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ABSTRACT

By studying a unique data set from a motor vehicle manufacturer, we find that carryover parts, common
parts used in successive generations of multi-generational products, are a major source of quality
problems, contrary to conventional wisdom. Moreover, the failure rate of carryover parts grows from one
generation to the next, a phenomenon known as the carryover spike. Motivated by these results and the
need to understand the quality dynamics of multi-generational products, we empirically analyze the field
problem-solving process and the new product introduction spike. We attempt to answer the following
questions: what factors influence the time required to solve problems? Furthermore, what factors
influence the cancellation probability of problem-solving projects? In addition to these questions related
to the field problem-solving process, we seek to understand the factors that influence the new product
introduction spike. We also investigate various ways to offset the failures of carryover parts. Using a
novel simulation model, we test different policies that aim for better prioritization and analysis of
carryover problems. Simulation results show that product reliability can be improved drastically using
these policies. Our results indicate that managers should expect to witness higher warranty costs related to
carryover parts on new products, due to trends in the industry.
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Essay 1: Impacts of Carryover Parts on New Product Reliability

Abstract
Conventional wisdom suggests that carryover parts, common parts used in successive generations of
multi-generational products, have positive impacts on the reliability and durability of products because
"reliability and durability of [carryover] parts have been substantially tested in the market already" (Clark
and Fujimoto, 1991). However, this claim has never been tested empirically. In this paper, we make two
contributions to the literature. First, by studying a unique data set from a motor vehicle manufacturer, we
find that carryover parts are a major source of quality problems, contrary to conventional wisdom, as
approximately half of the warranty cost is due to carryover parts. Moreover, the failure rate of carryover
parts grows from one generation to the next. Second, we study ways to offset the failures of carryover
parts. Using a novel simulation model, we test different policies that aim for better prioritization and
analysis of carryover problems. Simulation results show that product reliability can be improved
drastically using these policies. We highlight organizational and mechanical barriers to the adoption of
these policies. Our results also indicate that managers should expect to witness higher warranty costs
related to carryover parts on new products due to the trends in the industry.

1. Introduction

Carryover parts, common parts used in successive generations of multi-generational products, are used

substantially in a variety of product types. In a study that spans five industries ranging from electro-

mechanical durables to consumer packaged goods, Griffin (1997) found that the average "newness" of

343 new product development projects was 56.6%, corresponding to an average carryover level of 43.4%.

According to Muffatto (1996), the desired carryover degree was 50% for Honda Accord's 1993 model.

Usage of carryover parts is hypothesized to have several positive effects on company and product

performance. They help companies to introduce their products to the market faster by reducing product

development cycle times (Smith and Reinertsen, 1992). Carryover parts increase product variety by

increasing research and development capacity (Robertson and Ulrich, 1998). Manufacturing and R&D

costs are reduced by spreading fixed costs over several products, and logistics costs are reduced by

reducing inventory (Collier, 1982) and delaying product differentiation (Lee, 1996).

In addition to these benefits, usage of carryover parts affects the quality and reliability of products.

Clark and Fujimoto (1991) claimed that even though carryover parts might jeopardize product design by

putting more constraints on design engineers and leading to suboptimal parts design, carryover parts have

positive impacts on the reliability and durability of products because "reliability and durability of

[carryover] parts have been substantially tested in the market already, reducing the risk of customer



dissatisfaction due to design or manufacturing defects" (Clark and Fujimoto, 1991, pp. 147). Hence, they

asserted that the usage of carryover parts is expected to improve the reliability of the product. However,

despite the substantial body of literature on other effects of parts commonality, this claim has never been

tested empirically and is thus the focus of this paper.

Conventional wisdom suggests that carryover parts have positive impacts on the reliability of products

because they provide the opportunity to identify and solve problems associated with them before the

introduction of the next generation products. Carryover problems are identified by using field failure

information of the current-generation product. This information comes from customers and dealers in the

form of warranty claims, surveys, and the like. If a problem identified in the current-generation product is

associated with carryover parts, solving this problem will benefit next-generation products, too. Hence,

solving carryover problems before the introduction of the next generation will have a major positive

impact on next-generation products.

However, field problem solving is not the only process that improves the reliability of next-generation

products. The new product development problem solving process also improves the reliability of next-

generation products, and these two processes are undertaken simultaneously until the production of the

next generation begins. Yet, despite the positive impact of field problem solving on new products'

reliability, the problem solving literature on new products mostly focuses on the new product

development problem solving process (Brown and Eisenhardt, 1995). The literature is silent about the role

of field problem solving on new products' reliability.

Due to differences between the field problem solving process and the new product development

problem solving process, they both require investigation but field problem solving, as previously stated,

has mostly been neglected in the literature. The main differences between the processes are the

information sources and the problem solving costs. Field failure information comes from several

machines used by customers in the real product operating environment. On the other hand, the new

product development problem solving process uses data from a handful of test machines usually tested in

a lab environment. Therefore, field failure information is more representative and provides a better



estimate of the significance of problems. However, a problem identified in the upfront stages of a new

product development project yields great benefits if solved early because it will be much easier and

cheaper to fix at this point (Thomke, 2003). These differences increase the need for a better understanding

of the field problem solving process and carryover problems, which have not received sufficient attention

in the literature.

This paper contributes to the literature on product development by empirically investigating the impact

of carryover parts on product reliability. We find that carryover parts are a major source of quality

problems, contrary to conventional wisdom. Moreover, the failure rate of carryover parts grows from one

generation to the next. Second, we reveal the importance of field problem solving in improving the

reliability of new products, and highlight organizational and mechanical challenges related to the field

problem solving process. Third, we study ways to offset the failures of carryover parts. Using a novel

simulation that models each problem and failure as a separate agent, we test different policies that aim for

better prioritization and analysis of carryover problems. Simulation results show that product reliability

can be improved drastically using our policies. Finally, we show that due to shrinking product

development lead times managers should expect to witness a higher influence of carryover parts on new

product reliability.

The following sections will present the empirical analysis of the field problem solving process and the

impact of carryover parts on product reliability, describe the simulation model, and test different policies

for managing the process of improving the reliability of carryover parts.

2. Empirical Analysis

2.1 Reliability Dynamics of Multi-Generation Products

In general, product reliability follows these dynamics: field problem solving teams improve the reliability

of a product as field failure information accumulates. Then, reliability usually worsens when the next-

generation product is introduced, as changes to the product and the production process are made. Figure 1

shows reliability data from successive generations of a representative product in our sample. The y-axis

represents defects per machine, a measure of unreliability, with respect to production time. A machine is a



single unit produced by the factory. A defect is a part or group of parts in a single machine that will

eventually result in a failure, but hasn't resulted in a failure yet. A defect results in a failure after the

machine is used by the customer for some time. Conversely, a problem is a flaw in the manufacturing

process or design of a group of parts that leads to failures on multiple machines. Defects per machine data

in Figure 1 is the ratio of total defects in mature' machines produced in a given production month to the

number of mature machines produced that month. Our novel dataset includes the total operating hours of

each machine to date, production date of each machine, and records of all failures on those machines

including failure date. This data allows us to construct Figure 1 by identifying mature machines, failures

on mature machines and their production date. Figure 1 shows a gradual improvement in the reliability of

the first-generation product. The second-generation product starts with worse reliability compared to the

final production months of the first-generation product. This phenomenon is quite typical and is known as

the "new product introduction spike." After the introduction of the second-generation product, the field

problem solving process improves the reliability of the second-generation product.

1Machines that are past 10,000 hours of operation are called mature machines. More than 80% of reported failures
occur before 10,000 hours of operation. After 10,000 hours failures are seldom reported. Hence, data is sparse. In
Figure 1, only mature machines are represented, as recently produced machines would have less than 10,000 hours
of operation and, therefore, would have fewer reported failures. This would bias defects per machine results
downward for recent months.



Production start or

.E next generation

cE ,

00 :4 I

"0 . Ii .
# I# I

I

Production Time (Months)

Figure 1: Defects per machine versus production date of products

Field failure information is useful for improving the reliability of both the current-generation product

and the next-generation product. Field problem solving improves next-generation reliability by

eliminating problems that will be carried over to the next generation. However, field failure information

lags behind the production date of defective products. When a machine that will have a failure is

produced, engineers are not aware of the situation. The defect is introduced during production, but the

failure will not occur until the machine is being used. Engineers learn about the defect only after the

machine fails while in use by the customer. Engineers use field failure information to start problem

solving projects for problems that are worth being solved. Time delays between the production of a

defective product and the failure date can be seen by comparing Figures 1 and 2. Figure 1 shows defects

per machine vs. production date, whereas Figure 2 shows failures caused by the defects shown in Figure

1.
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Figure 2: Failures reported to quality and reliability teams versus time

The first delay involved in the process is the sales and shipping delay. Once the machine has been

shipped, the customer begins using the machine, and the defect results in failure while the product is

being used by the customer. Failure information reaches quality and reliability teams after a reporting

delay. Once quality and reliability teams learn about these failures, failure information is analyzed, and

problems are identified. Identified problems are investigated to determine whether or not they are worth

solving. Problems that are worth solving wait in a queue until engineers are assigned to them, and then

they get solved. Most of the time, a solution to the problem will be implemented on machines that will be

produced after the solution to the problem is found. Machines produced before the solution to the problem

is found are recalled and fixed very rarely and only for very serious problems, since this is a very

expensive option.
expensive option.
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2.2 Data Analysis

The field problem solving process, new product introductions, and time delays involved in these

processes are some of the factors that determine the impact of carryover problems on the reliability of

new products. Therefore, we analyzed these three factors. First, we tried to answer the question, "What

percent of a new product's warranty is due to carryover parts?" This metric shows us the impact of

carryover parts on new product reliability. Conventional wisdom does not expect major reliability issues

associated with carryover parts, since they have already been tested in the market and should have been

fixed. We also analyzed the time delays in learning about field problems and fixing them. Another

question we attempted to answer was, "Do carryover parts contribute to the new product introduction

spike?" According to engineers and managers within our case site, the new product introduction spike

was only associated with new parts because the design of carryover parts does not change from generation

to generation, and there is no obvious reason for their reliability to deteriorate as production of next-

generation products begins.

The data we used to answer these questions were collected over a period of three years at a major motor

vehicle manufacturer. The manufacturer is a multi-billion dollar company that manufactures a wide range

of products at several facilities around the world.2 Thousands of engineers work on product development

projects and solving product problems. They complete dozens of new product development projects every

year. Throughout the production life cycle of an average product, thousands of machines are produced.

An average product is comprised of tens of thousands of parts. We collected both qualitative and

quantitative data from the organization. The qualitative data includes 68 formal, semi-structured

interviews with 58 employees ranging from junior engineers to the VP of R&D. We recorded and

transcribed all of these formal interviews. Even though we had a generic topic and a list of interview

questions, these questions were open-ended, and we changed the focus if the interviewee raised an

interesting point. In addition to these formal interviews, we conducted dozens of informal interviews that

were not recorded. We also created a unique data set encompassing the following information from 125

2To preserve the confidentiality of the company, exact figures are not presented.



products: data on the machine population, parts on machines, new product introductions and the field

problem solving process. Machine population data includes production, sales and shipping dates of

machines, operating hours per day for each machine, and data on all failures on each machine such as

failure date and warranty cost. Parts data include all failures reported on each part and whether the part is

carried over or not. Databases have data on field problem solving projects such as important dates and

failures related to problems. We also have access to new product introduction data.

2.3 Impact of Carryover Problems on Next-Generation Reliability

We analyzed data from 125 new product introductions to understand the impact of carryover parts on

next-generation product reliability. The results in Table 1 below show that about half of the company's

warranty costs and failures are due to carryover parts; on average, carryover parts lead to 43% of failures

and 47% of the warranty costs. These numbers translate to substantial costs for motor vehicle

manufacturers; in 2006, on average, warranty costs of U.S.-based automotive manufacturers comprised

1.68% of their revenues (Warranty Week, 2007). The fact that carryover parts lead to about half of all

failures and half of all warranty costs is a counterintuitive result and indicates that carryover parts are a

major source of reliability problems. This was contrary to conventional wisdom and the mental models of

our research partner. Even though carryover problems were identified in several machines sold to

customers, and even though each generation of products are in production for years, leaving engineers

plenty of time to fix these problems, they still have a substantial impact on unreliability. Understanding

this puzzle is necessary to improve our knowledge of new product development and reliability.

Failures on Carryover Parts/All Failures

N Mean St. Dev.

125 0.43 0.16
Table 1: Summary statistics of the fraction of failures due to carryover parts.

2.4 Time Delays for Identifying and Solving Field Problems

Since carryover problems are identified by field failure information, we analyzed field failure information

to understand why approximately half of the warranty costs were due to carryover parts. As previously



mentioned, time delays occur before quality and reliability teams solve field problems. Time delays

include the time between the start of production and the production of defective products, sales and

shipping delays, reporting delays, and problem analysis and problem solving delays. As reported failures

of a problem accumulate, engineers create a problem solving project. When a team becomes available to

work on the problem, the project becomes activated and is closed when the problem is solved. See Figure

3 below for a breakdown of the delays. These delays reduce the benefits of problem solving. To

understand the impact of time delays on carryover problems, time delays should be assessed relative to

the time between two generations because problems that are not solved before the introduction of the next

generation product will be carried over. The time between two generations is the number of months from

the introduction of one generation to the introduction of the next generation.



Figure 3: Breakdown of the time delays in problem identification and solution.

We analyzed data from 42 products and 2,024 problems to compare these time delays to the time

elapsed between the two generations. The results show that, on average, these delays are very long

compared to the time between two generations, and field problems are solved very close to the end of

18
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production (Figure 4). The median problem is solved after 91% of the time between two generations,

which means that solving the median problem will benefit only 9% of the production life cycle. Given a

constant production schedule, this would mean that the solution to the problem would only help 9% of the

current generation's products. Figure 5 shows the distribution of these time delays. Sixty-four percent of

problems are solved before the end of production for the current generation, meaning that 36% of

problems remain unsolved during the production life cycle of the current generation. Problems that are

solved before design freeze, which is the target date for stopping any changes to design during new

product development project, comprise 41% of solved problems.

0% 53% 64% 91% 100%
I I I II

Start of Median Median Median End of
production problem problem problem production

solving solving solving
project project project
creation activation closed

Figure 4: Median field problem solving project creation, activation, and close times relative to the time

between start and end of production for product generations



Y-axis: Percent of closed problem solving projects

100%
- ---- Start/

- - - - -Activate ,,64% closed
Close before end of

S/ production

41% closed
." , before design

0. - freeze

0% - '

0% 50% 100% 150% 200%

X-axis: Percent of time between production start and end

Figure 5: Distribution of time to start, activate, and close field problem solving projects relative to the

time between start and end of production for product generations

According to these results, problems get carried over to the next generation because of the time delays

involved in the system. This increases the need to understand the delays involved in solving a problem.

To this end, we analyzed the length of different steps in the process. The results show that the time to

learn about the problems is a major time delay. Once engineers learn about the problems, they are able to

solve them in a relatively short period of time. Figure 6 shows that the average time it takes to learn about

problems, which is the time between the build date of the first defective product and the third failure

reported to the company, is approximately 2 years. The average time between the third failure reported

and the problem being closed is 9 months. This time frame was recently reduced from 2 years to 9 months

as a result of process improvement efforts and continuously improves. Prior to process improvement, the

average time that elapsed between the first defective product build date and the problem being closed was

