
JUN 11 1963

IBE3RA RN

THE NATURE OF THE CRYSTAL STRUCTURES OF

SOME SULFIDE MINERALS WITH

SUBSTRUCTURES

by

Bernhardt John Wuensch

S. B., Massachusetts Institute of Technology (1955)

S. M., Massachusetts Institute of Technology (1957)

Submitted in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

June, 1963

Signature of Author

Department of &jology and Geophysics,

May 10, 1963

Certified by

Thesis Supervisor

Accepted by

Chairman, Departmental Committee

on Graduate Students



Abstract

The Nature of the Crystal Structures of Some

Sulfide Minerals with Substructures

by

Bernhardt John Wuensch

Submitted to the Department of Geology and Geophysics on
May 10, 1963, in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

The crystallography of three transition metal sulfide minerals
has been investigated with x-ray diffraction methods. The crystal
structure of tetrahedrite, Cu12Sb S13, proposed in 1934 by Pauling and
Neuman, has been confirmed. Least-squares refinement reduced the
initial disagreement factor from 27. 9 percent to a value of 6.7 percent.
The final weighted rms disagreement factor was 3.5 percent. The
structure contains Sb atoms which form nearly orthogonal bonds with
three S atoms. There are two types of Cu atoms. Cu (1) is bonded to
three S atoms in a planar configuration. Such coordination for a
transition metal appears to be unique to copper sulfides. Cu (2) is in
slightly distorted tetrahedral coordination. The thermal motion of the
atoms is essentially isotropic with the exception of the Cu atom in
triangular coordination. This atom has a large component of thermal
vibration normal to the plane of the group.

Above 1100 C chalcocite, Cu 2S, is hexagonal. The structure was
solved with the aid of implication diagrams and partial Fourier syntheses.
S atoms are in hexagonal close-packing. The Cu atoms are disordered.
Sites of high Cu electron density occur in 2-fold coordination between
S atoms in neighboring layers, in 3-fold coordination in the S layers,
and in 4-fold coordination in all tetrahedral interstices. Use of the Cu
distribution indicated by the electron density syntheses yielded a dis-
agreement factor of 18. 0 percent. The structure bears a close relation
to stromeyerite, CuAgS. The low-chalcocite substructure has Cu atoms

in only 3-fold and 4-fold coordination. The structure of covellite, CuS,
may be derived from the low-chalcocite substructure through a different

stacking sequence of low-chalcocite unit cells and by omitting the Cu

atoms in one set of tetrahedral interstices.

Pyrrhotite of composition Fe S is pseudohexagonal. Pre-

cession photographs suggest a superstructure with cell dimensions
which appear to be two and four times the A and C dimensions of a

NiAs-type substructure. Small displacements of the superstructure
reflections in the patterns indicate the presence of twinning. A pre-
viously proposed twin law explains neither the symmetry of the twin



nor the non-space group absences in the observed reflections. It is
shown that the true lattice is at least dimensionally monoclinic and
is twinned by a 2-fold rotation about [110] . The a and b translations
are twice the orthohexagonal B and A dimensions of the substructure,

0--
respectively, and p is 91. 79 . The c translation and lattice type
remain uncertain. Patterson projections based on data obtained from
a twinned crystal suggest that there is considerable distortion of the
structure about the Fe vacancies in the NiAs-type arrangement.

A direct procedure, suitable for application to high-speed
computation, is described for the determination of x-ray absorption
corrections for the precession, equi-inclination Weissenberg and
Eulerian cradle diffraction geometries. The crystal is subdivided
into volume elements represented by an orthogonal grid. Unit vectors
are established relative to the coordinate system of the crystal, which
specify the directions of the incident and diffracted beams for each
reflection. Distances from each grid point to the surface of the crystal
are determined and summed to evaluate a transmission factor. The
method is applicable to a crystal of arbitrary shape. Re-entrant angles
are permitted. The only restriction on the shape of the crystal is that
it be representable as a combination of one or more functions which
may be expressed analytically.

Thesis supervisor: Martin J. Buerger
Title: Institute Professor
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I Preface

One of the main concerns of crystal chemistry is an under-

standing of the factors governing the formation of particular crystal

structures. Ultimately, one would hope to be able to predict the

particular structure assumed when any arbitrary collection of atoms

is allowed to crystallize.

It seems doubtful whether this objective may ever be realized

to its fullest degree. In certain special cases, however, great progress

has been made.

(1) Organic compounds. Chemistry is often able to predict

a probable molecular configuration, and Kitaigorodskii (1961)

has proposed rules governing thelpacking of these molecules.

(2) Ionic solids. The cohesive forces between ions may be

considered an electrostatic attraction between point charges.

Geometrical considerations determine nearest neighbor coordi-

nation of the ions. Pauling (1960) has given general principles

governing secondary coordination which often can successfully

predict the general nature - if not the detailed arrangement -

of the structure.

(3) Metallic phases. While no unified view of intermetallic

phases can yet be given, the particular structures to be expected

may be predicted for a great many systems. Thus "normal

valence compounds", "electron compounds", "Laves phases",

"Zintl phases", "beta-tungsten phases", etc. , all have character-

istic structures whose occurrence may be predicted with a fair

degree of certainty in systems in which certain special conditions

apply (Taylor, 1961).

Prediction of the more complex structures provided by nature

becomes an almost impossible task when approached solely from a

theoretical point of view. To accomplish this, one would often require



a detailed picture of the manner in which the electronic states of an

atom are perturbed by any sort of neighboring atom. Understanding

of the raison d'tre of most crystal structures has evolved from

experimental determination of a large number of similar structures.

The recent progress in the methods of crystal-structure analysis, and

the advent of high-speed electronic computers, has facilitated the

determination of complex crystal structures and their refinement to a

high degree of precision. This permits detailed interpretation of the

bonding in the structure and often clues to the reasons for the particular

structure being assumed. As a large number of such observations

are built up, one ultimately hopes to establish some unifying principle

for a larger group of structures of a particular sort.

With this background in mind, the writer became interested in

the crystal chemistry of the group VI elements S, Se and Te. The

crystal structures of compounds containing S, in particular, are inter-

esting in that the atom has only a moderate electronegativity (2. 5, as

compared to 3. 5 for 0, 3. 0 for C1 and 4. 0 for F) and, furthermore, is

easily polarized. Sulfide structures therefore exhibit a complete

spectrum of bond types depending upon the particular element with

which S combines (Wells, 1962). Ionic structures are formed with the

most electropositive elements, such as the alkali metals, the alkaline

earths and some transition metals. On the other hand, the high polar-

izability of the sulfur atoms leads a large number of other structures

to be predominantly covalent in character. The ring structure of

elemental sulfur, the electron-pair bonds in sphalerite, the sulfur

pairs in pyrite and marcasite, and the chains and rings found in many

sulfides are evidences of this property. Still other sulfides, notably

those of the transition metal ions, behave as alloys, and must be re-

garded as intermetallic compounds. In the system Co-S, for example,

phases of composition Co9 S8 CoS, Co3S4 and CoS2 occur.

It is with transition metal sulfides that this thesis is concerned.

These compounds generally have very simple formulae. Their crystal



structures, however, are usually complex. Their phase diagrams

frequently are also complex and incompletely understood. These

sulfides also present many crystallographic challenges:

(1) Their structures are often based on close packing of

sulfur atoms, with the metal atoms occupying interstices.

Many structures therefore display substructures and pseudo-

symmetry, which complicates their solution.

(2) Phase transformations, often of an order-disorder type,

are common. These transformations occur at relatively low
0 0

temperatures (90 - 350 C) so that these compounds are

usually formed above their transformation temperatures. This

situation, coupled with pseudosymmetry, causes twinning to be

common. Many sulfides are invariably twinned and the twin

laws are frequently complex.

(3) Many sulfides exsolve a second phase upon cooling.

Since both phases usually are based on close-packed sulfur atoms,

the result is usually an oriented intergrowth with some plane of

close-packed sulfur atoms in common. These intergrowths

make identification of the composition or structure of the phases

difficult.

(4) Since these sulfides are intermetallic in nature, their

composition may vary over wide ranges. Furthermore, possi-

bility of solid solution will be determined by the bonding pro-

perties of the solute atom rather than atomic size or valence

as in ionic compounds. A wide variety of atoms may therefore

be substituted in these structures, and their exact formulae are

often unknown. Frequently this information may be obtained

only through a determination of the crystal structure.

As a result of these difficulties, the sulfides are the least under-

stood of any major mineral group. The crystallography of many

minerals is uncertain and unusual compositions have been reported

which remain to be verified.



Three sulfide minerals have been studied in this thesis:

tetrahedrite (Cu Sb S 3), chalcocite (Cu S), and pyrrhotite (Fe S).

These structures bear no close relation to one another other than the

fact that they are all sulfide minerals containing transition metal ions,

and are also derivative structures containing close-packed sulfur atoms,

and therefore display marked substructures. The results of these

investigations are reported in Sections II, III and IV. With minor modi-

fications, it is planned to submit each for publication as a separate

article.

Most sulfide minerals have high absorption coefficients for

x-rays. Furthermore, many are sectile and cannot be ground into the

simple shapes for which absorption corrections for the diffracted

intensity data are readily available. At present a program for deter-

mining absorption corrections exists only for the equi-inclination

diffraction geometry. This program is also restricted to crystals

bounded only by plane faces which form no re-entrant angles. The lack

of a sufficiently general absorption correction program represents the

only missing step in the series of computations required for the com-

plete determination and refinement of a crystal structure. Section V

develops a procedure, suitable for application to high-speed computation,

for the determination of absorption corrections in the three principal

diffraction geometries. There are no restrictions on the crystal shape

other than that it be representable by a series of bounding functions

which may be expressed analytically. The procedure is being pro-

grammed for the I. B. M. 7090 computer and, in fact, special versions

have been employed in studying the structures described in the preceding

sections of this thesis. The necessary programming, however, was

done in collaboration with Dr. Charles T. Prewitt and therefore is not

described as a portion of this thesis. Section V is also intended for

publication as an article.

With the application of an accurate absorption correction, a set

of structure factors should be obtainable which has a high degree of



overall precision. Few assessments have been made of the magnitude

of the random and systematic error present in counter diffractometer

data. Tetrahedrite presented an unusual opportunity to investigate

these effects since the structure is isometric. Comparison of those

diffracted intensities which were required by symmetry to be equi-

valent permitted an estimation of these errors. The results are given

in Appendix I, which is intended for publication as a Note.

The remaining Appendices are not intended for publication.

These describe devices and procedures not previously used in this

laboratory, such as the small furnace designed for the precession

camera, and use of film techniques in connection with the new Charles

Supper Company integrating precession camera. It is hoped that

these sections may prove useful to future members of the laboratory

who may desire to use these techniques.
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Section II

The Crystal Structure of Tetrahedrite, Cu 2Sb S 3'

2.1 Introduction

The tetrahedrite minerals are a commonly-occurring family of

sulfosalts with general composition X Y S 3. As is the case with

most sulfosalts, considerable substitution can occur for the metal

atoms X and Y. A complete series of compositions occurs between

tetrahedrite (Y = Sb) and tennantite (Y = As). Fairly large amounts of

Bi may also substitute for Y. The metal atoms occupying X are prin-

cipally Cu. More commonly than not, however, Zn, Fe, Ag, Hg, Pb,

Ni or Co substitute for Cu, in amounts up to 20 %. The number of S

atoms may also vary slightly. At least twenty-five different mineral

names have been assigned to these compositions (Palache etal., 1944).

As has often been the case with sulfosalts having complicated

compositions, the true natare of the chemical formula became certain

only after the crystal-structure of the mineral had been investigated

(Pauling and Neuman, 1934). The proposed structure, however, has

several curious features and was determined at a time when many of

the methods of modern crystallography had yet to be developed. The

Pauling and Neuman structure determination, for reasons described

in the following section, therefore merited reinvestigation. This

section describes refinement of the crystal structure of tetrahedrite.

The Pauling and Neuman structure has been shown to be correct,

although the parameters determined in present work represent an

arrangement of atoms which is more distorted than had previously

been supposed. Examination of the more precise interatomic distances

and angles has provided clues to the reasons for the formation of the

structure.



2. 2 The Status of Tetrahedrite

The general nature of the tetrahedrite structure was determined

by Machatschki (1928a, 1928b). The ideal structure, however, was

assumed to correspond to a formula Cu SbS3. While the presence of
3 3*

sulfur in slight excess of this composition was noted, it was assumed

that this was due to solid solution. Pauling and Neuman (1934) re-

appraised the reliable analyses of tetrahedrite, and concluded that a

formula Cu 2Sb S13 was in closer accord with the analyses. (The

ratio S/Sb = 26/8 = 3. 25 is the next highest ratio above 3/1 which is

permitted by the space group of tetrahedrite.)

The structure proposed by Pauling and Neuman is a derivative

of the sphalerite structure. The arrangement may be described by

considering a cubic unit of sphalerite containing eight unit cells. Let

t he origin be chosen at a tetrahedral site not occupied by Zn. S atoms

then lie in tetrahedral coordination about the origin at - , 4, 44,

and - (or - , etc., in the supercell). Let three of these S atoms

be removed, and the remaining atom be displaced to QOO. A similar

operation is performed at 111 ( or - in the supercell) so that the

final supercell is body centered. The Sb or As atom is substituted for

the Zn atom at ( in the supercell) which would have been co-

ordinated with a missing S atom.

Several features of the structure determination suggested that

the Pauling and Neuman structure might possibly be incorrect, or, at

any rate, require major parameter adjustments upon refinement:

(1) The structure was guessed from a large number of possible

arrangements permitted by the probable tetrahedrite space group.

(2) No electron density maps were prepared.

(3) The final atomic parameters were determined by trial and

error adjustments.

(4) The structure was determined from only 18 intensities, of

which 7 were not detectable. Furthermore, all were zero level reflections,

so that the structure was essentially solved in projection.
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(5) The curious arrangement of copper in 6-fold coordination

about sulfur and the ordering of the As atoms will be primarily reflected

in the weak superstructure intensities. Two-thirds of the superstructure

reflections investigated by Pauling and Neuman were not detectable!

2. 3 Selection of Material

The specimen of tetrahedrite employed by Pauling and Neuman

was a variety known as binnite. This mineral is an intermediate member

of the tetrahedrite-tennantite series but, as with most members of the

family, is closer to the tennanite end of the series. The difference in

scattering power between As (Z = 33) and Cu (Z = 29) is only 4 electrons.

This slight difference in atomic number would result in relatively small

contribution to the superstructure intensities. In confirming the ordered

substitution of As or Sb in Cu positions of the sphalerite structure, it

is desirable for this arrangement to have an optimum effect on the

superstructure intensities. The situation is much more favorable

near the tetrahedrite end of the series, since the difference in scattering

power between Sb (Z = 51) and Cu is 22 electrons. By the same token,

if a careful refinement of the structure is to be accomplished, the ratio

of Sb to As should be precisely known because of the large difference

in scattering power of these elements (18 electrons.) It would also

be desirable to employ a crystal in which X was almost entirely copper.

The effect of this type of substitution on a structure determination is

less serious, however, since it occurs only to a limited degree, and

usually involves atoms with scattering powers differing from copper by

only one or two electrons.

Tetrahedrite from Horhausen, Westerwald, Germany, was

selected for this study. Analyses of this material have been given by

Prior and Spencer (1899) and Kretschmer (1911). These results are

given in Table 2. 1. The composition of these crystals is very unusual

in that Y is almost entirely Sb, and X almost entirely Cu. Specimens



Weight Percent

Prior and Spencer Kretschmer Ideal
(1899) (1911) Cu 2Sb S13

41.55

2.63

1.02

.62

28.32

.83

24.33

37.75

6.51

1.10

.71

-11

28.66

.53

24.61

45.77

29.22

25.01

Cu

Zn

Fe

Pb

Ag

Sb

Bi

S

99.30 99.98 100.00
Density (g/cm ) 4.969 5.079 -4.99

Table 2. 1

Chemical Analyses of Horhausen Tetrahedrite



suitable for x-ray analysis were obtained from a tetrahedral crystal

with excellently developed forms, and a shiny metallic luster. Pre-

liminary x-ray examination showed that many fragments displayed

lineage structure. Eventually a fragment free from this effect was

obtained. This specimen was ground into several spheres using a

method similar to that described by Bond (1951). The crystal selected

for final study and for the subsequent collection of intensities had a

radius of 0.114 mm and was spherical to within ± 1.7 %. (1 1r = 7. 39
2

for CuKa radiation ).

2.4 X-ray Examination and Unit-cell Contents

The spherical specimen described above was examined with

MoKa radiation using the precession method. A zero-level photograph

is reproduced in Fig. 2. la. This pattern clearly indicates the presence

of the marked sphalerite-like substructure reflections. The superstruc-

ture reflections require that a be equal to twice the cell dimensions of

the sphalerite substructure. Figure 2. lb presents a first-level photo-

graph which displays only the -relatively weak superstructure reflections.

The patterns displayed symmetry m3m. This symmetry was

confirmed with cone-axis photographs taken about each of the three

cubic axes. The only systematic obsence of reflections which was

observed was for reflections with h + k + 1 * 2n. This requires that

the lattice be body-centered. (The relative intensity of the substructure

reflections indicated that the substructure was face-centered.) The

diffraction symbol for tetrahedrite is therefore m3mI - - -. This

permits Im3m, 143, and I43m as possible space groups. The tetra-

hedron is the most common form displayed by tetrahedrite ( and is the

Harvard Catalogue Number 82560

2 The value used for 7 is an average of the two values which were

obtained by using the exact compositions reported by Kretschmer, and

Prior and Spencer.



Figure 2. 1

Precession photographs of tetrahedrite, a* horizontal, a* vertical,
2 '3

MoKa radiation.

a. (above) zero-level, fa = 25 , 46 hour exposure.

b. (below) first-level, f±= 20 , 72 hour exposure.
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feature from which the name of the mineral is derived). The morphology

of the crystal thus requires 143m as the correct space group. This

result is in accord with previous investigations.

Final unit cell dimensions were obtained from precision back-

reflection Weissenberg photographs, using CuKa radiation (Buerger,

1942). The extrapolated value for a was determined with the aid of

the least-squares program LCLSQ, written for the IBM 7090 computer

by C. W. Burnham (1961), and was found to be 10. 3908 ± .0006 Q.

Using the analyses and densities listed in Table 2. 1, the unit-cell

contents were found to be

Ca 10.59

Zn Sb
2 0.67 3.94 S

Fe Bi-12. 83
Q-3-1 0.07

Pb 0.05

11.59 4.01

Cu 1 0.19

Zn Sb
2 e1.17 4.04 S

Fe Bi13,7
0.34 0.04

Pb 0.06
12.32 4.08

using the Prior and Spencer and Kretschmer analyses, respectively.

These results neatly bracket the ideal composition Cu 2Sb S13'

2.5 Collection of Intensities

An equi-inclination counter diffractometer was used to record

the intensities. A Kr-filled proportional counter was used as a detector.

The associated electronics were standard Norelco equipment and
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included pulse height analysis circuitry. Care was taken to align the

diffractometer so that the incident beam exhibited constant intensity

over a distance exceeding the diameter of the spherical crystal. The

beam profile was determined with the aid of a lead plate in which a fine

hole had been drilled. With the counter in position to receive the direct

beam, this plate was mounted in a standard goniometer head and placed

before the counter. The spindle translation, which is normally used

to center the crystal, and one of the goniometer arc translating screws

were then used to scan the beam in horizontal and vertical directions,

respectively. The instrument, when in final adjustment, displayed

> intensity constant to within i 2% over a region of .71 mm, or three

times the diameter of the crystal.

Since tetrahedrite has Laue symmetry - 3 - , the independent
m m

reflections are contained within 48 of reciprocal space (i.e.h > k ;> 1).

Values for the instrumental settings 4 and T were computed for these

reflections with the IBM 7090 program DFSET (Prewitt, 1960). Integrated

intensities were determined by recording the background intensity at

3 degrees 4 from the diffraction peak, the total number of counts as

the crystal was rotated through 6 degrees *, and, again recording

background intensity at 3 degrees # on the other side of the diffraction

peak. Assuming that the background varies linearly between the two

4 positions at which background was recorded, the integrated intensity

I is given by

t
B BI tE

I =E -(-+-)-
f. t 2
B B

where E is the number of counts accumulated as the crystal is rotated

through the position for which diffraction occurs, tE is the time during

which these counts are accumulated , B is the number of background

counts accumulated in time tB at the first position of the crystal for

which background intensity is determined, and B' and t are the cor-
-B

responding quantities for the second position of the crystal. High



counting rates were encountered with some of the substructure reflections.

In these instances absorbing foils were inserted before the counter so

that the linearity range of the detector would not be exceeded. The

maximum peak height recorded was limited to 2000 counts per second

in this fashion. The data was corrected for Lorentz and polarization

factors, and appropriate spherical absorption factors (Bond, 1959) with

the aid of the IBM 7090 data reduction programs DTRDA and DTRDB

(Burnham, 1961).

Of 154 independent r6flections contained within the CuKa sphere,

137 were accessible with the instrument used. Of these, 2 were

undetectable and were assigned values equal to E , - B (Burnham, 1961).
-mn-

Sixteen of the reflections recorded were substructure reflections.

Appendix I describes reproducibility checks which were performed on

a representative collection of equivalent reflections. These results

indicate that the overall reliability of the set of structure factors

which was obtained was about 3 %.

2. 6 Refinement of the Structure

The structure proposed by Pauling and Neuman contains five

atoms per asymmetric unit. The parameters reported for these atoms

are given in Table 2. 2. Structure factor calculations were performed

for this model using the full-matrix least-squares program SFLSQ3

(Prewitt, 1962). The disagreement factor, R = Z I IF I - IF I I /1 F 0 ,

for these parameters was 27. 9% for the complete three-dimensional

collection of structure factors, and 26. 1% for the zero-level reflections

It should be noted that Pauling and Neuman determined the structure

of a mineral which was essentially tennantite, while the present study

is concerned with tetrahedrite. Using Machatschkirs work, however,

Pauling and Neuman also proposed parameters for tetrahedrite. These

parameters, which are given in Table 2.2, were considered highly

reliable.



Table 2.2

Positional Parameters and Isotropic Temperature factors for Tetrahedrite

Pauling and Neuman (1934)

distortion from
sphalerite
arrangement

Present study^

distortion from
sphalerite
arrangement

12d4 x 4 0 0

0y 0 0

z 0 0 0 0

B 1.0 - 1.300 -

12e mm x .225 -. 025 . 212(7)L. 0008 -. 037

x00 y 0 0 0 0

z 0 0 0 0

B 1.0 - 3.808 -

-. 010

-. 010

-. 015

.6971.0
... ... M_ _ - iN

.122

.122

.363

-. 003

-. 003

-. 012

.115(3)±. 0007

.115(3)±. 0007

. 360(3)+. 0009

1 See footnote 2 on next page

Li4



Table 2.2 (continued)

Positional Parameters and Isotropic Temperature factors for Tetrahedrite

squipoint r-arameter Pauwing and Neuman (1954) Present study
a No4I

distor. from
sphal. arr.

distor. from
sphal. arr.

S 2 2a43m x 0 - 0

000 y 0 - 0

z 0 - 0

B 1.0 - 1.576 -

Sb 8c3m x .278 +.028 .2682*.0002 +.0182

xxx y .278 +.028 .2682-.0002 +.0182

z .278 +.028 .2682+.0002 +.0182

B 1.0 - .674 -

R= I IF I-IF 1 1/IF 0 i 27.9 % 1 9.0 %

Ew(Fol-jFcI)2 aWeighted R 2 6.5 %
2::Ew F2

1 R = 26. 1% for the zero reflections measured by Pauling and Neuman.
2 R decreased to 6.7% when anisotropic temperature factors were employed. The positional parameters

remained unchanged, although their estimated standard deviationsdecreased. The standard deviations listed

here are those for the final parameters.

