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Abstract

Smoothed Particle Hydrodynamics (SPH) is a simple and attractive meshless La-
grangian particle method with applications in many fields such as astrophysics, hy-
drodynamics, miagnetohydrodynamics, gas explosions, and granular flows that has
demonstrated ability to simulate highly non-linear free-surface flows including wave
overturning, jets, and the formation of spray and droplets. Despite the increasing
popularity and promise of the method, SPH has a number of key issues that must be
overcome before the method can realize its full potential in scientific and engineering
applications: it is of low order, requires a high degree of tuning, and is inherently
unstable. Additionally, there exists little analytic basis or fundamental understanding
of the method to guide the many ad-hoc tuning and empirical fixes.

The objective of this thesis is to perform an analytical and numerical investigation
of the SPH method for free-surface flows. To this end, we perform a quantitative,
unified analysis of the numerical method and the physics it captures, and we assess
the method's consistency, stability, and convergence. It is shown that SPH introduces
spurious solutions dominant in the dynamics of the solution making quantities such as
velocity and pressure essentially unusable without filtering. It is also shown that the
method is consistent inside the domain but imposes spurious, leading order, dynamic
free-surface boundary conditions which alter the flow and further permit the intro-
duction of spurious solutions. We further extend the analysis to address the effects
of different empirical SPH treatments introduced in the literature, classifying these
respectively as accuracy, consistency, or stability treatments, and characterizing their
effectiveness. Based on the findings of the analysis, we eliminate the tuneable and em-
pirical nature of the method by providing rational guidelines for the usage and effects
of the relevant SPH treatments. Finally, we propose a modified SPH method that
maintains the key features of SPH and significantly reduces spurious errors present
in current SPH implementations.

This thesis is among the first to provide a unified systematic analysis of the SPH
method, shedding insight into the many proposed variations and fixes, and informs
and guides new rational improvements to the method. This work lays the foundation



for the development of SPH as a valuable engineering tool in the study of violent
free-surface flows.

Thesis Supervisor: Dick K.P. Yue
Title: Philip J. Solondz Professor of Engineering
Professor of Mechanical and Ocean Engineering, MIT
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Chapter 1

Introduction

1.1 Motivation

There is strong engineering and scientific interest in studying violent free-surface

flows, since such flows yield the highest hydrodynamic loads on marine structures and

vehicles [16], play a dominant role in the evolution of coastlines [11], and enhance gas,

heat and energy transfer between the ocean and the atmosphere [31].

However, violent free-surface flows remain poorly understood, as they are highly

non-linear, transient, multi-scale, two-phase processes, involving multiply connected

regions of air and water, rendering them practically intractable to mathematical anal-

ysis. In addition, they are of low experimental repeatability, highly oscillatory due to

the air compressibility, and with unknown spatial and temporal scaling [16, 28, 31].

Advances in modern computers are establishing numerical methods as indispens-

able tools in the study of hydrodynamics. The existing numerical methods for the

simulation of macro-scale free-surface flows are well established [22, 23]. In contrast,

numerical methods for the simulation of complex meso-scale phenomena, such as wave

overturning, jet. spray, and droplet formations, and evolution of multiply connected

regions of air and water, are an active area of research. Development of such meso-

scale simulation methods is of significance importance in understanding meso-scale

phenomena and eventually complementing the macro-scale methods in the simulation

of larger-scale violent free-surface flows.



The main requirement for these meso-scale simulation methods is robustness in

simulating free-surfaces of arbitrary complexity, which is a key property of mesh-

less methods. Among existing meshless methods, the mature numerical simulation

method Smoothed Particle Hydrodynamics (SPH) [5, 7] has proven over the past

three decades that it can simulate robustly multi-scaled free-surfaces of arbitrary

complexity. In addition, it is remarkably simple to program and highly efficient [42].

For these reasons SPH is of increasing popularity (Annual International SPHERIC

Workshops, 2006-2010), and is used for violent meso-scale simulations across many

different disciplines [42], including astrophysics, hydrodynamics, nagnetohydrody-

namics, gas explosions, and granular flows.

SPH was initially developed for the simulation of polytropic stellar models, i.e.,

unbounded, compressible flows due to inviscid pressure gradients, as well as gravita-

tional, rotational and magnetic body forces [5, 7]. In SPH the domain is discretized

into a set of N Lagrangian fluid particles, which carry their own time-constant mass

m and time-evolving field properties, such as position x, velocity u and density p.

The uniqueness of SPH is that the density pa of a Lagrangian particle a is computed

by convolving the mass of neighboring particles b with a smooth, distance Kernel

function W without the use of grids, i.e., pa = ESb mbWab. The technique is called

Kernel Interpolation and is further extended to compute the gradient of a field prop-

erty Vfa at the Lagrangian particle a (collocation point) by convolving the values of

the function at neighboring particles b with the derivative of the Kernel function , i.e.,

Vfa = ESb fbgP'VWab. The position Xa and velocity ua of particle a are computed

by integrating in time the inviscid Euler momentum equations. Explicit constitutive

relations are used to compute the gravitational, rotational, and magnetic body forces

that appear in the Euler momentum equations, while their corresponding gradients

at each Lagrangian particle a are computed with the Kernel Interpolation technique.

In summary, the SPH algorithm described in [5, 7] is explicit, of order N com-

putation count, and very simple to code. In addition, even though it was initially

regarded as a Monte Carlo integration method with expected first order convergence,

the numerical applications demonstrated second order convergence. Without appro-



priately explaining the second order convergence of Kernel Interpolation [25], SPH

was extended to numerous, more complex physical models.

In particular, SPH is extended to incompressible, free-surface hydrodynamic flows

in [14], demonstrating robustness in simulating highly non-linear, complex free-surfaces.

To maintain the simplicity of the initial SPH algorithm for astrophysical flows [5, 7],

the author in [14] makes three fundamental assumptions. In the first assumption, it

introduces an artificial speed of sound and an artificial Equation of State to decouple

the pressure from the velocity and maintain the explicit nature of the algorithm. The

effect of this first simplification in the accuracy of the simulated physics is still poorly

understood [1. 2].

As a reference, it is noted here that the established incompressible Navier-Stokes

solvers include [22, 23]: (a) pressure correction methods, where a Poisson equation

for the pressure is formulated and solved for, requiring knowledge of the free-surface

position and matrix inversion; (b) vortex methods that eliminate pressure and solve

for the vorticity w; and (c) the artificial compressibility methods where first an arti-

ficial Equation of State is added, transforming the problem to hyperbolic, and next

the system is iterated in a pseudo-time until incompressibility is obtained. In that

sense, the introduction of an artificial Equation of State can be regarded as a special

non-iterative case of the artificial compressibility methods.

In the second assumption, the author extends the computation of derivatives

with Kernel Interpolation to free-surface particles, where it is known that Kernel

Interpolation (liverges [51]. The method does not explicitly track, define, or employ

any special treatment on the free-surface, essentially imposing an unknown artificial

dynamic free-surface boundary condition [21].

In the third assumption, the author models the no-flux boundary conditions with

tunable, highly-sensitive to the parameters, Lennard-Jones molecular-type potential

forces. Even though more physical boundary condition have since been developed

[13, 41, 48], this assumption established the empirical nature of SPH, where several

problem-dependant, tunable, and semi-empirical treatments are developed to address

issues manifested in simulations.



In summary, SPH is an attractive, meso-scale simulation method that has demon-

strated the ability to capture free-surfaces of arbitrary complexity with a simple and

robust algorithm [42]. The simplicity and robustness of SPH for free-surface flows

are due to (a) the weak compressibility assumption and (b) the assumption that the

Kernel Interpolation can be employed without any modifications on the free-surface.

The coupling of these two assumptions introduces a set of coupled. unknown errors

that firstly result in a series of accuracy, consistency and stability issues, and sec-

ondly render the analysis of the SPH method for free-surface flows challenging since

it requires a unified approach that accounts for the interaction between the modeling

and discretization errors. Up to now, no unified analysis on SPH existed, for exam-

ple, the accuracy errors due to the weak compressibility assumption have not been

appropriately analyzed, the flow properties are ignored in the consistency analysis of

the Kernel Interpolation, and the stability analysis is informed by the properties of

weakly compressible free-surface flows.

A brief sketch of the existing accuracy, consistency and stability analysis is given

here. Regarding the accuracy of the method, it is a the well established fact that

the SPH dynamic results are plagued by spurious, leading order. high frequency

oscillations, rendering them practically unusable without filtering [2, 13, 20, 32, 33,

34, 36, 39]. To the author's knowledge the only reference on the relation of the weak

compressibility assumption to these spurious high frequency oscillations is made in

[1, 2]. However, no further analysis is attempted in understanding their physics,

origins and growth mechanisms in discrete space.

The existing consistency analysis of Kernel Interpolation for prescribed particle

distributions is extensive and proves consistency inside the domain of a uniform par-

ticle distribution, e.g., [29, 52], and divergence in the presence of boundaries and

random particle distributions, e.g., [52]. Numerical findings, however. indicate that

SPH is convergent even though the particle distributions eventually become distorted.

The seeming discrepancy between the analysis and the numerical results indicates that

the behavior of Kernel Interpolation in an SPH simulation is not yet understood. The

issue is only mentioned in [25] and addressed in [17]. The, unfortunately not widely



referenced, work of [17] presents the only analysis that points towards the right di-

rection, but is limited to one-dimensional problems without obvious extensions to

higher dimensions, and does not relate the consistency properties to the flow proper-

ties. Therefore, because the existing consistency analysis of Kernel Interpolation in

non-uniform particle distributions is limited, there is uncertainty on the consistency

behavior of Kernel Interpolation in an SPH simulation where the particles eventually

depart from their initial prescribed configuration.

Lastly, it is a well established fact that SPH is unstable. The existing stability

analysis determines that a general SPH algorithm suffers from a tensile instability

due to the spatial discretization technique [17, 40, 44, 53]. In [26] a tensile instability

treatment is suggested, which does not seem to have any significant effect for the

free-surface flows of interest [3, 26], indicating that there must be problem-specific

properties in the stability of weakly compressible free-surface flows. In addition, the

stability analysis does not distinguish between the continuous model, semi-discrete

and fully-discrete algorithms. Therefore, (a) the finding that the spatial discretization

technique is responsible for the tensile instability should not be conclusive, (b) the

properties of different temporal integration schemes have not been studied, and (c) the

analysis does not account for the Courant conditions. In short, the existing stability

analysis is not sufficiently identifying the sources of instability in the free-surface flows

of interest.

Due to the lack of a known, unified, and conclusive analysis of the method, and

in agreement with the initial approach of [14], several semi-empirical treatments have

been developed to alleviate the accuracy, consistency, and stability issues in SPH.

These existing treatments, in general, introduce tunable parameters further adding

to the uncertainty currently associated to the method. Representative examples of

semi-empirical existing treatments include the addition of small terms on the right

hand sides of the governing equations, such as XSPH [24], Artificial Viscosity [30],

stability treatments [26, 37], density re-initialization schemes [1, 48], and local, post-

processing filtering of the pressure results [20, 32, 33, 34, 36, 39]. The current State-of-

the-Art SPH codes, such as SPHysics, include choices on the majority of the existing



semi-empirical treatments making a numerical analysis of the State-of-the-Art SPH

method seemingly intractable and very difficult to distinguish in the simulation results

between the actual physics modeled and the effects of the numerical treatments.

Therefore, despite its attractiveness, SPH in its current form lacks a conclusive

analysis and has a number of key issues that must be overcome before the method

can realize its full potential in applications for the prediction of violent free-surface

flows.

1.2 Thesis scope

The scope of this thesis is threefold. First, it defines a main SPH algorithm, MA-

SPH, which is free of existing semi-empirical treatments, and performs a detailed and

thorough numerical analysis on MA-SPH. This analysis allows us to clearly identify

the key issues, the sources of error, and the first quantitative error estimates in an

SPH simulation. Second, based on the findings of the analysis, this thesis defines a

rational approach towards analyzing the effects of the existing treatments by classify-

ing them with respect to the issues they address and by analyzing them only within

this context. Third, based on the findings of the analysis and the insight gained from

the rationale of the existing treatments, this thesis proposes convergent SPH schemes

for the simulation of violent free-surface flows.

The importance of this work is twofold: firstly, it removes the uncertainty currently

associated with the SPH, providing a unified framework for a rational analysis of the

method for incompressible free-surface flows; and secondly, and most importantly, it

provides the foundation for the development of SPH as a valuable engineering tool in

the study of violent free-surface flows.

1.3 Thesis structure

The thesis is structured into four chapters.

In Chapter 2, a main SPH algorithm is defined. First, the weak compressibility



assumption is validated for continuous, linear, plane-progressive free-surface waves.

It is shown that in continuous space, in addition to the incompressible solution, the

method admits a set of high frequency oscillatory acoustic modes. Next, the con-

sistency of Kernel Interpolation is considered in (a) uniform, (b) highly distorted,

and (c) smoothly advected particle distributions, proving the consistency of Kernel

Interpolation in a SPH simulation, where the particles have been smoothly advected

from their initial configuration, for the first time. In addition, the implicit dynamic

free-surface boundary condition due to the incompleteness of the Kernel Interpola-

tion near the free-surface is determined as a function of the free-surface gradient.

Finally, the stability of the continuous, semi-discrete, and fully-discrete schemes are

considered determining that SPH is unconditionally unstable in the presence of (a) a

free-surface and (b) non-zero base density gradients, which is a generalization of the

tensile instability and specifically for the free-surface flows of interest the base density

distribution reduces to hydrostatic.

In Chapter .3. several existing semi-empirical treatments are considered. They are

classified as accuracy, consistency, and stability treatments and then briefly analyzed

within the context of the issue they address. The considered accuracy treatments are

local, post-processing techniques of the pressure results. The effective ones are those

considering temporal filtering. The considered consistency treatments are shown to

increase accuracy but are found to be less robust than Kernel Interpolation in nu-

merical simulations of highly distorted flows. Finally, the findings of the stability

treatments indicate that even though the weakly compressible SPH model is inher-

ently unstable for free-surface flows, numerical regularization is possible.

In Chapter 4. based on the findings of Chapters 2 and 3, we propose and validate

two rational approaches towards constructing convergent SPH schemes. The first is an

approach directing towards stable, low order, modified SPH schemes, and the second

approach is directing towards stable, higher order, weakly compressible schemes.

Finally, Chapter 5 summarizes the findings of the analysis and provides suggestions

for future work.





Chapter 2

Linear analysis of a main SPH

algorithm, MA-SPH, for

free-surface flows

2.1 Introduction

Smoothed Particle Hydrodynamics has two key features. The first feature is a weak

compressibility assumption in the continuous model that makes the algorithm explicit,

efficient and simple. The second feature is the Kernel Interpolation technique for the

estimation of spatial derivatives on discrete Lagrangian particles that allows for the

method to be entirely meshless and robust. Despite their attractiveness these two

key features of SPH introduce major issues and uncertainties with respect to the

accuracy, consistency, and stability of the method. Accuracy issues are most evident

in the dynamics that are plagued by large amplitude high frequency oscillations.

Consistency issues arise as the Lagrangian particles depart from the initial uniform

distribution or approach the free-surface. Stability issues eventually manifest in all

long-time SPH simulations [21]. The known, existing analysis on SPH deals only with

consistency and stability and is neither complete or conclusive: first, the findings of

the consistency analysis differ from numerical findings, and second, the conclusions



from the stability analysis do not help remove the method's instabilities.

In detail, the existing consistency analysis shows that SPH is a low order method

[18, 27, 51] that diverges near the boundaries [51]. Yet, convergence has been demon-

strated in numerical applications [1]. However, the literature on addressing this dis-

crepancy between the analysis and the numerical findings, by accounting for the

motion of the particles, is limited [17, 25, 40]. To address the uncertainty currently

associated with the consistency of SPH researchers employ alternative known consis-

tent schemes [18] which however affect the robustness of SPH. It is therefore of great

importance to perform a conclusive consistency analysis of the method.

The existing stability analysis identifies a so-called tensile instability dominant

in solid and gas dynamics [17, 40, 44, 53]. The instability is defined in terms of

both numerical and physical quantities. Treatments suggested in [18. 26, 37] do not

seem to address stability issues in the simulations of free-surface flows [3, 48]. Given

that the instability of the method is largely mentioned [48] and that up to now SPH

cannot even simulate a hydrostatic case [21] it is imperative to perform a complete

and conclusive stability analysis of the method.

This chapter presents a unified and detailed analysis of the accuracy, consistency,

and stability of the SPH main algorithm both in its continuous and discrete form.

First, a main algorithm is defined in section 2.2. Then the framework of the analysis

is detailed in section 2.3. The accuracy errors due to the first key feature of SPH, the

weak compressibility assumption, are detailed in continuous space and their behavior

in discrete space is discussed in section 2.4. Next, in section 2.5 the consistency of the

second key feature of SPH, the Kernel Interpolation technique, is analyzed in discrete

space for bounded and unbounded particle distributions considering three types of

distributions, regular, random, and smoothly advected. Finally, a stability analysis

of the method is performed in section 2.6 on the continuous, semi-discrete algorithm

and fully-discrete algorithm with alternative temporal integration schemes, for two

different formulations of the algorithm.



2.2 Definition of MA-SPH

The term Smoothed Particle Hydrodynamics (SPH) has evolved to refer to a some-

what general group of meshless Lagrangian Navier-Stokes numerical simulation meth-

ods. Various different combinations of meshless methods for derivative estimation in

discrete space employing different pressure solvers coupled with different stability and

accuracy treatments are often called SPH. For example, derivative estimation tech-

niques include IKernel Interpolation, Moving Least Squares and Corrected Kernels.

Pressure solvers are, for example, non-iterative artificial compressibility, pressure cor-

rection. Typical SPH stability and accuracy treatments are described by the addition

of terms on the right hand side of the evolution equations (e.g., artificial viscosity

and velocity snioothing) or the use of density re-initialization schemes. The above

methods are often referred to with self-explanatory acronyms followed by SPH, for

example, I-SPH (incompressible pressure correction solver), MLSPH (Moving Least

Squares for derivative estimation [18]), XSPH (for smoothed velocity treatment [24]).

To performi an analysis of the method for gravity free-surface flows, first a canonical

wave problem and second a reference form of the SPH algorithm need to be defined.

For the canonical problem, linear gravity free-surface waves in a semi-infinite domain

are chosen. The Lagrangian weakly compressible Euler solver that employs Kernel

Interpolation for the computation of spatial derivatives [30] is chosen as the Main Al-

gorithm, referred to hereafter as MA-SPH or simply MA. The effects of the developed

treatments are studied separately in Chapter 3. This section details the assumptions

and definitions that will be used throughout this chapter.

2.2.1 Problem statement

Domain Assume a two-dimensional Cartesian coordinate system X' = (x, y), with

y pointing vertically upwards. Consider an undisturbed fluid domain infinite in the

horizontal direction x and bounded in the vertical direction y E [-H, 0]. Let q =

rj(x, t) denote the location of the free-surface, where q = y = 0 denotes the location

of the undisturbed free-surface Bfs. Further, let y = -H denote the location of the
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Figure 2-1: Weakly compressible, gravity free-surface flow. Problem statement.

Unknowns Let t > 0 denote time. Assume a flow where il(i, t) = (u, v), P(Y, t)

and p(, t) denote the unknown fluid velocity, pressure and density respectively at

(, t).

Definitions and assumptions Let g = -gj, p, and P denote the gravitational

acceleration, the undisturbed fluid density and pressure at the free-surface, respec-

tively. Let the bottom be impermeable and located at y = -H.

If the flow is assumed to be inviscid and incompressible the governing equations are

the momentum Euler equations and the continuity equation. In the latter system the

velocity and pressure are coupled. Typically, in numerical simulations this translates

to the solution of a Poisson equation for the pressure, which involves the inversion of

a matrix and implies free-surface tracking. If the flow is assumed to be isothermal

and weakly compressible with a known speed of sound c and a compressibility ratio

7, then it is described by the Euler equation for the momentum, the conservation of

mass for the density, and a constitutive Equation of State that relates pressure and



density fluctuations through c and -y. The numerical simulation of such flow can be

explicit, it is simpler to progam and more efficient. In [30] it is argued, based on

dimensional analysis, that any incompressible flow can be modeled in a numerical

simulation as weakly compressible with an error of order 0(1/c2 ) as long as the Mach

number is small M = IU1max < 1, significantly simplifying the computational cost
C

and complexity. Based on the latter argument, [30] suggests modeling incompressible

flows as weakly coipressible introducing a modeling error of order 0(1/c2 ). The latter

assumption, referred to as the weak compressibility assumption, is a key feature of

SPH and is revisited in detail in section 2.4. It must be emphasized that c need not

be the actual speed of sound in water. In fact, it is desirable that c is chosen to be as

small as possible, e.g., c ~ 10|4,m for numerical efficiency determined by a Courant

condition. In the same manner an artificial Equation of State can be employed.

Denoting d as the total or material derivative, i.e., 2 = + t- V, the governing
(it I dt at

equations for this weakly compressible flow are:

di 1
= VP - (2.1)

dt p
dp

= -pV - (2.2)dt

No simple, analytic Equation of State (EoS) that relates the thermodynamic (to-

tal) pressure to the fluid density is known for water. However, for isothermal water

flows two EoS are predominantly used within the context of SPH. The first, employed

in the majority of SPH literature [3, 4, 30] is the Tait EoS for ideal gases:

P = C 2Pf P - (2.3)

where the fluid is assumed to have a compressibility ratio y, with a typical value of

= 7.

The second follows the traditional fluid dynamics approach, [38, 46] relating



changes in pressure to changes in density with an equation of the form

dP = c2 dp. (2.4)

It can been shown that (2.3) and (2.4) are equivalent to leading order under the

weak compressibility assumption, i.e., small density fluctuations. Namely, let the

normalized density fluctuations be denoted as r =PPf < 1. Therefore p = pf (1 + r)
Pf

and dp = pfdr. Differentiating (2.3) obtains

dP = c2 pfd[(P) -1

= c2 dp

= c2 p (1 + r)- 1 dr.

Since -y > 1 and r < 1 it is valid to use Taylor Series Expansion about r 0:

(1 + r)7-1 dr 2 (1 + (y - 1)r + O(r 2 )) dr a dr + 0(r 2).

Therefore,

dP = c2 pfd [( - 1] cpfdr c dp.

Both formulations of the Equation of State (2.3) and (2.4) are used hereafter.

However, since all analysis in the following sections is linear, the results obtained are

valid for both formulations of the EoS. The governing equations (2.1). (2.2) and the

EoS (2.4) describe the continuous form of the main SPH algorithm and are referred

to hereafter CMA-SPH.

2.2.2 Spatial discretization

In Lagrangian methods, like SPH, the evolution of a set of discrete fiuid particles is

followed in time. The flow is discretized into N > 1 fluid particles, with each particle



a carrying its own constant mass ma. Let the center of mass of particle a be initially

located at x0 = Y,(t = 0) and at time t be located at za(t). Let pa(t), Pa(t), and Ea(t)

denote the density, pressure and fluid velocity at za(t). Finally, let Va(t) = ma/pa(t)

denote the volune of particle a. From the governing equations (2.1), (2.2) and the

EoS (2.4) the equations of motion for the position, velocity, density and pressure for

each particle a become:

da = a (2.5)
dt

-a VP| (2.6)
dt pa a

dPa -paVUa 
(2.7)

dt -PV

Pa = c2 dPa. (2.8)

Given that 'VP = VE + PVp the velocity equation (2.6) can also be written as:

di PP

a (2- -+-Vp a . (2.9)
dtp p a

In order to compute compute the momentum and density rate of change and

evolve the flow in time the terms VPla and V - Ela must be computed in discrete

space at each particle location. In MA-SPH this is achieved with the usage of the

Kernel Interpolation techinique, hereafter referred to as KI, without the usage of any

underlying grid. To define KI, assume a smooth function f(S), such that fa = f (a)

and Vfa = Vf . Let h be a measure of the average fluid particle volume V, such

that h2  O(V). Let W(zF; h) denote a known, analytic Kernel function that is (i)

sufficiently smooth, (ii) normalized, and (iii) scales as O(V), so that in the limit

h -+ 0, the Kernel function W behaves as a delta function. Further, let W have

compact support of O(h) and hence refer to h as the Kernel bandwidth. Finally,

define VWba - Vlib-i;h) and

N

Vfa b MbVWba. (2.10)
b=1 Pb



For the case of equi-spaced particles it has been shown that Vf,, '- Vfa + O(h')

where f is determined by the shape of W [29]. This statement will be discussed in

great detail in section 2.5 and will be extended to non equi-spaced particles. However,

for now, it suffices to state that the gradient Vfa can be computed with accuracy

O(h') given the values of fb at known discrete particles b within the neighborhood

of a and the known, calculable weight VWba. Therefore, the derivatives appearing in

(2.6) and (2.7) are approximated in discrete space from (2.10) given the values of f
at neighboring points b. Namely,

d = a a (2.11)

d Ndt = U

= -- Y PmVWba - (2.12)
dt Pa b Pb

N

d = -Pa b -VWba (2.13)
b P

Pa = c2dpa. (2.14)

The alternative form of the Euler equation (2.9) in discrete space becomes

dil N AP Pa )=a E - 2 + + VWa - 9V. (2.15)
dt b (Pb Pa

Both forms of the Euler equations (2.12) and (2.15) are generally equivalent inside

the domain, but differ on the implementation of the dynamic free-surface boundary

conditions. Therefore, this analysis considers either one of the two forms and can be

easily extended to the omitted form. It is noted that in practice it is argued that

(2.15) conserves global momentum exactly [27] and as a result most simulations in

the literature employ (2.15).

Finally, it is noted that generally in the absence of a free-surface. the density is

computed from:

Pa = (mbWab (2.16)
b

It is shown that (2.13) is simply the time rate of change of (2.16) and therefore the



two expressions are in general equivalent. However, they may result in different sim-

ulation results due to (a) differences in the consistency of Kernel Interpolation when

used for interpolation and differentiation, (b) errors due to the temporal integration

scheme, and (c) differences in the stability behavior. Assuming that differences in

stability behavior are the leading order difference between (2.13) and (2.16), both ex-

pressions are considered in the stability analysis of the semi-discrete and fully-discrete

algorithms. Notation-wise, when the MA-SPH governing equations are (2.11), (2.13),

and (2.12) or (2.15) the algorithm is referred to as MA-SPH with advanced density

formulation and when the MA-SPH governing equations are (2.11), (2.16), and (2.12)

or (2.15) the algorithm is referred to as MA-SPH with direct density formulation.

2.2.3 Boundary conditions

The boundary conditions for an inviscid free-surface flow governed by (2.1) and (2.2)

are (i) the no flux on impermeable boundaries U' -h = 0, where ft denotes the surface

boundary normal, (ii) the zero pressure P(x, y = r, t) = 0 dynamic free-surface

boundary condition, and (iii) the continuity of the free-surface yfs = d(xt) kinematic

free-surface boundary condition.

In MA-SPH the sole boundary condition explicitly implemented is no-flux on the

impermeable boundaries, i.e., Ua -ib + 0 as a -+ Bib and nib denotes the surface

boundary normal. In practice this is achieved either with tunable Lennard-Jones

potential forces [30], or with ghost particles, mirrored with respect to the boundary [3]

or with fixed boundary particles [48]. Only the ghost particle approach is considered

in this thesis.

The kinematic free-surface boundary condition is satisfied automatically in MA-

SPH as in all Lagrangian methods:

dt= dt for a E Oj . (2.17)
dt dt

Finally, the dynamic free-surface boundary condition of Pa = 0 for a E Ofs is

not imposed on the free-surface in MA-SPH when KI is used near the boundaries.



Instead, KI implicitly imposes a leading order spurious dynamic free-surface boundary

condition discussed in detail in section 2.5.6.

2.2.4 Temporal evolution

The final component of MA-SPH concerns the evolution of (2.11) - (2.15) in time. Let

qa" = [ya", gan, p", Pa] be the known position, velocity, density and pressure respectively

at time t" at particle a. Further, let Q" = [Va, A,, Ra" denote the corresponding

velocity, acceleration and time rate of change of density as given by (2.11) - (2.15).

The quantity qa" is advanced to the next time step tn+1 = t" + 6t with an appropriate

temporal integration scheme of the form:

qn+ = qa + Q"6t.

The schemes most often used and considered are Forward Euler, Predictor-Corrector,

modified Predictor-Corrector and fourth order Runge-Kutta . Given a time step size

6t = pcu the accuracy of the above integration schemes is O(6tn2) where m 2 =1, 2,

4 respectively. The value of pc is determined by a Courant condition computed in

section 2.6.4.



2.3 Framework for the analysis of MA-SPH for

free-surface flows

The SPH method is a Lagrangian method with three attractive key features: it is

simple, efficient and meshless. The SPH method is first introduced in [5, 7] for the

simulation of unbounded, compressible astrophysical flows described by a set of ex-

plicit governing and constitutive equations. In discrete space the flow is simulated

by a set of N Lagrangian particles, which carry their own mass and field properties,

eliminating the need to compute non-linear advection terms. Because the governing

equations describing the evolution of the field properties are explicit, the method is

simple and efficient. The uniqueness of SPH is the usage of the Kernel Interpolation

technique for the estimation of the density (2.16) and for the estimation of the spa-

tial derivatives (2.10) that appear in the governing equations, rendering the method

entirely meshless.

The consistency of Kernel Interpolation was assumed to be similar to the consis-

tency of Monte Carlo integration methods and of order N-W. However, numerical

simulation results showed higher convergence of N- 1 [5], indicating that this ini-

tial approach towards the consistency analysis of Kernel Interpolations is insufficient.

Given that the properties of Kernel Interpolation in non-uniform particle distributions

are not completely understood [25], Kernel Interpolation introduces two uncertain-

ties. The first uncertainty is whether the density obtained by (2.16) is numerical or

physical. The second uncertainty is whether the discrete algorithm is consistent with

the continuous model or not. To add to the above uncertainties, existing stability

analysis [17, 40. 44, 53] indicates that oscillatory modes in SPH exhibit a tensile insta-

bility. In sunnary, SPH in its most general form, has three attractive key features:

it is simple, efficient and meshless but has two major drawbacks: it is unstable and

lacks of a conclusive consistency analysis. SPH has been extended to numerous more

complex physical problems [42], with the aforementioned drawbacks pending.

In particular in [30] SPH is used for the simulation of incompressible, free-surface

hydrodynamic flows. To maintain the key features of the method the author in [30]



makes three non-trivial approximations. The first is related to the continuous model

and is the introduction of an artificial Equation of State and an artificial speed of

sound to decouple the velocity from the pressure and maintain the explicit nature

of the algorithm. This is referenced as the weak compressibility assunption and its

effects on the simulated physics are poorly understood [1, 2]. The second approxima-

tion is numerical and involves employing Kernel Interpolation for the computation of

gradients near a free-surface, even though it is known that in this case Kernel Inter-

polation diverges [51] affecting the enforced free-surface boundary condition [21]. The

third approximation is again numerical and involves the introduction of an empirical

and tunable Lennard-Jones potential force to model no-flux boundary conditions. The

effects of this third approximation on the simulated physics have not been studied,

but instead research is directed towards employing more physical no-flux boundary

conditions [1, 13, 41, 48]. To add to the uncertainties introduced by these three

approximations it is noted that compressible flows in the presence of a free-surface

develop unstable depth decaying modes [43] in addition to the already studied unsta-

ble oscillatory modes [17, 40, 44, 53]. Therefore, in employing SPH for the simulation

of free-surface hydrodynamic flows, further non-trivial uncertainties are introduced,

in addition to the existing stability and consistency issues present in a general astro-

physical SPH simulation. To this point, in an SPH simulation for free-surface flows,

the numerical and modeling errors are coupled, no quantitative error analysis exists

and as a consequence it is unclear which are the leading sources of error and their

scaling.

Figure 2-2 summarizes the major issues and probable sources of error as well as

some numerical observations in: (a) a general SPH formulation for applications in

compressible, unbounded flows [5, 7] and (b) a problem specific SPH formulation

for applications in incompressible, free-surface hydrodynamic flows in the presence

of gravity [30]. The usefulness of Figure 2-2 in the analysis of SPH for free-surface

hydrodynamic flows is significant, since it classifies the probable sources of error and

therefore guides the framework towards the rational analysis of the method.

Figure 2-3 summarizes the framework of the analysis, which focuses on SPH for



Accuracy of
the continuous

model
(§ 2.4)

(a) SPH for compressible
unbounded flows

(b) SPH for incompressible,
free-surface hydrodynamic flows

What is the effect of introducing
artificial EoS with an artificial speed of
sound, in the simulated kinematics and
dynamics?

The numerics and physics are coupled, is the particle density
numerical or physical?

Consistency of What happens when the particles depart from the initial uniform

Kernel distribution? Does the fully-discrete algorithm remain consistent to the

Interpolation continuous model as the particles move?

(§ 2.5) What are the appropriate solid boundary
conditions?
What free-surface conditions are

,actually implemented?

What are the stability properties of the continuous model, semi-
discrete algorithm, fully-discrete algorithm?

Stability What is the stability of What is the stability of oscillatory and(§ 2.6) oscillatory modes with a depth decaying modes with a
uniform and a non-uniform hydrostatic base density?
base density.

Figure 2-2: Classification of major uncertainties and probable sources of error in (a)
general SPH for applications in compressible, unbounded flows [5, 7] and (b) problem
specific SPH for applications in incompressible, free-surface hydrodynamic flows in
the presence of gravity [30].



free-surface flows, addressing as well the subset of issues present in simulations of

compressible, unbounded flows. The analysis is clearly divided into three sections:

accuracy, consistency and stability. The analysis and findings of these sections are

not independent and must not be considered independently. The first section deals

with the accuracy of the weak compressibility assumption. It validates the weak com-

pressibility assumption in the continuous space by comparing a weakly compressible

to an incompressible flow in the presence of linear free-surface gravity waves based

on the existing analysis of [8, 9, 54, 46]. The findings determine that the weakly

compressible and incompressible flow are consistent to leading order, provided that

the compressible flow is free of spurious acoustic modes. These findings are extended

to discrete space employing the findings of the other two sections which (a) verify

the presence of inconsistent boundary conditions that can generate spurious acoustic

modes and (b) determine that these spurious acoustic modes are unstable. The sec-

ond section deals with the consistency of Kernel Interpolation for the interpolation of

the density and the spatial differentiation of a smooth function in the discrete space

during an MA-SPH simulation, both inside the domain and close to the free-surface.

For completeness the existing knowledge on uniform and entirely random particle

distributions are first revisited. Then the analysis is extended by accounting for the

flow properties, where it is assumed that the particles are advected from an initial

uniform distribution by a smooth velocity field, in which case the density is proven

to be a physical quantity and the algorithm is shown to be consistent with the con-

tinuous model. The free-surface boundary condition implemented by the incomplete

Kernel Interpolation is considered with respect to the continuous model and shown

to depend on the free-surface shape and considered as the main source of generation

of the spurious acoustic modes. Lastly, the third section deals with the stability anal-

ysis. It considers the continuous model, the semi-discrete algorithm as well as the

fully discrete algorithm, using information obtained from the accuracy and consis-

tency sections. The stability of both possible modes is considered (depth decaying

and depth oscillatory) in both the absence and presence of base density gradients.

For the fully-discrete algorithm different standard temporal integration schemes are



considered, and the stability is determined in terms of the Courant condition.



Accuracy, validation of the weak compressibility assumption for incompressible, linear,
plane progressive, free-surface gravity waves (§ 2.4)

Analysis in continuous space (§2.4.1)

1. Verification of the existence and consistency of the incompressible-like solution
2. Identification of the spurious high frequency acoustic solutions that dominate the

dynamics

Discussion regarding extension to discrete space to sketch the expected behavior of the spurious,
numerical high frequency acoustic solutions (§2.4.2)

3. Identification of their source from the inconsistent boundary conditions, initial conditions
and noise

4. Growth and characteristics to be determined from fully-discrete stability analysis
5. Maximum cut-off frequency to be determined from spatial and temporal discretization

Consistency analysis of Kernel Interpolation in an SPH simulation (§ 2.5)

Consistency analysis of Kernel Interpolation in unbounded domain

1. Prescribed uniform and random particle distribution
1.1 Consistency of interpolation and differentiation (§2.5.2)

2. Smoothly advected particle distributions (§2.5.3)
3. 2.1 Particle density (§ 2.5.4)

2.2 Numerical significance of the particle density in ensuring the consistency of
interpolation and differentiation with Kernel Interpolation (§ 2.5.5)

Consistency analysis of Kernel Interpolation in the presence of a free-surface (§ 2.5.6)

1. Implicit dynamic free-surface boundary condition

Stability analysis of continuous model, semi-discrete and fully-discrete algorithms (§ 2.6)

1. Analysis in terms of modes: depth oscillatory and depth decaying modes
2. Assumptions on base density distribution: uniform, smooth non-uniform, hydrostatic
3. Temporal integration schemes

3.1 Forward Euler, modified Predictor Corrector, fourth order Runge-Kutta
3.2 Effect of Courant condition for each scheme

Figure 2-3: Framework of analysis in SPH.



2.4 Linear analysis of weakly compressible free-

surface flows

Employing MA-SPH for the simulation of free-surface water waves is based on the

assumption that the difference between an incompressible flow and a corresponding

isothermal, weakly compressible flow is of O(1/c 2 ), where c is the speed of sound in

the fluid and is a measure of the compressibility of the fluid. This section is dedicated

to the validation of this assumption for an Airy wave, i.e., small amplitude, periodic,

inviscid, gravity, free-surface wave. The choice of an Airy wave is justified for two

reasons: firstly. because the Airy wave is the building block for small amplitude free-

surface flows, and secondly, there already exists in the literature a validated analysis

of the continuous main SPH model (CMA-SPH) for Airy waves, given appropriate

choice of parameters, initial, and boundary conditions [8, 46].