4 years, and was on the order of the time between two generations. Currently, field problems are solved

very late because of the "mechanics" of the system - not because field problem solving teams are slow.

~~~ ;;;;;;;;~



Since field problems are identified and solved very late, field problem solving has a small impact on the

current generation's reliability, and problems get carried over to the next generation.

S2 Years I 9 Months-*

1St 
3 rd Failure Close

Defective Reported to Problem
Product Engineers Cannot Do Company Solving
Built Anything Project

Figure 6: Time from first defective product build date to problem solving project close date

These findings show that long time delays in learning about and solving field problems increase the

number of problems that get carried over to the next generation. As previously mentioned, the median

problem is solved after 91% of production is already complete and, thus, has little benefit to the current

generation product. However, if a carryover problem is solved when 91% of production is already

complete, it will benefit not only the remaining 9% of the current generation's production but also the

entire (100%) production life cycle of the next generation, making a much greater impact. In this case,

solving the carryover problem will yield 12.11 (=109/9) times more benefit than solving a non-carryover

problem, assuming a constant production schedule and equal production life cycles for successive

generations. This finding shows the need for more emphasis on solving carryover problems. The

following section will analyze the impact of carryover parts on new product introduction spike.

2.5 Analysis of the New Product Introduction Spike

We tested the hypothesis that carryover parts do not contribute to the new product introduction spike. The

new product introduction spike is defined as the ratio of defects per machine in the next-generation

products produced in the first 12 months after their introduction to defects per machine in the previous

generation of products produced in the last 12 months of their production. Only mature machines are used

for computing the new product introduction spike. The new product introduction spike metric is used by

the firm to assess the success of new product introductions in terms of reliability.



The hypothesis that carryover parts do not contribute to new product introduction spikes implies two

things: first, that carryover parts have the same defects per machine in successive generations, and

second, that when a new generation is introduced, it is only the new parts that are responsible for the

deterioration of reliability. To test this hypothesis, we computed the spike for carryover parts only.

The mean value for the carryover spike was 1.51, and the median was 1.32, meaning that the carryover

parts fail more often in the next generation (Table 2). Statistical tests strongly reject the hypothesis that

there is no carryover spike:

HO: Carryover spike = 1

H1: Carryover spike # 1

The p-value for the t-test is less than 0.0001. Therefore, we conclude that carryover parts, which have

the same design across successive generations, contribute to new product introduction spikes by having a

higher failure frequency in next-generation machines. We also analyzed the spike for new parts by

comparing their reliability to the reliability of the parts that they replace. The mean value for the new

parts' spike was 1.27, and the median was 1.19. These results show that the mean and median values of

the carryover parts' spike are significantly higher than the mean and median values of the new parts'

spike (two-tailed paired t-test p-value = 0.0003, Wilcoxon signed-rank test p-value=0.0006). This is a

very counterintuitive finding because it shows that carryover parts not only start failing more from one

generation to the next but also that their reliability deterioration is worse than that of new parts. The

reasons for this finding are being investigated, but preliminary analysis identified the following two

reasons:

1. System integration issues: The parts' design is the same, but next-generation machines are more

powerful and demanding, so the failure rate of the carryover parts increases.

2. Procurement or manufacturing process issues: The parts' design is the same, but changes in

procurement or manufacturing processes increase the failure rate.



Overall New Carryover Parts' New Parts'
Product Introduction Spike Spike

Spike
N 125 125 125

Average 1.32 1.51 1.27
Median 1.25 1.32 1.19

Table 2: New product introduction spike summary statistics for all parts of products as well as the

carryover parts and the new parts.

The findings presented in this section show that carryover problems have a drastic influence on new

product reliability due to the time delays involved in identifying and solving them. Moreover, the failure

rate of carryover parts grows from one generation to the next. Therefore, policies to prioritize carryover

problems and to discover them earlier in the process may significantly improve the reliability of products.

Later in the paper, we will present and test three policies that aim at better prioritization and analysis of

carryover problems.

3. Qualitative Data Analysis

In addition to the time delays, a second reason for the substantial impact of carryover problems on new

product reliability was the lack of communication between problem solving teams. Our research partner

had separate teams responsible for solving field problems and for solving problems discovered during

new product development projects. These two systems were merged after this study was conducted.

Carryover problems were the joint responsibility of these teams because field failure data was reported to

field problem fixing teams, but fixing carryover problems ideally required a consideration of the next-

generation product's design, too. Otherwise, the solution implemented might not be compatible with new

parts designed for the next generation. However, our interviews indicated that there was no well-defined,

standard procedure to address carryover problems. When asked about carryover problems, managers

responsible for field problem fixing processes defined carryover problems as "problems not fixed by new

product introduction teams." On the other hand, managers responsible for new product introduction

processes defined carryover problems as "problems not fixed by field problem solving teams." One

engineer that had assignments in both the field problem solving domain and the new product introduction

domain said, "The 'as is [carryover] process' is fairly weak in my mind...There's really no documented



process in terms of how people address carryover [problems]." Therefore, a lack of coordination among

these teams was another factor that contributed to the impact of carryover parts on product reliability.

Lack of coordination was present despite very strong incentives established by senior management to

improve products' reliability. Short-term incentives tied a portion of employees' benefits to products'

reliability. Moreover, all business units were asked to improve reliability in the long run following a glide

path. In the following section, we present a simulation model to analyze the impact of carryover-related

problem solving policies on failures.

4. Model Structure

Empirical analysis shows that carryover problems are a major source of failures and warranty costs.

Furthermore, we show that the process of identifying and solving carryover problems involves significant

time delays. As a result, it is very important to effectively manage the process of problem identification

and resolution. In this section, we present a simulation model in order to quantify and analyze the impact

of different problem solving policies on failures.

Our simulation model captures the process of identifying and fixing field problems. It is different than

traditional models of problem identification and resolution in the sense that it is agent-based and each

problem, defect, and failure is modeled as a separate agent. Traditional models formulate these variables

at an aggregate level (Ford and Sterman, 1998; Repenning, 2001) and do not capture the heterogeneity of

problems; some problems lead to a much greater number of failures than others. The disaggregated

structure of our simulation model allows us to capture differences between problems in several

dimensions, such as differences in expected failures, remaining production schedule, whether or not the

problem is going to be carried over, etc. Capturing those differences is important in testing different

policies regarding prioritization of problems and analysis of failure data. Another distinct feature of the

model is that it keeps track of all failures for each problem and uses this failure information to estimate

the number of expected failures that will be generated by each problem if it is not solved. Engineers are

only aware of failures that are reported to them and do not know how many of the machines already

produced will eventually fail. In some policies they use Weibull analysis to estimate the fraction of



produced machines that will fail in relation to a specific problem. This analysis gives them an estimate of

the economic value of solving each problem. Specifically, they fit Weibull distribution to operating hours

until failure date and use Weibull analysis results to estimate the percentage of machines that will fail.

Weibull analysis is a method widely used by reliability engineers for this purpose. We also run Weibull

analysis within the model periodically for each problem. Figure 7 shows an overview of the simulation

model.

Engineers
-Prioritize Problems
-Estimate Weibull
Parameters

Failure
Information

New Product
Introduction

Failure
I New Problems

Vehicle
Population

Figure 7: Overview of the simulation model

4.1. Field Problem Identification and Solving

In the model, problems generate defects in some products as they are built, until the problem is solved or

the product goes out of production. These defects, and hence the problems, are unknown to engineers

until they fail. Once the problem has a certain number of failures, it is investigated. Problems that are

considered worth solving are then solved by engineers. The following subsections describe related model

structures in detail.



4.2 Defect Creation and Failures

Each problem has different characteristics in terms of the fraction of produced machines that will fail and

their operating hours until failure. In the reliability engineering literature, Weibull distributions are used

extensively to represent the distribution of operating hours until failure. Since the expected fraction of

machines that will fail is equal to the probability of a failure happening within the maturity period, this

distribution also models the fraction of machines that will fail. The probability density function of the

Weibull distribution is as follows:

Probability density function:

f(x;k,A) = e A)k

for x > 0 and f(x; k, X) = 0 for x 5 0, where k > 0 is the slope parameter and X > 0 is the characteristic

value.

Figure 8 shows a Weibull analysis plot of failures within the maturity period of the product, which

occurs at 10,000 hours of operation. This plot is used to estimate the fraction of machines that are

expected to have a failure before 10,000 hours of operation. According to the plot, 10.95% of the

machines are expected to fail.

20.00

110 100 1.000 10,000

Hours of Operation
Figure 8: Weibull analysis plot of failures for a sample problem

We use maximum likelihood estimation and ranked regression methods to estimate the parameters of

the Weibull distribution. If all machines have failures associated with a problem, an estimation is made
the Weibull distribution. If all machines have failures associated with a problem, an estimation is made

........ .... .............. . ............. ..................



using failure data for all vehicles and the operating hours until failure for each machine. However, in

many cases, a failure is not observed. In those cases, information indicating that the machine has been in

use to date and has not failed is useful information. In reliability engineering terminology, these cases are

called suspensions. The maximum likelihood estimation exploits both failure and suspension information

to estimate the distribution of operating hours to failure.

The likelihood function for cases that include suspensions is as follows:

n 

[L= ff(xj k,A)j 1 -F(y,;k,A)]
i=1 j=1

where n is the number of failures, xi is the operating hours to failure of ith failure, p is the number of

suspended data points, yj is the operating hours to date of the jth suspension, and F(yj;k,k) is the

cumulative distribution function.

Using empirical data from all problems related to a representative product of our research partner, we

estimated the Weibull parameters of these problems. Then, we used the parameter estimates in the

simulation model to introduce defects to some machines probabilistically according to the following

algorithm: for each produced machine in a given month, we drew a random number for each problem

from its estimated Weibull distribution of operating hours to failure. If operating hours to failure drawn

for a machine-problem pair is within the maturity period of the product, then we created a defect on that

machine associated with that problem. The defect would fail when the machine reached the operating

hours to failure. The algorithm for the defect creation process in a given month can be summarized as

follows:

For i=1 To "Vehicles produced this month"

For j= 1 To "Number of Problems"

Operating hours to Failure(i,j)= Random number from Weibull(Slope(j),Characteristic Value(j))

If

Operating hours to Failure (i,j)<Maturity period of product

Then



Create a defect that will fail after "Operating hours to Failure(i,j)"

Else

Do nothing

Calendar months to failure for a defect is as follows:

Hours to Failure
Sales Delay+ + Reporting Delay

Operating Hours per Month of the Vehicle

There is substantial heterogeneity in terms of the daily operating hours of vehicles used by customers.

This heterogeneity is important because it influences the calendar time during which the vehicle will be

within its maturity period. There is also considerable heterogeneity in sales delays. Both daily operating

hours and sales delays are modeled as random variables that follow the Weibull distribution and are

estimated using real daily operating hours data and sales data for products with maximum likelihood

estimation.

We ran behavior tests for the Weibull assumption. These tests were conducted by running the model

1,000 times using estimated Weibull parameter values for each problem. No attempt was made to

minimize the discrepancy between model output and actual data. Figure 9 shows actual failure data for

three generations of a product and maximum and minimum values of the 1,000 simulation runs. Average

R 2 values were 0.92, 0.88, and 0.88, respectively, for time series fit of the three generations. We also

regressed simulated failures of problems in each run on actual failures of those problems. Figure 10

shows results of one simulation run out of 1,000 runs. Average R2 values were 0.98, 0.99, and 0.97,

respectively, for three generations. A high level of fit between data and model output and the fact that

most data points lie within the envelope of minimum and maximum simulated values increases our

confidence in the Weibull assumption.



Figure 9: Model calibration results for three successive generations of a product. Thick lines

represent actual data and thin lines are the max and min values of the 1,000 simulations run with

estimated Weibull parameters.

Actual Failures of Problems

Figure 10: Simulated failures of all problems of generation 1 using estimated Weibull parameters

versus actual failures of problems and the best fitting linear model. Data from one simulation run out of

1,000.



4.3 Problem Solving Process

Our research partner follows a systematic process for problem solving. In the model, problems go through

the same process as well. It is a queuing system in which problems enter the queue as they lead to failures

and are then solved by engineers. A problem is unknown to quality and reliability teams until the first

failure, after which it becomes a known problem. After the third failure, it becomes an issue that needs to

be investigated. An investigation is conducted to determine if the problem is a "real" problem worth

solving. Some investigated issues are canceled because they are deemed not to be real problems or are

deemed unworthy of solving. Our research partner initiates a formal project to solve problems that are not

canceled. These projects then enter the queue to be worked on and become pending projects. If there is an

available problem solving team, a pending project will begin immediately. Otherwise, the project waits in

the queue until a problem solving team finishes a project already underway and chooses to work on the

queued project. Which problem should be worked on when there is an available team to do so is an

important policy issue, and it will be addressed later. Problems chosen from the pending list become

active projects. At this point, resources are formally assigned to those projects. Active projects that are

not canceled and get solved become "solved problems." Solved problems are useful in improving the

reliability of machines that will be produced after the solution is implemented. The following state chart

in Figure 3 shows the different states a problem will pass through within the process described above.

4.4 New Problem Introduction and Problems Getting Carried Over

A new generation's problems consist of both new problems due to new design and problems carried over

from the previous generation. The number of problems carried over depends on the percentage of new

parts in the next generation. If there were no new parts, all problems would be carried over. If all parts

were new, all problems would be new problems. We assumed a linear relationship between the fraction of

new parts and new problems introduced; thus, the number of new problems introduced increases linearly

as the fraction of new parts increases. The fractions of carryover parts and new parts add up to 1, so as the

fraction of new parts increases, the fraction of carryover parts decreases. We assumed that the probability

of a problem being carried over to the next generation if it was not solved was equal to the fraction of



carryover parts. If the fraction of carryover parts is 0, no parts are carried over, and the probability of a

problem being carried over to the next generation is 0. On the other hand, if the fraction of carryover parts

is 1, all problems are going to be carried over; hence, the probability of a problem being carried over is 1.

Engineers do not know if a part, and hence any problem associated with it, will be carried over to the next

generation until the bill of materials is released. In the model, some problems are identified as carryover

problems with the probability of being carried over equal to the fraction of carryover parts. The earliest

time at which engineers can learn whether or not a problem is a carryover problem is the release date of

the bill of materials for the next generation. The following equations illustrate the relationships described

above:

New Problems = Fraction of New Parts * Problems of a Completely New Product

P(problem(i) will be carried over to the next generation) = Fraction of Carryover Parts = 1 - Fraction

of New Parts

The empirical results shown earlier demonstrate that carryover problems result in more failures in next-

generation products; this phenomenon is called the carryover spike. We modified the defect creation

algorithm to capture this finding. The number of random variables drawn from the Weibull distribution

for defect creation was increased to machines produced * carryover spike for carryover problems, but the

algorithm ensures that the number of failures does not exceed the number of machines produced:

For n = machines produced this month * carryover spike

If

Operating hours to failure drawn from the Weibull distribution of the problem < Maturity period of

product

Then

Create a defect that will fail after the operating hours to failure drawn from the Weibull Distribution

Created Defects = Created Defects+ 1

If(Created Defects) = machines produced this month

Break



Else

Do nothing

Data analysis shows that most of the time the carryover spike is due to manufacturing and assembly

related issues and these problems get solved by plant employees outside of the scope of field problem

solving. On average, the carryover spike's impact vanishes in three years. Therefore, we reduce the

impact of carryover spike linearly over time and reduce its impact to zero in three years.

4.5 Problem Prioritization

Engineers in our research site use several tools to prioritize problems including objective metrics such as

the number of failures, Weibull analysis results, sophisticated algorithms, and subjective metrics such as

the expected difficulty of solving problems and political issues within the organization. Therefore, the

decision to choose which problems to work on is a complex one. We analyzed these decisions in essay 2

by using survival analysis to understand the factors that influence the time between issue creation and

project activation. Survival analysis also yields hazard rates as a function of time and characteristics of

problems. Hazard rate is the probability that the project is activated at time t given that it was not

activated until time t. We use results from essay 2 to compute the hazard rate of problems and rank them

accordingly. The problem with the highest rank gets activated.

5. Parameter Estimation and Model Validation

Parameters are estimated for a product from our research partner's product portfolio that is representative

in terms of its reliability and production volume. Managers in our research site chose this product as a

representative one. All parameters used in the model were estimated using the dataset we created. The

parameters used in the model are as follows:

* Number of problem solving teams

* Hours to failure distribution estimated for each problem

* Operating hours per month distribution for machines, estimated for the machine population

* Sales delay distribution, estimated for the machine population



* Reporting delays, estimated using process data

* Investigation delays

* Time to solve problems: distribution estimated for problems

* Production volume

* Maturity period of product

* Time between two generations

* Fraction of new parts in new products

Both behavior tests and structural tests such as extreme condition tests were conducted to test the model's

validity (Sterman, 2000).

6. Policy Analysis

As noted earlier, the time delays in the process of fixing field problems are quite significant. Therefore, it

is very important to leverage all information about problems as much as possible. In this section, we

present the results of three different policies aiming at better usage of carryover information. The first

