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Abstract

The degree to which a baroclinic deep ocean could be responsible for the mean flow
on the shallow continental shelf is examined using steady, boundary forced models
which incorporate bottom friction. One set of models, for a vertically well mixed shelf,
includes the horizontal advection of density. The second set of models comprises a
three-layer model without and a two-layer model with interfacial friction.

It is found that near bottom flow has a short cross isobath scale due to the steep
continental slope and consequently that the deep oceans lower water column could
not be responsible for the observed mean flow. The cross isobath scale of flow in
the upper deep ocean is predominantly determined by the oceans velocity profile. In
a barotropic or near barotropic flow the upper water column follows the near bottom
flow and therefore has little influence on the shelf. A surface intensified deep ocean flow
is able to cross isobaths until it encounters the bottom. If deep ocean flow is confined
to a surface layer thinner than the depth at the shelf break it could be responsible
for the observed flow. The depth scale for velocity and density over the slope in the
Mid-Atlantic Bight is generally larger than the shelf break depth and consequently
it is concluded that the steep continental slope "insulates" this particular shelf from
baroclinic deep ocean influence and therefore that the observed shelf flow is not of
oceanic origin.

Using oxygen isotope data, Chapman et al. (1986) found that the Scotian shelf is
the major source of Mid-Atlantic Bight shelf water. Their barotropic modeling results
are extended to show that a baroclinic deep ocean also acts to hold shelf water on the
shelf.

Thesis Supervisor: Paola Malanotte-Rizzoli
Title: Associate Professor, Massachusetts Institute of Technology
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Chapter 1

Background and Introduction

1.1 Introduction

It is known that the mean flow over the shelf of the Mid-Atlantic Bight is toward

the south west whereas the mean wind stress is eastward (Beardsley, Boicourt and

Hanson (1976)). Beardsley and Winant (1979) demonstrated that not all the observed

mean shelf flow could be forced by river or estuary outflow, and suggested that the

remaining mean flow could be forced by an alongshore pressure gradient of oceanic

origin. However Chapman et al. (1986) have shown, using Oxygen isotope data and

salinity to distinguish water types, that the water over most of the Mid-Atlantic Bight

shelf originates on or north of the Scotian shelf. Their calculations show that, despite

mixing with water from over the continental slope and with some river run off, this

Scotian shelf water is still discernible over much of the shelf as far south as the Virginian

coast. They conclude that the mean shelf flow is an extension of flow over the Scotian

shelf and does not originate in the deep ocean. This observation is supported by

several models (discussed in detail later) which have shown that a barotropic 1 deep

ocean pressure gradient could not drive significant shelf flow and therefore could not

be responsible for the observed shelf flow.

This work will examine the question of whether a steady baroclinic 2 deep ocean

could be responsible for the observed shelf flow. The shallow shelf is separated from

'A "barotropic" flow is defined as one which the velocity profile is independent of depth outside of any
frictional boundary layers.2A "baroclinic" velocity profile is defined as one where the velocity varies with depth outside of frictional
layers due to horizontal density variation through the thermal wind relation.



the deep ocean by the continental slope. A realistic discussion of the question must

consider the effects of bottom topography on the fluid motions above it. Intuitively

topography ought to affect near bottom flow. A barotropic flow has a uniform velocity

profile and the topography not only influences the near bottom flow but also influences

the upper water column. However, the upper water column in a baroclinic flow may

not follow the near bottom flow and the effect of topography is therefore more complex.

Determining how the topography of the shelf and/or slope affects steady baroclinic flow

is central to a discussion of the question addressed here.

In two cases the influence of topography on the flow is, at least intuitively, obvious.

In the first case, a barotropic flow, the influence of the topography permeates the entire

water column. Near geostrophic flow will not cross topography unless some mechanism,

such as bottom friction, breaks the topographic constraint. For typical scales bottom

friction permits only weak across topography motion and consequently the rate of cross

topography penetration by a barotropic flow will be limited. The second case is that

of a layered model where the core of the lower layer is motionless. In this case it is

clear that the topography below should have no direct effect on the flow in the layers

above the lowest and cross topography motion is not inhibited. However the influence of

topography on flows which lie between these two cases and how flow in the upper water

column is altered once it encounters the shoaling bottom is not intuitively obvious. The

interfacial friction model of section 3.4 is able to smoothly bridge the gap between the

two cases of barotropic and surface flows and is also able to obtain solutions for the

cases where the surface flow runs into the sloping bottom.

1.2 Observations

A good review of observations and models relevant to processes which occur on and

between the shelf and slope is given by Johnson and Rockliff (1986). The models

presented in this work fall into the steady baroclinic category.

During the Nantucket Shoals Flux Experiment (NSFE79) a line of current meters

was deployed across the shelf and upper slope south of New England (Beardsley et
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al. (1979)). Stick plots of the velocity are shown in Figure 1-1. A comparison of the

near surface flow (10m) at two moorings which span the shelf break (N4 mooring in

100m of water and N6 situated in 810m of water) shows that the alongshore velocity

at these two sites is often in opposite directions. At the intermediate mooring, N5, the

alongshore flow direction appears to alternate between that at the moorings either side.

The mean currents from NSFE79 in Figure 1-2 also show that alongshore flow over the

shelf and slope is in opposite directions, particularly during the summer. Beardsley et

al. (1979) noted that motions offshore of the shelf break, which was approximately at

the 200m isobath, were dominated by the passage of Warm Core Gulf Stream Rings.

Aikman et al.(1986) commented that mean currents observed during the Shelf Edge

Exchange Processes experiment (SEEP) which were around 5cms-1 over the shelf and

slope showed a minimum at the shelf break (see Figure 1-3). They also noted that

current variability over the shelf was dominated by wind forcing while variability over

the slope appeared to be of oceanic origin. These measurements and the calculations

of Chapman et al. (1986) lend support to the notion that the shelf is isolated from the

deep ocean. However the cause of this isolation is not completely clear.

During both NSFE79 and SEEP mean flows over the shelf and slope were strongly

aligned with the topography. The NSFE79 had only a near surface current meter at its

deepest mooring on the upper continental slope. However during SEEP three moorings

were deployed across the slope. Significant vertical structure can be seen in the mean

flows at these moorings (Figure 1-3). The models developed in this work will be used to

determine how this vertical structure, i.e. baroclinicity in the deep ocean flow affects

the ability of the deep ocean to influence the shelf. It will be shown that the steep

continental slope acts as an effective insulator of the shelf from the baroclinic deep

ocean influence.

1.3 Historical Background

As mentioned earlier several works have sought to determine the degree to which a

barotropic deep ocean could be responsible for mean flow over the shelf. Several of



these works are based on the Arrested Topographic Wave model of Csanady (1978)

(hereafter ATW). The ATW is a steady model which balances the forces which drive

flow against bottom friction on a sloping bottom. By noting that shelves are charac-

teristically narrow compared to their length Csanady was able to develop a relatively

simple governing equation in the ATW which has the same form as that governing

one-dimensional heat diffusion. He was not the first to notice this simple form (see

Pedlosky (1974)), but he has been able to apply it to a variety of forced shelf flows.

In the ATW Csanady argued that a steady deep ocean pressure gradient could drive

the observed mean flow. Based on observations off the southern coast of Long Island,

Scott and Csanady (1976) calculated this alongshore pressure gradient to be of order

10- or 1cm per 100km.

After demonstrating that coastal sources could not explain all the observed mean

shelf flow, citing the ATW and after making a detailed examination of the results of

the numerical simulations of Semtner and Mintz (1977), Beardsley and Winant (1979)

concluded that the southwestward mean shelf flow is driven by the large scale circulation

in the western North Atlantic. They did note that the dynamical models used in coming

to this conclusion were sufficiently crude that a critical test of the relative importance

of run off and large scale forcing would have to wait until more realistic models were

developed.

In the ATW Csanady assumed the shelf to be unbounded and of uniform slope.

Two subsequent works, Wang (1982) and Csanady and Shaw (1983), incorporated the

more realistic topography of a gently sloping shelf and a steep continental slope into

the ATW model. They concluded that the continental slope effectively "insulates"

the shelf from the influence of a barotropic deep ocean pressure gradient. These two

barotropic models support the oxygen isotope data and model of Chapman et al. (1986)
in showing that a barotropic deep ocean cannot be responsible for the mean flow over

the shelf.

In order to answer from a modeling standpoint the question of whether a baroclinic

deep ocean could be responsible for the observed shelf flow an appropriate equation



which governs the advection and/or mixing of density must be incorporated. Such a

density equation greatly increases model complexity. Topography further increases this

complexity because along-isobath density variations give rise to an extra term in the

vorticity balance (Welander (1959)), called JEBAR (Joint Effect of Baroclinicity And

Relief) by Sarkisyan and Keonjiyan(1975) and "bottom torque" by Malanotte-Rizzoli

and Bergamasco (1983).

Two works (Csanady (1985) and Vennell and Malanotte-Rizzoli (1987)) avoided the

difficulty associated with the density equation by assuming that the density field is

known everywhere and that it is invariant with time. The steady flow field consistent

with the assumed density field was calculated. For a vertically well mixed shelf Vennell

and Malanotte-Rizzoli (1987) assumed a density field which is linear in the alongshore

coordinate as an idealization of the density pattern produced by deep convection in the

northern Adriatic in winter. The model results showed that flow near the Italian coast

is of a direction and magnitude consistent with the observed winter mean flow.

In order to find the flow induced by an alongshore pycnocline slope Csanady (1985)

used a two-layer model to idealize the alongshore set up of the main pycnocline in the

United States Pacific Northwest with a two-layer model. He assumed that the interface

had a constant linear slope between two latitudes and was flat outside of this region.

Thus he knew a priori where the interface intersected the bottom and was able to

calculate the flow pattern consistent with the assumed interface displacement. Both

Vennell and Malanotte-Rizzoli (1987) and Csanady (1985) are "diagnostic" solutions

because they calculate the flow consistent with an assumed density field and no density

equation is included. It is argued that, despite the limitations of this approach, the

solutions at least give a sense of the magnitude and direction of flow induced by along-

shore density variations. However these models do not give a realistic cross-topography

flow distribution and therefore this type of model is of limited use in determining the

cross-topography penetration of the deep ocean.

Malanotte-Rizzoli and Bergamasco (1983) addressed the difficulty of combining hor-

izontal density variations with topography using a multi-level hydrodynamic numerical



model for the Northern Adriatic with coupled equations for temperature and salt. This

model is forced by observed winds, air/sea fluxes of heat and water vapor, together with

sea level, temperature and salinity at the open southern boundary. In the model and

observations a mean southward flow on the Italian coastline is evident during winter.

It is argued that the alongshore density gradient associated with the dense water mass

formed in the central Adriatic during winter is responsible for forcing the mean flow

on the Italian coast through the mechanism of bottom torque.

Kelly and Chapman (1987) examined the response of the shelf and slope to a steady

baroclinic offshore forcing. Their linear model, an extension of that of McCreary and

Chao (1985), includes continuous stratification, bottom friction, vertical and horizontal

diffusion of momentum. The density equation used balances mixing of the density

perturbation against vertical advection of the assumed background stratification. The

model is forced by prescribing the vertical distribution of pressure along the deepest

isobath of the continental slope. Their model gave results similar to the low frequency

results of Chapman and Brink (1987) and showed that, as it moves into shallower

water, near bottom flow turns to follow the topography of the continental slope, and

thus does not influence the shelf. The shoreward penetration of the deep ocean's

upper water column is governed by the ratio of the cross-topography decay scale of

the forcing in the absence of the coastal wall to the slope width. The decay scale is

dependent on the internal Rossby radius and the vertical structure of the forcing. If

the continental slope is wide compared to the decay scale, the coastal wall has little

effect and significant flow is confined to the outer slope. If the slope is narrow, flow can

be significant over the upper slope. However in all cases little deep ocean energy was

found to penetrate shoreward of the shelf break. Stratification decoupled the upper

and lower water column and surface intensified deep ocean flows had a larger cross-

topography scale than barotropic deep ocean flows. For a narrow continental slope a

surface intensified deep ocean flow is able to move shoreward until it encounters the

bottom, at which point it turns to follow the topography.



Chapman and Brink (1987) discussed the circulation over the shelf and slope in-

duced by an unsteady baroclinic deep ocean. This linear model incorporates continuous

stratification, bottom friction and is forced by a prescribed pressure distribution along

the deepest isobath which is periodic in both the time and alongshore coordinate. Their

density equation balances the time rate of change of perturbation density against ver-

tical advection of the mean background stratification. The results showed that for

periods less than 10 days the low frequency shelf/slope response is mainly due to near

resonances of coastally trapped free waves. At longer periods the cross-topography

response to the forcing decays away with a horizontal scale approximately equal to the

first baroclinic Rossby radius. If the continental slope lies within the decay scale of the

forcing, then the flow forms a bottom trapped alongshore flow maximum offshore of

the shelf break. The shelf response is always weak and barotropic, and is not greatly

influenced by shelf width. .

1.4 Modeling Approach

A complete modeling solution to the question of the influence of the deep ocean on the

shelf should include a shelf/slope region coupled to a deep ocean general circulation

forced by surface winds and air/sea flows. Due to the computational difficulty few

people have developed such models. A common approach, and the one used here, is

to assume that the deep ocean is so large that it is unaffected by the dynamics of the

narrow shelf/slope region. In other words, the shelf and slope act as a passive boundary

layer to an invariant deep ocean general circulation. Thus the shelf/slope model will

be forced by prescribing the deep ocean pressure gradient along the offshore edge, the

offshore edge being the nearshore boundary of the deep ocean's Sverdrup flow. This

approach reduces the problem to the more tractable one of determining the flow pattern

over the shelf and slope consistent with the assumed forcing. Some works which have

used this approach are Wang (1982), Csanady and Shaw (1983), Chapman and Brink

(1987), and Kelly and Chapman (1987). The forcing most often used in this work is a

horizontally uniform inflow from the deep ocean. The degree of influence or penetration



of a given deep ocean forcing will be measured by the cross-topography scale of the

flow induced over the shelf and/or slope by that forcing. Apart from deep ocean forcing

other forms of boundary forcing such as estuarine and forcing by a pressure head over

the shelf will be considered here.

In the models used here to determine deep ocean influence, flow is forced by pre-

scribing pressure and density or streamfunction and density on the offshore edge of the

model domain. For a deep ocean inflow the density of a fluid parcel will be known at

the point where it enters the model domain. However for a deep ocean outflow the

density of a fluid parcel is fixed at the point where it exits the domain. In general the

density of an outflow to the deep ocean is not determined by the point of exit, but is

determined by shelf and/or slope processes upstream of this point. Therefore in the

case of an outflow it is shelf/slope processes which determine the density structure of

the deep ocean and not vice versa. Since this runs counter to the assumption that the

shelf/slope region does not alter the deep ocean, only forcing of the shelf/slope region

by deep ocean inflow will, in general, be considered here.

One exception to this rule occurs when considering the shelf/slope flow forced by

a Gulf Stream Ring. In this case the deep ocean can be considered to impose an

inflow and an outflow condition at the model's offshore edge. If the induced circulation

is closed then the density of the outflow is not initially determined at an unknown

upstream point over the shelf or slope, but is determined at the point of inflow from

the deep ocean. In this case, i.e. that of a closed circulation pattern, a deep ocean

outflow can be considered without violating the assumption of an invariant deep ocean.

1.5 Outline

To address the question of baroclinic deep ocean influence on the shelf a series of models

is developed which are complex enough to contain essential features, e.g. baroclinic flow

and shelf/slope topography, while remaining simple enough that the physical mecha-

nisms which influence the flow pattern can be determined. The strategy used is to

develop a basic model and then to consider the effects of each additional feature, for



example deep ocean vertical profile or planetary #, in isolation from other features in

order to determine the effects and physical mechanisms associated with each feature.

The first in the series of models is that of Vennell and Malanotte-Rizzoli (1987)

reproduced in Appendix C. The second model in this series is that for a vertically

well mixed shelf in chapter 2 which incorporates horizontal advection of density. This

model is used to examine deep ocean influence and also the flow due to coastal sources.

In section 3.3 the third model, a three-layer model extends the depth range of the

vertically well mixed model to examine deep ocean influence on the upper continental

slope for particular deep ocean velocity profiles. In section 3.4 the fourth model, a two-

layer model with interfacial friction, is able to solve cases not covered by the previous

model for oceanic influence on the shelf and upper slope. In section 3.4j the fifth model

extends the previous model to oceanic depths by including the effects of planetary #,
and is used to examine oceanic influence on the upper and lower continental slope and

also on the shelf. In section 3.4k the sixth and final model extends the model results

of Chapman et al. (1986) to a baroclinic deep ocean to show how the deep ocean and

continental slope act to hold Scotian shelf water on the shelf.

The two-layer model with interfacial friction of section 3.4 is an extension of that of

Zang, Janowitz and Pietrafesa (1987) which was used to study estuarine outflow over

the shelf. Friction is assumed important in thin boundary layers adjacent to the bottom

and interface. In a rotating system these boundary layers are Ekman layers. Interfacial

Ekman layers ensure that horizontal velocity is continuous across the interface. The

model of Zang, Janowitz and Pietrafesa (1987) is forced at the coast by an estuary. In

contrast, the two-layer model used here is forced at its offshore edge by the deep ocean

and the effects of planetary P are included. Since the forcing is at the offshore edge the

density interface intersects the bottom. This intersection moves across the topography

as the interface displaces vertically in response to the forcing. A complete solution to the

two-layer model consists of the flow pattern in both layers and the position where the

interface intersects the bottom. This line of intersection marks the shoreward boundary

of the lower layer. A specialized numerical scheme is developed to solve the two layer



model for the layer flow patterns and the position of the intersection. Other differences

from the model of Zang et al. are that the topography of the continental slope is also

included, that alongshore scales are assumed much larger than cross-topography scales

and that the vertical turbulent eddy viscosity away from the bottom boundary layer

is permitted to be different from its value in the bottom boundary layer. The reason

behind the last difference is that turbulence away from the bottom is expected to be

weaker than that near the bottom due to bottom friction.

Zang, Janowitz and Pietrafesa (1987) did not give the details of how they generalized

the results of Pedlosky (1979) for an Ekman layer on a sloping bottom to Ekman layers

on a sloping interface. In Appendix B these details are given together with detailed

velocity profiles for the interfacial Ekman layers and the transports within these layers.



Chapter 2

Vertically Well Mixed Shelf Flow

During the winter the Mid Atlantic Bight is vertically well mixed to 100 meters depth

by storms. In the northern Adriatic the Bora wind is capable of vertically mixing the

water column to 250m (Hendershott and Malanotte-Rizzoli (1976)). In these situations

a model which assumes that the shelf waters are vertically well mixed is appropriate.

Such a model would be useful in determining the effects of the Atlantic ocean on the

Mid-Atlantic Bight and also the coastal flow induced by the alongshore density gradient

established by the Bora wind in the Adriatic. The model presented in this chapter is

more realistic than the diagnostic one of Vennell and Malanotte-Rizzoli (1987) because

it does not assume that the density field is known everywhere apriori.

The aim is to determine how the baroclinic structure of a deep ocean flow affects its

ability to penetrate the shelf. Flow penetration is defined as the flow's cross-topographic

scale for a given transport. Flow is driven by prescribing the streamfunction and the

density at the outer edge of the shelf. Horizontal density gradients cause the flow to

have vertical shear in its horizontal velocity.

In Appendix A an analytical solution valid in the near-field for a deep ocean forcing

is obtained. The governing equation is similar to that governing heat diffusion in a

cylinder. This analogy proves useful in explaining the underlying physical mechanisms

which determine the flow pattern.



