There, the

coefficient of b(i,k) is

(m+2-i), if 0 j k (MINli,m+1-il,

(m+1-i), if MINli,rm+2-i' : k (i.

If i = m+i, then the only way the DMAX-coefficient of

b(i,k) can be non-zero is if k = 0, in which case it is 1, which

is the QMAX-coefficient.

If i < m+1, there are two cases:

Case 1. m+2-i < k _ i. In this case the numerator of the

QMAX coefficient is mn(m-i) + (m-k) + (m-1)

SECTION 4.2 - Page 205

> (m-1)((m-i) + (m-1) = (m-1)(m+1-i),

so that the QMAX coefficient exceeds m+1-i

Case 2. 0 < k < m+1-i.

= DMAX coefficient.

In this case the numerator is at

least m(m-i) + (m-(m+1-i))

= (m-1)(m+1-i)

= (m-1)(m+1-i)

+ (m-i) + (i-i)

+ m-1 = (m-1)(m+2-i),

so that the QMAX coefficient is at least as large as the DMAX

coefficient.

Since each of the b(i,k)'s consequently has at

large a QMAX coefficient as a DMAX coefficient, the Claim

fol lows.

The next Claim completes

CLAIM 4.13.10.

the proof of

FF(L1) + FF(L2)

Theorem 2.13:

. . [(m+3)/(m+2))L* + 2.

Proof of Claim. Suppose QMAX and Q were obtained as

follows: Let P* be an optimal

from P* by removing all

packing of

the (m+2)-pieces

= L1*L2. Obtain Q

(the pieces of L2).

By definition of DMAX and

+ (rn-1)

least as

Claim 4.13.9 weSet QMAX = L* < #P.

SECTION 4.2 - Page 206

then have

IPIECES(L2)j (DMAX (L* - [(m/(m-1)]-Icont(PX)i

Now since by

(m+1)-pieces, and

Claim 4.13.1 all

by definition all

the pieces

the pieces

in cont(PX)

in L2 are

Lemma 3.7 tells us that

[cont(PX)
#PX =---------------I

m+1

[PIECES(L2
FF(L2) = ----------

m+ 2

icont(PX) I
< -----------+

m+1

L*-[m/(m-1)]Icont(PX) +1
< -----------------------

m+2

Thus FF(L1) + FF(L2) = #PB + #PX + FF(L2)

= L* + #PX + FF(L2)

< [(m+3)/(m+2)]L*

K [(m+3)/(m+2))L*.

+ 2 - (2/[(m-1)(m+1)(m+2))-Icont(PX)I

and Theorem 4.13 are proven.

+ 1.

(m+2)-pieces,

are

Thus Claim 4.13.10

SECTION 4.2 - Page 207

We thus can conclude via Lemmas 4.11, 4.12, and 3.1 that

THEOREM 4.14. If S E AF and m = L/tj > 2, then

R[SD,t) . 1 + 1/(m+2).

The upper bound given in Theorem 4.14 is slightly worse

than the best lower bound known of 1 + 1/(m+2) -

2/[m(m+1)(m+2)). However, we can, as in Theorem 4.10, get an

optimal result by further restricting the range of the piece

sizes:

THEOREM 4.15. If S L

R[SD,(1/(m+2),t]] =

AF and m = L1/tj > 2, then

1 + 1/(m+2) - 2/(m(m+1)(m+2)].

Proof. The upper bound follows from the generic example

given in Figure 4.2, with 0 < e < t - 1/(m+1). For the upper

bound, let L be a list in decreasing order with Range(sizeL) C

(1/(m+2),1/m). As in Theorem 4.10, by using L as Li in the

construction for Theorem 4.13, with QMAX = L* and Q an optimal

packing of L, Claim 4.13.9 tells us that

Icont(PX)I1 . (m-1)/m)(L* + 1).

SECTION 4.2 - Page 208

By Claim 4.13.1 all the pieces in cont(PX) are (m+1)-pieces, so

by Lemma 3.7 we then have

FF(L) = L* + #PX (L* + Elcont(PX)l/(m+1) 1

* L* + (m-1)/(m(m+1))](L* + 1)

[1 + 1/(m+2) - 2/[m(m+1)(m+2)]]L* + 1.

Since we have by Corollary 3.12.1 that S(L) < FF(L)+1, the

Theorem follows by Lemma 3.1. 1

SECTION 5.1 - Page 209

CHAPTER 5. EXACT UPPER BOUNDS

SECTION 5.1. A Weighting Function

In the previous Chapter, we proved upper bounds on R(SD,t]

for S f AF which were strictly larger than the best lower bounds

known. In this Chapter we develop a method with which we will

be able to determine the precise values in a number of cases.

Recall that the principle ingredient in the proofs of

Theorem 2.6 and some of the subcases of Theorem 2.8 in Chapter 2

was a weighting function,

w: PIECES(L) ---- > Q,

which assigned number values to pieces according to their size.

The proofs consisted of showing that for all L with piece sizes

restricted to the appropriate range, the following two

inequalities held:

(5A) w[PIECES(L)J < rL*,

(5B) w[PIECES(L)] > S(L) - K,

SECTION 5.1 - Page 210

where w[PIECES(L)) = w(x), r is the upper bound on RS,tIX& Pwces(L)
to be proved, and K is a constant depending on the allowable

range of piece sizes, and independent of L*.

In this Chapter we shall use the same approach; however,

our weighting function Wd will be more complex than a simple

function on pieces. Instead it will be defined for sets of

pieces:

Wd: 2 ----(L . ..>

so that WdIPIECES(L)I will be a direct application of Wd, rather

than shorthand for an implicit sum.

In addition, Wd will only be defined for lists L with

Range(sizeL) C (0,1/2]. This seemingly restricts the use of Wd

to proving results of the form RtS,t] _ r for t < 1/2, and such

indeed will be our first application. However, in Section 5.2

we shall show how to adapt Wd to the more general case, where

pieces of size larger than 1/2 are allowed.

Wd will be defined in terms of two constituent functions:

wl: PIECES(L) ---- > Q,

w2: PIECES(L K PIECES(L ---- > Q,

SECTION 5.1 - Page 211

n with values depending only on piece size. Given wl and

and a set D of pieces, Wd(D) is defined as follows:

For any partition Iof D into 1- and 2-element sets, let

I71 = {x e D: x X1 ,

112 = j(x,y): x-y1' , rank(x) < rank(y)I ,

w12(TI) = w2(x,y) + wl(x).

We then have

Wd(D) = MlNw12(1): IIis a partition of D

into 1- and 2-element setsi.

Without yet going into the details of the definitions of wl

and w2, we can already see how we shall go about proving

inequality (5A) for w = Wd:

LEMMA

collection

Then Wd(U)

5.1. Suppose Range(sizel) S (0,1/2), T is a finite

of disjoint subsets Di of PIECES(L), and U = DZ.
L

W (D

aga

w2,

and

Proof. Since each

partition I; of Di into

D* is finite,

SECTION 5.1 - Page 212

for each there must be a

1- and 2-element sets such that

= MlNlwl2(1):IT is .Any. partition of Di

into 1- and 2-element

= Wd(Di).

Then, since 1Ti

sets,

is a partition of U

Wd(U) iwl2()
I

into 1- and 2-element

w12(TIr)

COROLLARY 5.1.1.

- .Wd(Di).

If for any BIN*
j

of an optimal packing P*

of a list L with Range(sizeL) 5 (0,1/2),

r, then Wd[PIECES(L)] rL*.

we have Wd[cont *(j)] <

Thus we can prove that (5A) holds using the same type of

case analysis that was used in Chapter 2, restricting our

attention to the possible configurations of pieces in a single

bin.

w12(IT)

setsi

SECTION 5.1 - Page 213

Inequality (5B) is independent of the bound we are trying

to prove, so one proof of that inequality, with the constant K

specified in terms of the allowable range of piece size, can be

made to serve for all our various upper bound proofs. But first

we must provide the details on the definitions of wl and w2.

Recall

k-piece if s

wl(x) = 1

Thus wl is a

complicated.

the definiti

ize(x) e (1/

/k, where k

step functi

on of k-plece from Chapter 3: x

(k+1),1/k). We define wl by

is such that x is a k-piece.

on on size(x). w2 is a bit more

If x and y are

k-size(x) + size(y)

Relation ak, or simpl

k'-piece for some k'

defined as follows:

If (x,y) obeys Relat

w2(x,y) = wl(x)

If (x,y) obeys no Di

w2(x,y) = wl(x)

such that x is a k-piece and

j 1, we say that (x,y) obeys Discounting

y Relation k. Note that y must be a

> k for (x,y) to obey Relation k. w2 is

ion k,

+ (k-1)/k wl(y).

scounting Relation, then

+ wl(y).

SECTION 5.1 - Page 214

Let DISCOUNT(x,y) = w2(x,y) - wl(x) - wl(y). Then if (x,y)

obeys Relation k, DISCOUNT(x,y) = [1/klw1(y) and we say that y

has been discounted by 1/k. If R is a set of pairs, let

DISCOUNT(R) = 2- DISCOUNT(x,y).

The significance of all this will appear later on. For the

moment we continue with our definitions. Suppose S A AF, L is a

decreasing list, and PS is an S-packing of L. Define a function

J:NK N--->N as follows:

J[k,1) is the index of the ri

is one, otherwise undefined.

J[k,i+1] is the index of the

if such a bin exists and is a k-bi

See Figure 5.1, which in addi

two definitions:

ghtmost k-bin in PS if there

n to the left of BIN 3 ,

otherwise undefined.

tion illustrates the following

BASIC = x C PIECES(L): x is a k-piece and in a k-bin,

for some k > 2 ,

SURPLUS = PIECES(L) - BASIC.

~I~II SURPLS=

FILLER (3TEa,0) FILLER (3 E1,3)

/

0

o2
.31231-32 a aL2.)i 37 333 t

FIGURE 5.1. Packing PS illustrating definitions.

BASIC VI

0
0
0
0
ILqi)

IS

S1, 1
_@_0

0 9 0a 0 0

FIrtECR(3NII

SECTION 5.1 - Page 216

Relative to these sets,

cont?5(j) C1 BASIC,

Blevel(j).

For each BIN

Blevel (j)

in PS, let Bcont(j)

: size(x),
xK e

and Bgap(j) = 1 -

LEMMA 5.2. Suppose L, S, and PS are as above, and R

is a set of disjoint pairs obeying

Relation k, such that rank(y) < ... < rank(y,,) and each

in BASIC. Then for all i, 1 i < . Ln/kJ,

size(yk')
ICL i Bgap(Jk,i]).

Let XL = x : h * ki3,

Bcont(JCk,h]): 1 < h (i .

Since the pairs

than k k-pieces,

IK |. < ki

in R are al l disjoint and no k-bin can have more

= IX i .

Moreover,

k-pieces

by Lemma 3.6,

in BASIC.

the

A simple

elements of K are the IKi I

induction establishes

smal lest

that

KMAX = MAXf size(x): S S K- ,

(XMAX = MAX size x):

ISI kI

- Xi, ISI =k .

Proof.

K[= x E

S

SECTION 5.1 - Page 217

But again by Lemma 3.6, Blevel(j~k,i3) = KMAX.

hand, since rank(y) 2 rank(y%) for all h _ i,

obeys Relation k, we have

size(y.) + k-size(xh) K 1,

On the other

and each (xk'Yk)

for all h (ki.

Hence by averaging, we have that for all

size(y I) K 1

S S X with ISI = k,

-4e size(x),
Ice S

size(y i) K 1 - XMAX K 1 - KMAX = Bgap(Ck,il). 1

Continuing with our definitions, let FILLER(j) be the

bottom-most non-BASIC piece in BIN' of PS, if such a piece

exists, otherwise undefined. Each BIN- in Figure 5.1 has

FILLER(j) designated if it exists. We then have the following:

and so

SECTION 5.1 - Page 218

LEMMA 5.3. Suppose L, S, and PS are as above, and in

addition S d AAF. If x e BASIC is a k'-piece, BINJ is a k-bin

in PS for k' > k, and size(x) < Bgap(j), then there exists a z =

FILLER (j) and rank(z) < rank(x).

Proof. Since x 9 BASIC, x is in a k'-bin BINi somewhere

to the right of the k-bin BINj. When x was assigned by S, BINit

can have contained at most k'-1 k'-pieces, and hence must have

had level,(j') < (k'-1)/k'.

But by Lemma 2.1 and the fact that BINj,'s bottom piece is

a k'-piece, all previous bins must have had levels exceeding 1 -

1/k' = (k'-1)/k', and by Lemma 3.6, BINjf,1 could not yet have

been started. Thus BINd, was at the time the unique bin in

packing P with minimum non-zero level. Thus, by the AAF

Constraint, x could not have been assigned to BIN 3, unless it

would not have fit in any bin to the left.

If BINk had at that time contained only its k-pieces, we

would have had gape(j) 2 Bgap(j), and x would have fit, Thus

BINj must already have received its first non-k-piece z, which

by definition is FILLER(j), and by the fact that it was assigned

before x was must have rank(z) < rank(x). f

SECTION 5.1 - Page 219

We are now ready to address ourselves to the problem of

proving a version of Inequality (5B) which will suit the needs

of our upper bound proofs. Recall that, by Lemma 4.2, in

proving that R[S,t . r it is sufficient ito consider lists all

of whose pieces are bigger than some fixed minimal size. So in

what follows we shall assume that Range(size) G (1/N,1/2), for

some fixed N.

Lemma 5.4. If S t AF, L a list in decreasing order with

Range(sizeL) 5 (1/N,1/23, and PS is an S-packing of L, then

9-1
wl(x) > ##PS - :I. [(k-1)/k).

Proof. If BIN3 is a k-bin and contains k k-pieces in PS,

then wl(x) = k(1/k) = 1, so the only non-empty bins in PS

which do not contribute at least 1 to w1(x) are those

k-bins with fewer than k k-pieces. By Lemma 3.6 there can be at

most one of these for each k, 2 k _< N-1, since only the

rightmost k-bin can fail to have k k-pieces. See Figure 5.2.

Since such a bin must have at least one k-piece and hence have

wl(x) . 1/k, the result follows.
XG BC*K ()

FIGURE 5.2.

1

3

3

3

3

3

3 3

I 3

/
et

'1

I
~22~

5

S

S

S

Packing PS with only BASIC pieces drawn in,

(.

4
4

4

= 7

\t 3C O- ()

Thus if we were to define wl(DI

satisfy (5B) with K = i[(k-1)/k1.

SECTION 5.1 - Page 221

= fwl(x), wl itself would

However,

wl[PIECESL] = wl[BASIC] + wi[SURPLUS)

} #PS - 7(k-1)/k] + wl(SURPLUS],

and so wl by itself might yield too large a value for (5A) to

hold. This in fact turns out to be the case for the bounds we

wish to prove, and it is for this reason that we have introduced

w2 and discounting.

LEMMA 5.5. Suppose S, L, and PS satisfy the hypotheses of

the preceding Lemma and in addition S e AAF. Then if Tf is any

partition of PIECES(L) into 1- and 2-element sets,

wl2(Tl) }_ 4#PS - (N-2).

Proof. By Lemma 5.4 we have

w12(IT) =

=2

wl(PIECES(L)1 - DISCOUNT(Tf2)

wicBASIC) + wl[SURPLUSI - DISCOUNT(12)

#PS - d5 C(k-1)/k

+ w1I[SURPLUSJ - DISCOUNT012).

SECTION 5.1 - Page 222

Thus it will be sufficient to show that

(5.5A) DISCOUNT(U2) . w1SURPLUSJ + :.iI1/k].

Let R K 12 be the set of all pairs iniT2 obeying

Discounting Relation k, 2 < k < N-2. (No pairs can obey

Relation k for k > N-2, since the second component could be at

most and N-piece, and by hypothesis L contains no pieces that

small.) In addition, let Rk-PIECES = -x.yj. Then we have

that {Rk-PIECES: 2 < k < N1-21 is a partition of lT2-PIECES =

x, y

For an intuition as to why (5.5A) should hold, Consider a

particular R k, and assume that all the first components are in

BASIC, and that the pairs are labeled (x,,y,) thru (x,,y,) in

order of increasing rank of their second components.

Then by Lemma 5.2 each y , 1 i < Ln/kJ, has a unique

k-bin into which it will fit, and by Lemma 5.3, either y

itself is in SURPLUS, or else the k-bin contains an element of

SURPLUS at least as large as y . If we can show that these

elements of SURPLUS are unique, we would thus have a total

contribution to wl[SURPLUS] of at least

SECTION 5.1 - Page 223

Lt kJ AWlV y .)%~ (1/k) ;wl(y;)

= .[1/kjw1(y) = DISCOUNT(Rk).

The details and precise calculation of the edge effects

will unfortunately be fairly complicated. What we will do is

set up a billing function BILL which will assign the individual

discounts to specific elements of SURPLUS. The difficulty will

lie in proving that BILL is 1-1, and in adding in extra charges

to take care of special cases without allowing any element of

SURPLUS to be billed for more than its own weight under wl.

We shall define BILL inductively with the aid of an

auxiliary function POINTER, starting first with the set R7 and

proceeding through R,-. In addition, each R will itself be

processed inductively, after an initial bout of preprocessing,

and only selected representatives of RK will actually be added

to Domain(BILL). We shall start off the induction with R :

OVERALL INITIALIZATION:

Set K = 2, 1 = 1. For each non-empty BINj in PS, set

POINTER (j) = j. Let Domain(BILL '
2214

RI-INITIALIZATION:

Label the pairs in R2 (XI1,y)0 ' ,''' ') so that

rank(y,) < ... < rank(y,,).

SECTION 5.1 - Page 224

RI-LOOP:

If I > Ln/21, go to Rg-FINALIZATION. Otherwise,

for all j C Domain(POINTER 1)),

set POINTER 2 ,1 +1 (j) = POINTER 2,(j),

for all y e Domain(BILL 2,1),

set BILL 21p (y) = BILL2 (y).

CASE A: If y11,e BASIC, set BILL 2 , 14 (y2.) =

FILLER(POINTER 2 1 (J[2,I1)) and go to ENDLOOP.

CASE B: If y 6 SURPLUS, set BILL 2,01 (yzI

y2.1 0 If in addition y. = FILLER(j') for some j' 6

Range(POINTER 2,1) and j"

POINTER 2,.1 (j")

ENDLOOP: De

= POINTER ('

= POINTER (J[2,11).

lete J[2,1)

), reset

Go to ENDLOOP.

from Domain(POINTER2,
1)

set I = 1+1, and go to Rt-LOOP.

Ri-FINALIZATION:

For all y & Domain(BILL 2,),

set BILL.g1 (y) = BILL *(Y).

For all j 6 Domain(POINTER221)'

set POINTER 1 (j)

and

= POINTER 2,() 0*

SECTION 5.1 - Page 225

For all y such that (x,y) E RI,

set SUBz(y) = y.

For all z & Range(BILL.3),

set BALANCE2 (z) = wl(z) - w1(BILL. 1 (z)),

For all z 6 SURPLUS - Range(BILL 3, ()-

set BALANCEZ(z) = wl(z),

For all z 6 BASIC, set BALANCE2 (z) = 0.

For all y such that (x,y)c- RE.

set YCHARGEJy) = 0.

Set REP, = fy : 1 i < ln/2j ,

NORM2 = R2,

SPECL = Domain(XCHARGE1)= 0,

I = 1, K = 3,

And go to R KINITIALIZATION.

REP, NORM, SPEC, EXTRA, SUB, XCHARGE, YCHARGE, and BALANCE

all are introduced at this point to fulfill the requirements of

our later inductions. However, the only induction hypotheses we

need initially are the following, which can clearly be seen to

hold for K = 2, 1 = 1 (more hypotheses will be introduced later,

but for now they could only prove distracting):

SECTION 5.1 - Page 226

(B1) Domain(BILL g1)

SURPLUS,

= i yth : 1 < h < 1 ,
and if I > 1 and y 6 Domain(BILL2 ,1- 1),

= B LL 2- (y).

(B2) BILL 2,'I

Range(BILL 21);

then BILL. 1 (y)

is 1-1.

(B3) If y 6 Domain(BILL,2,1),

(B4) If y f Domain(BILLaI)

rank(BI LL2 1 (y))

and BILL2,1 (y)

K rank(y).

A y, then

BASIC.

(P1) fJ[k,i): k > K, or k SK and i }_ c

Domain(POINTERg,1).

(P2) POINTER., .

(P3) If j 4 Domain(POINTER 1)

then z 4

and = FILLER(POINTER

Range(BI LL W).

(P4) If j e Domain(POINTERK l), and BINS is a k-bin in PS,

then for any k'-piece x e BASIC, k' > k, size(x) K Bgap(j)

size(x) K Bgap(POINTER 1 (j)).

is 1-1.

= ==

SECTION 5.1 - Page 227

POINTER is used to indicate where to look for a piece to

serve as BILL(y) when y is not in SURPLUS and hence cannot

itself be BILL(y). Hypotheses (Pl) thru (P4) serve mainly to

insure that this plan will work properly. (Bi) thru (B4) help

to show that BILL is actually doing its job, as we shall see

later.

CLAIM 5.5.1. The above 8 hypotheses hold for K = 2, I = 1.

Proof. By inspection. 7

CLAIM 5.5.2. If the above 8 hypotheses hold for K = 2, I =

i [n/2), then they hold for K = 2, I = i+1.

Proof. (B1) held for I = i, so to say that it holds for I

= 1+1 is essentially to say that BILL 2 ,1 (y) is a

well-defined element of SURPLUS. In CASE B this is obvious,

since BILL) (y1.) = ytZ E SURPLUS. Moreover, since rank(y2Z)

= rank(y ,), (B3) also will remain valid in this case. In CASE

A we have that size(yz.) . Bgap(J[2,i]) by Lemma 5.2, and

moreover, y 1 Is a k'-piece for some k' > 2 by the definition of

Relation 2. Thus by (P4) for I, size(yt') z

Bgap(POINTER ,,(J[2,iJ)), and so by Lemma 5.3 there exists a z =

FILLER(POINTER ' (J(2,i))) which is in SURPLUS and can be

SECTION 5.1 - Page 228

assigned as BILL L+% (ygj), and moreover, rank(z) < rank(y),

so in this case (B3) will again remain valid. Thus both (B1)

and (B3) hold for I = i+1.

(B2) held for I = i, so the only way it can fail for i+1 is

if BILL2 (yi) 6 Range(BILLz -). This cannot occur in CASE A

by (P3) for I. It cannot occur in CASE B, since by (B1') and

(B3') for i we would thus have rank(yj) .<. rank(yg) for some h

< i, which is contrary to our original labeling of the yi's.

(34) holds for all y a Domain(BILL -) by (B4) for i and

(B1) for i+1. It holds for y, since y, e SURPLUS ===>

BILL Z Z(yL) = yLZ.

Since (P1) held for I = i, and J(2,i] is deleted from the

domain of POINTER , ., the only way (P1) could fail for i+1

would be if the resetting of POINTER? . (j") to

POINTER 2 (J(2,il) in CASE B were an undefined process. But

there is a BIN 31 . by Lemma 5.2, so by (P1) for i,

POINTER 2 (J2,i]) is defined, and the resetting does work.

(P2) held for 1 = i, and so the only way it could be

violated for I = i+1 would be by some j for which

POINTER 2,i+(j) A POINTER IL(j). This only can occur in CASE B,

where POINTER Zi+1 (j") is reset to POINTERt (J(2, i1). However,

since J[2,11 is subsequently deleted from Domain(POINTERj ,),

POINTERz2+, remains 1-1.

(P3) can only be violated if z = BILL 2 + (yz,), since

SECTION 5.1 - Page 229

Range(POINTER 2 4) G Range(POINTER21) . In CASE A, this would

mean that z = FILLER(POINTERt'L(J(2, i])), but since in this case

no POINTER values are reset and J[2,i] is deleted from

Range(POINTER 2,in), the fact that by (P1) POINTER.L CiI is 1-1

implies that FILLER- (z) is no longer in Range(POINTER 1 ,41).

In CASE B, we would have z = . But in this case FILLER (z)

is replaced as POINTER L (j") by POINTER. (J[2,i), and hence

deleted from Range(POINTER J.,).

(P4) can

= j' is reset

k"-bin, and x

size(x) (Bga

by Lemma 5.3,

so size(y)

BGAP(J[2, i]),

definition of

Thus, since B

size(

= POI

only be violated in CASE B, when POINTER (j")

to POINTER. (J[2,i3). So suppose BIN ii is a

E BASIC is a k'-piece for some k' > k", with

p(j"). Then by (P4) for i, size(x) < Bgap(j'), and

since y = FILLER(j'), rank(yL) < rank(x), and

> size(x). Moreover, by Lemma 5.3, size(y.) <

and so size(x) j Bgap(J[2,i). In addition, by

FILLER, yg is not a 2-piece and so neither is x.

I N
at z) 0

is a 2-bin, (P4) for i again applies,

x) j Bgap(POINTER (J[2,iJ)).

NTER 2 *(J(2,i1), (P4) continues

And si

to hol

and

nce POINTER.c (j")

d for i+1.

Thus all 8 hypotheses continue to hold for I = i+1 and

Claim 5.5.2 is proven. 0

SECTION 5.1 -

Thus by Claims 5.5.1 and 5.5.2 and induction, the 8

hypotheses hold for

and BALANCE

following:

K = 2, TI

defined as

+ 1. Moreover,

in RL-FINALIZATION,

with REP.

we have the

CLAIM 5.5.3.
%J &'5Ez

=23
&z

wl(y)

Uwl(BILL,, (y))

L} W

(1/2) [w1(y

- BALANCEa(BILL - (y))]

+ wl(ytz l

2 1/ 2)wl(yi)

2 DISCOUNT (RZ)

- (1/2)wl(y,)

- (1/2)(1/3).

Our next claim will be that the following 15 hypotheses,

which we shall use for our outer induction over K, hold for K =

(Cl) For 2 K k' _. K,

REPv' S y: (x,y) E NORM .

(C2) For 2 _ k' < K,

SPECg U NORM. = R' i
Icc

Page 230

= [n/2]

is a disjoint union.

SECTION 5.1

(C3) Domain(XCHARGEK) =

: (x,y) 6 SPECV for some

and if K > 2

XCHARGEK (x)

2 < k' K C SURPLUS,

and x & Domain(XCHARGE .1),

= XCHARGEk...(x).