In Pidduck [8, 9] it was suggested that the water compressibility be taken into

account to resolve the instantaneity paradox in the well-known Cauchy-Poisson prob-

lem. Pidduck described the water flow as isothermal and weakly compressible just as

it appears in CMA-SPH. A linear analysis was performed verifying that the weakly

compressible model captures the depth decaying incompressible solution to leading

order with accuracy of order O(1/c 2 ). However, it was shown that given appropriate

initial and boundary conditions, the weak compressibility assumption also permits

an infinite set of essentially non-attenuating high-frequency depth oscillatory acous-

tic modes that depend on c and the water depth. The linear analysis appearing in

Pidduck was later employed by [54] in a discussion on whether gravity waves can

generate microseisms on a deep water sea-bed. In order to determine the origins

of microseisms and quantify their magnitude in deep-water, Longuet-Higgins -in a

seminal work [46]-extended the linear isothermal, weakly compressible analysis for

gravity waves to account for second order effects. It was shown that higher order so-

lutions can only be depth oscillatory. Areas of predominance of the depth oscillatory

behavior were determined and results were verified through observations.

In the discrete MA-SPH simulations these acoustic modes are referred to as spuri-



ous high frequency oscillations (HFO) [2, 15]. The HFO are generated by initial and

boundary conditions, numerical round-off errors, and non-linear interactions. The

HFO are predominant in the dynamics of the MA-SPH solution. Attempts to remove

them (without information from the analysis) led to the generation of the SPH accu-

racy treatments involving traditional spatial or temporal filtering [6, 19, 20, 32, 33, 49],

and suggestions for alternative formulations of the Equation of State [14]. Under-

standing the nature and behavior of the high frequency oscillations in MA-SPH is

essential both for the validation of the weak compressibility assumption as well as for

the development of effective treatments for the removal of the spurious high frequency

oscillations, and the improvement of the accuracy of the method.

This section follows the linear analysis described in [46], omitting second order

effects. It is noted that although the derivation between [8] and [46] is slightly dif-

ferent, the leading order problem determined in both formulations is identical. The

approach is as follows: a weakly compressible velocity potential <D is assumed, and the

problem defined in section 2.2 is re-formulated into an initial boundary value problem

for <b alone, which is further linearized with respect to the wave amplitude. Vertical

profiles for the weakly compressible velocity potential are obtained and the solution

is compared to a corresponding incompressible one. Next, the expected behavior in

discrete space is discussed and verified numerically. Finally, a projection of weakly

compressible free-surface flows in deep-water onto a divergence-free space is suggested

through an appropriate modal decomposition.

2.4.1 Statement, solution and discussion in continuous space

2.4.1.1 Statement

Assume a two-dimensional Cartesian coordinate system Y = (x, y), with y pointing

vertically upwards. Consider an undisturbed fluid domain infinite in the horizontal

direction x and bounded in the vertical direction y E [-H, 0], where y = 0 denotes

the location of the undisturbed free-surface afs and y = -H denote the location of



the flat botton Db, Fig. 2-1. Let t > 0 denote time. Assume a flow periodic in

the horizontal direction with wavelength A. Let 7(zF, t) = (u, v), P(, t) and p(i, t)

denote the unknown fluid velocity, pressure and density respectively at (z, t). Finally,

let ?I(x, t) denote the unknown free-surface displacement such that y = 77 describes

Ofs. The gravitational acceleration and speed of sound in the fluid are g = -gj and

c respectively. It is assumed that c is constant. The fluid density and pressure at

the free-surface are p, and P, respectively. Density fluctuations are considered, by

definition, to be small. For this analysis it is assumed that the flow is slow, inviscid,

irrotational, weakly compressible and isothermal. Thus, a scalar velocity potential

<(z, t) such that V<D = can be defined.

Following [46], where it is assumed that the free-surface can be decomposed into

Fourier modes and a single mode 7 = Aei'('w) is considered, the equations of motion

(2.1) and (2.2) are expressed in terms of the velocity potential <b and integrated into

a single scalar equation:

+ 1IV4bI 2 + gy = -P (2.18)
at 2

where

= jP P = c2 In . (2.19)
p PP,

Using the linear EoS (2.4) and (2.19), mass conservation (2.2) can now be re-

written as
dln p 1 dP (2.20)

dt c2 dt

It can be easily seen that P can be eliminated by taking the total derivative of

(2.18) and substituting in (2.20). After some algebra and dropping higher order terms

with respect to () ~ KA, where KA is the wave slope, the linearized governing equation

for <b becomes:
___ - c 2 V 2 < + g = 0 (2.21)
t t 2 agy

It is pointed out here that (2.21) is also the leading order governing equation for



<b even when the density is assumed constant in the equation of motion (2.1), i.e.,

dit 1-= -- VP-g.
dt p, 9

To conclude, the formulation of the initial boundary value problem for the velocity

potential <b the initial and boundary conditions need to be stated. A no-flux sea-bed

boundary condition is prescribed:

8<b(x, y = -H, t)y= 0 on y = -H (2.22)
B~y

The dynamic free-surface boundary condition is constant pressure along the free-

surface (i.e., P(x, y = T, t) = 0) and the kinematic free-surface boundary condition

is continuity of the free-surface q (i.e., d - ). After eliminating q fromdt -y 6 (XYt)

the dynamic free-surface boundary condition and kinematic free-surface boundary

condition and linearizing with respect to the wave slope yields

V2<(x, y = 0, t) = 0 on y = 0 (2.23)

The domain in the horizontal direction is considered to be infinite, so the linear

solutions in x will be periodic. The long-time solution is sought, therefore no initial

conditions are required.

2.4.1.2 Velocity potential formulation and general solution

The linearized problem for <b is described by the governing equation (2.21), subject

to the boundary conditions (2.23) and (2.22). The problem is linear with constant

coefficients, therefore separation of variables can be employed to reduce the problem

to a set of ordinary differential equations in x, y, and t. In addition, since the

domain is infinite in x, consider one Fourier mode of a horizontally propagating wave

of wavelength A, wavenumber K = -, and a real, unknown real frequency w. TheA'



velocity potential therefore takes the form:

<k = #(y)ei(KX--t) (2.24)

It is understood and therefore omitted that it is only the real part of (2.24) that is

of interest. The problem therefore reduces to determining #(y) and w. Substituting

(2.24) into the governing equation (2.21), eliminating e(K--wt) and denoting #' ay

we obtain:

-W2o- c 2 (_2 + 4") + g#' =

#"- 26#' + (o,2 - K 2)0 =

0-+

0 (2.25)

Here 6 is the Pidduck wavenumber [8] defined as:

2c 2
(2.26)

and

o-=-. (2.27)

In a similar manner, the boundary conditions for # (2.22) and (2.23) become:

= Oony=0

= 0 on y = -H.

(2.28)

(2.29)

The boundary value problem for 4 is therefore described by the governing equation

(2.25) subject to the boundary conditions (2.28) and (2.29). To solve assume a

solution of the form #(y) oc e'. Substituting into (2.25) and eliminating em Y yields

the characteristic polynomial for m:

m - 26m + (. 2 _ ,2) = 0. (2.30)

The roots are m = 6 t V A, where the determinant A is equal to A = (62+ K2 _



a2 ). Emphasizing that a is still unknown the determinant can be either positive or

negative, in which case m is either real or imaginary, respectively. The following

solutions are given for the cases A 5 0:

P2 = 2 + 6 2 _ 02 for A > 0 (2.31)

(iv) 2  = 62 +2 _ , 2 for A < 0 (2.32)

It should be noted that by definition both p and v are real. Second, p (A > 0)

corresponds to depth decaying profiles and v (A < 0) corresponds to depth oscillatory

profiles. Each case will be considered separately.

2.4.1.3 Depth decaying profiles

For the case A > 0 and by the assumption that both p and w are real, the following

can be written:

P 2 = 2 + K2 _ Or2 > 0

.2 K2 +6 2 - P2 > 0. (2.33)

Given 0(y) oc the most general form for # reads:

#(y) - e6y [A sinh py + B cosh py]. (2.34)

For reference, the first and second derivatives of # are:

p' = e'5y [(A6 + Bp) sinh py + (Ap + B6) cosh py] (2.35)

#" = e'Y [(A6 2 + A P2 + 2B6p) sinh py + (2A6p + B62 + By 2 ) cosh py] (2.36)

The solution to (2.25) can now be obtained from the boundary conditions (2.28) and



(2.29):

#"|y=o - k20|Y=o = 0 -

2A6p+ B(p 2 +6 2 _K 2 ) = 0 (2.37)

# |y=-H H

-(A6 + Bp) sinh pH + (Ap + BJ) cosh pH = 0 (2.38)

Eq. (2.33). (2.37) and (2.38) now represent an eigenvalue problem, for the un-

knowns A, B, p. and w. Eliminating A and B from (2.37) and (2.37) the following

relation for p is obtained:

K2 
-62+4 2

iH coth tH = 6H .2 62 + 2 (2.39)
K2 + 62 _ p2

Eq. (2.39) along with (2.31) are the dispersion relations for y and w that depend

on K, 6, and H. It can be readily observed that (2.39) is an even function and thus

assuming - > 0 does not affect the generality of the solution. It must be noted that

(2.39) has no known analytic solution. The solution of (2.39) determines both the

number of admissible eigenmodes as well as their eigenvalues. To obtain this solution,

the equation will be transformed into a simpler form and two cases for the values of

K, 6, and H will be considered. Once the number of roots is determined, approximate

solutions are derived.

In detail, consider the following two definitions and the single one to one trans-

formation:

C 6H implying ca = KH, and (2.40)

= p2 -2

To satisfy the assumption that 0 < p < 1K/2 + 62 from the quadratic equation for

p (2.31) and also ensure , 2 - 62 + p2 > 0, it can be easily shown that y must satisfy

1
y E [y0, 1), where y, = max(-1, -12). (2.41)



Putting everything together (2.39) transforms to

s/1 + a 2y coth(I/1 + a2y) = 1 y (2.42)

Given a and c the solution can be found graphically at the intersection(s) of the

following two curves

fi(y) + y and f2(y) - V/1 + a 2ycoth(c /1 + a&y)
1 - y

The following can be determined:

1. Curve fi depends only on y. In the region [y., 1) fi is monotonically increasing

from fi(yo) = max(0, a ) to +oo with fi(0) = 1.

2. Curve f2 depends on y, c, and a. The main assumption is that a 2 > 1 _,

a > 5. Physically this means that the horizontal wavenumber u is larger than

> 56. In water this is satisfied for the majority of gravity waves as the speed of

sound in water c,, ~ 1500m/sec and g = 10m/sec2 obtains &, ~ 2.2. 10-6m-1

corresponding to a wavelength A,, ~ 2,800km. Thus it is deduced that the

inequality holds for waves shorter than ~ 500km.

Inversely, for the minimum numerical wavenumber K = + (where L is the

maximum resolved wavelength), K > 56 as long as the speed of sound c is such

that
S2c 2

a>5 -+ - > 5 -4 > 5 - c > 0.6 s/gL.
6 g

Assuming a 2 > 1 it is evident that -y = 1 < 1. Therefore. employing Taylor

Series Expansion on f2(y) it is shown that

0 e/1 +a 2y cv/1 +oa 2 ~ ca(1 + 1/2a 2 ) since o4 1.

The eigenvalue problem (2.42) is considered for two extreme cases: deep and shallow

water with respect to the horizontal wavenumber r,. For shallow water with respect



to K or ca < 1 -± KH < 1 the following is obtained. Since for y E [yo, 1) it is

c1 +a 2y < en(1 + 1/2a2) < 1 it follows that coth c Vl +a 2y ~ 1/e 1 + a 2y and

therefore f2 behaves as a constant:

1
f2 ~(2.43)

Further it is en < 1 -+ c < 1 and therefore it follows that > 1 and the curves fi

and f2 will intersect only once at y1 ~ 1. To determine y1 up to order C the values of

fi(yi) = f2(yi) are equated.

l + y1 1 2C TSE

= - -4 y1 1 - 2. (2.44)
1 =--Y1 1c

Transforming back to the original variable i shows that in shallow water with respect

to K and for t < the vertical wavenumber for the velocity profile is unique and up

to leading order given by

p2 ~ 2 (1 - 26H) +6 2 . (2.45)

The last relation satisfies pt2 <K 2 + 62 and upon substitution can be shown to satisfy

(2.39) with accuracy O(c).

For deep water with respect to K or ca > 1 -4 KH > 1, the following is obtained.

Recalling the assumption - < 1, for the case yo < 1 (i.e., yo = -b) it can be shown

either by l'H6pital's rule, or by Taylor Series Expansion that

1
f2(Yo)=-. (2.46)

For y ~ 1, it is by assumption E 1+ a2y > 1 and therefore coth c1 + a2 ~ 1.

Thus there exists a region where

f2(Y) ~ 1 + a 2 y.

Further, differentiating fi and f2 with respect to y, it is found that f, f > 0, i.e., both

functions are monotonically increasing. Thus, fi E [- , oo) and f2 E [1, v/1 +a2).
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Figure 2-4: Graphic solution to the dispersion relation for weakly compressible free-
surface gravity waves in shallow water for a = r/6 = [5, 10, 100] and constant c =

10-. Shows that f2 is practically a constant and equal to 1/E in aigreement with
(2.43). Depth decaying profiles.
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Figure 2-5: Close up of Figure 2-4 to verify Eq. (2.44). Depth decaying profiles.



Also f" > 0 while f" < 0 therefore the functions may intersect at most twice: once

close to 1 and once close to yo given appropriate value of c. For ( > 1 it can be

seen by inspection that fi and f2 will intersect on y = 0 where fj (0) = 1 and

f2(0) = coth E ~ 1. As c decreases the intersection between fi and ]2 moves towards

y. Let Eo denote the value of c for which the two curves will intersect at y = yo -- 1.

It is
1-4 1 2

-- +o 1+ >1.
+ E0 Wo2 _i

Therefore, for E < E0 the two curves will intersect only once at yi close to 1:

1+Y y1 = 1JV~ + a2y,
1- Y1

a 2 2 -2a 2 y + aC2 -4= 0 a2

a Y -2 -4-0

Y1,2= 1 +
a

Y1 = 1--. (2.47)
a

Transforming back to the original variable y = Vf 2 y + 62 reveals that in deep water,

the depth decaying vertical velocity potential profile can admit either (i) a single

solution with wavenumber p = , - 6 when c = 6H < c, or (ii) two solutions with

wavenumbers y = 6 and p = , - 6 respectively when E = 6H ;> c,.

Recalling that the desired result for deep water is depth decaying waves it is of

interest to eliminate the additional solution y = 6. Therefore, the value of co provides

a lower bound on the choice of the speed of sound for the numerical simulation given

the water depth H. In other words, the speed of sound must be chosen so that it

satisfies for all simulated waves e, < ij, or equivalently 62 _ K
2 

( + > 0.a2_1 2 2

With the eigenmodes and eigenvalues understood the vertical velocity potential

profile can now be obtained. Once it is ensured that (2.39) has a unique solution for

p that is equivalent to the incompressible solution K up to order 6, from (2.37) it can

be shown that:
B
- ~(2.48)

A

The corresponding velocity potential <b in deep water reduces to the incompressible
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Figure 2-6: Graphic solution to the dispersion relation for weakly compressible free-
surface gravity waves in deep water for constant a = K/o = 5 and c = [0.5, 1,10, 100].
Shows the behavior of f2 as c increases, in agreement with (2.46) and (2.47). Depth
decaying profiles.
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solution:

<b = Ae 6y(sinh(K - 6)y + cosh(K - 6)y) = Aey, (2.49)

where the coefficient A can be determined from the free-surface profile 71(x) through

the kinematic free-surface boundary condition =- on y = 0. Finally, substitutingdt ay

= - 3 into (2.31) obtains the wave frequency, which is equal to the corresponding

incompressible short-wave frequency:

o.2 = 2K6 -+ w = 99 . (2.50)

In short, it has been shown that given appropriate choice of the speed of sound, we

have essentially obtained the an incompressible Airy wave to order 6 1/c2 , verifying

to leading order the weak compressibility assumption made in [30].

2.4.1.4 Depth oscillatory profiles

It is recalled that the characteristic polynomial for m has a solution for both A > 0

and A < 0, where A = (J2 + K2 _ U2 ). For A < 0 and by the assumption that both

v and w are real, the following can be written:

(iv) 2  62 + K2 _ 0.2 > 0

o.2  2 + 62 + v2 > 0. (2.51)

Given #(y) cx e(+') the most general form for # reads:

#(y) = e6 [C sin vy + D cos vy] . (2.52)

For reference, the first and second derivatives of # are:

# e'Y [(C6 - Dv) sin vy + (Cv + D6) cos vy] (2.53)

# e 6 y [(C6 2 - Cu2 - 2D6v) sin vy + (2C6v + D62 - Dv 2 ) cos vy] . (2.54)



The solution to (2.25) can now be obtained from the boundary conditions (2.28) and

(2.29):

#"| yo - k 2 01Y=o = 0 -

2C6v + D(-v 2 +6 2 -_' 2 ) = 0 (2.55)

$'|yl=-H = 0

-(C6 - Dv) sinvH + (Cv + D6) cos vH = 0. (2.56)

Eq. (2.52), (2.55) and (2.56) now represent an eigenvalue problem for the unknowns

C, D, v, and w. Eliminating C and D from (2.55) and (2.55) the following relation

is obtained for v:
x2 -6 2 v_ 2

vH cot vH = 6H 2 6 2  . (2.57)
K2 + 62 +V2'

Eq. (2.57) along with (2.51) are the dispersion relations for v and w and depend on r,

and 6. Leading order solutions to (2.57) are easily derived under the assumption that

the dimensionless number 6H = gH/2c2 < 1. Therefore, knowing that I I- < 1

the dispersion relation (2.57) is simplified to finding the zeroth roots of the cot vH.

Namely,

2 -62 _ 2
vH cot vH = 6 H K262±v2

K2 + 62 + V2

vH cot vH < 6H < 1

vH cot vH ~0 v H

2n ± 1
vH 2 + r , where n = 0, 1,.... (2.58)

2

The above approximation is more accurate as 6H -4 0 and n -+ oc. In fact, neglecting

the term |j-6- | < 1 in (2.57), a first order solution with respect to 6H can

be derived by considering a Taylor Series Expansion of the cotangent about 2n+17r.



Letting y, =vunH - "n7r, it is shown that up to leading order vIH is given by:

TSE
y, cotyn = 6H-

(-1)"+( yn+yl) = 6H -

Y 7r 1I+ 1 ( -~ 66Hya= -~ 1 + 1 (-1)1 2H
4 7r

2n + 1 2
vnH ~ 2 - - SH. (2.59)

2 7r

The fact that he above relations neglect , can be alleviated iteratively by substi-

tuting the above result into (2.57). From the first iteration, neglecting terms O(6H) 2,

it is
2n+1 2 1-k2

vH = 2 r - (-1)"- 6H ", (2.60)2 r 1 + kg

where kn = 2n+7r. Since I ;1 the above verifies that (2.58) is O(H).

Given vn from (2.58), the vertical velocity potential profile can iiow be obtained.

From (2.55) it can be shown that

D 26vn
C = .~2 5 (2.61)C r 2 + V2 __ 2*

The corresponding velocity potential <bn in deep water becomes

(bn = Cnes"(sin vny + " cos vny). (2.62)
K2 + vn - 62

The coefficient Cn can be determined from the free-surface profile r(x) through the

kinematic free-surface boundary condition 4 = 2 on y = 0. Finlly, substituting

(2.58) into (2.51) determines the wave frequency

2- = r2 + 62 + v 2 + 62 +vl, (2.63)



where it can be seen that for n > 1 it is

c7r
W i n . (2.64)

H

2.4.1.5 Comparison of incompressible and acoustic modes

This section compares the amplitudes of the kinematics and dynamics of the incom-

pressible and acoustic modes. Initially, the following two groups definitions are given:

1. Let the subscript -1 denote deep water incompressible-like quantities. In partic-

ular let in = p = (, -6) and w_1 = Vfk denote the incompressible wavenum-

ber and frequency, respectively. Let @_1 =_ eY and V_1 =_ ei(K--t) denote

the incompressible unit amplitude depth decaying vertical velocity potential

profile and the normalized velocity potential, respectively. Finally, let C_1

denote the amplitude of the velocity potential such that <b_ 1 = C_19_=

C_1 /-1rn (y)e4'-W-t) and #-1(y) = C_1@_1 (y).

2. Let the subscript n = 0, 1, 2,... denote depth oscillatory, i.e., acoustic quan-

tities. Il particular let mn = vn = 2n 1ir and wn c / ±62+ v2 denote2 H V

the acoustic wavenumber and frequency, respectively. Let On = e6Y(sin v" y +

sn cos voy) and Pn 4One i(-n) denote the acoustic unit amplitude verti-

cal velocity potential profile and the unit amplitude velocity potential, respec-

tively. Noting that sn = 26"n for n > 1 it is s 26 and therefore fortvy.Ntntht K2±+V2-62~ -

6H < 1 -+ e _ 1 it is On ~ sin vny + - cos vny. Finally, let Cn denote the
Vn

amplitude of the velocity potential such that <Dn Canp = CnOn (y)e(K-wnt)

and #. (y) Cn On (Y).

Table 2.1 summarizes the kinematics and dynamics for each mode given a unit

amplitude velocity potential po. The horizontal and vertical velocities are u = y'2, and

v = py respectively. The dynamic pressure P* is given by P* = - = -<bt.
p

Table 2.2 siununarizes the kinematics and dynamics for the incompressible mode

and the high frequency acoustic modes, i.e., n > 1 (such that vn > r, > 6 and

6H < 1 -* eu ~ 1) given a unit amplitude free-surface displacement r = ei(-x-Wnt).



Table 2.1: Summary of kinematics and dynamics for incompressible and acoustic
modes given a unit amplitude velocity potential.

Incompressible Acoustic

mode modes

n=-1 n>0

(pn eYei(xw-w-it) e6y(sin vny + sn cos vny)ez 4" ')

un ineKYei(rx-w-t) irne6y(sin vny + Sn cos vny)e"-(Kx t)

Vn ,eK.Yei(xw- -1t) e5 " [(6 - vn sn) sin vny + ( 6 Sn + Vn) cos u Y] e i(KX-wt)

Pd i1 i-eKYeK-w-it) iwne6 Y(sin vny + sn cos vny)ei(47-w1 )

The velocity potential is related to the free-surface displacement through the kine-

matic free-surface boundary condition 7(x, t) = -1 <bt|yo. By definition, it is <bn=

Cn/n(y)e i(KX-wt) and therefore the amplitude of the velocity potential C" given a

unit amplitude free-surface displacement of frequency Ln is given by

7n(X, t) = (<bn)t|yo -+
9

ei(KX-nt) - " CnOn (0)ei(K--Wn) -+
9

g1
Cn = . (2.65)

on On (0)

It is emphasized that in this case the free-surface displacement is a unit [L], and

therefore the units for the velocity potential, the velocity and the dynamic pressure

P* are [L2T- 1], [LT-1], and [L2T- 2] respectively.

Finally, Table 2.3 summarizes the free-surface displacement and the kinematics

for the incompressible mode and the high frequency acoustic modes given a unit

amplitude for the dynamic pressure, i.e., P* = On(y)ei(X-Wnt). Similarly to Table 2.2

in this case the dynamic pressure P* is a unit [L2T- 2], and therefore the units for the

free-surface displacement, velocity potential and velocity are [L], [L2T-1], and [LT- 1]



Table 2.2: Sunnary of the kinematics and dynamics for incompressible and high
frequency acoustic modes, given a unit amplitude free-surface displacement.

Incompressible mode High frequency acoustic modes

n=-1 n>1

x-ei(Xw-t) ei(Kx-wnt)

4n (0) 1 sn = 6

C- -ic

Vn -i FeKue'(rx---t) -ic(sin vny + ' cos vny)ei(Kx-wnt)

Un gKeryei(Kx--it) cK(sin vny + g cos vny)ei(rx-wnt)

Vn -iVfgeYei(rx-wit) ic(6 sin vy - vn cos vny)ei(rx-wnt)

PJ* genYe i(Kx-Wit) c 2 vn(sin vny + cos v y)ei(Kx-wnt)

respectively.

From Tables 2.1, 2.2, and 2.3 the following two observations regarding the velocity

divergence and velocity ratios are made. First, the Laplacian for the velocity potential

of the n = -1 mode, i.e., the incompressible mode, is zero everywhere, as expected.

However, the Laplacian of the velocity potential for the acoustic modes, given that

SH < 1 -± ed ~ 1, is approximately:

Von ~- (a sin vny + b cos vny)e(xwt) 0, (2.66)

where a = 62 K
2 - 26vnsn and b = S2 - VnSn - K

2 + 26vn.

Second, for the incompressible mode the horizontal and vertical velocities are out

of phase in the horizontal direction and of equal amplitude. However, for the acoustic

modes the horizontal and vertical velocities are out of phase both in the vertical

and horizontal directions and are not of equal amplitude. In particular for the high



Table 2.3: Summary of the kinematics and dynamics for incompressible and high
frequency acoustic modes, given a unit amplitude dynamic pressure.

Incompressible mode High frequency acoustic modes

n=-1 n>1

P * eYei(xw-w-it) (sin vny + I. cos vny)ei4"I- "t)

T1 ~ ie(rx-wajt) 1- i(KX-ont)
9 C1 Vn

<pn -i eKYei('-w- it) -i-- (sin vy + 1 cos VnY)C

Un -eKYei(rx-w-1t) r_ (sin vy + 2-6 cos v__y)e_" )
o__ -ie__e___-____ i-(sin vn

-nLry ir-~t i y--( 6 sinvn y - lvn cos vny)clh wC

frequency acoustic modes it is

Un ~ iCnr sin vny, and

n ~ Cun coS uny.

(2.67)

(2.68)

Therefore the ratio of the horizontal over the vertical velocities scales as U ~_ ~
vn vn

9. In words, for an acoustic mode n > 1, the amplitude of the vertical velocity

increases linearly with n compared to the corresponding horizontal velocity.

The linear superposition of an incompressible mode and a high fre(uency acoustic

mode is considered. The magnitudes of the incompressible mode aiid the acoustic

mode are compared at a given instant in time. Two example cases are (lemonstrated.

In the first it is assumed that the two modes have equal free-surface displacement

amplitudes and the ratios of the kinematic and dynamic amplitudes are computed

from Table 2.2. In the second case it is assumed that the pressure coefficients are

equal and the ratios of the kinematic and free-surface displacements are computed

from Table 2.3.



First it is assmned that the flow field is formed by the linear superposition of a

unit amplitude free-surface displacement of incompressible frequency w_ 1 and of a

unit amplitude free-surface displacement of an acoustic high frequency wn with equal

horizontal wave lengths, i.e.,

17 = 7-1 + Tn, (2.69)

where n > 1. From Table 2.2 it is readily observed that the incompressible mode

attenuates and practically diminishes for 'jyj > 27r while the acoustic mode is prac-

tically non-attenuating. Therefore, after a certain depth the only mode that can be

observed is the oscillatory one. On the free-surface where the incompressible mode

has its maximumu value of the horizontal velocity it is

U-1 _ _c (2.70)
Un Cg fg

This means that the incompressible mode dominates for longer waves or higher modes

i. However, for the vertical velocity it is the opposite, i.e.,

v _ v . (2.71)
vn cvn

The dynamic pressures are identically equal at y = 0, i.e.,

-d - g - 1. (2.72)
Pd n 9

However, at depths where |sin vyl = 1 the acoustic dynamic pressure scales as c2

Second, it is assumed that the flow field is formed by the linear superposition of

an incompressible mode of unit amplitude dynamic pressure and frequency w_ 1 and

of an acoustic mode of unit amplitude dynamic pressure and (high) frequency Wn with

equal horizontal wave lengths, i.e.,

= P* 1 + P (2.73)
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where n > 1. From Table 2.3 it is readily observed that on the free-surface, where

the incompressible mode has its maximum dynamic pressure value, it is:

" - > 1. (2.74)
Pa* 26

This means that the incompressible mode dominates. However, for depths such that

sin vny ~ 1 the dynamic acoustic pressure will be of order one. For the free-surface

displacements it is
Ii - c2" - V" > (2.75)
TIn g 26

This means that the measured free-surface displacement will be mainly due to the

incompressible mode. For the horizontal velocity on the free-surface it is

" >>>1, (2.76)
Un 863 r

while for the vertical velocity on the free-surface it is

Vi = - 1. (2.77)

2.4.2 Discussion on discretization and numerical verification

Discussion on the effects of the discretization In a MA-SPH numerical simu-

lation for free-surface flows the desired result is only the depth decaying mode. The

acoustic depth oscillatory modes, even though they exist in the real continuous world

[46], can not be correctly resolved in an MA-SPH simulation and are therefore spu-

rious. The acoustic modes of an MA-SPH simulation are spurious solutions for two

reasons. The first reason is that the acoustic modes are (i) spuriously generated by the

implicit MA-SPH dynamic free-surface boundary condition, discussed in section 2.5.6,

(ii) spuriously generated by numerical round off errors, and (iii) spuriously unstable

in an MA-SPH fully-discrete simulation, discussed in section 2.6.4. The second reason

is that the acoustic modes depend on the speed of sound (unlike the incompressible



solutions) and therefore are not accurately resolved when an artificial speed of sound

is used. In short, the acoustic modes in an MA-SPH simulation for free-surface flows

are entirely un-physical, are undesired, and are therefore the leading accuracy error

in an MA-SPH simulation.

Given that acoustic modes are the leading accuracy error in MA-SPH simulations,

the comparison of the magnitudes of the desired incompressible solution to a spurious

acoustic solution at a given instant in time, performed in the previous section 2.4.1.5,

is of fundamental importance in the accuracy analysis. The two examples discussed in

section 2.4.1.5 are helpful in that they offers a quantitative explanation why and where

in MA-SPH simulations the acoustic modes dominate the dynamics (rendering them

unusable) all while the displacements are smooth. In particular it is demonstrated

that (a) that in deep water a weakly compressible numerical simulation like MA-SPH

will contain only the spurious acoustic modes after a certain depth. (b) that if the

incompressible and spurious free-surface displacements are of the same amplitude then

the spurious pressure will be in general significantly larger than the incompressible

one, i.e., the dynamics will be completely corrupted, (c) that if the dynamics of the

two modes are of the same amplitude then it is guaranteed that the free-surface

displacements will be mainly of the incompressible type, and (c) that close to the

free-surface for the horizontal velocity the incompressible mode dominates over high

frequency acoustic modes n >> 1 while for the vertical velocity the high frequency

acoustic modes dominate over the incompressible mode.

As a closing, tangential remark, it is pointed out that the maxinium acoustic

wavenumber that can be resolved in a numerical simulation is determined by the grid

size h:

vmax < - (2.78)
h

in which case the maximum numerical 'cut-off' frequency Wmax is given by:

Crr2 h<1 CKr
Wmax = c r2 + 62 + (h)2 -4 Wmax ~ . (2.79)(h a



The waveniumber of the dominant acoustic mode is

Vd < -- (2.80)
ah

where a is determined from the stability properties of the fully-discrete algorithm and

the Courant condition pc. As seen in section 2.6.4 for a fourth order Runge-Kutta

temporal integration scheme and a typical Courant condition it is a 0 O(5). The

value of vd determines the value of the dominant frequency for the high frequency

acoustic modes

n -'- c . (2.81)
ah

Numerical verification The analysis of weakly compressible free-surface flows,

section 2.4, indicates the presence of two sets of linearly independent solutions: One

that is exponentially depth decaying, hereafter incompressible mode, and an infinite

series n = 0, 1. 2. ... of depth oscillatory, hereafter acoustic modes. Their existence is

verified via an SPH simulation and their behavior is studied. In general, for a given

free-surface displacement the magnitude of the dynamics of the depth oscillatory com-

ponents is larger than those of the depth decaying component and practically constant

with depth. Given that the acoustic modes are generated mainly at the free-surface,

section 2.5.6, it is expected that the acoustic pressure will dominate the dynamics.

This is the main reason that although SPH cannot capture the incompressible wave,

the acoustic components can be accurately reproduced.

To show the above we simulate a free-surface flow with MA-SPH and fourth order

Runge-Kutta temporal integrator, in a deep water periodic domain of length L. The

flow is initialized first with incompressible Airy waves of two different steepness rA

and then with various single acoustic modes. For all cases the dimensionless speed

of sound employed is / = = 10 and the Kernel bandwidth h = 0.01. From thegH

analysis, and given that with MA-SPH we can resolve numerically up to a maximum

27rwavenumber vaiou = 6, we expect that the frequencies present at any MA-SPH

simulation should not exceed Wmax = c k2 + v2. Therefore, the cut-off period for



all the simulations is expected to be T66 = 0.001, independent of the wave steepness,

or the initial conditions.

First the field is initialized with an incompressible wave solution. Figures 2-10

and 2-11 show the horizontal and vertical kinematics as well as the pressure along

the depth at x = L for riA = [0.0006,0.006] for one and two periods respectively.

It is noticeable that the accelerations are plagued by high frequency oscillations,

i.e., spurious acoustic modes dominating as the water depth increases. This is since,

section 2.4.1.5, the nth acoustic mode particle displacements scale as a1. the horizontal

and vertical velocities scale as aj#, and aj/n respectively and the pressure P cX

al/32n, is practically constant with depth. Therefore, the acoustic modes dominate

the dynamics with increasing depth. As a consequence, the lower [;I the acoustic

noise dominates the incompressible solution faster.
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depth decaying (Airy) wave with rA=0.006. Top left, vertical particle position. Top middle, horizontal velocity. Top right, horizontal

acceleration. Bottom left, dynamic pressure. Bottom middle, vertical velocity. Bottom right, vertical acceleration. Dimensionless speed

of sound # = 10 and kernel bandwidth h = 0.01.



Figure 2-12 shows the Fourier amplitudes of the kinematics of a linear depth

decaying Airy wave with KA=0.0006. The dimensionless speed of sound used is

0 = 10 and kernel bandwidth h = 0.01. The cut-off period is therefore computed

to be T66 = 0.001. The depth oscillatory components are generated predominantly

by the spurious dynamic free-surface boundary condition, section 2.5.6. It is shown

that the weakly compressible analysis is in agreement with the MA-SPH simulation

results. The depth decaying components however, are plagued by spurious acoustic

modes, the latter dominating as the water depth increases. The acoustic modes have

been accurately predicted by the analysis and their frequencies are better represented

in MA-SPH, with increasing accuracy as the mode number increases. A maximum

cut-off frequency has been identified based on the speed of sound and maximum

resolved wavenumber -max ~I in the grid spacing.

These numerical examples are useful in that they clearly demonstrate that for

each wavenumber K there will appear one depth decaying mode and n = 0, 1, ... , nmax

depth oscillatory modes. In practice it is expected that the simulated waves will not

be monochromatic but rather have f depth decaying modes, resulting into f x n depth

oscillatory modes.

Second, we initialize with various acoustic modes. The dimensionless speed of

sound is for all the simulations # = 10 and the kernel bandwidth h = 0.01. The

cut-off period is therefore computed to be T66 = 0.001. Numerical noise is expected

to dominate predominantly over modes with smaller n. Figure 2-13 shows the initial

horizontal velocity field for n=20, kA = 0.0006. Figures 2-14 to 2-18 show the

kinematics and dynamics with respect to time at selected particles along a cross-

section at x = L, for n = [0, 10, 15, 20, 40], respectively. The wave steepness is for all

cases KA = 0.0006. As expected, the simulations of higher modes are better resolved.

Concluding. these simple numerical test cases verify why generally in existing

applications the free-surface displacements are in agreement with experimental re-

sults, e.g., [6, 49]. while dynamic loads are plagued by large amplitude high frequency

oscillations e.g.. [1, 2, 14, 15].



du
0.02 - -- - '' --

-- y -0.37
-y -0.27

0.018 -.. . . . . . . . .. . . . . . . . . - -.. .---.. .. .... .''... . -.. . -- y -0.17 E
y -0.07

-- Y -0.98
0 .0 16 -.. . . .. . . . -.. .-.. .-.. .-.. .-.. .-..-.. .-.. . -.. . -.. .- ...- Y -0 .88

0.014 .-. -

0.012 - -- ---

0 .0 1 -.-.----.-.-.-.-.--

0.008 - - - - ---- - - -

0.006 - - - - -.-.---- . -

0.004 -

0 .00 2 .. .. .. .. . - -....---- -.. - - -- - - - - --

000

0 0.5 1 1.5 2 2.5
Period T

dv
0.08 - - - -- - - - -

-- y -0.37
- -0.27

- y -0.17
0.07 -0.07

-- y -0.98
y -0.88

0 .0 6 -.. . .. . . . - . . . . - -.. . -.. . -.. . . . . . . . . . . . . . . . . . -

0.05 -.-.-.-...-.-.- -.- -.-

0.04 --. -. ---.-..- - -. .

0.03

0 0.5 1 1.5 2 2.5
Period T

Figure 2-12: FFT of horizontal (top) and vertical (bottom) accelerations in SPH
simulation of linear depth decaying (Airy) wave with nA=0.0006. Dimensionless
speed of sound 3 = 10 and kernel bandwidth h = 0.01. Expected cut-off period
T66 = 0.001.

92



-0.2 -***
.- 0.001

- 8-0.0015

-16

0004 0.4 Mm.6 0=81

Figre2-1: nancolor.aPlane prgeie wn avae, acoustanic od.noorngbae

-0.6

oniiia oiona eoct ild aeslpmA=n.06 vn~maertclaenne

-0.8 --eretca po =0

0 0.2 0.4 0.6 0.8 1
X

Figure 2-13: In color. Plane progressive wave, 201h acoustic mode. Coloring based
on initial horizontal velocity field. Wave slope rA = 0.0006, vertical wavenumber

v 41=7r theoretical period T2o = 0.03.