2.1 Derivation of Transport Equations

The transport equations used by Csanady(1979) are derived from the primitive equa-

tions. Assumptions are that flow is on an f plane, x is offshore, and y alongshore (see

shelf geometry in Figure 2-1). The steady momentum and continuity equations for a

shallow hydrostatic Boussinesq fluid are

au au au -1 ap a2U a2U 92U
u-+v-+w -fv + Av 2 + AH (- + 2)dz dy dz po dx dzz , y

dv v dv -1ap a 2V a2V d2V
u-+v-+w-+ fu =+ Av ++

ax ay az po 9y Xz2+A 2 a2
ap -Pg 

(2.1)
az

au av dw
- +ax -ay -0

where u and v are the cross and alongshore components of velocity, w is the vertical

velocity, p, the density, po, a constant reference density, and AV and AH are the vertical

and horizontal turbulent diffusivities of momentum. Boundary conditions depend on

the particular problem being studied. The non-dimensional scales are defined by

x=Lx' y=Lyy' z=hoz'

U OI V OI I OWu =uou' v =vov' w =wow'

p = vofLzpop' (2.2)

vof L ,

gho

where ho is the depth scale and L. and L, are the along and cross shelf horizontal

scales. Non-dimensionalized with the above scales (2.1) becomes

(L2R(u':+ ' -

- + (-) Ev a&u + (- ) EH + ()2 __& ) 2



.00,I

Figure 2-1: Shelf geometry for vertically well mixed model.



R(u'+v' +w' ) +u'=

-y + aEvZ + LEH (H + ( 2 ) (2.3b)

dp'

z -p (2.3c)

au' av' 8w'
- + + =-0 (2.3d)

where the non-dimensional numbers are defined by

Rossby number: Ro = fj
Vertical Ekman Number: Ev = A . (2.4)

Horizontal Ekman Number: EH = -Al

In the continuity equation it is assumed that all terms are of equal importance

and hence 2- - = . Therefore the Rossby numbers which appear in the non-

dimensional equations are equal.

It is assumed that vertical mixing of momentum is stronger than either horizontal

mixing or inertial effects i.e.

L
EH«<<- Ro«<<Ev . (2.5)

In addition if the cross-shelf scale is small compared to the alongshelf scale ( i.e. <<
1) then the governing equations neglecting small terms are

-v' = :-

U' = - + xEv a . (2.6)



The depth integrals of (2.6) between the surface and bottom, with a rigid lid and in

the absence of wind stress, are

V -dz

U' = J- gaLdz b (2.7)-hay ILx
au+ av =

where U' and V' are the cross-shelf and alongshore components of transport defined by

0U' = J u'dz' (2.8a)

0V' = f v'dz' . (2.8b)

The alongshore component of bottom stress per unit mass is defined as

= Ev - (2.9)

Dimensionally the boundary layer thickness is

SE

The Ekman number is the square of the ratio of the boundary layer thickness to the

depth scale, i.e.

Ev =
khol

With some manipulation the transport equations (2.7) become those used by Csanady

(1979). Following his work the pressure in a hydrostatic Boussinesq fluid may be rewrit-



ten dimensionally as

1-p(x, y, z) = gn(x, y) + g (1 + e(x, y, z*)dz* (2.10)
Po

where r is the free surface displacement (barotropic pressure) and e is the density excess

defined by e P(,Y,~)-PO. Horizontal gradients of pressure are dynamically important.
P0

For example the cross-shelf pressure force per unit mass per unit area is

1ap an 08f ,
po - dz

The depth integral of the horizontal pressure force is

1 o ap arn o o a (x, y, z*),
Pi J x dz = a - g dzdz.

Rewriting this by reversing the order of the double depth integral yields

1 0 p a* ) aE(x, y, z*) d*
0 dz = -gh-- g (h+z) ax

Using this form for the pressure gradient for a water column t hat is vertically well

mixed ( e(x, y)) the transport equations (2.7) become dimensionally

art gh2 aE
- fV = -gh an (2.11a)ax 2 ax

fU = - g h r (2.11b)
fy 2 ay

+ - 0 (2.11c)

It is assumed that the flow can be considered comprised of two components. One

associated with the pressure gradient, the geostrophic component, and one associated

with the ageostrophic transport within the bottom frictional layer. Such a decom-



position is sensible if the frictional layer does not occupy the entire water column.

Conceptually the bottom stress in (2.11b) is assumed to be proportional to the velocity

just above the bottom frictional layer where the flow is in geostrophic balance. The

geostrophic component of velocity varies in the vertical due to thermal wind. The depth

scale of this variation is assumed to be of order the shelf break depth, i.e. 100m. The

bottom boundary layer is of order 10m thick. Consequently the variation in geostrophic

velocity over the thickness of the boundary layer is small and the geostrophic velocity

evaluated at the bottom is a good approximation of that 5E above the bottom. When

this is the case the bottom stress may be taken proportional to the geostrophic velocity

at the bottom (Csanady (1979)) i.e.

rb = rVb (2.12)

where r is a constant drag coefficient and has the dimensions of velocity. The compo-

nents of bottom geostrophic velocity for a vertically well mixed flow are

fub= -g - + h a (2.13a)
(ay ay

fvb =g ( + + h- . (2.13b)(ax ax)
The stream function for total transport (geostrophic plus frictional) is defined by

=i V
8x

- = -U .(2.14)
ay

Assuming depth is a function of x only, dividing (2.11a and 2.11b) by depth, cross

differentiating to eliminate the free surface displacement and using (2.14), yields

r (1a~f+ -h.a2 - hga (2.15)
ax2fx 2 h 2 ay ' (2.15)



Using the momentum equations to eliminate r from the definitions of near bottom

geostrophic velocity the bottom velocities can be rewritten as

_18p ghaE
U- = --- + b+ V (2.16a)

hay 2f ay fh

1 b# ghaBE
Vb = 1 + - (2.16b)

h ax 2f ax

Flow will be forced by prescribing ?P, E or their derivatives on all lateral boundaries.

2.2 Advective Density Equation for Vertically Well Mixed Flow

The density equation is difficult to solve because of the non-linearity due to advection.

However a simple form can be obtained if it is assumed that vertical mixing is strong

compared to advection. For turbulent flow it is assumed that the diffusivities for

momentum and density can be taken to be the same (i.e. AH = KH and Ay = Ky) in

which case the steady density equation may be written

aE ac aE a 2 C a2 E a 2 E
u--+v--+w-=Ay +n + .217a~x a V_ _=A + AH 2+ AH 2 (2.17)ax y oz z ax 2 ay2

The bottom boundary condition for density for a small bottom slope and gI << 1 isEV

no heat or salt flux through the bottom, i.e. g = 0 at z = -h. The surface boundary

condition requires more careful consideration. During winter the Mid-Atlantic Bight is

well mixed by storms and it is assumed that the wind, thermal and vertical boundary

forcings can be viewed as acting in isolation from each other. The aim is to develop

a model for vertical boundary forcing acting alone. In this case the surface boundary

condition for the density is no heat or salt flux through the surface. Therefore the

boundary conditions for density are

- = 0 at z=O,-h . (2.18)az



Equation (2.17) can be non-dimensionalized using the scales (2.2) to yield

Lx uae' Be' E' Va2,, a' L 2() a ,' +w ' = E +EH + 2 a' (2.19)
axB' y '= _z, x,2 (L ay,2}

subject to

aE'
z- 0 at z'= 0,-h' . (2.20)az'

Since it is assumed that vertical mixing dominates advection and that horizontal mixing

is unimportant, the non-dimensional numbers have the relative sizes given by (2.5).

Expanding the density in terms of the vertical Peclet number defined by

Ro
Pe =E (2.21)

e' = (O) + Pee(1 +..

V' = (0) + P"u(1) + ..

E' =(O )+PeE(1)+...

yields to zeroth order

a82,(o)
az,2 =0 . (2.22)

Integrating this and applying the boundary conditions (2.20) yields

ae(0)
z' = 0 (2.23)

which shows to zeroth order that density varies only in the horizontal i.e. that density

is vertically well mixed, E(O)(x', y').



At first order in the Peclet number (2.21) is

__ ( d e (0) 2N
U (0) + O(0) - . (2.24)ax' + y' z2

u(0) and v(0), the dominant horizontal velocities are the same as the velocities u' and v'

which occurred in the development of the ATW model in (2.6). Depth integration of

(2.24) together with the boundary conditions (2.20) and the definitions for transport

(2.8a) and (2.8b) yields

Be (0) + E (0)
U' +V'- =0 . (2.25)

Thus contours of total transport and density are parallel for this vertically well mixed

flow. Using (2.14) the advective density equation (2.25) can be rewritten dimensionally

as the Jacobian

J(?,e)= 0 . (2.26)

This illustrates a very important point; namely that, in the vertically well mixed flow

described above, density is conserved as it is advected along streamlines. This conser-

vation can be exploited by noting that the Jacobian (2.26) implies that density must

be a function of the streamfunction, i.e.

E= () . (2.27)

If the values of # and E are known along some line, then their functional relation may

be determined. Because of (2.26) this functional relation is the same in all regions of

the domain containing streamlines which cross the line on which # and E are prescribed.



2.2a Streamfunction Flow Equation

Combining the dynamical equation (2.15) and the density equation (2.27) yields an

equation in one variable

r ((1 + g +hz( - + - 0 (2.28)fz ax h2 2f do ax h2 2fd ay

where .7 is determined from the boundary conditions appropriate to the particular

problem being studied. This equation is in general non-linear, however for simplicity

attention will be restricted to problems where the boundary conditions are such that

density is linearly proportional to streamfunction, i.e.

-- = K (2.29)
d#

where K is a constant. Then (2.28) becomes

r a 1 gK 851 gK) a =
( +_L +z --h0 - (2.30)faox h2 2f ax) (h2 2f ay '

K is determined by the values of density and streamfunction given on the bound-

aries. Prescribing # on the boundary fixes the sum of the geostrophic and frictional

ageostrophic transports across the boundary.

To understand what K physically represents, the flow's surface and bottom geostrophic

velocities must be examined. The surface geostrophic velocities are

g -12- + _+__K

-rs = 9 (1 - ) aO

z hI 2f az

Taking the difference between surface and bottom geostrophic velocities ((2.16a) and

(2.16b) and dividing by the depth averaged velocity yields the same ratio for each

component

U, - U b V, - Vb gh 2 K
_12- 190 - . (2.31)

h ay h az



Inspection of this ratio shows that K is positive for bottom intensified flow and negative

for surface intensified flow. Hence K is a measure of the vertical shear in geostrophic

component of flow relative to the average velocity.

2.2b Non-Dimensional Equation

The non-dimensional scaling appropriate for (2.31) is

y = Lyy'

X = Lz'

h = hoh' (2.32)

2
gho

e = Ll

ghko

where I is the shelf width, s is the bottom slope, and ho = h, + si, h, being the depth

at the coastal boundary. The two terms in (2.31) balance if L. and L, are related by

the ATW scale relationship

L.= -L . (2.33)

Equation (2.31) in non-dimensional form is

a'h,2 + K') , + (1+ K' -= 0 (2.34)

where the shelf edge is at x' = t'. The depth profile used has linear topography and a

finite depth at the coast he, i.e. h = h, + sx. The non-dimensional depth profile is

h' = h' + ax' (2.35)



where a = L'. The solution depends on three non-dimensional numbers: K' (theho

shear), I' and a. The latter two depend on the drag coefficient, latitude and shelf

geometry. t' may be rewritten

rL' (2.36)
Lz

and measures the importance of friction, rotation and shelf geometry. t' is the width of

the shelf in non-dimensional units. Shelves with the same physical width may have dif-

ferent non-dimensional widths and therefore may appear wide or narrow to an oceanic

intrusion depending on their bottom slope, drag coefficient and latitude. Hence t' is a

measure of the shelf "stiffness" to intrusions of flow from the deep ocean. Hence it will

be seen that if I' is small, as it is for a weak bottom slope or strong frictional drag,

then the shelf is very compliant and flow may easily cross topography. Conversely if t'

is large the shelf is very stiff and resists any attempt of flow to cross topography. For

the typical scales in Table 2.1 , t' is around 5 and therefore such a shelf is stiff.

Equation-(2.35) is a parabolic equation and hence may be solved by "time stepping"

towards negative y. To improve computational speed and numerical stability an implicit

finite difference scheme is used where a tri-diagonal matrix is inverted to find the

solution at each "time" step. In all cases in this section a unit of alongshore distance,

y', is equivalent to 50km and a unit of cross-shelf distance, X', is equivalent to 15km as

shown in Table 2.1. The surface displacement and bottom pressure will be calculated

numerically for selected examples .

2.2c Pressure Calculation

In order to calculate the pressure from the streamfunction the transport equation

(2.12b) must be integrated to give the surface displacement which is proportional to

surface pressure

l = 1 =- )(#'=o - + 1 + foK)dy + r71Y=o . (2.37)
gh 2f g22f Y ax



From (2.12a) the surface displacement along y = 0 relative to the origin (i.e. assuming

7 (0, 0) = 0) is

7fY=0 = f 1hK)g 8,Y=O dx . (2.38)

Using the scales (-2.33) the non-dimensional displacement becomes

1' = - 1 - h 2 K') ('|Y1=o - 4)

+ 1+ h,2K') f o dy'

"'2 1 5 _'

+ -(1 ht2K') ji z'i=odx' (2.39)

With the hydrostatic relation (2.1) and -(2.30) the non-dimensional bottom pressure is

p'= n' + 2h'K'4' . (2.40)

2.3 Deep Ocean Forcing

Three types of shelf forcing by the deep ocean are considered here: a wide inflow, a

narrow inflow and forcing by a Gulf Stream Ring.

2.3a Wide Inflow

A wide inflow (1000km) is assumed to impinge on the edge of the shelf. In order for the

Rossby number to remain small compared to the Ekman number as assumed in (2.6)

the flow speed must be of order 10cms- 1 or less (see Table 2.1). Boundary conditions

for this flow are

0, 
0 < y'

y', y' <; 0 at x' = e'



The "initial" condition is that there is no flow across y = 0 and no transport through

the coast, i.e. that 4' = 0 at x = 0. The density boundary conditions are

0, O < y'

Ky, y' < O at x'=L'

From these boundary conditions the functional relationship between density and stream-

function required by the advective density equation (2.30) is e' = K'0'.

The solution for the wide inflow is shown in Figure 2-2. The shelf region shown

is 1000km long and 100km wide. The interval between solid contours is 0.2. These

diagrams show the streamfunction and also the density when scaled by K'. In Figures

2-2a and 2-2b K' is negative and hence flow is surface intensified. Figure 2-2c shows

the flow pattern for barotropic flow and in Figures 2-2d and 2-2e the flow is bottom

intensified. For typical scales given in Table 2.1 the maximum surface displacement

is 5cm over the 1000km width of the inflow, and K' = 1 is equivalent to a maximum

density anomaly of 0.5 parts per thousand. This series of Figures illustrates that surface

intensified flows penetrate the shelf less strongly than bottom intensified flows.

As K' -+ -1 the cross-shelf scale narrows. As the cross-shelf scale shrinks effects

such as horizontal mixing of momentum and density, and flow inertia become important.

The first of these neglected process to become order one in its governing equation is the

horizontal mixing of density. Its importance is proportional to the square of the actual

cross-shelf scale divided by the assumed cross-shelf scale L, and is order one when the

cross-shelf scale is 0.15 of the assumed scale. In Figure 2-5 cross shelf scale as measured

by the the 0.2 contour at y' = -1, relative to its barotropic value, is plotted against

shear. From this it can be seen that the cross-shelf width is not a strong function of

shear except when K' approaches -1, at which point bottom velocities are zero.

As has been shown, neglected effects are important when the relative cross-shelf scale

corresponds to 0.15, but may be neglected when the relative scale is 1. The relative

cross-shelf scale of 1 is arbitrarily selected to be the lower limit for applicability of this

wide inflow model. Thus, from Figure 2-5, K' = -0.9 is the lowest value of shear to

which this model may be applied.
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Figure 2-2: Full field solutions for a wide inflow of unit transport onto the shelf. This
figure shows total transport streamlines for various degrees of vertical shear. Note that
contours also represent the density distribution since e = KIP. The solid contours are
0.2 apart. For our typical scales the region shown corresponds to a 90km wide shelf
1000km long. a) K' = -0.9. A surface intensified flow penetrates the shelf poorly. b)
K' = -0.5. c) K' = 0. A barotropic flow.
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Figure 2-3: Figure 2-2 continued d) K' = 0.5. e) K' = 1. This series of figures shows
that the cross-shelf penetration of flow is enhanced by increasing bottom intensification.
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b) Pressure at the bottom (z = -h).



As K' gets very large the flow becomes strongly bottom intensified, however, even if

the surface velocity is zero, bottom velocities become too large for the Rossby number

to remain small compared to the Ekman number and (2.6) is violated. This can be

avoided by setting an upper limit for K' of 1.

Surface and bottom pressures for a surface intensified flow (K' = -0.5) are shown in

Figure 2-4. As the flow is surface intensified the surface pressure signature penetrates

farther across the topography than the bottom pressure signature.
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Figure 2-5: Cross-shelf scale as a function of shear. The scale is defined by the point at
which the 0.2 contour crosses y = -20 (1000km), relative to the cross-shelf scale of a
barotropic flow (K = 0). Cross-shelf scale is not a strong function of shear except near
the point where bottom velocities are zero (K = 0). Model is only valid for cross-shelf
scales which are large enough that all neglected effects remain small (see text).



2.3b Ring Forcing

An extension of this deep ocean inflow model can be used to illustrate the effect on

the shelf of a glancing blow by the outer edge of a Gulf Stream Ring. Warm Core

Gulf Stream Rings formed offshore are known to propagate westward until they collide

with the Gulf Stream or the continental shelf. This Ring forcing model will be used to

demonstrate that rings have little effect on the shelf. Rings are vertically homogeneous

to at least 100m (Joyce (1984)). Assuming that the time scale of frictional decay is

short compared to the rate of ring propagation, so that shelf flow induced by a ring

might be considered quasi-steady, then this model may be appropriate. An idealistic

representation of a ring glancing against the shelf is a linear peak in streamfunction

and density imposed at the shelf edge. The boundary conditions used are as follows

0 0 < y'

y', - < y' < 0 at x'=e'

-(2 + y) -2 < y' < -

0 y' < -2

and

0 0 < y'

K'y', -1. < y' < 0 at x'=I'

-K'(2 + y) -2 < y' < -

0 y' < -2

For an anti-cyclonic flow K' < 0 corresponds to a Warm Core Ring. Cold Core Rings

which occur to the south of the Gulf Stream are cyclonic and also correspond to K' < 0.

Flow patterns for a warm, an isothermal and a cold core cyclonic ring are shown in

Figure 2-6. Warm Core Rings have a weaker influence on the shelf than isothermal rings

because they are surface intensified and experience a weaker bottom drag. Figure 2-7

shows that for surface intensified flows the surface pressure has a wider cross-topography

scale than the bottom pressure.
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Figure 2-6: Transport streamlines for varying degrees of vertical shear in the flow which
enters the shelf between y' = -1 and y' = 0 and leaves the shelf between y' = -2 and
y'= -1. This example is intended to show the effect on the shelf of the outer edge of
a 100km diameter Gulf Stream Ring. Solid contour spacing is 0.2. The contours also
give the density. The alongshore extent of these figures is 150km for typical scales.
a) K' = -0.75. A surface intensified flow penetrates the shelf poorly. b) K' = 0. A
barotropic flow. c) K' = 0.75.
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2.3c Narrow Deep Ocean Inflow

This example illustrates the effects of different offshore boundary conditions on the

cross-shelf penetration of flow from the deep ocean.

At forced latitudes flow is forced onto the shelf across x' = t' between y = 0 and

y = -1. Thus the offshore boundary conditions are

1' = <(2.41)
y - < y' < 0 at x'=e'

and 4' = 0 at the coast. Since the inflow from the deep ocean has finite width, the

choice of boundary conditions at the offshore edge at unforced latitudes has a significant

effect on the flow pattern. Three different boundary conditions are considered.

The first boundary condition applied to the unforced latitudes is that for channel

flow, i.e.

'= -1 for y' < -1 at x'= t'

This boundary condition constrains the flow to remain on the shelf and ultimately

motion will be parallel to the shelf edge. The solution is shown in Figure 2-8a.