policy gives more priority to problems that will be carried over to the next generation. The second policy

focuses on problems that are carried over from the previous generation. It uses failure information from

the previous generation machines to estimate the importance of problems carried over to this generation

as early as possible. The third policy considers solving problems that will be carried over to the next

generation only for next-generation products, without solving them for the current generation. This policy

will reduce the time it takes to solve these problems, as engineers will have more flexibility in fixing

next-generation problems and will not spend time implementing changes in the current generation.

Currently, these policies are not implemented by our research partner. We will first explain the three

policies and then present the simulation results. Note that all of these policies are tested with the same

number of engineers in the model.



6.1 Policy 1: Increasing the Priority of Problems that Will Be Carried over to the Next Generation

The model finds expected defects for all known problems, ranks problems according to expected defects,

and begins to solve the highest-ranked problem as soon as a problem solving team becomes available.

Expected defects are estimated using the following equations:

Expected Defects = Expected Defects Introduced per Month * Period in which Fixing the Problem

will Have an Impact

Expected Defects Introduced per Month = Expected Fraction of Machines that Will Fail * Average

Production Rate

Expected Fraction of Machines that will Fail =

Prob(HourstoFailure<EconomicLifeofMachineslWeibullParametersEstimated)

Expected fraction of machines that will fail is computed using Weibull parameters estimated by ranked

regression. See essay 3 for details of the estimation method. Period in which Fixing the Problem Will

Have an Impact is different for carryover problems and non-carryover problems. Carryover problems will

be in production until the end of the current generation's production life cycle and the entire production

life cycle of the next generation. On the other hand, non-carryover problems will be in production until

the end of the current generation's production life cycle. Hence, there is considerable difference between

the period during which carryover and non-carryover problems will be in production. All else being

equal, the number of expected failures is higher for carryover problems, since they will impact the entire

production life cycle of the next generation as well as the remaining production life cycle of the current

generation.

Carryover problems will have the following equation under Policy 1:

Period in which Fixing the Problem Will Have an Impact = (Remaining Production Time for this

Generation + Time between Generations - Median Time to Fix Problems)

For non-carryover problems, the "period in which fixing the problem will have an impact" is:

Period in which Fixing the Problem Will Have an Impact = (Remaining Production Time for this

Generation - Median Time to Fix Problems)



Engineers learn which parts will be carried over to the next generation only after the release of the bill of

materials for the next generation. Hence, carryover and non-carryover problems have the same period in

which fixing the problem will have an impact before the release of the bill of materials. Note that even

though carryover problems have a longer "period in which fixing the problem will have an impact" under

Policy 1, some non-carryover problems will have higher priority than some carryover problems if their

number of expected defects introduced per month is large enough.

6.2 Policy 2: Using Previous Generation's Failure Data to Predict the Importance of Problems

Carried over from the Previous Generation

Usually, a new generation product contains carryover parts with problems that were not solved before the

introduction of the new generation. It is also possible that failures occur on carryover parts after the

introduction of the new generation. Typically, these are the problems resulting in failures after very long

time delays. Policy 2 aims to use failure information from the previous generation machines to estimate

what might be coming for the current generation. Since these problems cause failures after a very long

time delay, it will be too late if engineers wait until failures are seen in the new generation. This policy

aims to solve these problems as soon as possible, even if they have not yet caused failures in the current

generation.

If this policy is implemented in the model, when a problem is carried over to the next generation, we

keep track of all failures that occur in the previous generation and combine them with failures of the

current generation to run the Weibull analysis. The Weibull analysis results are then used to rank

problems. If this policy is not implemented in the model, a new problem is created for each carryover

problem when the product transitions from one generation to the next. The new problem has the same

Weibull parameters, but the engineers are not aware of the association between the carryover problem in

the new generation and the one in the old generation. Therefore, they do not use failure data from the old

generation while running the Weibull analysis for a problem in the new generation.

Empirical analysis shows that this policy immensely increases the amount of available information.

Figure 11 shows failure data for identical parts in two successive generations. The blue curve shows the



information available from the previous generation. The pink curve shows the information available from

the new generation. The red curve is the combined failure information from the two. The combined

information is much richer and provides much more abundant data compared to second-generation

information only.

Cumulative Failures

Cumulative failures
of both generations

Cumulative failures of
previous generation

Cumulative failures of
next generation

0
Time (month)

Figure 11: Cumulative failures of two successive generations of a product. The blue curve represents the

previous generation and the pink represents the next generation. The red represents the total failures of the

two generations.

Not considering the previous generation's information regarding carryover parts corresponds to using

only the failure data indicated by the pink curve to estimate the Weibull parameters of problems. On the

other hand, using information from both the previous generation and the new generation corresponds to

using the failure data shown by the red curve. Figure 11 shows that the difference in information

availability is dramatic.

6.3 Policy 3: Solving Carryover Problems for Only Next Generation

In this policy, engineers are given the option to design and implement the fix for a problem for the next

generation only and not for the current generation. The obvious disadvantage of this policy is that it will

... .............................................................. ... .......................



not improve the reliability of the current generation. The advantage of this policy stems from decreased

effort in designing and implementing the fix. Since the fix does not need to take into account the design of

the current generation, engineers will have a greater degree of freedom in designing the fix. A change in

the current generation requires designing the fix so that it functions well with the interacting parts of the

current generation, which is challenging, since the current generation is already in production. It might

even lead to a redesign of the interacting parts of the current generation or changes in manufacturing

processes.

Designing the fix only for the next generation will be easier, especially if the next generation's design is

not complete, since engineers will have fewer constraints. Based on interviews with expert reliability

engineers, we assumed that the policy of fixing carryover problems only for the next generation would

lead to a 25% reduction in the time it takes to solve problems. The experts stated that 50% of the time is

spent on problem identification and root cause analysis, and that would be the same in both cases.

However, they estimated a 50% reduction in the actual problem solving activity, resulting in a 25%

reduction in the time required to solve the problem. In the model, this policy is implemented by ranking

problems according to the number of expected defects per "effort for solving the problems." We find the

expected number of defects for problems and then divide that number by the average time to solve

problems. If this policy is implemented, the average time to solve carryover problems would be 75% of

the average time to solve non-carryover problems.

7. Simulation Results

We ran scenarios that tested these policies one by one, as well as their combinations. The base scenario,

which represents the practice of our research partner, is obtained from the survival analysis results of

essay 2. In the base case, carryover problems were not prioritized, failure information from the previous-

generation products was not used, and carryover problems were solved for both the current generation and

the next generation. The time between generations was assumed to be 50 months, in line with the data,

and we ran the simulation for 250 months. Since the simulation model has probabilistic formulations, 100



simulations were run for each scenario and averages were compared. Table 3 summarizes the average

values of total defects created in different scenarios.

Simulation results of all scenarios are presented in Table 3. Using carryover information for

prioritization reduces the number of defects by 12%. When combined with the option to solve problems

for the next generation only, total reduction in defects increases to 17%. Interestingly, using carryover

information from the previous generation increases the number of defects by 5%. However, when this

policy is combined with the policies of using carryover information for prioritization and having the

option to solve problems for the next generation only, the combined benefit of the three policies is a 25%

reduction in defects, showing that there are synergies. This is a drastic improvement in quality obtained

without increasing resources. These improvements translate into a drastic increase in profitability

because, in many motor vehicle companies, warranty costs are on the order of hundreds of millions or

billions of dollars (Warranty Week, 2007).

Use Have the Use Carry
Carryover Option to Over Total

Information Solve for Next Information Defects in
For Generation From Previous 250

Prioritization Only Generation Months

No No No 100%

Yes No No 88%

No No Yes 105%
Yes Yes No 83%
Yes No Yes 78%
Yes Yes Yes 75%

Table 3: Results of the policies tested with the simulation model. All policies are significantly different

than the base case scenario, with significance levels less than 10-4 .

8. Impact of Industry Trends on Carryover Parts' Reliability

In several industries, including our research partner's industry, product development lead times are

getting shorter (Smith and Reinertsen, 1998) due to the adoption of different organizational structures,

project management tools, and design and testing technologies. This leads to more frequent product

introductions and less time between two generations of a multi-generation product. In this section, we



attempt to quantify the impact of this trend on carryover defects. Less time between two generations of a

multi-generation product could have two potential impacts on carryover problems. First, fewer problems

will be identified before the next generation is introduced due to the time delays in learning about these

problems. Second, engineers are going to have less time to fix carryover problems.

The simulation results presented in the previous section assume that the time between two generations

is 50 months. Our research partner reduced the time between generations considerably over time. We

tested the implications of this change on the benefits of our policies by comparing the previous simulation

results to simulations in which the time between two generations is 25, 75, or 100 months. Note that

engineers learn which problems will be carried over to next generation 12, 36, or 48 months before the

start of production for the next generation respectively. The fraction of defects due to carryover parts is

shown in Figure 12, which illustrates that carryover problems will become increasingly important in the

future as product development lead times continue to shrink across industries.

Fraction of defects due to carryover parts
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Figure 12: Simulation results when the time between generations is 25, 50, 75, and 100 months.



9. Relevance for Practitioners

Our research partner's managers found the empirical results surprising. One product group checked the

validity of the results and reached the same conclusions. Earlier drafts of this paper were read by

managers, and they described the results as an "accurate representation" of the company.

Efforts to put more emphasis on carryover problems are underway based on our empirical findings and

simulation results. Initial attempts include efforts by a large team of managers and engineers to define a

standard process for addressing carryover problems across the company, stopping some new product

development projects until carryover problems are solved, preparing the IT infrastructure to make

carryover problems more visible, and assigning engineers to keep track of and be accountable for

carryover problems.

10. Conclusion

Our data analysis showed that carryover parts used in successive generations of multi-generation products

are a substantial source of unreliability. Organizational coordination challenges and long time delays

involved in learning about these problems increase the extent and number of problems carried over to the

next generation. Since carryover problems have a significant impact on the reliability of next-generation

products, the field problem solving process that solves carryover problems is an important determinant of

the reliability of new products. Carryover problems and field problem solving have not received enough

attention in the literature, and our results show that research on new product development will benefit

from a better understanding of these issues.

We tested different policies to employ field problem information more effectively using a simulation

model. The model's novel structure, which represents each problem separately and keeps track of all

failures, allowed us to capture substantial differences in problems in terms of total failures. This structure

also allowed us to estimate the Weibull parameters periodically and to predict the expected failures for all

problems. These features of the model were instrumental in testing prioritization policies aimed at better

selection of problems to work on and testing policies designed to identify upcoming problems earlier.



The managerial implications of our findings indicate the need for more attention to be focused on

problems associated with carryover parts. Better coordination is needed between engineers working on

field problems and new product development engineers. Our results show that these teams should work

together to minimize problems carried over to the next generation. This requires targets for reducing

carryover problems, clear communication channels, joint responsibility for carryover problems, and

transparent IT systems that give both teams access to problem information, production plans, and bills of

materials for new products.

Other implications of our findings involve problem prioritization and identification. For prioritization,

managers should consider both the percentage of products that are expected to fail and the number of

machines that are going to be produced while that problem is open. Since carryover problems are in

production for a much longer period of time than non-carryover problems, carryover problems should

have higher priority. On the other hand, problems that have caused failures in previous-generation

products should be investigated to determine whether or not they will lead to failures in the current

generation. If these problems are expected to lead to failures in the current generation, teams should solve

these problems without waiting for them to lead to failures in the current generation in order to prevent as

many failures as possible.

Our data was collected at only one company, and this is a limitation of our paper. However, our

research partner has dozens of products that span a wide spectrum of motor vehicles, from relatively basic

machines to very complicated products. These products are exposed to vastly different environments.

Moreover, there are several subsidiaries within the company with individual profit and loss responsibility,

leading to different practices and cultures. These factors increase the generalizability of our results.

Furthermore, we show that as product development lead times get shorter, carryover problems will have a

greater impact on new product reliability, which strengthens our conclusion that managers should pay

greater attention to carryover problems in a wide range of industries. In fact, our qualitative analysis

revealed that one of the reasons why our host organization lacked effective processes and policies for

dealing with carryover problems is that carryover is a relatively new phenomenon. When product



development lead times were much longer, teams had more time to solve field problems; hence, carryover

was a less important issue. Thus, we expect that companies in several other industries adjusting to shorter

product development lead times will also benefit by improving their carryover processes and policies.

References
Brown SL, Eisenhardt KM. 1995. Product development: past research, present findings, and future

directions. Academy of Management Review, 20(2) 343-378.
Clark KB, Fujimoto T. 1991. Product Development Performance: Strategy, Organization, and

Management in the World Auto Industry. Harvard Business School Press: Boston, MA, USA.
Collier DA. 1982. Aggregate safety stock levels and component part commonality. Management Science,

28(11) 1296-1303.
Ford DN, Sterman JD. 1998. Dynamic modeling of product development processes. System Dynamics

Review, 14(4) 309-340.
Griffin A. 1997. The effect of project and process characteristics on product development cycle time.

Journal of Marketing Research, Special Issue on Innovation and New Products, 34(1) 24-35.
Lee HL. 1996. Effective inventory and service management through product and process redesign.

Operations Research: Special Issue on New Directions in Operations Management, 44(1) 151-159.
Repenning NP. 2001. Understanding fire fighting in new product development. The Journal of Product

Innovation Management, 18 285-300.
Robertson D, Ulrich K. 1998. Planning for product platforms. Sloan Management Review, Summer, 19-

31.
Smith PG, Reinertsen DG. 1992. Shortening the product development cycle. Research-Technology

Management, May-June, 44-49.
Smith PG, Reinertsen DG. 1998. Developing Products in Half the Time: New Rules, New Tools. John

Wiley & Sons: New York, NY, USA.
Sterman JD. 2000. Business Dynamics: Systems Thinking and Modeling for a Complex World.

Irwin/McGrawHill: Boston, MA, USA.
Thomke S. 2003. Experimentation Matters: Unlocking the Potential of New Technologies for Innovation.

Harvard Business School Press: Boston, MA, USA.
Warranty Week. 2007. Retrieved September 10, 2008, from

http://www.warrantvweek.com/archive/ww20070515.html



Essay 2: New Product Introductions, Field Problem Solving and Product
Reliability

Abstract
In this paper, we empirically analyze the field problem-solving process and the new product introduction
spike. More specifically, we address the following question: what factors influence the time required to
solve problems? The problem-solving process is composed of two main parts: the time taken before
dedicating resources, meaning the time spent in the queue while the problem awaits resources, and the
time between dedicating resources and the problem resolution date. Different factors might have different
impacts on these two parts of the process. Therefore, we analyze these two parts separately. Interestingly,
regression results show that the importance of a problem has little influence on the time spent between
dedicating resources to a problem and the resolution date. Its influence on the time spent before
dedicating resources is greater. A problem's importance also exerts considerable influence on the
cancellation probability. More important problems have lower chances of being cancelled. In addition to
these questions related to the field problem-solving process, we also analyze the new product introduction
spike and find that the amount of late changes significantly correlates to the new product introduction
spike.
1. Introduction

Multi-generational products are used in several industries ranging from durables to consumer

packaged goods (Griffin, 1997). Since multi-generational products are produced under the same brand

name for a long time, customer perceptions about their quality and reliability changes slowly. Therefore,

the quality and reliability of these products has a considerable influence on their market share. Figure 1

shows warranty costs as a percentage of revenue for major automotive manufacturers from 2003 to 2006.

The lead of Toyota and Honda in terms of reliability and durability as shown in Figure 1 is one of the

reasons for their steadily increasing market share.
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Figure 1: Warranty costs as a percentage of revenue for major automotive manufacturers from 2003 to

2006
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Quality improvement processes for multi-generational products include activities conducted during

new product development projects and after new product introduction. During new product development,

project teams try to prevent and solve problems through analysis and testing. After new product

introduction, failures that occur in the "field" while being used by the customers are reported to the

manufacturers and the manufacturer then tries to solve these problems. This process is called field

problem solving. Field problem solving for the current generation of a product is undertaken

simultaneously with the new product development project for the next generation product. When the new

product development project is completed, production starts for the next generation product.

Figure 2 shows the number of defects per manufactured product versus production time, a metric for

the reliability of products. After the introduction of a new generation, reliability is improved through field

problem solving. When the next generation is introduced, reliability deteriorates, a phenomenon known as

a "new product introduction spike," and is then improved again through field problem solving. Reliability

dynamics, as seen in Figure 2, are representative of most multi-generation products. There is a time delay