0.3 - zONED00
ZONE 001

0. ZONE 001

ZONE 001

0.1

WIIA1'I~
U.~ r ~

-0.3

0 0.1 0.2 0.3 0.4 0.5
time

Figure 2-14: Kinematics and dynamics with respect to time at selected particles along a cross-section at x = L. SPH simulation of

linear depth oscillatory wave with n = 0, /-A = 0.0006, h = 0.01. Top left, vertical particle position. Top middle, horizontal velocity.

Top right, horizontal acceleration. Bottom left, dynamic pressure. Bottom middle, vertical velocity. Bottom right, vertical acceleration.
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Figure 2-16: Kinematics and dynamics with respect to time at selected particles along a cross-section at x = L. SPH simulation of

linear depth oscillatory wave with n = 15, rA = 0.0006, h = 0.01. Top left, vertical particle position. Top middle, horizontal velocity.

Top right, horizontal acceleration. Bottom left, dynamic pressure. Bottom middle, vertical velocity. Bottom right, vertical acceleration.



Figure 2-17: Kinematics and dynamics with respect to time at selected particles along a cross-section at x = L. SPH simulation of
linear depth oscillatory wave with n = 20, rA = 0.0006, h = 0.01. Top left, vertical particle position. Top middle, horizontal velocity.
Top right, horizontal acceleration. Bottom left, dynamic pressure. Bottom middle, vertical velocity. Bottom right, vertical acceleration.
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Figure 2-18: Kinematics and dynamics with respect to time at selected particles along a cross-section at x = L. SPH simulation

(h = 0.01)of linear depth oscillatory wave with n = 40, rA = 0.0006. Top left, vertical particle position. Top middle, horizontal velocity.

Top right, horizontal acceleration. Bottom left, dynamic pressure. Bottom middle, vertical velocity. Bottom right, vertical acceleration.
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2.4.3 Projection of weakly compressible free-surface flows in

deep water on to a divergence-free space with modal

decomposition

In section 2.4.1.2 it was demonstrated that the linearized weakly compressible bound-

ary value problem for the velocity potential <) allows for two sets of periodic free-

surface gravity waves. The first are depth decaying modes and are consistent up to

order 0(6), or equivalently O(1/c 2), with the corresponding incompressible modes.

The second are high frequency acoustic modes. As discussed in section 2.4.2, in

a numerical MA-SPH simulation these acoustic modes are spurious. dominate the

dynamics, and are therefore unwanted.

The objective is to decompose the MA-SPH solution field into incompressible

depth decaying modes and acoustic depth oscillatory modes, remove the spurious

acoustic modes and retain only the incompressible modes. Such decomposition re-

quires the formulation of an orthogonality relation between the incompressible and

acoustic modes. Particular care has to be taken in the formulation of the orthogonal-

ity relation because the boundary value problem as defined by (2.25) subject to (2.28)

and (2.29) is not a typical Sturm-Liouville boundary value problem as the coefficients

in the free-surface boundary condition (2.28) contain an eigenvalue.

The approach has as follows. A single horizontal wavenumber is assumed, i.e.,

single Fourier mode in the horizontal direction. An orthogonality relation is formed

for the vertical velocity potential from the governing equation (2.25) and the boundary

conditions (2.28) and (2.29). The latter relation is re-written in terms of vertical

and horizontal velocities and further simplified to maintain only the incompressible

modes. Finally, it is extended to account for arbitrary Fourier modes in the horizontal

direction.

Single horizontal wavenumber The decomposition for a single, known horizontal

wavenumber r, is obtained for a two-dimensional semi-infinite domain described by the

Cartesian coordinate system [x, y]. Let y = 0 denote the position of the free-surface
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and y = -H -+ -oo the flat sea-bed. Assume a flow in the domain that is described

by a velocity potential )(x, y, t) given by (2.21), i.e., <D4t - c2V 24) + g4 Y = 0, subject

to the boundary conditions V 2 CD(x, 0, t) = 0 and <Dy(x, -H, t) = 0. Here c denotes

the speed of sound in the fluid and g the gravitational acceleration. Given that the

governing equation for 4) is linear and that -oo < x < +oo it can be assumed that

<b = #(y)ei(zx"l). Substituting into the governing equation and boundary conditions

obtains

+ (.2 _ 2)# = 0 (2.82)

#'(0)- -- (0) = 0 (2.83)
9

#'(-H) = 0 where H -+ oo. (2.84)

As described in sections 2.4.1.3 and 2.4.1.4 the solution can be written in terms of

modes #$n

+00 +00

<D = -- a- dni( xxwt) (2.85)
n=-1 n=-1

= a1 -, e i(Kx-Vgrt) ± I: an O ei(rx-wnt),I

e (K-6 n;>0 (sin vay+c cos vny)

where the subscript -1 denotes the incompressible-like mode and subscripts > 0

denote the depth oscillatory modes (section 2.4.1.5). It is recalled, for reference,

that the wavenumnber and frequency of the acoustic modes are vn = 2-1r on

c/K2 + 62 + v2. The depth decaying mode can be selected from the total solution

employing the following relation

(I)~ ~ ~~, -~~~)-fHez [v(x, z, t) - iu(x, z, t)] dzeY.(86
, y, t) = c2,0e2Kzdz. (2.86)

where by definition V4D = [u, v]. To prove (2.86), first an orthogonality relation for

two different modes n and m is formulated. In detail, the governing equation (2.82)
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is multiplied by r(y) = e-2 6 and re-written as

(e-26y ')'+ (o. 2 _ K 2 ) e- 26y# = 0. (2.87)

Two modes On and m that satisfy (2.87) are assumed. Equation (2.87) for n,

m is multiplied with (w )4'm and (on respectively. Subtracting, integrating from

-H to 0 and collecting terms yields

I = j (Wonm) ((6-2zi) + (.2 _ 2 _

( ) ((e-26z )' + (U2 _ dz =0

= w n4m (e 2  ) , ) dz +

I1

(w! -2w ) J [- 26 z 2 Onbm dz = 0. (2.88)

The first integral on the right hand-side of (2.88), I 1, is integrated by parts and the

boundary conditions are applied

= J 20 m (e 26 zo' ' - W On (e -26z/) dz

S e-2 6 z (W 2 V/m) ' - WO n ,' ) -, + (W2 - w )2 e-2 6 zvI V j(1(H)=

(w -n )-H -2j m' (2-9)
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Putting everything together, yields the orthogonality relation

I = 0 - (2.90)

I1 + (- w2n) e-25zgb' dz = 0 -

(w2 - o,) e 26z /,/dz + (w - w ) j e-2kz 2@ngPdz = 0 -+
1 11 -OH n -OH

(2 w 2) e-26 (01'0' + r2 bnm) dz = 0 -

Inm

(wI - wI) Inm = 0

In 1 e-2 z - n + 2 /a m ) dz = 0 for n# m. (2.91)/0H

Next, it is shown how the orthogonality relation (2.91) can be used to extract

the amplitude of a single mode n from the velocity potential 4, where D is given in

(2.85). Assume the integral 12

I2 = / e 26C [#'$~z + 2 ODn] dy

-25z i(Kx-wnt) + K2 n am mei(Kx Wnt)

. -H . m e nE a o e

=( amek("-')j e-26 z [V) V)' + K 2 V)nV)m] dz

amei(nx-wnt)Inm Inm=Ofor n~m

= nim[e,, -- n). (2.92)

Noting that <b), = u 4*''" X<D = -iu and <b, = v the following relation can be

used to obtain the amplitude of a single mode n in terms of the velocity components

i~-X Wt) - 1 -26anei(Kxwt) -= n e-26 [' Vv - i4n'u] dz. (2.93)

Since, it is of interest to remove all the acoustic modes and maintain only the

incompressible mode the following filter can be used to obtain the desired incom-
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pressible solution:

f_-H e(K-3 6 ) [(K - 6)v - iKu] dz sane = R

(2K 2 - 2K6 + 62) 0 e2(n- 26)zdz

fH Z [v - i] dz
2Kf 0 e2 Kzdz (2.94)

Equation (2.94) can be further approximated by ae-i(Kx-W" ft) Ce [v - iu] dz.

However, in a numerical simulation the integrals in (2.94) are computed through a

quadrature formula and it is found that it is best if the integration in the denominator

is performed numerically as well.

Finally, putting everything together, after the acoustic modes have been filtered

out, the entire, incompressible flow field can be reconstructed from

f enz [v(x, z, t) - iu(x, z, t)] dz
<(X, y, 0) = -HK 0 z CKy. (2.95)

2K f-H 2 Kzdz

This proves the validity of (2.86). There is an approximation error of order 0(6) due

to the assumption

_ = e(- 6)y = eKye-JY = e' (1 - 6y) ~ e'Y + 0(6), (2.96)

which is still within our acceptable error bounds regarding the consistency with the

incompressible solution.

Numerical verifications To validate the model decomposition we consider ran-

dom time steps in an MA-SPH simulation of a small amplitude Airy wave with

KH = 27r. The integral (2.91) is computed for n = 0, ..., 50 acoustic modes. Note that

the N is bounded by the kernel bandwidth h. Figure 2-20 shows the magnitude of

the integral (2.91) for m = -1, and n = 0, ... , 50 in deep water. The horizontal wave-

length is chosen K = 27r/H. Figure 2-21 computes the final reconstructed solution

<b_1 from (2.86) in deep water from a noisy solution <b = 2<b_ 1 + (),, n = 0, ..., 50.

The horizontal wavelength is chosen K = 27/H. Figures 2-22 and 2-23 demonstrate
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verify the orthogonality relation for an acoustic mode and compare an initial noisy

and reconstructed solutions, with respect to the water depth for two different values

of nH.

Verification of orthogonality relation f e y (f f.+k
2 
f~f)=O

for f = deep water incompressible solt. a f HFO with with n=O,..,50
......I...................... .............. ...... ....... ....... ...........

mode

Figure 2-20: Verification of orthogonality relation (2.91) for m = -1, n = 0, ..., 50.
Deep water assumption, KH = 27r. The integral for each mode is of the order of 10-6.

Multiple horizontal wavenumbers To extend (2.86) to account for multiple

wavenumbers a Fourier decomposition in the horizontal direction is assumed. Namely,

it is assumed that the velocity potential at a time instant t can be decomposed into

<b(x, y) = am,nVm,n(y) sin Kmx + bm,n7/m,n(Y) cos KmX,
m=O n=-i
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HFO removal using orthogonality. Initial F=2f. + f

2,0002

mode

Figure 2-21: Computation of 1- from (2.86) in deep water for a noisy solution
= 2-1 + (%, n = 0, ..., 50. The horizontal wavelength is chosen 1; = 27r/H. The

error between the reconstructed solution @_1 and the incompressible solution 2(_1
is of the order of 10-. Deep water assumption, r H = 27.
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MOdl decompo n of F=F,+F,+F

Figure 2-22: Initial noisy solution f = f_1 + f2o + f,, where f_1 denotes the unit
amplitude incompressible solution, f2o denotes the unite amplitude 2 0 th acoustic mode
and f, is an unstable mode, i.e., wavenumber larger than k. Top: Computation of
orthogonality relation (2.91) for m = 20, n = 0, ..., 30. Bottom: Comparison between

initial noisy solution f(y) (thin solid line), smooth solution from (2.86) (dashed line)
and smooth with instability reduction solution (thick solid line) along the depth.
Deep water assumption, kH = 27r.
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Modal decomposition of F=F.+F,+F kH-10

.0.8 -

0.6 -

0.4--

0.2 -

05 10 15S2 25 do

Smoothed/recovered F=F +F +F kH-104

-15 - O'0 0 0-5 15 225

-0.2 -w

Figure 2-23: Initial noisy solution f =f-1 + f2o + f, where fi (denotes the unit
amplitude incompressible solution, f2o denotes the unite amplitude 20"' acoustic mode
and f,, is an unstable mode, i.e., wavenumber larger than k. Top: Computation of
orthogonality relation (2.91) for m = 20, n = 0, ... , 30. Bottom: Comparison between
initial noisy solution f (y) (thin solid line), smooth solution from (2.86) (dashed line)
and smooth with instability reduction solution (thick solid line) Aloig the depth.
Deep water assumption, kH = 107.
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where "tm = 2w m and it is implied that am,n and bm,n have a parametric time de-

pendence. Given that V4b = U', multiplying the velocity components with complex

conjugates and integrating over the domain length obtains

0 L<by(sin ,,.r*)dx* = 0 L
* fsin mx sin nxm L

=Ldmn 2 _
T n=-1

where 6mn is the Kronecker delta. Similarly, the following are also obtained:

fLv(x*, y)(cos KmX*)dx*
0

u (x*, y) (sin KmX*)dx*

-1 u(x*, y)(cos hmx*)dx*

L E bm,n@' ,(y)
n=-1

- 2 Km E bm,nm,n(y)

S Km am,nm,n(y)
n=-1

The simplified orthogonality relation (2.94) becomes

a,,.-, f _ * H s am,nOm'n + Km 1 am,n m,n dy*

0 eamy*L= 2 -I H Lii dy* 10 dx* [v sin /mx* + u cos Kmx*]
L _ H I-1-1,m 0

and

[z bm,nmbn + Km5 bm,nlbm,n1 dy*
= emy* dy* IL dx* [V cos ImX* - u sin hmx*].

L _ H t-1-1,m

Finally, the smoothed field is obtained from:

(Mb(X, y, t)
9M 0o em* L

- ( sin hmX I Kmy dy* +cv sin mx* + U COs mX*| dx*+
m L-H i1-1,m 0

+ cos Iimx ji dy* I[v cos Kmx* - u sin imx*| dx* e' ,
-H -1-1,m

(2.103)
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where it is recalled that Le = mfH emYdy*. Of course, in practice the inte-

grals are computed for each mode and then the velocities and the dynamic pressure

are computed from V<D = U' and <Dt + -Pd= 0 4, =sm

Two approaches are considered in obtaining the above smoothed field. In the

first approach the field is reconstructed from (2.103) for a small number of horizontal

wavenumbers, say M = 0(5). The volume integrals can be computed either by direct

summation on the particle locations, or for higher accuracy, at desired locations

through a quadrature scheme. The values of the velocity at the latter quadrature

points are computed through MLS interpolation. The approach is of order O(N),

where N is the total number of particles, and does not require an underlying grid.

In the second approach, the particle velocities are interpolated along a regular grid

of spacing [6x, 6y]. An FFT is performed along the horizontal direction at each depth

b6y to obtain am,nm,n(b6y). Then (2.94) is applied along the depth for each mode m

to obtain am,-1 . Finally, an IFFT is performed to reconstruct the field. A hat filter

can be used at this step to maintain desired horizontal wavenumbers. Finally, the

smoothed velocities can be either interpolated back to the particle locations, or the

regular grid can be considered to indicate updated particle locations. This approach,

is still O(N) and although it appears less attractive because it requires re-gridding.

However, it allows the direct removal of the most unstable modes, as will be discussed

in the following section, and is thus preferred for numerical simulations. Applications

were restricted to small amplitude waves, to avoid re-gridding issues.
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2.5 Consistency analysis of Kernel Interpolation

in MA-SPH for free-surface flows

In MA-SPH the continuous weakly compressible equations of motion (2.5) - (2.8) are

integrated numerically over a finite number of discrete Lagrangian fluid particles. The

spatial derivatives appearing in the aforementioned equations of motion are computed

at each particle position with Kernel Interpolation, as described in (2.11) - (2.14).

The particles are advected from the equations of motion and thus are not necessarily

expected to be distributed on a structured grid. The major advantage of employing

Kernel Interpolition (KI) for the computation of spatial derivatives at each particle

position is that it does not require any underlying mesh or structure on the particle

positions, rendering MA-SPH as a truly meshless method.

This section deals with the consistency analysis of KI for the estimation of the

value of a function and its first derivative at a given particle position in discrete

space for uniform, random and smoothly advected particle distributions. First, KI in

discrete space is defined in section 2.5.1. Next, the consistency of KI in an unbounded

domain is considered. The MA-SPH density is considered for smoothly advected

particles that were initially placed on a regular, unbounded grid and consistency of

KI for smoothly advected particles is proven. Finally, the presence of a free-surface

and its effect on the implemented boundary conditions is studied in section 2.5.6.

2.5.1 Definition of Kernel Interpolation

Kernel Interpolation is used to compute the value of a function or its derivatives at

a known particle position (collocation point) in discrete space as the convolution of

the values of the function at neighboring particles with a known analytic distance

function. It does not require the use of grids. KI was introduced and analyzed

completely in [29] for the case of equi-spaced particles in an unbounded domain.

Later work, presented in [25], in the context of SPH has approached the issue in

slightly different manner but without adding further insight.
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To define KI first assume a number of one-dimensional particles a = -N1, .. . , -1, 0, 1

lying along the x axis. Assume that each particle a carries its own nmss ma, density

Pa, and volume Va ma/pa. Let the position of the center of mass of particle a be

Xa E (LI, L,). Let W(x, h) denote an analytic, smooth kernel function of x and the

parameter h, which is defined as the kernel bandwidth with units of length. For now

assume that the kernel scales as h- 1, i.e., W - h- 1 , that it has compact support, i.e.,

W = 0 for IxI > ah, a 0 O(1) and that it is normalized _+0 Wdx = f_+h Wdx = 1.
f00 . ali

Examples of such kernels include the B-Splines [29], appropriately normalized Gaus-

sians, etc. Finally, consider a sufficiently smooth function f(x). KI for the interpola-

tion of the value of the function is defined as:

+Nr

f(Xa) S f(Xb)m-W(Xa - Xb, h). (2.104)

b=-NI Pb

The value of the first derivative is

+Nr
df bdW h (210
-(Xa) f(xb)- d (Xa - Xb, h). (2.105)
dx b- pb dx

b=-N

To simplify the above expressions denote hereafter fa = f(x'). f = (Xa),

Wab W(Xa - Xb, h), and Wab = d(Xa - Xb, h). To conclude the definition of KI it

must be pointed out that the density of each particle may be unknown. Substituting

f with p in (2.104) the following definition is obtained:

+Nr +Nr

Pa a Mb Wab = E mbWab. (2.106)
b=-N Pb b=-Ni

It should be noted that if the mass has units [M], the units of the particle density in

this case are [ML 1 ] and thus the particle volume has units [L]. This is in agreement

with the initial one-dimensional assumption. Equations (2.104) and (2.105) along

with (2.106) conclude the definition of KI for the estimation of the value of a function

and its first derivative at a particle position, given the values of the function and

the relative distances of known neighboring particles. The above three relations are
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re-displayed below for ease to the reader

+Nr

Pa bWa
b=-NI

+Nr

fa 3 -fbWa
b=-Ni Pb

+Nr

f'a >3 fbWab-
b=-N Pb

In two-dimensions [x, y] the kernel functions are often defined as radial basis func-

tions. However, higher dimensional kernels can be simply obtained as the tensor

products of one-dimensional kernels. For example in two-dimensions it is W(, h) =

W(x, h)W(y, 1h). In this case the units of W are [L- 2 ]. The density has units of

[ML- 2 ] and the volume [L2 ]. In this case if g(l) denotes a sufficiently smooth func-

tion of F and ya g(a) then KI is defined as:

+Nr

Pa > mbWab (2.107)
b=-Ni

+Nr

ga > 3 gbWab (2.108)
b=-Ni Pb

+Nr

Vga 3mbgbVWab, (2.109)
b=-Ni Pb

where

VWab - I"(a - z4, h)W(ya - Yb, h)i + W(Xa - Xb, h)W'(ya - Yb, h)j. (2.110)

2.5.2 Uniform and randomly distributed unbounded particle

distribution

Kernel Interpolation is defined in section 2.5.1 for the interpolation of the value of a

function and its first derivative at a particle position, given the values of the function
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and the relative distances of known neighboring particles. What is of outmost interest

is to determine the consistency of KI, i.e., if f = f +0(h'o) and f' = f+0(hl) what

are the values of to and fi in an SPH simulation? In order to answer this question

several steps need to be taken. First, the unbounded, one-dimensional problem is

considered. It is assumed that the particles are equi-spaced. The moments of the

kernel are related to the values of to and f 1 . Next, the density equation is investigated.

Assuming that the particles have been advected by the equations of motion (2.11) -

(2.14) the consistency of KI is proven inside the domain of an MA-SPH simulation.

This section in large follows the approach of [29]. Certain assumptions are made and

consistency is demonstrated for the cubic B-Spline. Finally, the results are generalized

for any grid and kernel combination.

2.5.2.1 Uniform particle distribution

Assume a one-dimensional, infinite, and uniform grid of particles with spacing 6x = h

with xa = ah, a = -oo, ... , +oo. Let the mass of particle a be m, =- in =constant.

Since the particles are equi-spaced it is reasonable to assume that V, = h and thus

Pa - pf = m/h =constant. Let W(x, h) denote a continuous kernel function and let

the kernel bandwidth be equal to h. To simplify the demonstrations all computations

will be performed with the most commonly used kernel, i.e., the cubic B-Spline (2.111)

and h = 6x. Everything can be easily extended to different appropriate kernels and

different ratios of 3x/h provided that 6x/h 0 O(1), i.e., the kernel has a compact

support. The last assumption is an efficiency requirement for numerical simulations.

+2 ) + } (1)2 + _ (11)3 for - 2 <(i) -1

1-(q)2 1)3 for - 1 < (X) <0

W(x, h)= 1 (1)2 + 1()3 for 0 < () 1 (2.111)
2 () + 1(q)2 1()3 for 1 < (1) < 2

0 for > 2

First, the consistency of estimating the value of the function is considered, i.e.,

f= f +o(ho). From (2.111) the values of W at x = [-2h, -h, 0, h, 2h] are evaluated
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to [0, 1, y, '. 0] respectively. Recalling that Wab = W(X.-Xb, h) = W ([(a - b)h], h)

the next follows

a+2

b=a-2

+oo0ZMb
b=-oo Pb

+00

YM baI ab

b=-o Pb
+00

xb 2b P
b=-oo

hWab = h(- +
6h + ) = 1

Lh[(b - a)h] Wab= =(h
6h

b=a-2

1+ h[(b - a)h]2 Wab = h(h2
b=a-2

+ 0 + h ) = 0
6h

6h 3

The consistency of (2.104) is easily proven by taking the Taylor Series Expansion

of fb about xe,:

±00

fa fbWab Eh fa
b=-oo Pb

+ xbaf' + ba Wab =

- fa2lhWab + f'( hXbaWab + fa"(h, Wa2.1b12

= fa + f" . (2.113)

Next, the consistency of KI in the estimation the value of the first derivative of a

function is considered, i.e., j' = f'+ 0 (h). The first derivative of the cubic B-Spline

1±+ () + (x)2

-(x)3-j(x)2

-(x) + I(x)2

-1+ () -()2

for -2< () -1

for - I < (U) 0
for 0 < ( ) < 1
for 1 < (Q) < 2

for 111 >2

From (2.114) the values of W' at x = [-2h, -h, 0, h, 2h] are [0, 7, 0, d, 0], respec-
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tively. The next follows

±00

M WabZ Pba
b=-oo

+00

P baW'b
b=-oo

+00

PbaWa
b=-oo

+00

Mb~a 3

b=-ooP

The consistency of

f about xa:

a+2 
_ I

= hW'b= h( 2h2 + 2h2) = 0
b=a-2

a+2

= h[(b - a)h]Wab = h(-h~h2 + h 2  1
b=a-2

a + 2 ] 2h h 2 -
= h[(b-a)h]W' h2  +h 2  =

b=a-2
a+2 -1

= X h[(b - a)h]3Wb =h(-h + h 2

b=a-2

(2.115)

(2.105) is easily proven by taking the Taylor Series Expansion of

f'= b' h f a + xba fa + Xaf a"+ Xaf a V'b =y
b=-oo b

P il' N 'Lit j1~ X~ '~2 _ (2.115)
= fa (~ hW'~ab ± Ja ( hXbaVWab + fa ' h Wab + f'" ( ! ab -_

b b b b

= f'+f'". (2.116)
6

Eq.(2.112) and (2.115) are called consistency conditions. It is evident that any

kernel that has been constructed in such a way as to satisfy the appropriate consis-

tency conditions in a given grid will provide a consistent KI in the aforementioned

grid.

The previous relations can be easily generalized to any kernel and grid combi-

nation. In detail, assume a grid and a kernel whose moments satisfy the following

relations for the given grid:

Pb aWab =O,m, true for all m = 0, 1, ... ,- and

b Wab = ah'o,

(2.117)

where, 5k denotes the Kroenecker delta and no assumptions have been made on the

shape of the kernel. By Taylor Series expansion of fb about Xa it can be shown that
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f is consistent with f up to O(ho):

fa P mb f bWab = fa + ah'OffeO) + h.o.t. (2.118)
b

In a similar manner, let the first derivative of the kernel satisfy:

Eb Pb zaaWa = 6," true for all n = 0, 1, .., f1 and
10 (2.119)

Pb ( 1 +1)! ab =he1.

By Taylor Series expansion of fb about Xa it can be shown that f' is consistent with

f' up to O(h):

S m a = f' ± phefe1--1) + h.o.t. (2.120)
b Pb

It must be noted that for a kernel to be used for the computation of the value of

the first derivative of a function it only needs to satisfy (2.119) and NOT both (2.117)

and (2.119).

The previous can be easily extended to higher dimensions simply be taking the

tensor products of the kernels in each direction and/or for higher order derivatives

by taking appropriate moments.

In summary, the consistency of KI for uniform unbounded grid is reviewed. For a

specific grid and kernel combination, in which the moments of the kernel are described

by (2.117) it was shown that KI is consistent to order O(h'o) for the estimation of

the function at a given particle. Similarly, and not necessarily at the same time, for a

specific grid and kernel combination, in which the moments of the kernel are described

by (2.119) it is shown that KI is consistent to order O(hel) for the estimation of the

derivative of a function at a given particle. Therefore, it was shown that as h -+ 0

KI converges.
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2.5.2.2 Transforms in uniform particle distribution

To perform a numerical stability analysis of a spatially discrete scheme the Fourier

transforms of the spatial interpolation and/or differentiation scheme mst be known.

Therefore, for the stability analysis of MA-SPH it is imperative to compute the Fourier

transforms corresponding to KI. The latter are also indicative of the consistency of the

spatial interpolation and/or differentiation scheme. For this reason the computation

of the transforms is considered to be part of the consistency analysis of KI and is thus

performed here.

However, for the simulation of free-surface waves with MA-SPH an additional

transform of the KI must be performed. As has been discussed in section 2.4 flow

quantities in free-surface gravity waves under the linear weak compressibility assump-

tion can be spatially decomposed into two sets of modes in the vertical direction:

oscillatory (imaginary wavenumber) or exponential (real wavenumber). Therefore, in

the present section two transforms are considered: Fourier and exponential.

Given that higher-dimensional kernels can be simply obtained as the tensor prod-

ucts of one-dimensional kernels, the analysis is performed in one dimension. The

cubic B-Spline of compact support h described in 2.111 is considered.

The approach has as follows. A one-dimensional domain and a smooth function

are introduced. The function is expanded in terms of modes that can be either real

or imaginary. The KI for the function and its first derivative are given. The modal

expansion of the function is substituted and the transforms are obtained.

Namely, assume a one-dimensional, infinite, uniform particle grid. Let the spacing

be 6x = h with x, = ah, a = -oc,..., +o. Let the mass of particle a be ma =

m =constant. Since the particles are equi-spaced it is reasonable to assume that

Va = h and thus Pa Pf = m/h =constant. Let W(x, h) denote a continuous

kernel function with kernel bandwidth h. All computations will be performed with

the cubic B-Spline (2.111) but can be easily extended to different appropriate kernels

and different ratios of Sx/h with 6x/h ~ 0(1). The last assumption is essentially an

efficiency requirement for numerical simulations.
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A sufficiently smooth function f(x) is considered. Assume the following modal

expansion for f/ = f(Xb):

fA = fe"KX, (2.121)

where without loss of generality (shifting the origin) it is assumed that f = f(0).

The wavenumber K can be either imaginary, K - ik, or real, K -+ p. Substituting

the above modli expansion into (2.104) the transform of the function interpolation

is obtained.

f= Z -fbWb--
b Pb

= hf e**bWb-+

b

= hf e-KhA + 2 +erh 1)
6h 3h 6h)

(enh/ 2 _ e-h/2) 2-

=f 1 + 6 -(2.122)

where Wb I (xb; h) with W+1 = 1, Wo = and 0 elsewhere. For K -+ ik

it is f = f - i sin2 (kh/2). For K -+ P it is f = f + j sinh 2 (ph/2). For small

IshI - erh , h it is apparent that f ~ f(1 + 4h2).

In the same manner it can also be obtained that

Mb h -K-"
g* = z fbXbWb = hf e - (2.123)

b Pb 3 2

For K -+ ik it is g* = jfcos kh. For K -4 p it is g* = jfcoshph. Substituting the
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modal expansion into (2.105) the transform of the function differentiation is obtained.

f' = E mb fbWlb
b

= - >3 hf e"Wb'--+
b

= -hf e-h + eKh2

= fe e-h (2.124)
2h'

where -W'b = '= (xb; h) with W41 = - and 0 elsewhere. For , -+ ik it is

' i= fiskh. For - p it is f'= fsinhph. For small |sh -+ e , ~ fh it is apparent

that f' ~- f K.

In the same manner it can also be obtained that:

bh +-h

g** M fbxbWb = f (2.125)
b Pb 2

For K -+ ik it is g** = f cos kh. For K -+ p it is g** = cosh ph.

2.5.2.3 Randomly distorted particle distribution

In general if (2.112) and (2.115) are not satisfied in a particular grid (random, presence

of boundaries etc) then in general kernel interpolation can diverge. For example let

+00 +00

E M Wab =i +fa = M fbWab = afa + O(f'h). (2.126)
b=-oo Pb 0(1) b=-oo Pb

Then, the function is estimated up to a constant, independently of the grid size and

the KI is referred to as incomplete. This situation be easily remedied if the kernel is

re-normalized, rendering KI consistent up to order O(h). However, in the case of the

first derivative it is

+00 +00

M mb b = Ola+ (f ) G O( f/h). (2.127)
pb f =- Pbb=-o O(/h b=-oo
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Evidently, as h - 0 the estimation of the derivative diverges. Remedies similar to

that used for the estimation of the function point to Moving Least Squares (MLS)

[18] or similar type of methods [50, 51, 52], which are computationally slightly more

expensive and less robust.

2.5.3 Definition of unbounded smoothly advected particle

distribution

In the previous section 2.5.2.1 the approach to the consistency of KI with a kernel of

compact support for a given unbounded grid is reviewed. Keeping in mind that the

goal is to investigate the consistency of KI in an SPH simulation, the present section

defines (for small times) a smoothly advected particle distribution that results from

an initial uniform distribution that has been advected from a smooth velocity field

described by MA-SPH. First, a set of initially equi-spaced particles is considered.

Those are assunied to have been smoothly advected from the MA-SPH governing

equations. Then. assumptions are made on their relative motion.

Once again. assume a one-dimensional, infinite, and uniform grid of particles with

spacing (x = h. Each particle a is initially (time t = 0) located at x' = ah, where

a = -oo, ... , +oo. The initial mass of each particle is ma = m =const. The initial

density of each particle is p' pf = m/h =const. Let W(x, h) denote the cubic

B spline (2.111). Assume that the particles are advected by a sufficiently smooth

velocity field. Namely, each particle a has the flow field velocity at the particle

position, i.e. 1,,() U (Xa, t). The velocity gradient at the position of particle a is

denoted as u' a ) (Xa, t). After time t the position of particle a is

ft
Xa a +10 Ua(X7 (-), T) dT x" + (a (2.128)

At time t the distance between particles a and b is:

xa=x -x =(a-b)h+C-(Q=x-+ ab, (2.129)

X'; ab
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where essentially (Qb denotes the relative distance of particles a and b at time t due to

a temporally integrated velocity gradient from 0 to t. Since from here on all quantities

will be referred to the same time t, the superscript t will be dropped.

2.5.4 Density in unbounded smoothly advected particle dis-

tribution

Once a smoothly advected distribution has been defined the values of the kernel are

computed for the later relative positions and the density (2.106) is estimated in terms

of flow field quantities. This allows to ultimately prove the consistency between the

two expressions for the density computation (2.106) and (2.13) in the following section

2.5.5.

The density of particle a given by (2.106) becomes

mb-p h

Pa = ( mbWab 4
b

= PfhEW(Xa,h)

= Pfh( W(xb+(ab,h). (2.130)

Next, W(Xz + (ab, h) is expanded in Taylor Series about Xab:

Wab = W (X + (ab, h)

s W(x , h) + "a h W'(x b, h) +0 . (2.131)
h h

Wb Wa

It is assumed that for a smooth flow there exists a time t small enough where it can

be assumed that for all particles it is

(ab<1 (2.132)
h

In detail, from (2.128) and given that xz ~ 0(h) it can be seen that (ab scales as

tUab - t(hu'). Or, equivalently ( ~ tu'. Therefore, for a smooth flow there exists a
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time t small enough where the above assumption holds. Substituting the expanded

value of Wab into (2.130) and dropping the higher order terms with respect to Cab theh

density becomes:

pa pih( Wb + hW )

(2.112)
= Pf (hW + ( habWi)-

b b

p, (1+ h(Ca-C)W-( ) 4
b

SPf(1- hbW -)-
b

Pa a Pf (1 - C) + O(h 2(", ((2)11) (2.133)

In SPH literature it is always accepted that the expression Eb mbWab is a measure

of the density at particle a at time t. Geometric arguments can be easily made for

a one-dimensional domain, as in [17, 53], but it is not obvious how the latter can

be extended to higher dimensions. The above analysis can be easily extended in

any dimension to prove that indeed the density computed by Eb mbWab is consistent

with the density that satisfies the conservation of mass (2.7) or (2.13). It is recalled

that Eb mbl I r, is referred to as the direct density while the density advanced by

the temporal integration of mass conservation (2.13) is referred to as the advanced

density.

In summary. the consistency relation between the direct and advanced density is

investigated withi two approaches:

1. Firstly, and most straightforwardly, it is shown that the advanced density is

related to the direct density simply by taking the total derivative of the direct

123



density.

Pa mbW(X - xb, h)

d d mW(x - xb,h)
t d

(mbW(xa. - Xb, h)) m-

= b W(xa2 - Xb, h) (2.134)

dWabd(xa -- Xb)

(Ua - Ub) Wab (21)

b

- m ' (2.135)

b

Therefore, the numerical consistency of the direct and the advanced density

is determined by the temporal interpolation scheme, i.e., it should be O(6t'2),

where t is the numerical time stepping.

2. Inversely, the direct density should be consistent to the timie integral of the

conservation of mass. In (2.133) it is shown that at time / the density at

particle a is given by:

Pa 2 p, (1 - (') + O(h24u", (g2)") (2.136)
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From the definition of (, at time t:

JUa(T)dT4

0
t

C = Ua(T)dT

o 0 a a

t t

d-r =] T(-) da

t t

fdTrlaT + fdr ((a' -a) "X2 + h.o.t. (2.137)
0 a 0

AB

The scales U, L, t for characteristic velocity, characteristic length scale and

elapsed time respectively are introduced. Also, let ( denote the characteristic

length scale for (a. Non-dimensionalizing A and B in the right hand side of the

last equation to compare magnitudes obtains:

A= dT-() t- and
19X X L

(2.138)

(2.139)

t

BS= dT((a -a) ,2 a()

0

By construction, it is h/L < 1 e. By assumption, the analysis is conducted

for time steps small enough that (/h < 1. It can be chosen to be (/h ~ e in

which case it is

B ~ E2A, (2.140)

and finally the density Pa at time t obtains

bWab = P, 1

t

dT a
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From the conservation of mass, following the Boussinesq approximation:

1 dpfa(T ) , f OUja(T) f(Ia

Pf dr Ox Xa(T)

t t

dTI-pf() = - j dr
Pf dr Ox Xa(T)

0 0

t

1 OUa(T)
(Pf a) I = - +

Pf 0 O x Xa (T)
0

Ppa = Pf - d-r . (2.142)
0

Comparing (2.141) and (2.142) reveals that if uf a = Ua then

Pa = Pa + 0(2) = pt a + 0(|L). (2.143)

The later result is straightforwardly extended to two-dimensions. A final com-

ment should be made here: the initial weak compressibility assumlnption required

that the density fluctuations scaled as the Mach number, i.e., 0 0 4(M2). For

this to be satisfied it should be required that both ( and 1?"' should be at

most 0(M 2). It can then be observed that in a domain of length 1, the value

of M should give an upper bound for the choice of the kernel bandwidth h, i.e.,

h < M.

Summarizing, a relation for the MA-SPH density of smoothly advected particles in

terms of the flow field velocity gradient has been established for both the direct

and advanced density formulations. The consistency of the above relation to the

continuous equations has also been determined.
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2.5.5 Consistency of Kernel Interpolation technique in un-

bounded smoothly advected particle distribution. The

numerical significance of the SPH density

The consistency of KI for particles lying on a uniform particle distribution has been

long established. However, in an MA-SPH simulation the particles are not uniformly

distributed. In fact the key to the success of MA-SPH is that there are no underlying

mesh or structure requirements in the particle distribution. Is there any way to

determine the consistency of KI in a realistic MA-SPH simulation? In the first SPH

papers KI was viewed as a Monte Carlo integration and the consistency of the method
4

was thought to be of order N-7, where N is the number of particles in the entire

domain. Numerical results showed that the method did better than that. In [25]

Monaghan argued that the improved performance was because in an SPH fluid flow

the particles will never become entirely distorted. It is pointed out that in MA-

SPH the employed kernels are of compact support and thus analysis that considers

kernels of infinite support and argues consistency in terms of N is out of the context

of this thesis. Fulk in [17] showed that KI in one-dimension is consistent up to

O(h 2 , hAx). Fulk's result seemed to bridge the analysis to simulation results, where

despite the presence of boundaries and the fact that the particle configuration is

eventually distorted, SPH has been shown to be consistent at least up to O(h). The

aim of this section is twofold: to show the consistency of KI for a smoothly advected

particle configuration in terms of h and the flow properties and to determine the

conditions under which KI can deteriorate during the evolution of the flow.