The second boundary condition requires that there be no geostrophic transport

across the shelf edge. If the deep ocean has no surface displacement and has a weak

alongshore gradient of density at the shelf edge then, through the thermal wind relation,

geostrophic transport is fixed onto the shelf. From the alongshore transport equation

(2.12b) and using (2.30) this boundary condition may be stated

8#' r (1 ghK\ 4'-=- -+ - -f8 at x=e and y<-1 . (2.42)ay f (h 2f ) a

The solution for this second boundary condition is shown in Figure 2-8b and is very

similar to the channel solution in Figure 2-8a. This is understandable because frictional

transports are weak in deep water so that fixing the total transport to be zero is almost

equivalent to fixing the geostrophic transport to be zero.
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The third boundary condition used is to apply the open boundary condition (2.44)
developed in Section 2.4 to unforced latitudes along x' = t'. The solution shown in

Figure 2-8c is quite different to that for the previous two boundary conditions because

inflow can return rapidly to the deep ocean. The flow rapidly leaves the shelf indicating

that, unless fluid is forced to remain on the shelf, it will rapidly return offshore.



2.4 Nearshore Forcing

Although the primary focus here has been on the forcing of the shelf by the deep ocean

this model is also applicable to flow forced from boundaries other than the offshore, for

example that entering the shelf as a river at the coast. Before examining forcing by a

river outflow and an alongshore jet, an appropriate boundary condition for the outer

edge of the shelf which is now open to the deep ocean is developed.

2.4a Open Shelf Edge Boundary Condition

For a flow that enters the shelf near to shore the appropriate offshore boundary condi-

tion is 0' -+ 0 as x' -+ oo. The domain of the numerical solution is finite, therefore a

boundary condition at the open boundary, x' = e' should be developed which mimics

the effect of an infinitely wide shelf. Equation (2.35) is similar to that governing heat

conduction in a wide bar of thickness ( + K'). The h term is large near the coast so

that the bar does not necessarily have the same temperature across its thickness. This

diffusion across the thickness of the bar should be included. Although not a perfect

analogy the solutions to (2.35) can be assumed to have at least some of the character

of a heat conduction problem. In the heated bar problem the region far from x = 0

acts as a sink for heat which enters the bar at x = 0 where the temperature, V)', is

prescribed. One way to mimic this sink in a bar of finite length is to take the end

boundary condition to be radiation of heat into a medium at a temperature of zero,

i.e. to take the flux out of the end proportional to the temperature at the end (see

Carslaw and Jaeger (1959)). The flux crossing x' = t' is the product of the temperature

gradient and bar thickness at that point, thus the open boundary condition may be

stated

+ K' oc 4' at X' =' . (2.43)

For simplicity the constant of proportionality is arbitrarily assumed to be unity. It

will be shown such an assumption gives reasonable results . This boundary condition



behaves in the correct sense for changes in flow density. Bottom intensified flow, K' > 0,

crosses the topography more easily than barotropic flow. In this case the area of the

end of the bar is larger than when K' = 0 and hence heat may leave the end of the bar

more easily. This is consistent with the ease with which bottom intensified flows cross

topography.

When K' < 0 the above open boundary condition tends to impede heat (and by

analogy, flow) from leaving the domain, which is consistent with the increased difficulty

which surface intensified flows have in crossing topography. When K' = -1 the bound-

ary condition becomes 0' = 0 at the offshore edge and hence acts like a channel. For

offshore forcing, at the limit K' = -1, no flow may enter the shelf because the bottom

velocities of the flow are zero. The converse of this non-penetration is that flow on

the shelf cannot cross the line where bottom velocities are zero. The above boundary

condition correctly blocks flow from leaving the shelf when K' = -1. In conclusion,

this boundary condition has a behavior which is completely consistent with the nature

of the solutions to our density driven flow model and therefore should not greatly affect

the nature of the solutions obtained for the shelf region.

The sensitivity of the solutions to the open boundary condition (2.44) can be tested

by comparing a solution to that obtained with twice the shelf width. If this boundary

condition has only a weak effect then the two solutions should be very similar. The

solution to the river inflow problem for K' = 0.75 is shown in Figure 2-9a for a shelf 6

units wide and in Figure 2-9b for a shelf 12 units wide. The details of the solution will

be given later. Note by comparing Figures 2-9a and 2-9b that doubling the shelf width

has little effect on the point where the 0.1 and 0.2 contours cross x = 6 and that the 0.4

contour has moved only 1 unit across the shelf at y' = -10. From this demonstration

it can be seen that the open boundary condition influences the interior only weakly

for distances of up to 10 units of y' along the coast (equivalent to 500km) when the

offshore edge is at x' = 6. The influence of the offshore boundary increases for larger

distances along the shelf. If the shelf were infinitely wide then as y goes to negative

infinity, i.e. in the far field, the streamfunction in the nearshore region would tend to



its value at the coast. In the examples for nearshore forcing this value is unity. The

far field solution of (2.31) when the "heat radiation" boundary condition is applied at

the edge of a finite width shelf is the rather complicated expression

01'(X') = 1 + 1 2  - dx'
1 - 1+K'h:2 0 1+ Kh

which is not unity. Therefore (2.44) is a reasonable mimic of an open boundary con-

dition only for moderate distances from the flow's source because it cannot give the

correct far field behavior.

Real shelves are not infinitely wide. The steep continental slope has a tendency

to block flow from leaving the shelf. This can be seen in the relationship between

horizontal scales (2.34). When the bottom slope is large the cross-shelf scale is reduced

and the flow follows the isobaths more closely. Therefore fluid crossing from a gently

sloping shelf to the steep continental slope will turn to follow the topography. This

effect will not be included in the offshore boundary condition used here but it should

be kept in mind that a more realistic boundary condition might have a proportionality

constant in (2.44) greater than unity.

2.4b Coastal Outflow

River deltas and estuaries inject a plume of fresh water onto the shelf. These coastal

outflows are idealized as a band of transport entering the shelf at the coast between

y = 0 and -1 with a density extremum at y' = -b. In order that horizontal advection

of density remain small compared to vertical mixing flow speed in this outflow model

is restricted to be of order 2cms 1 or less. The boundary conditions for an outflow are

0 0 < y'

S= I-y', -1 < y' < 0 at x' = 0 . (2.44)

y' < -1
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Figure 2-9: Test of the open boundary condition (L + K') 2 = k'. a) Solution for
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Figure 2-10: Flow induced by coastal river source. Transport streamlines for varying
degrees of vertical shear in the flow which enters the shelf between y' = -1 and y' = 0 at
the coast. Density has a extremum at the center of the inflow and along the streamline
0 = } . The alongshore extent of these figures is 500km for typical scales. a) A river
with a light water core, K' = -0.75 , surface intensified. b) A constant density river,
barotropic flow. c) A river with a heavy core, K' = 0.75. A fresh water river, (K' < 0),
will cross topography less strongly than a barotropic or heavy river outflow.



The density boundary condition is

0 0 < y'

-K' -b < y' < 0 at x' = 0
-b =(2.45)

1 (1 + Yb )K' -1 < y' < -b

0, y'I < -1

chosen so that the maximum density anomaly, K, is independent of its position. The

density field has its extremum along the streamline # = b. If K' < 0, then the outflow

has a core of light water, if K' > 0, then the core is heavy relative to shelf water.

The value of d' on a particular streamline depends on where that streamline orig-d,01

inated. Hence the function d7 is discontinuousd~kI

0 ' 0

d7r -K' 0 < 0' < b{ 2b__._(2.46)
d2' b K' b < 0' < 1

0,'
If the flow is bottom intensified on one side of the density extremum it will be surface

intensified on the other and vice versa. In calculating the solution numerically it is

necessary to ascertain whether the value of 0' is greater or less than b in order to

determine whether to replace K' with 1 K' or - ') K' in equation (2.35) and in the

boundary condition (2.44).

This example for K < 0 is intended as an idealization of the fresh water outflow of

the river Po into a Northern Adriatic which has been vertically well mixed by winter

winds.

Solutions for various values of K' are shown in Figure 2-10 for a flow with its density

extremum at the middle of the inflow (b = }). This figure shows that the 0.8 contour

moves slightly offshore as the density is changed from a light water to heavy water

outflow while a large variation is seen in the 0.1 and 0.2 contours which are much

farther offshore in the heavy outflow than in the light outflow. Equation (2.32) shows

that the shear depends on both K' and the water depth, because forces on a flow due



to horizontal density variation increase with the depth of the water for the same shear.

Therefore the overall response of the outflow depends on whether the flow is surface

or bottom intensified in the deep water region offshore of the density extremum. For

the heavy water outflow in Figure 2-10c the flow is bottom intensified offshore of the

extremum and therefore the outflow ought to be more widely distributed across the

shelf than the light water outflow of 2-10a.

The blocking of flow from leaving the region due to small bottom velocities at x = '

is evident in Figure 2-10a.

The solutions for the same shear but different positions of the density maximum are

shown in Figure 2-11. In Figure 2-11a the maximum is on the left, facing downstream,

(b = 0.25), and in Figure 2-11b, it is on the right (b = 0.75). Even though the density

anomaly is the same for both cases the outflow with the density maximum on the left

expands across the topography slightly slower than the outflow with the maximum on

the right. The flow in the region offshore of the density maximum is bottom intensified

and hence any increase in its size will tend to enhance the expansion of the flow across

the shelf. The converse is true for a light outflow. Moving the density maximum from

the left to the right side increases the proportion of shelf area where the flow is bottom

intensified, and thus will cause flow to expand more rapidly across the shelf.

Therefore the rate at which an outflow expands across the shelf depends on both

the magnitude of its density anomaly and, to a lesser extent, on the position of the

maximum anomaly in the outflow. It is the shear and the size of the region offshore

of the density extremum which determine the overall responses of the outflow to the

topography.
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Figure 2-11: Variation in flow pattern due to changes in position of the density ex-
tremum in the river inflow. a) Density maximum along 0.25 streamline. b) Maximum
along 0.75 streamline. The flow for a density maximum at the middle of the inflow is
shown in Figure 2-10c.



2.4c Alongshore Jet

A coastal jet may have a density different from the waters immediately offshore of

it. This example is intended to suggest how density may alter the flow pattern of a

frictionally controlled jet. In order for the scaling (2.6) to be valid flow speeds in the

jet must be of order 20cms-1 or less.

This idealized jet flows across y = 0 where density is assumed to vary linearly

across the inflow with a density extremum at the coast. The boundary conditions for

streamfunction are

0 = . (2.47)
0, 1 < z' at y' = 0

= 1 at x' = 0 and the flux boundary condition (2.44) is applied at x' = 6. The

density boundary at the inflow is

( - x) (2.48)
10, 1 < z' at y' = 0

Solutions plotted in Figure 2-12 are quite similar to those for a coastal outflow (Figure

2-10). Although there is a slight shoreward movement of the 0.8 contour with increasing

shear the major variation is in the offshore movement of the 0.1 and 0.2 contours. An

alongshore jet which is light relative to its surroundings (K' < 0, Figure 2-12a) is

surface intensified and hence expands across the shelf more slowly than a barotropic

jet. A heavy jet expands across the shelf more quickly than a barotropic flow due to

enhanced bottom friction (Figure 2-12 ).
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Figure 2-12: Flow induced by a coastal alongshore jet. Transport streamlines and
density when scaled by K for varying degrees of vertical shear for a flow which enters
the region between x' = 0 and x' = 1 across y' = 0. Density has an extremum at the
coast. The alongshore extent of these figures is 500km for typical scales. a) A light jet,
K' = -0.75, surface intensified. b) A constant density jet. c) A heavy jet, K' = 0.75,
bottom intensified.



2.5 Discussion of Well Mixed Advective Flow

In all the examples studied the mechanism by which flow was able to cross topography

was bottom friction. The solutions demonstrate that the tendency for flow to follow

isobaths is much stronger than the degree to which bottom friction allows cross-isobath

motions. For typical scales the deep ocean flow must travel 1000km along the shelf in

order to penetrate 50km across it. The deep ocean inflow forms a horizontal boundary

layer against the shelf edge of approximate width given by

" ~ jy . (2.49)
fs

This is the same result obtained by Wang (1982) for a barotropic deep ocean inflow.

The width of this boundary layer, and therefore shelf penetration, is larger if the drag

coefficient is higher, the latitude lower or the bottom slope weaker. Vertical shear

in horizontal velocity has an effect on the degree of shelf penetration which can be

explained by examining the bottom friction felt by the flow.

It has been demonstrated that the deep ocean inflows across-shelf penetration varies

with shear in the geostrophic component of flow. To determine the mechanisms behind

this variation consider the ATW model which can be derived from (2.12a), (2.12b) and

(2.12c) . It can be written using (2.14a) and (2.14b) in the form

hub = . (2.50)
f ax

In this equation there is balance between the cross-shelf motion of the geostrophic com-

ponent of flow and the divergence of the bottom stress. As bottom stress is assumed

proportional to the along shelf bottom geostrophic velocity it would appear that the

balance (2.51) is independent of magnitude of the velocity. Thus a doubling of the

alongshore geostrophic velocity would lead to an exact doubling of the across-shelf

geostrophic and consequently no change in the angle the horizontal flow makes with

the topography. Such a scenario would suggest that a deep ocean's inflow cross-shelf

penetration is independent of the deep ocean's velocity. Closer examination of (2.51)



shows that this conclusion is incorrect if there is shear in the geostrophic velocity. Con-

sider a flow which is spatially uniform and the geostophic component is independent

of depth. By assumption the alongshore geostrophic velocity is the same everywhere

and therefore the bottom stress will be non-divergent and the right hand side of (2.51)

is zero. Consequently there can be no cross-shelf geostrophic velocity. Consider a

second flow which is also horizontally uniform but has a constant uniform shear in

the geostrophic component of flow. In this case the spatial variation of bottom stress

will not be uniform if the bottom slopes because of the vertical shear. For example if

the geostrophic flow were surface intensified, flow in shallow water would experience

a larger bottom stress than that in deeper water simply because of the depth differ-

ence. The bottom stress in (2.51) will be divergent and there will be some cross-shelf

geostrophic motion. Thus there is a component of the divergence which results from

the spatial variation in bottom stress due to the the depth change in the presence of

a vertical shear in geostrophic velocity. It is this component of the divergence which

is responsible for the variation in cross topography scale with shear. Mathematically

it arises because the divergence is found by evaluating the stress at the bottom then

taking the horizontal derivative an not by differentiation followed by evaluation at the

bottom. The importance of the spatial variation of stress due to shear is determined

by the ratio of the depth change over the flows horizontal scale to the depth sacle of

the vertical shear. This ratio is assumed to be order 1 in this model.

In this vertically well mixed model the density of a fluid column traveling with

the mean flow is determined initially at the point on the boundary where it enters the

domain of interest. During its subsequent motion the column's density does not change

because horizontal mixing is neglected and surface density fluxes due to air sea exchange

are not considered. This leads to a model which emphasizes where a fluid column began

its motion. In a more complete model horizontal mixing and/or surface fluxes would

alter a column's density as it moved over the shelf thus reducing the emphasis on the

columns origin. With these additional mechanisms included, density would no longer

be conserved as the column was advected by the flow field and consequently density



contours and streamlines will not necessarily be aligned. This misalignment will in

turn alter the forces acting on the water column and therefore the overall flow pattern.

The dynamic consequences of non-conservation of density are difficult to gauge with

this model.

The main conclusion for the deep ocean inflow is that although density variations

may change the ability of flow to cross isobaths this effect is limited and the ATW

scaling of small cross-shelf movement for a large alongshore movement still holds for

vertically well mixed flow.

The density structure of Warm Core Gulf Stream Rings is such that they are surface

intensified, hence they will have less effect on the shelf than an isothermal ring.

The application of the open boundary condition to the unforced latitudes of a narrow

deep ocean inflow shows that, unless flow is being forced onto the shelf or is prevented

from leaving by the application of channel-like boundary conditions, it will rapidly

leave the shelf.

The two examples of flow entering the shelf region near to shore, a coastal outflow

and a coastal jet, both show that it is the vertical shear which determines the overall

flow pattern. Because of friction, a light alongshore jet or a low density river outflow

expands across the topography more slowly than a barotropic flow while a heavy jet or

outflow expands more rapidly than barotropic flow.



Coriolis, f
Bottom slope, s
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Bottom friction, r
Minimum water depth, h,
"Thermal Diffusivity", T;
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Depth scale loom 50m
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Alongshore scale, L, 1000km 50km 50km 50km
Cross-shelf scale, LX = 63km 14km 14km 14km
Velocity scale, lvi lOcms~' 1cms-1 2cms~1 20cms-1

Table 2.1: Scales for the Well Mixed Model

AyV



Chapter 3

Layered Models

3.1 Introduction

The vertically well mixed model of the previous chapter is limited to depths of order

100m and consequently, in addressing the question of deep ocean influence on the shelf,

assumes that the deep ocean inflow is able to cross the continental slope and impinge

directly on the shelf. Two steady layered models which include the topography of the

continental slope will be used to determine the degree to which a baroclinic deep ocean

can influence the shallow continental shelf. This will be done by assuming that the

vertical structure of the deep ocean flow across the models' deepest isobaths is known

and is unaffected by the response of the continental shelf and slope. The degree of

influence of various flows, as measured by their cross-topography scale, will be compared

to determine which deep ocean flows produce a significant flow over the shelf.

Both models include bottom Ekman layers but they differ in that one includes

frictional boundary layers at the interface between the fluid layers while the other does

not. Although the dynamics of the model without interfacial friction could be derived

as a special case of the one with interfacial friction it will be derived separately after

demonstrating several properties common to both. It will be shown that interfacial

friction ( or some other mechanism which breaks strict geostrophy) must be included

because the model without interfacial friction cannot accommodate all possible deep

ocean velocity profiles.



The two models with and without interfacial friction can both in principle be ex-

tended to any number of layers which would sensibly fit within the maximum water

depth permitted by the approximations used. The model without interfacial friction

will be developed as a three-layer model, this being the minimum number to demon-

strate the various cases of deep ocean flow. The model with interfacial friction will be

developed as a two-layer model because to solve for a larger number of layers would

significantly increase its complexity and the computational effort required in its solu-

tion.

3.2 Common Properties

Assumptions common to both models are that they are in steady state, hydrostatic

balance, the surface is a rigid lid with no wind stress applied and the fractional density

difference between layers is small O(10-3). In both models flow in the core of any

constant density layer is in geostrophic balance. The geostrophic core is that part

of the density layer outside any Ekman layers which may be present adjacent to the

interfaces and/or bottom. It is assumed that the stratification is strong enough that

there is no exchange of mass between layers despite the turbulence introduced by any

interfacial frictional layers which may be present. Such an assumption makes the

models presented here more applicable to laboratory situations than to a continuously

stratified ocean.

The geometry of the two models can be seen in Figures (3-1) and (3-4). In both

figures x is offshore, y, alongshore and z, the vertical coordinate, is zero at the surface.

The free surface displacement is r and the uppermost density interface displacement

is g. Subscript 1 refers to the uppermost density layer and subscript 2, to the next

to uppermost density layer. In the three-layer model subscript 3 refers to the lowest

density layer and ( is the displacement of the lower density interface.

The total depth, h, will depend only on the offshore coordinate, i.e. h(x). The

depth of the deepest isobath included in the models is h,.. The nominal thickness of

the ith layer, i.e. its thickness when all displacements are zero, is di.



Flow will be forced by prescribing the vertical distribution of pressure along the

deepest isobath in the models. Because flow within the layers is mainly geostrophic,

prescribing pressure is equivalent to prescribing the vertical distribution of geostrophic

velocity normal to the deepest isobath.

It is found that solutions to the layered models exhibit short cross-topography scales

and therefore it is necessary to determine the conditions under which flow inertia may

be neglected. Planetary 3 is included only in the interfacial friction model.

The equations governing steady hydrostatic flow on a #-plane in the core of the ith

density layer when mixing is unimportant are (see Pedlosky (1979))

aui Bui Bui 18ap;U, + V, + W - (fo + 3y)v = - (3.1)
ax ay az pi8x

89; 80; 80; 1 api
, (fo+ y)u = (3.2)

ap;
= -gpj (3.3)az

aui+ + = 0  . (3.4)
8x ay 8z

ui and vi are the horizontal velocities and wi is the vertical velocity. fo is the Coriolis

parameter at a reference latitude, p; is the pressure in the ith layer and pi is the

layer density. It is assumed that |&| is small but not necessarily negligible. Such an

assumption restricts the applicability of these layered models to mid or high latitudes.

Differentiating (3.3) with respect to both horizontal coordinates shows that y =

a( y = 0, i.e. that the horizontal pressure gradient is independent of depth within a

layer. A consequence of this is that the forcing for the horizontal momentum equations

(3.1) and (3.2) is depth-independent and therefore horizontal velocities are also depth-



independent, i.e.

a3u0 - .vi -
(3.5)

9z az

Flow within the core of each layer is barotropic.