(C4) If x f Domain(XCHARGE K)

then XCHARGE K(x)

then

and x is a k"-piece,

= 1/[(k")(k"+1)).

(C5) DOMAIN(YCHARGEK) =

: (x,y) 6 NORMk for some 2 < k' < K J, and

if K > 2 and y e Domain(YCHARGE _,),

YCHARGEK (y) = YCHARGEK 1 (y).

(C6) Domain(SUBK) =

I z c fx,y : (x,y) E
NORM v for some 2 < k'

and if K > 2 and z 4 Domain(SUB.I),

SUB (z) = SUB .% (z).

(C7) Range(SUBK) c- U
(C8) If x i Domain(SUB

R' -PI ECES.

), then rank(x) <

rank(SUB (x)).

then

then

- Page 231

< Kj,

SECTION 5.1 - Page 232

(C9) BILL 4+ 1 is a 1-1 map from

(x,y) F REPv for some 2 < k' <. K to SURPLUS

and if K > 2 and y f Domain(BILLV9),

BILL K+LI(y) = BILL K (y).

(C10) If x A y 6 Domain(BILLV-,))

then SUBK(x) A SUB (Y).

R,
S ki~

(C1l) If x e Range(BI LLV4),

BALANCEK(x) = w1

If x F SURPLUS - R

then BALANCEK(x)

If x & BASIC, BALA

(x) - wl(SUB (BI

ange(BILL),

= wl(x),

NCE (x) = 0.

(C12) If x A Domain(XCHARGE),

XCHARGE (x) . BALANCE (x).

(C13) If y 4. Domain(YCHARGE.) and YCHARGE (y)

then y a Range(BILL-,W) and

then

and

PI ECES,

then

LL (x))),

then

> 0,

-B IL L (x , BILL Y-l)I+)I(y) G

= BALANCE V.(y).YCHARGE,(y)

SECTION 5.1 - Page 233

(C14) For each k', 2 (k' (K,

9 [wl(BILL k41) (y)) - BALANCE (BILL (y))1

+ (1/k') YCHARGE (y)

> DISCOUNT(NORM ') - 1/k'.

(C15) For each k', 2 < k' K,

;j3 XCHARGE (x) DISCOUNT(
(Y.0)(-SPEm g

SPEC ').
Ic.

CLAIM 5.5.4. Hypotheses (Cl) thru (C15) hold for K = 2.

Proof. All but (C14) are immediate consequences of the

definitions of the sets and maps in question, which are for the

most part trivial for K = 2. (C14) follows from Claim 5.5.3.

As we shall see later, if hypotheses (Cl) thru (C3), (C5),

(C9), and (C11) thru (C15) hold for K = N-2, Lemma 5.5 will

follow. The remaining 5 hypotheses are needed for the

induction over K to work. In addition, we will need to know

that (P1) thru (P4), and the following revised versions of (B1)

thru (B4) hold:

SECTION 5.1 - Page 234

(Bl') Domain(BILLK) 07y: (x,y) 6 RKI =

yk: 1 < h < I], Range(BILLk,1) G SURPLUS

(where the labeling of the y 's is as specified in the

RK-INITIALIZATION), and if I > 2 and y,6

Domain(BILL 1 1), then BILL 1 (y) = BILLKI...,(y).

(B2') BILL is 1-1.

(B3') If y & Domain(BILLV),T then

rank(BILL 1 (y)) _ rank(SUBK (y)).

(B4') If j Domain(BILL) and BILL (y) (

SUBK (Y), then SUBK (y) a BASIC.

CLAIM 5.5.5. Hypotheses (Bl') thru (B4'), and (P1) thru

(P4) all hold for K = 3, I = 1.

Proof. (B2') follows from (B2) for K = 2, I = Ln/2) + 1.

(Bl') follows from (B1) for K = 2, I = Ln/2J + 1, and the fact

that R.-PIECES and R3 -PIECES are disjoint. (B3') and (B4')

follow from (B3), since for y c Domain(BILL), SUBL(y) =y

(P1) thru (P4) follow from the same properties for K = 2, I =

Ln/2J + 1. a

SECTION 5.1 - Page 235

So suppose (Cl) thru (C15) hold for K-1, 3 < K N-2, and

(Bl') thru (B4'), (P1) thru (P4) hold for K and I = 1. We shall

now describe how to process the set of pairs RK obeying Relation

K, so as to insure that the hypotheses will again hold with K

incremented by 1.

The general procedure for processing R , K > 2, is given by

the following: First we must take care of the fact that, unlike

the case with RZ, some of the first components of pairs (x,y)E

RK may not be in BASIC, and so Lemma 5.2 need not apply. So we

first preprocess Rg, and here is where the sets SPECK and NORM.,

and the partial maps, SUBK: PIECES(L)--->PIECES(L) and ZCHARGE

PIECES(L)--->(Vfor Z L fx,Yj, are introduced.

RK-INITIALIZATION:

For each element of the respective domains for K-1,

set XCHARGEK(x) = XCHARGEI.CI(x),

YCHARGE (y) = YCHARGE,-,(y), and

SUBr(z) = SUB,-1 (z).

Set NORMK = SPECK,= 0.

For each (x,y) 6 R ,

If x r SURPLUS and

if x # Range(BILLK 1) or

SECTION 5.1 - Page 236

x C Range(BI LL 4I) and BALANCE 1 IX) > 0'

set XCHARGE K (x) = (1/K)E1/(K+1)1 and

add (x,y) to SPECK'

If x C Range(BILL,,t) and BALANCEki(x) = 0,

set SUBK(x) = SUB _, (BILL (x)) and

add (x, y) to NORMK.

If x & BASIC,

set SUB (x) = x and add (x,y) to NORMK.

If (x,y)*E NORM and

If y E (SURPLUS - Range(BILL, 1)) U BASIC,

set SUBK(y) = y, YCHARGEK(Y) = 0,

If y a SURPLUS n Range(BILL 1),

set SUB,(y) = SUBBILLp (Y)),

YCHARGE (Y) = BALANCE V.-1 (y).

Label the pairs in

that rank(SUBK(y

Set REP K = y: 1

NORMK(xI,y*), ... , (xt,y,) so

)) < ... < rank(SUBK(Y")).

< i - Lm/K 3.

Note that the definition

works because (C9), (C2), and

is not in BASIC, SUB K(x) will

NORMK-PROCESSING, a procedure

- I
of SUB (z) as SUB (BILL

(C6) hold for K-1. When x i

serve as a stand-in for x in

which BILLs the discounts of

(z))

tself

the

pai rs

SECTION 5.1 - Page 237

in NORMK to pieces in SURPLUS as was done in the Rt-PROCESSING

above. SUBk(y) serves as a stand-in for y in the procedure when

y is already in Range(BILL). Those pairs for which a proper

stand-in for x cannot be found are added to SPECK, and XCHARGE

takes over the job of assigning their discount to an individual

piece in SURPLUS. YCHARGE is used when the stand-in for y is

not big enough, and assures that the deficiency will itself be

assigned to a piece in SURPLUS.

Since REP , SUBK, XCHARGE, YCHARGEr, SPEC., and NORMr will

not be tampered with in the remaining processing of RK, we

already have the following trivial consequences of the

R INITIALIZATION:

CLAIM 5.5.6.

and (Pl) thru

(Cl) thru (C8

If (Cl) thru (C16) hold for

(P4), (Bl') thru (B3') hold

) hold for K = k.

K = k-1, 3 < k <

for K = k, I = 1,

Proof. (Cl) thru (C6) follow from the specifications of

REP,, NORMt, SPECr, XCHARGEr, and YCHARGEr in the

RK-INITIALIZATION, and the facts that they held for K = k-1 and

all the pieces for which new values were defined were R -pieces,

and hence not in their domain for K = k-1. (C7) follows since

the only pieces added to Range(SUBK) beyond those already in

Range(SUB 1) are members of pairs from R . (C8) is immediate

N-2,

then

SECTION 5.1 - Page 238

if SUB,(x) = x, and if SUB K(x) = SUBW-1 (BI LL (x)),

follows from (C8)

rank(x) < rank(BI

for k-1 and (B3')

LL (x)) i rank(SUB

for k, which tell us that

(BILL

The remainder of

the processing of R,,

the processing of RK is

except that NORMK is us

very similar

ed instead of

and SUBK(y) is used as an

NORM -LOOP:

If I > Lrn/KJ,

intermediary between y and BI LL(y):

go to RK-FINALIZATION. Otherwise,

for all j £a Domain(POINTER K),

set POINTER KI+I(j) = POINTERKI(j),

for all y & Domain(BILL V),

set BILLg K1 (y) = BILL K (y).

CASE A: If SUBI(y 1) 4 BASIC, set

= FILLER(POINTERKI (JtK,1)),

and go to ENDLOOP.

CASE B: If SUBC(y K) 6

= SUBK(yXI).

SURPLUS, set

If, in addition,

SUB (yV) = FI LLER(j') for some j s

Range(POI NTER_,)

PO INTERK I1 (j")

and j" = POINTER I(j'), reset

= POINTERt 1r([K,1). G

then it

(x))).

to

and

B I L L Kr K)

B I L L jC'ji (yV)

Go to ENDL00P.

SECTION 5.1 - Page 239

ENDLOOP:

set I = 1+1,

Delete J[K,I] from Domain(POINTER 14),

and go to NORM-LOOP.

RK-FINALIZATION:

For all y C Domain(BILL,,l),

set BILL .* i(Y) = BILL)I(y).

For all j e Domain(POINTERr,.)1),

set POINTER..1, (j) = POINTER,,(j).

Define BALANCEK: PIECES(L) --- > Q, so that (C11) holds for K.

Set I = 1, K = K+1.

If K > N-1, halt, else go to R -INITIALIZATION.

Our first observation will allow us to use Lemma 5.2 in our

upcoming inner induction over I for fixed K, in a fashion

analagous to its use in the proof of Claim 5.5.2:

CLAIM 5.5.7. If hypotheses (Cl) thru (C15) hold for K =

k-1, 3 (k < N-2, and (P1) thru (P4), (Bl') thru (B4') hold for

K = k and 1 = 1, then J(SUBk(x),SUB(y)): (x;,y) 6- NORMk as

labeled in the Rk-INITIALIZATION, is a set of disjoint pairs

obeying Relation k, such that rank(SUBk(yi)) < ... <

rank(SUBk(y,)), each SUBk(xi) E BASIC, and no SUBk(y) £

Range(BI LLk) .

SECTION 5.1 - Page 240

Proof. To show disjointness, let SUBk(z) and SUBk(zj) be

two distinct members of pairs from the set. If they equal ze

and z3 respectively, then they differ because the pairs in Rk

and hence in NORMk are all disjoint. If they are

SUB (BILL (zL)) and SUB k-i(BILLk, (z)) respectively, then

they differ by (C10) since BILL k is 1-1 by (C9). If one is z

and the other SUBk, (BILLk% (z)) or vice versa, then they

differ because no element of R k-PIECES is in Range(SUB- ,) by

(C7).

Now size(SUB (

holds for k. Thus

fact that Relation

(SUBk(xi),SUB (Y;))

show that SUB (x)

on how (xi,y;) was

zi)) i size(zi), since by Claim 5.5.6,

kesize(SUB(xi)) + size(SUBk(y;)) i 1,

k held for (xi,yi). To show that

obeys Relation k, all that remains is

is a k-piece. There are two cases, de

assigned to NORMk:

Case X1.

because xi is.

BASIC.

xi e BASIC. Then SUB k(x) =

Moreover, note that we also

x- and is a k-piece

have SUBk(Xi)

Case X2, xZ E Range(BILLk,1) and BALANCE k (xi) = 0.

Thus, by (C11) for k-1 and the definition of wl we have that

SUB (xi) = SUB (BILLki(xi)) is the same type of piece as xi,

(C8)

by the

to

pend i ng

SECTION 5.1 - Page 241

and hence a k-piece. Moreover, since BILLkI (X6)

Domain(SUBk-)A Domain(BILLk,), and since BILLk,(BILL- (xi))

= x . Rk-PIECES, and SUB (BILL (x)) f RV -PIECES, by

(C7) these two must differ, and so by (C10) the latter, which is

also SUB k(x), is in BASIC.

Thus each (SUB k(x),SUB (y)) obeys

first component in BASIC. All that rema

second component is not in Range(BILLk 1

cases, depending on how SUB (y;) was def

Relation

ins is to

). Again

ined:

k and has

show that

there are

Case Y1. If

SUB (y) Y and

{\BASIC = 0 by (Cl

Case-Y2. If

BASIC by the same

Range(BILL g).

yj C BASIC or SURPLUS - Range(BILL 1),

the result is immediate, since Range(BILL)

) for K = k-1.

y 4 SURPLUS (Range(BILL) then SUB(y) 6

argument as in Case X2, and again cannot be in

Thus all the conclusions of Claim 5.5.7 are now verified.

CLAIM 5.

N-2, and

1 i i <

5.8.

(Bi')

Lm/ kj

Suppose (Cl

thru (B4'),

Then the

) thru (C15) hold for K = k-1, 3 <

(Pl) thru (P4) hold for K = k, I

latter 8 hypotheses also hold for

its

the

two

k .

=

SECTION 5.1 - Page 242

K = k, I = i+1.

Proof. This proof is very similar to that of Claim 5.5.2.

(B1') held for I = i, so to say that it holds for I = i+1 is

essentially to say that BILL k~i(yI) is a well-defined element

of SURPLUS. it is clear that y. is not in Domain(BILLki).

In CASE B this is obvious, since BILLkI4 1 ki) = SUBk

SURPLUS. Moreover, since rank(SUBI(y.)) equals itself, (B3')

also will remain valid in this case. In CASE A we have that

size(SUB (y.)) < Bgap(J~k,i]) by Lemma 5.2, and moreover,

SUBk(y,,) is a k'-piece for some k' > k by the definition of

Relation k. Thus by (P4) for i, size(SUB (y.)) i

Bgap(POINTERK I (JZk,iJ)), and so by Lemma 5.3 there exists a z =

FILLER(POINTERk.(J[k,i])) which is an element of SURPLUS and

can be assigned as BILLk (y). Moreover, rank(z) <

rank(SUBk(yv)), so in this case (B3') will again remain valid.

Thus both (B1') and (B3') hold for I = i+1.

(B2') held for I = i, so the only way it can fail for i+1

is if BILL L (yv.) . Range(BILL-). This cannot occur in

CASE A by (P3) for i. It cannot occur in CASE B, since by Claim

5.5.7 SUB,(Ygj) is not in Range(BILL 1), and so by (Bl') it

cannot be in Range(BILL L) unless it is BILL (yk) for some

h, 1 < h < i. This is impossible since by (B3') for i we would

have to have rank(SUB (ykj)) < rank(SUB,(y Y)), which would be

SECTION 5.1 - Page 243

contrary to our original labeling of the y 's.

(B4') holds for all y * Domain(BILLk,) by (B4') for i and

(B1') for i+1. It holds for y - since SUBkIt (yk) e SURPLUS ===>

BILL (yi) = SUBk(ygL).

(P1) thru (P4) are proved exactly as in Claim 5.5.2, except

that "2" is replaced by "k" throughout. a

CLAIM 5.5.9. If hypotheses (Cl) thru (C15) hold for K =

k-1, 3 K k < N-2, and (Bl') thru (B4'), (P1) thru (P4) hold for

K = k, I = 1, then the latter 8 hypotheses hold for K = k+1, I =

1.

Proof. By Claim 5.5.8 and induction, the latter 8 hold for

K = k, I = Lm/kJ + 1. They thus hold for K = k+1, I = 1, since

both POINTER and BILL remain the same functions despite the

change of indices, and R -PIECES 0 Domain(BILLkt,%) = 0 by

(C9) for K = k-1 and (31') for K = k, I = Lm/kJ + 1.

CLAIM 5.5.10. If hypotheses (Cl) thru (C15) hold for K =

k-1, 3 K k < N-2, and (B1') thru (B4'), (P1) thru (P4) hold for

K = k, [= 1, then the first 15 hold for K = k.

SECTION 5.1 - Page 244

Proof. We shall procede down the list, recalling that we

already know that (Cl) thru (C8) hold by Claim 5.5.6.

(C9). BILLkali is 1-1 and has the proper range by (Bl')

for K = k+1, I = 1. If y E Domain(BILLk ,), then by a simple

induction on (Bl') for I = 1 thru Ln/kj + 1, BILLkI (Y) =

BILLk (Y). Hence by (C9) for K = k-1 and (Bi') for K = k, i =

Lm/kJ + 1, Domain(BILLk+) = y: (x,y) G REP, for some 2 < k'

. k , so (C9) holds for k.

(C1C

BI LLk 4I I

SUB k(y).

= k-1, a

both are

SUBk(x) I

If

SUB(y) =

cannot b

one by ((

0).

(y

nd

(

if SUB k(Y)

y f R -PIECES,

Suppose x / y & Domain(Bl LL

) ' R ' -PI ECES. We must show

f both x and y C Domain(BILL) t

(C6) and (C9) for K = k, the resul

Domain(BILL 1 1) - Domain(BILLk

UBk(y) by Claim 5.5.7.

.Domain(BILL k) and y & REPL (or

would imply SUBkCy) A SUBk(x), si

n Rk-piece by (C7) for K = k, and

and (C2) for K = k. Thus the onl

= SUBk 1.(BILL_ (y)). But then BI

so by (C10)

SUBk. (BILL (y)) = SUB kx)

BILL (y). Hence BILL

for K = k-1, SUBk(

) and BILL k*I 1'

that SUBk W)A

hen by (C10) for K

t is immediate. If

) = REPk, then

vice versa), then

nce the latter

the former must be

y problem would be

LL (BILL (y)) =

y)=

= SUB, 1(x) would imply

(x) = y (U R , -PIECES,
jev.1

that x =

a

SECTION 5.1 - Page 245

contradiction of our hypothesis. So SUBu (x) A SUBk(y).

(C11).

BALANCE in

This holds immediately by the definition of

the Rk-FINALIZATION.

(C12). Suppose x r Domain(XCHARGE k). We must show that

XCHARGE (x) K BALA

there are two case

follows by (C12) f

other hand x 9 Dom

(C3) for K = k and

XCHARGE k(x) = 1/[(

would be if BALANC

BALANCEk x) = 0, s

- 1/k' for k' 2. k

all k' > k.) But

Domain(XCHARGE)

(x,y) G SPECk, whi

BALANCE k-1 x) = BA

XCHARGE (x) . BALA

If BALANCEk(x

Range(BlLL) by

BILL (y) for s

NCEk(

s: I

x). If BALANCE (x)

f x C Domain(XCHARGE

= BALANCE k(x

), the resu

or K = k-1, and (C3) for K =

ain(XCHARGEk) - Domain(XCHARG

k-1, x is a k-piece, and by

k)(k+l)]. Since x . SURPLUS,

E (x) < 1/[(k)(k+1)J, in whi

ince no intermediary values a

is 0 for k = k', and at least

since x r. Domain(XCHARGE k) -

, by (C3) for K = k, there is

ch implies by

LANCEk(x). Th

NCE (x).

) A BALANCEp

(C11) for K =

ome y e. REP .

k. If on the

Ek), then b

(C4) for K =

the only pro

ch case

re possible.

1/((k)(k+1))

y

k,

blem

(1/k

for

a y such that

the R k-INITIALIZATION that

us in this case too we have

Cx), then x a Range(BILL t) -

k and k-1, and so x =

By Claim 5.5.7 SUBk (Y) is thus

the second component of a pair obeying Relation k and hence a

SECTION 5.1 - Page 246

k'-piece for some k'

by (C3) and (C2) for

1/k' }_ 1/[(k")(k"+1)3

possibilities.

> k. But x is a k"-piece for some k" < k

K = k, so by (C11) BALANCE (x) = 1/k" -

= XCHARGE k(x) by (C4). This exhausts the

(C13). Suppose y a Domain(YCHARGE) and YCHARGE (y) > 0.

We wish to show YCHARGEI(y) = BALANCEk (Y). If BALANCEk(y) /

BALANCEt-1 (y), then by (C11) for K = k and k-1, y 4
Range(BILL). But by the Rk-INITIALIZATION this would mean

that YCHARGEk(Y) = 0, contrary to hypothesis. If BALANCE (y) =

BALANCEk.-(y), there are again two cases: If y a

Domain(YCHARGEk p), the result follows by (C13) for K = k-1 and

(C5) for K = k. If y & Domain(YCHARGEL) - Domain(YCHARGE _),

then YCHARGEk(Y) > 0 would imply by the R -INITIALIZATION that

YCHARGE (Y) = BALANCE ,(y) = BALANCE (y).

(C14). The stated inequality holds for all k', 2 < k' <

k-1, by (C14) for K = k-1, (C5) and (C9) for K = k, and the fact

that by (C11) for K = k and k-1, z . Range(BILL e) ===>

BALANCEk(z) = BALANCE9 (z). Thus we may restrict our attention

to the case k' = k.

By (C11), for all y f- REP , wl(BILL k+1(y)) - BALANCEk(y)

= wl(SUBk(y)). Thus

y)) - BALANCEk(y)j

) } 1/k)

(1/k)wl [SUB k(y)l

(1/k)wl SUBk(y)

SECTION 5.1 - Page 247

W1 ISUB (y)]

W CSUB k (y1SU) Y

1/k)wl SUBk (yi

- k

since all the SUBk(y*) are second components of

Relation

pairs obeying

k by Claim 5.5.7, and hence have wl[SUB (Y;)1
&.I It

so that f(1/k)wl[SUB (y)
1/k.

us consider wl SUB(yI)3 + YCHARGE (y-):

SUB (yi) = yL, then YCHARGE (yi) = 0, and the sum is wl(y).

on the other hand SUB (y-) y , then yz E Range(BILLj)

SURPLUS,

wl(SUB _,

and YCHARGE (y()

(BILLk l (yi))

= BALANCEk-(yi)

wl(YL)

= wl(yz) -

- wl(SUB (y)), so again

is wl(y).

wl(BILLk+1) (y)) - BALANCE (y)] + f(1/k)YCHARGE(Y)

+ L(1/k)YCHARGE(y) - /

4wl(BI L Lk (

}_>w

IL :j

Now let

Thus

the sum

1 [SUB (yk.

_. (k-1)(1/k)(1/(k+1))

(1/k)wl(SUB k(y)) - 1/k

SECTION 5.1 - Page 248

> e5(1/k)w1(y*) - 1/k = DISCOUNT(NORMk) - 1/k.

(C15). The stated inequality holds for all k', 2 < k' (

k-1 by (C15) for K = k-1 and (C3) for K = k. If (x,y) 6 SPEC ,

then by definition of Relation k, x is a k-piece, so by (C4) for

K = k, XCHARGE k(x) = 1/[(k)(k+1)). Since this is the maximum

possible value for DISCOUNT(x,y) if (x,y) obey Relation k, we

have that XCHARGE k(x) I DISCOUNT(x,y), and the desired

inequality follows by summation over all (x,y) in SPECk'

Thus all

proven.

CLAIM

thru (C15)

(5. 5A)

15 hypotheses hold for K

5.11.

1 hold

SCOUNT

If

for

(112)

(Cl) thru (C3),

K = N-2, then

. wl(SURPLUS)

= k and Claim 5.5.10 is

(C5), (C9), and (C11)

N-1
+ 2(1/k).

Proof. In the following we shall

subscripts from BILL , XCHARGENLP

BALANCEN-.'

Now DISCOUNT(W2) = 2DISCOUNT(R

and the fact that if (x,y) 6 12 but ob

Relations, DISCOUNT(x,y) = 0. Thus by

for conveni

YCHARGEN ,

ence drop the

and

) by the definition of Rk

eys no Discounting

(C2), (C14), and (C15),

SECTION 5.1 - Page 249

DISCOUNTCU2) = ~ DISCOUNT(NORMk) + DISCOUNT(SPECk)]

r 7 [wl(BILL(y) -

+ (1/k)

BALANCE(BILL(y))]

YCHARGE(y) + 1/k

+ XCHARGE(x)
(F.'-I

xiI. wl(y) - BALANCE(Y)] + .5' (1/k)
le Z2-

+ '> YCHARGE(y)
0-bV o toa OL W4A Mt)

XCHARGE(x),

Xe bbawmA (XC1A4Q26E

since the REP k's are all disjoint by (Cl) and (C2), similarly

for the NORMk 's

(C9).

and SPEC 's by (C2), and because BILL is 1-1 by

Note also that Range

Domain(XCHARGE) S SURPLUS

(BILL) 5 SURPLUS by (C9),

by (03), and Domain(YCHARGE) 5

Range(BILL)J ' SURPLUS by (C13). Thus we will be done if we

show that no z & SURPLUS contributes more than wl(z)

right-hand side of

abbreviate by RHS.

the above inequality, which we

We first observe that Domain(YCHARGE) () Domain(XCHARGE) = 0

Thus there are only a few cases to

<~:2

can

to the

shall

by (C2), (C3), and (C5).

SECTION 5.1 - Page 250

consider. Let Contrib(z) be the total amount contributed by z k

SURPLUS to RHS.

If z 6 Domain(YCHARGE) - Range(BILL), then by (C11)

BALANCE(z) = wl(z), and since YCHARGE(z) is either 0 or

BALANCE(z) by (C13), we have Contrib(z) = YCHARGE(z) < wl(z).

If z 4 Domain(YCHARGE) A Range(BILL) and if YCHARGE(z) = 0,

then Contrib(z) = wl(z) - BALANCE(z) + 0 < wl(z). If on the

other hand YCHARGE(z) > 0, then by (C13) it equals BALANCE(z),

so Contrib(z) = wl(z) - BALANCE(z) + BALANCE(z) = wl(z).

If z 4 Domain(XCHARGE) - Range(BILL), then by (C11) and

(C12), Contrib(z) = XCHARGE(z) j BALANCE(z) < wl(z).

If z e Domain(XCHARGE) (I Range(BILL), then by (C12)

Contrib(z) . wl(z) - BALANCE(z) + BALANCE(z) = wl(z).

If z e Range(BILL) - Domain(YCHARGE) - Domain(XHARGE), then

Contrib(z) = wl(z) - BALANCEz) < wl(z).

Finally, if z t SURPLUS - Range(BILL) - Domain(YCHARGE) -

Domain(XCHARGE), then Contrib(z) = 0.