To analyze the consistency of KI in an MA-SPH simulation it must be understood

that the Lagrangian particle distribution is not completely random. It initiates from

a regular grid (where the interpolation properties are known) and evolves from a

smooth velocity field, obtained by the MA-SPH governing equations. The approach

therefore is to start following an initially regular grid as it evolves for small times

and to expand f(x ) about xy, at each time step n. Following this approach we are

able to compute for the first time the consistency of Kernel Interpolation in a particle
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distribution that consists of smoothly advected particles, initially placed on a uniform

grid.

Once again, assume an infinite, one-dimensional, uniform grid of particles with

spacing 6x = h. Each particle a is initially (time t' = 0) located at .r" = ah, where

a = -oo, ..., +oo. The initial mass of each particle is ma = m =const. The initial

density of each particle is p' p, = m/h =const. Let W(x, h) denote the cubic

B spline (2.111). Assume that the particles are advected by a sufficiently smooth

velocity field. Namely, each particle a has the flow field velocity at the particle

position, i.e., Ua(t) U(Xa, t). The velocity gradient at the position of particle a is

denoted as u' a (a,t). After time t the position of particle a is:

ft
Xa = X + Ua(X'(r), r)dr x 0 + Ca. (2.144)

At time t the distance between particles a and b is:

Xb = xa - x = X tb. (2.145)

Since, from here on, all quantities will be referred to the same time /. the superscript

t will be dropped. For small enough times the density of particle a given by (2.133)

is:

Pa ""J Pf (1 - () + O(h 2("n, ((2)"1). (2.146)

Substituting (2.146) for the density into (2.104) for the estimation of the function

with KI obtains

Mb Mb=p h
fa Z -fbWab 4

b Pb

Z Pf h2(1,(21)
b P h fbW (Xab + Cab, h) + 0 (h2 g i 2)) (2.147)

Further, by Taylor Series expansion of Wab about W- and (1 - ) about 1, the
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above expression simplifies to

fa 1 h(1 + Cbl)(fa + Xbaf' + !'f") (Wg + CabWhj) + O(h 2 (", ($)

h2

f fA + 6 f" + O(h 2 (1/, ((2)') (2.148)

Similarly, for the estimation of the first derivative

fa -fbWab
[)b

Pfh fbW'(x± +Cabh)+Oth2(, (2)u) TA, P'X~ +(a, ) 0(

(2.149)

h(1 + C)(fa + Xbaf' + X%~a f") (W- + CabWW) + O(h2("', ((2)I)

1 6

Putting everythiig together, and omitting the subscript a for brevity it is

i h 2 - / / U -2 1 1Sfb "ab - f + f 6 [fu' + h2 (f + f" t (2.151)

Wab f + f" + f h2t (2.152)
po6 6

z fWb='b + f"' f _If u" + f'u'+ h2 f + f" ] t (2.154)
A Vb6 . f6 8 121

Thus KI, as defined in (2.104) and (2.105) is consistent up to order 0 (h 2, h2(1) =

o (h 2 , h2 (f U(r)') when the density p is computed either directly from (2.106) or ad-

vanced from the temporal integration of (2.13). Although, the analysis followed here

is different fron Fulk [17], the two results can in fact be shown to be in agreement.

In [17] it is shown that in one-dimension the error behaves as of order O(h 2, hAx),

where Ax a is a measure of the particle volume. However, from the estimation

of the density p p,( 1 - ('). Therefore Ax = Pf_ , h(1 + (') translating the
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consistency result to 0(h2 , h2('), which is in agreement with the above results. One

advantage of the later consistency expression, i.e., O(h 2, h2('), is that it provides an

estimation of the behavior of the kernel interpolation in terms of the flow properties

and elapsed time. In addition it shows that if the velocity gradients are maintained

small throughout the simulation then the performance of the kernel interpolation is

improved. Another advantage of the current analysis is that it can be straightfor-

wardly extended to higher dimensions. In two-dimensions, the density can be shown

to be

Pa ~P p(1 - V -U), (2.155)

in which case, after some algebra, it is again found that KI, as defined in (2.104) and

(2.105), is consistent up to order 0(h2 , h2 V . U).

Finally, from the previous analysis it is understood that the consistency of the Ker-

nel Interpolation depends on the term f V -udt, i.e., the compressibility of the fluid.

This means that if SPH simulates the incompressible flow with accuracy 0(1/c 2 ),

then Kernel Interpolation inside the domain is consistent with O(1h 2 12/c 2) - 0(h 2 ).

This is in complete agreement with the SPH simulations of Couette flow, one of

the benchmark cases for SPH. Solving the governing equations for Ciouette flow in

the presence of a known pressure gradient gives a measure of the accuracy of KI

only, since it decouples the compressibility assumption and thus the simulation is free

of spurious modes described in section 2.4. In that sense Couette flmvW provides an

excellent demonstration for the consistency of KI in a bounded smoothly advected

grid.

Summarizing, consistency relations for KI in smoothly advected grids for the

interpolation of a function and the value of its first derivative in both one-dimension

and two-dimensions were obtained in terms of the kernel bandwidth and the velocity

divergence.
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2.5.6 Implicit dynamic free-surface boundary condition

The solution to \IA-SPH defined by (2.11)-(2.4) depends on the imposed boundary

conditions (section 2.2.3). In MA-SPH the free-surface kinematic boundary condition

is satisfied exactly, because it is a Lagrangian method. In MA-SPH the pressure-free,

dynamic free-surface boundary condition is not explicitly imposed. However, due

to the incompleteness of KI near the boundaries, an artificial dynamic free-surface

boundary condition is implicitly imposed. Since this artificial dynamic free-surface

boundary condition is produced by the incompleteness of the KI near the boundaries

it is reasonable to assume that it will depend on the shape of the free-surface. There-

fore, long-time solution to MA-SPH with the implicit artificial dynamic free-surface

boundary condition are expected to differ from long-time solutions that assume a

pressure-free dynamic free-surface boundary condition . Therefore, knowledge of the

aforementioned artificial dynamic free-surface boundary condition is fundamental for

validation of lIA-SPH long-time solutions.

To determine the artificial dynamic free-surface boundary condition in MA-SPH

two approaches are considered. First, the value of the artificial dynamic free-surface

boundary condition is demonstrated for a free-surface particle on a uniform grid.

The KI is performed employing the cubic B-Spline with support equal to the particle

spacing. Second. the approach described in [21] is used to generalize the results.

Assume a two-dimensional semi-infinite domain and a Cartesian coordinate system

= [x, y], with x E (+oo, -oo) and y E [0, -oc). The domain is discretized into

N -+ oc particles positioned on a regular grid of spacing 6x = 6y = h. The particles

have volume V = x6y = h2 and mass m = pf h2. The center of mass of particle a

is located at Z1, (ax, ay)h where ax = -o, ..., +oo and ay = -oc, ..., -- 1, 0. Each

particle a has velocity 5a = t(Sa) and pressure Pa = P(Sa), assumed to be sufficiently

smooth.

To determine the artificial dynamic free-surface boundary condition in MA-SPH

the equations of motion (2.12) and (2.13) are computed on a free-surface particle.

Without loss of generality the particle under consideration is positioned on the origin,
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[-h,-h]

T[0,01 [h,O]

[0,-h] [h,-h]

Figure 2-24: Example grid configuration for the computation of the artificial dynamic
free-surface boundary condition in MA-SPH due to the Kernel Interpolation incom-
pleteness near the free-surface. The discrete momentum equation and conservation of
mass are computed on the free-surface particle 0. Uniform grid of spacing h in each
direction.

Since the velocity and pressure are assumed to be sufficiently smooth, their values

at particle b can be expanded in Taylor Series about the origin:

Pb = P+zb-VP

Ub = U +(Vb V VA
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where P, u are the values at the origin. Substituting into (2.12) and (2.13) yields

du 1- mn(.16d =(P + z -VP)Vwob-gJ (2.156)

=-Zm(x -V)-Vwob. (2.157)
b

First, the velocity evolution equation is considered. Recalling that m = ph2 for

all particles (2.156) becomes

du( hP2 + -VP)V
-t P +b z- )wob - g)

Ph 2  h2
-wo- - (zXbVwob - gj

Ph 2  h2  h2
E - VWOb P 5 xbV WoOb Py 5 YbVWOb -gj.

p bp b p b

T T2 T3

Let the kernel be defined as the product of WOb = w(0-4, h) = W(-xb, h)W(-yb, h),

where W denotes the one-dimensional cubic B-Splines. For the particle configuration

described in Figure 2-24 only the particles a = 0,. . . , 5 contribute. Upon substitution

of the values of the B-Spline (2.111) and its derivative (2.114), the terms T1, T2 and

T3 are obtained after some algebra:

0 W'(-xb)W(y:) ... 0
Ti = -+- (2.158)

W(xb)W'(-yb) h32

0 xbW'(-xb)W(-yb) ... 1 [
2 = - ,and (2.159)

0 xbW(-xb)W'(-yb) h2  0

0 ybW'(-xb)W(-yb) ... 1 0
T3 = ] - , (2.160)

o ybW (-xb)W'( -yb) h2 1

where P = ()and P = ( Therefore the computed acceleration at the originay o*.
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reduces to

dza 6p h-+O 0du= _1 h0 (2.161)dt 1 P 1 P gy)
. 2 hp 2 p 9 2h p 9 )

Further, by decomposing the pressure into P = -pgy + Pd where the first term

on the right hand side denotes the hydrostatic component and the second term the

hydrodynamic, the computed acceleration obtains

[ 5Pd. 1 d,

hp = = " + 6 . (2.162)

Second, the mass conservation is considered. Recalling that imi ph 2 for all

particles and following the same procedure as with the acceleration. (2.157) after

some algebra becomes

Zdb OW 9w 89w 8W
dP = ph 2  u x - Yb- +Vx ZXb +Uy Yb

00 00

5/6h2  0 0 1/2h 2

= -p(ux + !vY)
= + p( + ioy). (2.163)

Based on the findings of section 2.5.5, if the particle at the origin is advected by

a smooth velocity field, the expressions (2.5.6) and (2.163) remain valid to leading

order. It can be observed that the error is most prominent in the y (irection, which

is perpendicular to the free-surface.

The expressions (2.5.6) and (2.163) are a very particular choice of a free-surface

shape, grid and kernel. Although they are indicative of the error due to the incomplete

KI near the free-surface they cannot be of further analytical use. To extend the

analysis described in section 2.4 the dynamic free-surface boundary condition should

be expressed in terms of the shape of the free-surface or some other flow quantity.

The analysis suggested in [21] obtains the equations of motion on the free-surface

in terms of integrals instead of sums and incorporates the free-surface normal. The
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analysis by [21] investigates only the leading order term, i.e., integral form of T1 in

acceleration. The result can be straightforwardly extended to include higher order

terms, but it suffices for the present analysis.

Namely in [21] only the velocity evolution equation is considered. Substituting

m = pV, where V denotes particle volume and replacing the summations with integrals

(2.156) becomes

di 1
-- (P + -VP)Vw(I)dV -gj

dt py

P V P
= Vw(z)dV - V jVw()dV - g

P v P v
P PP

= Z j Vw(i)dV - xVw(z)dV - P yVw(dV - gj. (2.164)

C1

The term CI is the leading order term. This is the only term considered in [21]

and of interest here. By Green's Theorem, C1 becomes

C1 = j Vw(s)dV = j w(Y)n'dS = j w(Y) nFsdS, (2.165)

where fa denotes integration along the boundary and n denotes the boundary normal.

Further, it is woi # 0 only on the free-surface, since it vanishes everywhere else. For

the linear waves discussed in section 2.4 the free-surface is q = 77(x) = aekx and

ak < 1. Therefore, after dropping terms of O((ak)2), the leading order free-surface

normal reduces to
FS _[ ] , 1]. (2.166)

Therefore, the momentum equation on the free-surface becomes to leading order

-- = -w(V) dS - g -- V JW(x)W(O)dx -g, (2.167)
dt p FS V1 P ,FS

a/h

where it is assuned that Vq is practically constant within the support of w, i.e.,

kh < 1. Evidently a- depends only on the choice of kernel. In a uniform grid, for
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the cubic B-Spline with h equal to the particle spacing it is a = . which differs3

by a factor of 1 from (). In either case, what is of interest is the fact that on the3

free-surface the computed acceleration is given by

du- P= -a V7 - gj. (2.168)
dt ph

It is reasonable to assume that, for a numerical simulation in deep water, the

particle spacing is of the same order of magnitude as the free-surface amplitude, i.e.,

0(1). Given that for the linear gravity waves of consideration it is O 0(a)

and riFS ~ [71, 1] ~ [O(ak), 0(1)], the horizontal free-surface acceleration scales as

p du a
~ a-ak ~ ak, (2.169)

g dt h

and the vertical direction scales as

p dv a
p -- a- ~ a. (2.170)

g dt h

This means, that for a low resolution deep water free-surface gravity wave, the in-

completeness of the KI near the free-surface makes the free-surface )articles accel-

erate with a 'new' gravitational acceleration. This is equivalent to imposing a ver-

tical hydrostatic-like pressure on the free-surface. Thus the zero-pressure dynamic

free-surface boundary condition (2.28), for the <D = #(y)e(--'') problem defined in

section 2.4, becomes

#g#' - W#2 0 = Oony=0-+ (2.171)

#" - r- = 26(1-0#)0'. (2.172)

The last equation physically means that the free-surface particles have a greater speed

of sound than the rest of the fluid domain, i.e., the fluid is 'stiffer' near the free-surface.
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2.6 Linear stability analysis of MA-SPH in semi-

infinite domain

The numerical stability analysis ofMA-SPH is of fundamental importance, since it

determines either the conditions for the scheme's stability or the maximum unstable

growth rates of infinitesimal disturbances and thus the scheme's useful computational

life.

MA-SPH for free-surface flows first assumes a continuous weakly compressible

flow model (CAMA-SPH), then obtains its semi-discrete form through KI and finally

obtains its fully-discrete form (MA-SPH) through an explicit temporal integration

scheme. In order to perform a complete stability analysis that elucidates and allows

for improvements on the MA-SPH algorithm, it is essential to perform the analysis

starting from the continuous model, proceeding with the semi-discrete algorithm and

concluding with the fully-discrete MA-SPH algorithm. In detail, stability analysis of

CMA-SPH for both sets of normal modes (section 2.4), i.e., depth decaying and acous-

tic, reveals that the continuous model is inherently unstable. Next, stability analysis

of the semi-discrete scheme reveals how the continuous unstable growth rates are al-

tered by KI. Finally, consideration of the fully-discrete scheme determines the effect

of the temporal integration scheme and the significance of the Courant condition,

suggesting how to numerically stabilize the inherently unstable continuous model in

Chapter 4.

The existing stability analysis of SPH is a characteristic example of the misun-

derstandings raised when the above order in the analysis is violated. Due to the

significant, documented stability issues of MA-SPH, substantial effort has been ded-

icated to the linear stability analysis of the fully-discrete scheme [17, 26, 44, 53]. All

available analysis indicates the presence of a tensile instability that depends on the

sign of the product of the pressure and the second derivative of the kernel. The ten-

sile instability does not depend strictly on flow quantities but it is implied that it

results from the spatial discretization and can therefore be remedied by the usage of

alternative derivative computation techniques [18]. Further, it does not depend either
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on the time step size or on the choice of the temporal integration scheme. There-

fore, suggesting that all temporal integration schemes are equally stable. As a result,

treatments based on the findings of the analysis have not been able to fully remove

the instabilities in SPH.

Section 2.6.2 presents a stability analysis of the CMA-SPH where it is confirmed

that in the presence of a free-surface the unstable modes can be depth decaying or

depth oscillatory [43]. From the analysis of the semi-discrete algorithm, in section

2.6.3, the tensile instability is expressed in terms of the flow quantities and it is shown

to depend only on the gradient of the base density distribution. Finally, from the

analysis of the fully-discrete scheme for oscillatory disturbances in section 2.6.4, it is

found that (a) low order schemes are unstable even in uniform base density distribu-

tions, (b) appropriate Courant conditions exist for the analyzed higher order schemes

modified Predictor-Corrector and fourth order Runge-Kutta under the assumption of

a uniform base density distributions, and (c) fourth order Runge-Kutta is unstable in

the presence of a hydrostatic density distribution, but with very small growth rates.

2.6.1 Linear von Neumann stability analysis

The linear von Neumann stability analysis (Von Neumann and Riclitmeyer, 1950)

performed in this section begins with a definition of the system (semi-infinite domain)

and the physical variables that describe the flow. The governing equations for the

physical variables are also defined. An initial base flow that satisfies the governing

equations is assumed and infinitesimal disturbances are superimposed. The equations

that describe the evolution of the aforementioned disturbances are obtained after

subtracting the base flow. These equations are linearized by neglecting terms of

higher order with respect to the disturbances. Then disturbances are expanded in

terms of normal modes. Both real and imaginary wavenumbers are considered. For

the semi-discrete analysis, the linearized equations for the disturbances are further

simplified by performing the KI summations for the normal modes. For the fully-

discrete scheme the temporal integration scheme is chosen. The linearized fully-

discrete schemes describing the evolution of the disturbances for both the direct and
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advanced density formulations are obtained. These are reduced to a linear system

of the form q"+ = Aq", where n, n + 1 denote the values of the vector quantity q

at the time steI)s i and n + 1 respectively and A is the amplification matrix. The

system is stable if the magnitude of all the eigenvalues of A are at most equal to 1,

i.e., |Almax < 1.

2.6.2 Continuous model

First, the stability of the CMA-SPH equivalent linearized velocity potential (sec-

tion 2.4) is considered inside a two-dimensional domain with zero base flow. Then

the linear stability analysis on the CMA-SPH algorithm described by (2.1), (2.2), and

(2.4) is performed in one-dimension.

Velocity potential formulation Assume a two-dimensional semi-infinite domain

and a Cartesian coordinate system X = [z, g], with i E (+oo, -oo) and g E [0, -cc)

where p = 0 denotes the location of the free-surface. Let the flow in the domain

be described by a velocity potential <b(t, y, t) given by the linear (2.21). Assume

an unperturbed state, i.e., <b = 0, and let <b denote an infinitesimal disturbance

of the velocity potential. Since <b = 0 and its governing equation (2.21) is linear,

the evolution equation for 4 is also given by (2.21). This equation is linear with

constant coefficients and thus, separation of variables is assumed. The disturbance

is expressed in terms of normal modes: Fourier modes in the horizontal direction

and either oscillatory modes (Fourier modes) or depth decaying modes, [43], in the

vertical directioll. It is investigated under what conditions the time evolution grows

exponentially, i.e.. the system is unstable. Putting everything together

-( t) = ekyeirxewt, (2.173)
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where both i and w are real, and y can be either real or imaginary. Substituting in

(2.21) and factoring out ekYeiK*ewt the characteristic polynomial for o is obtained

2

= (- 2 + k2) - 26k. (2.174)

Here 6 = 9 < 1, where c, g are the speed of sound in the medium and the gravita-

tional acceleration respectively.

First, the depth decaying modes, i.e., k -+ p, where p is real, are considered and

obtain
W 2 2 2(215

= P2 _ K - 2 6p > 0 -- p > .(2.175)

This means that any disturbance of wavenumber k = pt> K will grow exponentially

in time with a growth rate given by

26 K2

W = V/c 2 f2 - g - c 2K 2 =cp 1-- 2. (2.176)

The growth rate scales linearly with c and y and is reduced as g and K increase. Thus,

gravity helps to stabilize the system. The highest growth rate occurs for t = 0, i.e., an

infinitely long wave or everything constant in zt. This coincides with the observation

in [43] where it was noted that assuming a reduced one dimensional problem is the

worst case scenario with respect to the stability of the numerical simulation in a

semi-infinite domain.

It is pointed out, that the disturbance k = t > K does not satisfy the physical

boundary value problem of zero free-surface pressure and no-flux on the sea-bed.

Therefore, such instability is artificial, i.e., it can exist only in the numerical scheme.

It is generated by inconsistencies in the numerical implementation of the boundary

and initial conditions as well as from numerical round-off errors. For comparison note

that for y = K - 6, w is imaginary, i.e., the depth decaying modes that satisfy the

physical boundary value problem are stable.

Second, depth oscillatory modes, i.e., k -- iv, where v is real, are considered and
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obtain

S-v2 _ 2 - i26v -+ w is complex. (2.177)

This means that a disturbance of wavenumber k = iv will grow exponentially in time

with growth rate given by

w = R(W) = R( /-c 2 2 2 - - igv). (2.178)

To determine the real part w, of the complex w, let w = w + iz, where both w, z are

real and non-zero. Then w 2 = (w + iz)2 = -c 2 r2 - - igv. Equating real and

imaginary parts, after some algebra obtains

2= 1 -c2 2 - c2, 2  + (c2 v 2 + c22)2 + g2V2] . (2.179)

The term in the square root can be written as

0(62) 1/2

21 22 2 V2

(c2 2 + (.22) + g22 (c2 2 + c2 2) + (C2V2 + C2K2)2)

(C~ ~ ~~ c 2 ) + 2 + 222

= (c2 2 c2  2 (C2K2)2

Putting everything together, the growth rate w of a disturbance with wavenumber iv

is found to be

W 9 v - V 2  (2.180)
2C2 V2 + K2 - 2 + K2

This growth rate scales linearly with g and inversely with c2 , v and r2. Thus for

depth oscillatory disturbances gravity de-stabilizes the system. Again, the largest

growth rate occurs for K = 0, i.e., an infinitely long wave or everything constant in x.

Therefore, the stability analysis performed hereafter is one dimensional, keeping in

mind that it is a simplification of the described two-dimensional semi-infinite problem.

It is pointed out, that the disturbance k = iv does not satisfy the physical bound-

ary value problem of zero free-surface pressure and no-flux on the sea-bed. Therefore,
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such instability is artificial, i.e., it can exist only in the numerical scheme. It is gener-

ated by inconsistencies in the numerical implementation of the boundary and initial

conditions as well as from numerical round-off errors. For comparison note that for

k = 6 + iv, w is imaginary, i.e., the depth oscillatory modes that satisfy the physical

boundary value problem are stable.

As a summary, the velocity potential formulation is unconditionally unstable in

the presence of numerically generated depth decaying modes with wavenumber P > K

and unstable in the presence of numerically generated purely depth oscillatory modes

with wavenumber iv. In the former case gravity stabilizes the system, while in the

latter case gravity de-stabilizes the system.

2.6.2.1 CMA-SPH

Most typical hydrodynamic SPH simulations, such as the standard dain-break bench-

mark (SPHERIC 2006), assume a hydrostatic initial condition [3, 48]. For this reason,

the present stability analysis first solves the hydrostatic case for the ClNIA-SPH weakly

compressible flow, and then, investigates the stability properties of infinitesimal dis-

turbances superimposed on the hydrostatic case. As discussed, the most unstable

condition occurs when the flow is independent of t, therefore hereafter the flow is

considered one-dimensional and along the vertical axis.

Let the vertical axis be E [0, --oo) where y = 0 denotes the location of the free-

surface. Let t > 0 denote time and g the gravitational acceleration. Let pf, c denote

the uniform unperturbed fluid density and the uniform speed of somnid. Assume a

stationary fluid with hydrostatic density fi(g) and hydrostatic pressure P(g). The

governing equations (2.1), (2.2), and (2.4) that describe the hydrostatic CMA-SPH

weakly compressible flow reduce to

= 0 
(2.181)

dt
-i = 0 

(2.182)
dt

dt- - - g = 0. (2.183)
dt pi
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The last equation (2.183), determines the form of the hydrostatic pressure and density

distribution in a weakly compressible fluid, given that the free-surface density is pf,

equivalent to zero-pressure. Namely, the last equation is integrated from 0 to g to

obtain

P9 g dP=c
2dp

Py
_C -= g >

P

(ln,) = - +

Ce 2,

Next, infinitesimal disturbances y, v, pr, and P are superimposed on the hydro-

static case in the position, velocity, density and pressure respectively. The governing

equations (2.1). (2.2), and (2.4) become

d( + y)
dt

dv (P + P)q
dt (+ p)

d(/ + p)

dt -(P+p)vg

(2.185)

(2.186)

(2.187)

The total density can be written as

P+ pfr = pf(e-26 +r). (2.188)

Dropping higher order terms, with respect to the disturbances, the pressure gradient

term in the nionientum equation (2.186) is expressed as

(P + P)V

(p+ p)
2 Pf (-26e-2 Y + ry) rby, TSE

pf(e-26 + r) ebyo(1)

= -c 2 (-26 + rye2 y) (1 - re 26y) r=h.o.t

= -c 2 (-26 + 26re21y + rye 26 y) A22

= g - gre26
- c2 rye23 . (2.189)
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Similarly, after some algebra the density equation (2.187) simplifies to

dr= -e-2v. (2.190)

Noting that from Taylor Series Expansion it is e* 2 1y ~ 1 ± 26y, to leading order for

the evolution of the disturbances it can be assumed that e* 2 6y ~ 1. Substituting into

(2.186) and (2.187) the governing equations for the disturbances in position, velocity

and density reduce to

dy

dt -

dvd = _gr - c2 r (2.191)
dt
d = -v,Y. (2.192)
dt-

Next, the disturbances are assumed to be of the standard form (AIeiKxewt, where

both Ke and w are real and k is either depth oscillatory (k -+ iv) or depth decaying

(k -+ p). Substituting in (2.185), (2.191) and (2.192) the system is written in matrix

form as

y 0 1 0 y

v = 0 0 -g -c2k v . (2.193)
r 0-k 0 r

Amplification matrix

The amplitude of the maximum positive real part of the eigenvalues of the amplifi-

cation matrix determines the growth rate of the system. For this case. the eigenvalues

of the amplification matrix are

wi, 2 ,3 = [0, ± ic 2 k2 + gk]. (2.194)

For depth decaying components with p > 0, the system is unconditionally unstable

with growth rate

( = c2p 2 + gp. (2.195)
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This is slightly worse compared to the stability of the velocity potential formulation

(2.176), since now gravity de-stabilizes the system. This result also emphasizes that

the hydrostatic base flow must be taken into account in the stability analysis of the

fully-discrete systems for the free-surface flows of interest.

For depth oscillatory components it is found that

w = V-c2V2- igv. (2.196)

The growth rate is determined by the real part of the term in the square root. As-

suming w = u + iz and following the same approach as with the velocity potential

formulation, the growth rate w is found to be

w - (2.197)

in agreement with the velocity potential formulation.

2.6.2.2 Numerical verification

The findings of the stability analysis in section 2.6.2.1 indicate that in a fixed, semi-

infinite domain there exist unstable depth decaying modes with significant growth

rates. The practical implication is that the depth decaying modes of the errors gen-

erated mainly at the free-surface and the numerical noise, will eventually terminate

the simulation.

To qualitatively verify this result we simulated a hydrostatic case with periodic

horizontal bonidary conditions employing MA-SPH with fourth order Runge-Kutta

temporal integration scheme. The domain is initialized with hydrostatic initial con-

ditions. The evolution of the horizontal accelerations, vertical accelerations, and time

rate of pressure change (by definition zero in a hydrostatic case) are recorded at se-

lected particle locations along a vertical cross section (Figures 2-25 to 2-27). It is

observed that although the initial perturbations generated by numerical errors, are

oscillatory eventually significant instabilities dominate the simulation.
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To quantitative verify the findings of the analysis in section 2.6.2.1, infinitesimal

disturbances of known depth decaying wavenumbers are imposed as initial conditions

in a hydrostatic MA-SPH simulation with periodic horizontal boundary conditions.

The evolution of the dynamic pressure (by definition zero in a hydrostatic case) is

recorded at selected particle locations along a vertical cross section (Figures 2-28 and

2-28) for two different kernel bandwidths h = [0.02, 0.01] with equal corresponding

initial particle spacings dy = [0.02, 0.01]. The obtained instability growth rates of the

dynamic pressures compare very well to those obtained from the analysis in section

2.6.2.1. It is also observed that in this case the amplitude of the depth decaying

modes dominates over the oscillatory modes initially, as well.

To further access the statements that the depth decaying instabilities (a) are not

allowed to develop when the dynamic free-surface boundary condition P(x, y = r, t) =

0 is satisfied exactly and (b) are generated predominantly in the free-surface due to

the incomplete Kernel Interpolation (section 2.5.6) three more simulations are per-

formed. These three simulations employing MA-SPH with fourth order Runge-Kutta

temporal integration schemes, have all periodic horizontal boundary conditions, the

water depth is H = 1 are all initialized with hydrostatic initial conditions, and are

left to evolve without imposing any perturbations. The perturbations are all gener-

ated numerically within the simulation. The evolution of the horizontal accelerations,

vertical accelerations, and time rate of pressure change (by definition zero in a hydro-

static case) are recorded at selected particle locations along a vertical cross section.

Each simulation differs in the implementation of the free-surface boundary con-

dition: (i) employs KI but imposes a zero-pressure fitting on the free-surface at each

time step, (ii) employs the consistent derivative computation technique MLS (section

3.3.1.1) for the computation of the derivatives to reduce the amplitude of the errors

introduced by the artificial dynamic free-surface boundary condition (section 2.5.6),

and (iii) employs the consistent derivative computation technique ILS for the com-

putation of the derivatives and imposes a zero-pressure fitting to the free-surface at

each time step.

The zero-pressure fitting with Kernel Interpolation, shown in Fig. 2-30 delays
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the appearance of the instability, verifying the assumption that the instabilities are

generated predominantly by the artificial free-surface dynamic boundary condition

with Kernel Interpolation. Figures 2-31 and 2-32 compare the effect of using MLS

without and with imposed zero free-surface pressure. Each treatment further delays

the appearance and growth rate of the instabilities, but does not remove them. These

findings are of essential importance, since in agreement with [43] they verify that this

instability cannot be removed by simply increasing the accuracy of the derivative

computation technique, since it is inherent to the method and will thus demonstrate

itself eventually through any round-off error. It is however, noted that this type of

instability manifests itself in periodic or fixed domain and is not expected to plague

problems such as the dam-break, at least for a short time.
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Figure 2-25: SPH simulation of a hydrostatic case. Absolute horizontal accelerations
along different depths. Water depth H = 1, dimensionless speed of sound ,3 = 40.
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Figure 2-26: SPH simulation of a hydrostatic case. Absolute vertical accelerations
along different depths. Water depth H = 1, dimensionless speed of sound 3 = 40.
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Figure 2-27: SPH simulation of a hydrostatic case. Absolute time rate of change of
total pressure along different depths.
sound f = 40.
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Figure 2-28: SPH simulation of a hydrostatic case. Growth of initial pressure pertur-
bation p(2, 0) =qe2*"x+ 5h along different depths. Simulation parameters c = 20,
h = 0.02. Expected growth rate AXe = 48.5, obtained Ao = 48.
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Figure 2-29: SPH simulation of a hydrostatic case. Growth of initial pressure pertur-
bation p(2, 0) = ge 25h) along different depths. Simulation parameters c = 20,
h = 0.01. Expected growth rate A, = 109, obtained A, = 114.
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Figure 2-30: SPH simulation of a hydrostatic case, imposing zero-pressure free-surface
fitting. Growth of absolute horizontal accelerations (top left), absolute vertical ac-
celerations (top right) and dynamic pressure (bottom) at selected particles along
a vertical cross section. Periodic horizontal boundary conditions and water depth
H = 1.
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Figure 2-31: Simulation of a weakly compressible hydrostatic case. Computation
of spatial derivatives with Moving Least Squares. Growth of absolute horizontal
accelerations (top left), absolute vertical accelerations (top right) and dynamic pres-
sure (bottom) at selected particles along a vertical cross section. Periodic horizontal
boundary conditions and water depth H = 1.
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Figure 2-32: Simulation of a weakly compressible hydrostatic case. Computation of
spatial derivatives with Moving Least Squares. Imposing zero-pressure free-surface
fitting. Growth of absolute horizontal accelerations (top left), absolute vertical ac-
celerations (top right) and dynamic pressure (bottom) at selected particles along
a vertical cross section. Periodic horizontal boundary conditions and water depth
H = 1.
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2.6.3 Semi-discrete algorithm

This section examines the linear stability of the discrete in space, cont inuous in time

algorithm. This analysis is essential in understanding the effects of the Kernel Inter-

polation alone in the stability behavior of the algorithm, and clearly distinguishes the

effects of the temporal integration schemes. In section 2.6.2 it was shown that the

initial hydrostatic density distribution de-stabilizes the system. In the literature the

effect of gravity is neglected and the system is still found to exhibit a tensile instabil-

ity [26, 44, 53]. To bridge the results, this section ignores gravity and performs the

stability analysis for a zero base flow for two cases of (a) uniform density distribu-

tion and (b) a general, smooth but small density distribution. The results generalize

the findings of section 2.6.2 and [26, 44, 53], showing that the semi-discrete scheme

is unstable to any non-zero base density distribution with three main implications.

First, it clarifies the misunderstanding that the SPH instability is due to the Kernel

Interpolation [18, 53]. Second, it further enforces the finding that the hydrostatic

density distribution needs to be taken into account in the analysis of the fully dis-

crete scheme for the free-surface flows of interest. Thirdly, it justifies tHie usage of the

semi-empirical treatments that periodically either re-initialize or smooth the density

during an SPH simulation, essentially reducing base density gradients.

As in section 2.6.2 the analysis is performed in an infinite one-dimensional domain.

The domain is discretized into N fluid particles of uniform spacing 6x =h. The center

of mass of particle a is given by sa = ah and its mass is ma = pfh n, where p,

is the unperturbed fluid density. A base flow solution at time t is assumed. Let the

base flow velocity, pressure and density of particle a be , Pa, and pa respectively.

The position and velocity of particle a satisfy the MA-SPH governing equations:

Xa = Ua (2.198)

Ua = - m ( 7 +Q W b- g. (2.199)
b Pa b/
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The density P-, is given by either the direct or advanced computation:

Direct: Pa = Z mbWab (2.200)
b

Advanced: a = mbiiab Wd. (2.201)
b

The pressure is determined by a constitutive Equation of State A = P, 1 i(

and Wab - z) is given by the cubic B-Spline (2.111).

Next, following the linear von Neumann stability analysis outlined in section 2.6.1,

infinitesimal perturbations Ya < h, Va < a, Pa < Pa and Pa < pf are superimposed

to the base position, velocity, pressure and density respectively. Thus, the particle

position, velocity, pressure and density are given by:

Xa = a + Ya

Ua = a a+ Va (2.202)

Pa = Pa +Pa

Pa = a+ Pa

Further on. the perturbations are expressed in terms of normal modes:

Ya = y(t)eikXa

Va = v(t)eik;a (2.203)

Pa = g(t)eik"a

where k is the perturbation wave number.

Based on the previous assumptions, the kernel function evaluated at ab, can be

written as:

IV''ab W(xa - xb) = W (a - 4) + (ya -Yb))

W(zta - 4b) + (Ya - Yb)W'(Xa - 2Xb) + h.o.t

= Wab + YabW'b/ + h.o.t (2.204)

157



and in the same manner its first derivative becomes:

W'b =Wab + YabWbj' + h.o.t. (2.205)

Equations (2.200) and (2.201) show two different approaches for calculating the den-

sity. In the first, (2.200), the density is computed directly through Kernel Interpola-

tion. In the second, (2.201), the time rate of change of the density is computed and

the density is advanced in time. Both approaches are considered in the analysis, not-

ing that in section 2.5.4 it is shown that both approaches are consistent with respect

to the time step, provided the particles are sufficiently far away from the free-surface.

Direct density formulation The governing equations are (2.198). (2.199) and

(2.200). First, the total solution is substituted into each one of the governing equa-

tions. Then the base flow is subtracted and finally the resulting equations are lin-

earized with respect to the disturbances.

The governing equation for the position perturbations is obtained from (2.198):

Xa =Ua

Xta±+Ya = iia±+Va+

ya = Va. (2.206)

The governing equation for the density perturbations is obtained fromi (2.200):

Pa = E mbWab = mZ (Wb+ yabW b)±
b b

ia + Pa = mZ Wab+m yabWab-*
b b

Pa = m E YabWb '
b

Pa = PfhYa (1 - e-ikh) 4+(I - e ikh)

sin kh
Pa = -iPf h Ya (2.207)
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Next, the pressure term on the right hand side of the momentum equation (2.199) is

simplified as follows:

Pa c2 [Pa ), 2  /Pa ) 2lPa P77 PJ P J
+ ( -2 (a k) + a -2(

B2 oh -- 2 n + Or 
cndr-2 

-s i -2 sc ta -2P~f Pf Pa Pf Pa

(Xb~a)AC a 2~ 'b a (X-2B are a aproiation foP(ba) ()

c2 - (1+( 2) (1-29"
P1f \YPS/ Pa/ \P5/ Pa/

Pa 2 ya-,2 -a 2

Pa Pf - Pf Pf

Aa

Ca Z2b Aa -3
+ (2-b ) + 2 Y W - ga (2.208)

PfY Pf Pf

Ba

Both Aa and B3, are considered to be sufficiently smooth such that both Ab ~a A+

(zb - Xa)A' and Bb ~- Ba + (zb - za) B' are valid approximations for (zb - za) ~ O(h).