Solutions to both models exhibit a cross-topography scale short compared to their

along-topography scale. If the cross- and along-topography scales are L. and L, then,

from continuity (3.4), the magnitudes of the cross- and along-topography velocities uo

and vo are related by

(3.6)
Lx L,

If << 1, then ! is also small.

Inertia may be neglected in (3.1) and (3.2) only if

vo 1<< (3.7)
foL,

i.e. if the Rossby number based on the stronger velocity and the shorter horizontal

scale is small. Csanady (1985) requires only that the Rossby numbers u and ' be

small in order to neglect inertia. In fact the more restrictive condition (3.7) must be

met. The shortest cross-topography scale exhibited by solutions of either model is of

order 12km. For (3.7) to be true flow speeds in both models must be small compared

to 120cms-1.

Cross-differentiating (3.1) and (3.2) substituting into (3.4) and neglecting small

terms yields

c___ 1 
___-L+V-La -1N

_'_ = y( #3v;+ (ug i + vA)(if -- ))

__. 
(3.8)

A B C

The three terms in this equation are A, the stretching due to vertical velocity, B the

change in planetary vorticity and C the advection of relative vorticity. In both the



layered models presented here the magnitude of the vertical velocity in the layers above

the lowest is given by that of a parcel following the topography of the interface

W0linterface = (3.9)

where to is the magnitude of the interface displacement. In the lowest layer the vertical

velocity scale is given by a parcel following the bottom

W bottom = SUO (3.10)

where s is the bottom slope. The relative magnitudes of the terms A,B and C in (3.8)

in the upper layers are

1: do #L do vo
to fo to foL(

and in the lowest layer

1 h :L (3.12)
sL, fo sL, foL(

where do is a representative layer thickness and ho a representative water depth.

On an f-plane it is assumed that the right hand side of (3.8) is negligible. This

is so if the second and third non-dimensional numbers in both (3.11) and (3.12) are

small. For the scales given in tables 3.1 and 3.2 this is generally so. However the

neglect of relative vorticity is marginal for a 5cms- 1 velocity scale when the flow is

barotropic or near barotropic because, as will be seen, the cross-topography scale is at

a minimum. It should be noted that as the vertical velocity due to the fl effect increases

with the models latitudinal extent and its maximum water depth the size of both these

dimensions is restricted on an f-plane.

To neglect relative vorticity on a #--plane the third term in both (3.11) and (3.12)

must be small compared to the other two terms. This is the case if

Vo < 1 (3.13)
f3L.L,



Again this condition is generally satisfied for 5cms-1 currents ( see Table 3.2) but is

marginally satisfied for the short scales exhibited by near barotropic flows.

When relative vorticity is negligible (3.8) becomes

-i o .V(3.14)

az fo

In both models integrating the hydrostatic relation gives the pressure at any depth.

For example, the pressure in the second layer is

P2 = gp1(n +di - () +gP 2(f -di - z) . (3.15)

The dynamically significant pressure in any layer is the component of pressure which

varies in the horizontal. Expressed as an equivalent head of water, these pressures, for

up to three layers, are

Xi = ?I

X2 = 7 + fir (3.16)

X3 = 17+ f + E2

where ei = '2 (O(10~3)) is the non-dimensional density deficit of layer 1 over layer

2, and 62 = "-2 is the density excess of layer 2 over layer 3.
PS

Dropping small terms from (3.1) and (3.2) the components of geostrophic velocity

in the ith layer may be expressed

fou = -gaxi
fy

fo vi = g 1 i .(3.17)ax



These definitions show that isobars of X; are also flow lines for geostrophic flow in the

ith layer. Rewriting (3.16) the displacements are related to the pressures by

7 = X1

= ( X2 - X1) (3.18)

1
= ( X3 - X2)62

Both layered models will be derived by matching the vertical velocity within the

geostrophic core of any given layer to the vertical velocities which exist at or near the

top and bottom of that layer due to the bottom topography, the "topography" of the

interfaces and any Ekman layers which may be present. The vertical velocities in both

interfacial and bottom Ekman layers will be calculated from the bulk properties of the

frictional layers and expressed in terms of the geostrophic velocities in the adjacent

layer core or cores.



3.3 Development of Three-Layer Model

Consider the three density layer model shown in Figure 3-1. The upper two layers are

in geostrophic balance throughout their thickness. The bottom layer is in geostrophic

balance over most of its thickness except in a thin bottom Ekman layer. The topography

is linear with slope, s and is intended to be an idealization of the continental slope of

an east coast in the northern hemisphere. Other model assumptions are an f-plane,

that flow does not cross the interfaces, that interfaces do not outcrop at the surface nor

intersect each other, and that the intersection of the lowest interface with the bottom

is far enough away so as not to affect the flow.

On an f-plane (3.14) becomes .

aw =w0  (3.19)

i.e. vertical velocity is depth independent where the layers are in geostrophic balance.

Integrating (3.19) between the surface and the upper interface with a rigid lid yields

141--- + Vi- = 0 (3.20)

i.e. upper layer flow is along contours of interface displacement.

Using the definitions of geostrophic velocity, (3.17), equation (3.20) may be written

as the Jacobian

J( X1,) =0 (3.21)

where J(A, B) = MOB- ! g. Mathematically if the Jacobian of two functions is

zero, then neither varies along contours of the other. Consequently isobars of upper

layer pressure must be parallel to contours of upper interface displacement.

After multiplying by ei, noting that the Jacobian of a quantity with itself is zero,
(i.e. J(A, A) = 0), and incorporating the definition of pressure (3.16), (3.21) can be



Figure 3-1: a) Geometry for layered model.
inflow.

U(Z)

b) Schematic velocity profile of deep ocean



shown to be exactly equivalent to

J( X1, X2) = 0 (3.22)

i.e. pressure contours in the middle layer are parallel to pressure contours in the upper

layer. Because flow in these layers is in geostrophic balance, flow in the middle layer

must be parallel or anti-parallel to upper layer flow. Equation (3.22) in conjunction

with (3.21) implies that middle layer flow is also along contours of upper interface

displacement, i.e.

J( X2, = 0 (3.23)

Equation (3.23) implies that the vertical velocity on the lower side of the upper interface

is zero, and by (3.19) it must be zero throughout the middle layer, i.e. w2 = 0. Because

vertical velocity is zero, middle layer flow must also be parallel to contours of lower

interface displacement, which is the case when

J(X2,)=0 .(3.24)

When the middle layer is in motion, i.e. X2 $ 0, (3.23) and (3.24) can be simultaneously

true only if contours of upper interface displacement are parallel to contours of lower

interface displacement, i.e.

J(g, e) = 0 if X2 $0 . (3.25)

Multiplying by E2 and noting that J( X2, X2) = 0, (3.24) is exactly equivalent to

J( X2, X3) = 0 . (3.26)

Consequently flow in the middle layer must be parallel or anti-parallel to flow in the

lowest density layer. By (3.24) lower layer flow must also be along contours of lower



interface displacement, i.e.

J( X,)= 0 . (3.27)

This equation together with (3.19) implies that w3 is also zero in the core of the bottom

density layer.

Clearly this derivation can be extended downward to any number of geostrophic

layers which would sensibly fit within the maximum depth permitted by the model

assumptions (i.e. that the flow is geostrophic and on an f-plane). The generalized

results are that vertical velocity is zero in any geostrophic layer, that geostrophic flow

must be along the displacement contours of any density interfaces surrounding the

layer, and that geostrophic flow in any two adjacent moving layers must be parallel or

anti-parallel.

The dynamics of the lowest density layer differ slightly from those above because it

contains a thin Ekman layer at the bottom. From Pedlosky (1979) the vertical velocity

just above an Ekman layer on a linearly sloping bottom, and expressed in terms of the

geostrophic velocities just above the bottom, is

Wz=-h = SU 3 + WE - (3.28)

wE is the vertical velocity due to Ekman pumping within the bottom frictional layer

and, as has been demonstrated, WIZ=-h = W3 = 0.

The Ekman pumping velocity expressed in terms of the geostrophic velocities just

above the Ekman layer is, (Pedlosky (1979))

(E t)3 _ u3 N
WE = -I - (3.29)

2 cx ay

where 6 E is the thickness of the bottom Ekman layer equal to g, and AV is theVfo

vertical turbulent eddy viscosity in the frictional boundary layer. Vertical velocity

is zero in the core of the lowest layer, therefore, using (3.29) and the definitions of



geostrophic velocity (3.17), (3.28) can be written

- ( 2 + 2+S =0 (3.30)2 8x ay2 ay

Boundary conditions will be developed later for the particular problems under discus-

sion.

In the absence of bottom friction (3.30) becomes s' = 0, i.e. flow in the lowest

layer will follow isobaths. The length scale, 8, determines the rate at which lower

layer flow will diffuse or spread across the topography. A more turbulent bottom

boundary layer, low latitude or weak bottom slope will all increase a flow's ability to

cross isobaths. The physical mechanism implicit in (3.30) will also be discussed later.

Although this discussion centers on the cross-isobath movement of the geostrophic

flow, it should be kept in mind that there will also be an Ekman transport which flows

parallel to and down the pressure gradient in the lowest density layer. The Ekman

pumping velocity from (3.2$) and (3.[7) is

-- g a X3WE = so . (3.31)

Equations (3.22), (3.26) and (3.30) are three independent equations in the three

unknown pressures. With appropriate boundary conditions (3.30) can be solved for

bottom pressure. The remaining two equations can then be solved for upper and

middle layer pressure, and using (3.18) the displacements can be calculated.

It is shown later that for particular boundary conditions certain layers will be mo-

tionless and, in these cases, the solution scheme outlined above breaks down. For

example if the bottom layer is motionless, i.e. X3 = 0, then (3.26) and (3.30) are

trivially satisfied. The remaining equation (3.22) contains two unknowns and thus has

an infinite number of solutions. This degeneracy results from the assumption that flow

in the upper layers is purely geostrophic and on an f-plane (see Pedlosky (1979)).

Similarly, when the middle layer is motionless, i.e. X2 = 0, equation (3.30) together

with appropriate boundary conditions can be solved for bottom pressure. However

(3.22) and (3.26) are trivially satisfied and there is no equation remaining with which



to determine the upper layer pressure from the infinite number of possible solutions.

In this case flow in the top layer is also geostrophically degenerate.

It should be noted that the solution scheme does work when the top layer is mo-

tionless, i.e. X1 = 0. (3.26) and (3.30) are two independent equations in the unknown

middle and bottom layer pressures and, with appropriate boundary conditions, they

can be solved for a unique and non-trivial solution.

These examples are demonstrations of a general rule: that this model can only give

a unique solution if the bottom layer is moving, i.e. if X3 : 0, in which case the

flow pattern in all layers above the lowest, but below the first motionless layer, will be

parallel or anti-parallel to the flow in the lowest layer.

3.3a Point Source Solution

Before proceeding to solve the specific problem of a deep oceanic flow impinging on the

continental slope the "steady point source" solution to (3.30), i.e. the Green's function

of (3.30), is sought. A point source entering the lowest layer will raise the lower interface

above the source, reducing the depth averaged temperature at that point. Thus a source

in the lowest layer acts as a point cooling. Conversely, withdrawing fluid from the lower

layer acts as a point warming. The physical interpretation for fluid being injected into

other layers is discussed later.

Equation (3.30) is analogous to that governing the steady state diffusion in a two-

dimensional medium which is moving parallel to the y axis. The fluid sink is equivalent

to a point sink of heat; - is analogous to the thermal diffusivity and -s to the speed2

at which the medium is moving. From Carslaw and Jaeger (1959) the solution for a

point sink at the origin valid for all x and y is

X3 = q exp(LYt Ko (1 2 + y2) (3.32)
27rfo(-) 2- 2(-)

where Ko is the zeroth order modified Bessel function of the second kind, and q is

proportional to the rate at which fluid is being withdrawn per unit area of the sink.



The isobars of the non-dimensional solution (3.32) are plotted in Figure 3-2a. Hori-

zontal lengths are non-dimensionalized by _, which for the typical scales given in Table

3.1 is 0.4km. The region shown is 40 by 100 non-dimensional units, which corresponds

to a section of continental slope 16km wide and 40km long.

The isobars in Figure 3-2a are also flow lines for geostrophic flow in the lowest layer.

Geostrophic flow is along closed paths around the sink, but the pattern is strongly

elongated along the topography with a much shorter "upstream" scale, positive y,

than the "downstream" negative y scale. In the heat analogy it is clear that on scales

large compared to - the advection of heat is much stronger than the cross-current

diffusion of heat. The oceanographic conclusion is that on these scales the tendency

for geostrophic flow to follow isobaths is much stronger than the rate at which friction

allows the flow to cross isobaths.

The sink draws down the lowest interface but will not induce flow in the layer above

because middle layer velocities are independent of the lower interface displacement (see

(3.16),(3.17)). In short, the flow pattern induced by the sink in the lowest geostrophic

layer is confined to that layer.

A sink in the middle layer would draw down the upper interface, inducing mid-

level flow, however the upper layer would remain motionless. Such a sink would also

draw up the lower interface reducing pressure gradients in the lower layer. If the

opposing displacement of the two interfaces is such that pressure in the lower layer is

exactly compensated then the lower layer will not move and middle layer flow cannot

be determined with this model. If the lower interface does not exactly compensate for

the upper interface, then the flow pattern of the lower layer and the middle layer will

be as in Figure 3-2a. However, it is not clear how to determine the degree of pressure

compensation in the bottom layer.

There is an Ekman transport down the bottom pressure gradient associated with

motion in the lowest geostrophic layer. From (3.31) and (3.32) the Ekman pumping
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Figure 3-2: Isobars of bottom pressure for a point source in the lowest geostrophic layer
(the Green's function solution to (3.30)). a) Solid contour spacing is 1 and pressure
decreases monotonically towards the origin. Isobars are also flow lines for geostrophic
flow in the lowest layer. b) Contours of Ekman pumping velocity. Contour spacing is 1.
Solid contours are negative values, dashed contours, positive values. Ekman pumping
velocity for the point source is downward in regions of upslope geostrophic flow and
upward in regions of downslope flow. Contours near the origin are omitted because the
solution is singular there.



velocity for the point source is

gs -y_ 1
W E = s ex s - Ko VX2 +y y2

47rf 2 (26)2 2('F228 2a 28

+ ( K1 z2+y2)) . (3.33)

K, is the first order modified Bessel function of the second kind. Contours of the

Ekman pumping velocity are shown in Figure 3-2b. The Ekman transport across any

closed isobar in Figure 3-2a is balanced by fluid being withdrawn by the sink.

The Green's function (3.32) is useful because it shows that, for typical oceanographic

scales, the inherent character of solutions to (3.30) is a very short influence towards

positive y, a large region of influence towards negative y, and a small degree of cross-

isobath influence. In principle by superimposing point source solutions the solutions to

many more complex problems could be obtained. The superposition would retain the

general elongated character of the individual point solutions.

3.3b Deep Ocean Inflow

In this section the flow pattern of a deep ocean flow impinging on the continental slope

will be found.

It is possible to simplify (3.30) further by exploiting the elongation exhibited by

Green's function solution. The alongshore diffusion is of order one in (3.30) when the

horizontal length scales are isotropic and equal to -. For the scales in Table (3.1)

'6F is 0.4km while the alongshore scale is 250km. Therefore alongshore diffusion may2a

be neglected in (3.30) reducing it to a balance between cross-topography frictional

diffusion and topographic steering

- a2 X3 =0- (3.34)
2 8x2 ay



The long and cross-slope scales are related by

L- = L, (3.35)

For scales in Table (3.1) L2 is much smaller than L., i.e.

<< 1 .(3.36)
L,

This is often referred to as the longwave approximation. This term will be used here

though, strictly speaking, there are no waves in this steady model. Continuity (3.36)

implies that

- << 1.(3.37)
V0

which shows that the geostrophic velocities along isobaths are much stronger than

velocities across isobaths. The scale relationship (3.35) is similar to that derived by

Csanady(1978) for frictionally controlled barotropic flow, since his drag coefficient, r,

is related to the Ekman layer thickness by r = . Equation (3.34) is the same as

Csanady's except that in this layered model the bottom pressure replaces his surface

pressure. As in Csanady's equation pressure information propagates only in one along-

shore direction in (3.34) given by the sign of - .

3.3c Boundary Conditions

Equation (3.34) is parabolic and also governs one-dimensional heat diffusion where -y is

the "time-like" coordinate. Thus it requires two cross-topography boundary conditions

and an. "initial condition". Flow is forced by prescribing the three displacements on

x = 0. As an "initial condition" it is assumed that no flow enters the domain of

interest across y = 0 from farther up the shelf. This can be ensured by prescribing all

the pressures to be zero on y = 0. This boundary condition allows the flow induced by

forcing at the offshore boundary to be considered in isolation from flow which may be

forced at other lateral boundaries.



Boundary conditions could be developed for the flow at the lines where the interface

intersects the bottom. However solutions to (3.34) are error functions which decay

rapidly with cross-slope distance. For the scales in Table 3.1 the cross-slope scale of

a 250km wide inflow is only 10km whereas the lowest interface intersects the bottom

30km shoreward of x = 0. Thus the flow where the lowest interface intersects the

bottom is negligible and the shoreward boundary condition for the displacements is

that they vanish as x -+ -oo. Therefore no special boundary conditions need be

developed for any of the interface/bottom intersections. The boundary conditions for

this deep ocean inflow model are

(i) X1 , X2 and X3 given on x = 0

(ii) X1 , X2 and X3 zero on y = 0

(iii) X1, X2 and X3 --+ 0 as x - -oo.

For simplicity the pressures are prescribed to slope linearly along x = 0 i.e.

x, = ay

X2= by at x =0 (3.38)

X3 = Jy
where a, b and c are arbitrary constants.

For particular boundary conditions some layers will be motionless. The upper layer

is motionless if a = 0, the middle layer, if b = 0 and the lowest layer, when c = 0.

3.3d Solution

The example we will consider consists of a surface mixed layer of 100m, a 100m thick

middle layer and a 300m thick bottom layer. Equation (3.34) is analogous to that for

heat diffusion in an infinite bar with thermal diffusivity 6. The bar has zero initial

temperature and a prescribed temperature at x = 0 which changes linearly with time.

The solution from Carslaw and Jaeger (1959) (page 63) is



z 2
X3 = cy 11+ 1-'- -) erf ( Vi )

2s(y 2 (-y)

- exp ( (3.39)
?rt(-y 4z(- y)

where erf is the error function.

Contours for non-dimensional bottom pressure are plotted in Figure 3-3. The solu-

tion was non-dimensionalized with the following scales

X3 = cL, X'

x1 = cLv X'

X2 = cL, x'

y = Lyy'

V2sX

The region plotted in Figure 3-3 corresponds to an area of continental slope 250km

long and 20km wide. The narrow region of cross-slope influence of the deep ocean's

lower layer is clearly evident here.

The remaining governing equations (3.22) and (3.26) need not be laboriously solved

in order to determine the surface and middle layer pressures. Equation (3.26) shows

that contours of middle layer pressure must be parallel to contours of lower layer pres-

sure if both layers are moving. Furthermore (3.22) shows that contours of upper layer

pressure are parallel to contours of middle layer pressure if both layers are moving.
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Figure 3-3: Isobars of bottom pressure for the inflow solution (3.39).The pressure
increases linearly along x = 0. This non-dimensional domain corresponds to a portion
of continental shelf 20km wide and 250km long. Solid contours are spaced at 0.2 and
pressure has a minimum of -1 at y = -1, x = 0. This solution demonstrates that the
influence of a deep ocean pressure gradient is limited by the steep continental slope. The
interface displacements are parallel to the isobars of bottom pressure and geostrophic
flow is along the isobars in all layers between the bottom and the first motionless layer.



Therefore the contours of any pressure will be parallel to the contours of any other

pressure if the middle layer is in motion. Consequently both upper and middle layer

pressures must be functionally related to bottom pressure, i.e.