Thus no element z of SURPLUS contributes more than wl(z) to

RHS, so RHS - f (1/k) j wl(SURPLUS), and so
DN 2)

DISCOUNT(1r2) . wl (SURPLUS] - 1k,
k -- .

SECTION 5.1 - Page 251

and Claim 5.5.11 is proven. a

and

5.5

Thus by Claims 5.5.4, 5.5.5, 5.5.9, and 5.5.10, induction,

Claim 5.5.11, inequality 5.5A does indeed hold, and so Lemma

is proven. a

THEOREM 5.6.

G (1/N,1/23 and S

If L is in decreasing order with Range(size)

6 AAF, then

Wd(L) > S(L) - (N-2).

Proof. Let PS be an S-packing of

for all partitionsll of L into 1- and

Lemma 5.5 that

w12(1) > #PS - (C-2) = S(L) - (

Since Wd(L) = MIN w12(11):IT is a parti

2-element sets , the Theorem follows.

Remark. Lemma 5.5 and Theorem 5.6

We conjecture that be changing the cons

something like N2 we can get a similar

AF. The details would probably be mind

idea is this: if size(y) < Bgap(j), for

k-bin, k < k', then although Lemma 5.3

could be In BASIC while FILLER(j) had h

L with #PS = S(L). Then

2-element sets, we have by

N-2).

tion of L into 1- and

1

only apply if S & AA

tant from N-2 to

result for arbitrary

-boggling, but the ba!

y a k'-piece, BINj a

does not apply and so

igher rank, If indeed

F.

a

ic

y

it

SECTION 5.1 - Page 252

existed at all, still not all of the N pieces in ix: rank(y) j

rank(x) i rank(y) + N-13 can be in BASIC unless FILLER(j) does

exist and has rank K rank(y) + N, since one of the pieces in the

set would have had to go into a bottom position, and hence would

have violated the AF Constraint by going to the right of BINj,

which at the time would have had gapp(j) = Bgap(j). Thus we can

perhaps base our BILLing on something like BILL(y +M) =

FILLER(POINTER(J(k,i])). The difficulty is in deciding what to

do when the FILLER isn't there or has too high rank, so that we

must choose one of the N elements in the set, and yet still keep

BILL 1-1. Once that is solved, the proof might be much like

that of Lemma 5.5.

SECTION 5.2 - Page 253

SECTION 5.2.

We shall

Theorem 5.6 i

THEOREM

R [S D,

The 71/60 Theorem

now show how to combine Corollary 5.1.1 and

nto an upper bound proof.

5.7:

t)

If S 9 AAF, then

= 71/60, for 8/29 < t < 1/2,

7/6, for 1/4 < t < 8/29.

Proof. The lower bounds follow from Theorem 4.1. By Lemma

4.2, since the upper bounds we wish to prove are either 7/6 or

larger, these upper bounds will follow if we can show that for

every list L with Range(sizeL) S (1/7,1t),

(5.7A) S(L) ((7/6)L* + K

for some K independent of L*.

by Therem 5.6, we know that

S(L) < (71/60)L* + KJ,

In fact, we can choose K = 5, for

(5.7B) Wd(L) > S(L) - 5,

and we shall now show that for every possible configuration of

pieces in a bin of an optimal packing P* of L, Wd(ContV(j)) ..

(7/6), or Wd(Cont ,(j)) j (71/60), as the case may be, so that

SECTION 5.2 - Page 254

by Corollary 5.1.1,

(5.7C) Wd(L) :. (7/6)L* [Wd(L) j

and (5.7A) will follow from (5.7B) and

For ease of reference, let us use

B-piece

C-piece

D-piece

E-piece

F-piece

= 2-piece

= 3-piece

= 4-piece

= 5-piece

= 6-piece

= pi

= pi

= pi

= pi

= pi

ece

ece

ece

ece

ece

ize

Ize

ize

ize

ize

(71/60)L*j ,

(5.7C).

the notation:

1/3,

1/4,

1/5,

1/6,

1/7,

1/ 2],

1133,

1/51, and

1/61.

We must consider

D's, etc. whose sizes

occur as the set of p

configuration (XX ,
will be the set of al

all possi

total no

ieces in a

.,XW]

sets

ble configu

more than 1

bin in P*.

where

x,..

Xi &

,x

rations of

, for all

Formal 1 y

, C,D, E,F?,

PIECES(L),

xi is an Xi-piece, 1 -.. i < n, rank(x,) < ...

0,5 size(xz) -1 1. An example would be [BB,C)

Every possible set Cont,4(j) must be in

Moreover, we can restrict our attention to a

class of configurations, the legal ones. If

< rank(x,), and

some configuration.

relatively small

we let u be a

B's,

such

,a

1<

such

C's,

could

jf n,

that

SECTION 5.2 - Page 255

function which gives the lower bound on the possible size for

each type of piece, with u(B) = 1/3, u(C) = 1/4, etc., then the

criterion for a given configuration [X,,...,X,) to be illegal is

that

u X ,...X u(X L) 1.

A configuration which is

X-piece, size(x) > u(X).

the legal configurations

wl to confgigurations as

illegal must be empty, since if x is an

Thus we may restrict our attention to

We extend our definitions of Wd and

follows:

Wd[X , , ... ,X,l

wl 1XJ,...,X%1

= MAXIWd(D):

= MAX wl(D):

D f [XI,...,X,) ,

D G [X ,...,X i.

Note that since wl(D) only depends on the types of pieces in D,

for all D & IX1,...,XI, wl(D) = wl[X,,...,X,), but this need

not be the case if wl is replaced by Wd.

Our job will be to prove that

W , . 7/6 or j 71/60].

SECTION 5.2 - Page 256

We can prove the inequality either by showing that wl X, ,.

j 7/6, or that if De [X,...,Xa, there must be a partition it

of D such that w12(11) < 7/6.

An additional shortcut is supplied by the fact that certain

configurations are clearly worse than others. If X, Y f

iB,C,D,E,F1, we shall say that X "wl-dominates" Y if wl(x) }

wl(y) for any X-piece x and Y-piece y. Thus B wl-dominates B, C,

D, E, and F. Extending this to configurations, we will say that

X , wi-dominates [Y, ,,Y if Xi wl-dominates Yi, for 1

< i (n. In this case wl[Y, ,...,Y1 wl[X1 ,...,X,, so if

wl iX ,...X K 7/6, It clearly would be redundant to check

Y I ,...,Y separately.

With these introductory comments out of the way, let us

begin the case analysis. For ease of reference, we shall refer

to piece xi in 1xI,...,xd3 & lXf,...,Xl as piece Xii. For

instance piece B2 would be a B-piece and would be the piece with

second lowest rank in its set. For added convenience, we shall

identify each piece X-i with its size, and refer to the

configuration (X, ,...,Xi as IXtl,...,Xnl, for instance

B1,B2, C3]. For conciseness, we shall write simply W for

Wd[X,,...Xl, and similarly for wl and u.

There will only be two cases, B1B2,E3,F4) and

C1, D2, E3, E 4 E 51 , in which we cannot prove that W (7/6, and we

shall in each case show that, if all pieces are < 8/29, then

SECTION 5.2 - Page 257

either the configuration becomes empty or we suddenly can prove

the 7/6 bound.

On a first reading of this proof, it might be wise to look

just at these and the first few cases in detail, and to assure

oneself by a quick run through that all legal configurations are

covered by some argument. Our organization of cases is such as

to make this last task fairly straightforward.

One-Piece Bins:

The class

and wl(B)

such bins is clearly wl-dominated by [B1),

1/2 J 7/6.

Two-Piece Bins:

This class is clearly wl-dominated by [B1,B2], and

2wl(B) = 1 < 7/6.

SECTION 5.2 - Page 258

Three-Piece Bins:

1) Two or more B's:

1B1,B2,B3). This is impossible since u = 3/3 = 1.

LB1,B2,X3] for X

No matter what X3 is,

and so (B2,X3) obeys

W < w1(B1) + w2(B2,X3

- C, D, E, or F.

we must have 2(

relation 2, and

) < 1/2 + 1/2 +

B2)

so

1/6

+ X3 < 1,

= 7/6.

2) One or fewer B's: This, the class of

three-piece configurations, is wl-domi

and wl(B) + 2w1(C) = 1/2 + 2/3 = 7/6.

all remaining

nated by [B1,C2,C3],

Four-Piece Bins:

1) Three or more B's: Impossible, as seen above.

2) Two B's and a

piece must be

u = 2/3 + 1/5

C or D: Impossible,

at least an F, and

+ 1/7 = 106/105 > 1.

since the fourth

MMMUMMO

SECTION 5.2 - Page 259

3) Two B's and two E's: Impossible, since u = 2/3 + 2/6 = 1.

4) Legal configurations with two B's:

[B1,B2,E3,F4]. wl = (2/2)+(1/5)+(1/6) = 41/30 > 7/6.

However, B1+E3 _. 1-u(B2)-u(F4) = 1-(1/3)-(1/7) = 11/21, and

This implies that 2(B1)+E3 _. (22/21)-(1/6) < 1, so (B1,E3)

obeys Relation 2 and we get a discount of (1/2)(1/5) = 1/10.

Similarly, B2+F4 < 1-(1/3)-(1/6) = 1/2, which implies

2(B2)+F4 < 1-(1/7) < 1, so (B2,F4) obeys Relation 2, and

we get an additional discount of 1/12. Thus W (

(41/30)-(11/60) = 71/60. This is one of the two cases in

which the 71/60 bound cannot be improved upon using our

methods, although there are other ways of showing that no

71/60 examples can be constructed using this type of bin.

However, for our purposes all we need note is that if all

pieces must be .- 8/29, there can be no B-pieces, so this

configuration could not occur.

{B1,B2,F3,F41. wl = (2/2)+(2/6) = 4/3.

B1+F3 K 1-(1/3)-(1/7) = 11/21, so that 2(B1)+F3 1

(22/21)-(1/7) < 1, and (B1,F3) obeys Relation 2, and the same

goes for (B2,F4). Thus W _ (4/3)-2(1/2)(1/6) = 7/6.

SECTION 5.2 - Page 260

5) One B, two or more C's:

B1, C2, C3, X4 ,

1/3 + 2/4 + 1/6 = 1.

BI,C2,C3,F4]

for X = C, D, or E.

w1 = (1/2)+(2/3)+(1/5)

Impossible, s i nce

= 4/3 > 7/6.

B1+C2 < 1-(1/4)-(1/7)

(17/14)-(1/4)

Thus W <

= 17/28, so 2(Bl)+C2

= 27/28 < 1, and (B1,C2) obeys Relation 2.

(4/3)-(1/6) = 7/6.

6) One B, one C:

CB1,C2,D3,D4.

B1+C2 - 1-(2/5) =

wl = (1/2)+(1/3)+(2/4) = 4/3.

3/5 ===> 2(B1)+C2 ((6/5)-(1/4)

so (B1,C2) obeys Relation 2 and W < (4/3)-(1/6)

[BlC2, D3, E4). w1 = (5/6)+(9/20) = 77/60 > 7/6.

B1+D3 _ 1-(1/4)-(1/6) =, 7/12 ===> 2(B1)+D3 K

(7/6)-(1/5) < 1, so (B1,D3) obeys Relation

W < (77/60)-(1/8) = 139/120

[B1,C2,D3,F43. wl = (5/6)+(5/12) = 5/4 > 7/6.

B1+F4 K 1-(1/4)-(1/5) = 11/20 ===> 2(B1)+F4 <

< 1, so (B1,F4) obeys Relation 2

u >

< 1,

7/6.

< 7/6.

2 and

=

(11/ 10) - (1/7) and

SECTION 5.2 - Page 261

W ((5/4)-(1/12) = 14/12 = 7/6.

[B1,C2,E3,E4]. wl = (5/6)+(2/5) = 37/30

B1+E3 < 1-(1/4)-(1/6) = 7/12 ===> 2(B1)+E3 (

(7/6)-(1/6) _.. 1, so (B1,E3) obeys Relation 2

W j (37/30)-(1/10) = 34/30 < 7/6.

[B1,C2,E3,F4]. wl =

f B1+F4 < 4/7, then 2(B

B1,F4) would obey Relat

(5/6)+(11/30) = 36/30 > 7/6.

1)+F4 i (8/7)-(1/7) = 1, so

ion 2 and we would have W K

(36/30)-(1/12) = 67/60 < 7/6. If not, then C2+E3 must be

< 1-(4/7) = 3/7, and so 3(C2)+E3 K (9/7)-2(1/6) < 1,

and so (C2,E3) would obey Relation 3 and we would still

have W K (36/30)-(1/3)(1/5) = 34/30 < 7/6.

[B1,C2,F3,F4. wl = (5/6)+(2/6) = 7/6.

7) One B, no C's, two or more D's:

LB 1,D2,D3, D4 . wl = (1/2)+(3/4) = 5/4 > 7/6.

B1+D4 < 1-(2/5) = 3/5 ===> 2(B1)+D4 K (6/5)-(1/5) = 1,

so (B1,D4) obeys Relation 2 and W K (5/4)-(1/8) = 9/8 < 7/6.

> 7/6.

and

SECTION 5.2 - Page 262

[B1,D2,D3,E 4). wl = (1/2)+(2/4)+(1/5) =

(D3)+E4 j 1, then (D3,E4) obeys Relation

(6/5)-(1/4)(1/5) = 23/20 < 7/6. If not,

D2 > D3 > (1-E4)/4, so that B1+E4 (1-2(

consequently 2(B1)+E4 < 2-(1-E4)-E4 = 1,

d obey Relation 2 and we would still have

(6/5)-(1/10) = 11/10 < 7/6.

fB1,D2,D3,F4]. wi =

6/5 > 7/6.

4 and so

then we mu

1-E4)/4

and so (B1

1+(1/6) = 7/6.

8) One B, no C's, no more

wl-dominated by IB1,D2,

wl = (3/4)+(2/5) = 23/2

than one D:

E3,E41, for

0 < 7/6.

This class is clearly

which

9) No B's, three or more C's:

C1,C2,C3,C4]. This is impossible since u = 4/4 = 1.

£C1,C2,C3,X43, for X = D, E, or F.

No matter what X is, (C3,X4) must obey Relation 3, so

W < (3/3)+(2/3)(1/4) = 7/6.

If 4

W <

have

and

wou 1

W <

st

,.E4)

SECTION 5.2 - Page 263

10) No B's, no more than 2 C's: This, the class of all

remaining four-piece configurations, is clearly

wl-dominated by CC1,C2,D3,D4], for which

wl = (2/3)+(2/4) = 7/6.

Five-Piece Bins:

1) Two or more B'

u > 2/3 + 3/7

s: Impossible since we must have

= 23/21 > 1.

2) One B and one

must have u >

or more C's:

1/3 + 1/4 +

Impossible since then we

3/7 = 85/84 > 1.

3) One B, no C's, and two or

then we must have u > 1/3

more D's: Impossible, since

+ 2/5 + 2/7 = 107/105 > 1.

4) One B, no C's, one D, and two or more E's: Impossible,

since then u > 1/3 + 1/5 + 2/6 + 1/7 = 106/105 > 1.

5) Legal configurations with one B:

[B1,D2,E3,F4,F5 .

B1+D2 < 1-(1/6)-(2/7)

(23/21)-(1/5) < 1, so

wl = (3/4)+(1/5)+(2/6) = 77/60 > 7/6.

= 23/42 ===> 2(B1)+D2 <

(B1,D2) obeys Relation 2 and

SECTION 5.2 - Page 264

W <, (77/60)-(1/8) = 139/120 < 7/6.

LB 1, D 2,

B1+D2 (1-(

so (BlD2)

F3,F4,F5]. wl = (3/4)+(3/6) = 5/4 > 7/6.

3/7) = 4/7 ===> 2(B1)+D2 < (8/7)-(1/5) > 1,

obeys Relation 2 and W . (5/4)-(1/8) = 9/8 <

[B1,E2,E3,E4,E5]. Impossible since u = 1/3 + 4/6 =

[B1,E2,E3,E4,F5J. wl =

B1+E4 < 1-(2/6)-(1/7) = 11/

(22/21)-(1/6) < 1, so that

W < (76/60)-(1/10) = 70/60

[B1, E2,E3, F4, F5. wl

B1+F4 K 1-(2/6)-(1/7) = 11

(22/21)-(1/7) < 1, so that

W * (74/60)-(1/12) = 69/60

[BlE2,F3,F4,F5J. wl =

B1+F5 K 1-(1/6)-(2/7) = 23/

(23/21)-(1/7) < 1, so that

W < (6/5)-(1/12) = 67/60 <

(1/2)+(3/5)+(1/6) = 76/60 > 7/6.

21 ===> 2(B1)+E4 <

(B1,E4) obeys Relation 2 and

= 7/6.

= (1/2)+(2/5)+(2/6) = 74/60 > 7/6.

/21 ===> 2(Bl)+F4 K

(Bl,F4) obeys Relation 2 and

< 7/6.

(7/10)+(3/6) = 6/5 > 7/6.

42 ===> 2(B1)+F5 <

(B1,F5) obeys Relation 2 and

7/6.

7/6.

1.

SECTION 5.2 - Page 265

[B1, F2, F3, F4, F5]. wl = (1/2)+(4/6)

6) No B's, three or more C's:

have u > 3/4 + 2/7 = 29/28

Impossible since we must

> 1.

7) No B's, two C's, two or more D's: Impossible, since then

+ 2/5 + 1/7 = 73/70 > 1.

8) No B's, two C's, one D, and one or more E's: Impossible

since then u > 2/4 + 1/5 + 1/6 + 1/7 = 424/420

9) Legal configurations with no B's,

[C1, C2,D3 ,F4,IF5].

C1+D3 < 1-(1/4)-(2/7)

wl = (2/3)+(1/4)+(2/6)

= 13/28 ===> 3(C1)+D3 _

= 5/4 > 7/6.

(39/28)-(2/5) = 139/140 < 1, and so (C1,D3) obeys Relation 3

and W < (5/4)-(1/12)

[C1,C2,E3,E4,E5 .

= 14/12 = 7/6.

Impossible,

C1,C 2, E3, E4,F5} . w1

since u =

= (2/3)+(2/5)+(1/6)

2/4 + 3/6 = 1.

= 74/60 > 7/6.

C1+E3 j 1-(1/4)-(1/6)-(1/7)

(111/84)-(2/6)

= 37/84 ===> 3(C1)+E3 <

= 83/84 < 1, so (C1,E3) obeys Relation

W ((74/60)-(1/15)

= 7/6.

then

u > 2/4

> 1.

two C's:

3 and

= 70/60 = 7/6.

SECTION 5.2 - Page 266

CC1,C2,E3,F4,F51. wl = (2/3)+(1/5)+(2/6) = 6/5 > 7/6.

If C1+F4 < 3/7 or C2+F5 < 3/7, then for that pair we would

have 3(C)+F < (9/7)-(2/7) = 1, so the pair would obey

Relation 3 and we would have W _. (6/5)-(1/18) = 103/90 < 7/6.

And one of the two inequalities must hold, since otherwise the

total of the pieces would exceed 2(3/7)+(1/6) > 1.

CC1,C2,F3,F4,F5]. wl = (2/3)+(3/6) = 7/6.

10) No B's, one C, one or more D's:

D2,D3,D4,X51,

+ 3/5 + 1/6 =

for X

61/60

= D or E. Impossible since

> 1.

rCI, D2, D3, D4, F53.

C1+D2 < 1-(2/5)-(1/7)

(48/35)-(2/5) = 34/35

wl = (1/3)+(

= 16/35 ===>

< 1, so that

3/4)+(1/6) =

3(C1)+D2 (

(C1,D2) obeys

5/4 > 7/6.

Relation 3

and W e (5/4)-(1/12) = 14/12 = 7/6.

{C1,D2,D3,E4,E5). wl = (1/3)+(2/4)+(2/5) = 74/60 > 7/6.

C1+D2 . 1-(1/5)-(2/6) = 7/15 ===> 3(C1)+D2 <

(21/15)-(2/5) = 1, so that (C1,D2) obeys Relation 3 and

W < (74/60)-(1/12) = 69/60 < 7/6.

IC1,
u > 1/4

SECTION 5.2 - Page 267

[C1,D2,D3,E4,F5). wi

If 4(D3)+E4 < 1, then (D3,

would be ((6/5)-(1/20) =

D2 > D3 > (1-E4)/4, and so

(5/14)+(E4/2).

n (15/14)-(1/12

and we would st

Thi

11

[C1, D2, D3,F4,F53.

C1,D2, E3, E4, E5).

This is the second and

not been able to prove

Relations, and this is

seen an example where t

which SD(L)/L* = 71/60

pieces must be K 8/29,

C1 (8/29. If 3(C1)+E5

Relation 3 and we would

not, then we must have

So let E5-(5/29) = x >

And so D2 < 1 - [(8/29)

= (5/6)+(1/5)+(1/6) = 6/5 > 7/6.

E4) would obey relation 4, and W

23/20 < 7/6. If not, then

C1+E4 < 1-(2(1-E4)/4)-(1/7) =

s means that 3(C1)+E4 < (15/14)-(E4/2)

1, so that (C1,E4) would obey Relation 3

have W < (6/5)-(1/15) = 17/15 < 7/6.

wl = (5/6)+(2/6) = 7/6.

wl = (7/12)+(3/5) = 71/60.

last configuration for which we have

that any pairs obey any of the

not surprising since we have already

his configuration yields a list for

(Figure 4.3). However, if all the

then,in particular, we must have

. 1, then (C1,E5) would obey

have W ((71/60)-(1/15) < 7/6. If

E3 > E4 > E5 > 1-(24/29) = 5/29.

0. We then have C1 > (8/29)-(x/3).

-(x/3)] - 3[(5/29)+xl = (6/29)-(8x/3),

and therefore 4(D2)+E5 < (29/29)-(32x/3)+x < 1, and

SECTION 5.2 - Page 268

(D2,E5) obeys Relation 4,

W K (71/60)-(1/20) < 7/6.

configuration go away if

so that we still would have

So the problems with this

all pieces in L are < 8/29.

[C1,D2, E3, E4,F5], 1C1,D2,E3,F4F53, and LC1,D2,F3,F4,F51.
These are all wl-dominated by the first, for which

wi = (7/12)+(2/5)+(1/6) = 23/20 < 7/6.

11) No B's, one C,

wl-dominated by

= 17/15 K 7/6.

and no D's:

[C1,E2,E3,E4,.

Thi

E 5]

s class is clearly

for which wl = (1/3)+(4/5)

12) No B's, No C's, and four or more D's:

[D1,D2,D3,Df4,D5]. Impossib le, since u = 5/5 = 1.

CD1, D2, D3, D4, X53,

No matter what X is,

W S (4/4)+(3/4)(1/5)

for X = E

(D4,X5) wi

= 23/20 <

or F.

11 obey Relation 4, so that

7/6.

13) No B's, no C's, no more than three D's: This, the class

of all remaining five-piece configurations, is

clearly wl-dominated by [D1,D2,D3,E4,E5), for which

wl = (3/4)+(2/5) = 23/20 < 7/6.

SECTION 5.2 - Page 269

Six-Piece Bins:

1) One or more B's: Impossible, since we would

u > 1/3 + 5/7 = 22/21 > 1.

2) No B's, two or more C's:

u 2 2/4 + 4/7 = 15/14 > 1.

Impossible, since we would

3) No B's, one C, one or more D's: Impossible, since we

would have u > 1/4 + 1/5 + 4/7 = 143/140

4) No B's, one C, no D's, two or more E's: Impossible,

we would have u > 1/4 + 2/

5) Legal configurations with

[C1,E2,F3,F4,F5,F6]. w

6 + 3/7 = 85/84 > 1.

one C:

1 = (8/15)+(4/6)

C1+E2 1-(4/7) = 3/7 ===> 3(C1)+E2 ((9/7)-(2/6)

(C1,E2) obeys Relation 3 and W < (6/5)-(1/15) = 17/15 < 7/6.

[C1, F2, F3, F4, F5, F63.

have

have

> 1.

since

= 18/15 > 7/6.

< 1, so

wl = (1/3)+(5/6) = 7/6.

SECTION 5.2 - Page 270

6) No B's, no C's, three

we would have u > 3/5

or more D's: Impossible, since then

+ 3/7 = 36/35 > 1.

7) No B's, No C's, two D's, and two or more E's: Impossible,

since we would have u > 2/5

8) Legal configurations with n

+ 2/6 + 2/7 = 214/210 > 1.

o C's, two D's:

rD1, D2, E3,F4, F5,F61. wl = (2/4)+(1/5)+(3/6) = 6/5 > 7/6.

D1+F4 < 1-(1/5)-(1/6)-(2/7) = 73/210 ===> 4(D1)+F4 (

(146/105)-(3/7) = 101/105 < 1, so (D1,F4) obeys Relation

and W _ (6/5)-(1/24) = 139/120 < 7/6.

9) No B's, no C's, one D, four or more E's: Impossible,

we would have u > 1/5 +

10) Legal configurations with

[DlE2, E3, E4,,F5, F6].

D1+F5 < 1-(3/6)-(1

(10/7)-(3/7) = 1,

+ 1/7 = 212/210

no C's, one D:

> 1.

wl = (1/4)+(3/5)+(2/6) = 71/60.

/7) = 5/14 ===> 4(D1)+F5 <

so (Dl,F5) obeys Relation 4 and

< 7/6.

since

4/6

W (71/60)-(1/24)

SECTION 5.2 - Page 271

CD1lE2,E3,F4,F5,F53, [D1,E2, F3, F4,F5,F6], and

[D1,F2,F3,F4,F5,F6].

e three are all wl-dominated by the first, fo

(1/4)+(2/5)+(3/6) = 23/20 < 7/6.

r which

11) No B's, no C's, no D's, and six E's:

we would have u = 6/6 = 1.

12) No B's, no

class of all

wl-dominated

nce

1/7,

LI

Impossible, since

C's, no D's, no more than five E's:

remaining six-piece configurations,

by [E1,E2,E3,E4,E5,F6], for which wl

Thi

is

s, the

clearly

7/6.

there can be no seven-piece bins if all the pieces

this completes our case analysis, and the Theorem is

A similar case analysis can be constructed to show

THEOREM 5.8: If S f AAF, and 1/5

R SD,t] =

< t < 1/4, then

23/20.