1o LOM

I.



corresponding to those measured by Pauling and Neuman.

This relatively low lalue for R indicated that the structure was

probably correct and that refinement of the Pauling and Neuman

structure would probably improve the agreement between Fobs and Fcal'
The refinement was carried out in four stages. The difference

between the stages was the type of weighting scheme used. In each

stage scale factor and atomic positions were refined until the para-

meters had converged. Then atomic temperature factors were refined

until they had converged. Refinement of scale factor and atomic

positions was then repeated, and so on, until no further variation of

parameters occurred.

The results of a least-squares refinement depend strongly on

the weighting scheme applied to the data. At present no well-established

weighting scheme exists for counter-diffractometer data. The weighting

scheme adopted for this work is an extension of ideas first presented

by Cruickshank et al. (1961). Following each stage of refinement, the

value of R was computed as a function of F bs. The weighting scheme

adopted was one for which the product of wtight times R remained

constant for all values of Fobs'
The course of the refinement procedure is given in Table 2. 3.

(The number of cycles of refinement listed in column three of this

table refers to the number of cycles required to attain convergence,

and not the number of cycles actually performed.) During stage 1, in

which equal weights were applied to all reflections, R was reduced

from 28. 9% to 10.4%. The variation of R with Fobs at this point

suggested the weighting scheme listed in Table 2. 3 for stage 2. This

stage reduced R to 9.3% and the weighted rms R to 7.8%. Further

Only one scale factor was used. The study of the reliability of the

structure factors, described in Appendix I, indicated that there was no

systematic variation of structure factors from level to level. Introduction

of separate scale factors for each level was therefore considered

unjustified.
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Table 2. 3

Stages in the Refinement of the Crystal Structure of Tetrahedrite

Stage Weighting scheme Parameters varied R Weighted R

Parameters of Pauling and

Neuman structure, all

isotropic B's arbitrarily 28. 9 27. 1

set equal to 0.7

1 Equal weights Scale factor and positions,

4 cycles 17.1 15.2

Isotropic temperature factors

3 cycles 11.4 10.8

Scale factors and positions

1 cycle 10.4 9.7

2 F > 70 Scale factor and positions
0

w= icycle 10.5 8.9
F < 70 Isotropic temperature factors

w '3 F 1 cycle 9.8 8.3
54. 4-. 593 F

0 Scale factor and positions

1 cycle 9.3 7.8

3 F > 225 Isotropic temperature factors

w = 1 2 cycles 9.1 6.7

225>F >1.60
06 Scale factor and positions

W = 36-. 125 F 01 cycle 9.0 6.5

160>F >110 Isotropic temperature factors
06

w= 6 1 cycle 9.0 6.5
16 F -11. 6

0 Anisotropic temperature
110>F >75

0 factors
w = 1
75>F >0 2 cycle s 6.8 5.3

0
6

80-F
0



___________

Table 2. 3 (continued)

Stages in the Refinement of the Crystal Structure of Tetrahedrite



modification of the weighting scheme and the refinement of stage 3

reduced R by only 0. 3%. Parameters at this stage of refinement are

listed in Table 2. 2. As the final step in stage 3, anisotropic temperature

factors were employed. R decreased to 6.8%, and the weighted R to 5. 3%.

A final modification of the weighting scheme was made for stage 4.

Further refinement left R and all parameters essentially unchanged,

although the weighted R decreased to 3.5%.

The final values for the anisotropic temperature factor coefficients

are presented in Table 2.4. The final value for R with these parameters

was 6.7% and, for the weighted rms R, 3.5%. The positional parameters

at this level of agreement remained unchanged from those given in

Table 2. 2. The values of the "equivalent" isotropic temperature factor

which corresponds to each anisotropic temperature factor coefficient

was computed according to the relation

B = 7gr p (a - a.)
i j- -3

(Hamilton, 1959). This relation provides the isotropic temperature

factor which corresponds to the same mean square thermal displacement

as that predicted by the anisotropic coefficients. The values obtained

are also listed in Table 2.4 and are in excellent agreement with the

isotropic temperature factors listed in Table 2. 2. Observed and

calculated structure factors are compared in Table 2.5.

2.7 Discussion of the Structure

Table 2.2, in which the parameters of the Pauling and Neuman

structure are compared with the present study, also lists the displace-

ment of the atoms from the positions of an ideal sphalerite-like arrange-

ment. It may be seen that appreciable displacements exist. The

present structure differs from that of Pauling and Neuman in that the

Sb atom is less displaced than had been proposed, while the Cu(2) and

S() atoms have undergone greater displacements. The positional

B4



Table 2. 4

Anisotropic Temperature-factor Coefficients for Tetrahedrite



Table 2.5

Comparison of Observed and Calculated Structure Ea-dtors

for Tetrahedrite

F F
-bbs - cal

2
4
6
8

10
12

1
3
5
7
9

11
2
4
6
8

10
12

3
5
7
9

11
4
6
8

10
12

5
7
9

11
6
8

10
7
9
8

10
9

157.2
530.9

62.4
519.2

54.4
40.1

47.6
48.6

118.3
129.9

58.3
26.2

223.3
138.2
154.4

7307

65.1
21.9

110.9
63.9
27.6
31.8
11.8

811.1
41.9

162.9
13.5

161.9
177.3

68.0
89.4

122.3
95.9
29.3
63.0
13.6

123.3
265.0

27.1
137.0

(R = 6.7%)

h k I F F
- - - -obs -cal

116.2
541.1

45.7

515.6
46.0
37.5
34.1
20.6

117.7
126.2

58.7
19.6

178.5
113.1
143.0

77.9
70.3
23.2

119.9
56.7

4.4
28.8
16.4

809.8
30.6

172.2
10.1

183.4
162.0

65.2
85.8

126.1
92.4
37.3
69.0

4.2
130.7
271.5

20.0
148.2

2
4
6
8

10
12

3
5
7
9

11
4
6
8

10
12

5
7
9

11
6
8

10
7
9

11
8

10
9
2
4
6
8

10
12

3
5
7
9

11

62.8
197.7
252.0
131.4
140.5
172.3
129.8
165.3

19.6
52.1
41.1

159.2
121.6
217.8
204.1
112.8

90.2
116.8

63.9
78.6

108.9
156.4
178.1
113.5
122.5

31.4
120.0

69.3
37.5

854.0
145.2
509.3

39.1
209.2

23.5
109.0
109.5

83.4
139.6

51.6

h k I

61.1
173.2
248.5
141.4
144.2
188.3
107.4
163.6

19.4
56*0
39.0

136.2
114.4
204.1
201.3
118.3

80.2
104.6

61.0
76.6

111.1
155.7
196.0
109.5
126.0

33.7
112.7

78.9
41.3

867.0
118.6
497.8

30.6
220.5

29.0
109.4

95.0
79.2

135.1
54.3



Table Z. 5 (continued)

Comparison of Observed and Calculated Structure Factors

for Tetrahedrite

h k I Fobs Fcal

4 4 2 118.8 97.8
6
8

10
12

5
7
9

11
6
8

10
7
9
8
4
6
8

10
12

5
7
9

11
6
8

10
7

101.1
69*5
54.0

3.5
40.6

124.2
39.6
85. 8

352.6
36.8

136.5
119.6
120.1

39.1
172.3
142*3
137.3
116.5
153.0
104.3

80.6
63.5
49.5

204.7
112.7

95*3
103.0

94.6
72.5
62.4
16.9
48.9

122.4
50*1
92.4

347.1
33.9

143.4
120.0
120.5

37.6
151.8
140.5
148.7
121.8
171.1

99 * 7
88.5
62.2
49.3

193.7
107.8

96.7
97.5

(R = 6.7%)

h k 1 Fob s Fcal

9 6 3 72.6 69.7
135.3

76.4
65.2

320.6
53.8

373.4

131
96
78

313
52

372
10 4 4 27.3 32.8

139.9
132.8
113.4

52.8
91.2

6.1
30.3
80.1
65*7
85.1

156.5
85.3
80.6
74.2
30.4
96.4

198.2
32.8
60.3
60*3

129.5
130.1
112.1

63.3
92.8
31.6
40.5
75.5
76.8
88.7

162.5
80*8
81.1
75.6
28.8

109.8
201.7
47.4
57.3
57.3

8 7 7 27.7 41.0
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parameters proposed by Pauling and Neuman have changed by as much

as .12 R. Otherwise the structure as originally proposed is essentially

correct.

Figure 2.2 presents electron density sections at z = 0, - and .

All atoms in the asymmetric unit lie in or near one of these sections.

One half of the unit cell is shown for each section. The remainder of

the cell is related to the portion shown by diagonal mirror planes and a

2-fold axis at -. F 0 0 0 was included in these syrotheses. The zero

contour is dotted, other contours are drawn at equal but arbitrary

intervals. No negative regions were present which were below zero

by an amount equal to the contour interval shown. Small peaks surround

each of the peaks which represent an atom location. These peaks

are due to series termination effects as evidenced by the fact that they

occur at the same distance from each atom location, and also by the

fact that they did not appear in difference syntheses.

A subcell given by ]a 1 = ]a J = -a ] or 1a 1, as required,

has been given in these maps. All atoms in an ideal sphalerite-like

arrangement would lie exactly in the sections and would occur at one

of the lattice points of the subcell. The displacements, Az, of each

atom from the plane of the section, and the position of the peak relative

to the neighboring grid point provide a picture of the magnitude of the

distortion from the sphalerite-like arrangement. The position of the

S -atom required to complete the sphalerite arrangement is at (.1 -1) in

the section z = -g. ThTe is no evidence for electron density in this

site as had been proposed by Machatschki (1928b) and Pauling and

Neuman to explain variations in S content of the mineral.

The arrangement of atoms in the structure is visualized most

easily in terms of the linkage of the polyhedra formed by the metal atoms

about the sulfur atoms. Figure 2. 3 illustrates this arrangement for

one-half of a unit cell. Cu (2) is in octahedral coordination about S (2).

These octahedra are located at the origin and the body-centered

position of the unit cell. A distorted tetrahedron of 3 Cu and 1 Sb shares



Figure 2.2

Electron density sections of tetrahedrite

a) z = 0

b) z =

c) z =

All atoms in the asymmetric unit lie close to these sections. Atoms

in an undistorted sphalerite arrangement lie exactly in these sections

and on the subnets given by a = a a 21= 1a2
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Figure 2. 3

Arrangement of metal atom polyhedra in one half of a unit cell

of tetrahedrite. Sb locations are indicated by small circles. All other

vertices of the polyhedra represent Cu locations.
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one corner with this tetrahedron. The remaining three corners of the

tetrahedron are each joined to corners of a second tetrahedron in a

sphalerite-like arrangement. These second tetrahedra are each linked

in turn to another octahedron. The locations of the Sb atoms, indicated

in Fig. 2. 3 by small circles, are located at those corners of the tetra-

hedra which are closest to the octahedra. A large hole exists in the

structure where the S atom is missing from the completed sphalerite

arrangement. This is apparent in Fig. 2. 3 at the left-hand corner of

the cell.

Interatomic distances and bond angles for the structure are

given in Tables 2. 6 and 2. 7, respectively. There are two types of

sulfur atoms in the structure. S (2) is surrounded by six Cu (2) atoms

at 2. 210 k which form a regular octahedron. S (1) is tetrahedrally

coordinated by two Cu (1) at 2. 343 , one Cu (2) at 2. 292 _ and one

Sb at 2.436 k The band angles in the tetrahedron, Fig. 2.4, range

from 1010 11 to 117 015t. This is an appreciable distortion from the

angle of 1094 281 which would be found in a regular tetrahedron.

Consideration of the arrangement of the polyhedra of metal

atoms about S facilitates visualization of the structure and its relation

to sphalerite. This representation, however, obscures the reason for

this curious arrangement of atoms. Figure 2.5 illustrates the arrange-

ment of sulfur atoms about the metal atoms of the structure. Cu (1) is

tetrahedrally coordinated by S (1). The bond angles of this tetrahedron

are all equal to 1100 47', which represents a very slight distortion from

a regular tetrahedron. Cu (2) is trigonally coordinated by two S (1)

at 2. 292 A and one S (2) atom at 2.210 E. The group lies in a symmetry

plane and thus is required to be planar. The Sb atom is also in 3-fold

coordination. Three S (1) atoms are located about a 3-fold axis at

2.436 X from Sb. The S-Sb-S bond angle, Fig. 2.5, is 900321.

The interatomic distances are in good agreement with those

found in other copper sulfides. The unusual copper atom in three-fdd

coordination has also been found in stromeyerite, CuAgS (Frueh, 1955).
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Table 2. 6

Interatomic Distances in Tetrahedrite

Atom Number and type Distance
of neighbor (A)

S atoms S(i) 2 Cu(1) 2. 343

1 Cu(2) 2.292

1 Sb 2.436

S(2) 6 Cu(2) 2.210

Metal atoms Cu(i) 4 S(1) 2. 343

Cu(2) 2 S(i) 2.292

i S(2) 2.210

Sb 3 S(1) 2.436



Table 2. 7

Bond Angles in Tetrahedrite

Central atom Bonds Angle

S atoms S (1) Cu (1)-S (1)-Sb 1010 1.'

Cu (1)-S (1)-Cu(1) 1030 171

Cu (2)-S (1)-Sb 1140 33'

Cu (1)-S( 1)-Cu (2) 1170 151

Metal Cu (1) S (1)-Cu (1)-S (1) 1100 47'
atoms

Cu (2) S (1) -Cu (2)-S (Z) 132081

S (1)-Cu (2)-S (1) 920 451

Sb S (1)-Sb-S (1) 900 321

47



48O

Figure 2.4

Bond lengths and angles of metal atom coordination about the

sulfur atoms in tetrahedrite.
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Figure 2.5

Bond lengths and angles of sulfur atom coordination about the

metal atoms in tetrahedrite.
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This group also displays one short and two long bonds of 2. 26 and 2. 29 E
respectively. Regular trigonal groups are found in covellite, CuS

(Berry, 1954) and chalcocite, Section III, with bond-lengths of 2.19 and

2.28 X respectively. The bond length 2. 343 A in the nearly-regular

Cu (1)-S (i) tetrahedron is in agreement with the distances 2. 34 and

2. 30 X found for the tetrahedral Cu in covellite.

The Sb-S (1) coordination is quite interesting. The structures of

several sulfide minerals which contain Sb have been determined. The

Sb atom in most of these structures has three nearest S neighbors, but

the distances to these atoms are quite irregular. Berthierite, FeSb2 S4
(Buerger and Hahn, 1955), livingstonite, HgSb 4 S 8 (Niizeki and Buerger,

1957a), jamesonite, FePb Sb6S14 (Niizeki and Buerger, 1957b) and

stibnite, Sb2S3 (Scavnicar, 1960) all display Sb-S nearest-neighbor

distances which range between a minimum distance of between 2.44 and

2.491 (for one neighbor only) to large distances of 3.6 and 3.7 X.

The three Sb-S bonds in tetrahedrite are in excellent agreement with the

shortest bond length found in these structures. The length and

orthogonal arrangement of these bonds therefore suggests a strong

covalent bond involving the p3 electrons of Sb. This explains why the

fourth sulfur atom is missing from the sphalerite-like arrangement and

why Sb does not merely substitute for Cu to form a completed sphalerite-

like derivative structure similar , for example, to chalcopyrite. It is

misleading to state that Sb substitutes for a tetrahedral Cu in tetrahedrite.

The SbS 3 group is really a different type of coordination polyhedron.

One final aspect of the structure deserves discussion. A

disturbing feature of the final isotropic temperature factors listed in

Table 2.2 was the large temperature factor obtained for Cu (2). When

anisotropic temperature factors were employed, however, it was found

that this was due to a large component of thermal displacement normal

to the triangular CuS 3 group. This motion is reasonable for an atom in

planar coordination. Furthermore, the temperature motion for the

other atoms remained isotropic within the limits of the standard deviations.
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It is therefore felt that the anisotropic temperature factor coefficients

presented in Table 2.4 give a realistic description of the thermal motion

of the atoms.
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Section III

The Crystal Structure of Chalcocite, Cu S.

3. 1 Introduction

Until about twenty years ago, it was believed that chalcocite,

CuS, was dimorphous and existed in orthorhombic and isometric

modifications. N. W. Buerger (1941), however, showed that while

chalcocite was indeed orthorhombic below about 110 C, stoichiometric

Cu 2S actually transformed to a hexagonal phase. Compositions deficient

in copper, on the other hand, transformed into this hexagonal phase plus

an isometric phase. The isometric structure had composition near

Cu S and was shown to be identical with what had been called isometric
9 5

chalcocite (N.W.Buerger, 1942). The name digenite was proposed for

this cubic modification. Electrical conductivity measurements (Hirahara,

1947) indicated a further phase transition in Cu 2S at 4500 C. Ueda (1949)

found that this new phase was similar to digenite. In a careful re-

examination of the phase relations in the system, Djurle (1958a) con-

firmed this transformation, but, in addition, discovered two new phases

at composition Cu 96S. At room temperature crystals of this compo-

sition had an unidentifiable structure of low symmetry. This phase has

subsequently been found in nature and has been given the name djurleite

(Roseboom, 1962; Morimoto, 1962). At higher temperatures, Cu S.96

formed a relatively simple metastable tetragonal structure. It was found

that all compositions between Cu 2S and Cu .8S transformed into a

digenite-like phase at a sufficiently high temperature. Digenite may

therefore be described as Cu S with x between 0 and at least 0. 2.
2-x -

The nomenclature "low-chalcocite" and "thigh- chalco cite" will

be preserved in this paper for the orthorhombic and hexagonal modifi-

cations, respectively, of stoichiometric Cu 2S. The two phases are

related by a reversible transformation. The high temperature form

cannot be quenched. M. J. Buerger and N. W. Buerger (1944) showed



that an interesting substructure-superstructure relation exists between

the unit cells of the two structures. The diffraction patterns of low-

chalcocite contained weak reflections in addition to those displayed by

the hexagonal form. These additional reflections indicated that the axes

of the low-chalcocite unit cell were multiples of 3, 4 and 2 of the cell

edges of the orthohexagonal cell of high-chalcocite in the a, b and c

directions respectively. This relation is illustrated in Fig. 3. 1, in

which the lattice points of the A-centered low-chalcocite cell are given

by solid points, and the lattice points of the hexagonal high-chalcocite

cell by open points. The diffraction symbol for high-chalcocite permitted

P6 3mc , P~6c and P6 3 /mmrc as possible space groups; low-chalcocite

had Abmm, Ab2m and Abm2 as possible space groups. By assuming

that the space group of low-chalcocite was derived from that of high-

chalcocite through the suppression of certain symmetry elements, it
1.5

was possible to assign space group Ab2m (C ) to low-chalcocite, and
4 - - v

space group P6 3/mrnc (D6h) to high-chalcocite. The acentric ortho-

rhombic structure contains 96 Cu 2 S per cell, and is quite complex. The

hexagonal cell of high-chalcocite, on the other hand, contains only

2 Cu 2 S per cell.

An attempt to solve the relatively simple high-chalcocite

structure from powder data (Klubock and Buerger, 1945, unpublished)

was unsuccessful. Belov and Butuzov (1946), however, considered the

several reasonable structures permitted by the high-chalcocite space

group. They proposed as a structure that model which gave the best

fit with a set of intensities estimated from the high-chalcocite Weissen-

berg photograph published by Buerger and Buerger (1944). The agree-

ment was rather unsatisfactory. Ueda (1949) attempted a structure

determination on the basis of visual estimation of intensities from

powder patterns. None of the likely structures permitted by the space

group yielded a satisfactory set of calculated structure factors. Cal-

culations were also made for arrangements of sulfur atoms alone.

Curiously, it was found that a hexagonal close-packed arrangement



Figure 3. 1

The relation between the A-centered orthorhombic unit-cell of

low-chalcocite, the C-centered ortho-hexagonal unit-cell of high- chalco cite,

and the hexagonal unit-cell of high-chalcocite. Note that the 6-fold and

3-fold axes in high-chalcocite lie in the section (Oyz) of the ortho-

hexagonal cell.
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gave structure factors in reasonable agreement with those observed.

From this Ueda concluded that the copper atoms were in "complete

disorder ".

This section describes a single-crystal investigation of the

structure of high-chalcocite and the low-chalcocite substructure.

3. 2 Equipoint Restrictions and Nature of the Patterson function for

High-Chalcocite

The unit cell of high-chalcocite contains only 2 Cu 2S. This

requires that both the Cu and S atoms occupy special positions in an

ordered structure. Table 3. 1 lists possible equipoints for the probable

high-chalcocite space group P6 3 /nmc. It is interesting to note that

examination of the other two possible space groups P62c and P6 mc
3--

shows that the former has special positions identical with those listed,

and that the latter has but two possibilities which are included in the

list. The S atoms may be accommodated in only one equipoint of rank 2.

The Cu atoms may be accommodated in either two equipoints of rank 2,

or a single equipoint of rank 4. A total of 20 arrangements of atoms in

these equipoints is possible. Three possibilities, however, result in

c being half that actually observed and may be discarded. Of the re-

maining arrangements, only 9 combinations are distinct.

Solution of a three-dimensional Patterson function involving

atoms in these equipoints may be considerably simplified by noting

that these special positions lie on the 3-fold and 6-fold axes in the

hexagonal cell. These axes all lie on a (11-0) plane through the hex-

agonal cell. Figure 3. 1 shows that this plane is equivalent to the

section Oyz in the orthohexagonal cell. Analysis of three-dimensional

Patterson maps may therefore be reduced to a two-dimensional

problem, since only this special section need be considered. Equipoint

coordinates in this section are also given in Table 3. 1.



Table 3. 1

Special positions lying on the 6-fold and 3-fold axes in space groups

P6 3 /nmc and P>Zc

2a

2b

2C

2d

4e

4f

Coordinates in

4exagonal cell
I. t

000

00 1

121I
334

12 3

00z

00 +z

12

33 +

00

00

2 13
334

2 1

00 z

z

Corresponding coordinates in

2-dimensional representation

00

2 1
34

2 3
3 4T

Oz

0 +z

2+z

+1z

13
34

1 1
3 4

0Oz

I-

3- z

Equipoint

60
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3. 3 Preliminary Investigation of the Low-Chalcocite Structure

An attempt was first made to directly determine the crystal

structure of low-chalcocite. A suitable single-crystal fragment was

obtained from a coarse crystal of Bristol, Connecticut, chalcocite.

Chalcocite from this locality is quite stoichiometric. Posnjak et al.

(1915) report a ratio of Cu : S of 2.007 : 1. Also, the inversion of this

material to the hexagonal high-chalcocite structure was later confirmed.

Djurle's (1958a) study of the phase relations near Cu 2S would therefore

require any Cu deficiency to be less than that corresponding to a com-

position Cu1.96 S

Using an equi-inclination Geiger-counter diffractometer, all of

the accessible independent reflections in a MoKa sphere were investi-

gated. The superstructure reflections were generally quite weak and

a large number were not detectable. A total of 584 independent inten-

sities were collected. Of these, 76, or 13%, were substructure

reflections. Appropriate corrections were made for Lorentz and

polarization factors. Absorption was not too serious, and no correction

for this effect was made.

A set of three-dimensional Patterson maps were synthesized.

As might be expected, these were completely dominated by the marked

substructure and proved to be uninterpretable. It was then hoped that

analysis of the substructure alone might indicate both the structure of

high-chalcocite and yield some clue to the nature of the distortions

responsible for the low-chalcocite superstructure.