X1 = F( X3)

X2 = G( X3 ) . (3.40)

These functional relationships can be determined from the boundary conditions. Given

X1, X2 and X3 along some line then F, and G can be determined on that line. The

relationships will also hold in all regions containing contours of X1, X2 and X3 which

cross the line. For the boundary conditions (3.38) the functional relations for this inflow

where X1, X2 and X3 are prescribed independently on x = 0 are

a
Xi = - X3

C

b
X2 = - X . (3.41)

C

For more general boundary conditions the other pressures will not necessarily be linearly

related to the bottom pressure.

Substituting for X3 in (3.41) from (3.39) gives the solutions for the middle and upper

layer pressures. Thus if the middle layer is moving its non-dimensional pressure, and

therefore flow pattern, is given by Figure 3-3 after contour values are scaled by the

factor }. If the upper layer is also moving, its flow pattern is also given by Figure 3-3

when contours are scaled by i. When the middle layer is motionless only the lower

layer flow is as in Figure 3-3. The upper layer flow cannot be determined from this

model.



The solutions for surface and interface displacements from (3.18) are

a
= X3

1
g = -(b - a) X3

EiC

1
= -(c - b) X

E2C

where X3 is given by (3.39).
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Alongshore scale, L, 250km
Maximum water depth, hm., 500m
Bottom slope, s 0.01
Ekman layer thickness, 5E 1Gm
Coriolis, f 10-4S-1
Layer thicknesses, di,d 2  100m
Bottom layer thickness, d3  300m
Free surface displacement, r7o 0.025m
Interface displacements, go, (o 20m
Density excess, E1 , E2  0.001

Calculated Scales

Cross-shelf scale, L. = , 12km
"Thermal diffusivity", S 0.4km
Alongshore velocity,vo 5cms-

Table 3.1: Scales for the Three-Layer Model
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3.3e Summary of Three-Layer Model

The three-layer model shows that:

1. the cross-topography penetration of bottom layer flow is severely restricted by the

continental slope;

2. flow in layers above a moving bottom layer but below the lowest motionless layer

is parallel or anti-parallel to the flow in the bottom layer and therefore cross-

topography penetration in these layers is also very limited;

3. this model cannot determine the flow in layers above the lowest motionless layer

because of geostrophic degeneracy and therefore cannot determine the cross-

topography penetration of all possible deep ocean velocity profiles.



3.4 Interfacial Friction Model Development

As discussed earlier the three-layer model cannot be used to find the flow in a density

layer which overlies a motionless layer because of geostrophic degeneracy. However

by including higher order dynamics such as internal friction into the layers above the

bottom layer this degeneracy can be eliminated.

Consider the two-layer model shown in figure (3-4). Internal friction resulting from

the relative motion of the two density layers will cause frictional Ekman boundary layers

to form at the interface. There are two Ekman layers associated with the interface,

one above and one below. There is also a third Ekman layer at the bottom which

results from the frictional drag of the sloping bottom. Both constant density layers are

comprised of a core where the flow is in geostrophic balance, and of thin Ekman layers

adjacent to the interface and bottom. Since turbulence away from the rigid bottom

is expected to be weaker than that at the bottom the turbulent eddy viscosity near

the interface will be smaller than in the bottom boundary layer. Consequently the

interfacial Ekman layers will be thinner than the bottom Ekman layers.

The use of interfacial Ekman layers an idealization which has been used in layered

models for the general wind driven circulation (Huang (1987)). its use in these models

is to provide a mechanism by which momentum may be transferred downward in a

manner similar to mesoscale eddies in the real ocean. In the models presented here it

provides a mechanism, although an idealized one, for inter-layer momentum transfer.

The geometry of the two-layer model is shown in Figure 3-4. The topography is in-

tended to be an idealization of the continental shelf and slope of a northern hemisphere

east coast. The gently linearly sloping shelf with depth zero at the coast intersects the

steeper linear gradient of the slope at the shelf break (x = x,) i.e.

sox 0 < X < X,
h = .(3.42)

sz 8 , + s(x - x,) X, < X < Xmax



s, is the bottom slope of the shelf and s, the bottom slope of the continental slope. Xmaz

is the seaward extent of the model where flow is forced by prescribing the pressure, and

hence also the geostrophic flow, onto the topography. The single interface intersects

the bottom along the line xr(y). As the interface moves up or down this intersection

with the topography will move on or offshore. The position of the intersection must be

determined as part of the solution. The geostrophic velocities in the core of each layer

are given by (3.17).

An interface is not necessarily flat and may be warped in both the x and y directions.

Thus the "topography" of the interface and the relative motion of the two density layers

must be taken into consideration. In the three-layer model without interfacial friction

horizontal velocities were discontinuous across the interface. Ekman layers allow the

velocities in the two density layers to be smoothly joined without this discontinuity.

In addition, because the stress exerted by the upper layer on the lower layer must be

equal and opposite to the stress exerted by the lower layer on the upper, there must

be continuity of stress across the interface.

In Appendix B the equations governing Ekman layers on a sloping interface are

derived and the detailed velocity solutions which join the geostrophic flow in one layer

to the other while ensuring continuity of velocity and stress at the interface are given.

The final, and most useful result obtained is that the vertical velocity just outside the

interfacial Ekman layers is the sum of two components: one due to the Ekman pumping

which results from convergences and divergences of interfacial Ekman transport, and

another component due to the "topography" of the interface. This result is very similar

to that obtained by Pedlosky (1979) for an Ekman layer on a rigid sloping bottom where

the vertical velocity outside the bottom Ekman layer is also the sum of components due

to topography and Ekman pumping. The main difference is that Ekman pumping at

the interface depends on the difference between the geostrophic velocities in the density

layers on either side of the interface, rather than on the absolute geostrophic velocity

as it does in a bottom Ekman layer.
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Figure 3-4: Geometry for the two-layer interfacial friction model is an idealization of
the shelf and slope of a northern hemisphere east coast. x is offshore. y is northward.
a) The shelf break is at x,, the single interface intersects the topography along x(y),
the interface would intersect the bottom at X if it were flat. There are thin Ekman
layers at the bottom and adjacent to the interface in both density layers.



The model equations can be developed by matching the vertical velocity in the

geostrophic core of each layer to the vertical velocity just outside the Ekman layers

at the interface and at the bottom. In dimensional terms the vertical velocity in the

geostrophic core of the upper layer just outside the thin upper interfacial Ekman layer

from Appendix B ((B.24)) is

W1Iz=-di =+U1 * VH- + - V2) - +(Ul - U2)] .(.3

di is the horizontal geostrophic velocity vector and V is the vector (b, ). 6, is the

thickness of the interfacial Ekman layer equal to f , A being the turbulent eddy

viscosity away from the bottom boundary layer which is expected to be smaller than

the eddy viscosity at the bottom. Similarly in dimensional form the vertical velocity

just below the thin lower interfacial Ekman layer from (B.25) is

W2|z=-di = U2 e V + [ 1-( - v 2) - 1-(U - U2)] . (3.44)

In making the #-plane approximation it has already been assumed that the variation

in f is small. Consequently the variation in interfacial (and bottom) Ekman layer

thickness due to latitude need not be considered, so that

AI
bI v (3.45)

\ 2 fo

The first term on the right hand side of both (3.43) and (3.44) is the vertical motion

due to the "topography" created by the displacement of the interface, and the remaining

terms are due to the Ekman pumping resulting from the relative motion in the two

geostrophic cores.

Taking the difference of (3.43) and (3.44) gives

Wlz=-di - W2|z=-di = (di - Ui) e V g (3.46)



The velocity shear ti - ti' is perpendicular to the gradient of interface slope, VHg, (see
(3.17) and (3.18)), therefore the right hand side of (3.46) is zero and thus

Wlz=-di = W2|z=-di (3.47)

i.e. the vertical velocity is continuous across the interfacial Ekman layers, though is

was assumed that no flow crosses the interface. Thus (3.46) is an identity.

Depth integrating (3.14) for a thin Ekman layer, a small interface displacement and

with a rigid lid gives

Wilz=-a = div . (3.48)
fo

Expressing (3.43) in terms of pressure and combining it with (3.17) yields

V (Xi - X2) + J(X1, I) = di . (3.49)
4 fo ax

Noting that the Jacobian of a variable with itself is zero, and that

1
= -( X2 - X 1) (3.50)

where E = £2-A, (3.49) can be rewritten

Eb6vX EP a X1(351
H Xi- X2) + J(X1, X2) = diX (3.51)

4 fo ax

Except for the additional term due to planetary #, this equation is the dimensional

form of the equation derived by Zang, Janowitz and Pietrafesa (1987). The coupling

of flow between the layers is clearly evident here. If interfacial friction were zero,

i.e. SI = 0, and planetary P were negligible, then (3.51) would reduce to a condition

that geostrophic flow be parallel or anti-parallel in the two layers (cf. (3.22)). This

tendency for the upper layer flow to parallel that in the lower layer can be envisaged

as the steering of the upper layer by the lower through displacements of the interface.

The first term in (3.51) represents a frictional drag on the upper layer by the lower



layer due to their relative motion. This frictional term reduces the ability of the lower

layer to steer the upper, tends to spread upper layer flow in all directions and adds a

new degree of freedom when compared to the three-layer model. Comparing (3.51) to

that governing two-dimensional heat diffusion shows that the planetary # term acts in

such a way as to "advect" the upper layer pressure westward. Thus the dynamics of

the upper layer, where it overlies the lower layer, can be envisaged as a combination

of steering and drag due to the lower layer, and westward "advection" by planetary

P. An alternative physical explanation of (3.51) in terms of potential vorticity would

balance the vorticity loss due to friction plus the change in vorticity due to stretching

of upper layer fluid columns against the advection of planetary vorticity.

Integrating (3.14) between the surface and bottom gives the vertical velocity just

above the thin bottom Ekman layer as

W2|z=-d = -- (divi + (h - di)v 2 ) . (3.52)

Combining this with Pedlosky's.result for an Ekman layer on a sloping bottom, (3.28)

the equations governing motion where layers are in contact with the bottom are

hL X+ =-hX X <XzX.fo ax 
(3.53)

6&1 aX2+ 2X= -(di 8 X + (h - di) X) x > x,2 1X a-h a y fA ax ax'

The right hand sides of the second equation is in fact one of the terms in the Sverdrup

balance for a two-layer model.

Under the long wave approximation (3.36) alongshore derivatives are small com-

pared to cross-topography derivatives so that the Laplacians V2 in (3.51) and (3.53)

may be approximated by -2 to an accuracy of order (-)2. Using this approximation

the equations which must be solved become

E + --- 1 - x, h< 8r (3.54)
2 ax2 ox ay fo x



41 2( Xi - X2) + J( X1, X2) = d, -Xdi
o~z > ax

_M 2 X2 _ +I +(!L~X
a z2 ' += -- (d a + (h -

_d)_ a2 2 8 y fo 4 z oz
(3.55)

3.4a Boundary and Matching Conditions

Boundary conditions and matching conditions at the coast, the shelf break and along

the line where the topography intersects the bottom all involve constraints on the

transport within the layers at those points. It is useful to state the transports before

proceeding to derive the specific matching and boundary conditions.

The total transport in a layer is the sum of a geostrophic transport plus one or more

Ekman transports. The components of transport due to geostrophic flow within the

density layers can be written

hu1

(di - jui

hv1

(d1 - )v1

x < XI

X > X

x < XI

X > XI

(3.56a)

(3.56b)
Ujg = (d2 + )u2 1

X > XI
Vi =(d 2 + )v2 I

From Appendix B the interfacial Ekman transports in

layers in dimensional form are

U'1

Vi1

U2

VI

= -F[(U1 - u2) + (vi - V2)]

=I j[(Ul - U2) - (vi - V2)]

=41 [( - U2) - ( - V2)]

the upper and lower density

X>X . (3.57)

U19=

V| =



Note that the interfacial Ekman transports on either side of the interface are equal

in magnitude but are opposite in direction. From Pedlosky (1979) the components

of transport due to friction in the bottom Ekman layers where the upper and lower

density layers are in contact with the bottom are

Ufb= ~-g[ui +v 1]2 U + (3.58a)
Vb = [UI - VI] }X X

2 -2-[U 2±+V2 1 xz > . (3.58b)
V2b= -u2 -v2]

Boundary and matching conditions must be applied along the line where the inter-

face intersects the bottom, xz(y). Due to the topography this intersection moves on and

offshore as the interface moves up and down, and its position must be determined as

part of the solution. The position of the intersection for our idealized slope topography

is related to the interface displacement by

XbT Iz XI Xs Xb <Xs

z -+(xb .) 1 X X, Xb > X,

xir(Y) =& ,+nz , g, r&z e>z (3.59)
z, + -L (z - zX8 lz >z a5zx.+(xb.) 5 'I r XI> X8 Xb: Xs

Xb -X > X zX > Xz

Xb is where the interface would intersect the bottom if it were flat, (see Figure 3-4). Of

the four cases above the middle two are complicated by the fact that Xb and xz span

the shelf break.

Flow is forced by prescribing the surface and interface displacement, and thus the

vertical pressure distribution, along the deepest isobath x = x... This establishes

a geostrophic flow into the domain from the deep ocean. For simplicity this offshore

forcing of the shelf and slope will be forced by imposing linear pressure gradients along



the deepest isobath i.e.

Xi =P i1
X = .max . (3.60)

X2 = 2Y I

The coastal boundary condition is that the sum of geostrophic and Ekman trans-

ports across the coast, x = 0, be zero. lince the depth at the coast is also zero there is

no geostrophic transport there (see (3.56a)). Thus the coastal boundary condition for

total transport is that the cross-shelf bottom Ekman transport vanishes. From (3.58a),

noting that alongshore velocities are assumed to be much stronger than cross-shelf

velocities, this can stated approximately

vi = 0 at x=O . (3.61)

In the lower layer there can be no geostrophic transport across the line where the

interface intersects the bottom since the layer has no thickness there. Thus the bound-

ary condition that there is no total transport in the lower layer across this line can be

satisfied if the sum of interfacial and bottom Ekman transports normal to the line of

intersection is zero. In order to conserve mass the interfacial Ekman transport must be

converted to Ekman transport in the bottom boundary layer. The vanishing lower layer

thickness blocks any interfacial Ekman transport from crossing the line of intersection.

The boundary condition developed for this situation is very similar to the boundary

condition for the blocking of wind driven Ekman transport at a coast used by Csanady

(1978) and examined in detail by Mitchum and Clarke (1986). If a, is the angle which

the line of intersection of the interface with the bottom makes with the topography

defined by tan ar = iLthen, due to the assumption about horizontal scales (3.36),

a, is a small angle. In addition it was assumed that cross-shore velocities are weak

compared to alongshore velocities. Therefore the boundary condition, from (3.57) and

(3.58b), may be approximated to order (-) as

oLy

(vI - 2) - Ev2 = 0 at y=O . (3.62)
2



Both (3.54) and (3.55) are parabolic and have the form of the equation governing

one-dimensional heat diffusion where -y is the "time-like" coordinate. Both equations

must have an "initial" condition along y = 0. It will be assumed that no flow enters

the domain of interest across y = 0, so that the pressure along this line can be taken

to be zero, i.e.

X1 =X2 = 0  at y=O . (3.63)

3.4b Matching Conditions

Flow in either layer which crosses the shelf break, and flow in the upper layer which

crosses the line where the interface and topography intersect must conserve mass, and

therefore the transport across these lines must be continuous. In addition the pressure

across both of these lines must also be continuous. This can be stated

*= [Xi'+ xi X. (3.64)

[X2|; = [X2|4 XI < Xe

where x; is a small distance shoreward of the shelf break and xf, a small distance

offshore of the shelf break, and

[X1|. 7 = [Xi|. (3.65)

where x is a small distance shoreward of the line where topography and interface

intersect and 4+ is a small distance offshore of this line.

Continuity of pressure across any given line in the upper layer implies that the pres-

sure gradient along the line must also be continuous across that line. The geostrophic

transport in a density layer at right angles to any line is the product of the layer

thickness and the pressure gradient along the line (3.56a) . Provided that the layer

thickness is continuous across a line then pressure continuity implies that geostrophic

transport normal to the line must also be continuous. Thus at the shelf break and

at the topography/interface intersection pressure continuity ensures that geostrophic



transport is also continuous. To ensure continuity of total mass transport across these

lines the Ekman transport must also be continuous across them.

Transport will be continuous across the shelf break if the bottom Ekman layer

transport normal to the shelf break is continuous. There are two cases depending on

which layer is in contact with the bottom at the shelf break. From (3.58a) and (3.58b)

assuming that alongshore velocities are much larger than cross-shelf velocities, this

matching condition is approximatly

[V1|,- = [V1].t x 1 > x 8

[V2|. = [V2].t x1 < Xi . (3.66)

In order for upper layer flow crossing the line where the interface intersects the

bottom to conserve mass, the Ekman transport normal to this line must be continu-

ous. Therefore the component of upper layer bottom Ekman transport normal to and

just shoreward of the interface/topography intersection must equal the component of

upper layer interfacial Ekman transport normal to and just offshore of this intersec-

tion. Assuming that alongshore flows are strong compared to cross-shore flows and

that alongshore scales are large compared to cross-shore scales, so that a'1 is a small

angle, the above may be approximated by

bE[V1] = LE[(V1 - v2)].7 (3.67)

It should be noted that all the boundary and matching conditions are either inde-

pendent of the Ekman layer thickness (e.g. ((3.61),(3.66)) or dependent on the ratio of

interfacial to bottom Ekman layer thickness equal to (e.g. (3.62), (3.67)). This

ratio is independent of the value of f and consequently the boundary or matching

conditions are exactly the same whether on an f or a #-plane.



3.4c Non-Dimensional Equations

The governing equations and boundary conditions can be shown to be dependent on a

small group of non-dimensional numbers. Dimensionless variables can be defined by

y = LYy'

X = L z'

X1,X2 =fr o(xX2)

= 7or;' . (3.68)

fo

h =hoh'

d1 = hod'

io is the magnitude of the surface displacement and also gives the magnitude of the

pressure expressed in meters of water. The non-dimensional interface displacement

from (3.18) is

= X2- X1 (3.69)

Horizontal scales in equation (3.54) are related by (3.35). With the scales (3.68) the

non-dimensional governing equations are

a 2 x' , a' 1 _ 'h' a x'I

, + s y , ~x' 1 Xz (3.70a)

82 of a 1
R 2 (' - X2) + J( x, X)= d' > (3.70b)

ho

a2 :2 A C A X'= (d ,+' a , d('1 8 x'2 x> xi . (3.70c)
aX12 ay' h x x



The non-dimensional bottom slope for the idealized topography is

s' = S.I X X. (3.71)
1 X > X.

s,, is the ratio of the linear shelf slope to the slope of the continental slope, i.e. s,., =

The non-dimensional number R is

R = 64 SLY (3.72)
47]o OE

and measures the importance of such effects as stratification and the size of the in-

terfacial and bottom Ekman layers. For the scales in Table 3.2 R is of order 1, thus

interfacial friction in the upper density layer is as important as the steering by the

lower density layer.

Ah' - aL2 is the depth change over the flow's horizontal scale relative to the total

depth. -r measures the importance of planetary # relative to topographic 6. InAh'

(3.70b) '7 is equal to J- which is the magnitude of the interface displacement relative

to the total depth. The ratio 9 measures the importance of planetary # relative to
ho

the "topographic" # which is due to the warping of the interface.

For shoreward flow the forcing along the deepest isobath (3.60) is

xI =-_Y
ma ' . (3.73)

X2 = -rY

r' is the strength of the lower layer flow relative to the strength of the upper layer flow.