We will generously omit the details, onl

for this proof we must allow pieces as small

order to apply Lemma 4.2, and the fractional

y mentioning that

as 3/23 < 1/7, in

inequalities become

Thes

wj 1 K

Si

exceed

proved.

SECTION 5.2 - Page 272

even more difficult to follow than in the above.

Remark. We conjecture that both Theorems 5.7 and 5.8

extend to arbitrary S f AF, basing this on our conjecture that

Theorem 5.6 similarly extends with only a change in the

constant.

We also conjecture that if we had the time and the

patience, we could use this method to establish RLSD,tJ for any

t C (0,1/2), and that the results would be the lower bounds

given by Theorem 4.1. However, this approach is not really

practical, since it appears that we would need a separate case

analysis for each n > 0 to cover the case when L1/tJ = n.

SECTION 5.3 - Page 273

SECTION 5.3. The 11/9 Theorem

In this section we use the weighting function Wd to derive

an exact upper bound on R[FFD,t] for all t 6 (1/2,1). To do

this, we must consider lists with pieces of size greater than

1/2. In Chapter 4 we saw that the presence of such pieces made

for a considerable increase in complexity over the case when

they were not allowed. And indeed, Wd was defined under the

assumption that they were absent. Nevertheless, as we shall see

in the proof of the following Theorem, there are ways to

surmount these difficulties, at least for the algorithm FFD.

THEOREM 5.9. For all decreasing lists L,

FF(L) . (11/9)L* + 4.

We shall divide the proof of this Theorem into sections.

The first will reduce the general statement to be proved to a

simpler, more manageable situation, and present an outline of

how we can adapt our weighting function to these circumstances.

The second will develop the machinery for this adaptation, and

prove that it works. The final section will be, of course, the

case analyses.

SECTION 5.3 - Page 274

OF THEOREM 5.9

Definitions, Reductions, and the Idea of the Proof:

Our first major reduction is

REDUCTION 1: Range(sizeL) G (2/11,1).

If there is a 1

with piece sizes in

11/9, since (11/9 -

ist violating the

this range by Lem

1)/(11/9) = 2/11.

Theorem, there must be one

ma 4.2, with K = 4, r =

Granted th

LAe LB-LC-LD LE,

is reduction, let us divide L into sublists, L =

where

(1/2,1],

(1/3, 1/2),

(1/ 4, 1/3),

(1/5,1/4],

(2/11,1/5)

PIECES(LA) =

PIECES(LB)

PI ECES(LC)

PI ECES(LD)

, PIECES(LE)

A-PIECES(L),

= B-PIECES(L),

= C-PIECES(L),

= D-PIECES(L),

= E-PIECES(L).

We shall usually d

usual, elements of

packing of L which

rop the argument (L) for

X-PIECES will be called

contains an A-piece a wi

X-PI ECES(

X-pi eces.

11 be cal

A-bin and the a-bin. All other non-empty bins will simply be

PROOF

1.

Range(si

Range(si

Range(si

Range(si

Range(si

ze

ze

ze LC

ze

ze

L).

A

led

As

bin

and

in a

SECTION 5.3 - Page 275

called non-A-bina.

Now let PF be the FF-packing of L, and let P* be an optimal

packing of L with its bins so ordered that if in PF BINj is the

a-bin for a a A-PIECES(L), then BIN is the a-bin in P* also.j
Divide the two packings into segments as shown in Figure 5.3.

PA* is the A-bins of P*, PB* the non-A-bins, PFA the A-bins of

PF, and PFB the non-A-bins of PF. Let us further define

PIECES(LB. LC.

cont(PB*) =

cont(PFB) =

LD. LE)

b CL :13

PI ECES(

is not

is not

- PIECES(

an A-bin

an A-bin

The following two reductions are of a more technical nature

than the previous one, and their importance will not be

immediately apparent, but they are presented now for

convenience.

REDUCTION 2: %$ contains the last element e' in the decreasing

list L, and hence no pieces were placed by FF in A-bins after

the last piece had been placed In a non-A-bin.

If any pieces were, they certainly would not affect FF(L),

and their omission could only decrease L*, and so if there is a

decreasing list L for which FF(L) > (11/9)L* + 4, then there

LA)

in

in

P,

P*,

PFJ .

SECTION 5.3 - Page 276

PFB

PI3*

FIGURE 5.3. PF and P*.

PF:
0 b so*I -

~4.

PA*

SECTION 5.3 - Page 277

must be one obeying the Reduction.

REDUCTION 3: % A PIECES(LC-LD) A 0.

By Lemma 4.4, FF(LA.LB) _ L*. If no C- or D-piece went in

a non-A-bin in PF, we thus would have FF(LAeLB-LCeLD) < L*, and

could apply Lemma 4.3 with n = 5 to conclude that FF(L) _

(6/5)L* + 1 < (11/9) + 4. So the only lists L which possibly

could violate our Theorem are ones obeying Reduction 3.

We are now prepared to show how we adapt our weighting

function Wd to the presence of A-pieces. The key idea is the

observation that we could have generated the packing of segment

PFB, the non-A-bins of PF, by simply considering % as a list,

ranked so that

rank(b) < rank (c) <===> rankL(b) < rankL(c),

and applying FF to"J. And since %t does not contain any

A-pieces, all the facts that we proved about Wd will hold for

that packing. In particular, we know from Theorem 5.6 with N =

6 that

SECTION 5.3 - Page 278

CLAIM 5.9.1: Wd M) 1 #PFB -4

> FF(L) - IA-PIECESI - 4.

However, we still face the problem of identifying which

pieces in L actually go intota'. It would be convenient if these

were precisely the pieces in &, but this need not be the case.

Some pieces that are not in A-bins in one packing may be in

A-bins in the other. in addition, there is the fact that the

number of A-bins, which is the same in both packings, but not

counted by #PFB, must somehow be counted when we try to put a

bound on FF(L). To take care of these two problems, we shall

introduce two functions:

f: PIECES(L) ---- > 2

will be a "responsibility assigning" function which assigns to

each piece in L the set of the zero or more pieces inSo for

which it is, In a sense to be explained in more detail later,

uniquely "responsible." It will obey

PROPERTY 5.9A: = f(b).
baPlECE(9

SECTION 5.3 - Page 279

The second function

g: PIECES(L) ---

will serve to count those A-bins which, a sense also

explained later, "collaborated" in the above "responsibility."

It will obey

PROPERTY 5.9B: IA-PI ECES

We can then

f(X) =yJ

easily extend f and g to functions

g(X)

on sets by

= g(b).

Our case analysis will be devoted to showing that for each

in P*, the following

PROPERTY 5.9C: For

Wd(f(X))

property holds:

X = cont r(j),

+ g(X) -<, (11/9)(y(X)+g(X)),

where y(X)
1,

if X contains no A-pieces,

otherwise.

to be

}_ g(b).
b rc PIEC65(L

B I N

SECTION 5.3 - Page 280

We can say that the left-hand side of the inequality counts

bins in PF, and the right-hand side does the same for P* (and

multiplies the result by 11/9), since Wd counts non-A-bins in

PF, y counts them in P*, and g counts the A-bins in both

packings. This intuitive way of looking at the Property

hopefully will help us understand what is going on when we

observe that, given that f and g obey Properties 5.9A and 5.9B

respectively, and that Property 5.9C holds for all BIN in P*,

the Theorem follows by summation. For we would have

~.d f(contp(j)) + g[contpg(ijJ
J=t

L*

K jet(11/9) (Y[contp,(j) + g[cont(j)) .

Jet

Thus, since Wd(*4) < fWd(f[cont?.(j)j) by Property 5.9A and

Lemma 5.1, we have

Wd(le') + g[PIECES(L)3

K (11/9).(L* - IA-PIECESI + g PIECES(L)),

and so by Claim 5.9.1,

SECTION 5.3 - Page 281

FF(L)-IA-PIECESI-4 +

((11/9)0(L* - |

g[PIECES(L)3

A-PIECESI + g PIECES(L)]).

FF(L) . (11/9)L* - (2/9)(IA-PIECESI- g(PIECES(L))) + 4,

and so by Property 5.9B,

FF(L) . (11/9)L* + 4.

Summarizing, we have

LEMMA 5.10. If for any decreasing list L obeying

Reductions 1, 2, and 3, there exist maps

f:PIECES(L)--->2g and

g:PIECES(L) --- >A

obeying Properties 5.9A and 5.98, respectively, and such that

Property 5.9C holds for all BINj in an optimal packing of L,

then for all possible decreasing lists L,

FF(L) . (11/9)L* + 4.

Thus our theorem will be proven once we have produced f and

g and shown that the case analysis can be done. First, f and g:

SECTION 5.3 - Page 282

PROOF OF THEOREM 5.9

11. Responsibility and Collaboration

First let us make some observations about segments PA* and

PFA.

CLAIM 5.9.2. No bin in PA* or PFA contains more than three

pieces.

This is because an A-piece and three additional pieces

would have a total size of more than 1/2 + 6/11 > 1. However,

note that two non-A-pieces are possible, as long as neither is a

B-piece and at least one is a D-piece or smaller, since an

A-piece, a C-piece, and a D-piece could have total size as small

as 1/2 + 1/4 + 1/5 + E = 19/20 +6 (1, for small enough E.

CLAIM 5.9.3. If BIN- is an A-bin and height (j) . 2, then

heightPF(j) > 2.

Proof of Claim. Let b = pieceo*(j,2). Si

size(e'), where e' is the last piece in list L,

non-A-bin under FF by Reduction 2 and hence to

BIN', by Lemma 4.4 there is a c = piece f(j,2).J

nce size(b)

and e' goes in a

the right of

0

SECTION 5.3 - Page 283

Claims 5.9.2 and 5.9.3 imply that the only A-bins which

contain more pieces in P* than in PF are those which contain

three pieces in P* and two in PF. We shall call such bins

Deficit Bins, and the set of all Deficit Bins will be called

DEFICIT,.

One way of showing that a given A-bin is aot a Deficit Bin

is the following:

CLAIM 5.9.4.

piece,,(j,1), b =

size(b) + size(c)

Deficit Bin.

(FITTING LEMMA). If BIN- is an

piecePF(j, 2), and c A b is such

_ 1, then heightPF(j) = 3 and BI

A-bin, a =

that size(a) +

N is not a

Proof of Claim. Since e' does not go in an A-bin in PF,

when e' was assigned we must have had levelp(j) > 1 - size(e') >

1 - size(c) > size(a) + size(b). Thus by definition of level,

BIN3 must have contained some additional piece. a

We are now ready to begin the construction which will

eventually lead to the definition of both f and g, a

construction which will be analogous to that used in the

definition of the function "f" used in the proof of Theorem 4.8.

This time we define the relation points to as follows:

SECTION 5.3 - Page 284

IN is an A-bin, and for h G 2,3?,

= Piece,,(jh),

= pieceps(j,h),

x points to y.

(note that for h = 2 this is the reverse of the defini

points IQ in Theorem 4.8. There we would have said th

points to x).

A chain of pieces is a sequence <b, ,...,b,> such

points to b ,,.. 1 < i < n. A loop is a chain <b,,...,

b. points to b,. A maximal chain is a chain which is

loop, and not a proper subsequence of any other chain.

(b ,...,b,> is a maximal chain, we say b, is its head

tail.

CLAIM 5.9.5. ib: b is the head of a

= I x; x = pieceV.(j,3) for BINS 6

tion of

at y

that b

b,> where

not a

if

and bh its

maximal chaini

DEFICITI.

Proof of Claim. The set of heads of maximal chains

precisely x.'3 : x is not pointed to>. No element of 6

an A-bin in P*, so none are pointed to, and of the pieces

are in A-bins in P*, all except the top pieces in Deficit

are pointed to, by Claims 5.9.2, 5.9.3 and the definition

if B

x

y

then

s

s in

which

Bins

of

SECTION 5.3 - Page 285

Deficit Bin. 1
We can illustrate some of

diagram of the optimal packing

piece y, drawing an arrow from

Figure 5.4. Note that a Defici

only one entering.

these concepts by drawing a

P*, and if piece x points to

x to y in the diagram. See

t Bin has two arrows leaving and

Continuing our definitions, if b is the tail of a maximal

chain and in addition b& 4 , then we shall call b a terminator.

The tail of a maximal chain need not be a terminator, for it

could be in an A-bin in PF, for instance piece P(j,3) for an

A-bin BIN with heightpx(j) = 2. However, since no element of

is in an A-bin in PF and hence no element points to anything,

each element oft, must be the tail of some maximal chain and so

we have

CLAIM 5.9.6. fb: b is a terminators = '

A very important fact about terminators which is really the

cornerstone of this proof is the following:

DEFictr
51tW

FIGURE 5.4. P* with arrows.

LOOP- <)
MAPIMAL CKAIN S:

0 . &

"2zz2

C3

B4'

* **

<5,8,,) czcl (<E,')

SECTION 5.3 - Page 287

CLAIM 5.9.7. (SIZE LEMMA).

chain, b, is a terminator, and i

some j or i = 11. Then rank(b,)

Proof of Claim. For each b

index of the A-bin containing bi

with maximal index in b-:i' i .

so assume h < n. Then there exi

and we have bh = pieceP (j[h+1),

See Figure 5.5. In terms o

6'+2

0 0 0

Suppose <b,,...,bg> is a maximal

= MAX i: bZ = piecev.(j,3) for

> rank(b) for all i' . i < n.

' <i

P*.

n

a b

< n,

Let bk

If h =

= pi

let i (i) be the

be the piece

n we are done,

ece,&(j [h+1),p2),

figure, we will show that

S * s A 0 &

EVA +i
FIGURE 5.5

'////

SECTION 5.3 - Page 288

the arrow from piece bk+, must point somewhere to the right of

BIN , The idea of the proof is then that no piece to the

left of BINg*1 in the diagram can be a terminator, and that

no such piece can point back to the right of BIN 1, 4 , either.

Thus the chain cannot have a terminator, contrary to assumption.

The details:

Let a, be the A-

size(bk) 1, bhi-i

BIN3th+ , since by L

rank(pieceP,(j[h+1],2

the definition of bh.

it would have to go i

position (j[h+1],2),

piece, thus violating

bin to the left of B11

non-A-bin and hence F:

So there exists

piecep*(j Ch+21 ,2) and

A-piece in BIN .

size(a.L) }

size(aj) +

above, bk4 t

ize(a ,)

ize(bk .

must in

piece in BIN [,,. Then since size(a1) +

:annot in PF go in any bin to the right of

emma 4.4 this would Imply that

= rank(b) < rank(bW41), contradicting

bV cannot go in BINjt,4i_ in PF because

n position (j(h+1),3) since bh is in

by

1) .

PF

nd hen

packin

not a

ib n

b %. I =

S ince

Lemma

1, a

go in

hence cannot be a terminator, so

A simple induction based on

:e would be above a higher ranke

g property (3). Thus b%, goes

in PF, and hence does not go in

terminator.

in the chain, with b =

piece,(j[h+2J,2). Let a. be t

j[h+2] < jCh+1j, we must have

1.2. Thus size(a1) + size(bh+

nd so by the same argument used

a bin to the left of BIN Cjtq

d

in a

a

he

and

there exists a bk.

this argument will thus show

SECTION 5.3 - Page 289

that for no k > 0 is bh+k a terminator. Since the chain is

finite by Claim 5.9.5, and does have a terminator by hypothesis,

this is a contradiction. Thus we must have h = n, and the Claim

is proved. a

We call Claim 5.9.7 the SIZE LEMMA since because L is

decreasing, the terminator must have the minimum size of all the

pieces injbi: i' < i J nj.

Continuing, we now extend the definition of points to to

bins. We shall say a piece b Points to BIN if BIN is an A-bin

and there is a piece c a cont p*(J) which b points to. In terms

of our diagram with arrows, Figure 5.3, piece b points to BINj

if the arrow from b goes to BIN'. If BIN and BIN' are A-bins,

we say BIN points Sa BINj if there is a b 6 contw(j) which

points to BIN[, that is, if an arrow goes from one bin to the

other in our diagram. Note that by Claim 5.9.3, every A-bin

which contains a non-A-piece in P* is pointed to.

The following Claim tells us about what happens when

Deficit Bins point to each other:

CLAIM 5.9.8. If BIN and BIN are Deficit Bins, and BIN

points to BIN*., then BIN is pointed to by a B-piece.

SECTION 5.3 - Page 290

Proof pf Claim. Since the

must contain three pieces in P*.

ah = piece p4(h,1),

bk = pieceps(h,2),

cK = piece ps(h,3).

Let x E b).ci be the piece in

hence = piece p (i,2), y be the o

be the piece that points to BINS

Now observe that in PF, the bott

z, and the bottom two pieces in

can be no piece u A z such that

size(aj) + size(z) + size(u)

and no piece v 0 x such that

size(a() + size(x) + size(v)

else one of the A-bins would not

FITTING LEMMA (Claim

on the relation of i

two bins are Deficit Bins, each

For h fj,i?, let

BIN, which points

ther piece, and z

(z must exist by

om two pieces in B

BIN{ are a[and x.

be a Deficit Bin,

5.9.4). There are three

to j (see Figure 5.6):

to BINL and

= piece (j,2)

Claim 5.9.3).

IN' are a- and

Thus there

by the

cases, depending

If

size(cl)

BINjI by

rank(z).

distinct

< j.

is not a B-piece,

so since z goes i

Lemma 4.4 we have

Thus size(z) . si

pieces and we can

then size(z) < 1/3 < size(b

n BIN) in FF and is to the r

rank(piecepF(i,2)) = rank(x)

ze(x). If z = y, then z and

take u = x, and have size(a3

ight of

x are

CASE 1:

ci

be *

Bi -

a

I

*0~

CASE 2:

c.

b3

O N

C.

CIASE3:

5

BM',

C

bS

as

Mj

CASEs for CLAIM 5.9.8.

SIN .2

ci

FIGURE 5.6.

SECTION 5.3 - Page 292

size(z) + size(x) = size(a) + size(y) + size(x) i 1, a

contradiction. If z A y, then we can take u = y and have

size(a) + size(z) + size(y) . size(aj) + size(x) + size(y) : 1,

again a contradiction. Therefore z must be a B-piece.

Case 2. i
Then

size(a)

= j.

piece pF(j,2) = x, and we

+ size(x) + size(y) < 1.

can take u = y,

So this case is

since

impossible.

Case 3. i > j .

Then by Lemma 1.2,

v = y and have size(aL)

+ size(y) < 1. So this

size(a[) size(aj) so that we can take

+ size(x) + size(y) (size(a) + size(x)

case too is impossible.

So the only possible case is Case 1,

B-piece. 1
and there we have z is a

As an immediate corollory of Claim 5.9.8, we have

CLAIM

Bins, each

5.9.9. There cannot be a sequence of three Deficit

pointing to the next.

SECTION 5.3 - Page 293

This is because the first in the series would have to

contain a B-piece in P*, and due to size constraints no bin

containing both an A-piece and a B-piece has room for any more

pieces with size exceeding 2/11. Thus the first bin could not

contain 3 pieces in P*, and hence could not be a Deficit Bin.

Note that this also means that there cannot be a loop, each

piece of which is in a Deficit Bin in P*.

We are now ready to assign responsibility for each Deficit

Bin. Let

0, = 'a 6 A-PIECES: the a-bin is =g. a Deficit Bin3.

For each ata , let RESPONSIBILTY(a) be the smallest set of

Deficit Bins containing

(1) All Deficit Bins pointed

(2) All Deficit Bins pointed

of RESPONSIBILITY(a).

to by the a-bin,

to by members

Similarly, for each piece b e6 , let RESPONSIBILITY(b) be the

smallest set of Deficit Bins containing

SECTION 5.3 - Page 294

(1) The Deficit Bin pointed to by b, if there

(2) All Deficit Bins pointed to by members

of RESPONSIBILITY(b).

is one,

CLAIM 5.9.10. Every Deficit Bin is in RESPONSIBILITY(x)

for some unique x & 600L

Proof of Claim. Every Deficit Bin is pointed to by sgme

piece, and if we trace back the arrows in a diagram of P*, we

cannot by Claim 5.9.9 always find more Deficit Bins. Thus we

either must come to a non-Deficit A-bin, or a piece which is not

in an A-bin in P* and hence is in 6. a

CLAIM 5.9.11.

If a eCL and the a-bin contains no B-piece

|RESPONSIBILITY(a)I 1 2.

If ascL and the a-bin contains a B-piece

IRESPONSIBILITY(a)I 3.

If b * d-B-PIECES, IRESPONSIBILITY(b) .

If b e6)fB-PIECES, IRESPONSIBILITY(b) .

in P*, then

in P*,

1.

3.

Proof of Claim. If the a-b

then by Claim 5.9.8, any Deficit

themselves point to Deficit Bins

in contains no B-pi

Bins it points to

. By Claim 5.9.2,

ece in P*,

cannot

the a-bin can

SECTION 5.3 - Page 295

point to at most 2 Deficit Bins itself. If the a-bin did

contain a B-piece, then it has room for no more pieces in P* and

so can point to at most one Deficit bin itself, however, that

bin could point to two more, for a total of 3. These 2 could

not point to any further ones by Claim 5.9.9.

If b &(5 is not a B-piece, then no Deficit Bin it might

point to can point to any further Deficit Bins, by Claim 5.9.8.

If b is a B-piece, then it can point to a Deficit Bin which

points to two more, but by Claim 5.9.9 that is the end of the

line. a

We are now ready to define f and g. Actually, we will

define four special purpose functions, fl, f2, gl, and g2, and

will then set

f(x)

g(x)

- fl(x) U

- gl(x) +

f2(x),

g2(x).

The specific special purposes will be explained in a moment.

First of all, certain element of PIECES(L) can in essence be

deleted from the domains of the functions. If x is in A-PIECES

-6[or 9 -&, we set

SECTION 5.3 - Page 296

f(x)

g(x)

= fl(x)

= gl(x)

= f2(x)

= g2(x)

= 0,

= 0.

In addition, the function fl will be null on elements ofa.
Its job is to map each b&& to the piece in ib(if there is one)

for which b is "directly responsible." By Claim 5.9.5, b c& & is

the head of a maximal chain, unique since no piece can point to

more than one other piece. fl(b) is defined to be zero- or

one-element set

fl(b) = iterminator of riaximal chain headed by b3.

f2

is "indi

responsi

f2(x) = }

is used to account for the pieces in! for which x f £ub

rectly responsible," due to the Deficit Bins it is

ble for:

terminators of maximal chains headed by top pieces

in Deficit Bins belonging to RESPONSIBILITY(x)1.

We thus have,

CLAIM 5.9.12.

(5.9A) U f(x)
X & PsieS(L)

by Claims 5.9.5, 5.9.6, and 5.9.10:

f = fl U f2 obeys

SECTION 5.3 - Page 297

The functions gl and g2 count the A-bins tha

"collaborate" in the productions of pieces in f

&&u& via fl and f2. g2 is defined uniformly for

g2(x) = (2/3)1 maximal chains <b,,...,b,> with

in f(x), such that for some i,

and j < A-PIECES, bi = piece *(.

The function gl is a little more ad hoc, but

takes into account the number of pieces for which

indirectly responsible: For b G

t in a sense

rom pieces x

all such x by

terminators

< i (n,

,3) .

in all cases

x is

gl(b) = If2(b)i.

For a go, when the a-bin does not contain a B-piece in P*,

gl(a) = 1f2(a)| + 1/3.

For a e(f when the a-bin does contain a B-piece in P*,

gl(a) = 1f2(a)| + 1.

SECTION 5.3 - Page 298

This concludes the definition of gl and g2. To illustrate the

definitions of both f and g, we present in Figures 5.7 thru 5.9

a series of possible packings P*, with arrows drawn in as above,

and the values of fl, f2, gl, and g2 for the various pieces

involved. Figures 5.7 and 5.8 give very simple examples

focussing on the generation of f2(x) from x, while 5.9 gives a

more complicated example where processes interact.

CLAIM 5.9.13. g = gl + g2 obeys

(5.9B) m(x) J IA-PIECESJ.
X & PIECES (L)

Proof of Claim. We may think of gl and g2 as counting

A-bins. Thus it will be sufficient to show that no A-bin is

counted for more than a total of 1. gl counts both Deficit Bins

and a-bins for a Gf. The If2(x)l part can be thought of as

counting 1 for each Deficit Bin in RESPONSIBILITY(x) whose 3rd

piece heads a maximal chain with a terminator. The added 1/3 or

1 if x 66L can be thought of as counting that much for the x-bin

itself. g2 only counts A-bins whose 3rd piece in P* is pointed

to. These, by definition of po i nt s LQ, must also contain a 3rd

piece in PF and so are not Deficit Bins, so g2 does not count

Deficit Bins.

Thus Deficit Bins are counted only by gl, and since none is

in RESPONSIBILITY(x) for more than one x by Claim 5.9.10, no

SECTION 5.3 - Page 299

Deficit Bins: BIN,, BIN2, BIN 3

fl(B) = D3

f2(B) = ID1 ,D2,Dg

gl(B) = 3

g2(B) = 0

(assuming D, ,D, ,Ds,t IL)

FIGURE 5.7. Illustration of definitions

Deficit Bins:

of fl, f2, gl, g2.

BIN 5 , BIN

fl(A,) = 0

f2(Ai) = D ,D

gl(A7)

g2(A7)

-3

=0

fl(B1) = jD

f2(B1) = 0

gl(B1) = g2(Bi)

(assuming D1, D, , D3 &)

Illustration of definitins.

b3

A,. A3

/ ii

As

C1e

I--0 . 0 0

= 0

FIGURE 5.8.

SECTION 5.3 - Page 300

Deficit Bins: BIN 3 , BIN 4 . e,= (A, I

(Assume DJ,

fl(A,) =
gl(A,) =
g2(Aj) =

(At)
(At)
(At)

Dz, D3 , El,

f2(At)
1/3
0

f2(A-.)
1/3
0

= 0

= 0

E3 e ''?a,)

f 1(C3
f 2(C3
gl (C3

fl(Ez
f2(El.
gl(Et
g2(E 2

fl(E 3) = JES
f2(E,) = 0
gl(E 3) = g2(E 3)

FIGURE 5.9. Illustration of definitions

AL, AS

= 0
0
g2(C

3)

0
0
2/3

fl(As
f2(AS
gl(As
g2(AS

Ell
0
(Dz
7/3
4/3 = 0

of fl1, f 2, gl, g2.