Accordingly, three-dimensional Patterson maps were synthe-

sized using only squares of structure factors obtained from the sub-

structure reflections. The program ERFRZ, written by Sly, Shoe-

maker and Van den Hende (unpublished) for the IBM 7090 computer,

was employed. The substructure reflections had marked pseudo-

hexagonal symmetry. The departures from this symmetry were

significant enough, however, to warrent treatment of the data as



orthorhombic.

It was found that all peaks in the Patterson function lay in the

section Oyz of the orthorhombic cell. The coordinate y assumed values

only of 0, or . Therefore all electron density in the substructure is

located at positions corresponding to special positions on the 3-fold and

6-fold axes in the hexagonal high-chalcocite cell.

The problem could then be treated as a two-dimensional one, as

outlined in Section 3. 2. The Patterson section P(Oyz) is given in Fig. 3. Za.

None of the nine possible high-chalcocite structures yielded Patterson

maps which compared favorably with this section. In fact, it is readily

seen that this map contains contradictory features: the peaks having

coordin ates of roughly (0, . 3) and (0, .2) would require Cu in the

4-fold position having a variable parameter, z. On the other hand, the

strong peak at (1, 0) requires Cu in a position having the same z parameter

as S, that is, in a symmetry-fixed 2-fold position. This map therefore

could not be interpreted in terms of Cu located in positions corresponding

to an ordered arrangement of atoms in the high-chalcocite space group.

This made it advisable to defer interpretation of this map until a direct

determination of the high-chalcocite structure had been made.

3.4 Investigation of the High-Chalcocite Structure

3. 4. 1 Selection of Material. Well- crystallized chalcocite from

Bristol, Connecticut, was also used for this investigation. An attempt

was made to grind spheres from this material with an apparatus similar

to that described by Bond (1951). It was found that irregular fragments

rapidly assumed the form of oblate ellipsoids but, upon further grinding,

became misshapen pellets. The specimen finally selected was untwinned,

and had the form of an oblate ellipsoid of revolution with dimensions

.505 X .505 X .251 mm. (pI rmax = 6. 26, r min = 3. 11 for MoKa

radiation). It was felt that this regular shape, for which exact absorption

corrections could be made, was to be preferred to an irregular pellet



Figure 3. 2

(a) Low-chalcocite substructure Patterson section P(Oyz) (above).

The lines at jy and ~3y correspond to the location of the 3-fold axes in

high- chalcocite. (b) High-chalcocite orthohexagonal Patterson section

P(Oyz) (below). The lines at -y and ?y are 3-fold axes in the plane of

the map. F000 omitted; contours at equal but arbitrary intervals.

Negative contours dotted, zero contour dashed, positive contours solid

line s.
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which would require a smaller but less exact correction. Furthermore, the

specimen had to be held at an elevated temperature while the intensities

were collected. Chalcocite gradually deteriorates when heated in air.

The larger regular shape thus had the additional advantage of having a

higher volume to surface ratio, which makes this effect less serious.

3. 4. 2 X-ray Investigation and Collection of Intensities. A photo-

graphic technique was used to record intensities. All reflections on a

given level were therefore equally affected by any slight deterioration

of the crystal. The method also had the advantage of providing a con-

tinuous record of all reflections in a given level during the course of the

exposure. Any drop of temperature below the inversion temperature

due to malfunction of the heating unit would therefore have been detect-

able through the appearance of superstructure reflections on the films.

Detection of a phase transition would have been more difficult if a counter

diffractometer had been used, because of a strong similaity between the

high-chalcocite intensities and the low-chalcocite substructure intensities.

The intensities were recorded with the aid of an integrating

precession camera. The crystal was maintained at 1254 0 50 C (150 C

above the transformation temperature) with a small radiant heater. This

device was similar to one designed by Morimoto and England (1960) and

is described in detail in Appendix IL. Unit-cell dimensions were deter-

mined at this temperature using precession photographs taken with MOKa

radiation. The values for a and c are in good agreement with those

determined by Buerger and Buerger (1944) and Djurle (1955), as shown

in Table 3.2. The precession patterns exhibited symmetry 6/mmm.

The only extinction rule observed was 1 # 2n for reflections of the class

hh-I . This confirms the diffraction symbol 6/nrnm P-/--c previously

given by Buerger and Buerger (1944).

A disadvantage of recording intensities by the precession method

is that a blind region obscures certain reflections in the center of upper

level films. The radius of this region becomes larger as d* increases.
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Table 3.2

Unit Cell Dimensions of High-Chalcocite

Buerger and

Buerger (1944)

Present

study
Djurle (1958)

Temperature J 1120 j 1250 1520 3000 4600

6.68

3.89

1.717

6.75

3.95

1.710

6.722 6.761 6.806

3. 961 3. 981 4. 005

1.697 1.698 1.699

Precision 0. 3%, accuracy about 1%.

(X)

a (X)



This usually requires use of several settings of the spindle axis if all

attainable reflections are to be recorded (Azaroff, 1954; Buerger, 1960).

Fortunately, this problem did not occur in recording the high-chalcocite

intensities. Since high-chalcocite is hexagonal, all independent reflec-

tions are contained in a 300 wedge of reciprocal space bounded by the

planes containing c* and a *, and containing c* and a* + a*. With the

crystal oriented such that c was along the spindle axis, and with a taken

as the precession axis, the first row of independent reflections parallel

to c* occurred at a distance d*/tan 300 from the film origin. This

distance exceeded the radius of the blind spot on all levels. It was

therefore possible to record all intensities with but one setting of the

spindle axis. Several exposure times were used to insure that the

linearity range of the film was not exceeded.

All films were developed simultaneously. Intensities were

determined with a Joyce-Loebl Company double-beam recording micro-

densitometer. (Details of the film development, and nature of the

integrated precession films are given in Appendix III.) A total of 106

reflections were measured. Of 37 independent reflections, 7 were

undetectable and were assigned half the minimum observable value.

These reflections are equivalent to a complete CuKa sphere of data.

3.4. 3 Data Reduction. Each spot on a precession film is com-

posed of two reflections. One reflection is generated as the reciprocal

lattice point enters the sphere of reflection, the second as it emerges.

These two reflections have different Lorentz factors and, unless the

crystal is spherical, different transmission factors. The correction

which must be applied to an integrated intensity, I, in order to obtain

the square of the structure factor, F, is therefore

F (I/pL 4 Tl) (I/PLT) = I/P(LT +LT

in which T is the transmission factor, L the Lorentz factor and p the

polarization factor. The subscripts refer to the two reflections which



contribute to the spot. The standard charts from which Lorentz and

polarization corrections are usually obtained present normalized values
2

of 1/p(L + L2 Since a correction of the form F 2 I T )(L +L )

is not equivalent to the proper correction, these charts are useless if

a non-spherical absorption correction is to be applied. A special routine

was therefore written for the IBM 7090 computer to evaluate individual

Lorentz factors for each reflection of the pair composing each spot.

Transmission factors for each reflection of the pair were evaluated by

means of a special version of the general absorption correction program

described in Section V. The ellipsoidal crystal was subdivided into an

array of 14 X 14 X 14 volume elements for these computations. After

applying these corrections, the rms deviation from the mean of

equivalent F2Is was 9. 5%.

3. 5 Solution of the High-Chalcocite Structure

A three-dimensional Patterson function was synthesized using

the set of F 's obtained. The Patterson section P(Oyz) of the ortho-

hexagonal cell is presented in Fig. 3. 2b for comparison with the cor-

responding section for the low-chalcocite substructure. It may be

noted that the two Patterson sections are quite similar, except that in

the high-chalcocite map the contradictory peak at (0 -1) has diminished.

The maxima with variable parameter, z, however, are no longer discrete

peaks, but are instead smeared out over a considerable region of the cell.

Figure 3. 3, for example, gives Patterson section P(x, y,1/6). The

distribution of the maximum is practically uniform except for very

slight peaks in three symmetric locations about the 3-fold axis. This

suggests that the copper atoms are disordered. The map again did not

agree favorably with any of the 9 theoretical Patterson maps derived in

Section 3.2.

An attempt was made to apply image- seeking methods to the

solution of the structure. These results were ambiguous since all
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Figure 3. 3

High-chalcocite Patterson section P(x ). Both the hexagonal

and ortho-hexagonal cell are indicated. Negative contours dotted, zero

contour dashed, positive contours solid lines at half the interval of

Fig. 3. 2b.
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candidate inversion peaks which were investigated proved to be multiple

peaks. (In retrospect, the difficulty in interpreting the high-chalcocite

Patterson function arose because of the fact that, instead of containing

6 atoms per unit cell, the structure contains 14 positions of high electron
2

density. The Patterson cell therefore contains 14 - 14 = 182 peaks
2

instead of the 6 - 6 = 30 peaks which would occur for an ordered

structure. In a given volume, Patterson space therefore contains over

six times the number of peaks usually encountered in structure deter-

minations! As a result, most of the peaks are unresolved.)

The structure was solved with the aid of implication theory

(Buerger, 1959) and partial Fourier syntheses. In implication theory,

the implication diagram I (xyz) for an n-fold axis of symmetry is formed

by rotating an appropriate Patterson section an amount - - , and

shrinking the scale of the section by a factor 1/2 sin (/n). For space

groups containing a 63 axis, implication diagrams 16 (xy ), based on

2Tthe operation 63, and I3 (xy-), based on the operation 63 = 3 may be

prepared. The shrinkage factor for I is 1/2 sin = 1, and the rotation

factor is 7r - 7T = 0. The Patterson section P(xy ) therefore is
2 6 3

equivalent to I6 (xy -) without change of scale or rotation. The implication

diagram I6(xy!) is a projection of the structure parallel to c, but with

additional "satellite peaks" occurring at distances from the origin which

are equal to twice the atomic coordinates. Construction of the implica-

tion diagram 1 3 (xyO) requires shrinkage of the Patterson section P(xyO)
7T 7 7T T i iga

by a factor 1/2 sin =1/ 3, and rotation 2- = . This diagram3

represents a projection of the structure parallel to c but with a 3-fold

ambiguity, i. e. the projected structure is duplicated about both the

6-fold and the two 3-fold axes of the cell. An additional 2-fold

ambiguity of orientation occurs in this diagram because the Patterson

function is centrosymmetric. A false center of symmetry is introduced

which causes any implication diagram based on a 3-fold axis to display

6-fold symmetry.



Figure 3. 4 presents the implication diagrams 1 6 (xyf) and - 3(xy0)

prepared for high- chalcocite. Both maps indicate that the-main por tion

of the electron density is confined to locations on the 63 and 3-fold axes

of the cell. Some electron density, however, is in a position of higher

rank. High-chalcocite is therefore disordered. The implication diagram

I 6 (xyi) suggests two possible locations for this electron density. The

departure of the peak at (4) from a circular shape suggests that this

density might occur at positions slightly displaced from the 3-fold axes

at approximately (x, y) = (.8, .4). This location, however, would require

satellite peaks at (1. 6, . 8) = (.6, . 8), modulo r. This location is the

deepest minimum occurring on the map, and the suggested position for

the electron density must accordingly be discarded. The second location

suggested by the maps is (x, y) = (0, 1-). This location requires a satellite

peak at (0, 1) = (0, 0), modulo r. A peak occurs at this location in the

implication map I 6 (xy ), so that (0, ) is an acceptable location for the

electron density. This location must be verifiable with the implication

map 1 3 (xy0). This map is dominated by the strong origin peak which

occurs in three locations corresponding to the 3-fold ambiguity of this

map, as described above. There are, however, weak "bridges" between

origin peaks which are compatible with electron density at (x, y) = (0, ).

In space group P63 /nmmc these parameters correspond to special position

6 g 010, so that the z parameter is fixed by symmetry.

It was assumed that, as in other disordered sulfides, the metal

atoms were disarranged and the sulfur atoms remained ordered. (This

assumption was later proved correct.) Partial Fourier syntheses and

difference maps were accordingly prepared with S atoms in either simple

These maps, especially 1 3 (xy0), show slight deviations from true

hexagonal symmetry. This occurred because use of the Fourier program

ERFR2 requires treatment of Fourier summations for tetragonal, hexago-

nal and isometric space groups as orthorhombic or monoclinic. The

Patterson functions for high-chalcocite were treated in the orthorhombic

sub-group Cmcm. Round-off errors in the summation result in the slight

deviations from hexagonal symmetry which may be noted in the maps.
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Figure 3.4

Implication diagrams I6(xyl) = P(xy-) and I 3 (xyO) for high-

chalcocite.
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hexagonal packing (equipoint 2b 00-4) or hexagonal close-packing

(equipoint 2c 3) and various amounts of Cu in (0-0). These syntheses

indicated regions of high electron density in positions (001) and (L z),

with z - 0. 6. This arrangement of electron density was meaningful

only if S was assigned to (y-4 ), which left (00k), (0-0) and (hz) as sites

of high Cu density. Subsequent partial Fourier syntheses and difference

maps in which Cu was placed in either one or two of these locations

invariably indicated electron density in the remaining sites. This

arrangement was therefore assumed to be the correct structure.

At this stage, however, the structure was regarded as slightly

suspect because of its unorthodox nature. It was felt that a reasonably

good agreement between a set of observed and calculated structure

factors might possibly be obtained for an incorrect structure if a

sufficient number of "disordered" atoms were placed in all the regions

of high electron density indicated by Fourier syntheses. To discount

this possibility for high-chalcocite, some thirty possible model-structures

were tested with Fourier and difference maps. Sulfur atoms in both

simple hexagonal packing and hexagonal close-packing were tested.

Copper atoms were successively placed in all likely positions.

Arrangements in the two acentric space groups permitted by the high-

chalcocite diffraction symbol were also tested.

All the models tested yielded high disagreement factors ( 50 to

65%) which would not decrease upon least-squares refinement.

Figure 3. 5 presents a typical ortho-hexagonal electron-density section

p(Oyz) and the corresponding difference synthesis section for a model

in the acentric space group P63 nC.

The disagreement factor for this arrangement converged to 47%.

These maps display two types of anomalies which were commonly

encountered in the models which were tested: (I) a peak appears at the

end of a vector -- b from the heaviest atom in the structure. This is

the relative arrangement of S and the greatest fraction of Cu in the

structure obtained by implication theory. (2) a deep negative trough



Figure 3. 5

Example of anomalies encountered in electron density and difference

maps based on an incorrect structure. (Space group P6'3mc, S in 2b ,

1 Cu in 2b .588, -Cu in 6 c .15, .30, .875.) Negative troughs appear in

the electron density map which are carried over into the differency synthesis.

Also, an anomalous peak occurs at the end of a vector lb from the heaviest

atom in the structure.
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appears in the electron density map. (These regions are not as pronounced

in Fig. 3.5 as in most of the maps which were prepared.) This trough

is carried over into the difference synthesis. Ordinarily, this would

indicate an atom in an incorrect position. No atom, however, was

placed in these locations. This uninterpretable anomaly can suggest

only that an attempt was being made to fit the observed set of structure

factors to an incorrect model.

The disordered structure derived from implication theory was

the only model which yielded a relatively low disagreement factor, and

no anomalous troughs or spurious Fourier peaks. Accordingly, it was

accepted as the correct approximation to the structure.

3. 6 Refinement of the High-Chalcocite Structure

Refinement of the disordered high-chalcocite structure was

first attempted by least-squares methods. The full-matrix program

SFLSQ3 (Prewitt, 1962), written for the IBM 7090 computer, was

employed. Copper atom weights for the three types of sites were

estimated from the implication diagram I (xy ). The initial disagree--6 _xZ heiiil iare

ment factor was 45%. Upon refinement of scale factor, the z parameter

of the copper atom in -- y z , and the weights of the Cu atoms in the

various sites, R decreased to 37%.

Up to this point, no restraint was placed on the weights of the

Cu atoms. It was found that there was an extremely large interaction

between the sQa;le factor and Cu weights. In some cycles of least-squares

refinement, the sum of the distributed copper atoms was as low as three,

instead of four per unit cell. In other trials the sum of the copper atoms

exceeded four. The discrepancy in Cu weights was balanced by the

scale factor. To eliminate this problem, the least squares program

was modified so that the shifts in Cu weights during refinement were

normalized to keep the sum of the copper weights equal to four copper

atoms.



In further cycles of refinement it was noted that the weight of the

Cu atom at 00 tended to increase beyond a weight corresponding to one

Cu atom. This does not represent a physically realizable situation.

The least-squares program was therefore further modified to keep all

Cu weights less than one.

A. number of further trials reduced R to 32%. The results of

these cycles showed, however, that there was a very large interaction

between the weights of the Cu atoms and their isotropic temperature

factors. The effect of any distribution of Cu atoms in the three sites,

within certain limits, was balanced by the least-squares procedure

with suitable adjustment of the temperature factor. For variations

of Cu weights up to 30%, for example, temperature factors were

obtained between -2 and +14. Surprisingly, these wide variations in

parameter influenced the disagreerEnt factor by onLy one or two percent.

Continued refinement in which only models with reasonable positive

temperature were considered led to the distribution of copper atoms

presented in Table 3. 3. The disagreement factor for this model is 33.2%.

It was noted that the signs of all structure factors remained

unchanged during the cycles of refinement for the models with R below

35%. The electron density maps obtained therefore represented the

actual structure. It remained, therefore, to demonstrate this con-

clusively by improving still further the agreement between the observed

and calculated structure factors. The disagreement factor of 33.2%

which was obtained for the model given in Table 3. 3 could have been

improved by employing anisotropic temperature factors. It was ap-

parent from the electron density maps, however, that the distribution

of Cu atoms was continuous. That is, "bridges" of appreciable electron

density extended between the three types of Cu sites. The large tem-

perature factors assumed by the model of Table 3. 3 therefore reflect

the fact that Cu distribution is "smeared".

It was clear that any model employing discreet atoms would still

represent a crude approximation to the actual structure. Therefore a

_100mr-



Table 3. 3

Coordinates, Weights and Temperature factors

for the Discreet Atom Approximation

to the

Disordered High Chalcocite Structure

Atom Equipoint Coordinates Temperature
factor

iS 2c .50

.991 Cu 2b 0 0 1.19

.404 Cu" 4f i .578 4.09

.067 Cu"* 6g 0 0 5.51
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map of the electron density was synthesized using the set of converged

signs. The asymmetric unit was partitioned into 688 volume elements

which were represented by a grid given by

x~ 1- (a~ + a)

X2 3 2-,+,?1

1
x =-c
-3 30'%

A number of electrons proportional to the weight on the electron

density map was assigned to each volume element. Of the 688 elements

in the asymmetric unit, 350 contained electron density. Structure

factor calculations based on this distribution of electrons in the cell

were followed by synthesis of electron density and difference maps.

Slight reapportionment of the electron density distribution was made

on the basis of the difference map. The final disagreement factor

was 21. 5% based on all data, and 18. 0% when unobserved reflections

and the 11 0 reflection were excluded. Observed and calculated

structure factors are compared in Table 3.4. The orthohexagonal

section (Oyz), which contains all the maxima in the electron density

distribution, is given in Fig. 3.6.

3. 7 Description of the High-Chalcocite Structure

The disordered high-chalcocite structure contains sulfur atoms

in hexagonal close-packing, and a continuous statistical distribution

of copper atoms. There are maxima in the Cu distribution in three

This structure factor was too small by a factor of about 2 in all structure

factor calculations. While one of the strongest reflections observed on the

films, this reflection occurred just at the edge of the blind spot on the first-

level photograph. The Lorentz factor consequently was over ten times the

value required for the other reflections. A slight misorientation of the

crystal could easily account for a 50% error in this structure factor.



Table 3.4

Comparison of Observed and Calculated Structure Factors

for Continuous Electron Density Distribution

(R = 18.0%)

hkl Fobs Fcal hkl Fobs Fcal

00.4

00.6

00.8

10.1

10.2

10.3

10.4

10.5

10.6

10.7

20.0

20.1

20.2

20. 3

20.4

20.5

20.6

11.

9.

3.

2.

10.

14.

2.

2.

0.

3.

2.

5.

5.

5.

6.

1.

7.

56

86

24

06

81

95

68

05

99*

40

93

11

12

11

73

87

40

12.12

-5.76

4.21

2.71

-9.49

14.87

-2.92

0.48

0.49

-3.04

4.29

-5.42

4.26

5.58

8.18

-0.89

6.92

* one-half minimum

observable value

30.0

30.1

30.2

30.3

30.4

11.0

11.2

11.4

11.6

21.0

21.1

21.2

21.3

21.4

21.5

21.6

31.0

31.1

31.2

31.3

06

83*

37

89

67

60

48

83

01

01

02

79

33

84*

09*

00*

88

60

26*

73*

5.39

-1.10

-6.14

-0.48

2.23

11.55

-9.86

5.91

-8.06

-3.51

2.29

-1.88

-4.14

-0. 97

1.91

0.47

-1.16

-1.90

0.82

1.15



Figure 3.6

Orthohexagonal electron density section p (Oyz) for high-

chalcocite. F000 included, zero contour given as first contour.

All maxima in the Cu distribution lie in this section.
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types of sites, and it is convenient to discuss the structure in terms of

these Cu locations.

Cu? lies in the S layers forming a trigonal Cu-S sheet. Triangular

coordination of Cu was found in tetrahedrite, Section II, and also occurs

in the structure of covellite, CuS (Berry, 1954) and stromeyerite,

CuAgS (Frueh, 1955). This coordination is unusual for a transition

metal and appears to be unique for copper sulfides. Cu"occupies all

the available tetrahedral sites. The arrangement of Cu" and S is

equivalent to a wurtzite structure in which the remaining tetrahedral

sites are occupied. The remaining Cu"' atoms are located on three

edges of the S tetrahedron and link an S atom to the three neighboring

S atoms in the adjoining layer. Two-fold coordination of Cu is also

found in Cu 20, with which Cu 2S might be expected to bear some resem-

blance. This two-fold coordination, as discussed in detail in the

following section, is also found for the Ag atom in CuAgS.

The Cu-S bond length for the triangularly coordinated Cu' is

2. 28 X. This is in good agreement with distances of 2. 292 and 2. 210 X

for the similar group in tetrahedrite, 2. 26 and 2. 29 X in stromeyerite

and 2. 19 k in covellite. The bond length Cu"'-S is 2. 06 , which is

quite short. A decrease in bond length of about this magnitude should

be expected, however, as the coordination number of an atom decreases

to two. Cu" is not located in the center of the S tetrahedron, but has

three neighboring S at 2.56 X and one at 2.21 . The bond length for

the tetrahedrally coordinated Cu (I) in tetrahedrite was 2. 343 X.

Covellite also displays irregular tetrahedral coordination: the

tetrahedrally coordinated Cu has three S atoms at 2. 30 _X and one at

2. 34 _.

The distance Cu'- Cu"' is 2.56 X, which is close to the distance

2. 556 X found in metallic copper. Cu" and Cu", however, are too close

to be occupied simultaneously in an ordered structure. This is consistant

with the probable low-chalcocite substructure in which only sites cor-

responding to Cu' and Cu" are occupied.
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3. 8 Relation of Chalcocite to other Copper Sulfide Structures

It is of interest to compare the disordered high-chalcocite

structure with that of stromeyerite, CuAgS (Frueh, 1955). This structure

is illustrated in Fig. 3.7. The atomic arrangement consists of alternate

layers of hexagonal Cu-S rings and close-packed Ag sheets. The inineral

is orthorhombic, but is markedly pseudohexagonal, as illustrated by the

bond angles indicated in the Cu-S and Ag layers. The Cu-S sheets are

stacked in nearly hexagonal close-packing. The Ag layers, however,

are displaced along b such that each Ag atom is coordinated by two S

atoms in neighboring layers. The sheets are knit together by these

zig-zag Ag-S chains.