The initial conditions are

X' = X2 = 0 at y=O . (3.74)

The coastal boundary condition (3.61) expressed in terms of pressure is

' = 0 at x=O . (3.75)



Depth at shelf break, h,
Bottom slope: shelf, s,
Shelf width, X.
Coriolis, fo
Planetary #
Density excess, E = P2-PI

Bottom turbulent eddy viscosity, AV
Interior turbulent eddy viscosity, A'y
Bottom Ekman layer thickness, 6 E = 2A

Interfacial Ekman layer thickness,6= 2f
61

Relative Ekman layer thickness, m
Unit of cross-shelf distance (i.e. x' units)

loom
0.001

100km

10-4s-1
10-11m~1s-1

0.001
10- 2m2 S-1
10- 3m 2 S-1

lOm

3m

0.3

10km

f - plane 3 - plane

Alongshore scale, L. 250km 1000km
Cross-shelf scale, L. > 12km > 20km
Maximum water depth, hm,, 500m 3100m
Bottom slope: slope, s 0.01 0.05
Slope width, xma. - x, 40km 60km

Upper layer thicknesses, di 100 - 250m 100 - 1000m

Lower layer thicknesses, d2  250 - 400m 2100 - 3000m
Free surface displacement, r7o 1cm 10cm
Interface displacement, go 20m loom

Calculated Scales

Alongshore velocity, vo 5cms~1 5cms-1
Cross isobath interfacial movement, shelf= - 10km 10km
Cross isobath interfacial movement, slope= . 2km 0.4km
Non-dimensional interface movement over slope , A,= g- 0.1 0.2
Non-dimensional interfacial friction,R 1.8 0.83

Table 3.2: Scales for Two-Layer Model with Interfacial Friction
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The boundary condition for the lower layer where the interface intersects the bottom

(3.62) in terms of pressure is

L (ax- a
2 k.ax' ax' )

-X = 0ax' at x' = x' .

ogW is the thickness of the interfacial Ekman layer relative to the thickness of the bottom

Ekman layer, i.e. og' = -. Continuity of surface pressure at the shelf break, (3.64),

and that at the interface/bottom intersection, (3.65) are, in terms of pressure

[ A],' = [X~I2t' > ',

[X -' = [X ,

X y'= [ X']q,

(3.77)

z' < X'

The match of Ekman transport across the shelf break (3.66) is

a X[a X1ax'] ,.- axJzt,ax _

az z ' . 9

ax' J

z'I > zx

X aI (3.78)

The match of Ekman transport across the interface/bottom intersection (3.67) in terms

of pressure is

a X' ,
ax' ,7
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(3.76)

2 lax X+



In non-dimensional coordinates the position of the interface/bottom intersection (3.59)

is

zI + -_L _ . (3.80)XI = I X
xi X1 + -X - ) A.~l X1 > X, X4 < 13.0

A, = is the size of the cross-slope movement of the interface/bottom intersection

over the continental slope. For the values in Table 3.2 A, is 0.1 non-dimensional units

or 1km. Such a small movement implies that the continental slope is steep enough that

cross-slope movement of the intersection need not be considered. However the shelf

has a much gentler slope and consequently the scale of the cross-shelf movement, A,

is 1 non-dimensional unit or 10km for the values in Table 3.2. Such movement over the

shelf is significant and must be included in the solution.
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3.4d Solution Scheme

Solving the governing equations is complicated by the fact that they are coupled. Equa-

tion (3.70b) contains both the upper and lower layer pressure and therefore cannot be

solved independently of (3.70c). Equation (3.70c) is dependent on the upper layer

pressure and is also coupled to the upper layer through the boundary condition at the

interface/bottom intersection (3.76). The following is a development of a scheme which

allows the coupled equations to be solved.

The governing equations are related to equations governing unsteady one-dimensional

heat diffusion. The "time-like" coordinate is -y. Equations (3.70a) and (3.70c) are the

same as that governing heat diffusion in a solid bar with thermal diffusivity, s'. The

upper layer equation (3.70b) is the same as that governing one-dimensional heat diffu-

sion in a medium which is moving parallel to the x-axis. The strength of the advection

of heat is given by

8
X2

1  (3.81)
8z'

and the thermal diffusivity is

R? 
(3.82)

8z'

Exploiting the parabolic nature of the governing equations a numerical solution

would use the pressures at one "time step", y1, to find the pressures at the next time

step, Y2 (lower latitude for an east coast). Given both pressures at y1 (3.70c) cannot

be solved first for lower layer pressure at Y2 because the cross-shore derivative of the as

yet unknown upper layer pressure at Y2 is required for both (3.70c) and the boundary

condition (3.76). Similarly (3.70b) cannot be solved first for upper layer pressure at Y2

because lower layer pressure at Y2 is needed to calculate the advection (3.81) and the

matching condition (3.79).

The position of the interface/bottom intersection at the new time step xz(y 2 ) must

be known in order to determine where to apply the boundary condition (3.76) and the

103



matching condition (3.79). This position is related to interface displacement which is

proportional to the pressure difference between the layers. Consequently xz(y 2 ) cannot

be calculated without knowing both pressures at Y2 but these pressures cannot be

determined without knowing xz(y 2 ). This difficulty can be resolved if the position of

the interface/bottom intersection at the current time step, y1, is used as an estimate

for the position at the new time step, Y2. i.e. assume

zrly2 ~- zly, . (3.83)

In the solutions given later it is found that the intersection moves only a small distance

across the topography, thus the intersection's position at y1 is such a good estimate of

its position at Y2 that it need not be revised once a complete solution at Y2 is obtained.

The cross-shore derivative of the as yet undetermined upper layer pressure at the

next time step, Y2, is required for (3.70c) and the boundary condition (3.76). This can

also be estimated by its value at the current time step, y1, i.e. assume

a ' Iz ,Y2) , Bz' (zY' ) . (3.84)

The difference between the derivative and its estimate was found to be less than 5%

for the 80 by 100 grid point numerical domain used to solve the governing equations.

Thus the error in the estimate (3.84) is also so small that it need not be revised.

The solution scheme proceeds as follows: given the upper and lower layer pressures

X' and X' at y1, then (3.70c), together with the offshore boundary condition (3.73),

the estimated position of the interface/bottom intersection, (3.83), and the estimated

value for the cross-slope derivative of upper layer pressure (3.84) can all be solved

numerically to give the lower layer pressure at the next time step, Y2. To ensure

numerical stability upstream differences for the #l' term and an implicit finite difference

scheme are used. The lower layer pressure at Y2 is then used to calculate the advection

speed (3.81), the thermal diffusivity, (3.82), and the derivative of lower layer pressure in

the matching condition (3.79). Equations (3.70a) and (3.70b) are then solved for upper

layer pressure at the new time step, Y2. Again an implicit finite difference scheme is used
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employing centered differences for the diffusive term f and upstream differences for

the "advective" term 2 to ensure numerical stability. The interface displacement atax,

Y2 is calculated by taking the difference in pressures and is used in (3.69) to calculate

a position for the interface bottom intersection at Y2. To reduce the complexity of

the numerical scheme the intersection is assumed to be at the nearest cross-shore grid

point to its calculated position. With a complete solution at the new time step , Y2,

the above procedure can be repeated successively until the latitudinal extent of the

numerical domain is covered.

3.4e Results and Discussion

Using the method outlined in the previous section the governing equations together

with the boundary and matching conditions can be solved. Solutions will be presented

in the form of contours of upper and lower layer pressure as well as contours of interface

displacement. Contours of pressure in the upper or lower layer are also flow lines for

geostrophic motion in each layer's core. Though calculated, the solution for the inner

shelf will not be plotted when the solutions show no significant flow there. Thus all

plots show only the outer shelf and the continental slope. In each plot the labeled

dashed line marks the straight shelf break and the chain dashed line is where the

interface intersects the bottom. This line may curve due to the vertical movement of

the interface. In all cases the upper layer is forced by a prescribed pressure which

increases linearly along the offshore isobath to a maximum value of unity. The lower

layer is forced by a prescribed pressure which increases linearly to a maximum value,

t', along the deepest isobath.

Unless specifically stated solutions of this interfacial friction model are for an

plane. Table 3.2 gives typical scales for an f-plane flow with a 250km wide inflow

impinging on the upper continental slope. The maximum water depth is 500m, the

bottom slope is 0.001 for the shelf and 0.01 for the continental slope. The upper layer

thickness varies between 80m and 200m depending on the case being studied.
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For a larger alongshore scale and greater water depths the effects of planetary #
must be included. This is done in section 3.4j. Typical scales in these cases, also given

in Table 3.2, are a 1000km wide inflow, comparable to the large scale general circulation

of the deep ocean, a maximum water depth of 3100m, a bottom slope of 0.001 for the

shelf and 0.05 for the continental slope.

3.4f Baroclinicity

Variations due to the baroclinicity of the deep ocean forcing can be studied by varying

the relative strength of the upper and lower layer forcing, '. In this f plane series of

solutions an upper layer is chosen which is twice as thick as the water depth at the

shelf break, and various cases of deep ocean flow ranging from a barotropic flow to a

flow with a motionless lower layer are considered.

Figure 3-5 shows the solution when the deep ocean inflow is barotropic (r' = 1).

Both the upper and lower layer pressures, Figures 3-5a and 3-5b, have the same pattern.

The response of the shelf/slope is a barotropic flow confined near the deep ocean forcing

as in the barotropic solutions of Wang (1982). Friction, which allows cross-topography

flow, is not strong enough to allow significant motion across the steep continental

slope. The flow pattern in both layers is approximately 1 unit wide at its widest point,

verifying that the ATW scaling (3.35) in this case is appropriate to both layers. The

interface displacement is not shown since the interface is flat for this barotropic flow.

In Figure 3-6 the strength of the deep ocean forcing in the lower layer is half that

in the upper layer (r' = 0.5). The lower layer flow pattern in Figure 3-6a is similar to

that for barotropic flow and to that obtained in the model without interfacial friction

in Figure 3-3. The upper layer flow in Figure 3-6c has a slightly wider cross-slope width

than the barotropic flow in Figure 3-5c. The interface displacement is shown in Figure

3-6b.

In Figure 3-7 the deep ocean forcing in the lower layer is one tenth (r' = 0.1) of the

upper layer forcing. The lower layer flows are weak and there are two distinct regions

of flow: one adjacent to the forcing and another adjacent to the interface/bottom inter-
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Figure 3-5: Pressure pattern in two-layer model due to barotropic deep ocean forcing
of the shelf/slope (R = 1.8, Syel = 0.3, A, = 0.1, s,.,, = 0.1, I' = 1). Contour spacing
is 0.2, minimum value is -1. Pressure contours are also flow lines for geostrophic flow
in the layer cores. The labeled dashed line is the shelf break and the unlabeled chain
dashed line is where the single interface intersects the bottom. a) Lower layer isobars.
b) Upper layer isobars. The interface displacement is not plotted as it is zero for this
barotropic flow.
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Figure 3-6: Flow induced by a baroclinic deep ocean when lower layer forcing is one half
the strength of upper layer forcing (R = 1.8, A. = 0.1, s,.. = 10, 6,WI = 0.3, I' = 0.5).
Contour spacing is 0.2. a) Bottom layer pressure, minimum value -0.5. b) Interface
displacement. c) Upper layer pressure, minimum value -1.0.
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section. The latter results from the blocking of lower layer interfacial Ekman transport

at the intersection. The upper layer flow pattern is wider than in the previous two

cases but still does not penetrate onto the shelf. The upward interface displacements

shown in Figure 3-7b mirror the upper layer pressure in Figure 3-7c.

In Figure 3-8 there is no lower layer flow in the deep ocean (r' = 0), a case not

covered by the previous three layer model. Significant flow in the upper layer is confined

to the region between the deep ocean forcing and the interface/bottom intersection.

There is a weak lower layer flow in Figure 3-8a due to the blocking of lower layer

interfacial Ekman transport.

Figure 3-9 shows the solution when the bottom flow is stronger than the surface

flow, r' = 1.25. The flow pattern in this case is confined near the forcing and is very

similar to that for a barotropic flow (Figure 3-5).

The last figure of this series, Figure 3-10, shows the solution when the deep ocean

upper layer is motionless (r' = oo) and when the lower layer inflow onto the slope is

forced by a pressure which varies linearly from 0 to -1 along the deepest isobath. As in

previous cases where the lower layer was moving, lower layer flow forms a narrow band

adjacent to the deep ocean forcing. In Figure 3-10c there is significant upper layer flow

induced by the moving lower layer despite the lack of direct forcing by the deep ocean.

This flow is northward near the intersection but southward near the deep ocean. At

the turning point - is not small and consequently the details of the solution in the

vicinity of this point are not reliable.

This series of figures shows that lower layer geostrophic flow is comprised of two

components, one due directly to the forcing at the offshore boundary and another in-

duced by the blocking of interfacial Ekman transport along the line where the interface

intersects the bottom. The directly forced component of flow is confined to the outer

continental slope and does not give rise to significant flow at the interface/bottom in-

tersection. Consequently the shoreward boundary condition for this component is that

flow vanishes far from the forcing. This boundary condition and the governing equation

(3.70c) are exactly the same as those developed in the previous three layer model in
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Figure 3-7: Flow induced when lower layer forcing is one tenth of that in the upper
layer (R = 1. 8 ,6gW' = 0.2, A, = 0.1,s,, = 0.1, I' = 0.1). a) Lower layer pressure,
minimum value -0.1, contour spacing 0.02. Note the weak (= 0.02) southward flow
induced by the blocking of interfacial Ekman transport where the interface intersects
the bottom. b) Interface displacement. c) Upper layer flow, minimum value -1.
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Figure 3-8: Flow induced by deep ocean forcing with a motionless bottom layer.
(R = 1.8, g' = 0.3,A, = O.1,Sre = o.1,I' = 0). a) Lower flow pressure is weak
(0.02) and consists of a weak southward flow due to blocking of interfacial Ekman
transport at the intersection of the interface and bottom. b) Interface displacement is
upward. c) Surface pressure, minimum value -1.0.
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Figure 3-9: Flow pattern for a bottom

intensified flow (R = 1.8, ' = 0.3, A, = 0.1, S, = 0.1, '' = 1.25). a) Lower layer
pressure. b) Interface displacement. c) Upper layer pressure.
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Figure 3-10: Solution for motionless deep ocean upper
layer (R = 1.8,Syl = 0.3A = 0.,s = = oo). a) Bottom layer pressure,
minimum value -1.0. b) Interface displacement. c) Upper layer pressure.
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section 3.3c. Flow within this component will be strongly influenced by topography, its

cross-slope scale being determined by the ATW scaling (3.35). For typical scales (see

Table 3.2) the cross-slope scale is 10km for an alongshore scale of 250km. Thus bottom

deep ocean flow can have little influence on the shelf as it is confined by topography to

the outer slope.

The second component of lower layer geostrophic flow is not directly forced by the

deep ocean, but is induced by motion in the upper layer through the boundary condition

(3.76). The induced lower layer flow moves down the slope and equatorward (on an east

coast) with a narrow cross-topography scale. Like the first component, its dynamics

are governed by the bottom pressure equation (3.70c), and thus its horizontal scales

will also be related by the ATW scaling (3.35). This induced flow is very similar to

that due to the blocking of wind-driven Ekman transport by the coast, examined by

Csanady (1978). The induced flow is weak being at most as strong as the upper layer

flow. It is maximum when upper layer flow extends farthest shoreward, because near

the interface/bottom intersection there will be a greater interfacial Ekman transport

resulting from lower layer drag on the upper layer.

Significant upper layer flow is confined to the region between the forcing and the

interface/bottom intersection. Flow shoreward of the intersection is weak, 0.02 or less,

(see Figure 3-8c), and the reasons for this will be examined later. The cross-topography

scale in the upper layer where it overlies the lower is determined by a combination of

steering by the lower layer and interfacial drag which tends to spread the flow in all

directions (see (3.51)). If the lower layer flow is strong, (Figures 3-5 and 3-6), steering

dominates and the upper layer's cross-slope scale is almost the same as that in the

lower layer (cf. the previous three-layer model). The region of cross-slope influence for

these two flows is small, being limited by the steep continental slope. When lower layer

flow is weak (Figures 3-7 and 3-8), interfacial frictional drag dominates and upper layer

flow spreads to fill the region between the forcing and the interface/bottom intersection.

The cross-slope scale is much wider in this case.
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Any upper layer flow which does cross the intersection of the interface with the

bottom (see Figure 3-8c) has a short cross-topography scale because its dynamics are

governed by the ATW equation (3.70a) and therefore the scale relationship (3.35)

applies. Thus further cross-topography motion is severely limited.

In a strongly bottom intensified deep ocean flow (Figure 3-10) lower layer motion

induces upper layer motion in the same direction. The induced southward flow in

Figure 3-10c cannot originate in the motionless upper deep ocean and by assumption

cannot have crossed y = 0. Consequently upper layer fluid moving southward near the

deep ocean must originate shoreward and southward of the forcing. Thus continuity

is responsible for the northward flow near the interface/bottom intersection in Figure

3-10c.

This series of solutions demonstrates that -near bottom deep ocean flow has a

small cross-topography influence and that the upper deep ocean has its largest cross-

topography influence when the lower layer is motionless, i.e. when the deep ocean is

most strongly surface intensified, and its smallest influence when it is barotropic or

near-barotropic. The maximum region of influence extends form the deep ocean to just

shoreward of the interface/bottom intersection.

The conclusions for near bottom flow appear to contradict those of Chapter 2 where

surface intensified flows had smaller cross-topography scales than bottom intensified

flows. Unlike the vertically well mixed model the cross-topography scale of near bot-

tom flow in this layered model is independent of the vertical shear in geostrophic

velocity. In both models the bottom friction is assumed proportional to the near bot-

tom geostrophic velocity. In the vertically well mixed model it was noted that the

near bottom geostrophic velocity had vertical shear due to thermal wind. This vertical

structure gave rise to a variation in bottom stress due to depth change alone and hence

to a dependence of cross-topography scale on shear. Though there is clearly vertical

structure in geostrophic flow in the layered models the near bottom geostrophic velocity

is independent of depth because flow within the lowest layer is barotropic. Therefore

bottom stress will not be affected by the vertical structure higher in the water column
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and there ought to be no direct influence of shear on the cross topography scale of the

near bottom flow.

116



3.4g Upper Layer Thickness

In the previous section significant upper layer flow was confined to the region between

the deep ocean forcing and the line where the interface intersects the bottom. As the

upper layer thins the intersection moves shoreward. In this section the consequent

variation in flow pattern will be considered. It was found in the previous section that

flows which were close to barotropic had small cross-slope scales, and thus were not

greatly influenced by the intersection. Therefore attention here is restricted to deep

ocean flows where the lower layer is motionless and the effect of the intersection is most

pronounced.

The flow pattern for an upper layer with a thickness equal to the depth at the shelf

break is shown in Figure 3-11. The flow patterns when the upper layer is -2- and 810 10

of the depth at the shelf break are shown in Figures 3-12 and 3-13. The most notable

feature of these three solutions is that the thinning upper layer allows upper layer flow

to spread proportionately further across the topography, although significant flow is

still confined between the forcing and the interface/bottom intersection.

In the latter two figures the interface intersects the shelf rather than the slope.

The intersection moves slightly shoreward due to upward movement of the interface

(Figures 3-12b and 3-13b).

In all three cases, Figures 3-11a, 3-12a and 3-13a, the weak lower layer flow is

forced by upper layer motion and is confined to the narrow band adjacent to the

interface/bottom intersection. The flow is stronger and has a wider cross-topography

scale when the interface intersects the shelf rather than the slope. Using the ATW

scaling (3.35) which applies to lower layer flow, this wider scale is due to the weaker

bottom slope of the shelf.

This series of figures demonstrates that the thinner the upper layer, i.e. the closer

the interface/bottom intersection is to the coast, the wider the cross-topography influ-

ence of the deep ocean flow.
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Figure 3-11: Solution when upper layer has a
thickness equal to depth at shelf break and there is no deep ocean forcing of lower
layer. (R = 1.8, 62e = 0.3, A, = 0.1, s,eL = 0.1, I' = 0). The line where the interface
intersects the bottom is coincident with the shelf break. a) Weak bottom flow, 0.02
contour is shown. b) Interface displacement. c) Isobars of upper layer pressure.
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Figure 3-12: Solution when upper layer has a thickness j2 of depth at shelf break
so that interface intersects the shelf. a) Isobars of lower layer pressure. b) Interface
displacement. c) Isobars of upper layer pressure.
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Figure 3-13: Solution when upper layer has a thickness y of depth at shelf break
so that interface intersects the shelf. a) Isobars of lower layer pressure. b) Interface
displacement. c) Isobars of upper layer pressure.
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3.4h Stratification and Interfacial Friction, R

The importance of stratification and interfacial friction in the dynamical balance is

determined by the size of the non-dimensional number R in (3.70b). For typical scales

R is 1.8 (see Table 3.2). The solution for a motionless deep ocean lower layer where

the upper layer thickness is twice the depth at the shelf break for a small R of 0.1

is shown in Figure 3-14.The solution with a large R value of 10, in Figure 3-15. The

differences between these two figures are slight. However a large value of R gives a

slightly wider cross-slope penetration of upper layer flow due to an enhanced spreading

effect (compare the 0.2 contour in Figures 3-14c and 3-15c). Thus a more highly

stratified deep ocean or one with stronger interfacial friction will have a slightly wider

cross-topography scale than an ocean which is weakly stratified or which has weak

interfacial friction. However, significant upper layer flow is still confined to the region

between the forcing and the interface/bottom intersection.