SECTION 5.3 - Page 301

Deficit Bin is counted for more than 1. If a non-Deficit A-bin

is not counted by g2(x) for any x, then it is not counted for

more than 1 by definition of gl. If it 1_ counted by g2, then

it must contain a 3rd piece in P*, hence cannot contain a

B-piece, so gl counts it for 1/3. Since its 3rd piece can be in

only one maximal chain, the bin can be counted by g2(x) for at

most one x, and thus has a total count of at most 1/3 + 2/3 = 1.

a

Claims 5.9.12 and 5.9.13 tell us that f and g obey

Properties 5.9A and 5.9B, as required by Lemma 5.10. Thus all

that remains for the proof of Theorem 5.9 is to show that

Property 5.9C holds for all BIN in P*. But first we shall

prove a few more properties of f and g which will be of use in

the case analysis to come.

CLAIM 5.9.14.

(A) bf. - B-PIECES = > gl(b) -. 1.

(B) b a 01 B-piece ===> gl(b) (3.

(C) a r.L and the a-bin contains no B-pieces in P*

===> gl(a) < 7/3.

(D) arc and the a-bin contains a B-piece in P*

===> gl(a) .. 4 .

SECTION 5.3 - Page 302

Proof of Claim.

the definition of gl

Follows immediately from Claim 5.9.11 and

G

CLAIM 5.9.15. If

be O B-pieces

$$QC-PI

===> g1(

ECES A 0, then

x) K 2.

Proof .of Claim. The fact that there is a C-piece in a

non-A-bin of PF means by Lemma 4.4 that for all A-bins BINS

room enough for two pieces besides the A-piece and hence

size(piecepf(j1)) < 4/11 < 2/3, we must have size(piecePF(j

> 1/4. In particular, all Deficit Bins must thus contain pi

of this size in PF.

Now for a piece to point to a deficit bin, it must be i

that bin in PF, by definition of points t.o. Thus no A-bin c

contain in P* two pieces which point to Deficit Bins, since

these pieces would have to have size exceeding 1/4, which is

impossible by size constraints.

Thus, if our B-piece b points to a Deficit Bin, under I

Claim's hypothesis that bin can only point to one more, limi

IREPONSIBILITY(b)I and hence If2(b)t and gl(b) to at most 2.

with

,2))

eces

n

an

both

the

ting

.D

The remaining Claims about f and g are all consequences of

the SIZE LEMMA (Claim 5.9.7). The first follows immediately

from that Lemma and the definition of g2:

SECTION 5.3 - Page 303

CLAIM 5.9.16. For all x & 90(1,

g2(x) > (2/3)| terminators in f(x) which are larger than

than the heads of the maximal chains they

terminatell.

CLAIM 5.9.17.

(A) If b C) 0(B-PIECESU C-PIECES), then

y f fl(b) ===> size(y) (size(b).

(B) If b C (9 0 (D-PIECES U E-PIECES), then

y C fl(b) ===> size(y) i 1/4.

Proof gi Claim. If no piece in the maximal chain headed by

b is piece p(j,3) for j < IA-PIECESI, the results are automatic

by the SIZE LEMMA. If some piece in the chain Lj piece,(j,3),

we still must have size(y) < the size of the last such piece,

call it c. By ordered packing property (3), we must have

size(piece (j,2)) > size(c). Since the total of these two size

cannot be as great as 1/2, we thus have size(y) < size(c) < 1/4.

Thus (B) holds. (A) holds because under its hypothesis size(b)

> 1/4. [

SECTION 5.3 - Page 304

CLAIM 5.9.18. If b a 00 B-PIECES, y c fl(b), and gl(b) >

1, then size(y) i 1/3.

Proof 2f Claim. By definition of gl, b must point to a

Deficit Bin, and in particular to c = piece e(j,2) for that bin.

Since the Deficit Bin contains three pieces in P*, by size

constraints we must have size(c) < 1 - 1/2 - 2/11 = 7/22 < 1/3.

The argument for the previous Claim can then be used to show

that either size(y) < size(c) or size(y) . 1/4, either of which

is sufficient. 9

CLaIM 5.9.19. If y 6 f2(x) for any x, size(y) .. 1/4.

Proof.

terminator

in P*, and

follows as

of Claim. The head of the chain of which

is by definition of f2 the 3rd piece in a

hence by size constraints has size K 1/4.

in Claim 5.9.17. f

y is the

Deficit Bin

The result

CLAIM 5.19.20.

2/5, then for all x

y & f2(x)

If icontains a B-piece b' with size(b') (

6 d - B-PIECES,

===> y 6 E-PIECES.

Proof of Claim. By Lemma 4.4,

< 3/5 has piecep(j,2) 6 B-PIECES.

for a C- and a D-piece, or two D-pi

only A-bins which contain 3 pieces

B-piece in PF, must have E-pieces f

If y C f2(x), then y must be t

chain headed by the 3rd piece in a

since by Claim 5.9.14 and the fact

1f2(x)l . 1. By the above the head

E-piece. If no subsequent piece in

for any BIN', we are done by the SI

is in the chain, let <

be the bin that conta

must be piece,,,(j,3).

piece (j,2) would be

piece (j,3). But if

1/5, and so size(y) <

9

be the

c' in

e must

B-piece

ze(a')

5 by th

SECTION 5.3 - Page 305

any a-bin BIN with size(a)

Since every a-bin with room

eces, has

in PF, bu

or their

he termin

Deficit B

that x is

of that

the chai

ZE LEMMA.

size(a) < 3/5, the

t do

3rd p

ator

in po

not

chair

n is

If

last such, and BINj,

P*. The piece that

have size(a') > 3/5,

and there wouldn't

> 3/5, we must have

e SIZE LEMMA and y i

not conta

iece in P

of a maxi

inted to

a B-piece

must be

piece *(j

some such

in a

mum

by x,

n

3)

pi ece

the a'-bin,

points to c'

else

be room for a

size(c') <

s an E-piece.

With these properties of fl, f2, gl, and g2 under our

belts, we are now ready to face the case analysis.

SECTION 5.3 - Page 306

PROOF OF

III.

THEOREM 5.9

Case Analysis

To complete our proof of Theorem 5.9, we must, by Lemma

5.10, show that for all non-empty BIN j in the optimal packing P*

of L, the following property holds:

(5.9C) For X = cont p;(j),

Wd f(X)1 + g(X) * (11/9)[y(X) +

where y is 0 or 1 depending on whether

The case when BIN is and A-bin c

further ado, and will serve as an intr

complicated arguments required for the

BINj is an A-bin or not.

an be handled without

oduction to the more

non-A-bins.

CLAIM 5.9.21. (5.9C) holds for all A-bins in the optimal

packing P*.

Proof of Claim. For BINJ the a-bin, (5.9C) reduces to

Wd f2(a)1 < (2/9)[gl(a) + g2(a) ,

SECTION 5.3 - Page 307

since the only pieces in A-bi

0 0 are the A-pieces, and sin

a e A-PIECES.

There are basically only

the value of gl. Let W stand

ns

ce

in P*

fl(a)

for which f(

is be defini

4 cases to consider,

for Wd[f2(a)]:

x) A 0 or g(x)

tion empty for

depending on

1.

f2(a)

o < gl(a) < 4/3. By definition of gl,

= 0, so the Inequality is immediate.

2. 4/3 < gl(a) < 7/3. By defi

f2(a) contains one element, which

or E-piece. But then wl f2(a)] .

8/27.

this means we have

nition of gl, this means that

by Claim 5.9.19 must be a D-

1/4, so WI _< 1/4 < (2/9)(4/3)

3. 7/3 _. gl(a) < 4. In this case f2(a) contains two

elements, which can be at most D-pieces, so W < 2/4 < (2/9)(7/3)

= 14/27.

4. gl(a) =

most D-pieces,

Note that is a

if a si, g1(a

possibilities.

4. In this case f2(a) contains 3 pieces, all at

so W . 3/4 < (2/9)(4) = 8/9.

the first case automatically holds. Since

by Claim 5.9.14, this exhausts the

Ld

SECTION 5.3 - Page 308

The situation gets considerably more complicated if BIN j is

not an A-bin. First of all, there are more than one pieces in

the bin for which f and g are non-vacuous. Second, in the light

of Claims 5.9.14 and 5.9.15, it makes a difference whether 14

contains C-pieces or not. So much a difference in fact, that we

find it easier to treat each possibility as a separate case, and

analyze each of the possible non-A-bins of P* twice, once under

each assumption. We shall denote the two possibilities as CASE

I and CASE 1i:

CASE 1. % (C-PIECES A 0. In this case all A-bins which

contain two non-A-pieces in P* will contain either a B- or

C-piece as their second piece in PF by Lemma 4.4. Consequently,

no D- or E-piece can point to a Deficit Bin, and Claim 5.9.15

applies.

CASE II. 0 C-PIECES = 0. Then by Reduction 3 we know

that 'C)OD-PIECES 0 0. Thus all A-bins which contain two

non-A-pieces in P* will contain a B-, C-, or D-piece as their

second piece in PF, and no E-piece can point to a Deficit Bin.

SECTION 5.3 - Page 309

We shall treat these two CASES separately, giving for each,

as in the proof of Theorem 5.7, a complete enumeration of the

legal configurations. If conty,(j) = ix,,...,xnW is in

configuration X ,1 .. ,X , we may rewrite (5.9C) as

(5.9C') Wd f x,...,x1 - (2/9)[gjx,,...,x1f 11/9,

and this is the inequality that we shall prove. Unfortunately,

for each configuration there are still myriad possibilities to

consider, depending on the values of the variables fl(xi),

f2(xi), gl(xi), and g2(x), 1 < i < n. If we are ever to finish

writing down this proof, we must find a way to avoid covering

each of these possibilities separately. We do this by

introducing the concept of the worst case settings of the

variables.

The simplest example of this approach involves the

weighting function wl. Suppose for X 4 fB,C,D,E'E and K C 11,I}

we had a bound VAL1(X,K) such that

(5.9D) VAL1(X,K) >

MAXjw1[f(x)j-(2/9)g(x): x is an X-piece and fl, f2, gl, and

g2 obey the constraints imposed by their definitions,

CASE K, and Claims 5.9.14 through 5.9.201.

SECTION 5.3 - Page 310

Then we could conclude

CLAIM 5.9.22. Suppose contp*(j) X VAL1 obeys

(5.9D), and VAL1(X[,K) * 11/9. Then property (5.9C') holds

for BIN* in CASE K.

Proof g-f. Claim. By definition of Wd, f, g,

Wd[fjx,*..,ix, -

S wl(f(x[))

S [w,1(f(xt))

(2/9) g (x,,...,x

- (2 /9) g (x's

-(2/9)g(x,)l

and by (5.9D) for VAL1, this must be

11/9. ,

In order to calculate values for VAL1(X,K) which will

satisfy (5.9D), we use arguments about the possible settings of

fl, f2, gl, and g2 and their effect on wl(f(x))-(2/9)g(x) for x

an X-piece, in order to derive the wl-worst case settings.

These settings then yield VAL1(X,K) = wl(f(x)) - (2/9)g(x). The

wl-worst case settings for all X 9 8B,C,D,Ej and K c I,II3 are

given in Table 5.1. The entries for fl and f2 are streamlined

by merely indicating the type and quantity of pieces in the

V%.

< -E7 VAL1(X',)
L -I

SECTION 5.3 - Page 311

given set. For instance f2 = 2D means that f2(x) is a set

consisting of two D-pieces. WT1 stands for wl[f(x)3 under the

given settings, and COST stands for (2/9)g(x), so that VAL1 =

WT1 - COST.

CASE) g g2 f_1 f_2. WTI COST VAL1

B 0 0 B 0 1/2 0 1/2

I C 1 0 C D 7/12 2/9 13/36

D 0 0 D 0 1/4 0 1/4

E 0 0 E 0 1/5 0 1/5

B 0 0 B 0 1/2 0 1/2

11 C 1 0 D D 1/2 2/9 5/18

D 1 0 D D 1/2 2/9 5/18

E 0 0 E 0 1/5 0 1/5

Table 5.1: The wl-worst case settings.

SECTION 5.3 - Page 312

CLAIM 5.9.23. For each X C

entries for VAL1(X,K) in Table 5.

IB,C,D,

1 obey

Proof of Claim. Note that we do no

settings given in the table can actually

piece in our list L, just that they yiel

(2/9)g(x) obeying the desired property.

derived using a relatively simple set of

stand for the X-piece in question:

E , K 6 FI

property (9

t claim that

be realized

d a value wl(

The settings

principles.

(P1.1) g2(X) should be 0.

For if g2(X) > 0, it would contribute at least (2/3)(2/9) = 4/27

to COST, and can only contribute to WT1 by allowing fl(x) to be

a bigger piece than X, (where we identify the singleton set

fl(X) with its contents, an abuse of notation that will occur

frequently in what follows). By Claim 5.9.17 this can only

effect WT1 if X = E and fl(E) a D-piece, in which case the gain

to WT1 is only 1/4 - 1/5 = 1/20 < 4/27, so setting g2(X) > 0 can

only decrease WT1 - COST = VAL1.

(P1.2) f2(X) should contain gl(X) D-pieces.

By definition If2(X)I = gl(X), and f2(X) can only contain D- or

E-pieces by Claim 5.9.19. D-pieces add the most to WT1, at no

charge to COST.

, the

D).

the

by any

f(x))

are

Let X

SECTION 5.3 - Page 313

(P1.3) If X £ iCDj, gl(X) should take on its maximum

value. If X = B and fl(B) is not a B-piece, gl(B)

should take on its maximum value.

For each addition of 1 to gl(X), we add 2/9 to COST, but we also

can add a D-piece to f2(X), for an increase in WT1 of 1/4 and

hence a net increase in WT1 - COST of 1/36. This argument

breaks down for X = B and gl(B) = 0, for if we added 1 to gl in

this situation, we would by Claim 5.9.18 have to demote fl(B)

from a B-piece to a C-piece, for an unbalanced loss to WT1 of

1/2 - 1/3 = 1/6, a possibility we avoid if we assume that fl(B)

is not a B-piece to begin with.

(P1.4) Given the values of gl(X) and g2(X), fl(X) should

be the largest piece allowable by the constraints.

This principle is automatic, since given gl and g2, the COST is

fixed.

Granted these principles, the table entries follow quickly:

X = B. By (P1.1), g2(B) = 0. if fl(B) is a B-piece, then

by Claim 5.9.18, gl(B) = 0 and f2(B) = 0, and so

SECTION 5.3 - Page 314

WT1 = 1/2, COST = 0, and VAL1 = 1/2,

as given in the table fo

fl(B) is not a B-piece,

5.9.15 we should have gl

D-pieces. By (P1.4) we

, we

9.14,

ere a

should have f2(B)

r bo

then

(B)

shou

th CASES

in CASE

= 2, and

ld have

. If on the other hand

I by (P1.3) and Claim

so by (P1.2), f2(B) = two

fl(B) a C-piece. In CASE

= three D-pieces by (P1.3) and Claim

but can only have fl(B) a D-piece, since

re no C-pieces in 1. This would thus give

CASE II

(I) WT1

(II) WT1

= 1/3 + 2/4 = 5/6, COST = 4/9, VAL1 =

= 1/4 + 3/4 = 1, COST = 6/9, VAL1 = 1/

so the table entries for B in CASES I and I are correct.

X G CDEl. The entries for these X in both CASES are

derivable by straightforward applications of the principles,

definitions of the CASES, and Claim 5.9.14, and so the detai

will be omitted, thus concluding the proof of Claim 5.9.23.

In addition to using the bounds provided by VAL1 in

applying Claim 5.9.22, we can also use them to combine the

treatment of a number of similar configurations. Recalling

definition of wl-domination in the proof of Theorem 4.7, we

1/2,14/36 <

3 < 1/2,

all

the

ls

I

the

say

SECTION 5.3 - Page 315

that configuration [XJ,...,X n]

lY ,.#*.Yv if for each i, 1 <

Note that this does not depend

CASES,

wl-dominates configuration

1 . n, VAL1(XiK) L VAL1(YiK).

on the value of K, since in both

VAL1(B) > VALl(C) > VAL1(D) > VALl(E).

We then immediately have

CLAIM 5.9.24.

and :VAL(X',K) <

(5.9C') holds for BI

Suppose X ,.

11/9. Then i

N in CASE K.

.,X, wl-dominates (Y1,...,Y,)
f cont * (j) & lY 1,.0., Y% ,

Unfortunately, ;5-VAL1(XiK) often exceeds 11/9. A

in Theorem 5.7, it was for just such cases that w2 and

Discounting were introduced into our definition of Wd.

now turn to the task of extending the idea of worst case

settings to handle the possibility of discounting. But

let us note that we can use principles (P1.1 thru P1.4)

proof of Claim 5.9.22 to derive a number of conditional,

case settings. That is, granted a restriction R on the

for fl, f2, gl, and g2, we can still calculate an upper

VAL[R)(XK), satisfying

s we saw

We shall

first,

from t

worst

values

bound

he

SECTION 5.3 - Page 316

(5.9E) VAL[R)(X,K) }

MAXlwl(f(x))-(2/9)g(x): x is an X-piece, fl, f2, gl, g2 obey

R and the constraints imposed by their definitions,

CASE K, and Claims 5.9.14 thru 5.9.20).

As a corollary to the arguments in the proof of Claim 5.9.22, we

have

CLAIM 5.9.25. For K 6 1, 111 , the following conditional

worst case settings and bounds obey (5.9E):

VAL fl(B) & B-PIECES3(B,K) = 1/2,

[f1=B,f2=0,g1=g2=0},

VAL fl(B) j B-PIECES3(B,I) = 14/36,

Jf1=C,f2=2D,g1=2,g2=01,

VAL[fl(B) # B-PIECESJ(B,II) = 1/3,

1f1=D,f2=3D,g1=3,g2=01 ,

VAL[fl(C) ' C-PIECESJ(C,I) = 13/36,

(f1=Cf2=D,g1=1,g2=01o,
VALgfl(C) 4 C-PIECES](C,I) = 10/36,

(f1=D,f2=D,g1=1,g2=03,
VAL fl(D) £ D-PIECES3 (D,I) = 1/4,

(f1=D,f2=0,g1=0,g2=03,

SECTION 5.3 - Page 317

VAL f1(D) 0 D-PIECES (D, I I) = 5/1

(f1=D,f2=D,g1=1,g2=01,
VAL [fl(D) D-PI ECES (D, 1) = 1/5,

If1=E,f 2=0,g1=g2=01,

VAL fl(D) / D-PIECES(D,II) = 41/

[f1=Ef2=D,g1=1,g2=01,

VAL[g2(D) }_ 2/31(D,1) = 1/4 - 4/2

[f1=D,f2=0,g1=0,g2=2/3,

VAL g2(D) } 2/3](D,1I) = 5/18 -4

(fl=D,f2=0,g1=0,g2=2/33,
VAL g2(E) }_ 2/3)(E,K) = 1/4 - 4/2

[f1=D,f2=0,g1=0,g2=2/3).

8,

180,

7 = 11/108,

/27 = 7/54,

= 11/108,

Returning to the question of how to take advantage of the

possibility of discounting, recall that there are partitions of

other than the simple partition into one-element

sets implicit in our use of wl. It is to our advantage to find

pairs in fix'', x which obey Discounting Relations (the only

Relations possible when all pieces have size > 2/11 are

Relations 2, 3, and 4), In particular, if (xi,xj) obeys

Relation k, it is possible that (f1(xL),f1(xj)) obeys the same

Relation. Thus, in analogy with our definition of VAL1, we

might wish to determine an upper bound VAL2(X,Y,K) satisfying

7

SECTION 5.3 - Page 318

(5.9F) VAL2(X,Y,K) >

MAX w1Lf2(x) uf2(y)) + Wd

x is an X-piece, y is

Discounting Relation,

obey the constraints i

CASE K, and Claims 5.9

fl(x),f1(y)1 - (2

a Y-piece, (x,y)

and fi, f2, gl, g

mposed by their d

.14 thru 5.9.201,

/9)gix,y':

obeys a

2 for x an

efi ntion,

where Wd f1(x),f1(y)1 will simply be w2(fl(x),fl(y)), unless one

of the two sets is empty (we are again identifying the singleton

set with its contents).

VAL2(X,Y,K) is only defined when it is possible that a pair

made up

Relation

need app

of eithe

It

into pla

discount

or g2 fc

possibil

been dor

of an X-piece and a Y-piece cou

. In that case our wl-worst ca

ly, since certain settings may

r allowing, or not allowing, th

is now that the conditional wor

y. There are only a few possib

, and each corresponds to a res

r x or y. We can thus determin

ity, and choose the largest for

e in the construction of Table

ld obey a Discounting

se settings no longer

now have the side-effect

e discount to take place.

st case settings can come

le dispositions of the

triction R on fl, f2, gl,

e an upper bound for each

VAL2. This is what has

5.2. There are no

entries for

D-piece, so

Relation as

X = C

that (

(x,y).

in CASE II, since in that CASE fl(x) must

fl(x),fl(y)) could never obey the same

In the Table, WT2 stands for

d y

be a

SECTIOM 5.3

f-2 T2. COST VAL2

17
(2,1) (0,0) (CC) (2DD) --

12

13
(2,0) (0,0) (C,D) (2D,0) --

12

2
(0,0) (0,-)

3
(B,D)

(D,0)

(B,C)

(B,D)

(BE)

(C,D)

(C,E)

(D,E) (0,0) (0,0) (D,-E) (0,0)
4

6

9

4

9

4

27

2

9

2 89

9 180

2
0 -

5

1
(0,1) (0,0) (B,-D)

2

1
(0,1) (0,0) (B,-D)

2

2
(0,0) (0,-)

3
(BD)

3
(1,0) (0,0) (D,-E)

4

(0.,D)

(0,D)

(0,0)

13
(D,0) --

20

Table 5.2. The w2-worst

fLi

43
(D,0) --

60

23

36

65

108

19

36

. .75

~.64

S.60

A .53

A .49

. .40

II

(B,C)

(B,D)

(B,E)

(D,E)

2

9

2

9

4

27

2

9

47

72

47

72

65

108

77

180

, .65

.65

Ao .60

-43

case settings.

- Pa're 319

CASE (Xi i, X1) &I

2
(1,0) (0,0) (C,-D)

3

2
(1,0) (0,0) (C,-E)

3

SECTION 5.3 - Page 320

w1 f2(x) f2(Y) + Wd f1(x),f1(Y)3, and COST = g x.y a(2y

An entry of (2/3)D in the f2 column indicates that under

the w2-worst case settings, the pair (f1(x),f1(y)) obeys

Relation 3, and hence the discount can be taken. If the fl(y)

entry is not fractional, then under the given settings the

discount has been cancelled, that is, (fl(x),fl(y)) is not a

pair obeying the same Relation as did (x,y).

CLAIM 5.9.26. The entries for VAL2 in Table 5.2 all

satisfy property (5.9E).

Proof of Claim. In what follows we let X and Y stand for

the X- and Y-pieces in question. For each line of the table, we

must examine a maximum of four possibilities:

(1) (fl(X),f1(Y)) obeys the same Discounting Relation as

(XY).

(2) The discount was cancelled because fl(X) is not an

X-piece, but is either empty or a piece of smaller size (the

demotion of X).

(3) The discount was cancelled because size(fl(X)) > size(X)

(the promotion of X)

(4) The discount was cancelled because size(fl(y)) > size(Y)

(the promotion of Y).

SECTION 5.3 - Page 321

If none of (2), (3), (4)

we must have fl(X) a k-pi

k.size(X) + size(Y) - . 1,

complete list.

hold, and (X,Y) obeyed Relation k, then

ece, and k.size(fl(X)) + size(fl(Y)) <

and so (1) must hold, so this is a

However, note tha

occur if X (or Y) is a

promotion of Z entails

applicability of (3) a

restriction.

We shall now veri

t by Claim 5.9.17,

D- or E-piece, and

that g2(z) > 2/3.

nd (4) and in addit

promotions can only

by Claim 5.9.16 a

This limits the

ion provides our needed

fy the entries in the Table, line by line:

X = B, Y

impossible.

cancelled by

the maximum

B-PIECES](B,

VAL1(C,t) =

Table.

= C, K = I.

If, as in

demoting B

contributio

1) = 14/36,

,#

n

Alternatives (3) and (4) are

the table, (2) holds and the di

we have that fl(B) B-PIECES.

of B to VAL2 is VAL F1(B)X

and the maximum contribution of

13/36, for a total of 27/36

scount is

Thus

C is

= 3/4, as given in the

This is the maximum possible and hence satisfies (5.9F),

for suppose (1) holds. Then fl(B) must be a B-piece, so B's

maximum contribution is VAL fl(B) 6 B-PIECESI(B,I). Since fl(C)

is discounted, its contribution will only be (1/2)wl(fl(C)), but

this will still be maximized by taking the largest piece

SECTION 5.3 - Page 322

allowable as in (Pl.

will be VAL1(C,I) -

1/2 + 13/36 -

4),

(1/

1/6

so the maximum contribution due to C

2)(1/3) for a maximum total of

= 25/36 < 27/36 = 3/4.

X = B, Y = C, K =

If, as in the Table,

is

VALrfl(B

= 1/2

as given in

at most a D

This i

maximum tot

VALrfl(B

= 1/3

II. Again

(1) holds,

only (1) and (2) are possible.

the maximum total contribution

) & B-PIECES)(B,II) + VAL1(CII)

+ 5/18 - 1/8 = 56/72 - 9/72 = 4

the Table. (The discount is 1/

-piece in CASE I1.)

s the maximum possible, since if

al is

) f B-PIECES)(B,II) + VAL1(C,II)

+ 5/18 = 11/18 = 44/72 < 47/72.

- 1/8

7/72,

8 since fl(C) can be

(2) holds, the

X = B, Y = D, K = I. Cases (1), (2), and

The table entry corresponds to (2), in which

bound of

VALgfl(B)#. B-PIECESI(B,I) + VAL1(D,I)

= 14/36 + 1/4 = 23/36, as given.

This is the worst possible since if (1) held

bound of

VAL fl(B) C B-PIECES)(B,I) + VAL1(D) - 1/8

(4) are

case we

possible.

have a

we would have a

SECTION 5.3 - Page 323

= 1/2 + 1/4 - 1/8 = 5/8 = 45/72 < 46/72 = 23/36,

and if (4) held we would have a bound of

VAL1(BI) + VAL[g2(D) L 2/3)(DI)

= 1/2 + 11/108 = 65/108 < 69/108 = 23/36.