The relative arrangement of the layers in stromeyerite is

perhaps best illustrated by the arrangement of atoms lying in the section

(Oyz). This is the section which has been previously used to describe

the high-chalcocite structure. The section is compared with the corres-

ponding section of the high-chalcocite structure in Fig. 3. 8. (The origin

of the high-chalcocite structure has been displaced by -b to emphasize the

similarity between the two structures.) The unit-cell dimensions for the

two structures are quite similar, with the exception of the length of

the c axis. This difference is in part due to the larger radius of the

Ag atom.

It may be seen that the structures differ only in two respects.

The Ag atom in stromeyerite links a S atom to only one S atom in the

neighboring sheet, while the corresponding Cult atom in chalcocite

statistically links a S atom to all three S atoms in the neighboring sheet.

Secondly, some of the Cu has escaped into the tetrahedral sites.

Stromeyerite may consequently be considered a derivative structure of

the disordered high-chalcocite arrangement which is formed by ordering

the linkage between Cu-S sheets and by relegating the remaining tetra-

hedral Cu to the Cu-S sheet.

At 930 C stromeyerite undergoes a phase transformation to a

hexagonal modification (Djurle, 1958b), in striking similarity to the



Figure 3.7

The crystal structure of stromeyerite, CuAgS.
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Figure 3.8

Comparison of crystallographic data and electron density

sections Oyz for the disordered high-chalcocite structure and

stromeyerite.
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transformation in low-chalcocite at 110 C. The structures therefore

have similar thermal properties. It seems very likely that the structure

of high-stromeyerite will prove to involve disorder of the type found for

high- chalcocite.

It is also of interest to compare the low-chalcocite substructure

with the structure of covellite, CuS (Berry, 1954). The low-chalcocite

substructure has not been investigated in detail. As mentioned in

Section 3. 3, however, the low-chalcocite substructure Patterson may

satisfactorily be interpreted in terms of a structure containing close-

packed CuS sheets and Cu in the tetrahedral interstices. The electron

density sections Oyz for covellite and the low-chalcocite substructure

are compared in Fig. 3. 9. (The origin of the low-chalcocite section

has been shifted by - b, -c to emphasize the similai-ity between the

two structures.) It may be seen that the low-chalcocite substructure

consists of a curious combination of trigonal and tetrahedral Cu atoms

which is similar to that of covellite. A unit cell of the covellite structure

may be obtained from the atomic arrangement of the low-chalcocite

substructure by joining layers, each consisting of a complete unit cell

of low-chalcocite, which have been rotated 180 with respect to one

another, and by omitting half of the Cu atoms which occupy tetrahedral

sites.
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Figure 3. 9

Comparison of crystallographic data and orthohexagonal

electron density sections Oyz for covellite and the probable low-

chalcocite substructure.
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IV The Superstructure and Twinning of

Pyrrhotite, Fe7 S8

4. 1 Introduction

The iron sulfide minerals found in nature include troilite, FeS;

pyrrhotite, having variable composition Fe S with x between 0 and

approximately 0. 2; smythite, Fe3S4; and pyrite and marcasite, FeS2'

Near composition FeS the system is extremely complex. These

compositions have been studied extensively because of their unusual

magnetic properties. Despite numerous investigations, the phase

relations and magnetic properties are still not understood in detail.

The voluminous literature on pyrrhotite permits but a brief

survey of pertinent work. The general nature of the pyrrhotite structure

was determined some while ago by Alsen (1925), who assigned to it

the arrangement now known as the NiAs-type (B8) structure. HR!gg

and Sucksdorff (1933) demonstrated that the compositional variations

occurred through omission of Fe from sites normally occupied in the

NiAs-type structure. Furthermore, they found that troilite and com-

pounds with Fe deficiencies up to Fe 953S displayed a hexagonal super-

structure with a 1 = Ia 1 = 4_3A 1, c = 2C. Following a series of
1 -2 -

studies of the magnetic properties of artificial Fe-S preparations,

Haraldsen (1941) proposed a phase diagram for the system. No phases

of symmetry lower than hexagonal were reported, and a superstructure

1 Normal lower case symbols are used to denote the crystallographic

axes of the superstructures based on the NiAs-type arrangement,

since these are true unit cell translations. The NiAs-type substructure

will be denoted by the hexagonal axes A, A2, C or, where necessary,

by the orthohexagonal axes A, B, C with IA I = A B I = 43 A . In the

past, most authors have used upper case symbols for the pyrrhotite

superstructure.



was again observed only for "paramagnetic" compositions near troilite.

The superstructure was found to invert to a NiAs-type structure at 138 0 C.

Bertaut (1956) subsequently determined the crystal structure of both

troilite phases and found that the superstructure was caused by small

displacements of Fe atoms normal to c and small displacements of

S atoms parallel to c. This structure was confirmed by Andresen (1960)

who determined improved atomic coordinates using neutron diffraction.

Also, it is now known that troilite is antiferromagnetic, not paramag-

netic as previously proposed. At the 138 C phase transition the Fe

spins shift from an alignment parallel to c to a new antiferromagnetic

alignment perpendicular to c. A further transition to a paramagnetic

structure occurs at a Neel temperature of 325 0C. The "ferromagnetic"

iron-deficient structures probably possess unbalanced antiferromag-

netism, i.e. ferrimagnetism.

The structures with higher iron deficiencies are less well

understood. As mentioned above, Haraldsen observed no phases with

symmetry lower than hexagonal, and no superstructures other than that

of the "paramagnetic" troilite. Bystrdm (1945), however, in investi-

gating powder patterns of natural magnetic pyrrhotite from a number

of Swedish localities, surprisingly discovered that the majority of

these pyrrhotites were monoclinic with a = B, b = A., c = C, p = 90. 4.

No superstructures were observed. In a single-crystal x-ray study

Buerger (1947) discovered that naturally occurring magnetic pyrrhotites

from Morro Velho, Brazil, and Schneeberg, Saxony, exhibited hexagonal

superstructures with a = 2A a = 2A, and c = 4C. The possible
india te t2

presence of non-space group extinctions in the diffraction patterns,

however, indicated that the specimens were perhaps twinned, and that

the true symmetry was perhaps monoclinic or orthorhombic. This

superstructure was confirmed by Bertaut (1953) on material of an

unspecified nature. Twinning of a monoclinic cell was used to explain

the non-space group extinctions. Still another type of hexagonal



superstructure, a = 3AS, 2 = 3A , c = 2C, was reported by Graham

(1949) for a synthetic pyrrhotite. The composition was unknown, but

was presumably close to troilite since it was "non-magnetic". Erd et

al. (1957) discovered naturally occurring Fe 3S4 , smythite, which had a

rhombohedral superstructure with a = A , a = A , c = 6c.-1 -1 -2 2-2-

Further work on the Fe-S phase relations has been done by

Eliseev and Denisov (1957), and Grdnvold and Haraldsen (1952).. The

latter authors resolved some of these existing contradictions and, in

particular, showed that Bystrdmt s monoclinic distortion of the NiAs

structure did indeed exist. for a very narrow range of compositions

around Fe7 S This composition was taken as the limit of Fe deficiency,

however, and did not extend to Fe34 Also, superstructures (other

than that for troilite compositions) were observed only in the range

Fe S - Fe S where an unidentifiable superstructure was observed
.971 .925

in samples prepared at 185 0 C.

The superstructures exhibited by the iron-deficient structures

are primarily due to ordered arrangement of the iron vacancies. These

arrangements have been determined for Fe7S8 (Bertaut, 1953), Fe 3S4

(Erd et al., 1957) and for several defect superstructures in the iron-

selenium system where an analogous and equally complex situation

exists (Okazaki and Hirakawa, 1956; Okazaki, 1959, 1961). With the

exception of Fe3 S where the available crystals were unfortunately of

very poor quality, these structures have been determined only through

observation of qualitative relations among the superstructure intensities.

None have been refined. The proposed pyrrhotite structure (Bertaut,

1953), with which most of the latter structures have been compared,

was determined by finding that ordered array of vacancies which was

the most favorable energetically.

The present study was intended as an attempt to confirm the

arrangement of vacancies in pyrrhotite by a direct structure determina-

tion and refinement. In view of the curious physical properties of the



structure, information about atomic displacements around the vacancies

and accurate atomic distances would be of great interest. A large

number of specimens were examined in a search for crystals suitable

for intensity determination. All specimens were found to be twinned.

Furthermore it was found that the twin law previously proposed was

incorrect. No satisfactory twin law could be deduced. Since the

contribution to the superstructure intensities has been assumed to be

due to vacancies located at Fe sites in the NiAs-type structure, it was

hoped that the structure and twin law could be deduced from Patterson

maps based on intensities obtained from the twinned crystal. Frueh

(1962) subsequently showed that this approach could indeed be used to

solve simple structures for which the twin law was known. Three-

dimensional data was collected from a twinned crystal of pyrrhotite,

and Patterson projections were synthesized. These projections did

not suggest a simple array of vacancies as expected. Rather, it

appeared that the superstructure intensities received considerable

contribution from displacements of atoms about the vacancies. De-

tailed analysis of the three-dimensional Patterson functions could

perhaps have yielded the structure and twin law. At that time, however,

it was learned that workers investigating phase relations in the Fe-S

system had apparently succeeded in synthesizing an untwinned specimen

of pyrrhotite (J.V. Smith, pri vate communication, 1962), and that this

specimen might be made available to the author at a later time. In

view of the future availability of a single crystal of pyrrhotite, it

seemed fruitless to proceed with analysis of the twinned crystal. The

present section is therefore concerned only with the information on

the unit cell and twin law which could be inferred from examination of

the twinned diffraction patterns.
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4. 2 Selection and Composition of Crystals

Natural pyrrhotite from Morro Velho, Brazil, was used in the

present study. This material (Harvard Catalogue Number 81821) was

the same as that previously used by Buerger (1947). Fragments for

a single-crystal study were broken from small, well-formed hexagonal

platelets and were ground into spheres with the aid of an apparatus

similar to that described by Bond (1951). Although care was taken to

obtain specimens as free as possible from lineage structure, this effect

was still present to some degree even in the best crystals. Polished

sections examined in reflected light revealed no evidence for the

presence of a second phase even when treated with a variety of etchants.

The composition of the pyrrhotite was determined with the aid

of an empirical curve relating d for the 10- 2 substructure reflection to

metal content (Arnold and Reichen, 1962). Powder-diffractometer

patterns, obtained using CuKa radiation, showed the 10-2 reflection to

be split into two peaks of about equal intensity. (Fig. 4. Ia). As

confirmed later, this indicated symmetry lower than hexagonal. The

superstructure reflections were undetectable. Following Arnold and

Reichen's procedure, the powder was then annealed for 26 hours at

575 0 C in a sealed, evacuated Vyror tube. This treatment removed the

splitting of the 10- 2 reflection, Fig. 4. 1b. The tungsten powder used

in the International Union of Crystallography precision lattice parameter

project (Parrish, 1962) was used as an internal standard. The resulting

hexagonal d was found to be 2.0632 * .0002 X, corresponding to
-1.0 -2

Fe S (supposedly accurate to i. 23 atomic percent). This composi-
889

tion is exactly Fe 8S9, although the deviation from the ideal composition,

Fe7 S is slight.

4. 3 X-ray Investigation

A single-crystal study of an unannealed spherical specimen was

made using the precession method. A zero-level precession photograph
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Figure 4. 1

Powder diffractometer profiles of the 10- 2 NiAs-type reflection

for Morro Velho pyrrhotite. CuKa radiation. (a) unannealed pyrrhotite.

(b) pyrrhotite annealed 26 hours at 575 0 C. (In comparing the two pro-

files, note that the 20 scale for the unannealed specimen is half that

for the annealed specimen. The splitting of the pseudo-hexagonal 10. 2

peak is thus more pronounced than comparison of the shapes of the two

profiles would at first suggest.)
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taken about one of the supposedly hexagonal a axes is given in Fig. 4. 2.

The very strong reflections of the NiAs-type substructure are immed-

iately apparent. A large number of weak superstructure reflections

may also be observed which, upon first inspection, appear to require

doubling of A and quadrupling of C. This would require

a, = a = ZA = 6. 88.K

c = 4C = 22. 81

Closer inspection of the reciprocal lattice rows parallel to C, however,

indicates that those rows which do not contain substructure reflections

exhibit only superstructure reflections having 1 not equal to 4n. In

other words, these reflections occur only in triplets between 1 values

corresponding to substructure reflections. This is the non-space

group extinction rule previously observed by Buerger (1947) and

Bertaut (1953). It was found to hold true for such superstructure

reflections on all levels (i. e., rows with both h and k * 2n).

A curious feature of these triplets is illustrated in Fig. 4. 3,

in which four sets of these spots from the same first level a-axis

precession film have been enlarged and assembled together. If

pyrrhotite were hexagonal, this level would display symmetry 2mm

and corresponding spots in the triplets should be equivalent. It may

be seen, however, that the intensities do not display this symmetry.

In addition, they are not equally spaced, but have very small and

unequal displacements parallel to C*. The displacements of corres-

ponding spots in the four triplets also bear no symmetric relation to

one another. A general reciprocal lattice level for an axis normal to

C is therefore without symmetry of any kind. Furthermore, the

irregular displacement of spots parallel to C* indicates that the super-

structure reflections cannot lie on a single reciprocal lattice. This

demonstrates conclusively that pyrrhotite is twinned.



Figure 4. 2

Precession photograph of pyrrhotite taken about one of the

pseudo-hexagonal a axes/ Zero-level, MoKa, 39 Kv, 15ma, 39 hour

exposure. c* is vertical, a* is horizontal. The strong reflections

correspond to the NiAs-type substructure.
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Figure 4. 3

Enlargement of four sets of superstructure "triplets" taken from

a single first-level pseudo-hexagonal a axis precession photograph.

Pseudo-hexagonal indices have been assigned to the reflections. Hexa-

gonal symmetry would require that the triplets be equivalent. The in-

tensities of corresponding reflections bear no symmetric relation. The

spots also have small, unequal displacements parallel to c*.
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4.4 The Twin Law of Pyrrhotite

Bertaut (1953) postulated that the pyrrhotite twin was composed

of two monoclinic crystals related by a 600 rotation about the pseudo-

hexagonal c-axis. A unit cell was proposed with a = 2B, b = 2A, c ~ 4C,

= 90.45 , and space group F 2/d. Figure 4. 4 gives views along the

pseudo-hexagonal axis for two such reciprocal lattices in this orientation.

The slight monoclinic distortions have been neglected. The extinction

rules for reciprocal lattice rows parallel to C* are given by the special

symbols indicated. Rows containing substructure reflections are rep-

resented by solid symbols; rows containing only superstructure reflections

are represented by open symbols. Figure 4.4 also presents the resulting

composite reciprocal lattice. It may be seen that the I = 4n extinction

rule appears only on two zero levels. Most of those superstructure

rows not containing substructure reflections exhibit no extinction rule,

whereas the "strange" extinction rule 1 = 4n is, in fact, observed for

most of these rows. Bertaut's cell and twin law therefore do not explain

the unobserved reflections.

Only a single set of NiAs-type substructure reflections are

observed in the diffraction patterns. Therefore the twin operation

(or operations) must be one which transforms the substructure into

itself (or nearly so, if slightly distorted). This situation is common

in crystals having substructures, and, indeed, is the physical basis

for the twinning. Clearly, no operation isogonal with a hexagonal

lattice can give rise to small displacements of the superstructure spots

such as those observed, if the superstructure lattice is orthogonal.

The true symmetry of pyrrhotite must therefore be monoclinic or

triclinic.

Buerger (1960) has shown that the symmetry of a twinned

reciprocal lattice is given by the common symmetry of the individuals

(when in twinned orientation) augmented by the symmetry of the twin

law. If pyrrhotite is monoclinic, a 2-fold axis cannot be oriented



Figure 4.4

The twin law previously proposed for pyrrhotite. A face-centered

monoclinic cell was postulated. Views along c* are, given for two

reciprocal lattices related by the twin operation, and the result of super-

imposing the reciprocal lattices is shown. The various extinction

rules are denoted by special symbols.
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parallel to the pseudo-hexagonal c axis, since all candidate operations

isogonal with a pseudo-hexagonal lattice transform this axis into itself.

This would require the twin to exhibit at least 2-fold symmetry about

this axis. Diffraction symmetry would then introduce a symmetry

plane normal to this axis. This is not observed. The same argument

also precludes a plane of symmetry normal to the pseudo-hexagonal

axis. Therefore, if a 2-fold axis is present in pyrrhotite it must be

normal to the pseudo-hexagonal axis.

To determine the symmetry of the twin, zero- and first-level

precession patterns were obtained for all of the pseudo-orthohexagonal

a and b axes. No rotation about the pseudo-hexagonal c axis was found

which related any two patterns. Figure 4. 5, for example, compares

one of the triplets of Fig. 4. 3 with corresponding sets from films

taken at 60, 120 and 180 degree intervals. No equivalence is observed.

The previously proposed twin law, however, would require two sets to

be equivalent.

Only one operation proved to give identical diffraction patterns.

Two sets of pseudo-orthohexagonal b-axis photographs, for example,

were found to be equivalent provided one was rotated 1800. Figure 4. 6

compares pairs of reciprocal lattice rows in this orientation which

were taken from first-level films in these two directions. The twinning

operation therefore consists of a 600 rotation about the pseudo-hexagonal

c axis, followed by a 2-fold rotation about the pseudo-hexagonal b axis.

The combination of these two operations is equivalent to a single 2-fold

rotation about the pseudo-hexagonal a-axis midway between the two

related b axes. One crystal therefore exists for each operation of the

twin axis, unlike the previously proposed twin law.

4. 5 Orientation of the Twin Axis and Unit Cell

The preceding discussion has described a twinning operation

relative to a pseudo-hexagonal lattice. The nature of the true unit cell

and the orientation of the twin axis relative to this cell have yet to be
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Figure 4.5

Comparison of one of the superstructure reflection triplets of

Fig. 4. 3 with corresponding sets from precession photographs taken

about the neighboring pseudo-hexagonal a axis. (Pseudo-hexagonal

indices have been assigned to the reflections.)
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Figure 4. 6

Comparison of reciprocal lattice rows related by the twin

operation. Rows are compared from precession photographs taken

about two first level pseudo-orthohexagonal b axes which are separated
0 0

by 60 . One of the films has been rotated 180 . These operations are

equivalent to a 2-fold rotation about the pseudo-hexagonal a axis be-

tween the two axes. (Pseudo-hexagonal indices have been assigned to

the reflections.)
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specified. It will now be shown that the displacement of spots which

was observed in the precession patterns can arise only if the untwinned

lattice is monocinic.

Let a sublattice of the NiAs-type with true orthohexagonal

symmetry be used as a reference system. The diffraction patterns of

the twinned crystal indicate apparent doubling of A and B. With the

twin operation proposed, this may occur only if the actual a and b of

the individual lattices are double the NiAs-type lattice translations.

Assuming that the superstructure is based on a monoclinic distortion

of this substructure, two cell geometries not precluded by the previous

discussion are possible: the distortion may be such that the projection

of c on (001) lies along either the orthohexagonal A or the orthohexagonal

B axis of the substructure. The corresponding superstructures for the

two possibilities may be expressed by the following general relations:

proj. c parallel to A: proj. c parallel to B:

a= 2A a= 2B

b= 2B b = -2A

c -AA +nC c = -A B + nC

matrix for the transformation

2 0 0 0 2 0

0 2 0 -2 0 0

-A 0 n 0 -A n

where A is a fraction and n is an integer. Corresponding matrices for

the transformation in reciprocal space are given by the transpose of

the inverses of the above matrices. Using this relation one obtains:

proj. c parallel to A: proj. c parallel to B:

a* =!A* + -C* a* =_B* + - C*
- n ~.# n

b*= IB* - b* - A*

c- C* c* C*
n -- %-n ~
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From these relations it may be seen that a* and b* are halved in

the directions of A* and B*, as is observed. In both possibilities, how-

ever, a*. has an additional component along the hexagonal axis C*. This

is the nature of the displacement of spots which was observed. A tri-

clinic lattice would result in additional components normal to C*. The

pyrrhotite lattice must therefore be at least dimensionally monoclinic.

The two monoclinic possibilities may be distinguished from the

nature of the splitting of the pseudohexagonal peaks in the powder
1

pattern described in Section 4. 2. It was noted above that the reflection

corresponding to the 10-2 reflection of the NiAs-type substructure was

split into two components. This behavior requires that proj. c be

parallel to B; if proj. c were parallel to A, the peak would be split into

three components. The translations of the NiAs-type substructure are

known. If it is assumed that c is an integral multiple of the pseudo-

hexagonal C, the value of P may be computed from the magnitude of

the splitting of substructure reflections indexed on the basis of the

NiAs-type lattice. In this fashion P was found to be 91.79w.

All possible settings of c relative to the twin axis are indis-

tinguishable upon suitable relabeling of the twins or redefinition of the

cell. (Proj. c cannot, however, be normal to the twin axis, for in this

case the twin operation is a symmetry element of the lattice. ) The

twin operation may therefore be described as a 2-fold rotation about

[110] .

Even with the information derived above, it is impossible to

explain the observed 1 = 4n extinction rule. This rule must be explained

Splitting of superimposed reflections in the precession photographs

was regarded as suspect because lineage structure was present to some

degree in even the best crystals. In a powder pattern, however, any

splitting must be entirely due to the symmetry of the lattice.
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by superposition of lattice rows from each of the crystals comprising

the twin. Since this rule is observed on all levels, it must involve

space-group extinctions due to the lattice type. The 1 = 4n extinction

rule, however, requires superposition of rows with modulo 4 and

modulo 2 extinction rules for 1. It is impossible to find a lattice type

which predicts absences with both of these periodicities. The lattice

type and magnitude of the c translation of pyrrhotite remain undetermined

at this time.

Several possible reasons may be advanced tQ explain this diffi-

culty. The superstructure reflections are extremely weak. The super-

structure may be such that reflections with a certain periodicity are too

weak to be detectable. Another possibility is that further twinning exists,

and that the twin actually consists of two or more crystals in twinned

orientation which are then further repeated by a rotation about [ 110]

All attempts to explain the non-space group extinctions by further

twinning were, however, unsuccessful. An additional, but less likely

possibility is that the crystals investigated actually consisted of two

phases with such similar properties that no intergrowth could be

detected. This could perhaps explain the slight deviation of composition

from ideal Fe7 S8'

4. 6 The Nature of the Superstructure

A complete set of three-dimensional intensities were collected

from a twinned crystal of pyrrhotite. No symmetry was assumed for

the twin, and all accessible reflections contained in one hemisphere

of reciprocal space were recorded. Some reflections were slightly

split due to lineage structure or imperfect superposition of reflections

arising from different crystals in the twin. Therefore the intensities

were recorded with an integrating precession camera. The effect of

splitting of spots was minimized by this technique since all portions

of the spot eventually contribute to the "plateau" of the integrated spot

as the film is moved through a cycle. An additional advantage provided



by film techniques (and the precession method in particular) for this

problem was that all reflections from the crystals comprising the twin

could be recorded without detailed knowledge of the magnitude of the

distortions from a true orthogonal lattice. This was made possible

because, as mentiohed above, the small displacements of the reciprocal

lattice points have components only parallel to C. Therefore reflections

from the twinned crystal occur on the same level if an axis normal to C*

is taken as the precession axis. Details of the procedure used in collecting

and measuring the intensities are given in Appendix III.

Patterson projections along the a and b axes of one of the twins

were synthesized using only the superstructure reflections obtained

from the twinned crystal. The program ERFR2 written for the I. B. M.

7090 computer was used for these computations. The syntheses em-

ployed 119 Okl and 79 hOl superstructure reflections respectively.