between the production date of a defective product and its failure date while being used by the customer.

Figure 3 shows the number of failures reported over time.



I
mE

CiO

0~

Production Time (Months)

Figure 2: Defects per machine versus production date of products

Time (months)

Figure 3: Failures reported to quality and reliability teams versus time

Even though there is a large body of literature that focuses on problem-solving activities during new

product development projects (Clark and Fujimoto 1991, Thomke 2003; Wheelwright and Clark 1992),

the literature is mostly silent about the field problem-solving process and the new product introduction
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spike. However, both the new product introduction spike and the field problem-solving process are crucial

for the quality and reliability of multi-generational products and are the foci of this paper.

The field problem-solving process deserves more attention in the literature since it is crucial for many

companies and has important differences compared to the new product development problem-solving

process. First, data about field problems come from a much larger sample, all products sold to the

customers, than new product development projects. During new product development projects, test

sample sizes are usually limited due to testing costs. Second, since field failure information comes from

customers, it represents the entire spectrum of applications the products are exposed to. In most product

development projects it is not feasible to replicate all operating environments of products. Third, unlike

new product development projects, the pace of problem identification during the field problem-solving

process is not controlled by the manufacturer. During new product development projects, the project team

decides on the analysis and testing schedule, and hence controls the problem identification rate.

Contrarily, after the start of production, field problems are identified by evaluating customer complaints.

Each problem addressed by our research partner is a formal problem solving project, and the

problem-solving teams follow a well defined process. Therefore, our data set gives us the opportunity to

analyze a scientific approach to problem solving. The field problem-solving process starts with the

reporting of the first failure of a problem to the manufacturer. After a number of failures are reported, a

problem attracts the engineers' attention, depending on the nature and timing of the problems and an

"issue" is created. First, the problem is investigated to understand if it is a real problem that should be

addressed. If the answer is yes, the problem waits for resources. Otherwise it gets cancelled. A problem

becomes an "active project" when a team of employees becomes available to work on it. When the

problem-solving project is activated, the project team first tries to understand the root cause by examining

failed product parts returned by customers. Then, they try to find a solution to the problem, validate the

proposed solution by analysis and testing, and close the project if they conclude that the proposed solution

is indeed effective. If the solution is effective, products produced after the implementation of the fix will

not have failures related to the solved problem. During the process, a project might be cancelled if the



team was late in solving it and the problem goes out of production, if further investigation indicates that

there is no need to address it, or if a cost/benefit analysis shows that the problem fixing cost will exceed

the benefits.

Figure 4 shows the process for solving field problems. Note that the process has two main parts. In

the first part, resources are not yet assigned to the problem; it is waiting for resources in a queue. In the

second part, resources are assigned to the problem and the project is active.

Failures Waiting for Resources Resources

Figure 4: Process for solving field problems

The speed of this process and the efficiency of the use of resources are crucial for improving the

product reliability. If problems are solved faster, fewer products will fail. On the other hand, minimizing

the cancellation rate of active projects improves the efficient use of resources. A cancelled active project

is a waste of resources since a team of employees already expended effort on a project that did not yield

benefits.

In addition to the field problem-solving process, we will also analyze the new product introduction

spike. The new product introduction spike is an important metric used by many companies for assessing

the performance of new product development projects in terms of reliability. In this paper, the spike is

defined as the ratio of the average reliability of products manufactured within the first year after the

introduction of a new generation to that of products manufactured within the last year prior to the

introduction of the new generation.



This paper contributes to the literature by empirically analyzing the field problem-solving process and

new product introduction spike. We will first try to answer the following question: what factors influence

the time to solve problems? As mentioned before, the problem-solving process has two main parts; the

time between issue creation and project activation, meaning the time spent in the queue while the problem

is waiting for resources, and the time between project activation and the problem close date in which

resources are actively working on the problem. Different factors might have different impacts on these

two parts of the process. Therefore, we will analyze these two parts separately. The second question we

will try to answer is: what factors influence the cancellation probability of active projects? In addition to

these questions related to the field problem-solving process, we will also analyze the new product

introduction spike and try to understand the factors that influence it.

In the following sections, we will summarize our data and report analysis results.

2. Data

The data was collected over a period of three years at a major motor vehicle manufacturer. The

manufacturer is a multi-billion dollar company that has several subsidiaries manufacturing a wide range

of products at several facilities around the world.' Thousands of engineers work on product development

projects and solving product problems. Throughout the production life cycle of an average product,

thousands of machines are produced. We collected both qualitative and quantitative data from the

organization. The qualitative data includes 68 formal, semi-structured interviews with 58 employees

ranging from junior engineers to the VP of R&D. We recorded and transcribed all of these formal

interviews. Even though we had a generic topic and a list of interview questions, these questions were

open-ended, and we changed the focus if the interviewee raised an interesting point. In addition to these

formal interviews, we conducted dozens of informal interviews that were not recorded.

To analyze the field problem-solving process and new product introduction spikes, we created a unique

data set consisting of thousands of problems and more than a hundred new product introductions. The

next section describes the data in more detail and presents empirical analysis results.

'To preserve the confidentiality of the company, exact figures are not presented.



3. Empirical Analysis

In this section, we will first analyze the field problem-solving process and then new product

introductions.

3.1 Field Problem Solving Process

Our dataset consists of 5872 activated projects. Some of these projects were closed, some were cancelled,

and the rest were still active at the time of data collection. We will use this data set to analyze factors that

influence the time it takes to solve problems and the factors that influence the probability of canceling

problems. As mentioned before, the time it takes to solve problems has two parts. The first part is the time

between issue creation and problem activation. During this period, the problem is waiting for resources.

The decision by engineers to work on a problem terminates this period. On the other hand, from project

activation to problem close, engineers are actively working on the problem, trying to find the root cause,

design a fix, validate it, and implement it. This part is terminated when the team finds the fix to the

problem and implements it. Since these two parts have important differences, they will be analyzed

separately.

We identified the factors that might influence the time it takes to solve problems and the cancellation

probability of an active problem by interviewing employees involved in the quality and reliability of

products. The following factors are used:

Subsidiaries: Our research partner has several subsidiaries. Which subsidiary is responsible for

solving the problem might influence the process due to differences in their circumstances. We used

subsidiary dummies to represent this factor. Also, different product and component types (e.g. engine,

hydraulics etc.) might have different impacts on the process. For each problem, we know the fraction of

failures associated with different product and component types. We included these fractions in our

analysis.

Team characteristics: The experience level of the engineer that leads the project with the problem

solving process and the size of the team might influence the problem-solving process. The number of

projects solved by the lead engineer before starting a project is our proxy for the experience level of the



lead engineer in the problem-solving process. Team size is the number of team members. As number of

team members increases, it might be more difficult to coordinate, increasing the time to activate and close

problems.

For each problem, we used an average workload proxy at the subsidiary level in addition to the

subsidiary fixed effect. Workload is not a fixed effect and changes over time for each subsidiary. Our data

set includes only the number of projects the lead engineer is working on simultaneously, and we do not

have data on the projects of other team members. Since our project data is on lead engineer level but the

problems are solved by teams, we used an aggregate measure for workload at the subsidiary level. This

metric is the average active projects per lead engineer in each subsidiary during the period in which the

teams are actively working on a problem. We also used the average number of projects the lead engineer

of works on as a proxy for lead engineer workload. Note that some lead engineers do not spend all of their

time on problem solving.

Problem Complexity: Complexity of a problem is another factor that might influence the problem-

solving process. One metric we used is the difficulty level defined by the team members as Easy,

Medium, or Hard. Other metrics we used are related to the analysis and testing of problems and the

implementation of the solution. The number of failures that occurred before project activation might

influence the analysis process since it might be easier to find the root cause with more failures. Testing of

a solution might be more expedient if the problem has a lower average operating hours to failure rate,

since test results can be obtained faster. Implementation might be more difficult if the fix needs to be

implemented in more plants. Also, if the number of parts involved in a problem is higher, it might be

more difficult to find the root cause, and it may take more time to implement the design changes required

to implement the fix. In addition to making it more difficult to solve active projects, problem complexity

might increase the time between issue creation and project activation because the teams might not be very

eager to work on difficult problems.

Importance of a Problem: The importance of a problem might influence the problem-solving process

since the problem-solving teams might activate more important problems sooner and expedite the



problem-solving process after project activation. They might also be more hesitant to cancel more

important projects. The metrics used to represent the importance of a problem are the following: our

research partner's internal score assigned to each problem for ranking the problem priority, the number of

failures and warranties at the time of project activation, and the expected benefits of solving the problem

on warranty costs, sales, and prices.

Correlation coefficients of the variables are presented in Appendix 1. Coefficients are not high

between variables, except with failures at activation and warranty costs at activation. Note that the

correlation between the subsidiary workload between project creation and activation and subsidiary

workload between project activation and close is very high but these variables are not used in the same

regression model.

3.1.1. Time Between Issue Creation and Project Close: The faster a project is closed, the more benefits

the effort will yield because the fix will be implemented on more products. We analyzed the impact of the

factors explained in the previous section on the time between issue creation and project closure. As

mentioned before, the time between issue creation and project activation, and the time between project

activation and problem close will be analyzed separately. The model we will use for testing hypotheses

regarding the impact of the before mentioned factors on time between issue creation and project

activation and time between project activation and close has the following form:

Duration = f(Subsidiary, Team Characteristics, Problem Complexity, Importance of a Problem, Other

Factors).

Ordinary Least Squares (OLS) has several drawbacks in this setting. First, our data set contains

censored observations. If the project was not closed at the time of data collection, that data point is

censored because we do not know for how long it will be open. However, we do know that it has been

open for a certain amount of time, which is useful information to consider for the analysis. OLS cannot

handle these cases. Second, the normality assumption of OLS is usually violated in cases similar to ours.

Consequently, we used survival analysis, also known as event history modeling (Sentas et. al. 2008). The



advantage of survival analysis is to be able to accommodate censored data points and a wide range of

distributions that allow different hazard functions.

Since we are interested in the predictions regarding the time it takes to close projects, we used

parametric duration models, namely accelerated failure time models. Accelerated failure time models

have the following specification:

ln(tj)=xj.x+j

Models are named according to the distribution assumed for e"J. Different distributions have different

implications for the underlying hazard rate. Hazard function is the probability that the failure happens at

time t, given that it did not happen until time t. Exponential has a constant hazard rate whereas Weibull is

monotonic and lognormal, loglogistic and gamma are variable. We used the log-likelihood values and

AIC metrics to choose among these distributions. AIC is a metric that rewards a high likelihood value, but

rewards parsimony as well. Also, lognormal, weibull, and exponential are special cases of gamma.

Therefore, we tested hypotheses regarding the appropriateness of these three distributions using gamma

parameter estimates. We will present the results in the following two subsections.

3.1.1.1 Time Between Issue Creation and Project Activation: We tested several distributions with

different implications for the hazard rate. Log-likelihood and AIC values are almost identical for gamma,

Weibull, and exponential distributions, and are better than that of lognormal and loglogistic (Table 1). All

coefficient values and significance levels are very close for all of these regressions. Exponential is a

special case of gamma distribution, and a kappa value of 1 and sigma value of 1 of gamma distribution

corresponds to exponential. In the gamma regression, confidence intervals for kappa and sigma include 1;

therefore, we cannot reject the hypothesis that the model is exponential. Hence, we used exponential

regression in this case.

A project is activated as soon as any lead engineer starts to work on that problem. Assignment of a lead

engineer to the problem is done right before project activation by the manager responsible for the field

problem-solving process. Since the assignment of the lead engineer to the project is done at the end of the



period between issue creation and project activation, we did not include lead engineer related variables

such as the average number of projects or experience level.

Detailed exponential regression results are presented in Table 2. Subsidiary dummy, fraction of failures

associated with different product types, fraction of failures associated with different component types, and

start year dummies are not reported for brevity. According to likelihood ratio test results, they are all

significant with p-values less than 0.0001, except fraction of failures associated with different component

types which has a p-value of 0.0018. Note that summary statistics of variables and constant terms in

regressions are not presented to preserve the confidentiality of our research partner.

Gamma Exponential Weibull Lognormal Loglogistic

Hard Problems 0.196*** 0.196*** 0.196*** 0.191*** 0.187***

MediumProblems 0.180*** 0. 180*** 0. 179*** 0.229*** 0.210***

Team Members 0.0211*** 0.0211*** 0.0210*** 0.0179*** 0.0199***

Plants 0.0189* 0.0189* 0.0189* 0.016 0.0181*

Parts 0.00024 0.000243 0.000246 -0.000188 -0.000252

Average Hours to
Failures 0.000142* 0.000141* 0.000141* 0.000181* 0.000182*

Warranty
Benefits -3.28E-08 -3.30E-08 -3.32E-08 -1.29E-08 -1.33E-08

Sales Benefits 1.21 E-08 1.22E-08 1.22E-08 1.28E-08 6.60E-09
Score -0.000123*** -0.000122*** -0.000122*** -0.000151*** -0.000153***

Subsidiary
Workload 0.0865*** 0.0868*** 0.0872*** 0.0538* 0.0454*

In(sigma) -0.00771 0.201***
Kappa 0.981***
In(p) 0.0122

In(gamma) -0.381***
N 5026 5026 5026 5026 5026

Log-likelihood -7861 -7861 -7861 -8140 -8115
AIC 15868 15863 15864 16423 16373

Table 1: Results for lognormal, loglogistic, gamma, weibull and exponential regressions. The

dependent variable is the time between issue creation and project activation. * denotes p<0.05, ** p<0.01,

*** p<0.0 0 1.



Exponential regression -- accelerated failure-time form
No. of subjects = 5026 Number of obs = 5026
No. of failures = 5026
Time at risk = 947224.8556

LR chi2(73) = 2489.83
Log likelihood = -7861.7257 Prob > chi2 = 0.0000

t I Coef. Std. Err. z P>izl [95% Conf. Interval]
------------------------------------------------------------------------------

HardProblems I .196233 .0459775 4.27 0.000 .1061188 .2863472
MediumProbs .1798233 .0365587 4.92 0.000 .1081695 .251477
teammembers .0210508 .0043128 4.88 0.000 .0125977 .0295038

plants .0188708 .0075741 2.49 0.013 .0040258 .0337157
parts 1 .0002431 .0009621 0.25 0.801 -.0016427 .0021288

avghrstoflrs I .0001414 .0000582 2.43 0.015 .0000274 .0002554
warrbnfts I -3.30e-08 4.23e-08 -0.78 0.435 -1.16e-07 4.99e-08
salesbnfts I 1.22e-08 1.10e-08 1.10 0.271 -9.48e-09 3.38e-08

score 1 -.0001225 .000012 -10.25 0.000 -.0001459 -.0000991
subsworkload .0868481 .0206943 4.20 0.000 .046288 .1274082

Table 2: Exponential regression results

Easy problems are used as the base line for complexity dummy and hence coefficients for medium

and hard problems represent incremental duration compared to easy problems. Regression results show

that hard and medium problems are activated significantly later than easy problems. All else being equal,

lead engineers might be tempted to work on easier problems since they receive the same benefits with less

effort. The number of team members increases the time to activate projects, probably due to coordination

challenges of larger teams. If more plants are involved in a problem, the project is activated later. Again,

the reason might be coordination challenges between engineers in different plants. Higher average

operating hours to see failures of problems delays the activation date of problems. The longer time delay

to learn about failures might lengthen the investigation process conducted prior to activating the project.

Problems with a higher score are activated sooner, since it will be more beneficial to solve those problems

as soon as possible. Lower subsidiary level workload during the period between issue creation and project

activation leads to faster project activation.

Exponential regression results are used in essays 1 and 3 to simulate the decision-making process of

our research partner. Hazard rates of problems are calculated in the simulation model using the significant

factors in Table 2, and the problem with the highest hazard rate is activated.

In addition to survival analysis, we also ran OLS and compared the results (Appendix 2). The

dependent variable was the natural logarithm of the time between issue creation and project activation.



Since it has the same functional form with the survival analysis, coefficients are interpreted in the same

way. OLS results are consistent with survival analysis results in terms of the significance of the

coefficients and the estimates for significant coefficients.

We tested the parametric specification of our survival analysis model by comparing exponential

regression results to the Cox proportional hazards model. The Cox proportional hazards model is a semi-

parametric model and has the following form for the hazard function:

h(t, xj)= ho(t)exp(xjpx)

The reason that the Cox proportional hazards model is semi-parametric is that it does not make any

assumptions about the shape of the underlying hazard rate ho(t). As mentioned previously, exponential

regression assumes that ho(t) is fixed. Note that the accelerated failure time and proportional hazard

metrics for exponential regression yield the same information. The difference is that the accelerated

failure time metric shows the impact of variables on the time to activate a problem whereas the hazard

rate metric shows the impact on the probability to be activated. Parameters have the same absolute value

but the opposite sign between the two metrics for exponential regression. Results of the Cox proportional

hazards model are compared to the exponential regression in Table 3. Note that the parameter values and

significance levels are very close.

Cox Exponential
Hard Problems -0.208*** -0.196***
MediumProblems -0. 183*** -0.180***
Team Members -0.0224*** -0.0211***
Plants -0.0203* -0.0189*
Parts -0.000406 -0.000243
Average Hours to
Failures -0.000142* -0.000141*
Warranty Benefits 3.31 E-08 3.30E-08
Sales Benefits -1.35E-08 -1.22E-08
Score 0.000122*** 0.000122***
Subsidiary Workload -0.106*** -0.0868***

Table 3: Exponential regression results and the Cox proportional hazards model results. The

dependent variable is the time between issue creation and project activation. * denotes p<0.05, ** p<0.01,

*** p<0.001.



Next, we will assess the practical impact of each variable on the time it takes to close projects and

analyze the practical significance of these results. Due to model specification:

ln(tj)=xjf3x+j