A higher value of R enhances the ability of the upper layer to drag the lower layer.

The resultant enhanced interfacial Ekman transport which is blocked by the inter-

face/bottom intersection will in turn mean a larger geostrophic flow induced at the

intersection (see Figures 3-14 and 3-15).
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Figure 3-14: Solution for deep ocean forcing for a small value of R.
(R = 0.1, 6,, = 0.3, A, = 0, s,,l = o.1, '' = 0). The interface intersects the continental
slope. a) Very weak bottom flow, only contour is 0.02. b) Interface displacement. c)
Isobars of upper layer pressure.
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Figure 3-15: Solution for deep ocean forcing for a large value of R.
(R = 10, b,5 ei = 0.3, A. = 0, s,,l = 0.1, I' = 0). The interface intersects the continental
slope. a) Very weak bottom flow, only contour is 0.02. b) Interface displacement. c)
Isobars of upper layer pressure.
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3.4i Relative Ekman Layer Thickness, Syl

The last of the non-dimensional numbers which will be varied is the relative Ekman

layer thickness, 6jW'. Though R is also dependent on the interfacial Ekman layer thick-

ness it will be kept constant by compensating changes in stratification. This will isolate

the effects of Ekman layer thicknesses due to the boundary condition (3.76) and the

matching condition(3.79). The two f-plane solutions shown both have a motionless

deep ocean bottom layer and an upper layer thickness -2 the depth at the shelf break.

Consequently the interface intersects the shelf.

When the interfacial Ekman layer is thin, 6,Wl = 0.1, flow is confined offshore of

the interface/bottom intersection (Figure 3-16b), and the induced lower layer flow

is very weak (less than 0.01). The flow pattern when the interfacial Ekman

layer has a thickness equal to the bottom Ekman layer is shown in Figure 3-17 and is

significantly different from any previous solution to this model. The lower layer flow

(Figure 3-17a) which is induced by the blocking of interfacial Ekman transport is five

times stronger than in any previous case. There is a significant upward movement

of the interface at the interface/bottom intersection in Figure 3-17b which results in

an observable shoreward movement of the intersection, and there is also a small but

significant upper layer flow which crosses the intersection (note the 0.2 contour in Figure

3-17c).

The confinement of significant upper layer flow to offshore of the interface/bottom

intersection is due to two mechanisms. The first mechanism can be seen in the matching

condition (3.79) which ensures that upper layer bottom and interfacial Ekman trans-

ports are equal at the intersection. Both the upper layer interfacial and bottom Ekman

transports are proportional to geostrophic velocities within the layers (see (3.57) and

(3.58a)). In order to match interfacial and bottom Ekman transports across the in-

tersection the strength of the geostrophic flow shoreward of the intersection must be

of order 6Syl times the strength of the flow offshore of the intersection. Thus if the

interfacial Ekman layer is thinner than the bottom Ekman layer, then flow shoreward

of the intersection must be weaker than flow offshore. This is a partial explanation
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Figure 3-16: Solution
for thin interfacial Ekman layer, Syf = 0.1. (R = 0.6,A, = O.1,Sre = 0.1,I' = 0).
Interface intersects the shelf. a) Isobars of bottom pressure, flow is weak, shown is the
.02 contour. b) Interface displacement. c) Isobars of upper layer pressure.
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Figure 3-17: Solution for interfacial Ekman layer with a thickness equal to that of the
bottom Ekman layer, S6j = 1. (R = 3, A, = 0.1, s,. = o.1, '' = 0). Interface intersects
the bottom and exhibits a small but noticeable cross-shelf movement. a) Isobars of
bottom pressure. Induced bottom layer flow is much stronger than in any previous
case. b) Interface displacement is upward and significant when the interface intersects
the bottom.
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for the negligible amount of flow shoreward of the intersection in Figure 3-16c when

rel = 0.1, whereas in Figure 3-17c, when by' = 1, the flow strength is similar on both

sides.

The above explanation of mismatched Ekman layer thicknesses does not explain why

only part of the flow crosses the intersection in Figure 3-17c where ofw1 = 1. The second

mechanism involved is that steering by the induced lower layer flow (Figure 3-17a) will

tend to turn the upper layer flow parallel to the intersection before it reaches it. The

lower layer flow is induced by the upper layer flow through the boundary condition

(3.76) so that the importance of this steering mechanism is coupled to the strength of

the upper layer flow at the intersection. If the induced bottom layer flow were stronger,

then steering would turn more upper layer flow parallel to the intersection, reducing

the amount of upper layer flow reaching the intersection, which in turn would reduce

the induced bottom layer flow. Figure 3-17 represents the equilibrium point of this

negative feed-back loop.

Both mechanisms, the steering and the mismatching of Ekman layer thicknesses,

act to inhibit flow from crossing the interface/bottom intersection and thus restrict the

region of significant deep ocean influence to be offshore of the intersection.
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3.4j Planetary #

Previous solutions to both the two- and three-layer models have been for f plane flow.

In this section the influence of planetary # on the interfacial friction model will be

considered. For typical values in Table 3.2 /' is 0.1 and hence the effects of planetary

/ are of order 1 in the governing equations (3.70a), (3.70b) and (3.70c).

Figure 3-18 shows the flow pattern for a high latitude #-plane (i.e. weak #' = 0.01),

Figure 3-19 show that for mid latitudes (typical fl' = 0.1) and Figure 3-20, that for

lower latitudes (large fl' = 0.25). In all these Figures the deep ocean lower layer has a

flow one quarter as strong as that in the upper layer (F' = ).

The high latitude weak P' solution is very similar to that for an f plane in Figure

3-6. The flow direction in the two layers is strongly coupled and cross-topography

penetration is limited by the steep continental slope. The solution for a typical mid

latitude /3' in Figure 3-19 is similar to that at a lower latitude and shows that the

coupling between the layers is much weaker. -Near the forcing upper layer flow tends

to follow lower layer flow but, once beyond the region of significant lower layer flow,

it travels easily across the topography until encountering the interface/bottom inter-

section. When planetary / is significant (Figures 3-19c and 3-20c) the upper layer

exhibits a much larger cross-topography scale than in the f plane or weak /3' cases

(Figure 3-18c). The cross-topography scale in the lower layer slightly increases with /3'

(cf. Figures 3-18a and 3-20a). The increase of cross-topography scale in both layers is

due to the tendency of #-plane flow to follow lines of latitude.

The flow patterns for a high, mid and lower latitude #-plane when the deep ocean's

lower layer is motionless are shown in Figures 3-21, 3-22 and 3-23 (F' = 0). The flow

when /3' is weak is very similar to that on an f plane in Figure 3-8 and shows an

even distribution of upper layer flow between the forcing and the interface/bottom

intersection. For a typical value of /3' in Figure 3-22 upper layer flow is almost zonal

near the forcing and turns to parallel the intersection with a concentration of alongshore

flow adjacent to the intersection.
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Figure 3-18: Solution for high latitude fl-plane for baroclinic deep ocean forcing.

(6.9= 0.3, R = 0.8, A, = 0.2, s,, = 0.02, I' = 0.25,8p' = 0.01). a) Lower layer pressure,
minimum -0.25. b) Interface displacement. c) Upper layer pressure, minimum -1.0.
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Figure 3-19: Solution for mid latitude
#-plane. (bV' = 0.3, R = 0.8,A = 0.2, s,., = 0.02,I' = 0.25,#3' = 0.1). a) Lower
layer pressure, minimum -0.25. b) Interface displacement. c) Upper layer pressure,
minimum -1.0.

130



(a X-Offshore
8 9 10 11 12 13 14 15

0.00 -

01

-0.25-

-c -0.50--

c-c

0

C

-0.75

-1.00

6) X-Offshore

8 9 10 11 12 13 14 15

Figure 3-20: Solution for lower
latitude #-plane. (Syel = 0.3, R = 0.8, A, = 0.2, Sre = 0.02, I' = 0.25,/#' = 0.25).
a) Lower layer pressure, minimum -0.25. b) Upper layer pressure, minimum -1.0.
Interface displacement not shown
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Figure 3-21: Solution for high latitude #-plane when deep ocean lower layer is mo-
tionless. (6br = 0.3, R = 0.8,A, = 0. 2 ,s,,, = 0.02,I'' = 0,#' = 0.01). a) Interface
displacement. b) Upper layer pressure, minimum -1.0. Weak lower layer pressure not
shown.
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Figure 3-22: Solution for mid latitude #-plane when deep ocean lower layer is mo-
tionless. (6.W' = 0.3, R = 0.8, A, = 0.2, s,, = 0.02, I' = o,#p' = 0.1). a) Interface
displacement. b) Upper layer pressure, minimum -1.0. Weak lower layer pressure not
shown.
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Figure 3-23: Solution for lower latitude #-plane when deep ocean lower layer is mo-
tionless. (6bW = 0.3, R = 0.8, A, = 0.2,s,.z = 0.02,I'' = 0,#P' = 0.25). a) Interface
displacement. b) Upper layer pressure, minimum -1.0. Weak lower layer pressure not
shown.
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As the upper layer thins the importance of planetary # in the upper layer as mea-

sured by (3.11) declines. When the upper layer thickness is comparable to the depth

at the shelf break and the lower layer is motionless, then planetary 8 has little effect

on the flow pattern. Such cases are covered by the f-plane results in section 3.4g.

The interfacial friction model cannot be used to determine the effects of planetary #
on a deep ocean flow impinging on a west coast (the ocean's eastern boundary) for the

following reason. In the absence of interfacial and bottom friction fluid columns of the

deep ocean inflow must conserve the potential vorticity and therefore follow contours

of , where t; is the thickness of the ith layer. As columns move into shallower

water they will be compressed and thus must turn equatorward in order to conserve

their potential vorticity. If P were negligible the two-layer model with interfacial and

bottom friction would show the deep ocean inflow impinging on the west coast to

turn poleward. The solution scheme used here exploits the parabolic nature of the

governing equations by integrating them in the "time-like" direction. This direction

is the direction in which a Kelvin wave would propagate along the coast. For a west

coast this direction is poleward. The numerical scheme assumes that there is no flow at

some initial latitude and, when applied to a west coast, integrates poleward. However,

at least in the deep water near the forcing, the tendacy for flow to follow lines of f
divided by layer thickness will cause the flow to turn equatorward across the initial

latitude. Consequently it is not possible to assume that there is a latitude of no flow

when planetary # is included into the interfacial friction model for a west coast. This

difficulty could be resolved if the assumption that - << 1 is relaxed. However in this

case the governing equations are no longer parabolic and would require a considerably

more complex numerical solution scheme than that used here.

3.4k Alongshore Forcing

In the Mid-Atlantic Bight mean currents oppose the mean winds (see Figure 1-3 from

SEEP for summer and winter means). The calculations of Chapman et al. (1986) using

oxygen isotope data show that water over the mixed and outer shelf of the Mid-Atlantic
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Bight originates on or north of the Scotian Shelf. Chapman and Beardsley (1988) show

that the Scotain shelf flow originates along the southern coast of Greenland. This

Scotian Shelf water flows south along the Mid-Atlantic Bight , slowly mixing with

water from over the continental slope, but is still clearly discernible off the Virginian

coast. Chapman et al. (1986) show that the observed mean shelf flow could be driven

by an alongshore pressure gradient due to a pressure head over the Scotian Shelf. By

using a model with realistic bottom topography they also show that a barotropic deep

ocean cannot force significant shelf flow, but acts to prevent shelf water from flowing

off the shelf into deeper water.

In this section the two-layer model will be used to extend the results of the model

of Chapman et al. to a baroclinic deep ocean. The shelf flow is forced by prescribing

a uniform band of inflow across y = 0 adjacent to the coast. Two different widths for

this inflow will be considered as well as various vertical structures for the deep ocean

inflow which enters across the deepest isobath. The results given in this section will be

for an f-plane in order to isolate the effects of the alongshore forcing from those due to

planetary $. To force a uniform alongshore flow in the upper layer across the northern

boundary of the two layer model a linear gradient in pressure is used as an "initial"

condition

X' on = 0 (3.85)
11 z'>Y

where w' is the width of the alongshore inflow. Two cases are considered, firstly that

when the inflow is half the shelf width and, secondly, that when the inflow is as wide

as the shelf. It is assumed that the alongshore inflow is confined to the upper layer and

therefore the lower layer pressure must be constant on y = 0, i.e.

X2 = C on y'= 0 . (3.86)

This constant will be chosen so that the interface displacement where the interface

intersects the bottom on y = 0 is zero (i.e. (x1 (0),0) = 0). The constant has a

136



different value depending on whether the interface intersects the bottom offshore or

shoreward of the outer edge of the alongshore forcing

1 z'r (0) > w'
S= '()(3.87)

W X,(0)< w

The boundary conditions for the deep ocean inflow (3.73) need to be slightly revised

XI = -y' + 1
on z' = Xz (3.88)

x2 = -Ty' + C

The extra constants assure that pressure is continuous around the model's perimeter,

but do not change the relative flow strength between layers of the deep ocean. The

upper layer flow pattern for an alongshore forcing when the deep ocean is motionless

and the upper layer thickness is thicker than the depth at the shelf break is shown

in Figure 3-24. In Figure 3-24a the alongshore inflow is half the shelf width and in

Figure 3-24b the inflow is as wide as the shelf. In both cases the offshore boundary

condition is that the pressure in both layers is constant along the deepest isobath. Such

a boundary condition prevents flow from crossing the deepest isobath and therefore the

offshore edge is not "open" to the deep ocean. However these solutions show that there

is no significant flow offshore of the shelf break and consequently neither flow pattern

is sensitive to the choice of offshore boundary condition.

For a narrow alongshore inflow (Figure 3-24a) motion is significant between the

coast and mid shelf. Even for an alongshore inflow as wide as the shelf (Figure 3-

24b) significant flow is confined to shoreward of the shelf break. In equation (3.70a)

which governs upper layer flow shoreward of the interface/bottom intersection along

and cross-shore scales are related by (3.35) which depends on the bottom slope. Over

the shelf the slope is mild so that the flow's cross-shore scale is of order the shelf width.

Over the continental slope the topography is much steeper and consequently the cross-

topography scale is much smaller. Therefore any shelf flow which does cross the shelf
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break does not penetrate far beyond it. These two examples demonstrate that for this

layer geometry, shelf flow is trapped on the shelf by the steep continental slope.

The solution shown in Figure 3-25 is the same as that in Figure 3-24 except that the

upper layer is thinner than the depth at the shelf break. In this case flow is significant

at the deepest isobath and therefore an "open" boundary condition should be used. In

Figure 3-25 the pressure is assumed to be constant in both layers along the deepest

isobath and therefore no flow can cross the deepest isobath. For this closed open

boundary condition it is found that the -0.6 and -0.8 contours move farther offshore as

the offshore boundary is moved offshore in such manner that flow is evenly distributed

between the interface/bottom intersection and the offshore boundary. This indicates

that a truly open boundary would allow Scotian shelf water to penetrate far offshore.

Thus Figure 3-25 gives a lower bound for the cross-topography scale of an alongshore

inflow acting alone. For the purposes of this work such a lower bound is sufficient

because a moving deep ocean either does not change or reduces the cross-topography

scale of the flow due to an alongshore inflow relative to this lower bound. It is the

further reduction of this cross-topography scale below this lower bound by a deep

ocean inflow which is significant. In reality Figure 3-25 should be viewed not as an

approximation to a open boundary solution but as the solution when the deep ocean

flow impinging on the offshore edge is very weak.

Figure 3-25a shows the upper layer flow due to an alongshore inflow half the shelf

width when the deep ocean is motionless. Note how significant flow can cross the

interface/bottom intersection but is still confined over the shelf (see -0.8 contour).

Figure 3-25b gives the upper layer flow for an inflow as wide as the shelf. Since the

upper layer is relatively thin the inflow directly forces flow in the upper layer where

it overlies the lower layer. In this case upper layer flow can be significant beyond the

shelf break ( note the -0.8 contour). The interface tends to isolate the upper layer

from the effects of the topography and consequently the steep continental slope does

not prevent water from the inflow from moving offshore beyond the shelf break.
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Figure 3-24: Upper layer pressure for alongshore inflow when deep ocean is mo-
tionless and upper layer is thicker than the depth at the shelf break. (6V = 0.3,
R = 1.8, A, = 0.1, s,., = 0.1). a) Narrow inflow, w' = 5. b) Wide inflow, w' = 10.
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Figure 3-25: Solution for alongshore inflow and motionless deep ocean when
the upper layer is thinner than the depth at the shelf break. (S5c = 0.3,
R = 1.8, A, = 0.1 s,.re = 0.1). a) Narrow inflow, w' = 5. b) Wide inflow, w' = 10.
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The following figures show the flow patterns due to combined forcing by a deep

ocean inflow and an alongshore inflow. The solution for a barotropic deep ocean and

an alongshore inflow which is half the shelf width is given in Figure 3-26. This case

reproduces one of the results of Chapman et al. (1986) for the idealized topography

used here and shows that deep ocean inflow is confined to a band adjacent to the deep

ocean forcing and that the alongshore flow is confined over the shelf adjacent to the

coast. These two distinct regions of flow can be thought of as distinct water masses,

one of deep ocean origin and another originating at higher latitudes over the shelf (i.e.

slope water and Scotian shelf water, respectively, using the terminology of Chapman

et al. (1986) for the Mid-Atlantic Bight ).

Figure 3-27 shows the solution for a barotropic deep ocean inflow and an alongshore

inflow which is as wide as the shelf. Upper layer flow in Figure 3-27 also occurs in two

distinct regions, in that over the slope near the oceanic forcing and in that over the

shelf.

The solutions for a baroclinic deep ocean where the deep ocean's lower layer is mo-

tionless and the upper layer is thicker than the depth at the shelf break are given in

Figure 3-28 for a narrow alongshore inflow and in Figure 3-29 for a wide alongshore

inflow. The deep ocean is still confined offshore of the interface/bottom intersection.

Its flow pattern is the same as that in Figure 3-8. The flow pattern over the shelf is

unaltered by the change in the deep ocean's vertical structure. The solutions for a

barotropic and baroclinic deep ocean show that, when the upper layer is significantly

thicker than the depth at the shelf break, deep ocean flow and shelf flow form dis-

tinct water masses separated from each other by the steep topography of the upper

continental slope. The deep ocean flow has no dynamical influence on the shelf and

consequently does not affect any flow which may occur there due to the alongshore

inflow, i.e. essentially the two flows are dynamically independent for this geometry.

Figure 3-30 shows the solution for a combined deep ocean and a narrow alongshore

inflow where the upper layer thickness is the depth at the shelf break and the deep

ocean's lower layer is motionless. The deep ocean upper layer flow in Figure 3-30b has a
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Figure 3-26: Solution for narrow alongshore inflow and barotropic deep ocean forcing.

(w' = 5, I' = 1)). a) Lower layer pressure. b) Upper layer pressure.
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Figure 3-27: Solution for wide alongshore inflow and barotropic deep ocean forcing.

(w' = 10, I' = 1)). a) Lower layer pressure. b) Upper layer pressure.
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Figure 3-28: Solution for a Baroclinic Deep Ocean and a narrow alongshore inflow

where the upper layer is thicker than the depth at the shelf break. (w' = 5, r' = 0)).

a) Interface displacement. b) Upper layer pressure.