If the superstructure were primarily due to ordering of Fe

vacancies, a determination of the structure and solution of the twin law

would be comparatively simple. The superstructure reflections would

have zero intensity if all Fe sites in a NiAs-type arrangement were

occupied. If certain sites are vacant, however, the structure factors

fail to be equal to zero by an amount equal to the scattering contribution

of the missing atoms. The resulting structure factor is therefore the

negative of that which would be obtained from the missing atoms alone:

F = F exp(-27ri-X) = f (-2riH-X)
super- I Fe ~ ~Fe ~

structure occupied unoccupied
sites sites

Since the superstructure intensities are proportional to F 2, the negative

sign on the right of the above expression has no effect. Therefore, if

only superstructure reflections are considered, the diffraction effect of

an ordered arrangement of vacancies is completely equivalent to a

structure in which Fe atoms alone occupy the vacancy sites. The

Patterson projections based on the superstructure reflections should
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then exhibit maxima only in locations corresponding to certain of the

Fe-Fe interactions of a NiAs arrangement. Consideration of the NiAs

structure shows that, in projection, these peaks may occur only on sub-

nets given by a' = A, ct = C, and b' = -IB, c = -C, respectively.

The two Patterson projections are presented in Fig. 4. 7. F0 0 0

has been omitted from the syntheses,, and, for clarity, negative regions

have been shaded. Only half of the cell is shown; the remaining half of

the cell is related to the portion shown by inversion centers located at

0- and -- 1. Both the pseudo-orthohexagonal a and b axes are halved in

projection because the twinned cell assumed is C-centered. The subnet

on which Fe-Fe interactions should occur for an ideal NiAs-type arrange-

ment is shown as a light net.

Surprisingly, virtually none of the peaks fall on locations corres-

ponding to Fe-Fe interactions. The calculated weight of such inter-

actions is only slightly above the background of the maps. Also, the

observed maxima are not circular, suggesting interactions between

portions of atoms. It therefore appears that the superstructure inten-

sities are primarily due to distortions of the NiAs-type structure about

the vacancies.

Three-dimensional Patterson maps were being synthesized when

the writer learned that J.V.Smith (private communication) had synthe-

sized what appeared to be untwinned pyrrhotite. He offered to supply

the writer with a crystal of this material at a later date. Although the

crystal structure of pyrrhotite could perhaps be solved from the data

obtained in the present study, difficulties would certainly be encountered

in the refinement of the structure because of superimposed reflections.

It was therefore deemed wisest to suspend work on this problem until

the untwinned material became available.
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Figure 4. 7

Patterson projections for pyrrhotite based on superstructure

reflections only. F000 omitted; negative regions shaded; contours at

equal but arbitrary intervals. Since the pseudo-hexagonal cell is

C-centered, a and b are halved in projection. Inversion centers.at 0

and - relate the half of the cell shown to the remaining half. The sub-

nets indicated predice the location of Fe-Fe interactions resulting from

a NiAs-type substructure. If the superstructure intensities resulted

only from omission of Fe atoms, peaks should occur only at these

locations.
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Section V

X-ray Absorption Corrections for a Crystal of Arbitrary Shape

5.1 Introduction

Many crystal-structure analyses presently being conducted are

concerned with obtaining very precise values for atomic positions and

temperature factors. This has been made possible to a large extent

by improvements in diffraction apparatus and by the availability of high-

speed, large-storage electronic computers. Super-refinement obviously

requires very accurate data. Routine counter-diffractometer techniques

are capable of yielding a set of structure factors with an over-all

precision of from i to 2 % (see, for example, Appendix I). In order to

obtain this degree of reliability, however, it is necessary to apply an

accurate absorption correction to the set of diffracted intensities which

have been coli-ected.

Determination of an accurate absorption correction is one of the

most frustrating problems remaining in crystal- structure determination.

In principle it is possible to determine the shape of the crystal to any

desired degree of accuracy. This is particularly true if the crystal is

bounded by simple forms such as natural plane faces, or; a combination

of simple shapes such as planes, spheres or cylinders. It follows, then,

that it should also be possible, in principle, to determine an absorption

correction to any desired degree of accuracy by using any of the several

graphical methods which have been proposed. The limit placed on the

accuracy of the corrections should ultimately be the accuracy to which

the linear absorption coefficient may be computed. Unfortunately, the

amount of labor involved in such a procedure is so excessive that this

has, until recently, been impossible. The current generation of

electronic computers, such as the IBM 709 and 7090, have storage

capacities and speeds which make automatic computation of such
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corrections feasible.

This section describes a straightforward method for the deter-

mination of transmission factors for a crystal of essentially arbitrary

shape. The only restriction on the shape of the crystal is that it be

describable in terms of a collection of functions which may be expressed

analytically. Re-entrant angles are permitted. With but slight modifi-

cation, the method is applicable to each of the three principal diffraction

geometries: the precession, equi-inclination Weissenberg, and Eulerian

cradle methods. The procedure is developed in such a manner as to be

suitable for programming for high-speed computation. Special versions

of such a program have already been written, and, in fact, were employed

in Section III. Programming of the general procedure, however, is

being done in collaboration with Dr. Charles T. Prewitt. The program

will therefore not be described as part of this thesis.

5. 2 The Status of the Absorption-Correction Problem

5.2.1 Preparing simple shapes. Previous approaches to the

absorption correction problem have been of two types. Corrections for

a simple shape, such as a sphere or circular cylinder, are fairly straight-

forward. The correction depends on but two parameters: the radius of the

specimen and the linear absorption coefficient. These corrections may be

evaluated as a function of 9 and listed, once and for all, in the form of

tables. The absorption problem has therefore been solved if the crystal

may be ground into one of these simple shapes. Procedures for grinding

spheres (Bond, 1951; Revell and Small, 1958) or cylinders (Kersten and

Lange, 1932, Pepinsky, 1953; Barbieri and Durand, 1956) have been

described. The necessary tables of absorption corrections have been

computed for spheres by Evans and Ekstein (1952) and more recently

by Bond (1959a). Cylindrical absorption corrections applicable for re-

flections in a plane normal to the cylinder axis have been evaluated

graphically by Claassen (1930) and numerically by Bradley (1935). The

latter values have been improved by Taylor and Sinclair (1945) and more
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recently by Bond (1959b). Buerger and Niizeki (1958) have shown how

these tables may be applied to upper-level reflections.obtained with

equi-inclination geometry. An analytical method for the determination

of absorption corrections for ellipsoidal crystals has recently been

given by Fitzwater (1961). The expression for the transmission factor

was expanded in terms of definite integrals. The convergence of the

series, however, was quite poor for pir > 1. Unfortunately, it is values

of pLr beyond this range which present very serious absorption problems,

and for which an accurate correction would be desired.

It is not always possible to grind a crystal into a simple shape

such as a sphere or cylinder. Crystals with very anisotropic hardnesses

may assume ellipsoidal shapes. Very sectile crystals may be deformed

to the extent of being rendered useless. Crystals with very perfect

cleavages present similar problems. Furthermore, a certain amount

of risk is always attendant in these grinding processes, since very small

crystals are easily lost in the procedure. One therefore might be re-

luctant to apply them to rare crystals of limited availability.

5. 2.2 Prismatic Absorption Corrections. A second group of

methods has been concerned with absorption corrections for crystal

shapes which present a constant cross-sectional area to the x-ray beam

(i. e., prismatic shapes). The approach to this problem has been to

develop convenient devices which permit transformation of the double

integral of the transmission factor into a summation which may be

evaluated graphically. Basic methods have been proposed by Hendershot

(1937) and Albrecht (1939). These methods have been developed and

modified by Howells (1950), Evans (1952), Grdenic (1952), Joel et al.

(1953) and Rogers and Moffett (1956). These methods are all extremely

tedious to apply. Furthermore, as has been noted, they apply only to

prismatic shapes. It is difficult to apply them to upper-level reflections

except in the case of equi-inclination geometry. They also represent

approximations in that they neglact any effect caused by the forms
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bounding the ends of the prism. Burnham (1961) has shown that appre-

ciable error may result unless the crystal has a sufficiently large length

to diameter ratio.

A first application of high-speed computation to the evaluation of

transmission factors was made by Busing and Levy (1957). Their method

employed the Gaussian quadrative method of numerical integration in

evaluating transmission factors for a crystal bounded by plane faces. No

re-entrant angles were permitted, and the method was applicable only to

zero level reflections in the equi-inclination method. Burnham (1961)

subsequently extended this method to include treatment of upper level

reflections for equi-inclination geometry. A program employing this

method has been written by Burnham for the IBM 7090 computer. This

program has been in use in this laboratory for two years. It is quite

efficient and, as far as equi-inclination geometry is concerned, is general

in that curved surfaces may be approximated by a series of plane faces.

The method described in this section differs slightly from

Burnhamis procedure. It will provide equivalent results for the equi-

inclination method except that (1) a slight advantage in speed and accuracy

will be gained since quadratic forms such as cylinders and ellipsoids may

be specified by a single function instead of being approximated by a series

of planes, and (2) it is more general in that crystals with re-entrant

angles may be treated. Unlike the Burnham method, the present procedure

has also been extended to include the precession and Eulerian cradle

geometries.

5. 3 The General Nature of the Method

In the present method the crystal shape is specified by a combi-

nation of quadratic functions. This type of function is general enough to

describe a large variety of shgpes. These functions are specified in

some natural coordinate system relative to the principal crystal shape.

For example, if the crystal consists of an ellipsoid modified by a few



1Z8

planes, the coordinate system is taken along the principal axes of the

ellipsoid. This coordinate system has the advantage that the equation of

the principal form is easily specified, and furthermore, assures selection

of a system of volume elements which is evenly distributed with respect

to the overall shape of the crystal.

The crystal is then subdivided into a selected number of volume

elements. These elements are represented by a grid established as

submultiples of the maximum dimensions of the crystal. Each grid point

is then tested to determine whether or not it lies within the crystal. Those

grid points lying outside of the crystal are discarded at this point. Crystals

with re-entrant angles will require a special procedure for testing the

grid points.

This natural coordinate system is next transformed to a coordinate

system relative to the diffractometer (when all instrumental settings are

at zero). This "orientation transformation" is used to transform the

equations of all functions bounding the crystal, and also the coordinates

of all retained grid points into the coordinate system of the diffractometer.

All computations up to this point need be performed only once for each

problem.

Next, the "diffraction transformation" is established for each of

three diffraction geometries. This transformation is the operation,

relative to the diffractometer axes, which is necessary to bring the

crystal into the position in which a reflection is generated. The diffraction

transformation will be determined in terms of the indices of the reflection

and reciprocal cell dimensions for a triclinic cell. Performing the

operation on the crystal itself would require a separate transformation of

all grid point coordinates, and also transformation of the equations for

all bounding functions. This procedure would have to be repeated for

each reflection. Instead, the inverse of this transformation will be

imployed. The crystal (and thus the, reciprocal lattice) will be regarded

as stationary, and the inverse transformation will be applied to the

vectors representing the directions of the incident and diffracted beams.
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In this fashion a unit vector in the directions of the incident and

diffracted beams may be established relative to the crystal for a given

reflection. The form of these expressions is the only manner in which

the procedure differs for the various diffraction geometries.

To evaluate a transmission factor, it remains to determine the

distance in the direction of the incident beam from the surface of the

crystal to each grid point, and the distance in the direction of the diffracted

beam from the grid point to the surface. To obtain these distances,

appropriate scalar multiples of each beam vector are sought such that

the terminal point of vectors from the grid point satisfies the equation

for a particular bounding function. This leads to a quadratic equation

for the desired distances, which must be solved for each bounding function.

Again, a crystal shape with re-entrant angles requires a special treat-

ment in order to eliminate portions of beam paths which lie outside the

crystal. The transmission factor for the particular reflection is given by

the average of the transmission factors for the separate grid points.

5.4 Specification of Bounding Functions

The crystal shape will be assumed to be representable by a

collection of one or more functions which will be called bounding functions.

It will be assumed that the quadratic form

f(xsyzz) = Aix 2+B2y 2 +Czz +Dlxty'+EtySz! +Gz'xt

+ HxI+Ilyl+Jtzt =- F (5.1)

is general enough to permit a variety of shapes sufficient to describe

portions of even an irregular crystal. In equation (5. 1) the symbols

A, B, C, D, E, G. H, I, K, and F are constants. Table 5. 1 lists a

number of geometric shapes which can be described by a function of this

form. The canonical form of the shape is presented, and then this

expression is expanded to obtain values for the coefficients of (5. 1). The

origin of the surfaces has been placed at a general location p, q, r relative



Geometric Shapes Which May

Table 5. 1

Be Expressed as a Quadratic Function

Geometric

Shape

Canonical form of equation

of surface

Values of coefficients in general quadratic form
2 2 2

f(xyz) = A'x' + B'y' + C'z' + D'x'yI+ EIy z'

+ G'z'x'+ H'x'+ Ily'+ J'z' = F'



Table 5. 1 (continued)

Geometric Shapes Which May Be Expressed as a Quadratic Function



I2,

to the origin of the coordinate system. It should be noted that a circular

cylinder represents a special case of an elliptic cylinder with a = b.

Similarly, a sphere or circular cone represents a special case of an

ellipsoid or elliptic cone with a = b = c.

Some precautions must be observed in employing certain of these

shapes. The hyperboloid of one sheet and tle hyperbolic paraboloid

have surfaces which are concave outwards. These shapes thereforee

involve one of the problems associated with re-entrant angles and must

be given the special treatment described in Section 5.10. The expression

for the elliptic cone specifies two surfaces which, for the form of the

expression given in Table 5. 1, occur for z < r and z > r. Since both

surfaces ordinarily would not be used in describing a crystal shape, an

artificial bounding plane specified by z = r should be used to eliminate

the unwanted portion of the surface. If the vertex of the cone happens to be

modified by a second function for the particular crystal shape encountered,

this procedure is, of course, unnecessary.

It is convenient to distinguish between two types of crystal shapes.

The first class of shapes may be described in terms of unlimited bounding

functions. The various forms of this class of crystal are such that any

point lying within the volume of the crystal lies within all bounding

functions. An example of this type of crystal is given in Fig. 5. 1 a.

A second class of shapes must be specified in terms of limited bounding

functions. In this class of shapes, a given function may bound the crystal

until it intersects another bounding function. Beyond this second function,

a different function bounds the crystal. An example of a crystal with this

type of shape is given in Fig. 5. 1 b. The crystal is bounded by the

function f until f is reached. The crystal is then bounded by f5-4 -2 -
Crystal shapes having limited bounding functions exhibit re-entrant

angles.

It is also convenient to subdivide crystals with limited bounding

functions into two cases. In case I, illustrated by Fig. 5. 1 b, the

bounding function or functions which specify the limits of applicability



Figure 5.1

Classification of crystal shapes according to the nature of the

bounding functions.
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of other functions divide the crystal into sub-volumes which may, by

themselves, be considered as bounded by unlimited bounding functions.

Thus, in Fig. 5. 1 b, for example, the crystal may be considered as two

subvolumes defined by the sets of unlimited bounding functions f , f ,

f and f ; and f , f , f , f . This is a special situation which does
-4 -6' - -3' -5' -6
not obtain in Fig. 5. 1 c. This crystal shape, case II, does not have

limited bounding functions which subdivide the crystal volume.

It should be pointed out that consideration of crystals with limited

bounding functions does not present a situation which is purely academic.

Crystal shapes similar to Fig. 5. 1 b might be encountered, for example,

in prismatic cleavage fragments from which a small splinter is missing.

The general case, Fig. 5.1 c, might represent a dendritic crystal.

Ordinarily, one would discard these specimens in favor of a simpler

shape. As pointed out in section 5.2.1, however, it may be neither

desirable nor possible to do this if the specimen is rare.

5.5 Establishment of Volume Elements

Let the natural coordinate of the crystal be specified by a

Gartesian coordinate system x2, yt, z?. As mentioned above, this

coordinate system is established relative to the predominant form of

the crystal. The equation of the predominant shape of the crystal is

therefore specified in canonical form. Let the limits of the crystal be

defined by a "box", such that all points within the crystal satisfy the

conditions:

-u < xt < +u

-v < y? < +v (5.2)

-w < zi < +w

The dimensions of the box, 2u, 2v, 2w, are now subdivided into a

desired number of intervals, N. For reasons which will become apparent

later, it is convenient to restrict N to even integers.



The collection of volume elements will be represented by an

array of grid points. Each grid point is located at the center of a

volume element, Fig. 5. 2. The coordinates of these grid points are

therefore specified by

1' u -N N N

x 'I = - - - ( I = - - , - - + ., . . . -. t i , . . . - - ). 3l' 2 N 2 22
y m = -Th -Nmt= -- ,.......! ) (5. 3)

zi = - - (n =- - , . . . . . . . . . . .N... .- )
nt 2 N 2 2

In applying the method to high-speed computation, it is easier

to store the array of subscripted variables x V' Yi m, zi n if the integers
1 -m -n

I', in2 , nt are restricted to non-zero, positive integers. Accordingly, it

is convenient to replace the subscripts 1?, m, n' by a new set 1, m, n,

such that:

xt7 = [-u- - + 1(2u/N)] ( = 1, 2, 3 . N)

= v
ym = _v_ R +m(2v/N)] (m= 1, 2, 3 . . . N) (5.4)

w
zi = [-w- - +n(2w/N)] (n = 1, 2, 3 . . . N)
n N

It will be shown later that only half the volume elements need be

considered if the crystal shape is centrosymmetric. It may be seen

that by restricting N to even integers, no grid points occur on the lines

x = 0, y = 0, z = 0. This affords the advantage that a centrosymmetric

equivalent exists for each grid point. If the grid points were not defined

in this fashion, weights would have to be assigned to certain grid points

in evaluating the transmission factor for a centrosymmetric crystal.



Figure 5.2

Establishment of volume elements and representative array of

grid points.



I

~Q.

y

ARRAY OF VOLUME ELEMENTS
GRID POINTS

I I I

-----------

Ix

-3 -2 -l t 2 3
1 2 3 4 5 6

X=-U X-+U

C0

I I I o

=



5.6 Testing of Grid Points

5. 6. 1 Unlimited Bounding Functions. The "box" enclosing the

crystal has now been subdivided into N3 volume elements represented
3

by N grid points. Some of these grid points are contained with the

crystal, others are not. It is now necessary to test each grid point so

that grid points lying outside the crystal may be discarded.

A collection of functions f 1 (xyz) = F , f (xyz) = F , f 3 (xyz) = F ..

has been specified which describes the surface of the crystal. F F

represent constants. If the value of f, (xly z ) for a particular grid
-I m -n

point is less than the constant F,, then the grid point lies within the
- 1

surface defined by that function. If, on the other hand, f (x y z ) is-i -1 -in-n
greater than F., the grid point lies outside the surface of that function.

-1

The shape of crystals with unlimited bounding functions is such

that, by definition, any point within the crystal lies simiiltaneously

within all the bounding functions. Therefore, any of the grid points,

defined by 5.4, which lie within the crystal must simultaneously satisfy

the conditions

f (x y z ) <F
1 lm n i.

f (x y z ) <F
2 m n 2 (5.5)

f. (x y z ) <F..
i 1 m n i

Any grid point not satisfying all these conditions is rejected.

5. 6. 2 Limited Bounding Functions (Case I). When the limiting

bounding function divides the crystal into two or more subvolumes, as

in Fig. 5. 1 b, the grid point is first tested to determine the subvolume

in which it occurs. The bounding functions relevant to that subvolume

may then be considered as unlimited bounding functions. Thus in

Fig. 5. I b, for example, the testing procedure would be: 1

The origin has been assumed to be between F and F '1 2



lIo

if f 2(x y z )<F , then

2 1 m x1 n 2
f (x y z )<FS1m n i

f (x y z )<F4 1lmn 4

6 (x1 y zn )<F 6

if f 2 (x y z ) > F 2 , then (5.6)

f (x y z )<F3 1lmn 3

f5 (x y z )<F5 1 m n 5

f 6(x Iy mz )< F6f6 ( 1 Ymn) 6

This procedure may obviously be extended to shapes having any number

of functions similar to f2. Note that the conditions (5. 6) involve but

one test (per grid point) in addition to those which would have been

applied had the crystal been described by unlimited bounding functions

alone. The procedure therefore does not involve an excessive amount

of additional computation.

5. 6. 3 Limited Bounding Functions (Case II). When the limited

bounding functions do not divide the crystal into discreet subvolumes,

a special and different sequence of tests must be applied. The procedure

required will differ for each shape. The trick in this situation is to

(I) successively test volume elements lying outside a given bounding

function, starting with the functions at the greatest distance from the

origin, and (2) test any particular grid point only once, and not in any

subsequent test. In this process the outer regions of the crystal are

successively tested until only a "core" contained within unlimited bounding

functions results.

Figure 5. 3 illustrates this procedure for the crystal of Fig. 5. 1 c.

In the upper left hand corner all grid points lying outside the function

which has been drawn as an extended line have been tested. Grid points

contained in the solid region of the crystal have been retained; those in
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Figure 5. 3

Example of procedure for testing of grid points for a crystal

with limited bounding functions (Case II).
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the shaded region have been rejected. In the upper right hand corner of

Fig. 5. 3 grid points lying outside a second function have been tested.

Note that grid points already tested are not tested again. If this were

done, certain volume elements actually within the crystal (those occurring

, in a small triangle bounded within the crystal by the two functions drawn

as extended lines) would be incorrectly discarded by the second test.

In this fashion, points lying outside a third and fourth function

(Fig. 5. 3 center, left and center, right) are tested, until a small tri-

angular core of untested points remains in the crystal. These final

points are then tested in the normal fashion, (5. 5).

5.7 The Orientation Transformation

In addition to a set of equations f (xIyz 3 ) . . . f.(xy z) specifying

the surface of the crystal, we now have a set of grid points x' y' z'
1 -m - n

representing all volume elements lying within the crystal. The functions

and grid points thus far have been specified in a coordinate system xy' z'

relative to the crystal shape. These coordinates will now be transformed

into a coordinate system xyz relative to the diffractometer. The axis z

will be taken along the goniometer head axis, and the axis x along the

x-ray beam when all instrumental settings are zero.

This transformation is the operation which is performed to

crystallographically orient the crystal shape on the diffractometer. It

will therefore be called the orientation transformation. It is desirable

to specify the transformation in terms of angles which can readily be

determined by the investigator. The transformation will therefore be

specified by the polar angles p and <, Fig. 5.4, since these angles may

always be determined with the aid of a two-circle optical goniometer.

The transformation may then be expressed, in terms of the orientation

matrix [9 ;
[x,] = [O [x] (5.7)



I+

Figure 5.4

The orientation transformation. Relation between a coordinate

system xty'z' relative to the crystal in oriented position, and a set of

axes xyz relative to the diffractometer when all instrumental settings

are at zero.
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with

sinp cos4 sinp cos y sinpz cosjz

[0O] = sin p sin i sin p sin4 sin p sin* (5. 8)
x x x y z z

cos p cos p cos pz

In specifying these angles, it should be noted that [Q] is a unitary matrix.

The sum of the squares of the elements in any row or column of [ 0] are

therefore equal to unity. The angles p and 4 therefore need not be

determined for all three axes.