X = B, Y = D,

and D in CASE I1

will be the same

K = II. Since the wl-worst case settings for C

are the same, the w2-worst case settings here

as for B,C, and II. Table 5.2 agrees.

X = B, Y = E, K = 1. Again only (1), (2), and (4) are

possible. The table entry is derived under the assumption that

(4) holds, in which case we have a bound of

VAL1(B,i) + VAL g2(E) > 2/3)(E,I)

= 1/2 + 11/108 = 65/108, as given.

This is the worst bound possible since if (1) held we would have

a bound of

VAL[fl(B)f' B-PIECESJ(B,I) + VAL1(E,I) - 1/10

= 1/2 + 1/5 - 1/10 = 6/10 = 324/540 < 325/540 = 65/108,

and if (2) held we would have a bound of

VAL fl(B) A B-PIECESI(B,I) + VAL1(E,I)

= 14/36 + 1/5 = 53/90 = 318/540 < 325/540.

SECTION 5.3 - Page 324

X = B, Y = E, K = II. Again only (1), (2),

possible. The Table entry is again under the

(4) holds, in which case the bound is

VAL1(B) + VAL g2(E,Il) > 2/3](E,11)

= 1/2 + 11/108 = 65/108, as given.

This is the worst possible, since if (1) holds

VAL[fl(B) C B-PIECES](B,II) + VALl(E,Il)

= 1/2 + 1/5 - 1/10 = 6/10 < 65/108,

and if (2) holds the bound is

VAL fl(B) f B-PIECES](B,II) + VALl(E,1I)

= 1/3 + 1/5 = 8/15 = 288/540 < 325/540 =

and (4) are

assumption that

the bound is

65/108.

X = C, Y = D, K = 1. Again only (1), (2), and (4) are

possible. The Table entry assumes (1) holds, in which case the

bound is

VAL[fl(C) & C-PJECESj(C,I) + VAL1(D) - (1/3)(1/4)

= 13/36 + 1/4 - 1/12 = 19/36, as given.

This is the worst possible, since if (2) holds the bound is

VAL[fl(C) # C-PIECESJ(C,t) + VAL1(D)

= 10/36 + 1/4 = 19/36,

and if (4) holds the bound is

VAL1(CI) + VAL[g2(D) L 2/31(D,I)

= 13/36 + 11/108 = 50/108 < 57/108 = 19/36.

SECTION 5.3 - Page 325

X = C, Y = E,

(2), and (3) and

is

K =

the

I. Again the

Table assumes

only

(1),

possibilities

in which case

are (1),

the bound

VAL[f 1(C)

= 13/36

This is the w

VAL fl(C)

= 10/36

and if (4) ho

VAL1(C, I)

= 13/36

4 C-PIECESJ(C,t) + VAL1(E,I) - (1/3)(1/5)

+ 1/5 - 1/15 = 89/180, as given.

orst possible, since if (2) holds the bou

C-PIECES3(C,I) + VAL1(E,I)

+ 1/5 = 86/180 < 89/180,

lds the bound is

+ VAL[g2(E) L 2/3](E,I)

+ 11/108 = 50/108 = 250/540 < 267/540 = 8

X = D, Y = E, K = 1. All four

the Table assumes that (1) holds,

of

possibili

in which

ties may occur, but

case we have a bound

VAL[fl(D) * D-PIECESJ(Dl) + VAL1(EI) - (1/4)(1/5)

= 1/4 + 1/5 - 1/20 = 2/5, as given.

This is the worst possible since if (2) holds we have a bound of

VAL[fl(D) I D-PIECES)(DI) + VAL1(E,t)

= 1/5 + 1/5 = 2/5,

if (3) holds we have a bound of

VAL[g2(D) 2 2/3)(D,I) + VAL1(EI)

= 11/108 + 1/5 = 163/540 < 216/540 = 2/5,

and if (4) holds the bound is

nd is

9/180.

SECTION 5.3 - Page 326

VAL1(D,I) + VAL(

= 1/4 + 11/08

g2(E) > 2/3](E,I)

= 38/108 = 190/540 < 216/540 =

X = D, Y = E, K = II. Again the Tabl

which case the bound is

VAL fl(D) 6 D-PIECES](D,It) + VALI(E,

= 5/18 + 1/5 - 1/20 = 77/180, as gi

This is the worst possible since in (2),

are

VAL[fl(D) i D-PIECES](D,II) +

= 41/180 + 1/5 = 77/180,

VAL[g2(D) > 2/3](DIl) + VAL1

= 7/54 + 1/5 = 178/540 < 23

VAL1(DII) + VAL[g2(E) 2 2/3]

= 5/18 + 11/108 = 205/540 <

e assumes

II) -

ven.

(3),

(1) holds, in

(1/4)(1/5)

and (4) the bounds

VAL1(E, I I)

(E, II)

1/540 =

E, Ii)

231/540

77/180, and

= 77/180.

Thus all the Table entries for VAL2 obey (5.9F) and Claim 5.9.26

is proved. 0

We apply Table 5.2 to the proof of property (5.9C') with an

analogue of Claim 5.9.22 (the proof is also an analogue and

hence is omitted):

2/5.

SECTION 5.3 - Page 327

CLAIM 5.9.27. Suppose contpw(j) f [XP...,Xh contains

disjoint pairs (x ,x3,), 1 _ , m -< M, each satisfying a

Discounting Relation, and that

. VAL2(Xi X. ,K
Tn=poet159' odsfrBN i AEK* VAL(Xi

,K) (11/9.

Then property (5.9C') holds for BIN in CASE K.

Claims 5.9.22 and 5.9.27 will take care of all but

legal confi

in CASE I I.

depending o

bounds by a

specificall

We now

use in the

of inequali

each legal

argument, w

using Clainm

5 of the

gurations we must consider, two in CASE I and three

For these we will have to consider subcases,

n the settings of the parameters, and derive upper

rguments about conditional worst case settings,

y tailored to each subcase.

introduce the terminology and abbreviations we shall

case analysis. LHS will stand for the left hand side

ty (5.9C'). Our goal is to show that LHS . 11/9 for

configuration. VAL1, when written without an

ill stand for the upper bound on LHS obtained by

1 5.9.22 and the wl-worst case settings from Table

5.1. VAL2, when written without an argument, will sta

upper bound on LHS obtained by using Claim 5.9.27 and

w2-worst case settings from Table 5.2. Since we will

separate enumeration for each CASE, we shall drop the

nd for t

the

be doing

argument

he

a

SECTION 5.3 - Page 328

referring to CASE when we wri

As in the proof of Theorem 5.

X ,. '*00 p V1 as IX,1, . ,X ni,

configuration, we shall refer

the piece with its size.

CLAIM 5.9.28.

in P*, in both CASE

te VAL1 and VAL2 with arguments.

7, we shall write the configuration

and if ix,,...,x,3 is in that

to piece xi as Xii, and identify

(5.9C') holds for all non-empty, non-A-bins

I and CASE 11.

Proof af Claim. We procede by an enumeration of all legal

configurations, one complete enumeration for each CASE. Recall

that the requirement for a given configuration [Xj,...X" to be

legal is that

u = u(X;) < 1,

where u is defined as in Theorem 5.7. We begin with CASE I:

SECTION 5.3 - Page 329

CASE I: C A %$A 0

One-Piece Bins:

The class of such bins is wl-dominated by

5.9.24 applies, yielding VAL1 (VAL1(B)

[B 11, and so Claim

= 1/2 < 11/9.

Two-Piece Bins:

This class is wl-dominated by (BI, B2), yielding

VAL1 j 2(VAL1(B)) = 1 < 11/9.

Three-Piece Bins:

1) Two or more B's:

[B1,B2,B3).

BlB2,C3).

This is impossible since u = 3/3 = 1.

VAL1 = 2/2 + 13/36 = 49/36 > 11/9.

Moreover, even though we have that (B2,C3) obeys Relation

VAL2 = VAL1(B) + VAL2(BC) = 1/2 + 3/4 = 5/4 > 11/9. So we

must resort to subcases:

SUBCASE 1: fl(Bl) B-PI ECES.

In this case we can replace VALl(B) by 7/18 =

SECTION 5.3 - Page 330

VALrfl(B) B-PIECES

LHS * . 7/18 + 3/4 = 4

SUBCASE 2: B'

I(B)

1/36

= fl

as given in Clai

< 11/9.

(Bl) 4 B-PIECES.

m 5.9.26, yielding

By Cla

We now

Since I

C-pieci

5/12, 4-

5

re

w

in

.9.

in

oul

PF

so,

17A, B' < B

a situatio

d not fit i

must have

since u(C)

cannot contain a C an

gl(C3) and g2(C3) are

be at most 1CEj or

contribution of B2 an

most VAL2(B,C) - 1/20

worst case settings f

g1(C3) = 0, and f(C3)

the Table, and the di

contribution of B2 an

we have LHS . VAL1(B)

1

n

n

a

d

D

d

1-B2-C3 < 1-(1/3)-(1/4)

analagous to

any A-bin, a

gap above it

u(D) = 1/4

in P*. Thus

idvocated in

instead of

by at least

7/10. Theref

or C3 will

= 5/12.

that of Claim 5.9.20.

n A-bin which contains

s A-piece of less than

+ 1/5 = 9/20 > 5/12,

if the settings of

Table 5.2, f(C3) can

C,D1, reducing the

1/20 to a value of at

ore, in this case the

actually have

= JC3, (the settings for

scount is still cancelled

d C3 is then 7/18 + 1/3 =

+ 13/18 = 1/2 + 13/18 =

B2 remain

). The

13/18. B

22/18 = 11

as in

ut

/9.

now

UB1,B2,X3], for X = D or E.

No matter what X is, (B2,X3) obeys Relation

VAL1(B) + VAL2(B,X) < 1/2 + 23/36 = 41/36 <

2, so LHS K

11/9.

SECTION 5.3 - Page 331

2. Bins with one or fewer B's:

three-piece configurations,

[B1,C2,C3], for which VAL1

This, the class of all

is clearly wl-dominated

- 1/2 + 2(13/36) = 22/18

remai ni ng

by

= 11/9.

Four-Piece Bins:

1) Bins with two or more B's: Impossible, since

pieces must be at least E's so u > 2/3 + 4/11

the remaining

= 34/33 > 1.

2) Bins with

u > 1/3 +

one B, two or more

2/4 + 2/11 = 67/66

C's: Impossible, since

> 1.

3) Legal configurations with one B:

CB1,C2,D3,D43. VAL1 = 1/2 + 13/36 + 2/4 = 49/36

However, B1+D4 ., 1-(1/4)-(1/5) = 11/20, so 2B1+D4 <

11/10 - 1/5 < 1, and (B1,D4) obeys Relation 2. Also,

1-(1/3)-(1/5) = 7/15, so that 3C2+D3 < 7/5 - 2/5 = 1,

(C2,D3) obeys Relation 3. Thus LHS < VAL2(B,D) +

VAL2(C,D) <. 23/36 + 19/36 = 42/36 < 11/9.

(B1,C2, X3, E4]
No matter what X

2B1+X3 _ 25/22 -

> 11/9.

C2+D3 K

and

, for X = D or E.

is, B1+X3 / 1-(1/4)-(2/11) = 25/44, and so

2/11 < 1, and (B1,X3) obeys Relation 2,

SECTION 5.3 - Page 332

so that LHS < 13/36 + 1/5 + 23/36 = 6/5 < 11/9.

[B1,D2,D3,D4]. VAL1 =

B1+D2 K 1-2(1/5) = 3/5, so

(B1,D2) obeys Relation 2.

= 41/36 < 11/9.

1/2 + 3/4 = 5/4 > 11/9.

2B1+D2 K 6/5 - 1/5 = 1,

Thus LHS < 2/4 + 23/36

However,

and

[B 1,D2, D3,iE4],

This set of configu

which VAL1 = 1/2 +

4) Bins with no B's,

(C1,.C2,C3,C4).

(B1,D2,E3,E4] , and (Bl,E2,E3,E4] .
rations is wl-dominated by the first, for

2/4 + 1/5 = 6/5 < 11/9.

three or more C's:

Impossible, since u = 4/4 = 1.

C1, C2, C3, D40

(C3,D4) obeys Re

13/18 + 19/36 =

observing first

SUBCASE 1:

It is easy to ve

from the total c

45/36 of 13/36 -

even if only one

. VAL1 = 39/36 + 1

lation 3. However,

45/36 > 11/9, so we

that by Claim 5.9.14

gl(Ci) = 0 for at

rify that VAL[g1(C)

ontribution of the C

1/3 = 1/36 for each

Ci is so impaired,

/4 =

2VAL

must

no

1 eas

= 0)

Is

Ci

LHS

4/3 > 11/9.

1(C) + VAL2(CD) -

examine subcases,

gl(Ci) > 1:

t one of the C-pie

(C) = 1/3, a decli

to the above menti

with gl(Ci) = 0.

< 44/36 = 11/9.

ces.

ne

oned

Thus,

WMiWk66Wk*MWWA-

SECTION 5.3 - Page 333

SUBCASE 2: All gl(Ci)'s = 1, some g2(Xi) .> 2/3.

This immediately adds 4/27

case settings that yielded

to the COST we had in the worst

VAL2 < 45/36,

add to the WT is (1/3)(1/4) = 1/12,

that is allowed by the w2-worst cas

Thus the bound on LHS is reduced by

7/108, to a value of at most 45/36

SUBCASE 3: All g(Ci)'s = 1,

one of the following holds:

A) fl(Ci) does not contain a

B) f2(Ci) does not contain a

C) fl(D4) does not contain a

Since the gl and g2 settings are al

worst case settings that yielded VA

remains the same. But since one of

must hold, the total WT must be red

(2/3)(1/4 - 1/5) = 1/30 needed to d

a 1/3 discounted E, so LHS < 45/36

SUBCASE 4: All gl(Ci)'s = 1,

none of A), B), or C) holds.

Since gl(C3) = 1, C3 went in a Defi

C-piece will fit as the first non-A

and

by cancel

e settings

at least

- 7/108 =

g2(Xi)'s =

C-piece

D-piece

D-piece

1 identi

L2 = 45/

the thr

uced by

emote a

- 1/30 <

all g2(

cit Bin in

piece

the

1 ing

for

4/27

128/

0,

or

or

mos t

the

C3

- 1

108

and

some

some

it can

discount

and D4.

/12 =

< 11/9.

at least

Ci,

Ci,

ginal

COST

es

D to

f

,f

cal to the ori

36, the total

ee possibiliti

at least the

1/3 discounted

44/36 = 11/9.

Xi)'s = 0, and

PF. Since any

in a Deficit Bin,

we can conclude that no C-piece in % exceeds C3. Thus

3fl(C1) (3C3, and since fl(D4) (D4 by Claim 5.9.16,

SECTION 5.3 - Page 334

(fl(C1),fl(D4)) obeys Relation 3. (fi(C1) is a C-piece by

hypothesis). However, by

does not exceed the top pil

which C3 goes, and fl(C3)

the SIZE LEMMA. Since fl(

that A-bin (else fl(D4) wo

a non-A-bin in PF), we thu

C3 + fl(D4), and so 3fl(C3

3C3 + D4 K 1. So (fl(C3),

the total WT is made up of

the same Claim we have that

+

h

av

f

C3

f2(C3)

n P* in the Deficit Bin into

not exceed the bottom piece by

C3 was too big for the gap in

ave gone in the bin rather than

e fl(C3) + f2(C3) j

2(C3) K 3C3 + fl(D4) <

)) also obeys Relation 3. Thus

3 C-pieces, 2 normal D's, and 2

D's discounted by

- 3(2/9) = 11/6 -

1/3, and

2/3 = 7/6

LHS j 3/3 +

< 11/9.

2/4 + (2/3)(2/4)

CC1,C2,C3,E4]. VAL1 = 3(13/36) +

However, (C3,E4) obeys Relation 3, so

89/180 K 219/180 < 22/18 = 11/9.

1/5 = 77/60 > 11/9.

LHS K VAL2 = 2(13/36) +

5) Bins with no B's, two or fewer C's: This, the class of all

remaining four-piece bins, is clearly wl-dominated by

rC1,C2,D3,D4], for which VAL1 = 2(13/36) + 2/4 =

44/36 = 11/9.

SECTION 5.3 - Page 335

Five-Piece Bins:

1) Bins with one or more

have u > 1/3 + 8/11 =

B's:

35/33

Impossible, since we would

> 1.

2) Bins with no

would have u

B's, two or more C's:

> 2/4 + 6/11 = 46/44 >

Impossible, since we

1.

3) Bins with no

since then u

B, one C, and

> 1/4 + 2/5 +

two or more D's:

4/11 = 223/220 >

Impossible,

1.

4) Legal configurations with one C: By the above, this

class is wl-dominated by [C1,D2,E3,E4,E5], for which

VAL1 = 13/36 + 1/4 + 3/5 = 109/90 < 11/9.

5) Bins with no B's, no

then u = 5/5 = 1.

C's, five D's: Impossible, since

6) Bins with no B's, no C's, no more than four D's:

This, the class of all remaining five-piece bins, is

clearly wl-dominated by (D1,D2,D3,D4,E5], for which

VAL1 = 4/4 + 1/5 = 6/5 < 11/9.

SECTION 5.3 - Page 336

CASE II: C n'J = 0

One-Piece Bins:

This class is wl-dominated by JB13, for which

VAL1 = 1/2 < 11/9.

Two-Piece Bins:

This class is wl-dominated by [B1,B2], for which

VAL1 = 2/2 = 1 < 11/9.

Three-Piece Bins:

1) Two or more B's:

[Bi, B2, B3). Impossible - See CASE I.

LB1,B2,X33, for X = C, D, or E.

No matter what X is, (B2,X3) obeys Relation 2, LHS <

VAL1(B) + VAL2(B,X) j 1/2 + 47/72 = 83/72 < 11/9.

SECTION 5.3 - Page 337

2) Bins with

rema i n i ng

dominated

= 19/18 <

no more than one B: This, the class of all

three-piece configurations, is clearly wl-

by [B1,C2,C3], for which VAL1 = 1/2 + 2(5/18)

11/9.

Four-Piece Bins:

1) Bins with two or more B's:

2) Bins with one B, two or more

Impossible - See CASE I.

C's: Impossible - See CASE I.

3) Legal configurations with one B:

[B1,C2,D3,X4], for X = D or E.

No matter what X is, B1+X4 < 1-(1/4)-(1/5) < 11/20, so

2B1+X4 < 11/10 - 2/11 < 1 and (B1,X4) obeys Relation 2, and

VAL2 5/18 + 5/18 + 47/72 = 87/72 < 11/9.

[B1,X2,E3,E4), for X = C,

No matter what X is, we still

106/90 < 11/9.

D, or E.

have VAL1 = 1/2 + 5/18 + 2/5 =

SECTION 5.3 - Page 338

IB1,D2,D3,D4). VAL1 = 1/2 + 3(5/18) = 4/3 > 11/9.

However, B1+D2 < 1-(2/5) = 3/5, so 2B1+D2 < 6/5 - 1/5 = 1

and (B1,D2) obeys Relation 2. Thus LHS < VAL2 =

47/72 + 2(5/18) = 87/72 < 11/9.

(B1,D2,D3,E4 . VAL1 = 1/2 + 10/18 + 1/5 = 113/90 > 11/9.

Since no pair of the Xi's necessarily obeys any of the

Discounting Relations, we must again resort to subcases:

SUBCASE 1: fl(B1) # B-PIECES.

In this case we can replace VAL1(B) by 1/3 =

VAL[fl(B) f B-PIECES)(B), reducing the contrbution of Bl to

VAL1 by 1/2 - 1/3 = 1/6 and yielding LHS < 113/90 - 15/90

= 98/90 < 11/9.

SUBCASE 2: fl(Bl) is a B-piece B. j 2/5.

Then by Claim 5.9.20, f2(D2) and f2(D3) must contain E's

instead of D's, if, indeed, they are non-empty. With this the

case, it is easy to see that in the worst case they will be

empty, and g1(D2) = g1(D3) = 0. Thus VALIB, (2/51(D) =

1/4, a decline of 5/18 - 1/4 = 1/36 from the Table values,

and LHS < 113/90 - 2/36 = 108/90 < 11/9.

SUBCASE 3: fl(B1) contains a B-piece B. > 2/5, and

some g2(Xi) > 2/3.

The most that having some g2(Xi) be non-zero can add to WT is

the 1/20 obtained by promoting fl(E4) from a D to an E, since

SECTION 5.3 - Page 339

there are no discounts to cancel. But the increase in COST is

at least 4/27, for a net loss of 4/27 - 1/

LHS 113/90 - 53/540 = 625/540 = 105/90 <

SUBCASE 4: fl(B1) contains a B-piec

all Xi g2(Xi) = 0, and fl(E4) = 0.

This case has 1/5 taken from the WT as giv

at no corresponding decrease in the cost,

113/90 - 1/5 = 95/90 < 11/9.

SUBCASE 5: fl(B1) contains a B-piece

all Xi g2(Xi) = 0, and fl(E4) A 0.

Then fl(E4) must contain an E-piece < E4,

Di+fl(E4) < Di+E4 < 1-(2/5)-(1/5) = 2/5, f

So if Di went in a Deficit Bin in PF, sinc

20 = 53/540,

11/9.

e B. > 2/5,

en in the Ta

so LHS K

> 2/5, for

and

or

e fl

0

= 2

E 4)

or 3.

did not

fit on top of it but went to a non-A-bin, the original gap must

must have been K 2/5, and since g2(Di) = 0, f2(Di) can

only contain an E-piece if it is non-empty. Proceed as in

Subcase 1.

4) Bins with no B-pieces: This,

four-piece configurations, is

(C1,C2,C3,C4J, which, even if

VAL1 = 4(5/18) = 10/9 < 11/9.

the class of all remaining

clearly wl-dominated by

it were legal, still has

so

fo r

ble,

SECTION 5.3 - Page 340

Five-Piece Bins:

1) Bins with one or more B's: Impossible - See CASE I.

2) Bins with two or

3) Bins with one C,

more C's:

two or more D's:

4) Legal configurations w

this class contains al

C-piece, and is clearl

Impossible - See CASE 1.

Impossible - See CASE

E's: By the above,

ions containing a

[C1, D2, E3, E4, E5

ith at least three

1 legal configurat

y wl-dominated by

for which VAL1 = 2(5/18) + 3/5 = 52/45 < 11/9.

5) Bins with no B's, no C's, two or fewer E's:

fD1, D2, D3, D4, D5). Impossible - See CASE I.

£D1,D2,D3,D4E5). VAL1 = 4(5/18) + 1/5 = 59/45 > 11/9.

Even though (D4,E5) obeys Relation 4, we still have VAL2 =

3(5/18) + 77/180 = 227/180 > 11/9, so we must again resort

to subcases:

SUBCASE 1: Some g2(Xi) . 2/3.

This adds at least 4/27 to COST, while adding at most 1/20

to the VAL1 WT, by possibly promoting fl(E5) to a D-piece.

SECTION 5.3 - Page 341

Thus LHS < 59/45 + 1/20 - 4/27 = (708+27-80)/540 =

655/540 < 660/540 = 11/9.

SUBCASE 2: All g2(Xi)'s = 0, fl(E5) = 0.

This reduces the VAL1 WT by 1/5 without reducing COST, and so

LHS _ 59/45 - 1/5 = 50/45 < 11/9.

SUBCASE 3: All g2(Xi)'s = 0, fl(E5) / 0.

Then fl(E5) is an E-piece j E5, and for each i < 4,

fl(E5)+Di < E5+Di . 1-(3/5) = 2/5. Thus, if Di goes in a

Deficit Bin in PF, since fl(E5) did not fit on top of it in

that bin, the original gap must have been < 2/5. Proceeding

as we did in subcase 2 for (B1,D2,D3,E43, we can thus conclude

VAL[Subcase 3](D) = 1/4, a decline from VAL1(D) of 5/18 - 1/4

= 1/36, leaving LHS K 118/90 - 4(1/36) = 108/90 < 11/9.

[D1,D2,D3,E4,E53. VAL1 = 3(5/1

Since no Discounting Relations nece

pairs from this configuration, we m

at subcases:

SUBCASE 1: Some g2(Xi) 2/3

This again can add at most 1/20 to

COST, and so LHS < 37/30 + 1/20 - 4

= 613/540 < 660/540 = 11/9.

SUBCASE 2: All g2(Xi)'s = 0,

This again cause a dead loss to LHS

8) + 2/5 = 37/30 > 11/9.

ssarily hold between any

ust for the last time look

WT for each 4/27 added to

/27 = (666+27-80)/540

some fl(Ei)

of at least

= 0.

1/5 and so

SECTION 5.3 - Page 342

LHS < 37/30 -

SUBCASE

If both D1+E4

which is impo

Then we have

Deficit Bin i

most an E-pie

gl(D1) to 0 a

contribution

and we have L

1/

3:

ssi

D14

n F

ce,

nd

to

HS

5 = 31/30 < 11/9.

All g2(Xi)'s = 0, no f

2/5 and D2+E5 > 2/5, we

ble for a D-piece, So sa

fl(E4) j 2/5, so if D1 w

F the gap was < 2/5 and

making us get a larger

f2(Di) to 0. But this r

LHS by 5/18 - 1/4 = 1/36

< 37/30 - 1/36 = 217/180

l(Ei) = 0.

would have D3

y D1+E4 < 2/5.

ent in a

f2(D1) was at

LHS by setting

educes D1's

from the Tabl

< 11/9.

Since this

we are now done

proven. j

exhausts the possible five-piece configurations,

with CASE 1I as well as CASE I, Claim 5.9.28 is

We now can conclude from Claims 5.9.28 and 5.9.21 that

property (5.9C) holds for all non-empty BINj in P*. Since f and

g obey (5.9A) and (5.9B) by Claims 5.9.12 and 5.9.13, Lemma 5.10

tells us that FF(L) i (11/9)L* + 4, and so Theorem 5.9 is

proved. J

Now although the wei

arbitrary AAF algorithms

the properties of fl, f2,

ghting funct

in the sense

gl, and g2,

ion Wd "works" for

that Lemma 5.5 applies,

which were so vital to the

< 1/5,

e value,

SECTION 5.3 - Page 343

above proof, depended very heavily on the nature of FF, so their

is no simple way of generalizing Theorem 5.9 to the whole class

of algorithms. However, we do have

COROLLARY 5.9.1. For all decreasing lists L,

BF(L) < (11/9)L* + 4.