Finally, the momentum equation (2.199) is considered and the equation describing

the velocity perturbations rate of change is determined:

b2 bb ba P

S sin kh
Va - mb (Aa + Ab) yabWa + ( mbpf h (Baya + Bbyb) W

b b

(2.209)

Substituting (2.206), (2.207) into (2.209) obtains a single equation describing the
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evolution of the position perturbations:

Ya = -m ( (Aa+ Ab) (1 - eik(b-*a))W y 1
+ipf sin kh ( Bbeik(b-a )Wab ya --+

a4 - ya, (2.210)

where Q2 is given by:

a =-m (Aa + Ab) (1 - ezk(~b")) W~ a + ifp sin kh ( Be - )W'b

b . b .
(2.211)

After some algebra, it can be shown that Q2 reduces to:

Q2 [8Aa(sin kh/2) 2 ± pBa (sin kh) 2]

+i [2A' sin kh + pfB' sin kh cos kh] . (2.212)
h aa

Obviously Q2 depends only on c, 'y, pf, k, h and pa and does not depend on any of

the perturbation quantities. Assuming that Pa changes very slowly with respect to

time relative to the perturbations, the linear stability analysis of the NIA-SPH with

direct density reduces to:

# = Q2ya y(t)=yOe"t. (2.213)

The algorithm is therefore stable if Qa is purely imaginary and unst able otherwise.

Realizing that Qa depends on the base flow density, we estimate Q, for two cases for

the base flow density (a) uniform and (b) smooth function of g.
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Case a: The initial assumption is that zta - zb = (a - b)h, Pa Z mbW-k = pf and

therefore, upon substitution it is found that:

Aa 0

C2

Ba=
Pf

Putting ~ ~ ~ B evrtigtgehrotis

Putting everything together obtains:

2a = (ic nkh) 2 . (2.214)a h

The MA-SPH with direct density in this case is found to be stable. The frequency of

the perturbations w, is uniform. The dispersion relation of the perturbations is:

WO = a = C nkh (2.215)
h

Case b: The (enIsity Pa can be written as a constant plus a small quantity 0,

Pa Pf,(1 + Oa). (2.216)

From the previous discussion on the density, there exists small enough time t for

which the following assumption holds:

< < 1. (2.217)
h
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In this case Aa, Ba and their spatial derivatives, can be approximated by:

Aa = -Oa
P,

2

Ba 2
B = 2(1 + (y - 5 )Oa)

Pf
C2

a 2a
pt

Putting everything together obtains Q2:

Q2  2 sin2 kh
a h2

_C
2 (8 (sin kh

+c2  (8 n h2

+i22sin kh
h

/2)2 sin2 kh
+ y-5) nk kh2 )0 1

5)sin kh cos kh 0
h )a

The first term in the right hand side of (2.222) is of order c2 /h 2 while the other two

terms are of order Oac 2 . Let Qa be defined as:

Q2 where w0  w
a a +Wa weeWa > la, (2.223)

2 (sin kh) 2

h2 and

(8 (sin kh/2)2
= -c2 8h2

sin 2 kh
+ (7- 5)h2

S2 ( 2 sin kh
h + sin kh cos kh/+ Ia-5 h ) "

By Taylor Series Expansion it can be shown that:

V ,, + 2 + ( W ) 2 C_ O
Qa Oa+ a=W0a 1+ 0 WW

WOa
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(2.219)

(2.220)

(2.221)

(2.222)

with

2Wea

2
Wia

2

w 
2)

-O(



Putting everything together, it is shown that Qa is complex and the algorithm is

not stable anymore. It is immediately evident that the growth rate is proportional to

c. Therefore, if p is non-uniform the algorithm is unstable. In particular, for a long

wavelength approximation (kh < 1) it can be shown that

aj ick 1+ -y3a + 3 cO'. (2.224)a 2 2 a

The perturbations are therefore unstable with growth rate -cO'. The growth rate2 aThgrwhrt

increases linearly with Y, c and 0'. The following comments can be made. First,

this result is iii agreement with the results reduced for 15a = pf, which is just the

limiting case of 0 , = 0. Second, similar results are expected for different consistent

kernels and different particle spacings, i.e., the algorithm is stable to leading order and

instabilities are expected to be linearly proportional to d and 0'. Third, the instability

growth rate is independent of the perturbation wavenumber. This surprising result

holds only under the assumption of infinitesimal 0. Finally, if O' is kept minimal

throughout the simulation then the initial growth rate of the instabilities will also

be minimized. This is the basic empirical idea behind the two most common density

re-initialization techniques [1, 48].

Advanced density formulation The governing equations are (2.198), (2.199) and

(2.201). First. the total solution is substituted into each one of the governing equa-

tions. Then the base flow is subtracted and finally the resulting equations are lin-

earized with respect to the disturbances. Following the same notation as the one

used for the direct density formulation and following the same procedure, after some

algebra, the linearized equations for the position, velocity and density perturbations
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Ya = Va

Va = Pf (8Aa (sin kh/2) 2

sin kh + B'
-Pf iBa h a

sin kh . s
ea = i2p,?'a h a -P

- i2Aa h Ya

cos kh) Pa

in kh . sin kh

h Va = IPf h (2ya',-

For comparison with the direct density approach, note that the second term in (2.227)

is simply the time derivative of (2.207), while the first term in (2.227) accounts for

the base flow. Equations (2.225), (2.226) and (2.227) form a linear system, which in

matrix form reads:

yj
0

=~ vy

g y

1 0

0 v ]

gO 0

y
V

r

(2.228)

where the following notation is used:

= P (8Aa (sin kh/2) 2

vy 2 -, 8 A" h2

sin kh
og9 -p ~ h + B'

Loy =i 2 pf iiai h
_ . _ sinkh

v = pfa h
sin k h

O -ip, h .

- i2Aa sin kh

cos kh)

(2.229)

Assuming that A varies slowly in time compared to the perturbations, the solution

to (2.228) is of the form X = Xoeft where Q are the roots of the characteristic

polynomial of the matrix A, i.e.,

- Q(gev 0 + V) - gyVL = 0. (2.230)
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The algorithm is stable if Qa is purely imaginary and unstable otherwise. Realizing

that Qa depends on the base flow density, we estimate Qa for two cases for the base

flow density (a) uniform and (b) smooth function of g, just as was done for the direct

density formulation.

Case a: By assumption it is 2, -

upon substitution, it is found that:

2b = (a - b)h, Pa Z E mbWas = pf and therefore

Aa = 0

A' = 0
C2

Ba = 2
Pf

B' = 0.

Further, the elements of matrix A are found to be:

vy = U

c2 sin kh
=e P h

ey = 0

sin kh
LQv -ipf h

Putting everything together obtains:

.3 = sin kh 2

Os= Qzc
h )

Therefore, the MA algorithm is stable

density formulations.

2 ,
=0

= (icsinkh)
2

if ,i = pf, for both the direct and advanced

Case b: The density pa can be written as a constant plus a small quantity 0,

Pa P,(I + Ga). (2.234)
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As in the direct density formulation, we assume that 6 < 2 < 1. In this case, Aa,

Ba and their spatial derivatives, can be approximated up by:

Aa = Oa
Pf
C

2

a Pfa

Ba = c (1+(-/5)0a)
Pfc2

SC2B' = 2(-y - 5)0'/
Pf

Solving (2.230) for Qa analytically is difficult, such that an approximate solution

to Q will be given. First new notation is introduced and the elements of matrix A

are simplified according to:

vy = eV1

c2 sin kh
ve = - h +EVr

gy = RY

L= - sin kh +eRv, (2.235)

where the terms Vy, V, Ry and Rv denote the remaining terms that are of order 0 or

0' and c is used to denote that the terms are small. Further, Q is defined as:

?= WLJ + E a (2.236)

where again E is used to denote that Woa >> exla. By Taylor Series Expansion it can

be shown that:

Qa - WOa 1+ Wa) (2.237)
3ola

Putting everything together the characteristic polynomial for (2.230) reduces to:

Wia + Ecia - WO (1 + -3
3 ja

sin kh 2  c2 sinl 0
ic h + 0o + ieRy = 0, (2.238)

h ~p,
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where o =i (H sin kh - Vg sinskh) + V. Equating same orders of c after some
Pf h rY h

algebra, the equations for wea, W labecome:

W 3 W~ ZCsin kh 2(239Oa 2
3 - 3 frb &

WOae = WOa i~ch) (2.239)

l a = WOa(O - Rv). (2.240)

It can be shown that 0 - Ry is given by:

) - RY = wOe (7 - 3)O + i(2 -(- 3) .(2.241)

Therefore, from (2.239) and (2.239), it is:

Wos 3 [~ (n' \'
W =a - [( 3).a + i 2 " ( 3) . (2.242)

wOa 2ck k

Substituting the last relation into (2.237) obtains:

(7-3) n' 7-3) O'
2, awo 1 + 2 a + i -+k 2

Sick 1 + Oa 3(-3)CO'-, ' (2.243)

This means that (2 is complex and the algorithm is again unstable with growth rate

given by ±i(L cO' - i', The following comments are made. First, the solution

for uniform grid spacing is recovered for 6a -+ 0. Second, for R' = 0 the perturbation

growth rate for the MA-SPH with advance density is the same as the one for MA-

SPH with direct density. Third, if W's is maintained small through out the simulation

then it can be deduced that 0' will also be maintained small, and the perturbation

growth rates will be small. Fourth, although no analysis has been performed for a

two-dimensional case, if one was to be performed the last result would be expected

to depend on V. i and on VO. Fifth, similarly to the direct density formulation, the

perturbation growth rates do not depend on the perturbation wavenumber. Finally,

if the base density gradient is non-zero then the semi-discrete algorithm is unstable
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regardless which density formulation, direct or advanced, is employed. independently

of the spatial discretization scheme. Therefore, periodic density re-initialization treat-

ments [1, 48] essentially serve in reducing the density gradients and the corresponding

unstable growth rates.

2.6.4 Fully-discrete algorithm

Although the semi-discrete analysis is mathematically useful for the determination of

the stability properties of the main algorithm, the results cannot be verified numer-

ically, since any numerical simulation requires a temporal integration scheme. It is

therefore of practical importance to study the stability properties of a fully-discrete

scheme, i.e., both spatially and temporally. The temporal integration schemes consid-

ered here are Forward Euler, Predictor-Corrector, modified Predictor-Corrector and

fourth order Runge-Kutta.

As in all the previous analysis a one-dimensional, initially uniform domain is

assumed and both direct and advanced density formulations are considered. For the

Forward Euler, the Predictor-Corrector, and the modified Predictor-Corrector the

analysis is performed only for uniform base density distributions 15a pJ for which the

semi-discrete algorithm is stable, isolating the instability dependence on the temporal

integration scheme and the Courant condition. For the fourth order Runge-Kutta

both the uniform and hydrostatic base density distributions are considered, where it

is recalled that the continuous and semi-discrete schemes are unstable in the presence

of non-uniform base density distributions. The algebra in the stability analysis of the

fully-discrete scheme with hydrostatic base density distribution is tedious. For this

reason this stability analysis is performed only for the symplectic scheme, the fourth

order Runge-Kutta, and can be straightforwardly extended to simpler. non-symplectic

schemes.

Direct density formulation Based on the analysis of the semi-discrete algorithm,

the linearized governing equations of the perturbations for the MA-SPH with direct
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density are given by (2.206), and (2.209):

. (.sin kh 2

v = zch ) '

It is noted that the equations for y, v are decoupled from p when the direct density

formulation is used. Denoting # sin kh and pc -= t the perturbation equations

simplify to

v (2.244)
1

V = 2 ('e D2 Y. (2.245)

The stability properties of the fully-discrete schemes considered are obtained by

substituting (2.244) and (2.245) into each one of the considered temporal integration

schemes, i.e, Forward Euler, Predictor-Corrector, modified Predictor-Corrector, and

fourth order Runge-Kutta.

For the case of Forward Euler the fully-discrete scheme can be written as:

yn+1 = y" + g"6t (2y4) y" + v"6t (2.246)

on+1 = v +not - ( pc$) 2 yf + v". (2.247)

In matrix fori this is

yn+1 F 1 St y"1 1 1 i Y n+1 = Afe Y". (2.248)
on+1 ( )2  1 n j

.1 Amplification matrix

The algorithm is considered stable if the magnitude of all the eigenvalues I A of the

corresponding amplification matrix Afe are at most equal to one. For this matrix the

eigenvalues are

|A1, 2 |2 = 1 + (pc4)2 > 1. (2.249)

Therefore, the MA-SPH with direct density formulation, uniform base density pf and
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Forward Euler temporal integration scheme is unconditionally unstable.

For the case of Predictor-Corrector the fully-discrete scheme can be written as:

yP = y"l + "5t (2.244) y + v"6t (2.250)

= v"+6t - (pc#)2 y, + V2 (2.251)

yn+1 Yn + (9" + 9p) 1 - y" + Vnot (2.252)

on+1 = v yfl + 1 - (/")) v". (2.253)
2 it 2

The corresponding amplification matrix Ac becomes:

2 6t
Ac=2 2 , (2.254)

- j; (p#) i (c

with eigenvalues:

4
|1,2|12 = 1 4 > 1. (2.255)

Therefore, the fully-discrete MA-SPH with direct density formulation. uniform base

density distribution p1 and Predictor-Corrector temporal integration scheme is un-

conditionally unstable.

For the case of the modified Predictor-Corrector the fully-discrete scheme can be

written as:

yn+1 = yn+ n&+ipn6t (2.245) (1 - y"n + v"6t (2.256)
2 (2.244) 2/

P= v + b"St (2.245) (P1O)2 y" + v", and (2.257)

vn~ = v and 2 y+ i (2.27)n

on+1 = v"n + (n + n+1 _ I 2 c y" + 12 - v"

(2.258)
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The corresponding amplification matrix Ampe becomes:

[1 -6t
Ampc = 2 2 2 (2.259)

with eigenvalues A1,212 = 1, for 0 < Ic# < 2 - pc < 2. Therefore, the fully-

discrete MA-SPH with direct density formulation, uniform density distribution pf
and modified Predictor-Corrector temporal integration scheme is stable with Courant

condition pc < 2. This is a significantly larger Courant number compared to ptc < 0.3

suggested in [3]. This is expected, since (a) the base density distribution in [3] is

hydrostatic, i.e.. the semi-discrete scheme is itself unstable and (b) a periodic density

re-initialization is applied, i.e., the stability of the fully-discrete scheme is entirely

different.

A final note for the modified Predictor-Corrector scheme is that the calculation

of vP is actually redundant and the scheme can be simplified to:

St2
11+1 = y + v[t + (n)&

2

p1+1 - mbW(Ya+ - Yn+1 h)
b

/)1+1 Pfd2 - (Pn+1 ,

pn+1 pn+1n+l~ anZb( +1±n+1) W'(yan+ _-yn+1, h)
b ( a Ob

1 n71+1 _ n in n+

2

Although this formulation requires two passings through the particles, it is found to

be the most efficient scheme among the stable ones.

For the case of the fourth order Runge-Kutta scheme, after some algebra, the

linearized perturbation equations lead to the following amplification matrix Ark4:

0 _ c + + ___ - ("")2* 1f F n

A(4)= 2 24 6 4. (2.260)
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For this temporal integration scheme, it can be shown that if pc < 2v 2, the eigen-

values are:

IA1,2 1 (Itco)6 + 8 < 1. (2.261)
72 576

Therefore, the MA-SPH with direct density formulation, uniform density distribution

pf, and fourth order Runge-Kutta temporal integration scheme is stalble with Courant

condition pc < 2v/2.

Advanced density formulation Based on the semi-discrete aiialysis, the lin-

earized perturbation equations for the MA-SPH with advanced density formulation

are (2.225), (2.231), and (2.232):

y=v (2.262)
1 2

= -i--g (2.263)
Pf h

= -i #Lv. (2.264)

The stability properties are obtained by substituting the above equations into each of

the studied temporal integration schemes, i.e., Predictor-Corrector, modified Predictor-

Corrector, and fourth order Runge-Kutta. The Forward Euler scheme is omitted since

it was already shown in the direct density formulation to be in general the most un-

stable.

For the case of the Predictor-Corrector, the corresponding aniplification matrix

Bpc of the fully-discrete scheme is given by:

1 6t -i pc
I2 _

Bp= -ipc4 . (2.265)

0 -ip 1 (p)2]
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The eigenvalues |A of Bpc are:

|A1,2,3 | { 4  . (2.266)
1+ ("? >1

Therefore, the MA-SPH with advanced density formulation, uniform density distri-

bution pf, and Predictor-Corrector temporal integration scheme is unconditionally

unstable.

For the case of the modified Predictor-Corrector, the corresponding amplification

matrix BmpC of the fully-discrete scheme is given by:

1 Ct - pc#
Bmpc () -ic = Be. (2.267)

2 P2
_0 -i~pc#j 1-

Since Bmpc =B, the MA-SPH with advanced density with either Predictor-Corrector

or modified Predictor-Corrector temporal integration scheme is unconditionally un-

stable with eigenvalues given by (2.266). In [3] a Courant condition of pc < 0.3 that

is much smaller than the corresponding , = 2 with the direct density is reported.

This partly explains the difference.

For the case of the fourth order Runge-Kutta, the corresponding amplification

matrix Brk4 of the fully-discrete scheme is given by:

1~ ot (1 -24 io c

Brk4 0 + ( 4 _ (_ (1 ) . (2.268)

0 -itc# ( - 1 - + 4

After some algebra, the Courant condition for the MA-SPH with advanced density

formulation, uniform density distribution p,, and fourth order Runge-Kutta temporal

integration scheme is found to be pc < 295.
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2.6.4.1 Advanced density formulation with hydrostatic base density dis-

tribution

Denoting the time step with oR and q" = q(t = not) = [i, 9, p"'] the flow variable

vector, the fourth order Runge-Kutta temporal integration reads

gq /4 - q"n + Q"?t

qi1/2 = n + Q1/4 6Y -(2.269)

q3/ 4  _ qn + Q1/2 6t

qn+l = q" + (Qn + 2Q 1 / 4 + 2Q 1 /2 + Q3/ 4) 6

where Qm = [d, d, d7]. For the case of hydrostatic initial colitions, typically

employed in the standard SPH dam-break benchmark [30], the base flow is assumed

to be static, i.e., i = 0, and the density distribution is assumed to be hydrostatic,

i.e., p = pf (1 - 26y). The stability analysis is performed in the vertical direction and

only for the acoustic modes.

The following infinitesimal perturbations are assumed Ya < iiin the position,

Ua < 1 in the velocity, and ra < 1 in the density. Substituting the perturbation

quantities into the governing equations, subtracting the hydrostatic base flow, sub-

stituting W' = W'- + ya a 'W' i.e., hydrostatic , and finally assuming [Ya, a, ra)

[y(t), u(t), ra(t)]eikYa yields after some algebra the perturbation evolitioii equations:

dy U (2.270)
dt

du (sin kh/2)2 2sin kh

- = (1 - 269a) 8c2  2 y - ic2 r (2.271)dt h h
_1 -

dr sin kh
dt= h . (2.272)

It is pointed out that the first term in the right hand side of (2.271) is due to

the hydrostatic density distribution. Therefore, the hydrostatic density distribution

couples the position to velocity and density perturbations. Substituting into (2.269)
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obtains the following 3 x 3 amplification matrix:

1 - 4[1s2 + (/p s2)2 + 4 s2s

8ts 2 (-1 + y/1s2 - j(iIcsi)2)

i8psis2 (j -p/1[s2 - _(ttcsi)2 )

1 - p s2 + O(ipesi) 2

1 - 4/1s ± (p s2) 2 + 2 4 s 2 - (pcsi) 2 + _(pcsi) 4

-is1(1 + ys 2 / + (/csi)2)

ip2S1(- j (ipcsi)2 + jpMs2)

ips1(Ijps2 - 1 - (ipcs)2)

1 - j(pcSi) 2 + _(pcsi) 4
- jp4s2s

(2.273)

where si = sin kh, s 2 = (sin kh/2) 2 and pc = f. It is easy to verify that the aboveh

matrix reduces to that of a uniform initial density distribution when s 2 = 0. The

stability depends solely on y and kh. The largest eigenvalue of the amplification

matrix is always greater than zero, therefore the system is unstable. However, for

small enough p the growth rates are negligible. In Figure 2-33 the unstable growth

rates are given as functions of kh for four different values of p.
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Unstable growth rate for fixed y = c8 t/h

0 0.5 1 1.5 2 2.5 3
kh

Figure 2-33: Unstable growth rates of the fully-discrete mSPH algorithml with fourth
order Runge-Kutta as a function of the dimensionless perturbation wavenumber kh.
Thin solid line pc = 1, dashed line pc = 0.8, dash-dot line pc = 0.5. thick solid line

PC = 0.1.
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2.6.5 Discussion on the linear stability of MA-SPH with ad-

vanced density formulation

The findings on the stability properties of the MA-SPH with advanced density for-

mulation are summarized in the following Table 2.4, where two different cases are

distinguished with respect to the perturbation properties.

In the first case, the perturbations are assumed to be depth decaying, as discussed

in section 2.6.2 and in [43]. These modes are inherent to the CMA-SPH in the presence

of a free-surface and are unconditionally unstable. The maximum unstable depth

decaying wavenumbers y are of the order of 0(1/h) and uniform along the bounded

dimension, with large corresponding growth rates of order 0(cy) ~ 0(c/h). Such

modes are manifested in fixed simulation domains, for example, in the simulation of

a hydrostatic case or a plane progressive wave. Since leading order depth decaying

perturbations can be generated from the implicit free-surface boundary condition

2.5.6 and their growth rates are so large, the computational life of such simulations

is significantly limited. It is also pointed out that these findings mean that the useful

computational life is reduced when (a) the speed of sound is increased, (b) the spatial

resolution is increased, i.e, the number of particles in the domain is increased, and

(c) the Courant condition is reduced.

In the seconid case, the perturbations are assumed to be oscillatory. These modes

are inherently unstable in the presence of non-uniform base density distributions but

firstly, have significantly smaller growth rates compared to the depth decaying modes

and secondly, their effects are manifested predominantly in the dynamics and not

the kinematics. In summary, it is shown that (a) CMA-SPH and the semi-discrete

MA-SPH are linearly stable in uniform base density distributions and unstable in the

presence of non-uniform base density distributions, (b) the fully-discrete algorithm

in uniform base density distribution can be either stable, with appropriate Courant

condition, or unstable based on the employed temporal integration scheme, and (c)

the fourth order Runge-Kutta is unstable in a hydrostatic base density distribution,

with very small growth rates, Fig. 2-33, which depend on the Courant condition
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and the dimensionless perturbation wavenumber kh. Such modes ire dominant in

evolving flow domains, such as the SPH dam-break benchmark. Even though they

have leading-order initial amplitudes, generated by the spurious free-surface bound-

ary condition, their growth rates are very small and their effects are limited to the

dynamics, allowing for increased useful simulation lives.

This feature of MA-SPH, where the stability properties are strongly problem de-

pendent, explains why SPH can be used successfully for the simulation of the most

complex violent free-surface flows, such as the dam-break, and completely fail when

employed for the simulation of the most trivial flows, such as a hydrostatic case.

Table 2.4: Summary of the findings of the linear stability analysis performed on MA-
SPH with advanced density formulation. The analysis is performed for the continuous
model, the semi-discrete algorithm and the fully-discrete algorithm with fourth order
Runge-Kutta and Courant condition p, = . The base density distribution is given
by p = p,(1 + 0). Three different values of 0 have been considered: ( = 0, 0 = -26y,
where 6 = 7 and 0 << 1. Two different modes have been considered: depth decaying
ey and acoustic e'"Y.

Mode CMA-SPH semi-discrete fully-discrete

6 = 0 0 = - 2 6y 0 = 0 0 << 1 0_= 00 = -26y

elu cp 26 -- cp 1 sinh sh
e F"1 s- sl O s

eZvy stable 6 stable O(cO') stable for y, < 2 v_2 Fig. 2-33
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2.7 Conclusions

Smoothed Particle Hydrodynamics (SPH) is a numerical simulation method for hy-

drodynamic flows. In SPH the flow domain is discretized into a finite number of fluid

particles. Their equations of motion are obtained using a weakly compressible flow

model. The spatial derivatives that appear in the equations of motion are computed

through a meshless derivative computation technique defined as Kernel Interpolation

(KI). Their positions are advanced in time from their equations of motion and an

appropriate temporal integration scheme.

In this chapter, a main SPH algorithm (MA-SPH) is defined in section 2.2. A

linear analysis is performed on the weak compressibility assumption in section 2.4,

on the consistency of KI in section 2.5 and on the stability of MA-SPH in section

2.6. Although tle analysis in each section is performed separately, it is also informed

from the findings of the other two sections, as shown in Fig. 2-34.

First, the weakly compressible flow model is validated for free-surface gravity

waves. The analysis shows that SPH can capture an incompressible solution with ac-

curacy O(1/c 2) but also permits the generation of spurious (generated from numerical

errors) and thus undesirable high frequency acoustic modes. Second, the consistency

of the KI is investigated for uniform, smoothly advected, and random particle distri-

butions inside the domain and near boundaries. It is shown that the KI in an SPH

simulation is consistent inside the domain as long as velocity divergence is maintained

small. However, KI imposes a fictitious free-surface dynamic boundary condition that

is the main source of generation of the spurious acoustic modes. Finally, the stability

analysis of the continuous, semi-discrete and fully-discrete schemes is performed, re-

vealing that lIA-SPH is an inherently unstable scheme in the presence of non-uniform

density distribut ions.
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This is the first unified analysis of the method and has enabled the classification

of the sources of error in MA-SPH and the quantitative estimation of these errors.

This improved understanding enables the further classification and analysis of the

existing semi-empirical treatments, detailed in Chapter 3, and eventually highlights

the way for the regularization of the method in Chapter 4.
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Figure 2-34: Summary of the analysis framework.
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Chapter 3

Analysis of existing treatments for

MA-SPH

3.1 Introduction

Chapter 2 detailed the accuracy, consistency, and stability issues associated with SPH

for the simulation of free-surface flows. Due to the prior lack of a comprehensive anal-

ysis of the method, several semi-empirical treatments have been developed to address

the aforementioned issues. These treatments introduce tunable parameters with un-

known effects on the simulated physics even though their usefulness has not been

appropriately justified. This chapter utilizes the knowledge gained from analysis in

Chapter 2, for the understanding of selected existing treatments within the context

of free-surface flows. The benefit of this analysis on the existing semi-empirical treat-

ments is twofold. First, it either justifies the use of the treatment and provides a

rationale for the choice of the associated tunable parameters, or it demonstrates that

the benefits of the treatment are negligible and thus its usage is best avoided. Second,

and most importantly, it leads the way towards the formulation of a modified SPH

that rationally address the existing MA-SPH issues identified in Chapter 2.

The analysis is carried out in the following manner. First, the treatments are

categorized as accuracy, consistency, and stability treatments, since in general, each

treatment addresses essentially one of the above issues. Then, each treatment sepa-
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rately is incorporated into MA-SPH. The resulting algorithm MA-SPH + treatment

is analyzed within the framework of the treatment's usage. It is investigated whether

and under what conditions the performance of the new algorithm \IA-SPH + treat-

ment is improved compared to the performance of MA-SPH. For exanple, assume

treatment T1 , categorized as a stability treatment: stability analysis is performed on

the algorithm MA-SPH1 = MA-SPH + T and it is investigated under what conditions

the stability properties of MA-SPH1 are improved compared to MA-SPH.

3.2 Accuracy treatments

As was discussed in detail in section 2.4, the weak compressibility assumption in

MA-SPH for linear periodic deep-water free-surface gravity waves allows for a set of

spurious high frequency oscillatory (HFO) solutions in addition to the incompressible-

like solution. In particular, it was demonstrated that these HFO dominate the dy-

namics of the solution, i.e., pressure and accelerations, while temporally integrated

quantities such as free-surface particle locations do not exhibit significant HFO. For

this reason, the weakly compressible MA-SPH has been validated with experimental

comparisons of free-surface elevations, in highly nonlinear and complex flows, but the

corresponding dynamics have accuracy errors of the order of 100% [2]. Treatments

attempting to remove the HFO from the MA-SPH pressure results are classified as

accuracy treatments.

In general, the dynamics obtained by SPH are ignored, excluding applications re-

lated to fluid-structure interaction, [6, 13, 20, 39, 49]. For the cases that require knowl-

edge of pressure values at specific locations, the results are simply post-processed to

remove the HFO at the desired locations. The post-processing of the pressure involves

either spatial averaging or temporal filtering. Therefore, the accuracy treatments con-

sidered in the following two subsections involve post-processing of the pressure results

at desired locations with either temporal filtering or spatial averaging. Since the ori-

gins of the HFO as yet were not completely understood, the choices on the size of

the averaging area or the cut-off frequency are empirical. The aim of the following
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two subsections is merely to critique the empirical choices based on the findings of

the analysis in Chapter 2.

It must be pointed out that there exist algorithms referenced as "incompressible

SPH" or "implicit SPH" algorithms. One particular example is the moving particle

semi-implicit method (MPS) [45] that requires the solution of a Poisson equation

for the particle density. Although solving the Poisson equation could be viewed as a

separate accuracy treatment this is not the case. First, it is by our definition that such

algorithms are not considered in the present work as extensions to the standard MA-

SPH but rather as different methods. Second, and most importantly, the algorithms

are not free of the aforementioned HFO [32, 33, 34]. Moreover, it is believed that

the source of the HFO is the same in MPS and in SPH and therefore, the pressure

post-processing procedure typically applied in MPS is regarded as yet another SPH

accuracy treatment.

3.2.1 Temporal filtering of pressure measurements

Post-processing temporal filtering implies the choice of a cut-off frequency through

techniques such as Fourier filtering or temporal integration. To the best of the author's

knowledge, only the aforementioned two approaches are utilized in the literature.

For the case of the Fourier filtering, only the harmonic which coincides with the

known excitation frequency is kept. This is particularly the case in the simulation

of sloshing in anti-roll tanks [6, 49]. It is interesting to note that [6] reports that

the HFO dominate the dynamic results, but not the particle locations. Therefore,

filtering is applied to dynamic results only. The moments generated by the fluid in

the tank with respect to time are computed as the summation of the moments of the

momentum on the entire tank wall at each time step. A FFT is then performed and

only the excitation harmonic is considered. The amplitude of this filtered result is

within close agreement to the experimental results.

Filtering the excitation harmonic essentially obtains the leading order incompress-

ible solution only, dropping leading order acoustic modes as well as higher order so-

lutions. To construct a more general temporal filter, the findings of the analysis
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in Chapter 2 are utilized. First, the dispersion relations for the acoustic modes ob-

tained by the analysis in section 2.4 indicate that the acoustic modes have frequencies

ranging from wmi = c to w = c--, where c is the speed of sound. H is a char-
2H max

acteristic water depth, and h is the kernel bandwidth. Second, the stability analysis

of the fully-discrete scheme indicates that the most unstable acoustic mode has a

wavelength a(p)h, where a(p) - 0(5) is determined by the stability analysis and pu

is the Courant condition. Therefore, it is desirable to employ a low-pass filter that

allows only frequencies lower than w = cn. Although a temporal filter is the most

effective method to remove the HFO, it must be taken into account that it is still a

local, post-processing approach, i.e., the unstable acoustic modes will have already

affected the physics inside the domain.

Temporal integration of the pressure is also considered. Characteristic examples

are detailed in simulations of green water on the ship deck with the Moving Particle

Semi-implicit (MPS) numerical simulation method [32, 33, 34]. Although the method

is referenced as incompressible, it exhibits HFO, the origins of which are believed to

be the same as with SPH. Here the authors compare the time integral of particle

pressure with experimental values, among other quantities. The time integrals of the

particle pressure in these simulations underestimate the corresponding experimental

values, but do not exhibit the HFO present in the particle pressure measurements,

as expected. In such a case, if the pressure can be described as E,, P1 , where n =

-1, 0, 1, . . . , m denotes the pressure amplitude of each frequency component with

n = -1 corresponding to the incompressible solution and n = m the cut-off frequency,

then the temporal integration essentially obtains E n P, and therefore is essentially

attenuating the highest frequencies. The fact that temporal integration attenuates

the higher frequencies is yet another expression of the statement that SPH obtains

validated kinematics but not dynamics. To further remove the highest frequencies,

the time step for the temporal integration of the pressure can be chosen larger than

that corresponding to the cut-off frequency, i.e., 6 tp > 1/Wmax.

186



3.2.2 Spatial averaging of pressure measurements

In general, the most typical post-processiing approach involves some sort of spatial

averaging of the pressure either through KI or some other technique [20, 36]. It is

noted that computation of forces on a structure as pressure integrals are considered

as a particular case of pressure spatial averaging. In particular, in [13, 39] the three-

dimensional wave impacts on tall structures are considered. The forces exerted on

the structures are computed as the sum of the pressures at each structure particle

along the height of the structures. HFO are not mentioned and the numerical and

experimental results are in good agreement.

In [20] two-dimiensional wedge water entries are considered. The local fluid force

on the wedge is computed as the average pressure along a virtual sensor of length

Ssensor. The pressures along this virtual sensor are computed from interpolated

particle fluid pressures within a distance d ~ h. Results for various ratios of d/h are

shown. The authors suggest a preferred range of d/h between 5 and 10, since HFO

are still present for d/h = 2 while for larger ratios the pressures are over-smoothed.

This ratio " d/h between 5 and 10" is in very close agreement of the wavelength of

the dominant unstable acoustic mode, computed in section 2.6.4.1.

A similar approach is seen in [36] in the context of sloshing. Again a virtual

sensor area is considered and the pressure on this virtual sensor is computed from the

interaction of fluid and ghost-boundary particles. Although, HFO are significant it

is recorded that similar results were obtained with the method described in [20]. No

reference is imade however on the choice of the ratio d/h.

A simpler procedure is followed in [34, 32, 33] where green water on the ship deck

is investigated through three-dimensional MPS numerical simulations. Experimen-

tal pressures on the deck are compared with numerical pressures averaged over 25

neighboring particles on deck. The authors report in [32] that "the spatial average

reduces the pressure oscillation caused by the particle motion". However, in [33] the

same averaging does not reduce the oscillations, and the authors claim that in or-

der "to restrain the pressure oscillations caused by the particle model, higher spatial
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resolution is necessary in addition to post-processing such as time averaging and spa-

tial averaging." In the latter work the numerical pressures exceed the experimental

values, contrary to the former work where the numerical results underestimate the

experimental values.

These spatial filters rely on two assumptions. First that the spurious acoustic

modes have wavelengths ~ d and second that they can be decomposed into Fourier

modes. However, as has been shown in detail in Chapter 2, neither assumption is

valid. First, the wavelengths of the acoustic modes range from 0(11), the character-

istic domain length, to O(h), the characteristic discretization length. The wavelength

corresponding to the most unstable mode depends on the Courant condition Pc and is

of the order of 5h for a typical pc = 0.8, Figure 2-33, as determined fron the stability

analysis of the fully discrete advanced density scheme with fourth order Runge-Kutta

and hydrostatic base density distribution. Second, the basis of the acoustic modes

are not the Fourier functions. Therefore, the existing spatial averaging techniques

cannot be effective. Within this context, an effective spatial filter has been devel-

oped in section 2.4.3. It is recalled that this spatial filter removes the HFO in the

space domain through appropriately developed modal decompositioin that involves

integration of both horizontal and vertical velocities along the water depth. In short,

spatial averaging filters aim solely at removing short wavelengths that are not neces-

sarily acoustic modes, even though these modes are characterized by high frequencies.

Therefore, there are no indications that simple, local, post-processing spatial averag-

ing techniques can be used efficiently to remove the acoustic modes, ini agreement with

the above numerical observations. As will be discussed in Chapter 1. local spatial

averaging is effective during the computation, as it dissipates the acoustic modes.
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3.3 Consistency treatments

Section 2.5 detailed the consistency analysis of Kernel Interpolation (KI) for the nu-

merical comput ation of derivatives on Lagrangian particles within an SPH simulation.

First, the established results that KI is (a) consistent for unbounded uniform parti-

cle distributions [29], and (b) divergent near boundaries [52] were recapitulated in

sections 2.5.2.1 and 2.5.2.3. The analysis is extended in section 2.5.5 to account for

smooth advection of particles initially located on an unbounded uniform grid, which

is the resulting particle motion in an SPH simulation, and consistency of KI within

SPH was proven for the first time. The role of the density in the numerical consis-

tency of KI was shown in section 2.5.4 for the first time. Finally, in section 2.5.6 the

general statement that KI is divergent near the boundaries is expressed as a spurious

dynamic free-surface boundary condition dependant on the free-surface slope.

The findings detailed in sections 2.5.4, 2.5.5 and 2.5.6 had not been known, asso-

ciating the consistency of KI to uncertainties due to the discrepancy between the an-

alytic findings, which indicated divergence, and the numerical findings, which showed

consistency. This incomplete picture regarding the consistency of KI has lead to the

usage of a number of consistency treatments. The consistency treatments investigated

in the following two subsections are further categorized as (a) alternative derivative

computation techniques, and (b) different discrete forms of the equations of motion.

Alternative derivative computation techniques include but are not limited to Moving

Least Squares and Corrected Kernels. Although these methods can be argued to

be more accurate than KI they are also more expensive and, most importantly, less

robust. The discrete forms of the equations of motion have been in general chosen on

a case-to-case basis, ignoring the true effect of the density in the consistency of KI

and the presence of boundaries.

3.3.1 Alternative spatial derivative computation techniques

In section 2.5.5. the consistency of KI was proven even for the case of a non-uniform

particle distribution. The two main assumptions are that the fluid particles have been
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smoothly advected from an initial appropriate configuration and that the particle

density is included in the summation.