The necessary transformation of the coordinates of each retained

grid point xI yI z is readily performed by application of (5.7). The
I m - n

transformed expressions for the bounding functions may be obtained by

use of the inverse of the transformation of (5.7):

[x'] =[0] [x] (5.9)

Since [ 9] is a unitary matrix,

[O-1 = [9 T (5. 10)

where [0] is the transpose of the matrix [,O] . Although the dominant

function of the crystal will be in canonical form in the system x yI zt,

this, in general, will not be the case for every function. Therefore,

to obtain the equation for the bounding functions in the diffractometer

coordinate system, we must substitute the relations (5. 9) in the general

quadratic form (5. 1):

2 2 2 .2 2 2
f(xyz)= A1[ sin p cos 4 x + sin p sin 2, y

2 2 2
+ cos p z + 2 sin p cos4 sin4 xy

+ 2 sin p cos p sin4, yz

+ 2 sin px cos p cos#, xz]



* .2 2 2 .2 2 2
+ B[sin p cos x + sin p sin 4 y

y y y y
2 2 2

+ cos p z + 2 sin p cosd? sin4 xy
y y y y

+ 2 sin p cos p sin4 yz
y y y

+ 2sinp cos p cos# xz]x x x

2 2 2 2 2 2 2 2
+C[sin p cos 4 x +sin p sin 4 y +cos p zz z z z z

+ sin p cos p sin#!, xyz z z

+Z2sinp cos p sincf yzz z z

+2 sin pz cos pz cosz xz]

2 2

+ D'[ sin p sin p cos+ cos x + sin p sin p sin* sin* yx y x y x y x y

2
+ cos p cos p z + (sin p sinp sing cos 4

+ sinp s cos*K sin4 )xy + (cos p sinp sin4

+ sin p cosp sin*) yz + (cos p sinp cos*x y x x y y

+ sinp cosp cos )xz]

E'[ sin p sin p Cos * cos z x + sin p sin p sin sin# y
y z y z y z y z

2

+ Cos p cos p z + (sin p sin p sin cos 4y z y

+ sin sin p si cos s )xy + (sinp sinp sin4 y

y z y z y z z

+ Cos p cos p sin ) yz + (os p s Cos

+ Cosp sin p cos4 )xz]



+ H'[ sinp cos? x + sinp sin4, y + cos p z]x x x x x

+I t [sinp cos4 x + sinp sin4 y + cos p z]
y y y y y

+ J'[ sinp Cos4, x + sin p sin4 y + cos p z]z z z z z

= Ft = F (5.11)

2 2 2
Collection of terms in x , y , z , xy . . . . etc., leads to the desired

expression

f(xyz) = Ax2 + By2 + Cz2 + Dxy + Eyz + Gzx

+ Hx + Iy + Jz = F (5.12)

2 + 2 2 2 2
pcos 4 + B! sin p cos 4 +0C1 sin p cos

+ Dr

+ E'

+ GI

p si
x

+ D?

+ Er

+ G'

p

+ D'

sinp sinp cos4, cos4
x y x

sinp sinp cos4 cos4,y z y

sinp sinp cos4 cos4,

2 + 2 2
n 4 + B sin p sin 4+

x y y

sin p sin p sin4 sin4x y x y

sinp sinp sin4 sin4
y z y z

sin p sin p sin 4 sin 4x z x z
2

+ BI cos p +

y C

2 2
C: sin p sin4

zz

2
C' cos p

z

cospz + G'cos p cospz

2 s2
D=2A'sin p cos4 sin4 + 2B' sin p cos4 sin4x x y y y

.2
+ 20? sin p cos4 sin4

+ D'(sinp sinp sin4, cos4, + sinp sinp cos4 sin4
x y x y x y x y

+ E?(sinp sinp sin4 cos4 + sinp sinp cos4 sin4,)

+ G'(sinp~ sinp sin4 cos4, + sinp sinp cos4 sin4,)

with

A = At sin

2
B = A? sin

C = A' cos

(48
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E = 2A' sin p cos p sink + 2B' sin p cos p sin4

+ 2C r sin p cos p sin c

+ D'(cos p sin p sin + sin p cos p sin* )
x y y x y x

+ E'(cos p sin pz sin4z + sin p cos p sin

+ G'(cos pz sin p cos 4 + sin pz cos p sin4z

G = 2A' sin p cos p cos + 2B sin p cos p cos

+ 2C' sin pz cos pz cos4z

+ Dr(sinp cos p cos + sinp cos p cos

+ E'(sin p cos p cos + sin p cos p cos*

+ G'(sin p cos pz cos4 + sin pz cos p cos4 z

H = H' sin p cos4 + 1' sin p cos4 + J' sinpz cos4z

I = HI sinp sin* + I sinp sink +J'
x x y y

J= H'cosp + Itcospv +J'

sin p sin* zz z

cos p

F = Fr

The expressions (5.13) are completely general. When the bounding

functions are in canonical form, as in Table 5. 1, the expressions sim-

plify considerably. These special forms of (5. 13) are tabulated in

Table 5.2. It should again be pointed out that while these expressions are

algebraically complex, they are performed only once for each problem

and therefore do not involve an excessive amount of computation.

5. 8 The Diffraction Transformation and Equations for the Incident and

Diffracted Beams

Expressions have now been obtained for all retained grid point

coordinates, x y z , relative to the diffractometer axes, and for all
b1 -m -n

bounding functions relative to the diffractometer axes. All instrumental

(5.13)



Table 5.2

Coefficients in General Quadratic Form Following Orientation Transformation

Geometric Coefficients of general quadratic form in coordinate system of diffractometer
shape

A B C D E

Plane 0 0 0 0 0

2 2 2 2 2 2
A'sin p cos 4 A'sin p sin 4 A'cos p 2A'sin p cost sin4 2A'sinp cosp sin4

Elliptic x x x x x x x x x x x

cylinder +BIsin2 cos 4 +B'sin 2p sin 4 +B'cos 2p +2B'sin 2p cost sin, +ZB'sinp cosp sin*
y y y y y y y y y y y

Elliptic F
paraboloid

Hyperbolic
paraboloid

2 2 2 2 2 2
A'sin p cos * Arsin p sin 4 A'cos p 2A'sin p cos sin 2A'sinp cosp sin6

x x x x x x x x x x x
2 2 2 .2 2 2

Ellipsoid +B'sin p cos 4, +BIsin p sin 4 +B'cos p +2B'sin p cos, sin4, +2B'sinp cosp sin*
y y y y y y y y y y y

2 2 2 2 2 2
+C'sin p cos 4, +C'sin p sin 4, +C'cos p +2C'sin p cos4 sin, +2C'sinp cosp sin4

Elliptic it
cone

Hyperboloid
of one sheet

':ii
0



Geometric Coefficients of general quadratic form in coordinate system of diffractometer
shape

G H

H'sinp cos* H'sinp sinC' H'cosp
x x x x x

Plane 0 +V sinp cos4 +I' sin p sin . + I'cos p
y y y y y

+J'sinpzcost +J'sinp sink +J'cos p

Ellpi ZA'sin p cos p cos4 H'sinp cos4 H'sinp sin4 H'cos p
Elliptic x x x x x x x x
cylinder +2B'sinp cosp cos4 + I'sinp cos4 + I'sinp sin# + I'cos p

y y y y y y, y y

H'sinp cost Hsinp sin H'cosp
x x x x x

Elliptic +I'sinp cos # + I'sinp sinj + I'cos p
paraboloid y y y y y

+J'sin p cos * + J'sinp sink +J'cos p

Hyperbolic II

paraboloid

2A'sinp cos p cos
x x x

Ellipsoid +2B'sin p cos p cos 4
y y y

+ZC'sinp cos p cos4

Elliptic n a

cone

Hyperboloid ,, 1 o

of one sheet

Table 5. 2 (continued)

Coefficients in General Quadratic Form Following Orientation Transformation



settings of the diffractometer have been assumed to be at zero. In order

to satisfy the diffraction condition for a particular reflection hkl, it is

now necessary to perform a second transformation on the crystal. This

transformation, which brings the axes to a new setting x1 y z", is a

function of the indices of the reflection hkl and the reciprocal cell dimensions

a*, b*, c*, a*, p*, y*. Rather than repeat transformations of the form

(5.13) and (5. 9) for each reflection, the reverse transformation will be

applied to the expressions for the incident and diffracted beams. The

coordinate system xyz will therefore be considered fixed to the oriented

crystal, and the coordinate system x"y't z" (originally coincident with xyz)

fixed with respect to the diffractometer.

2
5.8.1 The Precession Method. Figure 5.5 indicates the relation

between the coordinate system xyz, fixed to the crystal, and the coordi-

nate system x"y"z" fixed to the precession camera. Let unit vectors

( 1, k and i", , k" be defined in the two systems. The nature of the

precession motion is such that i precesses about i"at constant angle p.

The vector k oscillates back and forth in the x"y" plane and, at a given

point in the precession cycle, is at an angle a to k". The vector _ should

ideally oscillate in the x"y" plane and, at a given point in the precession

cycle, be at an angle P to ". In the universal-joint suspension presently

employed in the precession instrument, however, L actually oscillates

in a plane normal to k, and not in a plane normal to k". This is the

fashion in which the universal-joint motion deviates from a true precession

motion.

Scaled reciprocal cell dimensions are assumed in this treatment, i. e.

a* = X/d 1 0 0 , etc., not 1/d,00

2 Derivation of the transformation was first given by Wasser (1951).



Figure 5. 5

The diffraction transformation for the precession method.

Relation between a coordinate system xyz fixed to the crystal shape

and reciprocal lattice, and a system x"y"z" relative to the precession

instrument.
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The relation between the axes xyz

in terms of the angles a and P.

1 = cosa cos Pi " + sinpi"

= -cosa sinp p" +cos p"

-sina I r

and x t t y t z" is readily expressed

+ sina cos P i

- sina cos P$ kt (5.14)

+ Cosa

The desired diffraction matrix [ D is

cosa cos P

[D]= -cosa sinp
-sina

sinp

cos

0

The angles a and P are not independent.

always at an angle to i ",

sina cos p

-sina sin

cos a

Since, by definition, i is

i - i " =cos 

But, from (5. 14),

i - i " =(cosa cosp i + sin p " + sina cos p k") -

= cosa cosp

(5.15)

(5. 16)

(5.17)

Therefore

cosa cos P = cos L (5.18)

It will also be convenient to define the diffraction matrix in terms

of cylindrical coordinates for the precessing axis t. Figure 5. 5 also

defines the cylindrical coordinates T" and ("; the value of the third

coordinate for the end of i is unity. The relations involving a and P in

(5. 15) may be expressed in terms of T "1 by noting that

S=cosL i " + sin p sinT"" + cos T" k (5. 19)

Comparison with (5. 14) yields

sin P = sin [L sin r" (5.20)

(5.21)sina cos p= sin ji cos T"

1s5

~1



V

I

Transformation of the remaining terms in (5. 14) may be accomplished

with the aid of (5. 20) and (5. 21) by using the relations
1

cosp = (1 - sin )

2- 2
(4- sin pLsin T") (5.22)

From (5. 21) and (5.22)

sin a sin lLcosTt
sinas =

sin[L COST"

. 2- 2,
(4 - sin ji sin T )

(5.23)

From (5. 18) and (5. 22)

coscosCos a =cos%

cos F"
. 2- .i2iz1

(1 - sin Lsin T)

(5.24)

From (5. 20) and (5.24)

cos a sin P =
Cos sin L sin"

( -
2- 2

(1 - sin Lsin r"

(5.25)

From (5. 20) and (5. 23)

sin a sin @ =
2-

sin p. sinr" COST"
2- 2

(1 - sin p. sin T")

(5.26)

Using relations (5. 18) through (5. 26), the diffraction matrix may be

expressed

cos p.

-cos p sin Lsin T

(1 - sin p. sin T

-sin .L COsT"

2- 2 1
(1 - sin pLsin 7t)a

sin p. sin T

2- .2
(4 - sin p. sin 7 t)2

sin i. sinT"

2- tI
sin .sinT" COST"

2- 1 1

(2- sin I sinarE) 2

Cos p.
*2- 2

(1 - sin f.sin ' )

(5.27)

115(o
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The vector representing the incident beam assumes a very simple expres-

sion in the coordinate system x"y"z". An expression for the diffracted

beam, however, is difficult to obtain. Therefore, for the case of the

precession method it is simpler to transform the sphere of reflection

into the coordinate system of the crystal, and then derive expressions for

the incident and diffracted beam. This is easier than transforming

explicit expressions for the beam vectors, as outlined in the discussion

of the general method, Section 5. 3.

Relative to the precession camera axes xl'y"z", the sphere of

reflection has unit radius and has its center located at x " = -1., yt = z "= 0.
0 -0-

To obtain the coordinates of the center relative to axes fixed in recip-

rocal space (to which the coordinate system, xyz, fixed to the crystal

shape also applies) the transformation

x x"1 -1
0 0

y= [D] y = D] 0 (5.28)

zO z' 0

is performed. Using the expression (5.27) for [D]

x0= -cos (5. 29a)

cos ± sin L sinT (5.29b)
0 2-. 2 -

(I - sin [L sin T) 2

z= sinR cos r" (5. 29c)
0 2- 2

(1 - sin p. sin 7t)2

Relation (5. 29a) confirms a relation obvious from the usual diagram of

reciprocal space drawn in the coordinate system of the instrument;

namely that the center of the sphere of reflection is located at a distance

cos [. from the zero level. Relations (5. 29b) and (5. 29c) are more

readily understood when transformed into the cylindrical coordinates



X0 -Cos 1 (5. 3 0a)

2 2 2
0 0YO + z0 (5/30b)

T tan y0/z0 (5. 30c)

The coordinates are indicated in Fig. 5. 6. Use of relations (5. 29b) and

(5.29c) yields

2- .2- 2 .2-
2 cos p sin p. sin " + sin cosa'r

2- 2
I-sin pLsin T"

2- 2- 2 2
sin L(cos tsin T " + COS T "

2- 2
I- sin p. sin T"

2- 2 2 2-
sin [ co T " + sin T" (1- sin)

2- 2
1 - sin p. sin T"

2- 2 2-

2-2
sin sin sin 7"

= sin2 (5.31)

Relation (5. 31) confirms the relation that, in reciprocal space, the

center of the sphere of reflection lies at a distance sinp[ from a line

through the origin of reciprocal space and normal to the zero level.

Relation (5. 30c) gives the desired relation between the angular position

of the center of the sphere of reflection and the angular position of the

precessing axis. Using (5.29b) and (5.29c)

a-1 cos ~ sin sinTj

sintp. cosT"

= tan (cos tan T") (5.32)

Note that the modifying factor cos I on the right of (5. 32) causes the

motion of 70 to differ from the motion of the precessing axis T.



Figure 5.6 now permits derivation of the desiredexpressions

for unit vectors s and s which describe the directions of the incident

and diffracted beams, respectively, in the coordinate system of the

crystal. The coordinates of the center of the sphere of reflection are

x = -Cos L

y = sin L sin T 0 (5.33)

z = sin LcosT 0

The coordinates of a given reciprocal lattice point, Fig. 5.6 may be given

by

x = -d*

y = hkl sin Thkl (5.34)

z = kl cos Thkl

The direction of the incident beam is parallel to a line passing through

the center of the sphere of reciprocal space and the origin. Since the

radius of the sphere is unity, and since the sphere passes through the

origin, the vector from the center of the sphere to the origin is the

desired unit vector s 0 . Therefore, using (5. 33),

so = s i + S j + s k (5.35)
x y z

with

s0 = -cos L
x

s0 = sin i. sin7 0  (5. 36)
y

s0 = sin LcOsT 0
z

The vector from the center of the sphere of reflection to reciprocal

lattice point P gives the direction of the diffracted beam:

S = S i + S j + S k (5.37)
x y z
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Figure 5.6

Position of the center of the sphere of reflection relative to

axes xyz fixed with respect to the crystal shape and reciprocal

lattice (Precession method).
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From (5. 33) and (5. 34) the desired unit vector s is given by

S S S
S + + jk (5. 38)_s1 i S

with

S cos - d* = cos v (5.39)x

S = 61 sinTh 1 - sin p sinT0

Sz 1 CO s Thkl - sin cosT 0

2- 2
IS COSl V +(hkl 0i h 1 s n i

= [Ccosv +(ksinThkl - sinp. sinT0

+ cos T7 - sin i., cosT70 )

It now remains to express ,kl Thkl and T0 in terms of hkl and the

reciprocal cell dimensions of a general triclinic lattice. Figure 5. 7a

presents a diagram of an upper-level of the reciprocal lattice (x = -d*).

The center, PO, of the circular intersection of the sphere of reflection

with the level is located at distance ( = sinp. from the origin (5. 31).

The circle of intersection has radius sinL - d* = sinv . It may be seen

that there are two locations of the center of this circle, P and PO2 at

which reflections are generated. These locations occur at cylindrical
1 2

coordinates T0 andT 02. From Fig. 5.7a it may be seen that the desired

expression for T0 in terms of hkl_ is given by

1
o hkl (5 .40)

2
To =T hl+ 1170 hkl

The values of 11 may be found by applying the law of cosines to the

triangle bounded by hkl sin p. and siny

2- 2 . 2-
sin p + h - sin v

C S 1 =- -- _ (5. 41)
cos i - 2b7 si
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Figure 5.7

Relation between center of sphere of reflection and coordinates

of a reciprocal lattice point in the precession method.

(a) Relation between T and T
0 hkl

(b) Derivation of T hkl
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The reciprocal cell constants must now be used to evaluate ikl and Thkl'
As shown in Fig. 5. 7b, the upper level of a triclinic reciprocal lattice

is displaced from the origin by a vector A * which will be a function of

the reciprocal cell constants and the index h of the level. Also, it is

convenient to assume that the axis a* makes a general angle a* with z.-3 0 -

The value of is given by

hl (2 + z (5.42)y + z

T hkl tan (y/z) (5.43)

with

A * + h a* sin (a* + a*) + h a* sina* (5.44)y y 22 0 3 3 0

S A* + h a* cos (a*+ a*) + h3 a* cos a*zz 2 2 0 33 0

Expressions for A * and A * may be determined by expressing h a* as
y z i i

h * = A*i +A * +A * k (5.45)Sx~ y Z~

Similarly,

h a* = h a* sin (a* +a*) + h a* cos (a* + *) k (5.46)2 2 2 2 0 2 20

h a* = h a* sina* + ha* cos a* k (5.47)3 3 3 3 ina3 + 3  os 0 k

This may, in general, be the case for a triclinic or monoclinic crystal.

Introduction of this variable, however, also allows a convenient device for

specifying the orientation of the crystal axes in the yz plane. For an ortho-

gonal crystal, for example, a* may be specified as either 0 or 7r/2, corres-

ponding to situations in which a* is horizontal or vertical. Some provision
-3

must be made for internal transformation of indices in the program, since

the orientation of the crystal may not correspond to that used to derive the

expressions of this section. If the orientation of axes in the yz plane is

unimportant, only three crystal orientations need be distinguished. These

occur when a, b, or c are chosen as the precession axis.



Forming the dot-product of (5.45) into (5.46) and (5.47) provides

ha* eo sy* = A* sin(a*+a*) + A* cos(a*+a*) (5.48)

h a cosfp* = A* sina* + A* cosa* (5.49)1 1 y 0 z 0

Solution of (5.48) and (5.49) for A * and A * leads to
y z

ha* [cos y* Cos0 - cos p* cos (a*+a0)]
= (5.50)

y sin a*

h a * [cosp* sin(a*+a*) - cosy* sina]

z sina* (5.51)

All quantities required for the expressions for so (5. 35) and

s (5. 38) are now expressed in terms of hkl and reciprocal cell constants

in relations (5. 39) through (5. 44), and (5. 50) and (5. 51).

5.8.2 The Equi-inclination Weissenberg Method. Figure 5.8

indicates the geometry employed in recording upper-level reflections by

the equi-inclination method. The coordinate system x "y"z" is again

defined relative to the diffractometer so that x" is along the incident

x-ray beam, and z" is along the diffractometer spindle axes. For upper-

levels, the incident beam s , originally parallel to x", is inclined an

amount p to x" in the xIz"t plane. The expression for s" is therefore

given by

S"T= cos i" - sin k" (5.52)
0 (5.52)N

The diffracted beam, s", is at an angle v to the x"y" plane. Under

equi-inclination conditions, v = [L. The diffracted beam also is inclined

to the x"z" plane by an amount specified by T , which is the angle

between the projections of s 0 and s on the x"y" plane. The expression

for s" is therefore

sit =cos p cosT i"+ cosL sinT " + sin L k" (5.53)



Figure 5.8

Geometry in recording upper-level reflections by the equi-

inclination method. The crystal axes xyz are initially coincident with

the diffractometer axes x'ty Hz"I.
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In order to bring the crystal to a position in which a reflection

is generated, it is necessary to rotate the crystal an amount # about z".

In defining *, it is customary to denote * as 0 when a* is parallel to x.

For complete generality it will be assumed that the a* makes an angle 40
with x", Fig. 5. 9. The crystal must therefore be rotated an amount

* - #0 to satisfy the diffraction condition. The diffraction transformation

is therefore:

x = [D)x"1 (5.54)

with cos ( *) - sin(* - *0) 0

[D] = sin(* - cos(* - 0 (5.55)

0 0 i
where, as before, xyz are the crystal axes relative to the diffractometer

axes when in diffracting position. Again, the reverse transformation

Cos 0 sin( -0) 0

[D] = -sin(* - *0) cos(* - 0 (5.56)

0 0 1

will be applied to the expressions for s" and s" to obtain relations for

the incident and diffracted beams in the coordinate system of the crystal.

The relations

s = [D]1 s (5.57)

ands = [D ] 1s (5.58)

lead to
so = cos f± cos (, -0

x

so = -cos sin(* - #0) (5.59)

y

s0 = -sinp[
z

and
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Figure 5. 9

Section through an upper [evel of a reciprocal lattice being

investigated with equi -inclination geometry.
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s = cos4 cos T
x

5- -Cos L Cos T

cos (6, - 60) + cos p sin T sin(4, - )

sin(4- - ) + cos sinT cos(4 -6

s = sin J (5. 60)

It now remains to express k, T , and d) in terms of the indices of the
ra

reflection, hkl , and the reciprocal cell constants. These have been

previously derived by Prewitt (1960). Figure

z of the geometry in the level being recorded.

5. 9 gives a view along

The value of T

T = 2 sin- ( R

For equi-inclination

R = cos = (1- )

4

An expression for g has been previously given in (5. 42):

2 2S = (x + )a

is given

(5.61)

(5.62)

(5.63)

with

= + h a* cost + h a* cos(y* +4
x i1 0 2 2 0

S A* +h a* sin4 +h a* sin(y*+ )
y y 1 0 2 2 0

h3 a* [ cos a* cos - cos p* cos (y* +

x siny*

h 3 a3*[ cos * sin (y* + 40) - cos a* sin* 0

siny*

The value for may be obtained from the relation

2  2 +(*2 2
(h a* = + (Al*) + (A*)y3 3 x y

(5.64)

(5.65)

(5.66)

(5. 67)

(5.68)

Therefore

2 2 21
[(h a * - (3 3 x y (5.69)

It should be noted that in using the equi-inclination or, in the following

section, the Eulerian cradle geometries, one ordinarily will have computed

these angles for collection of the intensities. A useful option of the program

based on this method is to read in these angles from cards rather than com-

puting them directly within this program.

and



Figure 5. 9 shows that the value of (4 - 0) is given by

7r. -1. T
(4)- 4 2 - tan( + (5.70)

if Phkl is in the quadrant shown. An unambiguous expression for 4 -0

(Prewitt, 1960) which gives the correct value for P in any quadrant, is
hkl

(4 -40) = - tan (y/g) + - (2 (5.71)

The quantities required in the expressions for the incident- and diffracted-

beam vectors, (5. 59) and (5. 60) have now been determined in terms of

the reciprocal cell constants and indices of the reflection with relations

(5.61) through (5.71).

5.8.3 The Eulerian Cradle Method. In the Eulerian Cradle

geometry, all upper-level reflections are brought to the diffraction

condition in the zero level. The incident beam, Fig. 5. 10 a, initially

parallel with the x " axis, is inclined at the proper Bragg angle 9. The

diffracted beam, also in the zero level, also makes an angle 9 to the

x"I axis. The expressions for the incident and diffracted beam in the

coordinate system of the diffractometer are therefore

s " = cos 9 i" - sinG (5.72)

s" = cosO i " + sin ". (5.73)

To bring the crystal into diffracting position, a rotation 4, Fig. 5.10 b

is first performed. This operation brings the reciprocal lattice point

P into the plane y"z". A second rotation X is then performed to
- hkl_

bring the reciprocal lattice point to the y"axis.