Proof. As in the above proof, we can assume Range(sizeL)-

(2/11,1). But then Range(sizeL) C [1/6,11, and so by Theorems

3.15 and 5.9,

BF(L) j FF(L) ((11/9)L* + 4. 9

Finally, combining the upper bounds provided by Theorem 5.9

and its corollary via Lemma 3.1, with the lower bounds presented

in Theorem 4.1, we get

COROLLARY 5.9.2. If 1/2 < t < 1,

RtBFD,tj = R FFD,t)

then

= 11/9.

SECTION 6.1 - Page 344

CHAPTER 6. OTHER OFF-LINE ALGORITHMS

SECTION 6.1. The GROUPING Rule

Chapters 3, 4, and 5 were all devoted to a single

preprocessing rule, the DECREASING rule. In this chapter we

consider alternatives. The first we shall describe is an

application of the same principles we used in defining GROUP-X

FIT in Chapter 2, to get a linear-time approximation to the

DECREASING rule just as that algorithm was a linear-time

approximation to BEST FIT.

Given a schedule of intervals X, as defined in Section 2.3, our

rule is:

GROUPING-X RULE: L is ordered so that if size(a)4 Xi,

size(b) E X , and i < j, then rank(a) > rankL(b).

If X has k groups, a list of length n can be so grouped in

about nlogg(k) comparisons. Moreover, if we are going to use

the GROUP-X FIT packing rule, we would probably have to make

many of those comparisons anyway, in the course of deciding

which bin the pieces should go in. So, letting GROUP-X FIT

GROUPED (GXFG) be the algorithm which preprocesses according to

SECTION 6.1 - Page 345

the GROUPING-X rule and then packs according to GROUP-X FIT, we

have that GXFG takes time comparable to that of as GXF (which

has no preprocessing), and can have better worst case behavior:

THEOREM 6.1. For m = Li/tj 2 1 and {1/(m+2),1/(m+1),1/mn1r

X,.

RrGXFG,t] = 1 + 1/(m+1).

Proof. A general lower bound example for all possible X is

given in Figure 6.1. No matter what X is, the C in the examples

can be made small enough so that the GXFG packing comes out as

pictured. For the upper bound when X is as stated, let L be a

list with Range(sizeL) C (0,1/m] which is ordered in accordance

with the GROUPING-X rule. Let PX be a GXF-packing of L using

GXF(L) bins. We shall prove that

(6.1A) L* > [(m+1)/(m+2))a[GXF(L) - 1,

and the upper bound will follow via Lemma 3.1. Divide the list

into segments L = Li e L2 * L3, where

Range(sizel.1) S 1/(m+1),1/m),

Range(sizet1) s [1/(m+2),1/(m+1)), and

Range(sizegS) C (0,1/(m+2)).

This must be possible because j1/(m+2),1/(m+1),1/m2 G X.

OPTIMAL PACKING
L* = (n+i)

GXFG- PACKING

GXFG(') = 4 (*'2)

GAP= 4i -- e

- E

- 6s

FIGURE 6.1. Lists

4'
y*+ I

yn'
~ I

N

L with Range(size)C (0,-3. for which
m

1
+1
m+1

(1 1
--- --- ,

~m+2 m+1

GAP. Yvn*

7 17""" 77 1

GXFG(L)

L*

1 #
- C X.

m I

SECTION 6.1 - Page 347

Now if b = pieceP (#PX,1) f PIECES(L3), then size(b) <

1/(m+2), and when b was assigned, gapp(#PX) = 1. Thus by Lemma

2.11 and the fact that 1/(m+2) e X, we must have gapp(j) <

1/(m+2), 1 < j . #PX, so that L* > W(L) > [(m+1)/(m+2)).fGXF(L)
- 14, and (6.1A) holds, as desired. (Note that this is

basically the same argument we used in proving Lemma 4.2 for

decreasing lists and AF algorithms.)

Thus the only problem is if b is a piece from Li or L2,

that is if GXF(L) = GXF(L12), where L12 = L1.L2. Thus, since L*

> L12*, it will be sufficient to show that

(6.1B) L12* > (m+1)/(m+2)[GXF(L12) - 1].

So let PX' be a GXF-packing of L12, using GXF(L12)

it into two segments as shown in Figure 6.2. PX1

L* bins and PX2 is all the non-empty bins to the r

We may assume that PX2 is not vacuous, else (6.1B)

immediate.

Now by size constraints we know that L12* >

FIPIECES(L1)I/ml. Let jl = MAX j: piece ,(j,1)

By Lemma 2.13 all BIN j's with 1 < j < jl must cont

from L1, and so, ji .. F|PIECES(L1)I/ml < L12*. Th

BIN is the rightmost bin containing pieces from

bins. Divide

is the first

ight of PX1.

would be

k PIECES(L1)1.

ain m pieces

us, since

Li, all the

SECTION 6.1 - Page 348

PH1

EIN1

0 .90

PX2

#PX

FIGURE 6.2. GXF-Packing PX' of L12 = Lle L2.

pieces in PX2 must be from L2 and hence have size < 1/(m+1).

Let us return our attention to PX1. By Lemma 2.13, since

#PX1 < #PX', PX1 must contain at least (m)(#PX1) = (m)(L12*)

pieces. But by size constraints IPIECES(L12)| < (m+1)(L12*).

Thus the number of pieces in PX2 can be at most L12*. Since PX2

can be considered a packing of a sublist of L12, all of whose

pieces are < 1/(m+1) in size, Lemma 2.12 tells us that all its

bins except the last must contain at least m+1 pieces, and so

#PX2 - rLl2*/(m+1)1. Thus

SECTION 6.1 - Page 349

GXF(L12) = #PX1 + #PX2 K L* + FL12*/(m+1)I

- [(m+2)/(m+1)]L12* + 1,

and (6.1B) follows. f

Note that this is one theorem which does not make a special

case out of t > 1/2. For such t it yields RCGXFG,t = 1.5. If

we use an AF packing rule S instead of GXF along with the

Grouping-X rule (algorithm SXG), we will get the same results

for t j 1/2, but fort> 1/2 and 1/4,1/3,1/21 C X we have a

stronger result:

THEOREM 6.2. Suppose S C AF, 1/3 < t .1, and

1/2,1/3,1/4a . X. Then

R[SXG,t] = 4/3.

Proof. The lower bound examples are given in Figure 6.3.

To prove the upper bound, let L be a list ordered in accordance

with the GROUPING-X rule. We shall show that S(L) < (4/3)L* +

2, and the bound will follow via Lemma 3.1.

Since 1/4 = (4/3 - 1)/(4/3) & X, we may assume that

Range(sizeL) e (1/4,1), using the same type of reasoning as was

used to prove Lemma 4.2. So let us divide L into segments L =

LAe LBeLC, where

1 1 1 1 1 1
L = <-+r, +(N+1)6 , 2C

3 3 3 3 3 3

OPTIt1AL PCK1NG

1 1 N+1 1 N+1 1 1
-+G, ----- C, ----- 4, -- (N+1)e , .. ., -- (N+1)rt>
3 3 2 3 2 3 3

SXG -PACKING

SKG(LZ) =

FIGURE 6.3.

13 - 62.

N+I
I.

z.

C

I IDIM

Lists L for which 1 im

G~4P= -~~4ZI

.= I

SXG(L) 4

L* 3

QCi~i~

~-E.2.

ISIN

I
3

/5 BiNS

1 1 1
,for all St AF,. X2 -, - ,

f2 3 41

41q
5

+(g t 1)

SECTION 6.1 - Page 351

Range(size LA) !E (1/ 2.1),

Range(sizeLS,) Gr (1/3,.1/211,

Range(sizef) S (1/4,1/3),

and X-pieces, X-bins, X C A,B,C3, are defined in the usual way.

The list can be so segmented since 11/2,1/31 5 X. Let PS be an

S-packing of L, and P* an optimal packing ordered so that if

BIN is the a-bin in PS for a E A-PIECES, then it is also the

a-bin in P*. See Figure 6.4. We divide PS and P* into segments

as shown, with

PSA = A-bins of PS,

PSB = (BIN : |A-PIECESI < j , L* ,

PSX = [BIN : L* < j and levelS(j) > 01,

PA* = A-bins of P*,

PB* = non-empty non-A-bins of P*.

By construction we thus have #PSA = #PA* and #PSB = #PB*,

so that #PS = L* + #PSX. Let x(B) be the number of B-pieces in

cont(PSX) and x(C) the number of C-pieces in C-bins of PSX (we

do not count any C-pieces that might be in B-bins of PSX).

Now since)1/3,1/21 S X, the generation of the S-packing

will proceed much as it did for a decreasing list, with each

SECTION 6.1 - Page 352

P S3PSA

PB9

0.e

FIGURE 6.4. PS and P*.

PS:

PA'*

P-:
9 % 0

~IN1~ tA- PlEXV~I

SECTION 6.1 - Page 353

B-bin receiving two pieces before the next

each C-bin (except possibly the last) recei

bin is started, and

ving 3 C-pieces.

Thus clearly

#PSX < fx(B)/21 + x(C)/31 .

We shall show that

(6.2A) rx(B)/21 + fx(C)/31

and the Theorem will follow.

< L*/3

Now by our above reasoning

S-packi ng,

about the generation of

we can conclude that

x(B) + x(C) j IPIECES(L)I - #PA* - 2(#PB*).

On the other hand, no A-bin can contain more than one addi tional

piece larger than 1/4, and no bin can contain more than 3

pieces, so

E 2(#PA*) + 3(#PB*).

+ 2,

the

such

|PIECES(L)|

SECTION 6.1 - Page 354

We thus conclude that

x(B) + x(C) (#PA* + #PB* =L*,

and so if x(B) = 0, (6.2A) is immediate. We thus assume x(B) >

0.

Since from this point on the proof for arbitrary S 4 AF is

rather involved, we shall first go through it for A E AAF, and

then extend to the whole of AF. So let

n(A) = total number of A-pieces in L,

n(B) = total number of B-pieces in L,

n(C) = total number of C-pieces in L,

PS(B) = number of B-pieces in A-bins in PS,

P*(B) = number of B-pieces in A-bins in P*.

Now the bins of PSB all must contain two B's each in PS,

since there is at least one B-piece in PSX. Hence BIN

thru BINL* are packed in PS with as many B-pieces as possible.

It follows that there must be at least x(B) B-pieces which are

in A-bins in P* but not in A-bins in PS. Now when such a piece

b was assigned by S, it went either into a new bin, in which

case the AF Constraint applied, or into a 1B-bin, which, since

SECTION 6.1 - Page 355

all the other bins were either A-bins or 2B-bins, must have been

the bin with unique minimum non-zero level, in which case the

AAF Constraint applied. Thus, since b originally fit in an

A-bin, the only way it could have failed to go in one now

without violating the AF (AAF) Constraint, is if some B-piece

were already in that bin. From this we can conclude that PS(B)

> x(B), and that

n(B) = PS(B) + 2LL* - n(A)j + x(B) > 2 L* + x(B) - n(A)I.

If x(C) = 0, then since there must

which contained B-pieces in P* but not

x(B) + PS(B) > 2x(B), and so

be at least x(B)

in PS, we have L*

fx(B)/2I + x(C)/31 < x(S)/2 + 1 < L*/4 + 1,

an even better result than that required for the Theorem. On

the other hand, if x(C) > 0 we still have x(C) (

IPIECES(L)I - n(B) -

2n(A) + 3[L*-n(A)] -

3L* - 2n(A) - 2 L*+x(

L* - 2x(B),

n(A)

n(B) - n(A)

B) -n (A)J

A-bins

n(C)

SECTION 6.1 - Page 356

and so

x(C)
3

L*

3

x(B)

2

L*-2x(B) L*
-- 3---------+2 K

3 3

x(B)
6 2

+ 2.

And so (6.2A) holds if S C AAF.

The above observation about the case when x(C) = 0 is no

longer valid if we allow S to be an arbitrary AF algorithm.

such an S, we can

B-piece b went in

in PS even though

a B-piece. All we

start a new bin un

B-piece. Hence if

A-bins, PS(B) need

large as 2L*/3, ar

L*/3. See Figure

for S = WORST FIT,

no longer be assured that PS(B) > x(B). If a

an A-bin in P*, it can still go in a non-A-bin

that original A-bin does not already contains

know is that by the AF Constraint b cannot

less the original A-bin already contains a

, for instance, P* is made up entirely of

I only be > x(B)/2. Thus we can have x(B) as

id the number of excess bins can be as large as

6.5 for an example which realizes this bound

and Corollary 6.2.1 for a consequence.

Taking these possibilities

upper bound proof to arbitrary S

additional quantities:

into account we now extend our

t AF. First we define some

x(B)2

For

L = <4+26,. +24,+,-
2 2 2 2 2 2 2 2 2 2

2N Pieces N Pieces N Pieces 2N Pieces

\AFKGE - PACKiGOIMAL PACKAG
L* = 3M

I

I

FIGURE 6.5. Lists L with Range(sizeL)9(1/3,1J for which

for all X 2 1/2,1/3,1/43 .

2

2N B34os

Om2A

1 11 1 1 1 1 1 1

WFXG(L)/L* = 4/3

SECTION 6.1 - Page 358

bl(B) = number of non-A-bins

bO(B) = number of non-A-bins

Recall that we may assume x(B)

in P* with two C-pieces,

in P* with three C-pieces.

> 0, and so every bin in PSB

contains two B-pieces. Thus, since no bin in P* can contain

more than 3 pieces, we have

PS(B) = P*(B) - x(B) - bl(B) - 2(bOB)),

P*(B) > x(B).

We consider

and PS(B):

two cases, depending on the relation between x(B)

First, suppose x(B) _

x(B) -< 2[PS(B)I = 2

2 [PS(B)] . We then have

P*(B) - 2x(B) - 2(bl(B)) - 4(b0(B)).

Thus we can conclude that

- bl(B) - 2(bO(B))].

and

x(B) < (2/3) 1P*(B)

SECTION 6.1 - Page 359

If x(C) = 0, we then have

+ fx(/c)/31 r IP*(B)/31 K L*/3 + 1,

and so (6.2A) holds. If x(C) > 0, we still have that

x(C) K n(C) < L* - P*(B) + bl(B) + 2(bO(B)),

and so Ex(B)/21 + x(C)/31

P*(B)-bl(B)-2b0(B) L*-P*(B)+bl(B)+2b0(B)
K------------------- -+-----------------------------

K L*/3 + 2, and again (6.2A) holds.

Suppose on the other hand that x(B) > 2[PS(B)].

the AF Constraint, less than half of the x(B) B-pieces which

were in A-bins in P* but not in PS can be bottom pieces

B-bins in PS. Thus at least d(B)

must be in non-A-bins in P*.

= x(B) - 2[PS(B)3

Substituting for

B-pieces

PS(B) we get

- x(B) - bl(B) - 2bO(B)3

x(B)/21

Then by

x(B) + d(B)=2 [P*(B)

SECTION 6.1 - Page 360

and we can conclude that

= (2/3)[P*(B) - bl(B) - 2b0(B)] + d(B)/3.

Since there must be at least d(B)/2 non-A-bins

have x(B) K (213)L*, and (6.2A) follows if x(C) = 0. If x(C) >

we still have

x(C) K n(C) - [P*(B)-PS(B)],

since no C-piece can start the first excess C-bin until all

A-bins which had room for B-pieces in P* have received either a

B- or a C-piece in PS.

x(C) -. L*

since P*(b) > x(B)

Substituting for

- P*(B) + bl(B) + 2b0(B)

- P*(B) + bl(B) + 2b0(B)

> x(B)/2.

n(C) and PS(B) we get

- P*(B) + [x(B)-d(B)]/2.

- d(B)12,

We thus have

+ ix(C)/31 K

P*(B)-b1(B)-2b0(B)+ [d(B) /2]

L*-P*(B)+bl(B)+2b0(B)- [d(B)/2)
- - - - - - - - - - - -

x(B)

in P*, we thus

fx(B)/21

SECTION 6.1 - Page 361

L*/3 + 2,

and so (6.2A) holds in all cases if S 4 AF and Theorem 6.2 is

proven. f

COROLLARY 6.2.1: There exists an interval 1, namely I =

(1/3,1), such that for all X 2 j1/4,1/3,1/2l

REWFXG,1) > R[FFXG,4).

This follows from our remarks in the middle of the above

proof about the case when x(C) = 0 and S 4 AAF, and Figure 6.5

for WF. The actual values are R[WFXG,(1/3,1]) = 4/3 and

R[FFXG,(1/3,1)) = 5/4. The significance of this Corollary

derives from the fact that we were not able to find any

intervals which would similarly distinguish between WFD and FFD

(indeed, if Range(sizeL) G (1/4,1], by Theorem 3.9 we have

IFFD(L)-WFD(L)I . 1), and thus the DECREASING rule seems to be a

better leveller of ANY FIT algorithms than the GROUPING rule,

even though we chose the latter as an approximation to it.

SECTION 6.2 - Page 362

SECTION 6.2. The INCREASING Rule

The final preprocessing rule we shall consider might be

called the "ultimate" leveller. It in fact guarantees that all

AF algorithms will generate identical packings when applied to a

list preprocessed in accord with it. Unfortunately this packing

will usually be among the worst possible for sn= ordering, and

we would not recommend it for practical use. It is of

theoretical interest because it is a natural sort of idea,

simply the opposite of the DECREASING rule:

INCREASING RULE: L is in increasing order, that is

size(a) > size(b) ====> rank L(a) > rankL(b).

A 2-part algorithm consisting of a packing rule S and the

INCREASING rule will be called S INCREASING, or simply S1. If S

GAF, it should be clear that the SI-packing will be the same as

the NFI-packing, since if a piece starts a new bin it cannot

have fit in the previous one, and so neither can any of its

successors, all of which are at least as large. That this

packing will generally be bad can be seen from the fact that all

bins containing a piece larger than 1/2 will contain only that

piece, and hence there will be much unused bin-capacity.

The following Theorem gives a lower bound on the worst case

SECTION 6.2 - Page 363

behavior of such algorithms which

the upper bound for AAF algorithms

And although we suspect that this

using the INCREASING rule does yie

case behavior, in the average case

ANY FIT INCREASING algorithms to b

consistently worse than the ANY F1

preprocessing at all.

THEOREM 6.3. If S 6 AF UINkF

90 1
R[SI] 2 1 + : 2 1

where ck = 1/(ck(c..+1)), and

is only slightly better than

with no preprocessing at all.

is also the upper bound and so

ld a tiny improvement in worst

we would have to expect the

e considerably and

T algorithms with no

: k > 1, then

1 1
+ -- + .. = 1.69103...

6 42

c, = 1.

PROOF: We can construct an arbitrarily long list L for each

partial sum so that SI(L)/L* realizes the given sum. This is a

fairly straightforward process once the idea is grasped. We

merely present, in Figure 6.6, an example realizing the sum of

the first four terms.

The above lower bound was originally thought to be the

upper bound on the worst case behavior of FIRST FIT, until

Ullman discovered the example we presented in Theorem 2.6 [Gr3J.

OPTIlAL PAcKIRG
L* = -2N

2 L

3~fI M

I
A

m
mim

CA'
7 +

H

FIGURE 6.6. Lists L for which SI(L)/L*

for all SEAFU {NkF1 .

1

2

42.N

1
+ -- ,

42

SI- PA CKING

SICQ = 42. N (I++t+

SECTION 6.2 - Page 365

Similar lower bounds can be generated for the cases when the

pieces must all be j 1/n, but we leave that as an exercise for

the reader.

This completes our study of 2-part algorithms. Table 6.1

summarizes the bounds on worst case behavior that we have proved

for them. The entries for the algorithms involving GROUPING are

made under the assumption that the schedule of intervals X

contains at least those numbers specified by the relevant

theorem. The ANY FIT and ALMOST ANY FIT entries give the worst

values possible for any member of the corresponding class of

algorithms. Timings are omitted for these entries, although by

Theorem 2.10, we know that all such algorithms require at least

0(nlogn). Where the precise value of R[S,t] is not known, the

best upper and lower bounds are given.

ALGORITHM TIME t e (1/2,1)

1. NEXT FIT O(nlogn) 1
2. WORST FIT O(nlogn) 2.0 1 +--------

3. ANY FIT (1/t)-1

4. NEXT-2 FIT 0(n)
5. GROUP-X FIT 0(n) [1.7, 2.0J

6. FIRST FIT O(nlogn) 1+---
7. BEST FIT O(nlogn) m
8. ALMOST ANY 1.7

FIT

9. ANY FIT
INCREASING L1.691..., 1.71 L1 + 1/m - ?, 1 + 1/m]

10. GROUP-X FIT 0(n)
GROUPED 1.5

1 +---
11. ANY FIT m+1

X-GROUPED 4/3 = 1.333...

12. FIRST FIT O(nlogn) 1 2
DECREASING 11/9 = 1.222... [1 +--- - ----------- ,

13. BEST FIT O(nlogn) m+2 ni(m+1)(m+2)
DECREASING

14. ANY FIT [1.222..., 1.251 1 +
DECREASING m+2

Table 6.1. Summary of asymptotic worst case bounds
2-Part bin-packing algorithms.

proven for

RCS,t), rm = L/tJ > 2

SECTION 6.3 - Page 367

SECTION 6.3. More Complicated Algorithms

Of all the algorithms considered so far, FIRST FIT

DECREASING (and presumably the rest of the AFD algorithms) has

the value of R(Si closest to 1. However, these algorithms still

can require as many as 11/9 times the optimal number of bins.

The question arises, are there any polynomial time algorithms S

with R(S] < 11/9? In particular, are there any fairly simple

(though not necessarily 2-part) algorithms of this type which

might have practical applications?

One candidate is mentioned in (Gr3):

BEST BIN FIT: Set I = 1, LIST = PIECES(L).

1. If LIST is empty, halt.

2. Pack bin I with that subset of LIST which

smallest possible remaining gap in the

that subset from LIST.

3. Set I = I + 1

4. Go to 1.

fits

bin.

leaving the

Delete

This algorithm, unfortunately, has a number of failings.

The first is that it is not necessarily a polynomial time

algorithm. The second step involves the solution of the

polynomial complete problem SUBSET SUM [Kali, so if the

SECTION 6.3 - Page 368

algorithm can be implemented in polynomial time

cotimal packing in polynomial time as well, and

would probably be unnecessary, especially since

nat optimal itself.

Graham [Gr3] asserts the following result,

difficult to reconstruct the proof:

THEOREM 6.4. R(BBF) 1
o

2 d;I1 1/(2-1) =
v'Ze

, we can find an

this algorithm

it is definitely

and it is not

.606695...

PROOF: For each partial sum we can construct a sequence of

lists 1LL'i such that Lj* ---> 0o and lim BBF(L()/Ll* lies

between that partial sum and the overall sum. Figure 6.7 gives

a series for the sum of the first two terms and should indicate

how to procede for the rest of the partial sums. Graham

conjectures that this lower bound is also the upper bound and we

tend to agree.

Although the above algorithm is more or less a failure, it

does suggest some ideas that might enable us to improve on FFD.

The basic problem with it (other than timing) is that it allows

the packing of the larger pieces to be postponed until there are

no longer any small pieces to fill in the gaps, the same problem

that our use of the DECREASING rule in FFD was designed to

eliminate. By trying to get the best of both worlds, we arrive

Let d(1) < 1/64, d(i) = d(i-1)/4 for 2 < i (4N+1, N !O! (mod 3).

OPTIMAL PACKIRG
LA =4K t

~E - PACKING

5BF(L)= 19N/ 3

*+ d (4k+)

* -4d(4k+4)
+ d(4k+3)

-44(4*3)

+ d (4k+l)

k= o0 N-1

FIGURE 6.7. Lists L for which 1 + - < li
3

BBF(L)
rm------

1

3

1 * 1
+ -

4 At 2-1

1= *"--

SECTION 6.3 - Page 370

at the following series of algorithms (indexed by k):

MOST-k FIT: Set I = 1, LIST = PIEC

1. Remove the largest piece from

2. If LIST is empty, halt.

3. If the smallest piece in LIST

set I = I + 1 and go to 1.

4. Add to Bin I that subset of L

pieces which fits with the

and delete that set from L

5. Go to 2.

ES(L).

LIST and put

will not fit

IST with k or

least gap re

IST.

it in Bin I.

in Bin I,

fewer

ma in i ng,

The reader can observe that MOST-1 FIT will yield the FIRST

FIT DECREASING packing of L, and so in a sense all of these

algorithms are simply generalizations of FFD. For k > 2, they

can be implemented in O(nk) if we are willing to allocate O(n4)

storage to store an ordered list of all the sums of subsets of L

with k or fewer elements. If space is constrained, they can be

implemented in time 0(nlt+"), with the various subsets being

tested each time we make an assignment.

We have as yet been unsuccessful in proving upper bounds on

the worst case behavior of these algorithms, except to observe

that they all obey the 17/10 upper bound since for any list L

there is a permutation L' of L such that the FF-packing of L' is

SECTION 6.3 - Page 371

the same as

as was used

the MkF-packing of

to prove Lemma 2.0.

L. (This is the same sort of idea

)

We suspect that the algorithms are much better than this.

For instance,

exceeds 7/6.

11/9 ratio

Figure 4.3

68/60 rati

are those

reproduce

Simil

MOST-3 FIT

of 23/20.

examples k

being 17/1

for

tha

o fc

giVE

this

arl y,

is

In

nowr

5 ar

we have found no

The lists given

FFD are packed

t yielded a 71/6

r M2F. The list

n in Figure 4.2

example in Figu

, the worst exam

given by Figure

fact, Figure 4.2

for all k < 5,

d 5/42 respecive

1;c1-~ FAr i~,hich MkF(I)II* 10

list L for which M2F(L)/L*

in Figure 4.1 which yielded an

optimally by M2F. The list in

0 ratio for FFD yields only a

s which do attain the 7/6 ratio

with n = 3. For clarity, we

re 6.8, with n fixed at 3.

ple we have been able to find for

4.2 with n = 4 and yields a ratio

yields the best lower bound

the values for k = 4 and k = 5

ly. Figure 6.9 gives a set of

19 for all k > 2, and this is th

best lower bound known for k > 6.