However, partly because the consistency of KI in a non-uniforim grid had not

been established, and mainly because of the inconsistency of KI near boundaries,

many alternative unstructured, discrete spatial derivative computation techniques

are suggested in the literature such as MLS [35], M6ller derivatives [18], the Element

Free Galerking, RKPM, Particle in Cell, hp-clouds, techniques reviewed in [50].

To describe and analyze the general approach towards consistent (iscrete meshless

differentiation techniques, assume a snapshot of a discrete particle field, where i-

denotes location. Let q(Y) denote a smooth field property known at discrete particle

locations. Let Vq denote the unknown spatial gradient of q. The aim is to compute Vq

at the location s, i.e., Vqa Vq(s ) given the values of q at the discrete neighboring

locations Xb, i.e., q Xb q(z). Defining Xba Xb - za, by Taylor Series Expanding qb

about A obtains:
N-1

~~~~~~ I (i~. q ~jbN).q=O n. zab -V )"a + O~jzab|

To demonstrate the approach for linear consistency let N = 2. The al bove reduces to:

qb = qa + Xab -Vqa + O(Iab|2 )

Further, by subtracting qa from qb, multiplying with a weight function Wba

w(' a; h) where h denoted the support, and summing over all b within the compact

support of w, i.e., |b < h, it is:

ZXabWba - Vqa qbawba + O(h2 ) (3.1)
b b

A linear system Ax = # is formed to solve. The first term in the left hand side of

(3.1) is the matrix A, the second term is the unknown vector x, and the term in the
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right hand side of (3.1) is the vector 3. If A is non-singular, the solution is given by:

Vqa = A-' qbaba. (3.2)
b

The weight function w can either be the same as the kernels used in KI or their

derivatives. However, as will be discussed, it is best for numerical issues if a simple

hat function is used.

The alternative computation techniques are regarded as a panacea to the uncer-

tainties raised by KI however, there are two main issues associated with their usage in

MA-SPH. First. if there are not enough particles in all directions within the support

of w, the matrix A is singular and the method fails. To alleviate this the size of A,

and therefore the consistency of the method, is reduced [18]. Second, the momentum

is not exactly conserved within the domain, i.e., the forces exerted from particle a,

to particle a,, are not identically opposite [21]. However, momentum is not exactly

conserved with KI in the presence of a free-surface, either.

This section considers two examples of consistent derivative computation tech-

niques, the Moving Least Squares (MLS) [35] and Muller derivative computation

technique (Mnller) [48], in one and two-dimensions respectively. The analysis is

mainly demonstrative and by no means complete. However, the results obtained

can be straightforwardly generalized, extended to other schemes, higher dimensions

and advected grids.

3.3.1.1 MLS

The consistency and transforms of one-dimensional MLS interpolation and differen-

tiation as defined in [35] are investigated. First, assume a one-dimensional, infinite,

particle grid along the x axis. Without loss of generality, all analysis is performed

about the origin. Let the position of the center of mass of particle b be denoted by

Xb. Assume a sufficiently smooth function f(x) and let fA f(Xb) and f f(0). The
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MLS interpolation is defined as:

f =Z bfb =J oA-' Bbfb (3.3)
b b

where qO = [1, o]T, A = qqT, q = [Eb Wb, Eb WbXb]T, 3 = Lb Wbfb, Z, u bfbxb]x. The

weights Wb are typically computed from a known analytical functioni with compact

support, such as the cubic B-Spline or a truncated Gaussian. Denoting the determi-

nant of A with A = Eb Wb Eb Wbx - (Eb Wbb), (3.3) reduces to:

fb Wbfb I x - wbxbfb wbxb) (3.4)
b b b b /

To determine the consistency of (3.4), the Taylor Series Expansion of fb about the

origin is considered, i.e., fb = f + xbf' + If" + h.o.t. Substituting into (3.4), after

some algebra, obtains:

2= f b 
b +2ZWbZWbX-( Wbxb

f f b b A b

,(zWbXb) WbXb E Wb b

2

f"
= f + .- (3.5)

2 A'

First, it is observed that ~ O(h 2 ). Second, it is found that on a regular grid of

spacing h when Wb is obtained by an even function, then E WbXb = WbX 3 = 0 and

therefore 6/A reduces to:

6 EbwWb
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There is no apparent benefit in the MLS consistency in using any other Wb than a

hat function, i.e.. to define the support. Moreover, any other Wb increases the compu-

tational effort aind numerical round-off errors. Therefore, it is strongly recommended

that only a hat function is used with MLS. The consistency of the method for particles

smoothly advected from a regular grid can be computed as in section 2.5.5, simply

by substituting into 6/A. It must be noted though that even in random grids the

method remains of order 0(h2 ).

To determine the transforms associated to MLS expand the function f(x) in terms

of normal modes fb = fe'Xb where it is assumed that f = f(0). The wavenumber

K can be either imaginary, K -+ ik, or real, K - p. Substituting the above modal

expansion into (3.4), after some algebra, the function interpolation transform is:

S(z WbXb E wbe - WbXb E wbe xb) (3.6)
b b b b

In a regular grid for wb described by a hat function Zb WbXb = 0, the above further

simplifies to:

f = f bl (3.7)

Further if -1 < b < 1, i.e., only two neighbors are considered in the summation then:

~f e-r + 1 + eKh
f = f 3

= f 1 ++e

= ~ +(exh/ 2 
_ e-nh/2) 2 )

For K -+ ik it is f = f - 4 sin2 (kh/2). For K -+ p it is f= f + 1 sinh2 (iph/2). For

small Irhl -> ci ~ Kh it is apparent that f~ f(1+ jh2).

The MLS differentiation is defined as:

I'= 5 bfb = q1A- 1 Bbfb, (3.8)
b b
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where qi = [0, I]T and everything else is the same as with MLS interpolation, i.e., A =

qq , q = [b b WbXb] T  = [b Wbfb, Eb WbfbXb] T . Denoting the determinant of

A with A = EbWb EbWbb - (bEwbxb) 2 , (3.8) reduces to:

A~ (z: Wbfb 1 WbXb - WbXbfb YWb)- (3.9)
b b b b

To determine the consistency of (3.9), the Taylor Series Expansion of fb about the

origin is considered, i.e., fb = f + xbf' + f"+ h.o.t. Substituting into (3.9), after

some algebra, obtains:

A2

Wb WbXb bb

' = f f b b b +
b +

Wb E WbX - 5 blb E b2
f b b b b
2 A

f' 2 . (3.10)

First, it is observed that O 0(h). Second, it is found that oi a regular grid

of uniform spacing h, when Wb is even, it is Z WbXb = Z WbX = ( and therefore

61 /A = 0, i.e., the method becomes order 0(h2 ). It must be noted though, that even

in random grids the method remains of order O(h). Finally, there is no apparent

benefit in terms of consistency in using any other Wb than a hat function. Finally,

[35] points out that it is best to compute 'y = qjA- 1 through an LU decomposition

rather than inverting A to alleviate numerical issues due to poor conditioning of A.

To determine the transforms associated to derivatives using MLS. the function

f (x) is expanded in terms of normal modes, fb = feKxb, where it is assumed that

f = f(0). The wavenumber 1, can be either imaginary, , -+ ik, or real, K -+ p.
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Substituting the above modal expansion into (3.9), after some algebra, obtains the

function differentiation transform:

' Wb wbe* xb - WbXb wbe ) . (3.11)
b b b b

In a regular grid for Wb described by a hat function Eb WbXb = 0, the above further

simplifies to:

f' = f 2xb. (3.12)
Z b Xb

Further, if -1 < b ; 1, i.e., only two neighbors are considered in the summation, it

is:

~ f-he-"h + he"h
2h 2

eKh -e-Kh

2h

For K - 'k it is , = fisilkh. For n -+ y it is f= fsinhph. For small I|hI-

eI h ~ Kh it is apparent that ' ~ fk.

The major advantage of MLS is that it is at least of order O(h2 ) for interpolation

and O(h) for differentiation, even on highly distorted grids or in the presence of

boundaries where KI diverges. The major disadvantage of MLS to KI is that MLS

can become singular and is therefore less robust than KI.

3.3.1.2 Muller derivatives

The consistency and transforms of two-dimensional Muller derivatives as defined in

[48] are investigated. First, assume the Cartesian coordinate system Y = [x, y] and a

two-dimensional unbounded grid. Without loss of generality, all analysis is performed

about the origin. Let the position of the center of mass of particle b be denoted by

Xb. Assume a sufficiently smooth function f(Y) and let fb = fb) and f = f(0). The
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Muller interpolation is defined as:

Fx 1b b b WbXbYb b bXbfb
Vf = 2 (3.13)

Lf y - L b WbXbYb Lb WbYb i L Lb Wbbfb() I
where fbo = fb - f, fx = , fy = , etc. Without loss of generality only the f1 is

considered. Letting A = Eb WbXb Eb Wbb (b WbXbYb 2 , (3.13) reduces to:

Lb Wb b Lb WbXbfb0 - Lb WbXbYb Lb WbYbfbo

To determine the consistency of (3.14), the Taylor Series Expansion of fbo about

the origin is considered, i.e., fbo = fb - f = Xbfx + Ybfy + fx + byb f XY + fyy

Substituting into (3.14), after some algebra, obtains:

fx = fx + fxx6xx + xy6xy + yy~yy, (3.15)

where:

b b b b1 2 (z bb WbX2 b - YWbXbYb 1:WbXb Yb)

=X 2 (1z WbYb ~ bbb-bbW~(

b b b b

Ey ( WbY > WbXbb - WbXbYb ZWb b
b b b b

First, note that 6/A O(h). Second, on a uniform grid for Wb given by an even

function it is 6ox = 6xy = 6y = 0, thus the method becomes 0(h2 ). Again, it is

suggested that a hat function be used for w.

To determine the transforms associated to M6ller derivatives, the function f(i)

is expanded in terms of normal modes, fb = f(0, y)elxb. The waveninber r, can be

either imaginary, , -+ ik, or real, r, -> p. Substituting the above modal expansion

into (3.14) yields the function differentiation transform. For the case of a uniform

grid of spacing 6x = 6y = h, with Wb given by a hat function of support h, after some
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algebra, obtains:
erh - e-rh

2h

For K -* ik it isj = fiSifk. For K - p it is fx = f si"h ph. For small |rh| - e" ~ ' ,h

it is apparent that fx ~ fk.

The major advantage in computing derivatives using the Mller derivatives tech-

nique, instead of using the KI technique, is that the M6ller derivatives are consistent

at least up to order O(h) even on highly distorted grids or in the presence of bound-

aries where KI diverges. The major disadvantage in computing derivatives using

the Muller derivatives technique is that the Muller derivatives can become singular.

Therefore, the Mnller derivatives less robust than KI.

Finally, comparing MLS and M6ller derivatives, it is observed that while MLS can

be used at any desired order of consistency, Muller derivatives are most efficient for

first order consistency where the need for numerical matrix inversion is eliminated.

Finally, regarding the choice of the weight function Wb for both MLS and M6ller

with respect to efficiency and numerical accuracy, it is recommended that a unit hat

function with support of O(h) be used.

3.3.2 Different discrete forms of the equations of motion

In the literature there exists extensive reference on the formulation of the discrete

inviscid equations of motion employed by MA-SPH [42]. The references can be col-

lected into two different groups: those related to the formulation of the momentum

equation and those related to the mass conservation. In general, formulations related

to the momentum equation focus either on global momentum conservation, ignoring

the presence of boundaries, or on the inclusion of the particle density. Formulations

related to the mass conservation mainly address the inconsistency of KI near the

free-surface.
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3.3.2.1 Momentum equation

In addition to the two MA-SPH formulations for the inviscid momentum equation

(2.12) and (2.15), the following consistent form is often employed in the literature

[21, 42]:

= (P -+(iPb) -Vwb - gj (3.16)
dt Pa b Pb

Equation (3.16) is essentially (2.12) with the addition of the term A, =±Pa Eb pVWab.

From the analysis on the consistency of KI in section 2.5.5, it is understood that in-

side a smoothly advected domain A, should scale at most by h, i.e.. Ap ~ O(h).

The term however is significant when the KI is incomplete. In particular, near the

free-surface the computed acceleration, discussed in section 2.5.6, becomes:

5 d. d 1 d,,1S6 p a + 6 p (3.17)
dt [1 Pd(l±1)hPd _I g(l+ 1LJ dt [1 Pd(1±1)±hPdy _gl ) (317

hp 2 h) 2 hp 2(

3.3.2.2 Mass conservation

For the case of the direct density formulation, alternatively to the standard form of

the density equation (2.16), the particle density also appears in the literature [42] in

the following forms:

Pa = Eb Wab (3.18)
Pa =b zWab

Based on the findings of section 2.5.5, the form (3.18) introduces dissipation of the

form V 2p, and improves the consistency near the free-surface.

For the case of the advanced density formulation, alternatively to the standard

form of the conservation of mass (2.13), the time rate of density also appears in the

literature [42] in the following forms:

dpab
- Pa E _Uba - VWab (3.19)

b Pb

dPa - Tn7 miZ.-VWab(.0

dt L~ b a
b
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The main affect of the coefficient of '7 is on the implementation of the free-surface

dynamic boundary condition.
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3.4 Stability treatments

The key issue in MA-SPH is that it is unstable. As has been discussed in detail in

Chapter 2, there are three types of instabilities present in an MA-SPH simulation.

The first, detailed in section 2.6.2, are depth-decaying wave components that occur

under the continuous weak compressibility assumption in the presence of a free-surface

[43]. These components are unconditionally unstable, have the largest growth rates,

eventually dominate all long-term simulations and essentially determine the useful

computational life. The second, detailed in section 2.6.2, are pure oscillatory com-

ponents that are unstable in the presence of non-zero base density gridients. In the

literature this type of instability is identified as tensile instability and is erroneously

blamed on the spatial discretization [26, 40, 44, 50, 53]. For the violent free-surface

flows of interest, where the base density gradient is hydrostatic, these components

have in general growth rates inversely proportional to their wavenumbers, dominate

the short-time solution and corrupt the dynamics. The third type, are instabilities

introduced by the temporal integration scheme and depend, among other quantities.

on the Courant condition pc = L, where 6t is the numerical time-stepping, c the

speed of sound and h the kernel bandwidth.

Despite the prior lack of a conclusive stability analysis (as presented in Chapter

2), the majority of the existing SPH semi-empirical treatments essentially aimed to-

wards the numerical stabilization, or regularization, of the method. The scope of this

section 3.4 is threefold. First, it implicitly aims to justify the classification of certain

treatments as stability treatments. Second, it sets guidelines for the analysis and

evaluation of these treatments. Thirdly, and most importantly, it gains the appro-

priate insight to eventually propose a rational, numerical regularization of MA-SPH

in Chapter 4. Therefore, it is not within the scope of this section 3.4 to present an

in-depth analysis of the existing SPH treatments, as was the case for the main algo-

rithm in Chapter 2. Instead, the theme is to give a brief analysis for each treatment

under consideration followed by a discussion on the insight gained fromim its approach

towards regularizing SPH.
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Section 3.4 is structured as follows. First, in section 3.4.1, the rationale for the

classification of stability treatments is stated and the framework of the analysis is

described. Then. in sections 3.4.2 through 3.4.6 each stability treatment is considered

separately for both the direct and advanced density formulations of the MA-SPH

algorithm, either for the semi-discrete or fully-discrete algorithm.

3.4.1 Classification and framework

The existing stability analysis on SPH is limited to the tensile instability the source

of which had been misleadingly identified as the KI [40, 44, 53], clarified in section

2.6.2. Therefore, even though a corresponding tensile instability treatment was pro-

posed [26], the stability properties of MA-SPH for the simulation of free-surface flows

remained unchanged [3, 26, 48], as expected. This led to the development of several

semi-empirical stability treatments which generally have not been explicit identified

as stability treatments.

In a first general approach, treatments are classified as stability treatments when

it is noted in the literature that their inclusion "stabilizes" or "regularizes the SPH

simulations". The stability treatments are collected into two groups. The first group,

includes treatnents that introduce a small term on the right hand side of the gov-

erning equations. The treatments considered here are: the artificial viscosity (AV)

treatment [30. 3], the tensile instability (TI) treatment [26], the XSPH velocity treat-

ment [24], and applying an initial dumping (ID) in the particle positions through the

temporal integration scheme before starting the simulation [30]. The second group, in-

cludes density re-initialization schemes. The schemes considered in this second group

are: the smoothed density re-initialization scheme [4] and the hydrostatic density

re-initialization scheme [3].

Once the treatments have been classified, the framework for a unified stability

analysis is sketched. First, the semi-discrete evolution equations for infinitesimal

disturbances in MA-SPH for both direct and advanced density formulations are re-

capitulated, as in section 2.6.3. Then, the general approach for the first group of

treatments is to incorporate treatment X (per se) into MA-SPH, formulate the am-
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plification matrix Ax of either the semi-discrete or fully-discrete algorithm MA-SPH

+ X, and compute the amplitude of the corresponding eigenvalues As.

As detailed in section 2.6.2, the most unstable conditions occur for flows indepen-

dent of x. Therefore, the stability analysis is again performed in a oiie-dimensional

problem, along the y axis, considering both depth decaying and purely oscillatory

modes. The domain is discretized into N fluid particles of uniform spacing 6y h.

The center of mass of particle a is given by ga = ah and its mass is mw, = pfh m,

where pf is the unperturbed fluid density. Let c be the speed of sound in the fluid. A

uniform base flow solution at time t is assumed, i.e., the base flow velocity, pressure

and density of particle a are v~a = 0, Pa = 0, and Pa = pf respectively. It is noted

that although the tensile instability manifests itself in the presence of a non-zero

base density gradient, the basic assumption henceforth is uniform base density dis-

tribution and gravity is neglected. Contradictory as though this might seem, recall

that the scope of this paragraph is to perform a simple analysis on selected existing

treatments, gain insight from the existing semi-empirical knowledge and propose a

rational regularization based on the findings of the analysis. Therefore it is of interest

to recognize the effects of a treatment on the unstable growth rates by performing

the simplest analysis possible.

Next, following the linear von Neumann stability analysis outlined in section 2.6.1,

infinitesimal perturbations Ya < h, Va, Pa and Pa < pf are superimposed to the base

position, velocity, pressure and density respectively. Thus, the particle total position,

velocity, pressure, and density are given by:

YA = Pa + Ya

VA = Va

PA =Pa

PA = Pf+ La
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The total position and velocity of particle a satisfy the MA-SPH governing equations:

YA = VA

VA =-mb +
11 PA

PB'I
2B ) ab

PB/

(3.21)

(3.22)

The total density Pa is given by either the direct or advanced computation:

Direct: Pa = mbWab
b

Advanced: pa = ( mbvABWab-

(3.23)

(3.24)

where the pressure is determined by a constitutive Equation of State

PA = Pf
-Y .( p)

and Wab =lY(yA - YB) is the cubic B-Spline kernel (2.111). The kernel is expanded

about gab to ol)tain:

I'Vab = W(YA - B) = W ((ga - b) + (Ya -Yb))

SW(ga - 9b) + (Ya - Yb)W'(ga - b)

= Wb -+ YabW ja

In the same manner, the first derivative of the kernel is expanded about gab:

Wab Wb + YabW'.

Next, the pressure term in the momentum equation (3.22) is expanded about 0,

which, after sone algebra, obtains to leading order: PA = C
2

A7 PLOa Substituting the

above into (3.21)-(3.24), subtracting the base flow and maintaining only linear terms

with respect to the disturbances, after some algebra, obtains the governing equations
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for the disturbances:

dy va (3.25)
dt

dVa - 2 m gWjb (3.26)
f b

Pa = ZmbyabWh (3.27)
b

dPa -ZmbVabW, b(.8
dt ab (3.28)

b

Next, the disturbances are expanded in terms of normal modes.

[Ya, Va, gal = [y(t), v(t), (t)]e94, (3.29)

where r, is the wavenumber of the disturbance. Recalling that the flow is a simpli-

fication of a two-dimensional one, based on [43], K can be either real (r, --+ p) or

imaginary (K-+ ik), therefore, both cases are considered. Substituting into (3.25) -

(3.28) and defining r P/P,, obtains:

dya = Va (3.30)
dt

dVa

dt = -C 2 hFra (3.31)

ra = -hFya (3.32)

da = -hFVa (3.33)
dt

where F E E er9baWib, is dependant on the shape of the kernel and on the wavenum-

ber K. In particular, for the cubic B-Spline, F becomes:

i sink for n =ikwith kE R
F h (3.34)

sinhph for K=ywithp E R

Table 3.1 summarizes the linearized MA-SPH evolution equations for infinitesimal

disturbances in a uniform base flow. The evolution equations for the <listurbances for
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the direct density formulation reduce to:

S= c 2 F 2 y 4yOetwhere A = tvc 2F 2.

For disturbances with imaginary wavenumbers (oscillatory) it is (cF)2 < 0 -+ A is

imaginary and this the disturbances are stable. For disturbances with real wavenum-

bers (exponential) it is (cF)2 > 0 -+ A is real and thus the disturbances are unstable.

The aforementioned sign difference is the source of the inherent instability of the

exponential modes, which are allowed in any finite domain.

Table 3.1: MA-SPH linearized evolution equations for infinitesimal disturbances.
Both direct and advanced density algorithms are considered. The disturbances are
expanded into both oscillatory and exponentially decaying modes. The base flow is
assumed to be uniform, the particles are lying in a uniform grid of spacing h and
their mass is m = pfh.

Algorithm General SIN disturbance EXP disturbance

S=v =V =v
Direct

C =c 2(-F)2 y i' = -c2 (sinkh)2 y =c2 (sinh ph ) 2

y =v y =v y =vb 2sinh h 2snhi

Advanced 6 = -c 2Fr h = -ic2sinkhr v =-c2sinhh rh h

S= -Fv = -isikV sn - h -" V

From Table 3.1,

bances reduces to:

the amplification matrix describing the evolution of the distur-

Ama [0 1 0

0 0 -c 2 F

0 -F 0

and the corresponding eigenvalues are Ama = (0, ± vc 2F 2), equal to the corresponding

eigenvalues with the direct density formulation. It is pointed that the evolution

equation for y can be neglected in the MA-SPH stability analysis for uniform base flow
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and advanced density formulation. Finally, the analysis of each stability treatment

under consideration reduces to formulating additional terms on the amplification

matrix and computing the corresponding eigenvalues.

3.4.2 XSPH

In [24] the author suggests the particle positions are updated based on a smoothed

velocity given by:

d0 2 mb

dt Ua + b Ub a)( ) Wa.

x

Assuming a one-dimensional uniform base flow, and maintaining leading order

terms with respect to the disturbances obtains the corresponding term 6X for the

one-dimensional disturbances:

6X = h (vb - Va)Wab.

b

Substituting the modal expansion (3.29) and performing the summations on the reg-

ular grid for the cubic B-Spline, obtains for 6X:

K4 , 
) (e xh/2 _ e- r/2)26X = h (Z(e - 1)Wab v = 6ev= 6X ,

b

where

-2 (sin )2 < 0 for , = ik with k E R
XV = 3 2 2- (3.35)

(sinh 2 ;>0 for i = p with p ER

Direct density formulation The evolution equation for y becomes ! = (1+aX,)v

and the corresponding growth rates for the MA-SPH + XSPH with direct density

formulation are:

A =± c2F2(1 + iX).

For oscillatory disturbances with imaginary wavenumbers it is A = ±icsiskh 1± X
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Therefore, to retain stability d must be chosen so that 1 - d (sin h)2 > 0 -+ d < 1.5.

For disturbances with real wavenumbers (exponential) the XSPH velocity increases

the instability growth rate.

Advanced density formulation For the advanced density formulation, for a uni-

form base density distribution, the XSPH velocity does not affect the stability prop-

erties of the system.

It is concluded that XSPH does not seem to lead the way to a generalized stabi-

lization of the nethod, in agreement with numerical observations [26, 3].

3.4.3 Initial dumping

In [30] it is suggested that the initial particle configuration is dumped out before the

flow is initialized. This initial dumping is incorporated in the temporal integration

scheme, and therefore, the initial dumping treatment is studied in the fully-discrete

scheme exactly as described in [30]. In this case the assumptions of uniform base flow

are exact.

Direct density formulation Let( = 1+0.51Ft > 1, where F is a tunable param-

eter. Given the values of yf, v" at time step n and time step size 6t, the evolution

equations for the disturbances in the fully-discrete ID scheme are:

1. Predictor step

yn+p = y" + -9" (3.36)
2y1 =

n = - V4 + -- ) (3.37)

2. Corrector step

yln+1 = yn + tn+" (3.38)

on+1 = 2V n + it nn+p) -" (3.39)
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The values of p and i from Table 3.1 are substituted in (3.36) - (3.39). After some

algebra, the amplification matrix Aid of fully discrete is obtained:

1 + (6tdF)2  6t
Aid = 2c C

(6tdF)2  2 + (6tdF)2

(6t 2c

with F given by (3.34). The amplitudes of the corresponding eigenvalues A1,2 of the

amplification matrix are:

1 + 1(6tdF)2 k N'1 + (6tdF)2 - 2C + (2
|A1,2| = - 22

Figures 3-1 and 3-2 describe the maximum amplitude |Al = max A1, A21 for ( =

[1, 1.005,1.025] as a function of the Courant condition pc = 6td/h for the sinusoidal

disturbances, and as function of p* = 6td sinh ph/h for the exponential disturbances

respectively.
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max (1-1/2 (1- -- 2(+(21/2

- 1.005

- 1.025

----------------

Figure 3-1: Maximum amplitude of the eigenvalues of the amplification matrix
JAI = max Jj1, A2 1 for MA-SPH with ID treatment and modified Predictor-Corrector
temporal integration scheme. The amplitude of IAI is given as function of the Courant
condition pc = 6td/h for three values of = 1 + 0.5Fot = [1, 1.005, 1.025]. Sinusoidal
disturbances are assumed.
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max (1 +1/2y2 ± (1+ -2(+t2

- - -1=1.005

-= 1.025

#I

Figure 3-2: Maximum amplitude of the eigenvalues of the amplification matrix |AI
max JA, A21 for MA-SPH with ID treatment and modified Predictor- Corrector tempo-
ral integration scheme. The amplitude of I|AI is given as function of pt* = Rtd sinh ph/h
for three values of (=1 + 0.51 of =I [1 1.005, 1.025]. Exponential disturbances are
assumed.
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Advanced density formulation Given the values of y", ", and p" at time step n

and time step size t, the evolution equations for the disturbances in the fully-discrete

ID scheme are:

1. Predictor step

yn+p = y"n + -- #" (3.40)
2

o = - v4 + -n) (3.41)

rn+p = nr" + -" (3.42)
2

2. Corrector step

yn+1 Yn + tn+p (3.43)

n+1 2 Vn + -n+p - " (3.44)
(2

rn+p = r" + 6tn+p (3.45)

where, again, C 1 + 0.5Fot > 1, and F is a tunable parameter.

It is noted that the evolution equation for y can be neglected in the stability analysis

for uniform base flow and advanced density formulation. The values of ) and r from

Table 3.1 are substituted in (3.41), (3.42), (3.44), and (3.45). After some algebra, the

amplification matrix Aid,a describing the evolution of the disturbances of the fully-

discrete MA-SPH with advanced density formulation and ID treatment in a uniform

base density distribution becomes:

S+ (tdF)2 _ 6td 2 
F

Aid a = 2(

tF 1 + (btdF)
2

2(
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with F given by (3.34). The amplitude of the corresponding eigenvalues A1,2 of the

amplification matrix Aid,a are:

1 + 1(6tdF)2 ± V1 l (6tdF)2 - 2( + C2
|A1,2| = 2

which are the same with those obtained by the direct density formulation. This is

expected, since the two formulations differ inside the domain only in the presence of

non-zero base density gradients.

Summarizing, the initial dumping treatment for MA-SPH with both the direct

and advanced density formulations in uniform base density distribution (a) increase

the Courant condition, for sinusoidal disturbances and (b) reduces the instability

growth rates for a given pc, for exponential disturbances. This result indicates that

the method can be regularized numerically through appropriate choice of numerical

dumping.

3.4.4 Artificial viscosity

In [30] it is suggested that an artificial viscosity term (AV) is added to the right hand

side of the momentum equation in which case the momentum equation becomes:

d= - m ( VWab - 9% -- mbbv t Vdt b (Pa +P

AV

where
2adh Uab - Xab

Hab - - .. if U'ab Xab < 0; 0 else. (3.46)
(Pa + Pb |Xab| 2 + eh2

Again, a one-dimensional, uniform particle distribution is considered. A uniform

base flow is assumed, i.e., flab = 0. Infinitesimal perturbations on the uniform base

flow are assumed, described by (3.29). After dropping higher order terms with respect
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to the perturbations the linear viscous term for the disturbances becomes:

6 Hab = adhVabgjab for Vabgab < 0 (3.47)
Pf Yab

To further perform the summations in the KI for this non-continuous artificial

viscosity term, the cubic B-Spline is employed and only sinusoidal disturbances are

considered, i.e.. r = v(t)eikY. In this case it is:

Vabgab = Va (1 - eiksba )(a - b)h

>0

First, let r,, > 0. Then VabYab < 0 -+ Seab # 0 only for b > a. In this case,

substituting (3.47) into 6AV obtains:

6AV = -'= a~l 1 -eikh
6AV = - Y mb6 UlabWb -ad - va - G*Va, where G* < 0

YLda 2h Va Ga
b

Second, let c,, < 0. Then VabYab < 0 - 6 ab # 0 only for b < a. In this case,

substituting (3.47) into 6AV obtains:

1 -eikh
6 AV = -( mbolabW'- bV ~~2h V_ = G**va, where G** > 0.

b

In either case the evolution equation for the velocity perturbations reduces to:

i> = -d 2 Fr + Gv (3.48)

where F is given by (3.34) and, most importantly, 6AV is proportional to v. This

is in general the case, i.e., viscous terms add a quantity proportional to the velocity

on the right hand side of the momentum equation. For this reason, in the stability

analysis of the fully-discrete schemes it will be assumed that the viscous term is of

the general form Gv. The amplification matrix Aav of the fully-discrete scheme is

formulated and the amplitudes of the corresponding eigenvalues are determined with

G as a parameter.
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Direct density formulation Given the values of y", v" at time step n, and time

step size St the evolution equations for the disturbances in the fully-discrete MA-SPH

direct density formulation with AV scheme in uniform base density distribution are

given by:

1. Predictor step

yn+p Yn + y" (3.49)2
St

on+p = V" + n (3.50)
2

2. Corrector step

yn+1 - yn + 6tn+p (3.51)

on+1 = v" + in+p (3.52)
2

Substituting the values of y and i) from Table 3.1 and (3.48) respectively, after

some algebra, obtains the amplification matrix Aa of the fully discrete MA-SPH

direct density formulation with AV scheme in uniform base density:

1 + (6tdF)2  
6t (1 +tG)

Aav (btdF)2 (1 I
1+) 1+ 2F+ +6G (1 + 't

The amplitudes of the corresponding eigenvalues A1 ,2 are:

1 - ({tdF)2 + 10 + 102

|Ai,2| =
k~ y/-16(Std F )2 + 4G 2 

- 16(6tdF)2 0 - 4(6tdF)2 c 2 ± 4Cs + Q4

where & = tG. It is tdF = 6fF(sh) = pcfF(Gh) and = f(Kh)

0(i)

ape fG(Kh) with a < 1. Dropping terms higher than a2 and noting that the CFL

0(1)
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condition requires pc < 1 the above relation can be approximated by:

j, 2 | = 1 - ± ic + 2acf(enh)

AV

Given that f(e") = t -e i, the amplitude of the eigenvalues simplifies to:2h

2 (1 - I2) 2 + P2(1 i 1a)2 ~ 1 ± y ± aiji.

Therefore, there is no conclusive effect of the AV on the stability of the scheme.

Advanced density formulation Given the values of y", v" at time step n, and

time step size 5/. the evolution equations for the disturbances in the fully-discrete MA-

SPH advanced density formulation with AV scheme in uniform density distribution

are given by:

1. Predictor step

n+ = v4 + -- " (3.53)
2

6t
rn+ = r" + -t" (3.54)

2

2. Corrector step

vn+1 = v" + 6tbn+p (3.55)

rn+1 = r"n + trn+ (3.56)

Substituting the values of and i' from Table 3.1 and (3.48) respectively, after

some algebra, obtains the amplification matrix Aa,,a of the fully discrete MA-SPH

advanced density formulation with AV scheme in uniform density distribution:

A+ (tdF)2 +6tG (1 + 6tG) (6tdF)2(+ 6tG
Aav= 2 (+ t) 2 6t (tF2 = Aa

""'" -6t (1+2 1 + ( 2F2a
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Therefore, as expected, the advanced density formulation in this case behaves just like

the direct density formulation under the assumption of uniform density distribution.

The conclusion is that the particular type of discontinuous artificial viscosity,

which is introduced for shock capturing simulations [30], does not seem to have the

potential to lead towards a general regularization of SPH.

3.4.5 Tensile instability treatment

In [26] it is suggested that negative pressures in the right hand side of the momentum

equation are updated by multiplying them with a coefficient of the form 1 - Efab, de-

fined as a tensile instability treatment (TI). In particular if Pa, P < 0 the momentum

equation becomes:

du- Pa P6)V ad= (M 1  -f" ) Pa Pb+- gj (3.57)
b ( Pa Pb,1

where c 0 O(0.1), n 0 (4) and fab = wa- . It can be shown, after some algebra,

that the evolution equation for the velocity disturbances are re-fornuilated as:

= -(d /(1 - C))2 Fr (3.58)

d*

where the cubic B-Spline has been employed. This means that the correction term

simply reduces the effective speed of sound for the velocity perturbations.

Therefore, in the stability point of view the TI slightly reduces the unstable growth

rates by reducing the effective speed of sound from d to d* = d (1 - e) for both the

direct and advanced density formulations for the case of uniform density distribution.

As a results the instability growth rate has been slightly reduced compared to MA-

SPH. In addition to that, the fact that the TI is not continuous (since it is applied

only in the negative pressures) helps to 'detune' the instability in the domain. In

the literature it is noted that the TI does not have any significant effects on the

free-surface flows of interest [3, 26]. Therefore, similarly to the discontinuous AV

treatment, the TI treatment does not seem to lead towards a general regularization
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of SPH.

3.4.6 Density re-initialization schemes

In [1, 48] it is suggested that the density field is re-initialized periodically through a

relation of the form:

Pa S mbwab (3.59)
b

where m denotes particle mass and Wab is an MLS coefficient of order either 1 or 2.

To perform an analysis of the effects of re-initializing the density with a relation

of the form of (3.59), first a one-dimensional domain is assumed. Let y < 0 denote

the vertical axis pointing upwards, g the gravitational acceleration, and c the speed

of sound. The domain is discretized into N fluid particles. The initial particle dis-

tribution is assiumed to be uniform with spacing dy. Let W(x; h) denote the cubic

B-Spline (2.111) with kernel bandwidth h = dy. Initially, each particle a is located

at yo = ah, has density po, and mass ma = poh, which remains constant in time.

Two cases are distinguished. The first, is that the initial particle density and mass

are uniform, i.e.. pO = p, and ma = p h. The second, is that the initial density and

mass are hydrostatic, i.e., pa = p,(1 - 26 y2) and mo = hpf(1 - 26 y ), where 6 =

This last case is the typical initialization approach in the free-surface flows of interest

[3, 30]. A smoothly advected grid is defined, as in section 2.5.3. Following the analysis

for the density of smoothly advected particles detailed in sections 2.5.4, a later time

t is assumed such that the particle is located at y, and has density Pa = p"a(1 - ('

where ( is a nasure of the velocity gradient.

Next, two separate approaches are distinguished based on the order of the interpo-

lation scheme that appears in (3.59). In the first approach, the scheme employs a first

order consistent interpolation and is referred to as smoothed density re-initialization

scheme [48]. In the second approach, the scheme employs a second order consistent in-

terpolation and is referred to as hydrostatic density re-initialization scheme [3]. Both

schemes are considered for both approaches on the initial particle mass distribution,

i.e., uniform and hydrostatic.
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3.4.6.1 Smoothed density re-initialization scheme

When first order consistent interpolation is used, (3.59) reduces to:

* Eb mbWab
pa b E" Wab (3.60)

First, the particle mass is considered to be uniform ma = m = hp, and the density

Pa = pf(I-a). From (2.152) from section 2.5.5 it is found that Eb ma Waa = pa+ ap'4

and Zb !PWab = 1, omitting terms of order 2((,(('. Therefore,

p* ~- Pa + pa (3.61)

This means that the scheme is not reducing the developed density gradients that are

the source of the tensile instability. Any stabilizing effects this scheme has are due

to the introduced density dissipation, with a coefficient that depends on the shape

of the kernel, the kernel bandwidth h, and the ratio of the initial particle spacing dy

over h, i.e., dy/h.

Second, the particle mass is considered to be hydrostatic ma = hP.(1 - 26 y2). In

this case the density becomes Pa = Pf,( - 26yo - (), with ( < 6y". From (2.152)

from section 2.5.5, after some algebra, and omitting terms of order 1 ((' obtains:

P* - Pa (3.62)

Again, the scheme is essentially dissipating the density and not reioving existing

density gradients, i.e., it has no significant effects on the physics siiulated. Finally,

it is noted that the dissipation is introduced in a spirit compatible with the nature of

SPH, i.e., robust and smooth.
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3.4.6.2 Hydrostatic density re-initialization schemes

When a second order MLS scheme is employed, the interpolation in (3.59) from the

consistent relation (3.5) becomes:

* = " + O(h 2) (3.63)Pa h

where it is pointed out that ma is the initial particle mass, and the particle density

has no contribution.

First, the )article mass is considered to be uniform ma = m = hpf. In this case,

P* = p + O(h 2)

i.e., the particle density is re-initialized to its initial uniform distribution. Therefore,

the scheme essentially removes all density gradients to leading order. This stabilizes

the scheme with respect to the tensile instability but also (a) has a significant effect

on the physics. by re-initializing the pressure to a hydrostatic-like distribution, and

(b) has only short-term effects on removing any perturbations, since those are re-

generated from un-removed perturbations in the velocity field.

Second, the particle mass is considered to be hydrostatic ma = hpf (1 - 26ya). In

this case,

p* = P,(1 - 26yo) + O(h 2 ),

i.e., the particle density is re-initialized based on its initial hydrostatic distribution.

The scheme essentially reduces the density gradients but is expected to significantly

affect the simulated physics, mainly in the vertical direction.

Therefore, the hydrostatic density re-initialization scheme is shown to have signifi-

cant implications on the simulated physics and on the numerical behavior of SPH. De-

sirable implications include: (a) that the pressure near the free-surface is re-initialized

to zero if the free-surface particles have remained on the free-surface, i.e., enforces

the physical free-surface dynamic boundary condition; and most importantly, (b) the

system is stabilized, since as shown in section 2.6.3 the source of the tensile instabil-
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ity are the non-zero base flow gradients. Undesirable implications include: (a) that

the pressure field through the Equation of State is also re-initialized with either zero

pressure, or some hydrostatic-like distribution; (b) that by altering the density the

consistency of KI is reduced within the domain as detailed in section 2.5.5; and (c)

when only the density is re-initialized the acoustic modes in the density field are im-

mediately re-generated from the un-removed perturbations in the velocity field, i.e.,

the scheme proposed in [1] obtains images of a smooth pressure field only if the latter

are taken right after the re-initialization.

Summarizing, two density re-initialization schemes were considered, the smooth

and hydrostatic. The two schemes have significantly different effects. The smooth

scheme introduces a small dissipation, while the hydrostatic scheme significantly af-

fects the simulated physics with only short term stabilizing benefits. In considering

a regularization scheme for SPH, only the smooth approach is therefore considered.
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3.5 Conclusions

Selected existing semi-empirical treatments to MA-SPH have been considered. These

were classified as accuracy, consistency and stability treatments. Brief analysis was

performed on each of the selected treatments within the context of their usage to

determine their usefulness and obtain insight towards the generalized improvement

of the MA-SPH method. The following Table 3.2 summarizes the classification and

findings of the analysis.

Table 3.2: Classification and summary of effects of selected existing semi-empirical
treatments to MA-SPH.

Classification Treatment Comments

Accuracy Pressure temporal filtering Local, effective (§ 3.2.1)

(§ 3.2) Pressure spatial filtering Local, ineffective (§ 3.2.2)

Consistency MLS Higher order, not robust (§ 3.3.1.1)

(§ 3.3) Miller First order, not robust (§ 3.3.1.2)

Stability XSPH Reduces certain growth rates (§ 3.4.2)

(@ 3.4) Artificial viscosity Ineffective (§ 3.4.4)

Initial dumping Removes certain growth rates (§ 3.4.3)