The matrix of the transformation for the first operation is

cos4 -sin4 0

= sin4 cos4 0 (5.74)

0 0 1



Figure 5. 10

Geometry in recording upper-level reflections by the Eulerian

cradle method. (a) Location of the incident and diffracted beam with

respect to the diffractometer axes. (b) Rotations < and X necessary

to bring an upper level reciprocal lattice point to the zero level.
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The second rotation X is performed about x " so that

[x] =

0

cos

-sinx

S1
0

L0

The diffraction transformation, [ D] , where

[x] = [D] x "

is therefore given by

[PD] = [x] [W]

so that

cos#

cosx sin

-sinx sin4

-sin4

cosX cos4,

-sinx cos4

Application of the reverse transformation [D] 1 to the expressions for

s ! (5.72) and s" (5.73) leads to the desired expression
~0

s s+s i + s k~ 0  z0~ 0  A 0  ~
x y z

with

= cos4 cos9 -

= -sin4 cos O -

-sinx sine

cosx sin4 sin8

cos cos 4 sin

= s i S + s k (5.81)
x +y

s = cos4 cose +
x

s -sin4 cosO +
y

5 = sinx sinG

cos X sin4 sine

cosx cos4 sine

n -
0

sin X

cosx
(5.75)

(5.76)

(5.77)

0
sinX

cos J
(5.78)

(5.79)

and

(5.80)

with

(5.82)



Again, $, X and 6 must be expressed in terms of the indices of the

reflection and reciprocal cell constants. The value of 0 is given by the

standard expression for the Bragg angle for a triclinic cell:

1 2 *2 2 *2 2 *2
sin9 = [h1 a1  +h 2 a2  +h 3 a3

+ 2h h2a *a* cosy*

+ 2h h a*a* cosa*

(5.83)+ 2h h a*a* cosp*] (.-

The value of 4 , Fig. 5. 11, is given by

4 = tan~ ( / ) (5.84)

Expressions for and have been previously given in (5. 64) through
y

(5. 67). The value for X, Fig. 5. 9b, is given by

x = tan~ (V) (5.85)

where is given by (5. 69) and g by (5. 63). When substituted in (5. 80)

and (5.82), expressions (5.83) through (5.85) give the desired relations

for s and s in terms of the indices of the reflection and reciprocal cell

constants.

5. 9 Beam Path-lengths in Crystals

Expressions have now been obtained for unit vectors relative to the

crystal shape, specifying. the directions of the incident and diffracted

beam in each of the principal diffraction geometries. These expressions

were placed in the form

Io = ~ + so + so k
x y z

5 5 i +s i+ s k



Figure 5. 11

Section through an upper level of a reciprocal lattice being

investigated with the Eulerian cradle geometry.
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Now, for each grid point x, y z we seek a scalar multiple of each ofm-n
these vectors such that the resulting vector extends from a grid point

to the surface of the crystal. This scalar multiple will be found for

each bounding function. The several solutions must then be tested, as

described in Section 5.10, to determine which scalar represents the

desired path length.

Let t 0 be defined as the scalar multiple of the incident-beam

vector and t as the scalar multiple of the diffracted-beam vector. In

order that the values of t 0 and t be positive, 0 is defined as a negative

multiple of s and t as a positive multiple of s. The desired vectors

t and t s have the grid point x y z as origin, and coordinates
o;- 01% 1 -n

x Y z and x. y z respectively, as the terminal points. These

points are given by:

x0, 1 l - t0. s0
1 1 x

y = y - t s (5.86)

i 1 y

z = z - t s
n 0 0

1 1 Z

and

x. = x + t.i s1 x1  1

y. = y + t s (5.87)
1 m iy

z = z +t. s
i n 1 Z

The points x y z and x. y. z. satisfy the equation f. (xyz) F,,

where the general form of f is given in equation (5.12) and (5.13).

Substitution of the expressions (5.86) in (5.12) gives:

22 2
A.(x - t s ) + B.(y - t s ) + C.(z - t s0i 1 0( 0 i m . 0 1 n 0.

1 x i y i z

+ D.(xj- t0 so )( to so )
1 x i y



+ E.(y -t. s )(z - t0 s )
1 y i z

+ G.(z - t s )(x - t s 0 )1 nl 0. O 1 0.O
1 Z I X

+ ,(x - t 0.s 0):+ .(y - t s )i 1 O. 0 O 1 m 0. 0
1 x 1 y

+ J. (z -t s ) = F.
i n 0. 0

1 Z

Expansion of this expression and collection of terms in t ~ and t

leads to a quadratic equation in t0.
i

22 2
A. s0 +B. s0 +C s0 +D s0 s0 +E s0 s0

x y z x y y z

2
+G s0 So ] t0 -[2A s0 x 1+2B s0 m

x z 1 x y

+2C s 0  z + D.(s0 x1 + s y
z y x

+ E.(s z + s y ) + G.(s x + s z )] t
1 0 n 0 m 1 0 1 0 n 0.

y z Z X1

2 2 2
+[A. x +B. y +C. z +D. x y +E. y z

i i m i I m i m n

+G x1 z +H. x +I. y +J. z]=F+Gi xl n +4i x1 +Ii ym +Ji zn Fi

The solutions for t are therefore given by
-0. _____

(5.88)

(5.89)

-q * ± 2 - 4p(r - F,)
(5.90)

with 2 2 2
p = [A.s 0  +B. s +C. s +D. s s

1 0 0 0 0 0
x y z x y

+ E s0 so + G. s 0s ]
y z x z

(5. 91 a)

181

t. m
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q -[2A. s x +2B. s  y +2C s z
i0 1 1 0 m i 0 nx y z

+D.(s 0 x s0 y ) +E,(s 0 z + so y)
y x y z

+Gs x + s z)] (5.91 b)
1 0 1 0 n-

z x

2 2 2
r = [A x2 +B. y + C. z + D. x y +E. y z

i 1 1 n i 1m i m n

+G x z +H. x +I y +J. z ] (5.91 c)ii. n i1 1m in

It is readily seen that substitution of (5. 87) in (5. 12) leads to solutions

for t. of the form (5. 90) except that (a) in (5. 91 a) and (5. 91 b) the
-1

appropriate expressions s , s , and s replace s , s , and s-x -y -z -0 -0
- - - x y z

respectively, and (b) the sign of q, equation (5. 91b~), is positive and

not negative.

5. 10 Interpretation of Beam-Path-Length Solutions.

5. 10. 1 Selection of Path-Length of Correct Sign. There are two

ambiguities in the solutions for t 0 and t , (5. 90). In general, there will

be two solutions to (5. 90), one positive and one negative, (except for the

case of a plane, when coefficients A. through G. are zero, and (5. 89)

reduces to a linear equation.) The positive solution, t , is the one

required. The negative solution represents the interaction of the beam

with the opposite side of the function (see Fig. 5. 14, below). The latter

solution, t , is ordinarily discarded, unless the crystal has a centro-

symmetric shape (Section 5. 12).

A second type of ambiguity results from the fact that solution of

(5. 90) for each bounding function f.(xyz) leads to a collection of path
-1 --

lengths t. . Of these, only one pepresents the true path distance to the
-1

surface of the crystal. The technique of selecting the proper path length

differs slightly depending on whether the crystal has limited or unlimited

bounding functions.



5.10.2 Unlimited Bounding Functions. The procedure for crystals

displaying unlimited bounding functions is straightforward. Figure 5. 12a

presents a simple example in which three solutions t 1 , t2 and t3 are

obtained. The correct value, t , is merely the smallest value in the

collection.

t = Min. (t 1 , t 2 , t 3  .. (5.92)

5.10.3 Limited Bounding Functions. Figure 5. 12b gives an

example of the situations which will be encountered with crystals dis-

playing limited bounding functions. In the example shown, six solutions

are obtained. Some of these, t 1 , t and t , are real solutions corres-
S -2 -

ponding to distances at which the beam leaves or re-enters the crystal.

Other solutions, typified by t3, represent intersection of the beam with

a function lying within the volume of the crystal. These solutions have

no meaning and should be discarded. Still other solutions, t5 and t6'

correspond to intersections of the beam with functions which lie outside

the crystal. These solutions also have no meaning and should also be

discarded.

Solutions of these types may be distinguished by a special test.

Let a small increment E be added to t. The terminal point of (t + E) is

given by either (5. 86) or (5. 87) depending on whether a path length of

the incident or diffracted beam is involved. Assuming, in this example,

that a path length of the diffracted beam is concerned, (5. 87) gives

x= x + (t + E) s
i 1 x

y. y + (t + E) s (5.93)
m y

z = z + (t + E) s
i n z

Similarly, if an increment E is subtracted from t, the terminal point

of the vector becomes

x = x + (t - E) s
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Figure 5. 12

Interpretation of the set of solutions for the path length from a

grid point to the bounding functions of a crystal. (a) Unlimited

bounding functions. (b) Limited bounding functions.
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y,= y + (t -E)s
1 m y (5. 94)

z. = z + (t - E)s
1 nZ

Let the terminal points (5. 93) and (5. 94) now be tested according to (5. 6)

or the procedure of Section 5. 6. 3 to determine whether or not these points

lie within the volume of the crystal. Let (+) represent the result that the

new terminal point lies within the crystal and (-) the result that the point

lies without the crystal. These tests, applied to the example in Fig. 5. 12b,

give

t+ E t- E

t 6

t5
t(-)(+

(+) (+) (5.95)

t2  M

t(-) (+)

when the collection of t ts are arranged in order of decreasing magnitude.

Distances t 3 which intersect a function lying within the crystal, give

positive results for both tests. Distances of this sort may be discarded.

Similarly, distances such as t5 and t6, which intersect functions outside

the volume of the crystal, give negative results for both tests and may be

discarded. It should be noted that there is a much simpler test which

may be applied to immediately discard solutions of the type t5 and t6'

By definition, equation (5. 2), the crystal lies within a "box" with

dimensions Zu, 2v, 2w. Therefore all real solutions for t must satisfy

the relation

2 2 2 '
iti - 2(u +v +w) 2  (5.96)

Considerable computation time will be saved if this test is first applied

to the set of values for t .



The desired values of t are those which yield results in (5. 95) of

the form "I(+)(-)1 or t(-)(+)t; a "(-)(+)" solution represents a beam

leaving the crystal volume, and a "(+)(-)" solution represents a beam

re-entering the crystal. The smallest t of the set must therefore be of

the type (-)(+). Having ordered the set of solutions by magnitude, the

desired path length is given by

t= t -{N t MH- t- ] -[It - t ] ...

(5. 97)

where the terms on the right of (5. 97) are in order of increasing

magnitude. For the example of Fig. 5. 12 b, the solution (5. 97) takes

the form

t= t, - [t2 - t4 ] . (5. 98)

5. 11 Extension of the Method to Complex Special Cases.

The program may be extended with slight modifications to treat

very complex special cases. Figure 5.13 presents two examples which

represent problems which might actually be encountered. Figure 5. 13 a

represents a crystal with re-entrant angles and absorption coefficient

surrounded by mother liquid of absorption coefficient 2 which is in turn

enclosed in a glass cylinder of absorption coefficient .. To treat this

problem, grid points are established within the crystal, and beam path-

lengths computed as above. The functions representing the inner and

outer walls of the cylinder are also included with the collection of

bounding functions, so that the path lengths from each grid point to these

walls are also determined. The path lengths in the crystal are again

determined as above. Path lengths outside the crystal, however, are

now retained and absorption coefficient p2 is applied to these distances.

Letting tC and tC represent the distances to the inner and outer walls

of the cylinder respectively, the desired value of pt for a particular ray



Figure 5.13

Examples of complex special cases which may be treated with

a modified version of the general method.

(a) crystal with re-entrant angles enclosed with mother liquid in a

glass capillary tube.

(b) small crystal partially obscured by glass fiber on which it is

mounted.



(a)

- F,3
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(b)
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is given by

t = [ t -[t - t

+ t M- tc + [ 3 (tc - t) (599)

Figure 5.13b gives an example of a second sort of problem

which might be encountered. Here, a small crystal of absorption

coefficient has been attached to a glass capillary tube in the normal

fashion. The crystal is assumed to be so small, however, that the

glass capillary causes appreciable absorption effects. This problem

may be treated in a fashion similar to that described above.

5. 12 Evaluation of the Transmission Factor.

The path lengths of the beams to and from each grid point have

now been evaluated for each grid point for a particular reflection hkl .

The transmission factor T is given by

T -(t + t0) [1 dV (5. 100)hkl

Replacement of (5. 100) with a summation over all retained grid points

gives:

T = e -(t+t+)L 2u2v 2w
hkl 2tL 2v 2w . N N

M(.) )( )retained
grid

points

je-(t +t) (5.101)
M
retained

grid points

This problem was actually encountered in the investigation of the

crystal structure of turquoise (H. Cid-Dresdner, private communication).

Equivalent intensities differed by as much as 50 %!
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where M is the number of retained grid points.

If the crystal has a centrosymmetric shape, only half of the grid

points established in Section 5. 5 need be investigated. Figure 5. 14

shows that, if the crystal is centrosymmetric, the negative path lengths

obtained from (5. 90) which would normally be discarded for a particular

grid point xp 1ym zn are equivalent to the desired positive path lengths

for grid point x z-, . Therefore, for a crystal of centrosymmetric

shape,

T 1- le-(t + t0) p -( ItjI + It0 I5 1 2Thk= 2M [ e + e] (5. 102)hkl i

where M now represents the number of grid points treated, which is half

the total number of grid points lying within the volume of the crystal.

5.13 Assessment of the Procedure.

As mentioned above, a program based on the completely general

method presented in this section is still being developed. Special versions,

however, for computing transmission factors for ellipsoidal crystals

have been written. Using a 12X 12 X 12 grid-point system, reflections

were processed on the IBM 7090 at a rate of about 36 per minute. This

rate is rapid enough to make use of such a program practical.

The speed of the program, however, will be greatly reduced with

use of a greater number of bounding functions or when the crystal shape

has re-entrant angles. In the final version of the general program, this

will be partially offset by employing Gaussian quadrature. (In this

method, the grid points are established at unequal intervals and are

assigned weights depending upon their locations. (Lowans et al., 1942).

The effect of the procedure is to provide the accuracy of a larger number

of equally-spaced grid points while actually using but a few intervals.)

Even with these provisions, however, computations for a crystal

of complex shape, or computations for an involved problem similar to
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Figure 5.14

Demonstration that the negative solution, t , for the path

length from a grid point x1  represents the correct solution t for

the centric equivalent of the grid point, x-- - , provided the crystal
h an

has a centrosymmetric shape.
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those outlined in Section 5. 11 may be too costly in terms of computer

time to be applied to a large number of intensities.

For complex cases, use of the program would probably be

limited to two-dimensional data, crystals with small unit cells, or in

situations where absorption effects are so serious that application of

anything but an exact correction would leave the diffraction data

worthless. Nevertheless, the significance of the present method is

that problems of essentially any complexity can now be successfully

handled if one is willing to expend the necessary computer time.
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APPENDIX I

The Reliability of Equi-inclination Counter Diffractometer Data

With the availability of high-speed computers with large storage

capacities, it has become possible to refine even complex crystal

structures to a high degree of precision. In this laboratory, values for

the disagreement factor R = F I IF I - I F | I/EIF 0  for silicate

structures have ranged from of the order of 9% to as low as 6%. This

level of agreement may perhaps begin to approach the overall reliability

of the data. Very few studies of the consistency of diffractometer data

have been made. Without this information, it is not possible to assess

the significance of very low disagreement factors.

The majority of the crystal structures investigated in this

laboratory have been of fairly low symmetry. Tetrahedrite (Section II),

however, is isometric with space group I43m. The,independent inten-

sities are therefore contained within 1/48 of reciprocal space (i. e.,

h > k > 1). Each general reflection occurs as 24 equivalent mates,

excluding those related by Friedel's Law. The comparison of structure

factors required by symmetry to be equivalent thus provided an unusual

opportunity to examine normal diffractometer data for random and

systematic error.

The diffracted intensities were obtained from a small spherical

specimen of 0. 114 mm radius (pir = 7. 39 for CuK!a), spherical to ±1. 7%.

Integrated intensities were determined by recording the total number

of counts accumulated as the crystal was rotated through 6 <p Back-

ground intensity was counted for 100 sec. on either s.ide of the diffraction

peak, and a suitable deduction of integrated background was made from

the measured integrated intensity. A Kr-filled proportional counter

was used to measure intensities. The associated electronics were

standard Norelco equipment and included pulse-height analysis circuitry.

Using a representative sample of reflections, ranging from the

weakest detectable to those with a maximum peak height of 2, 000 counts



per second, three varieties of checks were performed:

(1) Measurement of certain reflections was repeated over

a period of several weeks. The degree of agreement of these

measurements is affected by reproducibility of the diffractometer

settings ( ±, y, c, T), counting statistics, and drift in the electronic

equipment.

(2) Equivalent reflections of the form hkl and khl were

examined within a given level, 1. The agreement .between these

data involves the above errors, plus variations in the absorption

correction required, because of deviations of the crystal shape

from a true sphere.

(3) Equivalent reflections of the form hkl and hlk, lhk were

compared between different levels. Agreement between these

data is affected by all of the above errors, plus systematic

errors from level to level, such as an errorjn the computed

values of ±, incorrect. correction for Lorentz and polarization

factors, or differences in the manner in which the white radiation

streak is crossed.

The results of the study are summarized in Table Al. 1. While

the deviation between equivalent structure factors in the same level

exceeds the reproducibility of the data, it is of the same magnitude as

the deviation between structure factors occurring on different levels.

The main source of error in the set of tetrahedrite structure factors

is therefore most likely uncertainty in the absorption correction. The

1.7% variation in radius causes an uncertainty of roughly 2% in the

transmission factors, and consequently a 1% variation in the structure

factors. This is about the right magnitude to account for the 1.7%

increase in error over the reproducibility of the data. It would appear

that with a more favorable value of ,r and with an accurate correction

for absorption, standard equi-inclination counter diffractometry is

capable of providing a set of structure factors with an over-all precision

of better than 2%.



Table Al. I

Comparison of Equivalent Isometric Structure Factors for Tetrahedrite

Range of intensities Range of RMS Range of RMS
(Integrated peak deviations deviation deviations deviation
intensity: integrated from mean, from mean, from mean, from mean,

TEST background intensity, F2 F2
counts X 104) F F

Reproducibility

F ) 8.29/2.13-1.17/6.32 0.016- 6.1% 2.42% 0.016-2.8% 1.15%
h' hkl

Symmetry within
a given level 8. 29/2. 13 -0. 103/0. 751 0.13 - 14.9% 5.82% 0.066- 7.5% 2.92%

(Fhkl' Fkhl)

Symmetry between
levels 0.86- 11.9% 5.63% 0.43- 6.0% 2.82%

(F , Fhlk' lhk
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Appendix II

A High-Temperature Attachment for Use with the Precession Camera

A2. 1 Introduction

Many minerals have phase-transitions at modest temperatures.

Sulfide minerals, in particular, often display transitions in the range

100 - 3000 Centigrade. These temperatures can be obtained with

relatively simple devices which do not require elaborate cooling pre-

cautions to protect the film and diffraction equipment. This appendix

describes a heating attachment for the precession apparatus. The

device is a modified version of a design originally mentioned by

Morimoto and England (1960).

A2.2 Description of the Device

An exploded view of the device is given in Fig. A2. 1, and a

section through the device, when in position on the precession camera,

in Fig. A2.2. The entire device is supported on the x-ray collimator, A.

A mushroom-shaped cap, B, has two cylindrical portions which have

been slotted to provide a firm friction fit to the other pieces of the

assembly. The inner cylinder slides snugly over the x-ray collimator

and is secured in proper position by means of a small ring, C, containing

a recessed screw. A hollow brass cylinder, D, in which the heating

element is mounted, slides snugly over the outer cylinder of the cap.

This motion allows the entire heater to be retracted towards the x-ray

tube as the crystal and goniometer head are mounted on the precession

camera. Once the crystal is in position, the heating unit, D, is slid

1 In performing this operation it is recommended that the spindle of

the precession camera be retracted as far as possible by means of its

translating screw.

OEM-



Figure A2. 1

Exploded view of a high-temperature attachment for use with

the precession camera. Lettered components are described in the

text.
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Figure A2. 2

Scale drawing of section through the assembled high-temperature

attachment.
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forward to center the crystal with respect to the heating element. The

heating element, E, consists of a 3/8 inch strip of 0. 001 inch 90% Pt - 10% Rh

foil. The foil is bent into a cylindrical shape concentric with the x-ray

beam. The foil is supported at the ends by two copper wires which also

serve as electrical contacts. These wires are crimped onto the foil and

make only a mechanical connection. The wire supports, in turn, are

supported by a pyrophyllite base, F, which is attached to the brass

cylinder. The leads are extended through the pyrophyllite base and out

the side of the brass cylinder where electrical connections are made.

The pyrophyllite base serves as both a thermal and electrical insulator.

A slight lip (see Fig. A2. 2) extends around the lower portion of the

cylindrical heating element to aid in supporting the foil and in preserving

its cylindrical shape as it expands at elevated temperatures. The brass

cylinder is extended beyond the top of the heating foil to serve as a heat

shield. The geometry is such as to permit passage of a cone of diffracted

radiation of half-angle 48. 50 without interference.

The fiber supporting the crystal, G, is admitted through a slot in

the side of the brass cylinder, D, and passes between the two wires

supporting the heating foil to intersect the x-ray beam. Normal centering

of the crystal by sighting through the x-ray collimator may be performed

with the heating attachment in place. Figure A2. 2 shows that contact

between the heating assembly and the x-ray collimator is limited to the

very thin top of the mushroom cap, B. This prevents heating of the x-ray

collimator when the heater is in operation.

Regulation of the heater is very simple. The output leads of the

secondary winding of a standard variac are connected to the primary

winding of a 6.3 volt, 20 ampere transformer. The secondary winding of

this transformer is connected directly to the heating unit leads.



A2. 3 Calibration of the Unit

A small copper-constantan thermocouple was mounted in a short

length of double-bore Alundum thermocouple tubing. This tubing was

mounted in a goniometer head, and the thernocouple placed in the position

of the crystal. The temperature detected by the thermocouple was

calibrated against the setting of the variac. The calibration curve is

given in Fig. A2. 3 The procedure was performed on two occasions,

and the results were consistent to within i 50 C. This level of repro-

ducibility was considered satisfactory for the present work, in which it

was necessary merely to maintain the crystal above a given transforma-

tion temperature while the diffraction record was being obtained. The

calibration is considered sufficiently reproducible to be employed for a

similar purpose by future users of the device. If the device is to be

used in an application in which it is necessary to know the precise

temperature of the crystal (e. g. determination of a transition temperature)

it may be desirable to mount the crystal on a thermocouple, as described

below.

It should be noted that calibration of the device was carried out

only to 2000 C. This was the maximum temperature required for the

work contained in this thesis. At this temperature the variac is at only

25% of its maximum setting. The device is therefore capable of attaining

much higher temperatures (at least 450 C) than those which have been

reported here. It remains to be seen, however, what the life of the

heating element will be, and how much heat will be conducted to the x-ray

collimator at these temperatures.

A2.4 Mounting of the Crystal

Two problems are encountered in mounting the crystal when the

device is used. First, an adhesive which will withstand the elevated

temperatures must be found to secure the crystal to a supporting fiber.