tj=exp(xj x)exp(j)

tj=exp(xilp+ x2 2+ ... + XkPk)exp(j)

the marginal impact of a variable (say xi) is to multiply the time it takes to close the project by

exp(pi):

tj*-tjexp(P1)

Table 4 shows the percent impact of one standard deviation increase in significant factors on the time

it takes to close the projects.

Impact of One Impact of 50% Increase
StDev Increase compared to Average

Hard Problem 22%*
Medium Problem 20%*
Score -15% -4%
Subsidiary Workload 11% 20%
Number of team members 9% 9%
Number of plants 5% 2%
Average operating hours to see
failures 5% 4%

Table 4: Percent impact of one standard deviation and a 50% of average increase in significant

factors on time between issue creation and project activation. Note that the impact values reported for

hard and medium problems in this table correspond to an increase from 0 to 1.

Problem complexity, subsidiary workload, and the score has the highest impact on the time between

issue creation and project activation.

3.1.1.2 Time Between Project Activation and Problem Close: Gamma regression has the highest

log-likelihood value and the lowest AIC (Table 5), so we used gamma regression for analyzing the time

between project activation and project close.



Gamma Exponential Weibull Lognormal Loglogistic
Hard Problems 0.427*** 0.419*** 0.375*** 0.504*** 0.489***

Medium
Problems 0.336*** 0.330*** 0.289*** 0.409*** 0.392***

Team Members 0.0743*** 0.0792*** 0.0713*** 0.0772*** 0.0771***
Plants 0.0563*** 0.0613*** 0.0540*** 0.0559*** 0.0593***

Parts 0.00591*** 0.00634*** 0.00603*** 0.00548*** 0.00586***

Average Hours
to Failures 0.000325*** 0.000347*** 0.000328*** 0.000300*** 0.000317***
Warranty
Benefits -2.21E-08 -2.11E-08 -1.90E-08 -2.42E-08 -2.40E-08

Sales Benefits 2.71E-09 7.06E-09 5.29E-09 -2.43E-09 -6.89E-10

Score -0.000036** -0.000040** -0.000037*** -0.000036** -0.000038**
Warranty at

Project
Activation 2.59E-08 2.46E-08 2.11E-08 3.55E-08 3.31E-08
Failures at

Project
Activation -0.000068** -0.000068** -0.000065** -0.000077** -0.000072**

Subsidiary
Workload

Between Project
Activation and

Close 0.103*** 0.121*** 0.113*** 0.0802*** 0.0905***
Engineer

Experience
Level at

Activation -0.0155*** -0.0170*** -0.0147*** -0.0166*** -0.0164***
Engineer
Average

Number of
Problems

Between Project
Activation and

Close -0.00720* -0.00965* -0.00870* -0.00374 -0.00469
In(sigma) -0.160*** -0.0137

Kappa 0.618***
In(p) 0.264***

In(gamma) -0.593***

Log-likelihood -5628 -5823 -5658 -5720 -5681

AIC 11381 11767 11440 11563 11486

Table 5: Log-likelihood and AIC values for lognormal, loglogistic, gamma, weibull and exponential

regressions

Detailed Gamma regression results are presented in Table 6. Subsidiary dummy, fraction of failures

associated with different product types, and activation year dummies are not reported for brevity.

According to likelihood ratio test results, the fraction of failures associated with different component



types is not significant and hence is not included in the model. Others are all significant with p-values less

than 0.0001, except activation year dummy which has a p-value of 0.04

Gamma regression -- accelerated failure-time form
No. of subjects = 5028 Number of obs = 5028

No. of failures = 3479
Time at risk = 1345585.18

LR chi2(59) = 1287.93
Log likelihood = -5628.4354 Prob > chi2 = 0.0000

t Coef. Std. Err. z P>Jzl [95% Conf. Interval]
------------------------------------------------------------------------------

HardProblems 1 .4268792 .0441817 9.66 0.000 .3402846 .5134738
MediumProbs I .3359656 .0341373 9.84 0.000 .2690577 .4028735
teammembers I .0743067 .0046062 16.13 0.000 .0652788 .0833346

plants .056252 .008341 6.74 0.000 .039904 .0726
parts .0059147 .0011588 5.10 0.000 .0036435 .008186

avghrstoflrs .0003251 .0000535 6.07 0.000 .0002202 .0004301
warrbnfts -2.21e-08 2.54e-08 -0.87 0.384 -7.18e-08 2.76e-08
salesbnfts I 2.71e-09 1.16e-08 0.23 0.816 -2.01e-08 2.55e-08

score 1 -.0000363 .0000115 -3.16 0.002 -.0000588 -.0000138
warractivtn I 2.59e-08 2.48e-08 1.05 0.296 -2.26e-08 7.44e-08
flrsactivtn -.0000675 .0000213 -3.17 0.002 -.0001094 -.0000257
subsworkload .102807 .0219338 4.69 0.000 .0598176 .1457964
engrexprnc -.0155061 .0011554 -13.42 0.000 -.0177706 -.0132416

engavgproj -.007198 .0036149 -1.99 0.046 -.0142831 -.0001129
------------------------------------------------------------------------------

/In sig I -.1602716 .0178755 -8.97 0.000 -.195307 -.1252362
/kappa I .6179674 .046759 13.22 0.000 .5263214 .7096134

------------------------------------------------------------------------------
sigma 1 .8519124 .0152284 .8225821 .8822885

Table 6: Gamma regression results. The dependent variable is the time between project activation and

project close.

As mentioned previously, Weibull, lognormal, and exponential models are nested in the gamma

model. A kappa value of 1 corresponds to Weibull and a kappa value of 0 corresponds to lognormal.

Since the 95% confidence interval for kappa does not include 0 and 1, the hypotheses that the model is

weibull or lognormal are rejected. A kappa value of 1 and a sigma value of 1 correspond to exponential,

which is also rejected.

Regression results show that the factors that increase the difficulty of solving problems, such as

complexity level, number of plants involved, number of parts, and average operating hours to see failures

tend to increase the time it takes to solve the problem. The number of plants involved might slow the

projects down due to the higher effort required to implement the fix in more plants. Average operating

hours to see failures also increase the time to close projects, probably due to the longer testing and



validation times required. Failures at the time of activation decrease the time to solve the problems. The

reason might be that it is easier to find the root cause for problems with a higher number of failures. All of

these factors that were considered so far are the ones that are related to the physics of the problem in the

sense of influencing the time it takes to find the problem, fix it, and implement the fix. On the other hand,

the score of the problem, a metric for the importance of the problem, is also significant. However, as we

will see below, even though the score is statistically significant, its practical impact is not that high (Table

9).

The number of team members increase the time it takes to solve problems; possibly due to coordination

issues. Lead engineer experience reduces the time it takes to close the problems, and it is significant.

Subsidiary workload increases the time to close projects. The average number of projects the lead

engineer worked on while the project was active is borderline significant and it is not significant when

robust standard errors are used (Table 8).

We also ran the regression model by adding lead engineer fixed effects (Appendix 3). The results are

very similar. In addition to these two models, we also ran OLS (Appendix 4). To alleviate the problem of

OLS not handling censoring, we only used projects that were activated within the first year of our data

set. 95% of the projects activated in that year were either closed or cancelled at the time of data

collection. In the OLS model, the dependent variable was the natural log of the time between activation

date and project closure. Since it has the same functional form with the survival analysis, coefficients are

interpreted in the same way. Results are very similar to Gamma regression results.

By definition, Gamma regression does not have a corresponding proportional hazards representation.

However, exponential regression has a corresponding proportional hazards representation, and its

coefficients and significance levels are very close to Gamma regression. Therefore, we compared the Cox

proportional hazards model results to the exponential regression results (Table 7). The results are very

close, showing that the parametric hazard function assumption is plausible.



Cox Exponential
Hard Problems -0.485*** -0.419***
Medium Problems -0.373*** -0.330***
Team Members -0.0917*** -0.0792***
Plants -0.0692*** -0.0613***
Parts -0.00773*** -0.00634***
Average Hours to
Failures -0.000413*** -0.000347***
Warranty Benefits 2.42E-08 2.11 E-08
Sales Benefits -6.69E-09 -7.06E-09
Score 0.0000480** 0.0000402**
Warranty at Project
Activation -2.56E-08 -2.46E-08
Failures at Project
Activation 0.0000824*** 0.0000681**

Subsidiary Workload
Between Project
Activation and Close -0.145*** -0.121***
Engineer Experience
Level at Activation 0.0189*** 0.0170***

Engineer Average
Number of Problems
Between Project
Activation and Close 0.0112* 0.00965*

Table 7: Exponential regression results and the Cox proportional hazards model results. The dependent

variable is the time between project activation and close. * denotes p<0.05, ** p<0.01, *** p<0.001

To account for the possibility that the projects of a lead engineer are correlated due to some unobserved

factors, we computed robust standard errors by clustering projects at the lead engineer level (Cleves et. al.

2004). In Table 8, we compare the results of Table 6 with the results clustered at the lead engineer level.

Results are almost identical except for warranty benefits and "engineer's average number of problems

between project activation and close". Warranty benefits become significant with clustered results,

whereas "engineer's average number of problems between project activation and close" becomes

insignificant.



Gamma
Regression Cluster

Hard Problems 0.427*** 0.427***
Medium
Problems 0.336*** 0.336***
Team Members 0.0743*** 0.0743***
Plants 0.0563*** 0.0563***
Parts 0.00591*** 0.00591***

Average Hours
to Failures 0.000325*** 0.000325***
Warranty
Benefits -2.21 E-08 -2.21 E-08*
Sales Benefits 2.71E-09 2.71E-09
Score -0.0000363** -0.0000363**
Warranty at
Project
Activation 2.59E-08 2.59E-08
Failures at
Project
Activation -0.0000675** -0.0000675***

Subsidiary
Workload
Between Project
Activation and
Close 0.103*** 0.103**
Engineer
Experience
Level at
Activation -0.0155*** -0.0155***
Engineer
Average
Number of
Problems
Between Project
Activation and
Close -0.00720* -0.0072

Table 8: Gamma regression and clustered regression results. Clustered results are at the lead engineer

level.

Table 9 shows the impact of one standard deviation increase and a 50% increase compared to the

average in significant factors in Table 8 on the time it takes to close projects.



Impact of One Impact of 50% Increase
StDev Increase compared to Average

Hard Problem 53%*
Medium Problem 40%*
Number of team members 32% 35%
Lead Engineer Experience -21% -9%

Number of plants 13% 5%
Subsidiary Workload 13% 26%
Average operating hours to see
failures 12% 9%
Number of part numbers 10% 2%
Number of failures at the time of
activation -6% -1%
Score -5% -1%
Warranty Benefits -1% 0%

Table 9: Impact of one standard deviation increase and a 50% of average increase in significant

factors on time between project activation and problem close. Note that the impact values reported for

hard and medium problems in this table correspond to an increase from 0 to 1.

Table 9 shows that the importance factors that are supposed to expedite the process such as the score,

warranty benefits of solving the problem, and the number of failures at the time of activation have a

limited effect compared to other factors. Even increasing the score from the lowest possible value to the

highest possible value decreases the time it takes to close the project by 17%, a small amount compared to

the one standard deviation increase of other factors that are related to the physics of solving the problem.

The score has a much larger impact on the time between issue creation and project activation. Increasing

it from the lowest possible value to highest possible value decreases the time between issue creation and

project activation by 46%, a much more dramatic reduction in time compared to the time between project

activation and problem close.

Regression results regarding the time between project activation and close are used in essays 1 and 3 to

simulate the problem-solving process by influencing the time to solve problems.

3.1.2. Probability of Canceling an Active Project: We analyzed the impact of the factors used in the

previous section on the probability of canceling an active project using logistic regression. To minimize

the impact of censoring on our analysis, we limited the data set to projects that were activated within the



first year of our data set. 95% of the projects activated in that year were either closed or cancelled at the

time of data collection. We also ran the same analysis using all data points, and the qualitative results did

not change. The logistic regression results are shown in Table 10:

Logistic regression Number of obs = 1835
Wald chi2(47)
Prob > chi2

Log pseudolikelihood = -746.75381 Pseudo R2 = 0.1892

(Std. Err. adjusted for 351 clusters in engineerid)

Robust

cancelled I Coef. Std. Err. z P>Izl [95% Conf. Interval]
------------------------------------------------------------------------------

HardProblems 1 .0418577 .2522084 0.17 0.868 -.4524617 .536177

MediumProbs 1 .3150806 .1601631 1.97 0.049 .0011668 .6289945

teammembers I -.0984675 .0557255 -1.77 0.077 -.2076875 .0107525

plants I .0659073 .0285396 2.31 0.021 .0099707 .1218439

parts .0078633 .0043496 1.81 0.071 -.0006618 .0163883

avghrstoflrs .0015229 .0002135 7.13 0.000 .0011045 .0019414

warrbnfts -5.93e-07 4.53e-07 -1.31 0.190 -1.48e-06 2.94e-07

salesbnfts 2.45e-07 1.85e-07 1.32 0.185 -1.18e-07 6.09e-07

warractivtn -8.75e-09 1.61e-07 -0.05 0.957 -3.24e-07 3.07e-07

flrsactivtn -.0000743 .0000888 -0.84 0.402 -.0002483 .0000996

score -.0004367 .0001189 -3.67 0.000 -.0006698 -.0002037

subsworkload .3425303 .1169961 2.93 0.003 .1132221 .5718384

Table 10: Logistic regression results. Robust standard errors. Clustered at the lead engineer level.

According to the likelihood ratio test results, subsidiary and complexity dummies are significant (p-

values<0.0003). The fraction of failures associated with different component types is also significant (p-

value<0.0001). The fraction of failures associated with different product types is not significant (p-

value=0.27), and hence is not included in the model. Coefficients of these dummy and control variables

are not reported for brevity.

Interestingly, the coefficient for medium problems is significant, showing that there is a significantly

higher chance of canceling a medium project compared to an easy project; however, the coefficient is not

significant for hard problems. The coefficients for number of team members and number of parts are

marginally significant. More team members decrease the chance of project cancellation; possibly due to

increased peer pressure or an increased perception of sunk cost. More parts, more plants, and a longer

time to see failures, increase the chance of project cancellation. A higher score decreases the cancellation

probability, whereas the impact of failures and warranty at activation and expected warranty and sales



benefits of fixing problems are not significant. Finally, subsidiary workloads increase the chance of

cancellation.

Table 11 shows the additive impact of one standard deviation and a 50% of the average increase of

significant variables on the probability of cancellation.

Impact of One Impact of 50% Increase
StDev Increase compared to Average

Average operating hours
to see failures 0.07 0.06

Score -0.07 -0.02

Number of team members -0.05 -0.04

Medium Problem 0.04*

Subsidiary Workload 0.04 0.09
Number of plants 0.02 0.01
Number of part numbers 0.02 0.00

Table 11: Impact of one standard deviation and a 50% of average increase of significant variables on

the probability of cancellation. Note that the impact value reported for medium problems in this table

correspond to an increase from 0 to 1.

3.2 New Product Introduction Spike

Using data from 125 new product introductions, we analyzed the factors that influence the new product

introduction spike. The new product introduction spike is the ratio of the average reliability of products

manufactured within the first year after the introduction of a new generation to that of products

manufactured within the last year before the introduction of the new generation. The number of failures in

a representative operating hour range from all products produced in a certain period is divided by the

number of products produced to calculate average reliability. Products that passed the operating hour

range used for reliability calculations are called mature products. For the new product introduction spike

calculations, we focused on mature products to get rid of biases that might occur due to products that did

not pass the operating hour range for reliability.

We analyzed the impact of different factors on new product introduction spike using regression

analysis. The factors we included in the analysis were the following:

Product Type Dummy: Which product family the product belongs to.



Average Production Volume: Monthly data showing the number of products built in that month.

Pilots per volume: The number of pilot machines used for testing the new design and new production

processes normalized by the average production volume of the product.

Part New Content: Percentage of new parts in the next generation of the product. The remaining ones are

carried over from the previous generation.

Late Change Index (LCI): is a proxy for the amount of late engineering drawing changes.

Arrangements: Slightly different versions of a product.

Table 12 shows regression results.

Linear regression Number of obs = 125
F ( 20, 103) =
Prob > F
R-squared = 0.3439
Root MSE = .35991

Robust

NPISpike Coef. Std. Err. t P>Itl [95% Conf. Interval]
------------------------------------------------------------------------------------------

PartNewContntl .677286 .4247097 1.59 0.114 -.1650255 1.519598

LCI 1 1.276715 .3896036 3.28 0.001 .5040276 2.049401

PilotsPerVol .0151565 .0428242 0.35 0.724 -.0697752 .1000882

AvgPrdctnVol I .0028207 .001611 1.75 0.083 -.0003745 .0060158

Arrangements I .0049332 .0085399 0.58 0.565 -.0120037 .0218701

Table 12: Regression results for the new product introduction spike. Robust standard errors. Product type

dummy is not reported for brevity.

According to our regression results, LCI and product type dummy are the only significant variables.

The likelihood ratio test for product group dummy has a p-value of 0.02.

There is strong evidence that the LCI has an impact on new product introduction spike. Part new

content is correlated with LCI (Table 13) but does not have a significant impact on the new product

introduction spike when both variables are included in the model. When LCI is excluded from the

regression model, part new content becomes significant (Appendix 5). This shows that it influences the

new product introduction spike through LCI.



Linear regression Number of obs = 125
F( 1, 16) = 6.46
Prob > F = 0.0218
R-squared = 0.1353
Root MSE = .12561

Robust
LCI I Coef. Std. Err. t P>jtj [95% Conf. Interval]

------------------------------------------------------------------------------

PartNewContntj .2971001 .1168915 2.54 0.022 .0493012 .544899
Constant I .6257831 .0461616 13.56 0.000 .5279249 .7236414

Table 13: LCI regressed on part new content. Robust standard errors used and clustered at the product

group level.

This is an interesting empirical finding that supports Repenning's (2001) analytical finding that quality

and reliability suffer when product development teams are engaged in firefighting.

In Essay 1 of the thesis, we showed that the new product introduction spike is composed of two spikes;

new content and carryover spikes. The new content spike represents the deterioration in reliability when

obsolete parts are replaced with new parts. Carryover parts are common parts used in successive

generations of multi-generational products. The carryover spike represents the change in reliability of

carryover parts as the production of a new generation starts. One hypothesis we tested is that these two

spikes are correlated. If these two spikes are negatively correlated, it means that there is a tradeoff

between carryover reliability and new content reliability and policies that improve one hurts the other. If

they are positively correlated, it means that there is no tradeoff between the two, and best practices that

improve the overall spike positively impact both the new content and carryover spikes. Regression results

show that the carryover spike and the new content spike are significantly and positively correlated (Table

14), supporting the argument that there is no tradeoff between carryover parts' reliability and new content

reliability.

Linear regression Number of obs = 125
F( 1, 16) = 8.75
Prob > F = 0.0093
R-squared = 0.1981
Root MSE = .7153

I Robust
CO Spike I Coef. Std. Err. t P>it [95% Conf. Interval]

------------------------------------------------------------------------------

NC Spike I .8122322 .2745764 2.96 0.009 .2301562 1.394308
Constant I .4764657 .3117901 1.53 0.146 -.1844996 1.137431

Table 14: Carryover spike regressed on new content spike. Robust standard errors.



We also analyzed the impact of different factors on both spikes. Regression results are shown below.

Linear regression Number of obs = 125
F( 20, 103) =
Prob > F
R-squared = 0.3704
Root MSE = .37954

Robust

NCSpike I Coef. Std. Err. t P>itl [95% Conf. Interval]
------------- +------------------------------------------------------------------
PartNewContntl .5242687 .4825132 1.09 0.280 -.4326824 1.48122

LCI 1 1.274004 .4826082 2.64 0.010 .3168648 2.231144

PilotsPerVol .0030986 .0375842 0.08 0.934 -.0714408 .0776379

AvgPrdctnVol I .0022669 .0015923 1.42 0.158 -.0008911 .0054249

Arrangements I .0068203 .0087546 0.78 0.438 -.0105424 .024183

Table 15: New content spike regressed on factors mentioned above. Robust standard errors. Product type
dummy is not reported for brevity.

Linear regression Number of obs = 125
F( 20, 103) =
Prob > F
R-squared = 0.2570
Root MSE = .7524

Robust

COSpike I Coef. Std. Err. t P>itI [95% Conf. Interval]
------------------------------------------------------------------------------

PartNewContntl 1.575449 .7819182 2.01 0.047 .0246982 3.126199

LCI i 1.883835 .6393794 2.95 0.004 .6157769 3.151893

PilotsPerVol i .0680913 .0577264 1.18 0.241 -.0463954 .182578

AvgPrdctnVol I .0039428 .0026993 1.46 0.147 -.0014107 .0092963

Arrangements I -.0033177 .0137318 -0.24 0.810 -.0305516 .0239161

Table 16: Carryover spike regressed on factors mentioned above. Robust standard errors. Product type
dummy is not reported for brevity.

The late change index is significant in both regressions. An interesting finding is that the part new

content is significant for the carryover spike but not for the new content spike. This might be because a

higher part new content leads to more designing and testing of new parts, increasing work pressure for

both new parts and carryover problems, lowering the reliability of both but hurting the carryover parts

more due to relatively fewer resources for carryover parts. Another interesting finding is that the

coefficient for the LCI is bigger for the carryover spike. This might be because late changes have a more

negative impact on carryover parts because carryover parts are ignored when the new product