Tensile instability treatment Reduces growth rates (@ 3.4.5)

Smooth density Introduces dissipation (@ 3.4.6.1)

re-initialization scheme

Hydrostatic density Removes density gradients,

re-initialization scheme affects physics (§ 3.4.6.1)
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Chapter 4

Rational development of

convergent SPH methods

4.1 Introduction

The SPH continuous main algorithm (CMA-SPH) assumes a weakly compressible

flow. The flow is described by the Euler equation (2.1) for the momentum conser-

vation dud/dt and the mass conservation (2.2) for the density p. Closure is obtained

by a constitutive Equation of State (EoS) that relates total pressure P and density

fluctuations rather than solving the Poisson equation that is typical for most numer-

ical simulations of incompressible, rotational flow models. The MA-SPH employs

the Kernel Interpolation (KI) technique for the computation of spatial derivatives in

discrete space.

Analysis of MA-SPH for free-surface flows in Chapter 2 has elucidated three key

issues. First, the weak compressibility assumption permits the development of acous-

tic modes (section 2.4.1.4). Spurious acoustic modes are developed in the simulations

from inconsistent numerical implementations of the initial and boundary conditions,

round-off errors, instabilities and higher-order interactions (section 2.4.1.5). Second,

the incompleteness of the KI near the free-surface produces a spurious, leading order,

dynamic free-surface boundary condition that is a function of the shape of the free-

surface (section 2.5.6). Third and most importantly, it is shown that three types of
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instabilities may develop in an MA-SPH simulation: (i) inherent, unconditional in-

stabilities of weakly compressible flows in semi-infinite domains with depth decaying

profile (section 2.6.2), (ii) tensile instability present in flows with non-zero base density

gradients (sections 2.6.2 and 2.6.3), and (iii) instabilities due to the nnerical integra-

tion scheme that depend on the Courant condition and the base density distribution

(section 2.6.4). Given the absence of a conclusive analysis of the method, several

semi-empirical treatments have been developed. Analysis in Chapter 3 showed that

these treatments can be classified as accuracy (removing spurious acoustic modes),

consistency (addressing mainly the implementation of the free-surface boundary con-

ditions) and stability treatments. While the analysis of selected treatments showed

that they generally point in the right direction, they do not manage to sufficiently

address key MA-SPH issues.

At this point, a note must be made regarding the advantages and disadvantages

of KI, the standard MA-SPH approach for the computation of spatial derivatives de-

tailed in section 2.2, versus alternative consistent, derivative computation techniques

like MLS, described in section 3.3.1. The key disadvantages of KI are (a) that KI

requires the density, which is field variable, to ensure consistency (section 2.5.5), (b)

that the error in KI is coupled with the modeling error (section 2.5.5), and (c) that

the inconsistent behavior of KI near the boundaries (section 2.5.2.3) imposes a spu-

rious, leading order free-surface boundary condition, detailed in section 2.5.6. The

major advantage of the KI technique is that it is robust even in highly non-linear

complex flows. In contrast, the key advantages of Moving Least Squares (MLS) are

(a) that they do not require any field variable to ensure consistency, (b) that the con-

sistency error is determined and independent of the modeling error. and (c) that the

error on the boundaries is of the same order as that within the domain. The major

disadvantage of MLS is that for highly non-linear free-surfaces the method becomes

singular and eventually fails, i.e., currently MLS is not equally robust with KI. As

a consequence, each technique is best suited for different types of applications. KI

is best used in highly non-linear, transient problems of short duration, such as the

standard SPH dam-break benchmark, where the free-surface becomes highly com-
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plex and the effect of the spurious dynamic free-surface boundary conditions is to

primarily introduce spurious acoustic modes. Moving Least Squares is best used for

problems involving free-surface of lower complexity, where the dynamic free-surface

boundary condition significantly alters the solution, such as long-time solutions of

plane periodic progressive waves.

As a first step, two different approaches can now be defined, based on the technique

used for the computation of spatial derivatives. The first approach is a higher-order

SPH (hSPH) scheme, using the artificial compressibility assumption and Moving Least

Squares. A new instability removal and flow field re-initialization scheme is introduced

that obtains the leading order incompressible solution. The second approach is a

modified SPH (iSPH) scheme, based on the existing MA-SPH, that retains both

the weak compressibility assumption and KI, removing all existing treatments. New,

rational formnlations are introduced that reduce the generation of spurious modes on

the boundaries and numerically dissipate them.

These schemes are the rational outcome of the analysis on MA-SPH performed

in Chapter 2, ind the insight obtained from the analysis of the existing treatments

in Chapter 3. The hSPH scheme is of higher-order and dissipative, but is currently

limited to periodic domains. The mSPH scheme is first order, retains the simplicity

and robustness of SPH, allows for larger time steps than SPH, removes the existing

tuneable SPH 1)rameters, and most importantly is dissipative.

Finally, a global, a posteriori error metric is defined to measure the stability of the

simulation and is thus used as an appropriate indicator of the validity of the results.
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4.2 A higher-order hSPH scheme with Moving Least

Squares

The complete analysis of MA-SPH performed in Chapter 2, along with the insight

obtained from the analysis of the existing treatments in Chapter 3, allowed the sug-

gestion of a higher-order SPH (hSPH) scheme that (i) eliminates the density variable,

(ii) projects the solution to an incompressible flow field, (iii) maintains the same con-

sistency properties in the domain and on the boundaries, and most importantly (iv)

is stable. However, currently hSPH can be used for the simulations of flows where

the free-surface is not highly non-linear.

The hSPH starts from CMA-SPH, retaining the weak compressibility assump-

tion and reformulates the governing equation to eliminate the density. It is realized

that the weak compressibility assumption will introduce an acceptable error of order

O(1/c 2), where c is the artificial speed of sound, along with spurious acoustic modes

linearly dependent on c. Given that hSPH is to be employed in periodic or fixed

domains, the spurious, unstable depth decaying modes described in section 2.6.2 will

be generated from inconsistent initial and boundary conditions and numerical noise,

eventually dominate the flow and terminate the simulation.

The first step in hSPH is to minimize the generation of the spurious modes by re-

moving inconsistencies between the governing equations and the boundary conditions.

This is achieved by (i) linearizing the artificial Equation of State, (ii) reformulating

the governing equations to capture the incompressible hydrostatic pressure, (iii) cor-

recting the boundary conditions to account for hydrostatic pressure differences when

mirroring the particles along the sea-bed (section 2.2.3), and (iv) increasing the consis-

tency of the computation of the spatial derivatives on the free-surface with MLS. The

dynamic free-surface boundary condition is imposed periodically through a periodic

flow field re-initialization scheme.

The second step is to impose a periodic flow field re-initialization scheme. This

scheme accomplishes two things: it removes the dominant depth-decaying unstable

modes and it projects to an incompressible flow field. Numerical examples validate
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hSPH, for the first time, for plane progressive waves with varying wave slopes and

show convergence to the analytic solution.

4.2.1 Governing Equations

In section 2.4.1.2 it was shown that the CMA-SPH system of (ii, p, P) can be reduced

to a simplified equivalent system of (U', P). If a consistent spatial differentiation

scheme is employed, such as MLS described in section 3.3.1, then the numerical need

for the inclusion of the density is removed and a reduced system of (iZ, P) can be

solved for. The resulting algorithm is not only more efficient (in that it eliminates

one variable) but it is also conceptually clearer: the Lagrangian particles are advected

by the Euler equations, an artificial equation is used for the pressure, and the fluid

density is constant. The resulting algorithm is a non-iterative formulation of the

well-established artificial compressibility method [10, 12, 22, 23].

This section first proposes the usage of a higher-order SPH (hSPH) algorithm that

considers as variables only velocity and pressure. In hSPH the time rate of the velocity

is computed through the incompressible Euler equation (4.19) and the time rate of

pressure is computed from the mass conservation, where the time rate of density is

substituted from the EoS. All density terms appearing in the governing equations

are treated as constant and equal to the undisturbed fluid density pf. Second, this

section shows that the hSPH algorithm differs from CMA-SPH only in second order

terms with respect to density fluctuations, which are typically even smaller than

numerical differentiation errors (i.e., 0(62) vs. O(h2 )), and therefore retains the O(6)

consistency to the incompressible problem just as CMA-SPH. It is again noted that

the scheme in discrete space must be coupled with a technique such as MLS for the

computation of spatial derivatives.

Assume a two-dimensional Cartesian coordinate system x = [x, y] and a two-

dimensional fluid domain. Let c denote the speed of sound in the fluid, p1 the density

of the undisturbed fluid, and -gj the gravitational acceleration pointing downwards.

Define 6 = '. Let t > 0 denote time and i(Y, t), P(z, t) denote the fluid velocity

and pressure respectively. The hSPH weakly compressible flow in the above domain
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is described by:

di
dt = -V 1(4.1)

dP* 
2dP = -c 2 V -, (4.2)

dt

where P* = P/p,. Equation (4.2) results from substituting the density rate of change

appearing in the left hand side of the conservation of mass (4.36) with the linearized

EoS (4.21) and the variable density p appearing on the right liand side with the

constant density p,. Alternatively, (4.2) can be viewed as an EoS that relates pressure

changes to the velocity divergence.

Next, it is shown that hSPH and CMA-SPH are consistent up to leading order with

respect to the density fluctuations, and therefore hSPH retains the O(5) consistency

with the desired incompressible model. To prove this statement in the above two-

dimensional fluid domain, let p(X, t) denote the fluid density. Denoting with the

subscripts c and h the equations describing the CMA-SPH and hSPH formulations

respectively, the governing equations of the CMA-SPH are:

= -- 1 P -(4.3)
dt - p

dp = - -pV - . (4.4)
dt

Furthermore, define p = p (1+ ±) where o are the density fluctuations. By the weak

compressibility assumption it is p < 1. Substituting into the momueitum equation

(4.3) and employing the linearized EoS (4.21) obtains:

dic 1 2

- = - c2(~p
dt p,(1 + g) ' 70-g

= -c - g . (4.5)

By Taylor Series Expansion about p < 1, it is (1 + o)- 1 ~ 1 - p, and therefore, the
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momentum equation is approximated by:

dd-C
dt

-c 2Vg(1- g) - gj+ (s)

-c 2 Ve - gj + c2pVg + O(es)

I VP 2 i+0f0\
-- -gj+ 2

VP 2
=- - gj+0( 2 )

Pf

dilh
dt

Substituting the EoS into the CMA-SPH conservation of mass (4.20) obtains:

(4.6)

o(a)
1 dP, _

--- " t -p,(1+= )V -= -pV - P-p V - -4
cadt P(1+0V

dt -CPfV- U -C Pf L*U. (4.7)
dPd O(2)

Pf dt

Recalling that P* = P/pf, the schemes CMA-SPH and hSPH are shown to be con-

sistent up to 0(92). Therefore, hSPH remains consistent up to order O(p) with the

incompressible flow model.

Alternatively, the above result can be shown by letting p = pf (1 + g) and observing

that:

dP = c2 dp = c 2 pfd(1 + g) -

VP _ c2 pfV(1 + g)

p pf(1 + P)
- c2 V ln(1 + g)

and
1 dp 1 d(1+ g)

pdt 1+ e dt
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Letting R = ln(1 + o) and substituting into (4.3) and (4.4) yields

d - c2 VR -g (4.8)

dt

However it is,

dp dP=c2 pfdg
dR = dln(1+p)= >

1+'0
dP 1 TSE

c2pf 1 +g

dP dP dP
dR = 2(1 - )= Pf .C2 P (4.10)

O(LO)

Therefore, substituting dR with dP from the above, in (4.8) and (4.9) yields:

o(L2)

di 2 VP -c dP (4.11)
-c gj 2 =-c 2VP*-gj+O( 2 ) (4.11)

d P* dP*
it = -c 2 V -+ V- i = c2 V -+O( 2 ). (4.12)dt dt

o(g 2)

Finally, substituting il = V4 into (4.1) and (4.2), eliminating the pressure and lin-

earizing similarly to [46], leads to the familiar governing equation for (2.21). In

summary, hSPH is consistent to leading order to CMA-SPH, but is both conceptu-

ally and numerically simpler. However, hSPH can be discretized only with a method

like MLS, and therefore is expected to be of higher-order than mSPH but less robust.

4.2.2 Spatial discretization

The spatial discretization employed in hSPH is the same as in IA-SPH, i.e., the

evolution of a set of discrete fluid particles is followed in time. The flow is discretized

into N > 1 fluid particles with an average initial spacing O(h) that carry their own

constant mass ma, and field properties such as pressure Pa(t), and velocity 'a(t).
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MLS is employed for the computation of the spatial derivatives. MLS has known

consistency behAyior but is less robust than Kernel Interpolation, thus limiting the

applications of h1SPH to flows with smoother free-surface geometries.

For robustness the order of the MLS is chosen to be one, i.e., the basis function is

[1, x, y]T. The method is known to fail when there is insufficient number of neighbors,

and thus A becoiessingular. As a rule of thumb, the minimum number of neighbors

NAILS required in each direction is the same as the order of MLS. Therefore, if particle

a has more neighlbors than NMLS then VPa and V^- u are computed using 1 " order

MLS. Otherwise, t is assumed that the particle is a free-surface particle and it is

assumed that VP, 0 and Pa = 0. In the numerical examples a value of NMLS = 2

was used. Evidently, both the criterion for the singularity of MLS as well as the value

of NMLS involve tuning. For example, the determinant or eigenvalues of A [47] could

have been conside>ed.

The MLS weights, are given by a unit hat function of compact support ah. Small

a is sufficient but can reduce the number of neighbors below NMLS. In the numerical

examples a value f a = 3 was used. The MLS coefficients for particle a, Wa, are

obtained from a system of the form AWa = qi, as described in section 3.3.1, where, as

suggested in [35]. the matrix A is not inverted; instead, the coefficients wa = A-qi are

computed by sol ig AWa = qi. Once the MLS coefficients Wa have been determined

the pressure gradient and the velocity divergence are obtained from:

VPa = PWa,b (4.13)
b

V- a = * Z -Wa,b. (4.14)
b

When the hSPH approach is followed, the equations of motion for each particle a
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become:

dt -

dil
=t - PUWa,-g (4.15)

b

d P*2
d C2 Ub -Wa,b, (4.16)

b

where P* = P/Pf.

The boundary conditions and temporal integration scheme in hSPH are the same

as those employed in mSPH, discussed in sections 4.3.3 and 4.3.5, respectively. The

initial conditions for hSPH are simply the velocity and pressure of an incompressible,

irrotational flow field. No information on the mass or densit of the particles is

required.

4.2.3 Regularization

All three MA-SPH, mSPH, and hSPH algorithms are inherently unstable, since they

maintain the weak compressibility assumption. The unstable modes are either depth

decaying, with growth rates of O(c), or acoustic, with significantly smaller growth

rates. The most crucial point is to realize that, as detailed in section 2.6.2, the

dominant instabilities in the domains of application of hSPH are uniform in the

horizontal direction, depth decaying modes.

Three approaches were considered, the first two were unsucassful. The first un-

successful approach involved varying the speed of sound and the kernel bandwidth in

a random manner to de-tune the instability, extending the ideas of [43]. The reason

that this form of regularization is not sufficient in hSPH is that, unlike the geophysi-

cal problems presented in [43], in the Lagrangian hydrodynamic simulations both the

free-surface and particle distribution are varying significantly in time. The second

unsuccessful approach involved imposing a zero pressure dynamic free-surface bound-

ary condition, on particles initially on the free-surface. This approach significantly

delayed the appearance and initial amplitude of the instability, but as expected does
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not stabilize the method as it has no effects on the governing equations. The third

successful approach was to periodically map the domain in a uniform grid and simply

subtract the length averaged flow quantities at each depth. The effectiveness of the

method was verified-in the simulation of plane progressive waves.

Once the dominant instability has been removed, the entire flow field is re-initialized

based on the modal decomposition described in section 2.4.3. The horizontal Fourier

modes of the velocity components are computed at each depth and the field is re-

constructed from filtering the incompressible components of those modes from the

reconstruction equation (2.103).

Two re-initiglization criteria were considered: the first involved a random, fixed

re-initialization. While the second examined the growth rate of the global vertical

velocity V(t) =E vdV. The field was re-initialized when V(t) ;> akA.

4.2.4 Nondimensionalization

The following scales are introduced:

(Z, h) = L(x, h')

P = pfgLP'

P = PfP'

t = t'
9

where L is a problem dependent characteristic domain dimension, g the gravitational

acceleration, p, the undisturbed fluid density, and h the average initial particle spac-

ing. The non-dimensional form of the governing equations reduces to:

d = - ' (4.17)
dt'

dt'= -V' - '. (4.18)
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The non-dimensional parameter # is defined as /# = = , where by assumption

it is # < 1. Finally, the numerical time step becomes:

h h'
6t= t' =

where p = 1 is the Courant condition.

4.2.5 Numerical simulations of deep-water Airy waves with

hSPH

The hSPH method is validated for deep-water plane progressive gravity waves of

varying steepness. Figures 4-2, 4-3 and 4-5 compare the kinematics aiid dynamics of

hSPH with and without periodic re-initialization every 15 time steps. Figures 4-7,

4-9 and 4-10 validate the kinematics and dynamics of hSPH, re-constructed when

fv ;> kA. Figures 4-11 - 4-15 demonstrate convergence with respcct to h for the

velocities, pressure and accelerations. Finally, Figures 4-16 and 4-17 show the free-

surface elevation for waves of steepness kA = [0.006, 0.25] respectively.
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Figure 4-1: Horizontal velocity at depths [0, -h] for h = 1/16. Dashed line theory,

thin solid line hSPH method with re-initialization with instability removal and flow

field reconstruction every 15 time steps, thick solid line hSPH without re-initialization.
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Incompressible wave
Hd/Ld=2. dx=1/16. P-50. x = 0.31125. y=(0,3/16, -6/161

thick solid: no reinit, thin solid: reinit, dashed: analytic

yo

_3h

NR-6h

6

I ~

Figure 4-2: Vertical velocity at depths [0, -h]
solid line hSPH method with re-initialization
reconstruction every 15 time steps, thick solid

for h = 1/16. Dashed li theory, thin
with instability removal a flow field
line hSPH without instability removal.
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Figure 4-3: Pressure at depths [0, -h] for h = 1/16. Dashed line theory, thin solid
line hSPH method with re-ini\tialization with instability removal and flow field recon-
struction every 15 time steps, Ithick solid line hSPH without instability removal.
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Figure 4-4: Horizontal accelerations at depths [0, -h] for h = 1/16. Dashed line
theory, thin solid line hSPH method with re-initialization with instal ility removal and
flow field reconstruction every 15 time steps, thick solid line hSPH wi fhtot instability
removal.

238



Wi nremle wen
Hdd-2. dx.1/16.p-i0. x - 0.31125. y-IO.-3I16, -6/16]

tdck acid: no reinit Oi acid: rekt, dashed: analyic

Nyo

NRy_,
- - NRy

0

0.06 -
0.04 -

Figure 4-5: Vertical accelerations at depths [0, -h] for h = 1/16. Dashed line theory,
thin solid line hSPH method with re-initialization with instability removal and flow
field reconstruction every 15 time steps, thick solid hSPH without instability removal.
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Horizontal velocity at depths [0, -3h, -6h] for h = 1/16. Dashed line
theory, solid line hSPH method with re-initialization with instability removal and
flow field reconstruction when fv ;> at/10.
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Figure 4-10: Time rate of pressure change at depths [0, -3h, -61] for h = 1/16.
Dashed line theory, solid line hSPH method with re-initialization with instability
removal and flow field reconstruction when fv v > ae/10.
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Figure 4-11: Simulation of an Airy wave with hSPH method with re-initialization
with instability removal and flow field reconstruction every 15 time steps. Horizontal
velocity at depths [0, -h] for h = 1/16 (top) and h = 1/32 (bottom).
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Figure 4-12: Simulation of an Airy wave with hSPH method with re-initialization
with instability removal and flow field reconstruction every 15 time steps. Vertical
velocity at depths [0, -h] for h = 1/16 (top) and h = 1/32 (bottom).
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Figure 4-13: Simulation of an Airy wave with hSPH method with re-initialization
with instability removal and flow field reconstruction every 15 time steps. Dynamic
pressure at depths [0, -h] for h = 1/16 (top) and h = 1/32 (bottom).
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Figure 4-14: Simulation of an Airy wave with hSPH method with re-initialization
with instability removal and flow field reconstruction every 15 time steps. Horizontal
acceleration at depths [0, -h] for h = 1/16 (top) and h = 1/32 (bottom).
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with instability removal and flow field reconstruction every 15 time steps. Vertical
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2"d order Stokes wave. HdILd= 2 ;ka = 0.062832 ;dx= 0.03125 f= 1.5 ;x = 0.25192

Figure 4-16: Free-surface evolution of a plane progressive wave with steepness
kA = 0.06. comparison between linear theory (solid line) and hSPH method with
re-initialization with instability removal and flow field reconstruction every 15 time
steps (dashed line).

250



2nd order incompressible wave. Hd/Ld= 2 dx= 0.03125 P= 1 A/L =0.04
0.05

C>I0.0) - - - data10
co0.01 datall0

- datal1

0 - data3
-- - datal4

-0.01 / -.-.-.--- datal5
- -- data16

-0.02-

-0.03-- -

-0.04
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Figure 4-17: Free-surface evolution of a plane progressive wave with steepness
kA = 0.25. comparison between linear theory (solid line) and hSPH method with

re-initialization with instability removal and flow field reconstruction every 15 time

steps (dashed line).
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4.3 A stable modified SPH, mSPH, scheme with

Kernel Interpolation

The complete analysis of MA-SPH performed in Chapter 2, along with the insight

obtained from the analysis of the existing treatments in Chapter 3, allowed the sugges-

tion of a modified SPH scheme that (i) retains the simplicity and robustness of SPH,

(ii) allows for larger time steps than SPH, (iii) removes the existing tuneable SPH

parameters, and most importantly (iv) is stable with known convergence properties.

The modified SPH scheme (mSPH) starts from MA-SPH, retaining the weak com-

pressibility assumption. It is realized that the weak compressibility assumption will

introduce an acceptable error of order 0(1/c2 ), where c is the artificial speed of sound,

along with spurious acoustic modes linearly dependent on c. The acoustic modes are

generated predominantly by inconsistent initial and boundary conditions and secon-

darily by numerical noise. In SPH, these modes eventually dominate the dynamics,

due to numerical instabilities.

The first step in mSPH is to minimize the generation of the acoustic modes by re-

moving inconsistencies between the governing equations and the boundary conditions.

This is achieved by (i) linearizing the artificial Equation of State, (ii) reformulating

the governing equations to capture the incompressible hydrostatic pressure, and (iii)

correcting the boundary conditions to account for hydrostatic pressure differences

when mirroring the particles along the sea-bed (section 2.2.3). It is pointed out that

no consistency treatment is introduced to remove the artificial dynamic free-surface

boundary condition discussed in section 2.5.6.

The second step is to enforce the invaluable stability, realizing that the form of

the dominant instability is problem dependent. Within the context of imSPH, for the

flows of interest, the dominant unstable modes are purely oscillatory due to the base

hydrostatic density distribution. These modes are generated predominantly near

the free-surface from the incomplete Kernel Interpolation. We suggest and verify

their removal employing a higher-order temporal integration scheme coupled with a

periodic smoothing of the entire flow field, introducing known dissipation.
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4.3.1 Governing Equations

The continuous governing equations in mSPH are the incompressible Euler equation

for the momentum and the conservation of mass for the density:

- VP - (4.19)
dt pf
d p
d = - -pV - . (4.20)
dt

Closure is obtained by a linear, artificial Equation of State for the computation of

the pressure P:

dP = c2 d p. (4.21)

The rationale in formulating the governing equations in mSPH has as follows:

starting from CMA-SPH, we linearize the Equation of State and then modify the

momentum equation to model the incompressible hydrostatic distribution. Finally,

an additional dynamic pressure formulation is suggested.

Equation of State Typical SPH simulations employ a Tait Equation of State of

the form P = ( -] 1, where y is the compressibility ratio, with typical

value -y = 7 and pf the undisturbed fluid density. As shown in section 2.2.1, this

EoS is equivalent to leading order, with respect to density fluctuations, to the linear

EoS (4.21). To reduce the artificial higher-order effects introduced from an already

artificial EoS, the linear formulation (4.21) is always employed in mSPH.

Momentum equation The momentum equation in SPH is the typical compressible

Euler equation:
di = VP - , (4.22)
dt p

where the density appearing in the right hand side is variable and satisfies the con-

servation of mass. Letting Ph(y) denote a hydrostatic density distribution, the hydro-
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static pressure Ph(y) is defined so that it satisfies:

1 dPh
Ph d =0. (4.23)
Ph dy

Therefore, for the MA-SPH weakly compressible flow, the hydrostatic pressure profile

will depend on the form of the EoS. In particular for the linear EoS, substituting

dPh = c2 dph obtains:

d y 2 P Ph = p fe - . (4.24)dy c2

Letting 6 = 9, and by Taylor Series Expansion about 6 = 0, this hydrostatic density

distribution is approximately

Ph = Pf(1 - 26y) + 0(62), (4.25)

while the hydrostatic pressure distribution becomes:

Ph = Pfc2 (e-2Y - 1) = -Pfgy(1 - 6y) + 0(62). (4.26)

Alternatively, if the momentum equation was the incompressible Euler equation

(4.19), where the density appearing in the right hand side is constant and given by

the unperturbed fluid density, the hydrostatic pressure does not depend on the choice

of the EoS, and is given by the incompressible hydrostatic distribution:

Ph = -Pfgy. (4.27)

However, the density dependence on the EoS remains. For the lineair EoS (4.21) the

hydrostatic density distribution is:

Ph = Pf(1 - 26y). (4.28)

Furthermore, it is shown that (4.22) and (4.19) are consistent up to 0(62), which
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is the order of consistency of CMA-SPH with the incompressible model, section 2.4.

Assume a two-dimensional fluid domain and let p(i, t) = pf (1 + g(X, t)) denote the

fluid density. By the weak compressibility assumption it is p < 1. Denoting with

the subscripts c and m the momentum equations (4.22) and (4.19) of CMA-SPH and

mSPH respectively, Equation (4.22) becomes:

dic 1 EoS
-= - VP - gy >

dt pf(1+ o)
1 2

Pf(1 + g)

= 2  - (4.29)
1 +gJ.

By Taylor Series Expansion of the term (1 + g)- 1 about p = 0 and substituting

again the EoS, obtains:

d4i = -c 2VL( _ gj + O(gs)
dt

- -c 2Vg - gj + c 2gVg + O(g3 ) EoS

VP
= -P - gj+ jVg2 +0( 3 )

VP 2
- - gj+0(g2 ) (4.30)

Pf

dig.
dt

d_ dilm

dt - + ( 2 ) (4.31)

The two formulations of the Euler equation are thus equal to leading-order with

respect to density fluctuations. Therefore, to avoid artificial higher-order effects and

to get the hydrostatic pressure equal to the incompressible solution, mSPH employs

the incompressible Euler equation (4.19).

In summary, the governing equations for mSPH are the incompressible Euler mo-

mentum equation (4.19) and the conservation of mass (4.20). The pressure is obtained

by a linear EoS (4.21).
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Dynamic pressure formulation Alternatively, a dynamic pressure formulation is

suggested, which so far has only been validated for the simulation of a hydrostatic

case. It is noted that event hough such validation seems trivial, MA-SPH cannot be

used for the simulation of a hydrostatic case for a long time because of the inherent

instabilities in the method (section 2.6.5).

First, the total pressure is decomposed into a dynamic and hydrostatic component:

P = Pd + Ph = Pd -pgy. (4.32)

Substituting (4.32) into the Euler equation (4.19) obtains:

di 1- = -- VP. (4.33)
dt Pf

Similarly, the EoS is reformulated in terms of the dynamic pressure:

dP = c2 dp-+

dPd+dP = c2 dp

dPd = c2 dp+ pfgdy. (4.34)

Putting everything together, the mSPH dynamic pressure formulation reads:

- = -- VPd 
(4.35)

dt pf
dp

= -pV - U. (4.36)

with the dynamic pressure obtained from (4.34).

Lastly, a discussion on the choice of the artificial speed of sound c. As shown in

section 2.4.1.3, accuracy with respect to the desired incompressible requires choosing

a large speed of sound c. Inversely, efficiency, stability (section 2.6.2) . and accuracy

with respect to the spurious acoustic modes (section 2.4.1.4) require smaller values

of c. Provided that the method is appropriately stabilized and the spurious acoustic
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modes are removed, the choice of the speed of sound is based on balancing between

efficiency and accuracy requirements, which set a lower acceptable limit on c. This

lower limit is determined as the minimum value of c > max(10U, c0), where U =

I a(t) M-ax to ensure subsonic behavior and o, = 9 that satisfies 60H < 1 + 2 to

ensure a single incompressible-like solution, section 2.4.1.3.

4.3.2 Spatial discretization

The spatial discretization employed in mSPH is the same as in MA-SPH, i.e., the

evolution of a set of discrete fluid particles is followed in time. The flow is discretized

into N > 1 fluid particles with an average initial spacing O(h) that carry their own

constant mass mn,, and field properties such as density pa(t), pressure Pa(t), and

velocity 'a(t).

In order to evolve the governing equations (4.19) and (4.20) in time, the pressure

gradient VPI, and the velocity divergence V - A. need to be obtained on the location

of each Lagrangian particle (collocation point). This is achieved without any under-

lying grid, using Kernel Interpolation. Letting W(z; h) denote the cubic B-Spline

(2.111), it is:

VPa = ZPb"mVWba=(Pa+Pb) MbVWba (4.37)
b Pb b Pb

V- a = Z Ub VWba = b (Ub - a)VW (4.38)
b Pb b Pb

where the relations Eb ""PaVWba = 0(h), and Eb 'ba VW= (h2 ), from section

2.5.5 have been used.

When the standard SPH approach is followed, the equations of motion for each
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particle a become

dia
d = Ua (4.39)
dt

= -Z( Pa + P)nmVWa - g (4.40)
dt Pf b Pb

dPa Mb~ mb
= Pa (- a -U) - VWa, (4.41)

dt b Pb

with the pressure given by the linearized EoS (4.21).

It is noted that the inclusion of the terms Pa, and ia in momentiun equations and

mass equations respectively, affects mainly the implementation of the free-surface

dynamics boundary condition. As discussed in section 2.5.6, Kernel Interpolation

implicitly imposes a leading order spurious dynamic free-surface boundary condition,

such that d =f -= _ - gj, with 7 = r1(x, t) denoting the free-surface elevation.dt - ph

This spurious boundary condition generates spurious acoustic modes. dominant in

the dynamics, in an area close to the free-surface. To conserve the robustness of

MA-SPH, the approach is to allow for the development of the latter miiodes in mSPH

and remove them, imposing a numerical, known, appropriate dissipation.

4.3.3 Boundary conditions

The desired boundary conditions are: (i) the no flux on impermeable boundaries

-= 0, where ft denotes the surface boundary normal, (ii) the zero pressure P(x, y

77, t) = 0 dynamic free-surface boundary condition , and (iii) the continuity of the free-

surface yfs = d,(,") kinematic free-surface boundary condition.f5  dt budr

In mSPH the sole boundary condition explicitly implemented is no-flux on the

impermeable boundaries, i.e., Ua - nib -+ 0 as a -+aB and nib denote the surface

boundary normal. In practice this is achieved with ghost particles. mirrored with

respect to the boundary [3], to satisfy the no-flux boundary condition. Particular

care is taken to account for the hydrostatic pressure difference, i.e.. the fluid and

ghost particles have equal dynamic pressure so that dUa/dt -n 0 as a a ib.

Only flat impermeable boundaries are considered. For example. let a be a fluid
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particle at a distance dy from the sea-bed y = -H with A , ' , pa. Then if dy < ah,

a ~ 0(5), the particle is mirrored perpendicularly to the boundary and a ghost

particle a* is created with:

Xa. = Xa, Ya. = -H - dy, (4.42)

Ua. = Ua, Va. = -Va, and (4.43)

Pa* Pa + P (a -Ya*). (4.44)

It is noted for completeness that if the sea-bed is located at y = -H, the last

row of fluid pirticles must be created at a distance h/2 from the boundary, i.e.,

y = -H + h/2. to obtain symmetry.

The kinenatic free-surface boundary condition is satisfied automatically in mSPH

as in all Lagrangian methods:

dYa = for a E Ofs. (4.45)
dt dt

4.3.4 Hydrostatic initial conditions

The initial conditions need to be consistent with the governing equations and the

boundary conditions. If the flow has an initial hydrostatic component it must be

incorporated into the initial density distribution as well as the initial particle mass

for Kernel Interpolation.

As an example, the standard SPH benchmark dam-break where the flow is initial-

ized as hydrostatic is considered. The particles are initially placed along a uniform,

two-dimensional grid of spacing h. Denoting with H a reference height for the hydro-
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static pressure, the initial flow properties of particle a are:

Xa = [axh, ayh], (4.46)

Ua = 0, (4.47)

Pa = pf(1 + 26(H - avh)), and (4.48)

ma = pah 2  (4.49)

These hydrostatic initial conditions are consistent with the mSPH governing equa-

tions (4.40) and (4.41) with the pressure obtained from (4.21). Inconsistent initial

conditions will simply generate spurious acoustic modes.

4.3.5 Temporal integration

The fourth order Runge-Kutta scheme is employed for the temporal integration of

the governing equations. Denoting the time step with 6t and q" =q(t = not)

[p", ii4, p"], the flow variable vector, the temporal integration reads:

q1/4 = q" + q"?t

91/2 = n + 41/4
2 (4.50)

q 3/ 4  - qfl + 41/26t

qn+1 = q"n + On + 241/4 + 241/2 + 3/4) 6

where 4' denotes the time rate of the flow field variables at time t = mot, given by

the appropriate semi-discrete governing equations. The time step is oI = ,pc, where

pc is the Courant condition.

The one-dimensional, linear stability analysis performed in section 2.6.4 for the

acoustic modes on the standard SPH fully-discrete scheme with advanced density

formulation and hydrostatic based density distribution, determined tha t, as expected,

the scheme is unstable. The unstable growth rates are given in Figure 2-33 in section

2.6.4, as functions of the non-dimensional wavenumbers of the acoustic modes for
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different Courant conditions pc, showing that the growth rates reduce as pc reduces.

The Courant conditions considered for the numerical simulations were pc = 0.8 and

Pc = 0.5.

4.3.6 Regularization

The described niSPH scheme is inherently unstable, just as SPH. Both algorithms are

unstable in depth decaying modes, with large growth rates of O(c) and in acoustic

modes, but with significantly smaller growth rates. The most crucial point is to realize

that the doninuant instability in SPH simulations is problem dependent. Immediately

two cases are distinguished based on the domain geometry. In the first case, peri-

odic or fixed boinidaries are distinguished, where the dominant instability is depth

decaying that leads to blow-up. Examples of this case include long-time hydrostatic

simulations and plane progressive waves. In the second case, time-evolving bound-

aries are distinguished, where the dominant instability is acoustic and the unstable

growth rates are significantly lower, affecting mainly the dynamics. A characteristic

example of this case is the standard SPH dam-break benchmark. The above distinc-

tions between the instabilities and the flow characteristics explain (a) why SPH could

not be used for any long-time simulations and (b) why SPH can obtain validated

kinematics, yet noisy dynamical results for the dam-break case.

Since it has already been determined that mSPH is to be employed for flows

similar to the dain-break, mSPH is to be stabilized for the acoustic modes. From

the findings on the analysis on the existing stability treatments in Chapter 3, it is

realized that the most efficient stability treatments include some form of dissipation.

Therefore, mSPH proceeds towards this same path, realizing that for the dissipation

to be efficient it must be applied to the entire field. We chose to apply a periodic

smoothing employing the Shephard functions. Namely, every n time steps the field
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is updated based on:

Eob Wab
a = n bWab (4.51)

ZbE" Wab

= E mbWab
Pa = b Wab (4.52)

From section 2.5.5, taking into account that the density has been smoothly advected,

the dissipation for a cubic B-Spline and dx = h is found to be:

fb UbWab

a Eb Wab

fa+ fatU"'

1+ tu /'h
6

± Uh 2
f" f+fa + h.o.t. (4.53)

The coefficient h2 /6 of the dissipation depends on the choice of kernel and the kernel

bandwidth. Therefore, this dissipation is enforced every n time steps. To suppress

the acoustic modes eikx it suffices to have:

A"(1 - (kh)2 < 1 (4.54)
6

where A is the growth rate determined from the stability analysis of the fully-discrete

scheme in Figure 2-33, section 2.6.4. It is evident that n depends essentially on the

Courant condition p. Choosing appropriate p with p = 1 + such that c < 1 -+

An ~ 1 + nE, it is determined that n must satisfy:

n < 2.(4.55)

(A -1I_ (kh)2

Figure 4-18 shows the minimum number of time steps required to apply smoothing

in order to achieve stability for three different values of the Courant number P,.

Although not shown (to maintain a reasonable scale for the other curves) for Pc = 0.1

it is n - O(103). This form of dissipation also removes the need for a variable time
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step used in current SPH applications that often becomes so restrictive that stops the

simulation.

Minimum smoothing versus kh for given y-c 8 t /h

1.5
kh

Figure 4-18: linimum number of time steps for smoothing to achieve stability. Thin
solid line pc = 1. (lashed line pc = 0.8, dash-dot line t, = 0.5.

4.3.7 An a posteriori error metric

The analysis described in the previous section 4.3.6 for choosing the smoothing period

n is most accurate for the first time steps where there is no base flow and the density
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has a hydrostatic distribution. For the free-surface flows this is always a valid approx-

imation, since the leading order density is hydrostatic. However, a global measure

Q(t) that indicates the growth of the acoustic modes in the flow is also proposed:

Q(t) = | . (4.56)

Realizing that the dominant instability is problem dependent and that the acous-

tic modes are predominant in the accelerations, Q provides an efficient a posteriori

measure for the magnitude of the oscillations, through time FFT, as well as for the

instability growth rate.
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Figure 4-19: Initial conditions for the standard SPH dam-break benchmark, described
in [55]. The kernel bandwidth is h = 0.025m, the particle spacing is dx = 0.75h. The
domain dimensions are Ld = 5.36m, L. = 1.2m, and H, = 0.6m.

4.3.8 Numerical simulation of standard SPH dam-break bench-

mark with mSPH

The standard SPH dam-break benchmark, described in [55] with initial configuration

given in Fig. 4-20 has been used for comparisons between MA-SPH, MA-SPH with

selected fixes and mSPH.

The following figures 4-20- 4-44 compare time evolving snapshots of the horizontal

and vertical velocities, horizontal and vertical accelerations and pressure field for

MA-SPH with MLS density re-initialization, i.e., hydrostatic re-initialization, mSPH

with no smoothing, which is essentially SPH with consistent initial and boundary