Second, the supporting fiber passes in close proximity to the copper
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Figure A2.3

Calibration curve for the high-temperature attachment. Plot of

temperature at crystal location as a function of voltage applied to primary

winding of step-down transformer.
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leads supporting the heating element. This portion of the fiber will

experience a higher temperature than the crystal itself, since it is

closer to the foil than is the crystal. This problem is made worse by

the fact that the mechanical connection of the wires to the foil has

relatively high resistance and thus becomes considerably hotter than

the foil itself. The glass used to prepare the fibers on which crystals

are usually mounted may be expected to soften at about 700 - 8000 C.

It was felt that a thin fiber would begin to creep and sag at a much

lower temperature.

Two types of mounts which were found useful are illustrated in

Fig. A2.4 a and b. In the first type, a copper-constantan thermocouple

was mounted in double-bore Alundum thermocouple tubing. The crystal

was attached directly to the end of the thermocouple. The thermocouple

wires were led out through a nick filed in the side of the Alundum tubing,

thus leaving the end of the tubing free for mounting in a goniometer head.

This type of mount has the advantage of permitting continuous determina-

tion of the temperature of the crystal. Unfortunately, it is troublesome

to use: The two wires in the thermocouple expand differentially as the

temperature is increased. Final orientation of the crystal must there-

fore be performed after the crystal is at temperature. This is undesir-

able if the crystal has any tendency to deteriorate upon prolonged heating.

A more satisfactory, though less elegant, mount is shown in

Fig. A2.4b. In this arrangement a straight copper wire was soldered

to the usual brass pin, and then extended to a length sufficient to almost

bring it into the x-ray beam. A very short length of glass fiber was then

attached to the end of the wire, and the crystal, in turn, was attached to

the end of the glass fiber. The glass fiber is just long enough to prevent

the copper wire from entering the x-ray beam.

The problem of a suitable adhesive was not completely solved.

The organic adhesives normally used in mounting crystals are, of course,

unsuitable, since they will deteriorate at about 100C C. Epoxy resin was

found to be suitable for use with high-chalcocite, since only the modest



Figure A2.4

High-temperature crystal mounts. (A) Thermocouple mount

which affords the advantage of permitting continuous determination of

the temperature of the crystal. (B) Copper-wire mount which retains

crystal orientation more satisfactorily as temperature is increased.
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temperature of 1250 C was required. At 200 C epoxy resin begins to

deteriorate by carbonizing, and the crystal eventually drops off.

Okazaki (1961) has used potter's clay as an adhesive. This material is

quite sticky. The bond should actually grow stronger with time and

temperature, since-the clay will tend to shrink and sinter.

It should be noted that introduction of a thermocouple or poly-

crystalline adhesive into the x-ray beam does not cause excessive

background problems. Any scattered radiation reaching the film must

pass through the layer-line screen, and thus travels essentially along

the Laue cone. During the precession cycle, this radiation is uniformly

distributed over the film. In the worst possible situation, a powder line

might fortuitously occur at the same angle as the Laue cone. This may

be checked by means of a cone-axis photograph. The problem is easily

remedied by slightly shifting the setting of the precession angle p, and

thus changing the angle of the Laue cone. A copper-constantan thermo-

couple placed in the x-ray beam was found to cause no appreciable

increase of background in MoKa precession photographs of over 60 hours

duration.
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Appendix III

Preparation and Processing of Integrated Precession Films

A3.1 Introduction

When film is exposed to x-radiation, grains of silver bromide

contained in the emulsion are influenced in such a way that a suitable

developing process reduces them to particles of metallic silver. Up to

a certain saturation point, the number of silver grains will be proportional

to the number of x-ray quanta incident on the film. If the number of

silver grains contained in a layer of thickness dt in the developed emul-

sion is N per unit area, then the intensity of a beam of light transmitted

through the film will be attenuated by an amount dL given by

dL = -kNLdt (A3.1)

where k is a constant. Integration of (A3. 1) over the thickness of the

film leads to

L -kNt
T - e (A3. 2)L0

where T is defined as the transmission factor of the film. From (A3. 2),

In-- = kNt (A3. 3)
L

The quantity kNt is defined as the optical density, D, of the film. Since

N is proportional to the intensity of the incident beam of x-radiation, it

follows that D is also proportional to the x-ray intensity.

Unfortunately, when a developed x-ray film is scanned with a

beam of light, the intensity of the transmitted beam is proportional to

T and not D. Determination of an integrated intensity would therefore

first require conversion of T to D,ie

D = In( -) (A3.4)
T



Provision for accomplishing this conversion may be incorporated into

the apparatus used to measure the film. An alternative procedure was

proposed by Dawton (1938). The method consists of preparing a second

print from the original x-ray film. Since the second print is a "negativet"

of the original x-ray film, it consists of transparent spots on an opaque

background. When the characteristics of the two films are carefully

matched through a specific exposure and developing procedure, a

second film can be obtained such that the transmission through each

transparent spot is proportional to the total energy in the x-ray beam

which caused the original reflection.

A suitable development procedure which matched Kodak No-Screen

x-ray film and Kodak Commercial Ortho film was developed in this

laboratory in about 1941 (Buerger, 1960). This method fell into disuse

as counter diffractometers were developed. Eastman-Kodak subsequently

discontinued production of No-Screen x-ray film in favor of more

sensitive x-ray films.

Still another solution to the problem is to employ a "plateau"

technique. In these methods the normal Weissenberg or precession

camera is modified so that the film may be given a slight displacement

following each cycle of the apparatus. If the film is displaced in a

cyclic fashion over a distance which exceeds the size of the spot, each

portion of the normal diffraction spot has an opportunity to contribute

to the central portion of the "smeared" spot. This central portion will

therefore display a "plateau". The density of the plateau is proportional

to the integrated x-ray intensity, since it represents the sum of all

intensities in the distribution of intensities contained in the diffracted

x-ray beam. In this fashion, densities are added by mechanical

means as the film is exposed. This reduces determination of an

integrated intensity to the problem of converting one transmission

factor to a density.



As mentioned in Sections III and IV, film methods afforded several

advantages in the collection of intensities for chalcocite and pyrrhotite.

Since conditions for the use of the Dawton method would have had to have

been carefully re-established for present-day x-ray films, it was

decided to obtain integrated films.

A version of the Wiebenga (1947) integrating Weissenberg

apparatus has been commercially available for some time. (Nonius,

Delft, Holland). The principle has been extended to the precession

method (Nordman et al., 1955). About the time intensity data was to

be collected for chalcocite and pyrrhotite, the Charles Supper Company

had produced a prototype of an integrating precession instrument. The

author was kindly permitted to use this device in collecting intensities

in order to test its capabilities. A modified and improved version of

the apparatus is now being produced, and the laboratory has acquired

one of these instruments. This appendix describes the procedures

used by the writer to expose, develop and measure integrated precession

films. A detailed discussion is given in hopes that these experiences

may be of use to future users of the apparatus.

A3. 2 Use of the Integrating Precession Apparatus

The Charles Supper Company integrating precession camera is

identical to the standard precession instrument except for the provisions

for cyclic translation of the film. In the integrating device, the film

cassette is attached to a plate which is free to move in a vertical direction

with respect to a second plate. This second plate, in turn, is free to

translate in a horizontal direction relative to the body of the instrument.

The two plates are translated by means of two cams, one of which is

contained in a slot in each plate. The plate is spring-loaded so that

one edge of the slot always remains in contact with the surface of the

slot. The cam translating the first plate (the vertical motion of the film

cassette) is coupled to that of the second plate by means of shafts bearing

a 24-tooth ratchet and a 2-tooth gear, respectively. The shaft to which
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the cam moving the second plate (the horizontal motion of the film cassette)

is attached is extended towards the yoke on which the setting of j± is accomplished.

A small pin on this yoke engages a 24-tooth ratchet on the end of this

shaft so that the shaft is turned of a revolution for each precession

cycle.

By means of this arrangement the horizontal motion of the film

is advanced of its maximum displacement for each cycle of the

precession motion. When the horizontal motion has completed 12 steps,

the cam accomplishing the vertical translation advances- of its1.2
maximum displacement. The cams have been carefully machined so

that the displacements occur in equal increments. The maximum

displacement of the film is 1 mm. The integrated spot on the film

therefore consists of a collection of 12 X 12 spots. Since the normal

precession instrument precesses at a rate of one revolution per minute,

144 minutes are required for one cycle of the integrating motion. This

is the minimum exposure time which may be employed in preparing the

films. This property of the instrument should be taken into account

when the voltage and amperate settings for the experiments are decided

upon. These settings must be such that density of the strongest reflections

does not exceed the linareity range of the film in the time required to

complete one cycle. An alternative solution would be introduction of

attenuating foils, or change of the voltage or current when recording

intense reflections. This procedure, however, would require intro-

duction of an appropriate scale factor and would consequently appear

to be less desirable.

The cams which accomplish the translation of the film are

symmetric. That is, the shape of the cams is such that the filtn returns

to its original position by retracing its path, rather than by- the abrupt

jump which might be accomplished if the cams were given a discontinuity.

Therefore care must be taken that the integrating cycle is started with

both the horizontal and vertical translations at either their maximum or

minimum displacements. If a 144-minute exposure were started, for
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example, with the film at the mid-point of its cycle, a 6 X 12 array of

reflections would be obtained in which each portion of the spot had been

exposed twice instead of once.

As mentioned above, the spots on the film are displaced over

an area of 1 X 1 mm. The 11plateau" in the integrated spot will extend

between the edges of the normal spot when it is in the two extreme

positions. The size of the plateau is therefore (1 - x) mm, where x is

the diameter of the spot. It is therefore advantageous to minimize the

size of normal spot by reducing the divergence of the incident x-ray

beam, ie by employing a fine collimator. The size of the spot produced

by a crystal of dimensions suitable for measurement of intensities will

probably be of the order of . 5 mm, so that a plateau may normally be

expected over a region of at least . 5 mm. Note that it is therefore

desirable to employ a crystal of approximately spherical dimensions;

prismatic crystals are not suitable. An example of a film prepared

with the instrument is given in Fig. A3. 1. This may be compared wi th

a normal precession photograph taken with the same crystal which has

been previously given in Fig. 4. 1 Densitometer scans of typical spots

are described below.

Precession photographs taken with MoKa radiation are capable

of providing an amount of intensity data equivalent to that contained

within the CuKa sphere. The low wavelength of MoKa radiation,

however, causes the characteristic radiation to occur within the

spectral distribution of the continuous radiation. This causes pre-

cession films to display a familiar white radiation streak passing

radially through each diffraction spot. It is difficult to correct for this

effect. Introduction of a Zr filter does not solve the problem, since

this procedure merely eliminates the short wavelength end of the streak.

The result is therefore a diffraction peak which is still superimposed

on an appreciable white radiation streak, and the intensity of this streak

may now be estimated on but one side of the spot. Unfiltered radiation

was therefore used in this work. The plateau intensity was corrected
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Figure A3. 1

Example of a photograph prepared with the integrating precession

apparatus. (Pyrrhotite, pseudo-hexagonal b axis, zero level. Unfiltered

Mo radiation, 39 kV, 15 ma, 20. 25 hour exposure.) A normal precession

photograph taken with the same crystal has been previously given in

Fig. 4.1.
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for background, but no correction was made for the white radiation

streak. This approach is valid if the white radiation intensity at the
2

peak is proportional to F2. This will be the case if the short-wave

limit of the continuous radiation is adjusted so that there is no X/2

component in the continuous spectrum. If this precaution is observed,

the only problem caused by the white radiation is that the high wave-

length end of a streak through a strong reflection may interfere with

a neighboring spot. This was a rare occurrance in the films measured.

Use of unfiltered radiation provides a further advantage. The exposure

times required for the preparation of integrated films is greater than

that required for a comparable normal precession film. This occurs

because the spots on the integrated films are distributed over an area.

As a result, the exposure time must be increased by a factor of at

least five to obtain an intensity comparable to that obtained on a normal

precession film. Exposure times of up to 90 hours were required to

record the weaker intensities of pyrrhotite and chalcocite with unfiltered

radiation. These exposure times would have been prohibitively long

with filtered radiation. Finally, it should be noted that the appearance

of the white radiation streak on a normal precession film suggests

that the problem is worse than it actually is. The intensity of a spot

on a quantitative film should be limited to an optical density of about 1. 5.

At this level of exposure the spot has a "dark grey" appearance.

The "black" spots which display the familiar white radiation streaks

in precession photographs have optical densities in excess of 3, and

would nor ordinarily be encountered in quantitative work. In the

present measurements the white radiation streak was usually indistin-

guishable from variations in the overall background when the peak

intensity of the spot was below an optical density of about 0. 5.

A3. 3 Development of the Films

It is desirable that all films be developed simultaneously in

order that they receive similar treatment. No scale factor is there-



fore required (other than the exposure time, which is well known) to put

all the intensities on the same scale. The ordinary one gallon developing

tank is not large enough to permit simultaneous development of more

than four or five films. It was found that an inexpensive polyethylene

wastebasket was available with just the correct dimensions to accom-

modate a row of 5-inch films. Three of these containers were obtained

to serve as developing, rinse and fixing tanks respectively. Three

gallons of solution in these tanks provides sufficient volume for developing

the films. The tanks are about 3 feet deep. They could, perhaps, be

cut down to more convenient dimensions, but it was felt that the additional

depth provided rigidity and also protected against splashing of the

developing solutions while processing the films.

The problem of a suitable film holder was not completely solved.

A proper holder should ideally allow the developing solution to circulate

freely between the films. This requires that the holder support the

films at a minimum number of points. A special holder was constructed

of polyvinyl chloride (which does not react with the developer) which is

capable of holding 25 films of the standard 5-inch width. The films are

supported in the center of three edges by means of slots in three thin

slats which are permanently attached to rigid end pieces parallel to the

film. The first and last slots of the series are ordinarily loaded with

unexposed film so that the outermost exposed films will not receive

special treatment. After the films have been loaded in the rack, they

are secured in position by a fourth slotted slat which slides in a channel

to secure the upper and fourth edge of the films. The channel is provided

with stops so that the removable slat may be brought to rest at the height

required to secure either a 5 X 7 inch Weissenberg film or a 5 X 5 inch

precession film. The film holder fits neatly into the polyethelene tank

with just enough play to permit agitation while the films are developed.

A problem which was epcountered with a film holder of this design is

that the slots which hold the films must be extremely shallow. The

reason for this is that the diffraction record of a precession pattern
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extends almost to the edge of the film. The films must therefore fit

extremely snugly into the slots if they are not to come loose as they

buckle during agitation in the developing process. As a result it is

difficult to load films into the slots and the process is quite time

consuming. In the present work nearly thirty minutes were required

for the task, and slight fogging of the films by the dark-room safe-lights

was noted. The film used to record the intensities was Ilford "Industrial

G" x-ray film. Films were developed for 12 minutes at 59. 50 F. It

was found convenient to use a wetting agent (Kodak Photo-flo) in the

final rinse to insure uniform drying and to prevent spotting. As

mentioned in the next section, it was found that, provided a high-

quality densitometer is used, the limit placed on the accuracy of the

intensity measurements was imposed by the graininess of the films and

not the amount of background on the films. It is therefore recommended

that future users of the method employ a slow-speed, fine-grained

x-ray film and fully investigate the effect of developing procedure on

the graininess of the films before obtaining their quantitative films.

A3. 4 Measurement of Intensities

A3.4. 1 Description of Densitometer. The instrument used to

determine the density of the integrated spots was a Joyce-Loebl

Company microdensitometer. The densitometer is located in the

laboratory of Prof-essor Alexander Rich, of the M.I. T.Department of

Biology. The writer is deeply indebted to Professor Rich for his

permission to use the device for an extended period of time.

The densitometer is of the double-beam type. A regulated

source of light is used to provide a beam of light which is then split

into two portions. One beam is directed through a specimen stage

upon which the film to be measured has been placed. Both the length

and breadth of this scanning beam may be adjusted. It may be varied

from a long rectangular line, a few microns in width, to a square or

pinpoint of light. The second portion of the beam passes through a
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density-wedge standard. Its deflection on a piece of graph paper is

thus proportional to the density encountered at the specimen stage.

A spot on the film is scanned by means of a variable-speed

motor which drives a stage holding a sheet of ordinary paper. The

recording stage is coupled to the specimen stage by means of a lever

arm. This arm may be adjusted to provide ratios of specimen-travel

to chart-travel which range from 1 :2 to 40 :1. When the recording

stage has attained its maximum length of travel, the driving motor is

automatically switched off. The operator then uncouples the motor and

the specimen stage, and repositions the recording stage. A new sheet

of graph paper is placed on the recording stage, and scanning of the

film may be continued from the last position of the previous record.

Alternatively, the recording stage may be returned to its original

position without uncoupling the specimen stage. The film is then also

returned to its original position, and the same region of the film may

be rescanned.

A3. 4. 2 Intensity Scale and Linearity Range of the Film. The

plateau density representing the integrated intensity was recorded directly

by the densitometer. It therefore was not necessary to determine the

characteristics of the film in detail, or to use an intensity scale as an

aid in estimating intensities. It is still necessary, however, to prepare

an intensity scale in order to determine the linearity range of the film.

The characteristics of a film may differ for x-radiation of

different wave lengths. In Weissenberg photography an actual reflection

of the crystal may be used to prepare an intensity scale. This procedure

is difficult in precession photography since the apparatus has no provision

for oscillating the crystal. Furthermore, if a crystal of dimensions

suitable for collection of intensities is used, the density of a spot

produced by a reflection displays a sharp peak. It is more desirable

to have an intensity scale which is composed of broad spots which

display regions of uniform intensity.



The direct beam was used to prepare the intensity scale in the

present work. A lead plate which contained a 3/16 inch diameter hold

was secured in position over the hole in the 10 mm diameter layer line

screen. This protected the film from radiation scattered by air. After

a spot had been exposed, the film cassette was partially withdrawn in

its dove-tail track to expose a fresh area of film for the next spot. To

approximate MoKa radiation, the x-ray tube was set at a voltage for

which the short-wave limit was 0. 65k. The normal Zr filter and

.007 inches of Fe foil were inserted in the path of the x-ray beam.

This limited the transmitted radiation to a narrow "window" of

radiation between . 65 and about . 75 k. 1 About 90% of the transmitted

intensity occurs in the range .69 to .71 because of the discontinuity

at the Zr absorption edge.

The intensity scale was prepared for times given by
n

a22 n= 0, 1, 2,.

where a is the time required to expose a barely detectable spot

(Buerger, 1960). The thickness of the Fe foil was chosen so that a

was 15 seconds. Figure A3.2 presents plots of optical density as

determined with the densitometer, as a function of exposure time.

The same intensity scale was measured twice, using both 0 to ID and

0 to 2D wedges as standards. Figure A3. 2 shows that deviations from

linearity occur for both scans, but that the deviation occurs at a certain

fraction of full-scale deflection of the wedge and not at the same optical

density on the film. These deviations therefore represent non-linearity

of the densitometer and not non-linearity of the film. (The manufacturer

The transmission factor for this combination of filters was roughly

5 10~- at .65 JR, increased to 4 10-10 at the Zr absorption edge, and

had sharply decreased to 5 10 at .75 k The transmission factor

continues to drop rapidly to as low as 10-102 until the Fe absorption

edge is reached, when it increases to only 10~ . The transmitted

intensity therefore closely approximates the MoKa wavelength.
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Figure A3. 2

Determination of the linearity range of the film. Plot of

relative optical density as a function of exposure time for MoKa

radiation. Scans of the intensity scale were made with both 0 to 1 and

0 to 2 optical-density wedges. The deviations from linearity occur at

same percentage of full-scale deflection for both wedges. The deviation

therefore represents non-linearity of the densitometer and not non-

linearity of the film.
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cautions against this effect in the instruction booklet for the instrument.)

The film therefore was linear to densities in excess of at least 1.7.

The maximum densities encountered in the measurements were of the

order of 1.8.

Nearly three months were required to record the three-dimen-

sional data for pyrrhotite. Since all films were to be developed

simultaneously, the exposed films were stored until the exposures

were completed. It was felt that the quality of the latent image in the

emulsion might deteriorate in this length of time. To check this effect,

intensity scales were prepared both before and after the films were

prepared. No difference in the properties of these two films was noted.

A3.4. 3' Use of the densitometer. When the plateau is scanned

with the light beam, reduction of the apparent width of the plateau occurs.

The scanning beam has a finite width, and a plateau therefore appears

on the record only when the entire beam has entered the plateau region

of the spot. The apparent width of the plateau is therefore (1 . x - y) mm,

where y is the width of the scanning beam and, as above, x is the

diameter of a normal diffraction spot from the crystal. It would there-

fore be desirable to use a scanning beam of the smallest possible size

in order to maximize the extent of the plateau in the record.

This was attempted, but it was found that the densi-tometer

produced a jagged record. The variations in the trace amounted to a

change of density of as much as . 1. This caused the values of the

weak intensities (of the order of . 1 to .2 D) to be extremely inaccurate.

This variation did not represent noise in the instrument. The densito-

meter scans are scrupulously reproducible. In fact, if. the film and

recording stage are repositional, as described above, the recording

pen retraces the original line so precisely that the second trace cannot

be distinguished. (This represents a reproducibility of better than

I part in 200 for full scale deflection.)



The cause of these abrupt jumps was found to be the graininess

of the x-ray films. Since the "grey" background on the film actually

consists of opaque grains in a transparent emulsion, the density

recorded by the densitometer experiences an abrupt jump as a particu-

larly large silver grain either enters or leaves the field of the scanning

beam.

The problem was minimized by increasing the size of the

scanning beam until the plateau was just resolvable. This technique

has the disadvantage of producing a plateau of limited extent on the

record, but in return, has the effect of smoothing out the traces.

Samples of scans obtained for pyrrhotite intensities with the densito-

meter are presented in Fig. A3. 3. Figure A3. 3a presents a selected

trace which was obtained from a strong reflection with a 0 to 2D wedge.

Figure A3.3b presents a scan of a pyrrhotite superstructure reflection

"triplet" obtained with a 0 to 1 D wedge. The latter scans are fairly

typical of traces obtained for reflections of medium intensity.

Data was collected by scanning along a reciprocal lattice row.

As a sheet of graph paper was filled with the record, the film was

repositioned so that roughly 5 cm of overlap occurred with the

succeeding trace. The strict reproducibility of the trace made it

possible to piece together all the charts which had been obtained, and

thus obtain a long, continuous record of an entire reciprocal lattice row.

This procedure made it possible to make an accurate estimation of the

variation in background intensity.

Several variations in the scanning procedure were tried. Some

films were measured by scanning radially outwards, through each

individual spot so as to measure just the intensity above the white

radiation streak. This technique proved to be unsatisfactory because

of the extreme tediousness of repositioning the film for each reflection.

Also, since the integrated reflections are square, the scanning beam

entered a reflection from a different angle for each reflection and thus

distorted the profile of the reflection. Another procedure which was
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Figure A3. 3

Examples of scans of integrated precession spots produced by a

recording microdensitometer:

(a) selected scan prepared with a 0 -to-2D density wedge as

standard.

(b) Scan prepared with a 0-to-ID density wedge as standard.

These peaks are fairly typical of those obtained for peaks of medium

intensity.
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investigated was repetition of each reciprocal lattice row scan on either

side of the spot. As has been noted above, this procedure proved un-

necessary since the intensity of the streak was often less than the

variation in background. Furthermore, such a correction is unnecessary

if it is assumed that the white radiation intensity at the integrated spot is

also proportional to F

The writer feels that if a high-quality densitometer is used to

measure the films, and if steps are taken to reduce the graininess of

the films, the integrating precession technique is capable of yielding

a set of structure factors with a precision close to that provided by

a counter diffractometer. Equivalent structure factors obtained for

chalcocite had a rms deviation from the mean of about 10% even

though the films obtained from this crystal displayed high background,

graininess, and very weak reflections.
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