development team is engaged in firefighting and trying to solve new part problems under time pressure.

However, the statistical significance of these findings should be tested. We tested these hypotheses by



comparing the impact of all factors on the new content and carryover spikes. The null hypothesis was that

the coefficients in the two regressions are equal. The following regression was run:

LNCSpike [X] r0]
COSpike= X 1

If a coefficient in 12 is significantly different than 0, it means that the variable associated with that

coefficient has a significantly different impact on the new content and carryover spikes. The regression

results are shown below. We do not reject the hypothesis that the factors have an equal impact on the new

content and carryover spikes. This finding shows that the relationship between the factors and new

content and carryover spikes are similar.

Linear regression Number of obs = 250
F( 41, 206) =
Prob > F

R-squared = 0.3072

Root MSE = .59588

Robust
Spike Coef. Std. Err. t P>Jt [95% Conf. Interval]

--------------------------------------------------------------------------------

PartNewContntl .5242687 .4825132 1.09 0.279 -.4270286 1.475566
PartNewContnt21 1.05118 .9188118 1.14 0.254 -.7603004 2.86266
LCI 1 1.274004 .4826082 2.64 0.009 .3225198 2.225489
LCI2 I .6098309 .8010722 0.76 0.447 -.9695203 2.189182
Pilots I .0030986 .0375842 0.08 0.934 -.0710004 .0771975
Pilots2 .0649927 .0688833 0.94 0.347 -.0708139 .2007994
AvgPrdctnVol .0022669 .0015923 1.42 0.156 -.0008724 .0054062
AvgPrdctnVol2l .0016759 .003134 0.53 0.593 -.0045029 .0078547
Arrangements I .0068203 .0087546 0.78 0.437 -.0104398 .0240805
Arrangements2l -.0101381 .0162852 -0.62 0.534 -.042245 .0219689

Table 17: Testing the hypothesis that the factors have the same impact on new content and carryover
spikes. Variable names that end with 2 represent the test for the equality of the impact of that factor on

new content and carryover spikes. Robust standard errors. Product type dummy is not reported for
brevity.

4. Conclusion

In this paper, we analyzed the field problem-solving process and new product introduction spikes. We

found that the impact of different factors on the time between issue creation and project activation is

different compared to their impact on the time between project activation and problem close in terms of

statistical significance and magnitude. Interestingly, the importance of a problem has less influence on the

time spent between project activation and problem close compared to other factors. Its influence on the



time spent between issue creation and project activation is bigger. It also has a considerable influence on

the cancellation probability. More important problems have a lower chance of being cancelled. We also

found that the amount of late changes is significantly correlated with the new product introduction spike.

Therefore, the amount of late changes might be used as an indicator that predicts a high new product

introduction spike.



Appendix 1: Correlation coefficients of the variables included in the analysis.

Average
Team Hours to Warranty
Members Plants Parts Failures Benefits Sales Benefits Score

Team Members 1
Plants 0.04 1
Parts 0.04 0.22 1

Average Hours to Failures -0.08 0.14 0.18 1
Warranty Benefits 0.06 0.01 0.04 0.01 1
Sales Benefits 0.04 0.07 0.06 -0.02 0.29 1
Score 0.14 0.07 0.11 0.03 0.24 0.28 1
Warranty at Project
Activation 0.02 0.22 0.31 0.20 0.06 0.03 0.13
Failures at Project
Activation 0.008 0.42 0.42 0.15 0.04 0.12 0.12
Subsidiary Workload
Between Project Creation
and Activation 0.04 -0.05 -0.11 -0.21 0.009 -0.02 -0.06
Subsidiary Workload
Between Project
Activation and Close 0.02 -0.05 -0.09 -0.11 0.03 -0.01 -0.05
Engineer Experience
Level at Activation 0.03 -0.06 -0.07 -0.13 -0.004 0.001 -0.02
Engineer Average
Number of Problems
Between Project
Activation and Close -0.03 -0.07 -0.03 -0.02 0.004 -0.01 -0.05



Subsidiary
Subsidiary Workload
Workload Between Engineer Engineer Average

Warranty Failures at Between Project Project Experience Number of Problems
at Project Project Creation and Activation Level at Between Project
Activation Activation Activation and Close Activation Activation and Close

Failures at Project
Activation 0.63 1
Subsidiary
Workload
Between Project
Creation and
Activation -0.04 -0.07 1
Subsidiary
Workload
Between Project
Activation and
Close -0.04 -0.06 0.77 1
Engineer
Experience Level
at Activation -0.01 -0.03 0.33 0.29 1

Engineer Average
Number of
Problems Between
Project Activation
and Close -0.03 -0.07 0.28 0.38 0.33 1



Appendix 2: Ordinary least squares results for the time from issue creation to project activation.

The dependent variable is the natural logarithm of the time between issue creation and project

activation.

Linear regression Number of obs = 5026
F( 69, 4952) =
Prob > F
R-squared = 0.3271
Root MSE = 1.2314

lncreateac-e I
Robust

Coef. Std. Err.
------------------------

HardProblems
MediumProbs
teammembers

plants
parts

avghrstoflrs
warrbnfts
salesbnfts

score
subsworkload

.1910544

.2294337

.0179227

.0159814
-.0001884
.0001812

-1.29e-08
1.28e-08

-.0001507
.0537661

.0579018

.0446275

.0053056

.0091271
.00121

.0000721
3.12e-08
1.56e-08
.0000156
.0220251

3.30
5.14
3.38
1.75

-0.16
2.51

-0.41
0.82

-9.63
2.44

P>It

0.001
0.000
0.001
0.080
0.876
0.012
0.680
0.412
0.000
0.015

[95% Conf. Interval]

.0775413
.141944

.0075212
-.0019118
-.0025605
.0000398

-7.41e-08
-1.78e-08
-.0001813
.0105872

.3045676

.3169235

.0283241

.0338747

.0021837

.0003225
4.83e-08
4.33e-08
-.00012
.0969451

Appendix 3: Gamma regression for the time between project activation and project close. The

lead engineer fixed effect is used in addition to the factors in Table 6.

Gamma regression -- accelerated failure-time form

No. of subjects = 5028
No. of failures = 3479
Time at risk = 1345585.15

Number of obs = 5028

LR chi2(730) = 2714.82
Log likelihood = -4914.9896 Prob > chi2 = 0.0000
..............................................................................

t Coef. Std. Err. z P>Izl [95% Conf. Interval]
------------------------------------ -------- ---------------
HardProblems .2024237 .0433486 4.67
MediumProbs .2011322 .0307823 6.53
teammembers .0605569 .0050127 12.08

plants .0387698 .0081339 4.77
parts .0044457 .0010639 4.18

avghrstoflrs .000295 .0000497 5.93
warrbnfts -3.50e-08 2.09e-08 -1.68
salesbnfts -2.46e-09 1.02e-08 -0.24

score -.0000298 .0000101 -2.93
warractivtn 1.01e-08 1.82e-08 0.56
flrsactivtn -.0000522 .0000242 -2.16
subsworkload .1544906 .0232677 6.64
engrexprnc -.0121595 .0021018 -5.79

engavgproj -.0616101 .0095709 -6.44
------------------------------------------

/ln sig -.5972462 .0708913 -8.42
/kappa 1.465275 .1822046 8.04

0.000
0.000
0.000
0.000
0.000
0.000
0.094
0.810
0.003
0.578
0.031
0.000
0.000
0.000

----------
0.000
0.000

------------- +------------------------

sigma I .550325 .0390132

.1174621 .2873854

.1407999 .2614644

.0507321 .0703816

.0228277 .0547119

.0023606 .0065309

.0001975 .0003925
-7.60e-08 5.94e-09
-2.25e-08 1.76e-08
-.0000497 -9.89e-06
-2.55e-08 4.57e-08
-.0000997 -4.78e-06
.1088868 .2000945

-. 0162788 -. 0080401
-. 0803687 -. 0428516
---------------------

-. 7361905 -. 4583018
1.108161 1.82239

---------------------------4789349 .6323566
.4789349 .6323566



Appendix 4: OLS results for the natural logarithm of the time between project activation and

close for projects activated within the first year of our data set.

Linear regression Number of obs = 1487
F( 48, 335) =
Prob > F
R-squared = 0.2416
Root MSE = .83185

(Std. Err. adjusted for 336 clusters in engineerid)

Robust

Inactivate-e I Coef. Std. Err. t P>It [95% Conf. Interval]

------------------------------------------------------------------------------

HardProblems I .5635364 .0709938 7.94 0.000 .4238866 .7031863

MediumProbs .3779318 .0545387 6.93 0.000 .2706503 .4852133

teammembers I .0502905 .0105462 4.77 0.000 .0295454 .0710356

plants I .0616985 .011445 5.39 0.000 .0391855 .0842116

parts I .0053335 .0017389 3.07 0.002 .0019129 .0087541

avghrstoflrs .0002282 .0000892 2.56 0.011 .0000527 .0004038

pcmpnt flrs I -.0944841 .0612558 -1.54 0.124 -.2149786 .0260105

warrbnfts I -4.29e-09 1.68e-08 -0.26 0.798 -3.73e-08 2.87e-08

salesbnfts I -9.90e-09 4.78e-08 -0.21 0.836 -1.04e-07 8.40e-08

score -.0000354 .0000196 -1.81 0.072 -.0000739 3.14e-06

warractivtn 3.00e-08 2.15e-08 1.39 0.165 -1.24e-08 7.23e-08

flrsactivtn -.0000692 .0000219 -3.16 0.002 -.0001123 -.0000261

subsworkload .3878942 .0990099 3.92 0.000 .1931347 .5826537

engrexprnc -.0236071 .0046718 -5.05 0.000 -.0327969 -.0144172

engavgproj .0165715 .0075363 2.20 0.029 .0017471 .031396

Table 18: Regression results for projects activated in 2004 and closed before June 2007. In(time

between activation and close) is the dependent variable. Robust standard errors are used.

Clustering was done at the lead engineer level.

Appendix 5: We regressed the new product introduction spike, new content spike, and the

carryover spike on the factors used before, but excluded the late change index from the analysis

to see the significance of part new content in the absence of late change index. When they are

both in the model, part new content is not significant for the new product introduction spike and

the new content spike. It is borderline significant for the carryover spike.



Linear regression Number of obs = 125
F( 19, 104) =
Prob > F
R-squared = 0.2536
Root MSE = .38203

Robust
NPISpike I Coef. Std. Err. t P>ltl [95% Conf. Interval]

------------------------------------------------------------------------------------------

PartNewContntl 1.115525 .4096518 2.72 0.008 .3031698 1.92788
PilotsPerVol I .0033503 .0324166 0.10 0.918 -.060933 .0676336
AvgPrdctnVol I .0035684 .0016901 2.11 0.037 .0002168 .00692
Arrangements 1 -.0000959 .0090684 -0.01 0.992 -.0180789 .0178871

Table 19: Regression results for the new product introduction spike. The late change index is

not included. Robust standard errors. Product type dummy is not reported for brevity.

Linear regression Number of obs = 125
F( 19, 104) =
Prob > F
R-squared = 0.2928
Root MSE = .40031

Robust
NCSpike i Coef. Std. Err. t P>Itl [95% Conf. Interval]
------------- +----------------------------------------------------------------
PartNewContntl .961577 .4309369 2.23 0.028 .1070129 1.816141
PilotsPerVol I -.0086826 .0272509 -0.32 0.751 -.0627222 .0453571
AvgPrdctnVol I .003013 .0016337 1.84 0.068 -.0002267 .0062528
Arrangements i .0018019 .0095538 0.19 0.851 -.0171437 .0207475

Table 20: Regression results for the new content spike. The late change index is not included.

Robust standard errors. Product type dummy is not reported for brevity.

Linear regression Number of obs = 125
F( 19, 104) =
Prob > F
R-squared = 0.2061
Root MSE = .77401

Robust
CO Spike I Coef. Std. Err. t P>Itl [95% Conf. Interval]
------------- +------------------------------------------------------------------------

PartNewContntl 2.222084 .8640844 2.57 0.012 .5085726 3.935596
PilotsPerVol i .0506708 .0440519 1.15 0.253 -.0366857 .1380274
AvgPrdctnVol I .0050461 .0028855 1.75 0.083 -.000676 .0107681
Arrangements 1 -.0107383 .013085 -0.82 0.414 -.0366863 .0152096

Table 21: Regression results for the carryover spike. The late change index is not included.

Robust standard errors. Product type dummy is not reported for brevity.
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Essay 3: Problem Solving Dynamics of Multi-generation Products

Abstract
Although problem identification and resolution in project management and product development have
been studied extensively in the system dynamics literature, problems are formulated at the aggregate
level. However, heterogeneity is observed across problems, in terms of their importance and complexity,
and capturing this heterogeneity is essential to answering important policy questions related to field
problem-solving. In order to answer the policy questions using these factors, we built a simulation model
in which we represent each problem, defect, and failure as a separate entity. The model was used to test
the effectiveness of different prioritization policies, such as prioritizing carryover problems. Simulation
results show that prioritizing carryover problems demonstrates considerable potential to improve product
reliability. We also tested the impact of different information availability scenarios and problem
investigation policies on the reliability of products. We find that these policies do not have much impact
on product reliability.

1. Introduction

New product development and the quality of new products are central to corporate success.

Unfortunately, in most cases, product development teams fail to identify and solve all product problems

before the start of production. Therefore, problem solving activity continues after the start of production,

and this is called the field problem solving process. Field problem solving both improves and has a

stabilizing impact on the quality of products.

This paper focuses on the field problem solving process and makes two contributions to the existing

literature. First, we show that appropriate field problem solving policies can improve the quality of

products drastically. Most of the literature on product development focuses on problem solving at the

upfront stages of product development (Repenning, 2001; Thomke, 2003). Problem solving in the early

stages of product development is obviously very beneficial, but usually it does not solve all problems, and

field problem solving is needed to complement the product development problem solving processes.

Second, even though problem identification and resolution in project management and product

development have been studied extensively in the system dynamics literature, problems are formulated at

an aggregate level (Ford and Sterman, 1998; Repenning, 2001). However, heterogeneity is observed

across problems, in terms of their numbers of failures, and capturing this heterogeneity is essential to

answering important policy questions related to field problem solving.
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Figure 1: Cumulative percentage of failures vs. percentage of problems.

Data collected at a major motor vehicle manufacturer show that a relatively small fraction of problems

lead to the majority of failures. In Figure 1, 20% of the problems account for approximately 60% of the

failures. Therefore, firms must use resources efficiently to identify problems and choose the "right"

problems to solve. To answer important questions regarding which problem to solve next or which criteria

to use to identify problems, decision makers need to consider several factors related to problems.

Decisions regarding which problem to solve next depend on various factors, such as the expected number

of failures a problem is going to cause each month, the time during which it will remain in production,

and whether or not it will be carried over to the next generation. Essay 1 shows that for multi-generation

products, carryover problems remain in production for a much longer period than non-carryover

problems.

In terms of identifying real problems among potential problems, an important issue is deciding when an

engineer should investigate a problem. Investigating every problem after the first failure might result in

the waste of resources for many "false positives." On the other hand, waiting too long to investigate an

important problem might lead to the loss of valuable time. Therefore, setting an appropriate threshold for

the number of failures for identifying problems is an important policy issue.

Another issue related to problem identification is determining the frequency with which to update

expectations about the number of failures to which the problem will lead. Overly frequent updates may



waste engineers' time without substantial benefits, while too infrequent updates lead to decisions made on

less relevant information.

The factors mentioned above - such as the expected number of failures a problem may cause each

month, the time during which it will remain in production, whether it will be carried over or not, the

number of failures to date, and the operating hours until failure - vary widely across problems and also

change over time. In order to answer the policy questions using these factors, we built a simulation model

in which we represent each problem, defect, and failure as a separate entity. A problem is defined as a

flaw in the manufacturing process or in the design of a group of parts that leads to defects on multiple

vehicles. A defect is a part or group of parts in a single vehicle that will eventually result in a failure, but

has not yet resulted in a failure. A defect results in a failure after the vehicle is used by the customer for

some period of time. The model keeps track of all failures for each problem and uses this failure

information to estimate the number of expected failures that will be generated by each problem, if it

remains unsolved. In the following sections, we will describe the model and report simulation results.

Simulation runs include analysis of different prioritization, estimation, and investigation policies.

2. Model

Our model simulates the field problem solving process on multi-generation products (Figure 2). Unsolved

problems lead to defects, as vehicles are produced based on the Weibull distribution of operating hours

until failure. Defects lead to failures after a time delay, following which failure information is reported to

engineers. Engineers use this information to prioritize and solve problems. As the next generation of the

product is introduced to the market, some problems become obsolete, some are carried over to the next

generation, and some new problems are introduced. The fraction of problems carried over to the next

generation is a function of the fraction of newly designed parts and the number of carryover problems

solved before the introduction of the next generation.



Engineers
-Prioritize Problems

-Estimate Weibull
Parameters

New Product
Introduction

I New Problems

Vehicle
Population

Figure 2: Overview of the simulation model.

Figure 3 shows the reliability dynamics of a typical product at our research site. After the introduction

of the previous generation product, problem solving teams identify problems and improve product

reliability by solving those problems. When the next generation product is introduced, reliability

deteriorates initially, but then improves over time through the work of problem solving teams.

Failure
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Failure
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Figure 3: Defects per vehicle versus production date of products.

The problem solving process is shown in Figure 4. When a new problem is created, it has not yet failed.

As failures accumulate, an issue is created. These issues are investigated, and if the engineers decide that

the issue is worth being solved, the issue becomes a project. Newly created projects initially enter the

queue of pending projects and wait for resources. Resources are assigned to problems chosen from the

pending project list, and these projects are activated. If the engineers conclude that they found a fix to the

problem and implemented it, the project is closed. When the product transitions to the next generation,

non-carryover problems become obsolete and do not lead to further defects. Projects might be cancelled

during investigation, while they are pending problems, or after problem activation.

The following subsections describe important formulations in the model.



Figure 4: Statechart for problems

2.1 Defect Creation

A new problem starts in the "NoFailures" state and leads to defects, until it is resolved or becomes

obsolete. Defect creation and the occurrence of failures are modeled by assuming that the operating hours

until failure follow the Weibull distribution. The Weibull distribution is widely used in reliability

engineering to model hours to failure due to its flexible shape. The probability density function of the

Weibull distribution is:

............................................. ..............i.. ....................................................................



f(x;k,A2) = k jK e-(x /)k

for x > 0 and f(x; k, X) = 0 for x < 0, where k > 0 is the slope parameter and ? > 0 is the characteristic

value.

We used the Weibull distribution of each problem to introduce defects to some vehicles according to

the following algorithm: for each vehicle produced in a given month, we drew a random number for each

problem from the problem's estimated Weibull distribution of operating hours to failure. If the operating

hours to failure drawn for a vehicle-problem pair is within the maturity period of the product, then we

created a defect on that vehicle associated with that problem. The first 10,000 hours of operation is called

the maturity period of a vehicle. This is the period in which the majority of reported failures, more than

80%, occur. After 10,000 hours, failures are seldom reported, and hence, data are sparse. The defect

causes a failure when the vehicle reaches the operating hours to failure. To increase the computational

efficiency of the model, we do not keep track of vehicles in the model. Instead, the model tracks defects

and failures. The algorithm for the defect creation process in a given month can be summarized as

follows:1

For i=1 To "Vehicles produced this month"

For j= 1 To "Number of Problems"

Operating hours to Failure(ij)= Random number from Weibull(Slope(j),Characteristic

Value(j))

If

Operating hours to Failure (i,j)<Maturity period of product

Then

Create a defect that will fail after "Operating hours to Failure(i,j)"

This is the algorithm used for the first generation product of a problem. For subsequent generations, the "vehicles
produced this month" variable in the first for loop is replaced with another value, which will be explained later.



Else

Do nothing

Each problem has different parameter values for the Weibull distribution characterizing that particular

problem. The parameters of the Weibull distribution used in the model for each problem are estimated

using data from our research partner. We used the maximum likelihood method for estimation. If all

vehicles have failures associated with a problem, estimation is performed using failure data for all

vehicles, including the operating hours to failure for each vehicle. However, in many vehicles, a failure is

not observed. In those cases, information indicating that the vehicle has been in use to date and has not

failed is useful. These cases are called suspensions, in reliability engineering terminology. The maximum

likelihood estimation exploits both failure and suspension information to estimate the distribution of

operating hours to failure.

The likelihood function for cases that include suspensions is:

L = f f(x, k,A) [I - F(y,;k, A)]
i=1 j=1

where n is the number of failures, xi is the operating hours to the ith failure, p is the number of

suspended data points, yj is the operating hours to date of the jth suspension, and F(yj;k,k) is the

cumulative distribution function.

When a problem leads to a defect, a defect agent is created. There are three time delays before a defect