conditions, and mSPH with smoothing every n = 5 time steps. The artificial speed

of sound is c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is

dx = 0.75h and the Courant condition pc = 0.8 for all simulations. Noting that in all

the all three simulations have identical physical and numerical parameters and all the

level contours are identical, the figures clearly demonstrate (i) the dominance of the

high frequency oscillations in the pressure field and even more so in the accelerations

for MA-SPH with MLS density re-initialization and mSPH without smoothing, as

predicted from the analysis, (ii) the improved stability of mSPH, and (iii) the un-

physical effects of the MLS density re-initialization in the shape of the free-surface.
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Figure 4-20: In color. Comparison of time evolving snapshots of the horizontal veloc-
ity field of (a) MA-SPH MLS density re-initialization, (b) mSPH with no smoothing,
and (c) mSPH with smoothing every n = 5 time steps. The artificial speed of sound is
c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is dx = 0.75h
and the Courant condition pc = 0.8 for all simulations. Time increases from top to
bottom. It is emphasized that all three simulations are initialized with the same ini-
tial conditions, employ identical spatial and temporal discretization parameters, the
contour levels use the same coloring schemes, no filtering or post-processing has been
employed in any of the results, and finally no other treatments have been employed
other than those described.
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Figure 4-21: In color. Comparison of time evolving snapshots of the horizontal veloc-
ity field of (a) MA-SPH MLS density re-initialization, (b) mSPH with no smoothing,
and (c) mSPH with smoothing every n = 5 time steps. The artificial speed of sound is
c = 26.46m/s. the kernel bandwidth is h = 0.025, the particle spacing is dx = 0.75h
and the Courant condition pc = 0.8 for all simulations. Time increases from top to
bottom. It is emiphasized that all three simulations are initialized with the same ini-
tial conditions. employ identical spatial and temporal discretization parameters, the
contour levels use the same coloring schemes, no filtering or post-processing has been
employed in any of the results, and finally no other treatments have been employed
other than those described.
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Figure 4-22: In color. Comparison of time evolving snapshots of the horizontal veloc-
ity field of (a) MA-SPH MLS density re-initialization, (b) mSPH with no smoothing,
and (c) mSPH with smoothing every n = 5 time steps. The artificial speed of sound is
c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is dx = 0.75h
and the Courant condition pc = 0.8 for all simulations. Time increases from top to
bottom. It is emphasized that all three simulations are initialized with the same ini-
tial conditions, employ identical spatial and temporal discretization parameters, the
contour levels use the same coloring schemes, no filtering or post-processing has been
employed in any of the results, and finally no other treatments have been employed
other than those described.
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Figure 4-23: In color. Comparison of time evolving snapshots of the horizontal veloc-
ity field of (a) \IA-SPH MLS density re-initialization, (b) mSPH with no smoothing,
and (c) mSPH with smoothing every n = 5 time steps. The artificial speed of sound is
c = 26.46m/s. the kernel bandwidth is h = 0.025, the particle spacing is dx = 0.75h
and the Couraiit condition p, = 0.8 for all simulations. Time increases from top to
bottom. It is emphasized that all three simulations are initialized with the same ini-
tial conditions, employ identical spatial and temporal discretization parameters, the
contour levels use the same coloring schemes, no filtering or post-processing has been
employed in any of the results, and finally no other treatments have been employed
other than those described.
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Figure 4-24: In color. Comparison of time evolving snapshots of the horizontal veloc-
ity field of (a) MA-SPH MLS density re-initialization, (b) mSPH with no smoothing,
and (c) mSPH with smoothing every n = 5 time steps. The artificial speed of sound is
c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is dx = 0.75h
and the Courant condition pc = 0.8 for all simulations. Time increases from top to
bottom. It is emphasized that all three simulations are initialized with the same ini-
tial conditions, employ identical spatial and temporal discretization parameters, the
contour levels use the same coloring schemes, no filtering or post-processing has been
employed in any of the results, and finally no other treatments have been employed
other than those described.

270

00 t

U

0.6
0-
0.2

-0.2
-0.4
-0.6 10-1.8

-1 .2
-1.4
-01.6



Figure 4-25: In color. Comparison of time evolving snapshots of the vertical velocity
field of (left column) MA-SPH MLS density re-initialization, (middle column) mSPH
with no smoothing, and (right column) mSPH with smoothing every n = 5 time
steps. The artificial speed of sound is c = 26.46m/s, the kernel bandwidth is h =
0.025, the particle spacing is dx = 0.75h and the Courant condition , = 0.8 for
all simulations. Time increases from top to bottom. It is emphasized that all three
simulations arc initialized with the same initial conditions, employ identical spatial
and temporal discretization parameters, the contour levels use the same coloring
schemes, no filtering or post-processing has been employed in any of the results, and
finally no other treatments have been employed other than those described.
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Figre -26 Incolr.Comparison of time evolving snapshots of the vertical velocity
field of (left column) MA-SPH MLS density re-initialization, (middle column) mSPH
with no smoothing, and (right column) mSPH with smoothing every ni = 5 time

steps. The artificial speed of sound is c = 26.46m/s, the kernel banidwidth is h=
0.025, the particle spacing is d( = 0.75h and the Courant condition p = 0.8 for
all simulations. Time increases from top to bottom. It is emphasized that all three
simulations are initialized with the same initial conditions, employ identical spatial
and temporal discretization parameters, the contour levels use the same coloring
schemes, no filtering or post-processing has been employed in any of the results, and
finally no other treatments have been employed other than those described.
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Figure 4-27: In color. Comparison of time evolving snapshots of the vertical velocity
field of (left column) MA-SPH MLS density re-initialization, (middle column) mSPH
with no smoothing, and (right column) mSPH with smoothing every n = 5 time
steps. The artificial speed of sound is c = 26.46m/s, the kernel bandwidth is h =
0.025, the particle spacing is dx = 0.75h and the Courant condition pc = 0.8 for
all simulations. Time increases from top to bottom. It is emphasized that all three
simulations arc initialized with the same initial conditions, employ identical spatial
and temporal discretization parameters, the contour levels use the same coloring
schemes, no filtering or post-processing has been employed in any of the results, and
finally no other treatments have been employed other than those described.
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Figure 4-28: In color. Comparison of time evolving snapshots of the vertical velocity
field of (left column) MA-SPH MLS density re-initialization, (middle column) mSPH
with no smoothing, and (right column) mSPH with smoothing every n = 5 time

steps. The artificial speed of sound is c = 26.46m/s, the kernel bandwidth is h =

0.025, the particle spacing is dx = 0.75h and the Courant condition Pc = 0.8 for

all simulations. Time increases from top to bottom. It is emphasized that all three

simulations are initialized with the same initial conditions, employ identical spatial

and temporal discretization parameters, the contour levels use the same coloring
schemes, no filtering or post-processing has been employed in any of the results, and
finally no other treatments have been employed other than those described.
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Figure 4-29: Is color. Comparison of time evolving snapshots of the vertical velocity
field of (left columnn) MA-SPH MLS density re-initialization, (middle column) mSPH
with no smoothing, and (right column) mSPH with smoothing every n = 5 time
steps. The artificial speed of sound is c = 26.46m/s, the kernel bandwidth is h =

0.025, the particle spacing is dx = 0.75h and the Courant condition p~c = 0.8 for
all simulations. Time increases from top to bottom. It is emphasized that all three
simulations arc initialized with the same initial conditions, employ identical spatial
and temporal discretization parameters, the contour levels use the same coloring
schemes, no filtering or post-processing has been employed in any of the results, and
finally no other treatments have been employed other than those described.
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Figure 4-30: In color. Comparison of time evolving snapshots of the horizontal ac-
celerations of (a) MA-SPH with MLS density re-initialization, (b) mSPH with no
smoothing, and (c) mSPH with smoothing every n = 5 time steps. The artificial
speed of sound is c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle
spacing is dx = 0.75h and the Courant condition pc = 0.8 for all simulations. Time
increases from top to bottom. It is emphasized that all three simulations are initialized
with the same initial conditions, employ identical spatial and temporal discretization
parameters, the contour levels use the same coloring schemes, no filtering or post-
processing has been employed in any of the results, and finally no other treatments
have been employed other than those described.
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Figure 4-31: In color. Comparison of time evolving snapshots of the horizontal ac-
celerations of (a) MA-SPH with MLS density re-initialization, (b) mSPH with no
smoothing, and (c) mSPH with smoothing every n = 5 time steps. The artificial
speed of sound is c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle
spacing is dx = 0.75h and the Courant condition pc = 0.8 for all simulations. Time
increases from top to bottom. It is emphasized that all three simulations are initialized
with the same initial conditions, employ identical spatial and temporal discretization
parameters, the contour levels use the same coloring schemes, no filtering or post-
processing has been employed in any of the results, and finally no other treatments
have been employed other than those described.
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Figure 4-32: In color. Comparison of time evolving snapshots of the horizontal ac-
celerations of (a) MA-SPH with MLS density re-initialization, (b) mSPH with no
smoothing, and (c) mSPH with smoothing every ni = 5 time steps. The artificial
speed of sound is c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle
spacing is dx = 0.75h and the Courant condition pc = 0.8 for all sinulations. Time
increases from top to bottom. It is emphasized that all three simulations are initialized
with the same initial conditions, employ identical spatial and temporal discretization

parameters, the contour levels use the same coloring schemes, nio filtering or post-
processing has been employed in any of the results, and finally no other treatments
have been employed other than those described.
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Figure 4-33: In color. Comparison of time evolving snapshots of the horizontal ac-
celerations of (a) MA-SPH with MLS density re-initialization, (b) mSPH with no
smoothing, and (c) mSPH with smoothing every n = 5 time steps. The artificial
speed of sound is c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle
spacing is dx = 0.75h and the Courant condition pc = 0.8 for all simulations. Time
increases from top to bottom. It is emphasized that all three simulations are initialized
with the same initial conditions, employ identical spatial and temporal discretization
parameters, the contour levels use the same coloring schemes, no filtering or post-
processing has been employed in any of the results, and finally no other treatments
have been employed other than those described.
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Figure 4-34: In color. Comparison of time evolving snapshots of the horizontal ac-
celerations of (a) MA-SPH with MLS density re-initialization, (b) mSPH with no
smoothing, and (c) mSPH with smoothing every n = 5 time steps. The artificial
speed of sound is c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle
spacing is dx = 0.75h and the Courant condition pc = 0.8 for all simulations. Time
increases from top to bottom. It is emphasized that all three simulations are initialized
with the same initial conditions, employ identical spatial and temporal discretization
parameters, the contour levels use the same coloring schemes, no filtering or post-
processing has been employed in any of the results, and finally no other treatments
have been employed other than those described.
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Figure 4-35: In color. Comparison of time evolving snapshots of the vertical acceler-
ations of (a) MA-SPH with MLS density re-initialization, (b) mSPH with no smooth-
ing, and (c) mSPH with smoothing every n = 5 time steps. The artificial speed of
sound is c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is
dx = 0.75h and the Courant condition pc = 0.8 for all simulations. Time increases
from top to bottom. It is emphasized that all three simulations are initialized with the
same initial conditions, employ identical spatial and temporal discretization parame-
ters, the contour levels use the same coloring schemes, no filtering or post-processing
has been emplo*yed in any of the results, and finally no other treatments have been
employed other than those described.
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Figure 4-36: In color. Comparison of time evolving snapshots of the vertical acceler-
ations of (a) MA-SPH with MLS density re-initialization, (b) mSPH with no smooth-
ing, and (c) mSPH with smoothing every n = 5 time steps. The artificial speed of
sound is c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is
dx = 0.75h and the Courant condition pc = 0.8 for all simulations. Time increases
from top to bottom. It is emphasized that all three simulations are initialized with the
same initial conditions, employ identical spatial and temporal discretization parame-
ters, the contour levels use the same coloring schemes, no filtering or post-processing
has been employed in any of the results, and finally no other treatments have been
employed other than those described.
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Figure 4-37: In color. Comparison of time evolving snapshots of the vertical acceler-
ations of (a) lIA-SPH with MLS density re-initialization, (b) mSPH with no smooth-
ing, and (c) niSPH with smoothing every n = 5 time steps. The artificial speed of
sound is c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is
dx = 0.75h and the Courant condition pc = 0.8 for all simulations. Time increases
from top to bott oi. It is emphasized that all three simulations are initialized with the
same initial conditions, employ identical spatial and temporal discretization parame-
ters, the contour levels use the same coloring schemes, no filtering or post-processing
has been employed in any of the results, and finally no other treatments have been
employed other than those described.
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Figure 4-38: In color. Comparison of time evolving snapshots of the vertical acceler-
ations of (a) MA-SPH with MLS density re-initialization, (b) mSPH with no smooth-
ing, and (c) mSPH with smoothing every n = 5 time steps. The artificial speed of
sound is c = 26.46m/s, the kernel bandwidth is h= 0.025, the particle spacing is
dx = 0.75h and the Courant condition pc = 0.8 for all simulations. Time increases
from top to bottom. It is emphasized that all three simulations are initialized with the
same initial conditions, employ identical spatial and temporal discretization parame-
ters, the contour levels use the same coloring schemes, no filtering or post-processing
has been employed in any of the results, and finally no other treatments have been

employed other than those described.
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Figure 4-39: In color. Comparison of time evolving snapshots of the vertical acceler-
ations of (a) MA-SPH with MLS density re-initialization, (b) mSPH with no smooth-
ing, and (c) iSPH with smoothing every n = 5 time steps. The artificial speed of
sound is c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is
dx = 0.75h and the Courant condition pc = 0.8 for all simulations. Time increases
from top to botton. It is emphasized that all three simulations are initialized with the
same initial conditions, employ identical spatial and temporal discretization parame-
ters, the contour levels use the same coloring schemes, no filtering or post-processing
has been employed in any of the results, and finally no other treatments have been
employed other than those described.
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Figure 4-40: In color. Comparison of time evolving snapshots of the pressure field of
(a) MA-SPH with MLS density re-initialization, (b) mSPH with no smoothing, and
(c) mSPH with smoothing every n = 5 time steps. The artificial speed of sound is
c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is dx = 0.75h
and the Courant condition Ic = 0.8 for all simulations. Time increases from top
to bottom. It is emphasized that all three simulations are initialized with the same
initial conditions, employ identical spatial and temporal discretization parameters, the
contour levels use the same coloring schemes, no filtering or post-processing has been
employed in any of the results, and finally no other treatments have been employed
other than those described.
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Figure 4-41: In color. Comparison of time evolving snapshots of the pressure field of
(a) MA-SPH with MLS density re-initialization, (b) mSPH with no smoothing, and
(c) mSPH with smoothing every n = 5 time steps. The artificial speed of sound is
c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is dx = 0.75h
and the Courant condition pc = 0.8 for all simulations. Time increases from top
to bottom. It is emphasized that all three simulations are initialized with the same
initial conditions, employ identical spatial and temporal discretization parameters, the
contour levels use the same coloring schemes, no filtering or post-processing has been
employed in any of the results, and finally no other treatments have been employed
other than those described.
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Figure 4-42: In color. Comparison of time evolving snapshots of the pressure field of
(a) MA-SPH with MLS density re-initialization, (b) mSPH with no smoothing, and
(c) mSPH with smoothing every n = 5 time steps. The artificial speed of sound is
c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is dx = 0.75h
and the Courant condition pc = 0.8 for all simulations. Time increases from top
to bottom. It is emphasized that all three simulations are initialized with the same
initial conditions, employ identical spatial and temporal discretization parameters, the
contour levels use the same coloring schemes, no filtering or post-processing has been
employed in any of the results, and finally no other treatments have been employed
other than those described.
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Figure 4-43: In color. Comparison of time evolving snapshots of the pressure field of
(a) MA-SPH with MLS density re-initialization, (b) mSPH with no smoothing, and
(c) mSPH with smoothing every n = 5 time steps. The artificial speed of sound is
c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is dx = 0.75h
and the Courant condition pc = 0.8 for all simulations. Time increases from top
to bottom. It is emphasized that all three simulations are initialized with the same
initial conditions, employ identical spatial and temporal discretization parameters, the
contour levels use the same coloring schemes, no filtering or post-processing has been
employed in any of the results, and finally no other treatments have been employed
other than those described.
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Figure 4-44: In color. Comparison of time evolving snapshots of the pressure field of
(a) MA-SPH with MLS density re-initialization, (b) mSPH with no smoothing, and
(c) mSPH with smoothing every n = 5 time steps. The artificial speed of sound is
c = 26.46m/s, the kernel bandwidth is h = 0.025, the particle spacing is dx = 0.75h
and the Courant condition pc = 0.8 for all simulations. Time increases from top
to bottom. It is emphasized that all three simulations are initialized with the same
initial conditions, employ identical spatial and temporal discretization parameters, the
contour levels use the same coloring schemes, no filtering or post-processing has been
employed in any of the results, and finally no other treatments have been employed
other than those described.
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Figure 4-45 compares the effect of smoothing on the global error metric Q(t)

without smoothing, and with smoothing every n time steps for a given Courant

condition y = 0.8. From the analysis it is expected that for y the optimal value of

the re-initialization period is n = 5. It is shown that indeed the value of Q(t) for the

combination p = 0.8, n = 5 is significantly dissipated.

Figures 4-46, 4-46, 4-47 validate the free-surface elevation and unfiltered wall im-

pact pressures of the standard SPH dam-break benchmark with experimental results

of [55] without smoothing and with smoothing every n time steps for a constant

Courant condition y = 0.8. From the analysis it is expected that for y, the optimal

value of the re-initialization period is n = 5. It is shown that for the combination

y = 0.8, n = 5 the experimental data and mSPH simulation results are in the best

agreement. For n > 5 the pressures are overestimated, while for n < 5 the system is

over-dissipated.
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Time

Figure 4-45: Comparisons of the evolution of Q(t) in an mSPH dam-break sim-
ulation without smoothing (red line) and with smoothing every n time steps for
a constant Courant condition y = 0.8 for all simulations. Smoothing periods
n = [5, 10,15, 20,30, 50, 100].
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Figure 4-46: Comparison of free-surface elevation of the standard SPH dam-break
benchmark with experimental results of [55] (black line) and mSPH simulation
results without smoothing (red line) and with smoothing every n time steps for
a constant Courant condition y = 0.8 for all simulations. Smoothing periods
n = [0, 5, 10, 15, 20, 30, 50, 100].
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Figure 4-47: Comparison of unfiltered wall impact pressures of the standard SPH dam-
break benchmark with experimental results of [55] (black line) and mSPH simulation
results with smoothing every n time steps for a constant Courant condition y = 0.8
for all simulations. Smoothing periods n = [1, 2,5].
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Figure 4-48: Comparison of unfiltered wall impact pressures of the standard SPH dam-
break benchmark with experimental results of [55] (black line) and mSPH simulation
results without smoothing (red line) and with smoothing every n time steps for a
constant Courant condition p = 0.8 for all simulations. Smoothing periods n =
[0, 5, 10, 20]. It is pointed out that the mSPH simulation results without smoothing
(red line) seem like a solid line due to the significant HFO of amplitude 6 -104 (not
shown).
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4.4 Discussion

Two approaches in modifying MA-SPH have been suggested based on the technique

used for the computation of spatial derivatives. The first is a higher-order SPH, hSPH

scheme that employs Moving Least Squares. The second is a modified SPH, mSPH

scheme that employs the standard SPH Kernel Interpolation derivative computation

technique. This section discusses issues and further developments for each approach.

In choosing the mSPH approach, it must be pointed out that the scheme will

remain of low-order, bounded by the Kernel Interpolation consistency within the

domain. Further improvements include: (a) increasing the consistency near the free-

surface, but within the Kernel Interpolation framework, (b) regularizing for depth

decaying modes, and (c) improving the accuracy by projecting onto an incompressible

solution.

An approach towards increasing the consistency is sketched here. In section 2.5.5

it was determined that when the Kernel Interpolation technique is employed for the

evaluation of spatial derivatives the inclusion of either the direct or advanced particle

density is required to ensure numerical consistency. Based on this finding a split-

density scheme can be introduced, in which the density is decomposed into two parts

according to:

P = (PO - P,) + P, + Padv.

PKI

The total density p is used in the EoS, while the density PKI is used for the computa-

tion of the derivatives with Kernel Interpolation. This decomposition can improve the

consistency of the Kernel Interpolation, particularly close to the free-surface, without

altering the simulated physics.

To formulate the governing equations, the time rate of change of the EoS is con-

sidered and dp/dt is substituted from the conservation of mass (4.20) obtaining the

time rate of change of the pressure:

dP dpo 2dP= c2  - 2 pV . U. (4.57)
dt cdt
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In particular, for an initial hydrostatic density distribution po = pf (1 - 26y) the

governing equations for the split-density scheme are still described by (4.19) and

(4.36), but the EoS is replaced by:

dP_2
d -pfgv -c 2pV -, (4.58)

hydrostatic hydrodynamic

where v = dy/dt has been used. Introducing the intermediate density variable PKI,

the density is integrated in time based on:

PKI = Pf + J dt (4.59)

p = (POo- Pf)+PKI- (4-60)

-265pfy

This split-advanced density formulation can improve the consistency near the free-

surface by adjusting the PKI without affecting the physics.

Improving the accuracy of mSPH by projecting into an incompressible flow field

with an iterative artificial compressibility method is also suggested. However, it is

realized that such scheme will only affect accuracy, but neither stability or consistency.

In choosing the hSPH approach it must be realized that robustness is currently

the main issue. The strength of hSPH is the periodic instability removal and incom-

pressible flow-field re-initialization scheme. However, this re-initialization requires

mapping onto a regular grid and detection of the free-surface. Despite recent devel-

opments on mapping SPH flows onto regular grids [47], this is a limitation of the

most attractive feature of SPH, i.e., it is entirely meshless. For completeness both

approaches have been described, but it must be pointed out that hSPH will require

improvements before it can be employed in the highly non-linear flows of interest.
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4.5 Conclusions

Detailed analysis of MA-SPH in Chapter 2, and insight gained from the effects of

the existing semi-empirical treatments in Chapter 3, allowed us to obtain a very

clear understanding of the SPH method for free-surface flows and propose rational

modifications to address the current key SPH issues. Two approaches are highlighted

based on the technique employed for the computation of spatial derivatives. The first

is a higher-order SPH scheme, hSPH, that employs Moving Least Squares for the

computation of spatial derivatives. The second is a modified SPH scheme, mSPH,

that employs Kernel Interpolation for the computation of spatial derivatives. Both

schemes have different advantages and disadvantages.

The mSPH scheme is a O(N), first-order method like SPH but (i) removes the

tuneable semi-empirical treatments currently associated with SPH, (ii) retains the ro-

bustness of SPH, with increased efficiency since it allows for constant time-steps, (iii)

has a simpler algorithm than SPH, and (iv) most importantly, is stable. Therefore,

mSPH can be used to obtain fast, convergent dynamics of violent free-surface flows

that most other numerical methods cannot simulate.

The hSPH scheme is a O(N) method and retains the weak compressibility as-

sumption like SPH but (i) is second-order, (ii) periodically projects the flow onto

an incompressible solution and (iii) is stable. However, the applicability of hSPH is

currently limited to periodic domains.
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Chapter 5

Conclusions

5.1 Thesis contributions

Smoothed Particle Hydrodynamics (SPH) is a mature meshless Lagrangian particle

method that first appeared in 1977 in [5, 7] for the simulation of unbounded astro-

physical flows. The SPH algorithm is very attractive in that it is simple, efficient

with operation count O(N), and highly parallelizable. In addition, it is robust and

obtains 'pretty pictures', i.e., it qualitatively captures the kinematics of complex,

highly non-linear flows. For these reasons, SPH has found applications in violent

flows across different disciplines including shock capturing, die-casting, explosions,

magnetohydrodynamics, and granular flow, to name a few.

SPH was first extended to free-surface hydrodynamic flows in [30]. It is used to

simulate transient, highly non-linear flows, with complex, multi-scaled free-surfaces

that can be multiply connected (such as the standard SPH dam-break benchmark)

where most other methods fail. Typically, the simulated free-surfaces compare well

with experiments, while dynamic quantities are plagued by spurious, large amplitude,

high frequency oscillations rendering the dynamics practically unusable without fil-

tering.

Despite the method's attractiveness and increasing popularity (SPHERIC 2006-

2010), the method cannot be validated for a simple hydrostatic case [21]. There exists

no conclusive numerical analysis with uncertainties on the method's accuracy, e.g.,
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[2], and consistency, e.g., [25], and the simulations are unstable [53]. TO address these

issues and uncertainties, several tunable semi-empirical treatments have been devel-

oped, following the approach of [30]. As a consequence the present State-of-the-Art

SPH, SPHysics, for applications in free-surface hydrodynamics [1, 48]. includes many

tunable semi-empirical treatmentsn which further add to the uncertainty currently

associated with the method.

This thesis has three objectives. First, to perform an analytical and numerical

investigation of the SPH method for free-surface flows, focusing primarily on under-

standing the physics captured and the numerical behavior through a detailed analysis.

Second, to develop a rationale on analyzing the existing semi-empirical treatments

of the State-of-the-Art SPH, elucidate their benefits, and where applicable provide

guidelines on their usage. Third, and based on the findings of the analysis, to develop

rational, and convergent SPH methods that obtain validated dynamics retaining the

simplicity, robustness, and efficiency of the existing SPH.

All three objectives are met. We perform for the first time a unified, quantitative

error analysis of the SPH method. We identify and analyze the weak spurious high

frequency oscillations that dominate the dynamics. We demonstrate consistency of

the method away from the free-surface, a major source of uncertainty in SPH. We

further identify and verify the stability behavior of the method with the corresponding

growth rates. We extend the analysis to the existing semi-empirical SPH treatments

by classifying them with respect to accuracy, consistency, or stability. We demonstrate

that in general the ad-hoc treatments point to the right direction, but insufficiently.

Based on the findings of the analysis, we develop a modified SPH scheme for the

dynamics of violent free-surface flows that maintains the robustness and simplicity of

SPH, but in addition has known consistency, stability, and dissipative properties and

has significantly reduced spurious solutions.

Specifically, in Chapter 2 we perform a quantitative, unified analysis of the nu-

merical method and the physics it captures. In section 2.2 we introduce the notion

of a main SPH algorithm and in section 2.3 we justify and sketch the framework of

the analysis. In section 2.4 we assess the weak compressibility assumption within
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the context of linear, free-surface waves based on the validated analysis of [8, 46] in

continuous space. It is determined that the method converges to the desired incom-

pressible solution as the artificial speed of sound increases but in addition permits

high frequency acoustic modes. It is realized that these modes in a discrete numerical

simulation are generated predominantly by numerical inconsistencies and are there-

fore spurious and undesired, shedding light on the origins of the spurious solutions

that plague the SPH dynamics. In section 2.5 we investigate the consistency proper-

ties of Kernel Interpolation. We account for the motion of the fluid particles and show

the numerical sionificance of the density in maintaining the consistency of the Kernel

Interpolation technique. We further investigate the behavior of Kernel Interpolation

on the free-surface and determine the artificial dynamic free-surface boundary condi-

tion imposed as a function of the free-surface slope. Lastly, in section 2.6 we assess

the method's stability properties in the continuous, semi-discrete, and fully-discrete

formulations. We determine that three type of instabilities are manifested in an SPH

simulation. The first are depth decaying, allowed in the presence of a free-surface.

The second are purely oscillatory that appear in the presence of non-zero base density

gradients. The third are introduced by the numerical temporal integration scheme

and depend on the Courant condition, and these are the ones actually observed in a

numerical simulation.

In Chapter .3 we extend the analysis to address the effects of different empirical

SPH treatments introduced in the literature. We classify these respectively as ac-

curacy, consistency, or stability treatments. These treatments are further analyzed

within the context of the issue they address, characterizing their effectiveness. This

analysis, based on the existing empirical knowledge, sheds light on the rationale be-

hind each treatment and guides us towards the rational development of convergent

SPH methods in Chapter 4.

Finally, in Chapter 4 we propose the rational development of convergent SPH

methods that maintain key features of SPH, significantly reduce spurious errors

present in current SPH implementations, obtain validated dynamics, and have known

consistency and stability behaviors.
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This thesis is among the first to provide a unified systematic analysis of the SPH

method, shedding insight into the many proposed variations and treatments, and

informs and guides new rational improvements to the method. This work lays the

foundation for the development of SPH as a valuable engineering tool in the study of

violent free-surface flows.

5.2 Perspectives on the SPH approach

SPH is simple, robust, efficient and can be used for the simulation of the most diffi-

cult free-surface problems. However, the method has very limited credibility in the

scientific community due to the lack of analysis, its semi-empirical nature and the

presence of large high frequency oscillations predominant in the dymliics.

In some ways, the extension of SPH for free-surface hydrodynamic flows with the

weak compressibility assumption presented in [30] is ingenious, in that it essentially

demonstrates that once we are in the discrete space and accept any discretization

errors (provided we know their behavior) it is legitimate to accept modeling errors

as well (provided we know their behavior). Once the modeling and discretization

errors are understood, the method's credibility is restored, since understanding the

behavior of such errors is the essence of numerical analysis. In that sense, SPH should

be regarded as a pioneer in the field of computational fluid dynamics.

The success of Kernel Interpolation within SPH can be regarded as a surprising

bonus. If Kernel Interpolation did not happen to have the consistency properties it

has, SPH would have never met such success.

Inversely, the issues in SPH could have been avoided, if [30] had not directed to-

wards a semi-empirical approach. To make matters worse, the method's robustness al-

lowed for literally random initial and boundary conditions, which are decomposed into

unstable acoustic modes. To stabilize the method numerous tunable semi-empirical

treatments are employed, some of which do indeed reduce the acoustic growth rates

but others only affect the simulated physics. In the end, the kinematic simulations re-

sults are qualitatively correct, but the dynamics are plagued by large amplitude high
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frequency oscillItions and it is impossible to distinguish between the real physics and

the artificial physics introduced from the treatments rendering the simulations results

unreliable.

In summary. as long as the limitations on the accuracy of the method are un-

derstood, it is not the method itself, but rather the approach in using SPH that

diminished its credibility.

Finally, it is noted that the analysis of SPH, even though very simple in the mathe-

matical sense, has been challenging and interesting in a unique way. In a first step the

analysis requires to distinguish between the three different sources of error, namely

the modeling error, the consistency error due to the Kernel Interpolation, and finally

errors due to instabilities. Next, it must be realized that these three sources of error

interact. In other words, the analysis has to be performed iteratively. In a first step

the sources of error are classified and identified, while in the next steps the quanti-

tative error estimates are updated by taking into account the coupling between the

different approximations. For example, the weak compressibility assumption behaves

differently in the continuum and in the discrete space since it is highly affected by the

spurious boundary conditions imposed by the Kernel Interpolation (section 2.4.1.5).

In turn, the consistency of the Kernel Interpolation depends on the flow properties

inside the domain (section 2.5.5) and on the shape of the free-surface, close to the

free-surface (section 2.5.6). Lastly, the stability properties of the scheme are sig-

nificantly affected not only by the temporal integration scheme and the associated

Courant condition (section 2.6.4), but also by the base density distribution, which

for the flows of interest should be regarded as hydrostatic (sections 2.6.2 and 2.6.4.1),

and finally by the shape of the domain (section 2.6.5), rendering the useful simulation

life strongly problem-dependent: in the worst case scenario it deteriorates very fast

and in the best case scenario obtains spurious dynamics.
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5.3 Future work

Four different areas of future work can be identified. The first area of future work is

related to extending the analysis of SPH for free-surface flows specifically. The imme-

diate extension is to obtain a quantitative understanding of the effects of the implicit

dynamic free-surface boundary condition due to the incomplete Kernel Interpolation

near the free-surface in both the continuum and discrete space. In the continuum

the primary interest is to understand the long-time effects of the implicit dynamic

free-surface boundary condition. One approach to achieve this is to incorporate the

implicit dynamic free-surface boundary condition into the continuous problem of lin-

ear plane progressive waves and seek for the solution. The eigenlodes will not be

affected, by employing a non-zero boundary condition, but the solution might even-

tually become entirely acoustic. In the discrete space the main interest is to compute

the wavenumbers and initial amplitudes of the spurious acoustic modes. One way

to achieve this is by decomposing the results of the consistency analysis in 2.5.6 into

incompressible and acoustic modes, with the modal decomposition (eveloped in 2.4.3.

It is also of interest to extent the stability analysis of the semi-discrete scheme

within the context of free-surface flows, in addition to the present results for a general

infinitesimal base density distribution, and analyze the dispersion properties of the

method accounting for gravity, in addition to the general analysis in [44].

The inclusion of viscosity is considered as an extension of the analysis of SPH,

since currently it is not known how to obtain second spatial derivatives in an equally

robust manner as with first derivatives. In that sense inclusion of turbulence models

should also be considered as an analysis extension.

The second area of future work includes algorithmic extensions, such as increasing

the order of accuracy of mSPH both inside the domain as well as near the free-

surface, by differentiating between the numerical requirement on the density for the

consistency of Kernel Interpolation and the density employed in tHie Equation of

State to obtain the pressure. Finally, increase in the accuracy of mSPH could be

achieved by projecting into a divergence-free space, as in hSPH, but with a periodic
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pseudo-compressibility approach.

The third area of future work is related to extending current SPH applications in

mSPH, such as parallelizing, addition of different phase particles, inclusion of different

boundary geometries, extension to three dimensions.

Lastly, the fourth area of future work involves coupling with accurate larger scale

models, where SPH will be used as the meso-scale method to simulate the areas of high

non-linearity and multiply connected free-surfaces. This area of future work can be

regarded as the most complex and ultimately of the greatest engineering importance.
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