Nevertheless, 11% excess bins is

22%, and so a distinct improvement on

although apparently at a considerable

considerabl

FFD may wel

increase in

noting that the 10/9 example in Figure 6.9 would

optimal

possibl

ly packed by FFD, we can

e further improvement:

y better

1 be pos

cost.

in fact

suggest the following avenue for

e

than

sible,

And

be

SECTION 6.3 - Page 372

OPTIMAL PACKING

L* = 12N

Nat4

4~

IIN OWS~

M2F-PACKING

M2F(L) = 14N

N .

FIGURE 6.8. Lists L for which M2F(L)/L* = 7/6.

34

SECTION 6.3 - Page 373

OPTIMAL PACKING

L* =9N

I L

3i

MkF-PACKING

MkF(L) =

'U.'

P6
-S."2.

'S

'4$

10N

4N4

FIGURE 6.9.
MkF(L)

Lists L for which 4-----
L*

10
= -- for all k > 2.

9

.~S34

2.

3b1 B~.

SECTION 6.3 - Page 374

Pack L according to MkF for 1 j k (j, and

take as your final packing the best of the j trials.

We leave the investigation of this and the other algorithms

we have suggested for further research.

SECTION 7.1 - Page 375

CHAPTER 7. EMPIRICAL TESTS OF AVERAGE CASE BEHAVIOR

SECTION 7.1. The experimental environment

In this Chapter, we hope to give a general idea of how the

average behavior of the various bin-packing algorithms we have

introduced might compare with the worst case behavior we have so

extensively analyzed in Chapters 1 thru 6. Do our worst case

bounds actually have practical significance? Do the rankings of

the algorithms according to R S,t] carry over into the average

case?

In an attempt to answer these questions, we have chosen to

empirically test the algorithms by running them on computer

generated sample lists and averaging the results over a number

of runs.

In this section we present a general description of our

research procedures and the implementation of the various

algorithms. Section 7.2 will then present the experimental

results in summary and graphical form and compare them with our

earlier worst case results.

Our experiments were performed on the M.I.T. Artificial

Intelligence Laboratory's PDP-10 Time-Sharing System. The

programs for the implementations of the various algorithms were

SECTION 7.1 - Page 376

written in

interested

number of b

comparative

devote a lo

as possible

implementat

comparisons

coefficient

implemented

results pre

and we will

factors in

packings ou

First

the algorit

behind all

LISP and run as compiled LAP code. We were primarily

in the behavior of the algorithms with respect to the

ins they used and so did not consider the issue of

computer running times important enough for us to

t of effort toward making our implementations as fast

Thus, for instance, although most of our

ions of AF algorithms required only 0(nlogn)

each had an overhead component which, though its

was small, was 0(n2). GROUP-X(k) FIT was

in 0(nk) rather than 0(nlogk). Thus none of the

sented in this chapter will concern timing questions,

restrict this introductory discussion to those

our experimental design which have a bearing on the

r algorithms generated.

let us describe the way we produced the lists which

hms were required to pack. The basic machinery

our list generators was the random number generator

supplied by MACLISP and named RANDOM. This provides a computer

word full of "random" octal digits which we converted into a

number with 6 places decimal accuracy in (0,1). Figure 7.1

portrays the decile distribution of the numbers generated, based

on 10,000 consecutive calls. We call this distribution

"Unifoirm," although it is probably only an approximation to the

real uniform distribution. To generate numbers according to an

SECTION 7.1 - Page 377

PIECES PER 100

6.3 49-7 9.1

(MEAN = .501)

9.2 10,1k I0,0 9.~

I 1 _________ I-.-- I i _________ I ~ 4 -.--. t~ 4..............~.....
.1 :' SIZE

FIGURE 7.1. Decile Breakdown of

PIECES PER 100

12.7

.0?.3

'31. z

0.0 0.1 o.1 a.- .4

3SO

"Uniform" Distribution

(MEAN = .498)

1.'3 .0

FIGURE 7.2. Decile Breakdown of "Normal" Distribution.

19.9
23.~

0.0 0. t &.1 0-5

PIECES PER 100

(MEAN = .287)

10,.

S.5

&- oS 6-6 0.1 - os iosize

Decile Breakdown of "Chopped (2,5)" Distribution.

9,'

0.0 &.1 0.1

t6

. SieE

FIGURE 7.3,.

6.4 0.15 4-% 6 ."1 t I

*.-a 0-1 a.s 0-9 I

SECTION 7.1 - Page 378

to a "Normal" distribution, we averaged

form" numbers. Figure 7.2 gives a decil

on actually obtained.

hese distributions, the numbers are all

independently, insofar as the

values. There is a problem w

as we do that the polynomial

polynomial time, there is no

actual value of L*, given a 1

in order to get average case

our worst case bounds, we wan

For the purposes of this

take for L* the best lower bo

Iw(L) or the number of A-pie

greater.

under-est

be a litt

a little

In general this

mate of the actL

e higher (and ir

igher) than the

effect is fortunately

wi

,al

I so

the

basic RANDOM give

ith this, however.

complete p

reasonable

ist of say

measures w

t to find

investiga

und we can

ces (numbe

11 probabl

value, so

me special

real rati

s

roblems c

way to c

100 or s

hich are

values fo

tion, we

find. T

rs > 1/2)

y be a sl

our avera

cases, p

os actual

together

e view of

generated

independent

For, assuming

annot be done

ompute the

o pieces. Yet

comparable

r S(L)/L*.

have chosen

his will be

, whichever

ight

ge ratios w

erhaps more

ly are. Th

bounded by the fact that the best pac

ill

than

is

king

produced by any of the algorithms yields an upper bound on L*,

and this often is reasonably close to our lower bound estimate.

In an effort to get around this difficulty, we designed an

additional distribution of pieces, which we call the "Chopped"

distribution. It is obtained by assuming that the optimal

approximation

10 of our "Un

the distribut

In both

,0

SECTION 7.1 - Page 379

packing has all its bins completely filled, and breaking each up

independently into a random number of pieces, which are then

assigned random values, suitably adjusted so that they add up to

1. To get a list of pieces fitting this distribution, we must

specify the number of bins we wish the optimal packing to have,

and the range in the number of pieces allowed per bin, for

instance, 50 bins with from 2 to 5 pieces per bin. This allows

us to know L* in advance, and by shuffling (using "Algorithm P"

CKn2, p.125]) the list, we can for all practical purposes render

its original structure irrecoverable. This in a sense stacks

the deck against the possibility of our algorithms finding an

optimal packing, since there are now probably far fewer

different optimal packings than there would be for a completely

random list, but presumably it will not prevent our algorithms

from getting close to optimal, which is what we are interested

in anyway. In addition, the distribution, pictured in Figure

7.3, does not look altogether that unreasonable, although there

is no reason to believe that it, any more than our other two,

would actually be encountered in practical situations.

SECTION 7.2 - Page 380

SECTION 7.2. Average Case Results

Our principal investigation dealt with the uniform

distribution. The results summarized in Table 7.1 will

therefore stand as a basic reference point for our other, less

extensive, empirical studies. The entries in the table give the

average value of

(#PS/L* - 1.0) X 100%,

where PS is the packing resulting when algorithm S was applied

to list L, for S = NF, N2F, GX(8)F, AWF, FF, BF, GX(8)FG, AWFD,

FFD, and BFD, and for L with piece sizes uniformly distributed

in the intervals (0,1), (0,1/2), and (0,1/4). For each

interval, we used our "uniform" list generator to generate 25

different lists of length 200, and ran all 10 algorithms on each

of the lists, averaging the results to get the table entries,

and using the lower bound estimate for L* described in the

previous section. Worst case bounds proved in the first two

chapters are included for comparison purposes (if none was

proved in a particular case, then the best lower bound on worst

case behavior known is listed).

SECTION 7.2 - Page 381

UNI FORM
(0, .25)

NF

N2F

AWF

FF

GX(8)F

BF

GX(8)F

AWFD

FFD

BFD

Table 7.1.

31.1

21.9

10.4

7.0

5.8

5.6

2.1

2.0

1.9

1.9

[100.)

[70.0)

[70.0)

(70.0)

[70.0)

[70.0)

[50.0)

[22.2)

[22.2]

[22.2]

18.8

8.5

4.8

2.2

2.2

2.0

0.4

0.2

0.1

0.1

[100.)

[50.0)

[50.0)

[50.0]

£50.0)

[50.0)

[33.3)

[18.3)

[18.3]

E18.3)

[50.

[25.

[25.

[25.

[25.

[25.

[20.

(15.

[15.

[15.

Percentage of excess bins required on the
average in bin-packings of 25 lists with piece sizes
"uniformly" distributed within the stated ranges.
tWorst case bounds are inserted in brackets.]

UN I FORM
(0,1.0)

UNIFORM
(0, .50)

SECTION 7.2 - Page 382

COMMENTARY ON TABLE 7.1

The difference between the entries for the DECREASING

algorithms in the second and third columns is not significant.

In both cases the packings generated were optimal for all but

one of the 25 lists, but in the former the lists had optimal

lengths only half that for the latter. In addition, the one

list for which the algorithms did require an "excess" bin in

column three had piece size total W(L) = 25.98, so our estimate

of L* was 26, although in truth L* may well have been 27, the

number of bins actually used by our algorithms.

The principal conclusion to be drawn from these results is

clearly that these bin-packing algorithms apparently are much

better than their worst case behavior bounds would lead us to

expect. BEST FIT, which we could only guarantee would do no

worse than 70% excess bins, actually yields less than 6%. FIRST

FIT DECREASING, for which we went to so much trouble to prove a

worst case bound of 22.2%, actually uses no more than 2% excess

on the average. And if no piece exceeds 1/2, although in the

worst case its behavior could be as bad as 18.3%, its average

behavior is to all intents and purposes optimal.

SECTION 7.2 - Page 383

Results for "Normal" and "Chopped" Distributions (Table 7.2)

The fact

case behavior

that average case behavior

is perhaps not unexpected,

is better than worst

due to the rather

complicated nature of many of the worst case examples. However,

the magnitude of the difference is somewhat surprising. The

question arises, is this all dependent on the fact that we used

a uniform distribution? Table 7.2 gives the companion results

for our "Normal" and "Chopped" distributions, this time based on

just 10 lists for each range.

As we can see, the general outline of the average case

behavior remains the same in the chopped distribution, and in

the normal case for the interval (0,1), although in this case

the ratios are all a little higher. This may indicate either

that the algorithms are worse for this type of distribution, or

that our estimate of L* is worse, although probably a

combination of the two is involved. However, a definite anomaly

turns up in the normal case when all piece sizes are in (0,1/2).

Here the ANY FIT DECREASING algorithms are significantly worse

than they were when bigger pieces were allowed, and in fact BEST

FIT is practically just as good as BFD. What has happened?

SECTION 7.2 - Page 384

CHOPPED
(2,5)

NF

N2F

AW F

FF

GX(8)F

BF

GX(8)F

AWFD

FFD

BFD

Table 7.2.

NORMAL
(0,1.0)

37.0

27.2

13.2

9.8

8.2

7.8

3.9

3.2

3.2

3.2

24.8

13.0

6.8

4.0

4.2

3.6

2.0

2.0

2.0

2.0

NORMAL
(0,.50)

14.8

9.4

6.8

6.0

5.6

5.8

4.4

4.4

4.4

4.4

NORMAL
(0,.25)

6.7

4.4

4.0

4.0

4.0

4.0

2.8

2.0

2.0

2.0

Percentage of excess bins required on the
average for 10 lists with "Chopped" and "Normal"
distributions of piece sizes.

SECTION 7.2 - Page 385

Using Worst Case information (Table 7.3)

The explanation is actually quite simple, and brings out

the point that knowing the significant features of the piece

distribution can be of help in choosing which algorithm to use.

Here the important feature is that all the pieces are fairly

close to their mean, which is of the form 1/n, where here n = 4.

Thus the typical list will to a certain extent simulate our

worst case example for all pieces in the interval (0,1/n +4].

(See Figure 4.2.) In the optimal packing the bins will tend to

have n pieces, half of them less than the mean, and half

greater. But a DECREASING algorithm will put n-1 of the bigger

pieces per bin until they run out, and since there are not very

many especially small pieces, perhaps none of the remaining

pieces will fit, so these bins will end up with just n-1 pieces.

To bolster the above argument, we ran an experiment with

the pieces uniformlv distributed throughout the interval

(.2,.3), with results as shown in Table 7.3, averaged over 5

trials of lists of length 200.

SECTION 7.2 - Page 386

UNIFORM UNIFORM
(.15,.35) (.20,.30)

NF 14.9 14.6

BF 6.7 6.7

AWF 7.4 7.1

BFD 4.3 10.7

Table 7.3: Percentage of excess bins required on the
average for 5 lists with pieces "uniformly"
distributed in narrow ranges centered on 1/4.

Note that now BFD is distinctly worse than BF. In fact,

all the algorithms seem to be worse than they were when the

pieces were in the larger interval (0,1/2). This is apparently

because the effectiveness of the algorithms depends in large

part on the availability of small pieces to fill in the gaps in

earlier bins, although it also may again reflect the fact that

the optimal packing is significantly longer than our lower bound

estimate.

Table 7.3 also shows the values obtained when the range of

the distribution is opened up slightly to (.15,.35). We note

that all the algorithms yield about the same ratios as they did

in the narrower range, except for BFD, which shows an immense

improvement. Thus this phenomenon of the DECREASING rule being

SECTION 7.2 - Page 387

counter-productive is a very local one.

Average Case Behavior as a Function of Maximum Piece Size

(Figures 7.4 and 7.5)

Although lowering the upper bound on piece size can only

improve the worst case behavior of a bin packing algorithm, it

still need not be true that the algorithms' average case

behavior improve monotonically as the upper bound on the piece

size decreases. Figures 7.4 and 7.5 show this graphically for

the "Uniform" and "Normal" distributions. We plot the average

percentage of excess bins when the piece range is (0,t) as t

goes from .125 to 1.0. The appearance of at least some

smoothness in the curves may well be deceptive, as values were

calculated at only eight points (those not in Tables 7.1 and 7.2

are based on only 10 runs on lists of length 200). For both

distributions there are local maxima for t's other than 1.0, but

at present we are not sure whether to assign the blame for these

to our algorithms, or to the fact that our estimate of L* is too

low for those particular t.

SECTION 7.2 - Page 388

%EXCESS BlaS

OF PIECES la (oat)

.375 .7so .1

MKF

AWF

FIGURE 7.4. Average case behavior as a function of upper

on the "Uniform" distribution.

% EXCESS Sims

NORM A L
DIST R1BU-T \ON

OF PIECES IN (oat)

FIGURE 7.5.

-2So .315

Average case

,Soo

behavior as a

.790 -81,5

function of upper

on the "Normal" distribution.

3o-

2.0-1

UFOR-
DISIR I Bu tON~

14E

tar

1.0

jFFD

1.-

SECTION 7.2 - Page 389

WORST FIT, ALMOST WORST FIT, and ANY FIT (Table 7.4)

In Section 2.1 we showed that by a slight modification of

the algorithm WORST FIT, we could obtain a second algorithm,

ALMOST WORST FIT, with significantly improved worst case

behavior. We also introduced the incompletely determined

algorithm ANY FIT, which was allowed to make Day assignment

which did not violate the AF Constraint, and showed that it had

the same worst case behavior as WORST FIT. Again a simple

modification yielded another algorithm, ALMOST ANY FIT, which

has the same worst case behavior as AWF.

Now in Tables 7.1 and 7.2 the only one of these algorithms

represented is AWF, and so we conducted a brief study to see how

these algorithms might compare in practice. To simulate the

possible behavior of AF, we implemented it so that it worked

like FF, except that after each assignment the sequence of

non-empty bins was randomly shuffled. AAF was implemented

similarly, with additional machinery to insure that the AAF

Constraint was obeyed. The results of our test, which consisted

of lists of length 200 with piece sizes "uniformly" distributed

in (0,1), are presented in Table 7.4. BF has been added as a

reference point, since these particular lists yielded better

results than those in Table 7.1.

SECTION 7.2 - Page 390

Uniform
(0.0,1.0)

WF 14.5

AWF 9.9

AF 7.7

AAF 6.7

BF 4.8

Table 7.4: Percentage of excess bins required on the average
for 10 lists with piece size "uniformly" distributed.

Note that adding the AAF Constraint has a significant

effect on average case behavior as well as worst case behavior.

On the other hand, AF does better than AWF, even though its

worst case behavior is worse. This is probably because,

although AF can occasionally choose the bin which is the worst

fit, most of the time it will choose bins which are neither the

worst nor second worst fits.

SECTION 7.2 - Page 391

GROUPING Algorithms (Figure 7.6)

In Sections 2.3 and 6.1 we introduced linear time

algorithms GXF and GXFG which we said were "approximations" to

BF and BFD respectively. We showed that if lists are restricted

to those with no pieces larger than 1/2 in size, and the

interval schedule is X, = 10,1/3,1/2,11, then GX1 F has the same

worst case behavior as BF. In addition, if X =

0,1/4,,1/3,1/4.,11, then GX2FG has better worst case behavior

than BF, though not quite as good as BFD.

We were skeptical that such results would actually be

mirrored by the algorithms' average behavior, and a simple

experiment verified this. For 20 lists of length 200 with a

"Uniform" distribution of piece sizes in (0,0.5), the average

percentages of excess bins were 0.6% for BFD, 2.7% for BF, 17.2%

for GXFG, and 25.6% for GX1 F. The linear time algorithms,

despite their speed, are really no competition.

However, as suggested in Section 2.3, it is possible to get

good results out of such algorithms, if we are more clever about

our choice of interval schedule. It was suggested that by

reducing the mesh of the schedule, we would get better

approximations to BF (and BFD). We defined a series of

schedules

SECTION 7.2 - Page 392

1 2 2 -1

, .. , - -

and predicted that the

approach that of BF as

BFD. Tables 7.1 and 7

and these can be seen

respectively. Figure

GX(k)F and GX(k)FG as

validated.

average case behavior of GX(k)F would

k --- >ao, and similarly for GX(k)FG and

.2 contain entries for GX(8)F and GX(8)FG,

to be quite close to those for BF and BFD

7.6 graphs the average case behavior of

k --->oo, and we can see our prediction

FIGURES 7.7 and 7.8: NEXT-k FIT as a function of k

in Section 1.2 we showed that although NEXT-2 FIT was a

significant improvement over N1F in worst case behavior, the

algorithms NkF for k > 2 all had the same worst case behavior.

However, we predicted that as k increased, the average case

behavior of NkF would approach that of FF. Figure 7.7 presents

the results of a test of this hypothesis using 10 lists of

length 200 with piece sizes "Uniformly" distributed in (0,1),

giving the percentage of excess bins required for FF and NkF, k

= 1, 2, 3, 5, 10, 15, and 25. Again our prediction is

validated.

X(k) = 0,

SECTION 7.2 - Page 393

/ EXCESS eIms

24 \

204

IS.

iN (c~ ~)

101+

MM-M-* BF1Z7~~
K: 2.

FIGURE 7.6.

3 4 S bV 7 8

Average case behavior of GX(k)F and GX(k)FG

as a function of k.

6 EXCOSS BINS

ODORM \STRI\iTON

114 (e)I0

+FF

pig i

Kv 1 2 3 as

FIGURE 7.7. Average case behavior of NEXT-k FIT

as a function of k.

304

10j

SECTION 7.2 - Page 394

However, one might question our use of lists of length 200,

since the length of the list could have a significant effect on

the results. If the list had 100 pieces and hence a packing of

around 50 bins, N25F would examine around half the bins FF can

consider in choosing its assignment. However, if the list

length were 1000, N25F would only be looking at about 1/20 of

the bins that FF can consider. Therefore, we tested out the

possibility that list length might effect average case results

by running N1F, N2F, N25F, and some of the other algorithms on

10 samples each of lists of length 100, 200, 500, and 1000, with

piece sizes "Uniformly" distributed in (0,1). The results are

graphed in Figure 7.8.

Note that there is a slight increase in the percentage of

excess bins for the NkF algorithms as list length increases, but

the other algorithms seem to be settling down to a constant

value. In fact, BF experiences a considerable improvement at

lengths 500 and 1000 over its behavior for 100 and 200. FF was

not included in this study since our implementation of it was

too slow.

SECTION 7.2 - Page 395

%t excess eNS

304

zo+

10 -

NF

WZ2F

AW

.,BF
Gif8S)FG

SFI:D

I0
PIECES

200
PIECES

SOD
pIceCs

1000pieces

FIGURE 7.8. Average case behavior as a function

of list length.

SECTION 7.2 - Page 396

This concludes our study of average case behavior. A

number of questions have been raised, many of which have been

referred to in the text. For instance, how does the

distribution of piece sizes effect the ratio L*/W(L), on the

average? If L* is significantly greater than W(L), how does

this effect the ratio S(L)/L* for the various algorithms? Why

is BEST FIT better than FIRST FIT?

Some of these questions might well be answered by a

probabilistic analysis of the algorithms' expected behavior, and

we would be very interested in the results of such a study.

However, our worst case analysis can be of considerable help

also. Many aspects of our average case results become

intelligible in the light of such analysis, for instance, the

apparent anomaly in the behavior of DECREASING algorithms when

all piece sizes are close to 1/n, and the differences in

behavior between the nearly identical algorithms, WF and AWF.

We were able to explain both of these in terms of the mechanisms

that cause worst case behavior.

An additional value of our worst case analysis is that it

provides us with an intuition as to which algorithms should

behave nicely, and indeed has led us to propose several new

algorithms which seem to do quite well on random lists. If the

average case results presented here are reflected by the

behavior of the various algorithms on the more idiosyncratic

SECTION 7.2 - Page 397

lists encountered in realistic situations, we suspect that

algorithms like BFD and the linear-time approximations to it

that we have proposed will be of real practical use.

BIBLIOGRAPHY - Page 398

BIBLIOGRAPHY

LAdl] G. M. Adel'son-Vel'skii and Ye. M. Landis, "An algorithm

for the organization of information," Soviet Math.

Dok1. 3 (1962), 1259-1262.

[Brl) A. R. Brown, Optimum Packin and Depletion., Macdonald

and American Elsevier Inc., New York, N. Y., 1971.

[Col] S. A. Cook, The complexity of theorem-proving

procedures, Proceedings of the 3rd Annual ACM Symposium

on the Theory of Computing, 1971.

[Dell A. Demers, private communication.

[Gal] M. R. Garey, R. L. Graham, and J. D. Ullman, "Worst-case

analysis of memory allocation algorithms," Proceedings

of the 4th Annual ACM Symposium on the Theory of

Computing, 1972.

CGa2) M. R. Garey, private communication.

CGr1] R. L. Graham, "Bounds for certain multiprocessing

anomalies," Bell. S.y.. Tech. Jour. 45, no. 9 (1966)

1563-1581.

£Gr2) R. L. Graham, "Bounds on multiprocessing timing

anomalies," SIAM Jour. of Agg. Math. 17,

no. 2 (1969) 416-429.

BIBLIOGRAPHY - Page 399

[Gr3j R. L. Graham, "Bounds on multiprocessing anomalies

and related packing algorithms," Proceedings of the

Spring Joint Computer Conference, 1972.

£Jol2 D. S. Johnson, "Approximation algorithms for

combinatorial problems," Proceedings of the 5th Annual

ACM Symposium on the Theory of Computing, 1973.

[Kali R. M. Karp, "Reducibility among combinatorial problems,"

in R. E. Miller and J. W. Thatcher (ed), Complexity

of Computer Computations, Plenum Press, New York,

N. Y., 1972.

[Kn11 D. E. Knuth, The Art of Computer Programming,

Vol. 1, Addison-Wesley, Reading, Mass. 1969.

EKn2J D. E. Knuth, The Art of Comouter Programming,

Vol. 2, Addison-Wesley, Reading, Mass., 1969.

[NilJ J. Nievergelt and E. M. Reingold, "Binary Search Trees

of bounded balance," Proceedings of the 4th Annual ACM

Symposium on the Theory of Computing, 1972.

1Ull) J. D. Ullman, "The performance of a memory allocation

algorithm," Technical Report No. 100, Princeton

University, Princeton, N. J., 1971.

BIOGRAPHY - Page 400

BIOGRAPHY

The author was born on December 9, 1945, and at age two

demonstrated his capacity for abstract thought with his first

words: "That's the ceiling up there." After logically

disproving the existence of Santa Claus at age five, he entered

a more or less normal childhood until his graduation from 8th

Grade, at which time he was voted the most likely to be replaced

by a computer.

His next four years were spent at Riverside High School in

Milwaukee, Wisconsin, where he took up swim:ning and distance

running, placing 4th in the City mile and the State MAA

mathematics contest. He graduated in 1963 and traveled East to

attend Amherst College. There he honored in Mathematics,

captained the cross-country team, and secretary-treasurered the

Literary Magazine. In his sophomore year he joined Psi Upsilon

fraternity, in his junior year he joined Phi Beta Kappa, and in

his senior year he joined Sigma Xi and graduated first in his

class.

In 1967, after a summer at Los Alamos, he entered MIT as an

NDEA Fellow in Mathematics, with an interest in Artificial

Intelligence. In the summer of 1968 he wrote a Master's Thesis

under Seymour Papert entitled "Look-ahead strategies in

one-person games with randomly generated game trees." His next

BIOGRAPHY - Page 401

course of study turned out to be Basic Training.

After a distinguished academic career in the military (he

was valedictorian of his Advanced Individual Training class, and

somehow managed to survive through OCS), he married Susan B.

Walker of Smith College, and settled into a comfortable sequence

of desk jobs, first at the Registrar's Office of the infantry

School, and then in a bunker in Seoul, Korea.

Returning to MIT in September of 1971, he became interested

in the Analysis of Algorithms, and in February 1972 began the

research that led to this thesis. During this time he has been

associated with both the Artificial Intelligence Laboratory and

Project MAC. To keep his sanity in the middle of proofs with 23

induction hypotheses, he has resumed his long-distance running,

and this year finished the Boston Marathon about the same time

he finished Chapter 4.

He has accepted an appointment to the staff of the Bell

Laboratories Mathematics and Statistics Research Center in

Murray Hill, N. J., and hopes to avoid being replaced by that

computer for a few more years yet.