fails in the field and is reported: the sales delay, operating hours to failure, and the reporting delay.

Calendar months to failure for a defect is calculated as follows:

Hours to Failure
Sales Delay + + Reporting Delay

Operating Hours per Month of the Vehicle

The maximum likelihood analysis on data from our research partner showed that the Weibull

distribution is the best fitting distribution for sales delay and operating hours per month of the vehicle

(Appendix). Reporting of failures is done on a periodic basis by updating databases, so a failure that

occurs one day before the update has a very short reporting delay, whereas a failure that occurs one day



after the update must wait for the full reporting cycle. Therefore, we assumed that reporting failure is

distributed uniformly, with a minimum value of 0 and a maximum value that equals the length of the

reporting cycle. When a defect leads to a failure, a failure agent is created.

2.2 Issue Investigation

When the first failure occurs, a problem moves to the "HadFailures" state in the problem statechart

(Figure 4). After the third failure, an "issue" is created and the problem moves to the "IssueCreated" state.

Issues might be important problems, but the importance of an issue needs to be investigated to ensure that

it is a problem worth solving. Depending on the investigation results, the issue either becomes a pending

project and transitions to the PendingProject state, or it is cancelled because the engineer concludes that it

is not a real or sufficiently important problem and moves it to the Cancelled Investigated state. Data

analysis shows that the exponential distribution is the best-fitting distribution for investigation delays of

issues (Appendix 1).

As mentioned before, pending issues wait in a queue for resources. When an issue becomes a pending

problem, its Weibull parameters are estimated in the model.

2.3 Problem Prioritization and Project Activation

When an issue becomes a pending project, it is activated immediately if there is an available engineer to

work on the problem, and the problem moves to the Active Project state. If all engineers are busy working

on other problems, the problem is added to the queue of pending problems. An engineer picks a new

problem from the pending problems queue and starts working on it, as soon as the engineer finishes

working on a problem. Active projects are chosen from the pending problem list according to the

prioritization policy used. Prioritization of pending problems is an important policy question, and we

analyze different prioritization policies using the model. The following subsections explain the base

prioritization policy and our proposed prioritization policies in more detail.

2.3.1 Base Prioritization Policy

In the base prioritization policy, problems are ranked according to the regression results in essay 2. In

essay 2, we estimate the time between issue creation and project activation using survival analysis.



Survival analysis results show that such factors as problem complexity, score, subsidiary workload,

number of team members, number of plants involved in the problem, and average operating hours before

seeing failures significantly influence the time to activate problems. Even though it is a mix of several

factors, essay 2 shows that the overall tendency is to choose problems that will be solved in shorter

periods of time. Survival analysis results also yield the hazard function for problems. The hazard function

is the probability that the project is activated at time t, given that it was not activated until time t.

Therefore, at any given time, we can compute the hazard function of each problem, given the

specification of the regression model in essay 2, and significant factors that influence the hazard. We use

these values to rank problems in the base case scenario. When an engineer becomes available, she

chooses the problem with the highest rank.

2.3.2 Using Carryover Information for Prioritization

Note that the base policy does not consider the carryover benefits of solving a problem. In policy 1, we

take the carryover benefits of solving a problem into account to prioritize problems. Problems are ranked

according to the expected failures that will be prevented by solving the problem, including the carryover

benefits in Policy 1.

Expected failures that will be prevented by solving the problem is equal to the expected number of

failures that will be created per month, if the problem is not solved, multiplied with the benefit period of

solving the problem.

ExpFailures = ExpFailuresPerMonth * BenefitPeriod (1)

ExpFailuresPerMonth: Expected monthly number of failures that will be created if the problem is not

solved.

BenefitPeriod: Period in which solving the problem will have an impact

The number of expected failures per month equals the defect rate multiplied by the expected fraction of

vehicles that will fail unless the problem is solved. However, there cannot be more failures than vehicles,

so the number of failures per month is capped at production rate. The defect rate will be explained later in

the discussion of the carryover spike.



ExpFailuresPerMonth=Min(ProdRate,DefectRate*ExpFractionOfFailure)

The expected fraction of vehicles that will fail is equal to the probability of having a failure on a

vehicle. This is equal to the probability of having an operating hours to failure value smaller than the

maturity period. This probability is the Weibull cumulative distribution function value at the maturity

period. Note that in this section, we use the actual values of the parameters of the Weibull distribution.

We will explain the case in which estimated Weibull parameters are used in Section 2.3.4.

MaturityPeriod ActualSlope

ExpFractionOfFailure = 1- e ActualCV

The benefit period is the time during which defective products will be built if the problem is not solved.

For carryover problems, this period covers the time until the end of production for the next generation,

which equals the time until the end of this generation, plus the entire production cycle time of the next

generation. However, problems are not solved instantaneously, so we subtract the median time to solve

problems.

BenefitPeriod=Max(O,TimeBetweenTwoGenerations-NextTransitionTime-CurrentTime-

MedianProjectCompletionTime)

During the product development project, engineers learn which problems will be carried over to the

next generation only after the release of the bill of materials for the next generation product. Therefore, in

the model, engineers can only use the carryover information for prioritization after the release of the bill

of materials and before the introduction of the next generation product. Before the release of the bill of

materials, they do not know which problems will be carried over, and the benefit period does not include

TimeBetweenTwoGenerations for carryover problems. Obviously, the BenefitPeriod for non-carryover

problems does not include the time between two generations in any situation.

NextTransitionTime: Introduction date of next generation product

CurrentTime: Current date

MedianProjectCompletionTime: Median time it takes to solve a problem



Note that the time to solve a problem is different for each problem. We assume that this follows the

Weibull distribution, since Weibull was the best-fitting distribution according to our data analysis results

(Appendix).

We will test the impact of implementing this policy with our simulation model. By using carryover

information and considering the longer benefit period of carryover problems, this policy might prefer a

carryover problem with fewer expected failures per month, rather than a non-carryover problem with

more expected failures per month. However, it is not certain that this policy will lead to fewer defects,

due to the dynamic and stochastic nature of the problem solving process. Suppose only two problems

exist - Problem A and Problem B. Engineers can solve only two problems before the end of production

for this generation, but only one problem can be solved at a given time. Problem A leads to twice the

number of failures per month as Problem B does. However, Problem B is a carryover problem, and its

benefit period is three times that of Problem A. Solving both problems will take the same amount of time.

If engineers can be certain that another problem will not emerge, solving Problem A first, even though it

is not a carryover problem, is the better choice, since it will prevent more problems due to its higher

failure rate per month. Since there are sufficient resources to solve Problem B before the end of

production for this generation as well, they will also be able to reap the long term benefits of solving

Problem B, which is a carryover problem. However, unlike this example, real world problems cannot be

predicted and may emerge unexpectedly. While engineers may start solving Problem A or Problem B,

other problems that will dominate both Problem A and Problem B might emerge directly before the

chosen problem is solved, and engineers will not be able to solve the problem that is not initially chosen

from the set of Problems A and B. In that case, solving Problem B instead of Problem A is more

beneficial, since this offers greater overall benefits compared to Problem A. As demonstrated by this

example, the policy of using carryover information for prioritization is not necessarily beneficial in all

cases. Therefore, we will use the simulation model to analyze whether this policy will lead to fewer

defects.



2.3.3 Solving Carryover Problems for Only the Next Generation

In this policy, engineers are given the option to solve problems for the next generation only. If they prefer

to do so, fixes for the problems are designed and implemented for only the next generation, not for the

current generation. The advantage of this policy stems from the decreased effort in designing and

implementing the fix. Since the fix does not need to take into account the design of the current generation,

engineers will have a greater degree of freedom in designing the fix. A change in the current generation

requires designing the fix so that it functions well with the interacting parts of the current generation,

which is challenging, since the current generation is already in production. This might even lead to a

redesign of the interacting parts of the current generation or changes in manufacturing processes.

Designing the fix for only the following generation will be easier, especially if the next generation's

design is not complete, since engineers will have fewer constraints. Based on interviews with expert

reliability engineers, we assumed that the policy of fixing carryover problems for only the next generation

would lead to a 25% reduction in the time required to solve problems. Experts told us that approximately

half of the time is spent on problem identification and root cause analysis, which would be the same in

both cases. However, they estimated a 50% reduction in the actual problem solving activity, resulting in a

25% reduction in the time necessary to solve the problem. The obvious disadvantage of this policy is that

it will not improve the reliability of the current generation and hence the benefit period will be shorter.

The benefit period when a problem is solved for only the next generation is:

BenefitPeriod=Max(O,TimeBetweenTwoGenerations+min(O,NextTransitionTime-CurrentTime-

MedianTimeToSolveProblemsForOnlyNextGeneration))

If the MedianTimeToSolveProblemsForOnlyNextGeneration is longer than the time remaining until the

next generation, the benefit period will be less than the TimeBetweenTwoGenerations. However, if the

MedianTimeToSolveProblemsForOnlyNextGeneration is less than the time remaining until the next

transition, the benefit period equals the time between the two generations.

If the option of solving problems for only the next generation is allowed, this option is compared to

solving the problem for both the current generation and next generations in a longer period of time. If the



ratio of "expected failures" to "expected time to solve" of the next generation solution only is greater than

that of solving the problem for both generations:

ExpFailures(ForNextGenerationOnly) > ExpFailures(ForBothGenerations)

ExpTimeToSolve(ForNextGenerationOnly) ExpTimeToSolve(ForBothGenerations)

then engineers will prefer solving this problem for only the next generation; the corresponding benefit to

the time to solve ratio will be used to run the problem at hand against other problems. If this ratio is

ranked highest among all pending problems, then the problem will be solved for only the next generation

product. In that case, the problem will transition from the PendingProject state to the ActiveNPDProject

state in Figure 4.

2.3.4 Estimation of Weibull Parameters

In this section, we describe the procedure used in the model to estimate the parameters of the Weibull

distribution for hours to failure of each problem. The maximum likelihood and ranked regression are two

popular methods used for estimating parameters of a Weibull distribution. Both of these methods are used

by our research partner. The maximum likelihood is useful for problems with many suspensions, but it is

not recommended for samples with a small number of failures, and it is computationally more time-

consuming than ranked regression. Due to the relatively small number of failures of problems and the

computational intensity of the maximum likelihood method, we used the ranked regression method in the

model.

In this model, we estimate the Weibull parameters of all pending problems when they become a

pending project, then update those estimates every simulated month. We also report simulation results, in

which we compare monthly update results to the no update policy, as well as the case in which the true

parameter values are used for analysis.

The next subsection describes the ranked regression procedure used in the model.

2.3.4.1 Ranked Regression for Estimating Weibull Distribution Parameters of Problems

This section explains how we implement the ranked regression estimation for Weibull parameters of

problems in the simulation model. Let us assume that we have f failures out of N operating vehicles in



total. The ranked regression method uses the "ranks" of failed vehicles' hours to failure within the entire

vehicle population. We first rank all data points according to the total hours of operation - in other words,

we use "hours until failure" for failed vehicles and "total operating hours to date" for vehicles that did not

fail, namely suspensions.

This method requires that the simulation model keep track of the ranks of all produced vehicles to

compute the ranks of suspensions. Creating a separate agent for each produced vehicle, regardless of

whether the vehicle fails, considerably slows down the simulations. Therefore, we used an approximate

method to run the model without creating agents for vehicles that did not fail. In this method, we

approximate the ranks of failed vehicles by using the distribution of operating hours per month for all

vehicles and the distribution of the sales delay. F0 is the cumulative distribution function of operating

hours per month. Suppose that a defect on a vehicle called FailedVehicle failed at FailureTime hours of

operation at month FailureMonth. Our goal is to find the overall rank of FailedVehicle in terms of hours

to failure out of all vehicles in the sample. We know the HoursToFailure on all failed vehicles, and we

know the ranking of FailedVehicle among other vehicles with failures. We use the approximation for

finding its ranking compared to vehicles without failures. Assume that production started in month 0 and

that the production rate is constant and equal to ProductionRate. At month FailureMonth, non-failed

vehicles produced at month 0, whose operating hours per month are less than FailureTime/(FailureMonth-

Median Sales Delay), have a lower rank than FailedVehicle. Similarly, vehicles produced at month 1,

whose operating hours per month are less than FailureTime/(FailureMonth- 1-Median Sales Delay), have a

lower rank than FailedVehicle, and so on. Since we know the distribution of operating hours per month,

we find the overall rank of FailedVehicle, mj, by running the following loop:

mj =1+ Number of Failures with Hours To Failure less than FailedVehicle's Hour To Failure

For(i = 0;i < FailureMonth;i++)

{

mj = mj + ProductionRate * (1 -f/N)*F(FailureTime / (FailureMonth - i -MedianSalesDelay))



We multiply ProductionRate by (1-f/N) to obtain the number of vehicles without failures.

Since suspensions have accumulated operating hours but have not failed, there is a chance that they will

fail in the future and will change the ranking of failed vehicles. Therefore, we need to adjust the rankings

for failed vehicles, by taking into account the possibility of suspensions to fail. The following equations

are used to adjust the rankings of failed vehicles (Mathpages, n.d.):

r(O) = 0

N +1 -r(j-1)
r(j)= r(j -1) + N +- ( -1)

N+1-(mj -1)

j= 1,2,3,...,f

where:

r(j): adjusted rank ofjth failure

N: total number of vehicles (both failed and suspensions)

f: total number of failed vehicles

j: ranks of failed vehicles, in terms of hours to failure within failed vehicles

mj: overall ranks of failed vehicles, compared to hours to failure for failed vehicles and operating

hours to date for suspensions.

Once we adjust the ranks of failed vehicles, we run a linear regression to estimate the two parameters of

the Weibull distribution, namely the slope parameter (k) and characteristic value (k), using data from all

failures. The following equations are used to estimate the Weibull parameters.

fyjvj - yj v
j=1 j=1 j=1

k= 2

j=1 j=l



A=

where:

yj = ln(xj)

xj = operating hours to jth failure

S= r(j)-0.3

N+0.4

2.4 Problem Solving

When a pending problem is assigned to an engineer, it moves from the "PendingProject" state in Figure 4

to the "ActiveProject" state, if it is to be solved for both the current and the next generation. If the

problem is to be solved for only the next generation, it moves to the "ActiveNPDProject" state.

We use regression results from essay 2 to assign the project completion time of each problem. Essay 2

shows that factors related to problem complexity and importance influence the project completion time.

However, as in most regressions, these factors do not explain the entire variation in project completion

times. Hence, we use the values of significant factors for each problem in combination with the regression

coefficients to determine the project completion time of each problem, but we also add randomness to the

project completion time, based on our data analysis.

It takes less time to solve a problem in the "ActiveNPDProject" state than in the "ActiveProject" state.

The ratio of time to solve the problem for both generations to solving it for the next generation only is as

follows:

ratioFixBothGensNPDFi Pr ojectCompletionTimeBothGens
ratio FixBothGens NPDFix =

Pr ojectCompletion TimeNPDFix

When a project is solved for both generations and moves to the "ResolvedProject" state, it immediately

stops creating defects. On the other hand, if a problem moves to the "ActiveNPDProject" state in a



product generation and the problem is solved before the end of that product generation, it moves to the

"ResolvedNPDProject" state and continues to create defects until the end of that generation. This occurs

because the fix is effective for the next generation product. At the end of that generation, the problem

moves to the "ObsoleteProject" state and no longer leads to defects. However, if the engineer started

working on the problem during the production of generation x and solved the problem after the

production of generation x+1 commenced, the problem moves to the "ObsoleteProject" state, and the fix

becomes effective immediately. In that case, the problem stops leading to defects, since the engineer has

solved the problem for generation x+l.

2.5 New Generation Introduction

When a new generation is introduced, some problems are carried over to the new generation, some

become obsolete, and some new problems are created. The number of problems carried over depends on

the fraction of new parts in the next generation, and the number of carryover problems solved before the

introduction of the next generation. As generation x is introduced, we label some problems to be carried

over to generation x+l, unless they are solved before the introduction of generation x+l. If generation

x+1 involved no new parts, all unsolved problems at the end of generation x would be carried over. If all

parts of generation x+l1 were new, all of its problems would be new. Therefore, we assumed that the

probability of a problem to be carried over to the next generation is a function of the fraction of carryover

parts.

P(problem(i) will be carried over to the next generation) = Fraction of Carryover Parts = 1 - Fraction

of New Parts

A carryover problem that is not solved until the end of generation x is carried over to generation x+1,

when generation x+1 is introduced.

2.5.1 Carryover Spike

Empirical results shown in Essay 2 demonstrate that carryover problems result in more failures in next

generation products; this phenomenon is called the carryover spike. We modified the defect creation

algorithm to capture this finding. The number of random variables drawn from the Weibull distribution



for defect creation in Section 2.1 was changed to defect rate, instead of vehicles produced per month. The

defect rate is equal to the production rate when a new problem is introduced. However, if that problem is

carried over to next generation, the defect rate of the problem becomes:

defectrate=carry_over spike*defectrate

Note that the defect creation algorithm caps the number of failures at the number of vehicles produced

each month.

Data analysis shows that the carryover spike is primarily caused by manufacturing and assembly related

issues, and these problems are solved by plant employees outside of the scope of field problem solving.

On average, the carryover spike's impact vanishes in three years. Therefore, we reduce the impact of the

carryover spike linearly over time and reduce its impact to zero in three years.

The carryover spike is a function of the fraction of new parts. If there are no new parts, the carryover

spike would equal 1, corresponding to no change in the failure rate of carryover parts. As new content

increases, however, the carryover spike also increases. The sensitivity of the carryover spike to new

content is found in essay 2.

carry_overspike= 1 +sensitivity_of carryover spike tonewcontent*newcontent

2.5.2 New Problems

In addition to carryover problems, a new generation also encounters new problems. We assumed that the

number of new problems introduced increases linearly, as the fraction of new parts increases. The fraction

of carryover parts and new parts add up to 1, so as the fraction of new parts increases, the fraction of

carryover parts decreases.

New Problems = Fraction of New Parts * Problems of a Completely New Product

When a new problem is introduced in the simulation model, a problem is randomly chosen from the

actual data set of problems and its Weibull parameters are assigned to the new problem created in the

simulation model.



2.5.3 Problems Becoming Obsolete

When the next generation product is introduced, non-carryover problems become obsolete. An obsolete

problem stops creating defects immediately.

2.5.4 Using Previous Generation's Failure Data to Predict the Importance of Problems Carried

over from the Previous Generation

As shown in essay 1, a new generation product contains carryover parts with problems that were not

solved before the introduction of the new generation. In addition, failures may occur on carryover parts of

a previous generation vehicle after the introduction of the new generation. Typically, these are the

problems resulting in failures after extremely long time delays. In this section, we will describe a policy

that aims to use failure information from the previous generation vehicles to estimate the future of the

current generation. Since these problems cause failures after a substantial time delay, it will be too late if

engineers wait until failures are observed in the new generation. This policy aims to solve these problems

as soon as possible, even if they have not yet caused failures in the current generation.

Under this policy, when a next generation product is introduced, all problem agents that are carried over

continue as open problems; defect and failure agents are kept in memory if this policy is implemented.

Failures of both the current generation and the preceding generations are used to estimate the Weibull

parameters of the problem. This method increases the accuracy of Weibull parameter estimates, especially

during the early phases of the next generation product, when there are few next generation failures upon

which to run the Weibull analysis. If the policy is not implemented, a new problem that has identical

parameters to the previous problem, except the defect rate and carryover, is created. The defects and

failures of the previous problem are not transferred to the new problem.

Data from our research site reveal that this policy increases the amount of available information

immensely. Figure 5 shows failure data for identical parts in two successive generations. The blue curve

shows the information available from the previous generation. The pink curve shows the information

available from the new generation. The red curve is the combined failure information from the two



generations. The combined information is much richer and provides much more abundant data, compared

to second-generation information only.

Cumulative Failures

Cumulative failures
of both generations

Cumulative failures of
previous generation

Cumulative failures of
next generation

0
Time (month)

Figure 5: Cumulative failures of two successive generations of a product. The blue curve represents the

previous generation, and the pink curve represents the next generation. The red curve represents the total

failures of the two generations.

Not considering the previous generation's information regarding carryover parts corresponds to using

only the failure data, indicated by the pink curve, to estimate the Weibull parameters of problems. On the

other hand, using information from both the previous generation and the new generation corresponds to

using the failure data, as shown by the red curve. Figure 5 shows that the difference in information

availability is dramatic.

3. Simulation Results

We ran the simulation model using parameter values obtained from a representative product for 250

months. A new generation is introduced once every 50 months. Note that problems are not cancelled in

our simulation runs, since cancellations do not influence our policy questions. We first present the results

of different prioritization scenarios, in combination with the policy of using the previous generation's

failure data to predict the importance of problems carried over from the previous generation. Then, we

.. ............... ... ..........



analyze the impact of having perfect information of Weibull parameters versus the boundedly rational

case of estimating Weibull parameters, using failure data (Morecroft, 1983). Finally, we analyze different

investigation policies, in which we test the impact of using different threshold levels for the number of

failures to start investigating a problem.

3.1 Prioritization Policy Analysis

In the previous sections, we described different prioritization policies, such as using carryover

information for prioritization and having the option to solve problems for the next generation only. We

first analyze the case of not implementing either of these two policies. Then, we implement the policy of

using carryover information for prioritization. If carryover information is not used for prioritization, it is

not possible to have the option of solving the problem for only the next generation. Hence, we do not

implement the scenario of solving the problem for only the next generation by itself. We implement this

together with the policy of using carryover information for prioritization. Then, we compare these policies

to the case of choosing the problem with the maximum number of problems to date. Note that this policy

neither uses the Weibull estimation nor considers the future benefits of solving a problem. Next, we

analyze the case in which problems are chosen randomly. We also analyze these policies in combination

with the policy of using the previous generation's failure data to predict the importance of problems

carried over from the previous generation. Except the case of choosing problems randomly or choosing

the problem with the highest number of failures, Weibull parameters are estimated using ranked

regression, and estimates are updated every month. The investigation of problems starts after the third

failure.

In the base case, none of the policies are implemented, and the number of total defects in this scenario

is the benchmark. Figures 6 and 7 show the numbers of defects and failures, respectively. After the

introduction of a new generation, problem solving efforts start to reduce the number of defects. Then, a

new generation is introduced, and reliability deteriorates, due to the introduction of new problems and the

carryover spike. The reason that the initial number of defects is higher for the second generation,



compared to the first generation, lies in the carryover spike. After the second generation, the system is in

equilibrium, which is consistent with our data analysis.

Figure 6: Number of defects created. None of the prioritization policies are implemented. Graph shows

maximum, minimum, and average values of simulation runs.

Figure 7: Number of failures. None of the prioritization policies are implemented. Graph shows

maximum, minimum, and average values of simulation runs.

Simulation results of all scenarios are presented in Table 1. Using carryover information for

prioritization reduces the number of defects by 12%. When combined with the option to solve problems

Defects

1 26 51 76 101 126 151
Months

Failures

151 176 201 226 2511 26 51 76 101 126
Months

............................................ .................. .... ... ..........

176 201 226 251



for the next generation only, the total reduction in defects increases to 17%. Interestingly, using carryover

information from the previous generation increases the number of defects by 5%. However, when this

policy is combined with the policies of using carryover information for prioritization and having the

option to solve problems for the next generation only, the combined benefit of the three policies is a 25%

reduction in defects, showing that there are synergies. This is a drastic improvement in quality obtained

without increasing resources.

Table 2 shows that the base case scenario reduces the number of defects by only 11% compared to

choosing problems randomly. The policy of choosing the problem with the maximum number of failures

leads to a 14% improvement, with respect to the base case. This is a smaller improvement when

compared to the 25% reduction in the case of implementing our proposed policies.

Use Have the Use Carry
Carryover Option to Over Total

Information Solve for Next Information Defects in
For Generation From Previous Weibull Parameter 250

Prioritization Only Generation Estimation Months
Ranked Regression

No No. No Monthly Update 100%
Ranked Regression

Yes No No Monthly Update 88%
Ranked Regression

No No Yes Monthly Update 105%
Ranked Regression

Yes Yes No Monthly Update 83%
Ranked Regression

Yes No Yes Monthly Update 78%
Ranked Regression

Yes Yes Yes Monthly Update 75%
Table 1: Total defects created in 250 simulated months by different prioritization scenarios. All policies

are significantly different than the base case scenario, with significance levels of less than 10-4.



Have the
Use Option to

Carryover Solve for Use Carry Over Total
Information Next Information Other Weibull Defects

For Generation From Previous Prioritization Parameter in 250
Prioritization Only Generation Policy Estimation Months

Ranked
Regression

Monthly
No No No No Update 100%

Choose
Problems

No No No Randomly N/A 111%
Choose the

Problem With
Maximum

No No No Failures N/A 86%
Choose the

Problem With
Maximum

No No Yes Failures N/A 91%
Ranked

Regression
Monthly

Yes Yes Yes No Update 75%
Table 2: Total defects created in 250 simulated months by different prioritization scenarios. All policies

are significantly different than the base case, with significance levels of less than 10-'.

These results show that combining the policy of using carryover information from the previous

generation with the policies of using carryover information for prioritization, in addition to having the

option to solve problems for the next generation only, leads to substantial benefits. The difference

between this scenario and the base case is shown in Figure 8.
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Defects

-- -- Policies
Implemented

S- Base Case

1 26 51 76 101 126 151 176 201 226 251

Months

Figure 8: Number of defects under the base scenario and the case of implementing the policies

When the model is run for much longer periods (e.g. 3000 months), the base case scenario remains in a

steady state, whereas the number of defects created when policies are implemented continues to decrease

beyond 250 months and then reaches a steady state. Therefore, at steady state, the difference between the

base case and the policies is greater, but since the simulation is started using real data and the current

horizon of 250 months is already a very long time period, using the steady state results is not realistic.

3.2 Bounded Rationality and Information Availability

In this section, we analyze the impact of the availability of different levels of information on the number

of defects. In the previous section, Weibull parameters of problems are estimated using failure data, and

the parameter estimates are updated every month. To understand the impact of update frequency on the

number of defects, we also report simulation results in which the estimates are performed once, when the

problem becomes pending and never updated. We also analyze the other extreme case, in which engineers

know the actual Weibull parameter values of problems as soon as the problems become pending. We

simulate these three cases by implementing the three policies of using carryover information from the

previous generation, using carryover information for prioritization, and having the option to solve

problems for the next generation only.
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Table 3 shows that updating the Weibull parameters every month leads to an 8% reduction in defects,

compared to not updating them at all. Using actual Weibull parameters reduces the number of defects by

another 5%. However, this is not a realistic case, since it is almost impossible to know the actual Weibull

parameters. Therefore, updating Weibull parameters monthly obtains a significant part of the potential

gains of possessing perfect information.

Use Have the Use Carry
Carryover Option to Over Total
Information Solve for Next Information Weibull Defects
For Generation From Previous Parameter in 250
Prioritization Only Generation Estimation Months

Ranked
Regression

Yes Yes Yes Estimate Once 100%
Ranked

Regression
Yes Yes Yes Monthly Update 92%

Actual Weibull
Yes Yes Yes Parameters 87%

Table 3: Impact of information availability on the number of defects. Prioritization policies are

implemented.

3.3 Impact of investigation policies on the number of defects

In the base scenario, problems are investigated after they accumulate three failures. In this section, we

analyze the impact of different threshold levels on the number of defects. Having a low threshold speeds

up the process of investigating important problems and puts them into the queue of pending problems

faster. This, in turn, might lead to faster solutions for important problems and fewer defects caused by

important problems. However, a low threshold also allows problems of less significance to become

pending problems. Especially during the early phases of the lifecycle of a generation, when most

problems have very few failures, a low threshold might increase the probability of solving a problem with

limited importance.

To analyze the impact of this tradeoff on the number of defects, we ran the model with different

threshold levels. In all simulations, prioritization policies are implemented, Weibull parameters are

estimated with ranked regression, and the estimates are updated monthly. Since ranked regression
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requires at least 2 data points for regression, the minimum threshold level is 2. We ran simulations with

threshold values between 2 and 10. Table 4 shows the simulation results.

Use Have the
Carryover Option to Use Carry Over Total
Information Solve for Next Information From Threshold Defects
For Generation Previous for in 250
Prioritization Only Generation Investigation Months
Yes Yes Yes 2 100%

Yes Yes Yes 3 98%
Yes Yes Yes 4 98%
Yes Yes Yes 5 96%
Yes Yes Yes 6 98%
Yes Yes Yes 7 98%
Yes Yes Yes 8 99%
Yes Yes Yes 9 100%
Yes Yes Yes 10 101%

Table 4: Number of defects with different threshold levels for investigation. Weibull parameters are

estimated with ranked regression, and estimates are updated monthly.

Overall, there is not much variation between different threshold levels. Investigating problems after 10

failures leads to the highest number of defects. A threshold of 5 failures leads to the lowest number of

defects, reducing the number of defects by 2%, compared to the base case scenario of a threshold level of

3. However, these results are very close to each other, demonstrating that the threshold policy does not

have much impact on the number of defects.

We also analyzed the impact of different threshold levels by using actual Weibull parameters for

prioritization. This scenario eliminates the possibility of choosing less important problems, due to

estimation errors, and favors lower thresholds. Since we do not use ranked regression in this case, the

minimum threshold level is 1. A threshold level of 1 leads to a minimum number of defects (Table 5).

The number of defects increases as the threshold increases, and the spread between the minimum and

maximum numbers of defects is much bigger in this case.
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Have the Use Carry
Use Option to Over

Carryover Solve for Information Total
Information Next From Threshold Weibull Defects

For Generation Previous for Parameter in 250
Prioritization Only Generation Investigation Estimation Months

Yes Yes Yes 1 Actual Values 100%
Yes Yes Yes 2 Actual Values 103%
Yes Yes Yes 3 Actual Values 103%
Yes Yes Yes 4 Actual Values 104%
Yes Yes Yes 5 Actual Values 107%
Yes Yes Yes 6 Actual Values 107%
Yes Yes Yes 7 Actual Values 109%
Yes Yes Yes 8 Actual Values 109%
Yes Yes Yes 9 Actual Values 111%
Yes Yes Yes 10 Actual Values 112%

Table 5: Number of defects with different threshold levels for investigation. Actual Weibull parameters

are used for prioritization.

3.4 No resource constraint

We simulated the model with no resource constraints. In this case, the investigation of problems starts

after one failure, and the investigation delay is equal to 0. A problem becomes activated as soon as the

first failure is observed. The distribution of the time to solve problems is the same as in other simulation

runs. Under this scenario, the time between the creation of a problem and its solution is equal to the time

delay before the first failure, plus the time to solve the problem. A comparison of the total number of

defects created in 250 months reveals that this scenario reduces the number of defects by 66%, compared

to the base case in which there are resource constraints and prioritization policies are not implemented.

When compared to the resource constrained case in which policies are implemented, the reduction in the

number of defects is 44%.

Simulation results are shown in Figure 9. In the first generation, the number of defects decreases

substantially. However, it does not drop to 0, since some problems did not have 3 failures until the end of

the production. In the following generations, new problems also increase the defect rate when a new

generation is introduced, and they then are solved quickly.

104



Figure 9: Simulation results with no resource constraints compared to resource constrained scenarios.

3.5 No carryover spike

We tested the impact of the carryover spike on a number of defects by setting the carryover spike to 0.

Figure 10 shows the results of the scenarios with and without spikes. In both scenarios, all three policies

are implemented. Eliminating the spike leads to a 6% reduction in the total number of defects. When

policies are not implemented, eliminating the spike leads to an 8% reduction in defects.

Defects

N 

4

51 76 101 126 151
Months

__ Carryover
Spike -
Policies
Implemented

- --- No Carryover
Spike -
Policies
Implemented

176 201 226 251

Figure 10: No carry-over spike scenario versus the carry-over spike scenario. All three policies are

implemented in both cases.
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Next, we analyze the impact of implementing the policies on the number of defects under the no spike

case. Eliminating the spike leads to a minor reduction in the effectiveness of the three policies, but the

policies still have considerable impact. Figure 11 shows the impact of implementing the three policies

under the no carryover spike scenario. Policies reduce the total number of defects by 24%. Their impact

was 25% with a carryover spike.

Defects

No Carryoer
Sr- Spike-

S "- I I " Policies
. - , Implemented

--- No Carryover
Spike -
Policies Not
Implemented

1 26 51 76 101 126 151 176 201 226 251

Months

Figure 11: Impact of implementing the three policies under the no carryover spike scenario.

3.6 Fraction of New Parts

We simulated the model with different levels of fractions of new parts. In the base simulations, that

fraction is 0.3. We also simulated the model with new parts fractions of 0.15 and 0.45. Figure 12 shows

simulation runs in which all three policies were implemented. The total number of defects increases as the

fraction of new parts increases.
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Figure 12: Simulation results with 15%, 30%, and 45% new parts. All three policies are implemented in

all runs.

As the fraction of new parts increase, the effectiveness of the policies decreases slightly. Implementing

the policies, versus not implementing them, leads to a 30% improvement in the 15% new parts case, a

25% improvement in the 30% new parts case, and a 24% improvement in the 45% new parts case. As the

fraction of new parts decreases, the fraction of carryover parts increases and carryover policies become

more effective.

3.7 Additional Resources

In this section we analyze the impact of additional resources on the cost and benefit of the field problem

solving process, by increasing the amount of resources by 10%. The estimated warranty benefit is the

difference between the number of defects multiplied the average warranty cost of a failure. However, the

warranty cost does not represent the overall cost to the enterprise, since it does not capture the impact of

unreliability on price and sales. We present the cost/benefit analysis for both metrics. On the other hand,

the cost is estimated by multiplying the number of solved problems by the average cost of solving a

problem. To preserve the confidentiality of our research partner, we do not provide those numbers in this

paper.
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The warranty benefits/cost ratio of increasing the number of engineers by 10% is less than 1 for both

the base case and the case in which all three policies are implemented. Therefore, warranty benefits do

not justify additional resources. However, the overall benefits/cost ratio is equal to 1.56, and this metric

justifies additional resources.

4. Conclusion

We presented a disaggregated model that simulates failure creation, investigation, and prioritization

processes at the level of an individual problem. The model was used to test the effectiveness of different

prioritization policies regarding carryover problems. Simulation results show that implementing those

policies leads to a 25% reduction in the number of defects over 250 months. Other policies, such as

solving the problem with the maximum number of failures, also reduce the number of defects, compared

to the base case, but they are not as effective as our policies.

We also tested the impact of different information availability scenarios and problem investigation

policies on the reliability of products. Our results show that updating the Weibull estimates of problems

monthly obtains a significant fraction of benefits yielded by perfect knowledge of Weibull parameters.

Finally, simulation results reveal that the number of failures to start investigating a problem does not

greatly impact product reliability.

These policies use several information cues regarding problems, such as complexity, importance,

number of failures to date, hours until failure of those failures, whether the problem is going to be carried

over, whether it is carried over, and so on. Unlike aggregated models in system dynamics literature, our

disaggregated model enables us to answer policy questions that use all these information cues.
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Appendix: Best-fitting distributions for sales delay, operating hours per month of the vehicle, and

investigation delay.
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Figure 13: Weibull probability plot for sales and shipping delay

9999

091 5 10 25 50 75 90 95 99 99 99.99

Figure 14: Weibull probability plot for operating hours per month for vehicles.
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Figure 15: Exponential probability plot for investigation delay.
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Figure 16: Weibull probability plot for time to solve problems.
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