144



X -Offshore
0 2 4 6 8 10 12 14

0.00

-0.25

0
-c -0.50

C
0

-0.75

-1.00

X-Offshore
0 2 4 6 8 10 12 14

Figure 3-29: Solution for a Baroclinic Deep Ocean and a wide alongshore inflow where
the upper layer is thicker than the depth at the shelf break. (w' = 10, I' = 0)). a)
Interface displacement. b) Upper layer pressure.
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wider cross-topography scale than 3-28b but is confined offshore of the interface/bottom

intersection which is consistent with the results of section 3.4g. The flow pattern due

to the alongshore forcing is similar to that when the upper layer is thicker (see Figure

3-28b). The solution in Figure 3-31 is the same as that in Figure 3-30 except that the

alongshore forcing has the same width as the shelf break. This case shows the mutual

effects of alongshore and deep ocean inflow. The water from alongshore inflow can cross

the interface/bottom intersection just as in Figure 3-25 but is displaced shoreward by

the deep ocean inflow (compare the -1.2 contour in these figures), while the deep ocean

inflow is displaced offshore compared to Figure 3-13c .

As demonstrated, under certain circumstances, namely a thin upper layer, deep

ocean and Scotian shelf inflow of approximately the same strength and a wide Scotian

inflow, the two inflows interact with each other. Changes in the relative strength

of the inflows warrants further discussion. The two extreme cases are Figure 3-8, where

there is a unit deep ocean inflow and no Scotian inflow, and Figure 3-25, where there

is a unit Scotian inflow and a very weak deep ocean inflow. Figure 3-29 gives the

intermediate case where the inflows are of equal strength. When the conditions for

interaction are met an increase in the strength of the deep ocean inflow moves the

boundary between the two inflows shoreward. As noted earlier little deep ocean flow

can cross the interface/bottom intersection, the boundary between the two flows will

not move shoreward of this intersection even for a very weak Scotian inflow. Thus any

Scotian inflow is able to expand to fill the region between either the interface/bottom

intersection or the shelf break, depending on which is closer to the coast.

It was shown earlier that one reason why the deep ocean could not cross the inter-

face/bottom intersection was the difference between the interfacial and bottom Ekman

layer thicknesses. This mismatch enhances the ability of shelf flow to cross the inter-

face/bottom intersection and is responsible for the tendency for shelf flow to cross the

intersection at right angles (see for example Figure 3-25a).

The second reason that deep ocean flow did not cross the interface/bottom inter-

section is due to steering by induced lower layer flow. When the shelf flow crosses the
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intersection it also induces a lower layer flow with the same pattern as that in Figure

3-8a, a narrow band of alongshore flow 1 unit wide adjacent to the intersection. The

direction for lower layer flow induced by deep ocean or shelf flow is in the same direc-

tion, i.e. southward, because the upper layer flow in both is southward. The strength

of this flow varies directly with the intensity of the alongshore in the vicinity of the

intersection. For the case in Figure 3-25 the induced flow is weak (less than 0.01 )
and thus the tendency for the induced flow to steer the upper layer flow parallel to the

intersection will be weaker than the case given in Figure 3-8a where the induced flow

is of order 0.02 . Thus even if a true open boundary were applied in Figure 3-25 the

induced flow would not cause significant trapping of upper layer flow near the intersec-

tion. When the deep ocean inflow is significant (Figure 3-29) the induced flow is of the

same order (0.02) as that when there is no shelf flow.

This section demonstrates that the deep ocean and the flow over the shelf are isolated

from each other by the steep continental slope except when the deep ocean's upper layer

is sufficiently thin and the shelf flow is sufficiently wide. In these circumstances the

two flows remain as distinct water masses ( outside of frictional layers) and the deep

ocean prevents shelf flow from escaping into the deep ocean's upper layer.

It is only in particular circumstances that the deep ocean and shelf flow interact.

These conditions are, most importantly a thin upper layer and inflows of sufficient

strength ( i.e. of approximately similar strength) . Under these conditions the boundary

between the two inflows moves shoreward as the relative of the deep ocean inflow

increases but does not moVe shoreward of the interface/bottom intersection.
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Figure 3-30: Solution for a combined deep ocean inflow and a narrow alongshore inflow
when the upper layer thickness is the depth at the shelf break (w' = 5, I' = 0).
The deep ocean lower layer is motionless. a) Interface displacement. b) Upper layer
pressure.
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Figure 3-31: Solution for a combined deep ocean inflow and a wide alongshore inflow
when the upper layer thickness is the depth at the shelf break (w' = 10, r' = 0).
The deep ocean lower layer is motionless. a) Interface displacement. b) Upper layer
pressure.
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3.5 Conclusions For Layered Models

The two- and three-layer models presented here have a number of common features

and several differences. For f-plane flow the equations governing flow in layers which

are in contact with the bottom have exactly the same form in both layered models (see

(3.70a), (3.70c) and (3.53)). The point source solution (3.32) demonstrates that, even

if the "longwave approximation" were relaxed in these equations, provided the forcing

is large compared to 6, solutions would still exhibit a short cross-topography scale

compared to their along-topography scale. The length scale 6 is of order 5km over2a

the shelf and only 500m over the slope. The narrowest deep ocean forcing used in the

layered models has a length scale of order 250km which is much larger than 6. From

this it is inferred that solutions to the deep ocean forcing problem will exhibit short

cross-topography scales compared to their along-topography scale and this property is

not an artifact of having assumed such a scale relationship (i.e. that - << 1) in order

to produce a tractable set of equations. Planetary # increases the cross-topography

scale, but not to such an extent that L, becomes comparable to L,.

In both models where layers on an f-plane are in direct contact with the bottom

there is a balance between the vertical velocity due to Ekman pumping and that due

to cross-isobath geostrophic motion. The equations governing these regions have the

same form as the ATW equation but bottom pressure replaces the barotropic pressure.

Physically, geostrophic flow in those layers in direct contact with the bottom can move

shoreward only if Ekman pumping absorbs fluid into the Ekman layer at exactly the

right rate so that fluid columns in the geostrophic core of the layer are neither stretched

nor compressed. Conversely, geostrophic flow may move offshore only if Ekman pump-

ing draws fluid from the Ekman layer into the geostrophic core at a rate which neither

stretches nor compresses the fluid columns (see Figure 3-2). In these models Ekman

pumping is the mechanism which allows geostrophic flow to cross topography; in its

absence flow would be parallel to the isobaths. For typical scales the along-isobath

velocity is much stronger than the cross-isobath velocity. Therefore the tendency for

topography to steer geostrophic flow along isobaths is much stronger than the ten-

150



dency for Ekman pumping to diffuse or spread it across isobaths. This accounts for

the ATW horizontal scale relationship (3.35). Cross-isobath motions are strongest for

a highly turbulent bottom boundary layer, low latitude and a weak bottom slope. In

both models, for typical scales, the cross-isobath influence of the deep ocean's lower

layer is severely limited by the steep continental slope to a narrow band adjacent to

the forcing.

The dynamics governing the density layers above the bottom layer differ in the two

models. In the three-layer model motion in each of the upper two layers is governed by

conservation of potential vorticity. Assuming that relative vorticity is small this may

be stated as

=0 i = 1,2 (3.89)-dt hi

where hi is the thickness of the ith layer and d is the advective derivative, ui9+vi-. Adtax a

consequence of (3.89) is that the value of I will be the same along any given streamline

(see Pedlosky (1979)). On an f-plane with a rigid lid, expanding (3.89) for the upper

layer where hi = di - g yields ui$ + vi L- = 0 which is identical to (3.20). Similarly for

the second layer (3.89) can be shown to be the same as (3.24). In order for potential

vorticity to be conserved in the upper two layers fluid columns on an f-plane must

maintain a constant thickness as they move within these layers. In other words they

must behave as Taylor Proudman columns and motion is parallel to contours of layer

thickness. Because both pressures are prescribed on x = 0 the interface displacement,

and hence layer thickness, is known at x = 0. The value of I on any given streamline
ti

is determined by the layer thickness where the streamline crosses x = 0.

In the three-layer model when two adjacent layers are in motion the flow in one must

be parallel or anti-parallel to the flow in the other. This coupling can be envisaged as

a steering of the upper layer by the lower layer of the pair. An intervening motionless

layer decouples the motion in the layers on either side of it. The flow pattern in

the lowest density layer is determined by (3.30), and because of coupling the cross-

isobath influence of the deep ocean in all layers between a moving bottom layer and
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the first motionless layer is limited by the topography and has a cross-slope scale given

by (3.35). Layers coupled to the bottom density layer can be thought of as being in

indirect contact with the topography.

The results of this three-layer model can be generalized to any larger number of

geostrophic layers which would sensibly fit within the maximum water depth permitted

by the approximations used (i.e. neglect of relative vorticity and planetary P). The

generalized result would state that motionless layers separate moving layers into groups.

Flow in any member of a group must be parallel or anti-parallel to flow in any other

member of the group. A group which contains the lowest layer has very limited cross-

slope motions. The flow pattern in groups not containing the moving bottom layer

cannot be determined from this model because of geostrophic degeneracy.

In the two-layer interfacial friction model flow in the upper layer where it overlies

the lower layer is governed by (3.70b) and is not degenerate when the bottom layer is

motionless. The physical interpretation of this equation for f-plane flow is essentially

the same as that for those governing layers in contact with the bottom. Vertical velocity

is zero in the upper layer, and therefore fluid columns in the geostrophic core of this

layer may cross the isobaths created by the warping of the interface only if upper layer

interfacial Ekman pumping absorbs or exports fluid from or to the geostrophic core at

a rate such that fluid columns of the core are neither stretched nor compressed (see

(3.49)). This mechanism also operates at the interface in the lower layer ensuring that

fluid columns in the core of that layer are also neither stretched nor compressed. The

main differences between the interfacial and bottom layer dynamics are that interfacial

"topography" varies in both x and y, and that Ekman pumping results from a velocity

difference between layers, i.e. shear, rather than from absolute velocity. The dynamics

in (3.49) (or its equivalent (3.51)) can be envisaged as a balance between steering of the

upper layer by the lower layer and interfacial drag. The former causes flow to follow the

"isobaths" of the interfacial "topography", and the latter tends to spread geostrophic

flow across "isobaths". For typical scales (see Table 3.2) steering and drag effects

are of approximately equal importance in determining the upper layer flow pattern.
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The influence of P will be discussed later. The spreading, which was not present in

the previous three-layer model, is enhanced by strong stratification and high values of

internal turbulent eddy viscosity.

Figure 3-8 shows that, except near the line where the interface intersects the bottom,

upper layer flow does not induce motion in the geostrophic core of the lower layer. This

apparently contradicts the notion that upper layer motion forces lower layer motion

through interfacial drag. It can be shown that a motionless lower layer core is not

inconsistent with a moving upper layer and, by analogy to motion forced by surface

winds, that such a situation is physically reasonable. The core of the lower layer is

motionless when X2 = 0. In this case the interface displacement is related to the upper

layer pressure by

1
= -- X1 (3.90)

which implies that geostrophic flow in the upper layer is along contours of interface

displacement. On an f-plane the governing equation (3.51) for X2 = 0 becomes

V2 X = . (3.91)

The dimensional curl of the interfacial stress from (B.15) and (B.16) is

( -Tft = 7 ixnt ±V2 X 1  . (3.92)ax 9y fo

The right hand side is zero because of (3.91) and consequently the interfacial stress is

non-divergent when the core of the lower layer is motionless. For barotropic motions

forced by surface winds a non-divergent wind stress implies that Ekman transports are

also non-divergent and that Ekman pumping is zero (see Gill (1982)). In the absence

of Ekman pumping the fluid in geostrophic balance below the Ekman layer is not set in

horizontal motion except near coastal boundaries where the surface Ekman transport

is blocked. Thus when the wind stress is non-divergent, motion is confined to a thin

surface Ekman layer. The lower layer of the interfacial friction model is analogous
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to a wind-forced barotropic model in that it experiences a stress on its upper surface

due to motion in the upper layer. This stress produces Ekman transport in the lower

interfacial Ekman layer. By analogy a non-divergent interfacial stress is consistent with

there being no motion in the core of the lower layer except near the interface/bottom

intersection where interfacial Ekman transport is blocked. Consequently a motionless

lower layer core is not inconsistent with a moving upper layer. The above reasoning

applies only to a motionless lower layer on an f-plane.

A motionless upper layer is inconsistent with a moving lower layer (see Figure 3-

10). Irrespective of motion in the upper layer (3.70b) shows that in general a moving

lower layer implies that V2 X2 5 0. Thus even if the upper layer is motionless the

interfacial stress is divergent. Consequently when the lower layer is in motion there

must be a compensating upper layer motion across the "topography" to balance the

divergence of Ekman transport in the upper interfacial Ekman layer. In Figure 3-10

the deep ocean upper layer is motionless, i.e. xd=, = 0, however the moving

lower layer establishes a cell of upper layer motion between the deep ocean and the

topography/bottom intersection.

It is found that the cross-topography scale of the upper layer is dependent on the

degree of baroclinicity, r', the upper layer thickness, di, the relative Ekman layer

thickness, 6 .yf, and planetary #. When deep ocean flow is near to barotropic, (r' > 0.5),

the velocity difference between layers is small, interfacial drag is weak and steering of

the upper layer by the lower layer dominates. When planetary # is not important the

upper layer will have almost the same cross-topography scale as the lower layer given

by (3.35), and therefore will also be confined to a narrow band near the deep ocean

forcing.

When the deep ocean flow is weak in the lower layer, (' < 0.1), the cross-topography

extent of significant upper layer flow is limited to offshore of the interface/bottom

intersection. Figure 3-32 shows that in the two-layer model the cross topography scale

is linearly related to both the baroclinicity and the upper layer thickness.

154



(D
0CD
M-

4.5

4.0

2.0

0

0-

1.5
Un
o 1.0

0.5 , - '

0.00 0.25 0.50 0.75 1.00 1.25

Ba roc iic ity

0.80 0.90

Upper
1.00

Layer
1.10

Thickness

Figure 3-32: Cross topography scale relative to that of a barotropic flow as a function
of baroclinicity (solid line ) and as a function of upper layer thickness (dashed line )
when the deep oceans lower layer is motionless. Baroclinicity is the ratio of the strength
of the deep oceans upper layer flow to that in the lower layer. Upper layer thickness
is relative to the depth at the shelf break. The lines are linear fits to the width of the
flow as measured by the 0.2 contour at y' = -1.
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Planetary 3 increases the cross-topography penetration in both layers of a deep

ocean flow impinging on an east coast. However the maximum penetration is confined

to offshore of the interface/bottom intersection. A thin upper layer and surface inten-

sification enhance penetration for both f- and #-plane flows. The effect of planetary

3 on the deep ocean inflow can be explained by comparing the governing equations to

those governing two-dimensional heat diffusion. The 3 term acts to "advect" the pres-

sure field westward. Consequently planetary # enhances cross-topography penetration

on an east coast. This explanation suggests that the effect of planetary # on a west

coast deep ocean inflow (i.e. impinging on the ocean's eastern boundary) would be to

reduce its cross-topography penetration. However such a hypothesis cannot be tested

with the model presented here because if # is important the numerical scheme cannot

be used for a deep ocean flow impinging on a west coast.

Significant upper layer flow is confined between the deep ocean and the inter-

face/bottom intersection for two reasons. Firstly, to match Ekman transports across

the intersection, the ratio of the flow strength in the upper layer just shoreward of the

intersection to that just offshore of the intersection must be equal to the ratio of the

interfacial Ekman layer thickness to the bottom Ekman layer thickness, i.e. Soef. For

the scales used this ratio is less than unity and therefore upper layer flow shoreward

of the intersection must be weaker than the flow offshore of it. Secondly, interfacial

Ekman transport results from the relative motion of the two layers. When lower layer

flow is weak interfacial Ekman transport is mainly due to motion in the upper layer.

Blocking of lower layer interfacial Ekman transport at the interface/bottom intersec-

tion induces a narrow band of weak geostrophic flow in that layer adjacent to the

intersection. In summary, little deep ocean upper layer flow reaches the line where the

interface intersects the bottom and only a small proportion of this flow is able to cross

the line. Consequently the cross-slope influence of the deep ocean is limited to offshore

of the interface/bottom intersection. This conclusion is independent of the dynamic

significance of planetary 8.
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The internal mass balance of the layer models warrants a more detailed discussion.

In the three-layer model deep ocean fluid enters the slope region as geostrophic flow

across the offshore edge. Only in the bottom Ekman layer is there a return flow across

the offshore edge to the deep ocean. The mass balance is not however two dimensional

in the x - z plane, most of the deep ocean inflow leaves the domain of interest across

the southern boundary and only a small proportion flows back to the deep ocean in

the bottom Ekman layer. The global mass balance of the two-layer interfacial model

is similar to that of the three-layer model. Deep ocean fluid enters the shelf slope

region across the offshore edge as geostrophic transport, most of this flow leaves the

region across the southern boundary and if the core of the deep ocean's lower layer is

moving then there is a leakage of fluid back to the deep ocean in the bottom Ekman

layer. As shown earlier the upper and lower interfacial Ekman transports are equal in

magnitude but in opposite directions and therefore there is no net transport across the

offshore edge due to interfacial friction. To examine the interfacial transports in more

detail consider the case where the deep ocean's lower layer core is motionless (Figure

3-8). There is a weak return flow to the deep ocean in the upper interfacial Ekman

layer and consequently an influx of fluid from the deep ocean into the lower interfacial

Ekman layer. This weak lower interfacial Ekman transport caused by interfacial drag

flows southward and shoreward. Eventually this transport will hit the line where the

interface intersects the bottom. At this point it is converted into bottom Ekman

transport and is responsible for the interior flow adjacent to the intersection seen in

Figure 3-8a.

The diagnostic two-layer model of Csanady (1985) has a similar geometry to the

models presented here. His model also predicts shoreward and southward flow and that

deep ocean flow does not penetrate far shoreward of the interface/bottom intersection.

It assumes apriori that the interface has a linear alongshore gradient everywhere. Im-

plicit in this assumption is that all upper layer flow must cross the interface/bottom

intersection. In the more realistic model presented here little flow is able to cross

the intersection and this shows that Csanady's model overestimates the deep ocean's
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cross-isobath influence. In his model pressure is continuous across the line where the

interface intersects the bottom and this ensures that geostrophic transport normal to

the intersection is continuous across it. Just shoreward of the intersection there is an

Ekman transport normal to it, however just offshore of the intersection there is no

matching transport in the upper layer. Thus Ekman transport, and therefore total

mass, is not conserved across the line of intersection. In Csanady's model mass can be

conserved only if no flow is permitted to cross the intersection. The two-layer model

presented here approaches Csanady's model when interfacial friction is weak. In this

case it is found that almost no flow crosses the intersection.

The results for the combined alongshore inflow and deep ocean inflow show that

when the upper layer is significantly thicker than the depth at the shelf break the deep

ocean flow is confined over the continental slope and the alongshore inflow is confined

over the shelf. For this geometry the two regions of flow do not dynamically influence

each other. The steep slope acts as an insulating barrier between the shelf and slope

water masses. When the upper layer is thinner than the depth at the shelf break

the flows due to deep ocean and alongshore forcing can influence each other. For a

sufficiently thin upper layer and a sufficiently wide alongshore inflow shelf water can

escape from the shelf into the deep ocean's upper layer. A deep ocean inflow acts to

prevent shelf flow from moving far offshore, trapping it on or near the shelf. Thus one

conclusion of Chapman et al. (1986), namely that a barotropic deep ocean acts to hold

water on the shelf, can be extended to the baroclinic flows used here.

As the number of layers get larger the three layer model will tend towards a continu-

ously stratified model with a geostrophic interior and a bottom Ekman layer. However

the interfacial friction model assumes that the density difference between layers is

strong enough that mixing between layers is prevented. Thus this model cannot be

considered as a discretization of a continuously stratified ocean because as the number

of layers increases the density difference between layers will decrease to the point that

the assumption of no inter-layer mixing will no longer be valid. Thus the interfacial
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friction model is more appropriate as a mathematical model of a layered laboratory

model.
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3.6 Summary of Layered Models

The layered models show that:

1. the cross-topography scale of the deep ocean's lower water column is severely

limited by the steep continental slope;

2. the cross-topography scale of the deep ocean's upper water column depends pri-

marily on the vertical profile of the deep ocean flow;

" In near barotropic flows the upper water column is coupled to the lower water

column and therefore has a small cross-topography scale.

" In surface intensified flows the upper water column is decoupled by the strat-

ification from the lower water column and can flow shoreward until encoun-

tering the bottom.

3. planetary 8 increases the cross-topography scale of the entire water column and

in surface intensified flow acts to further. decouple the upper and lower water

columns.
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Chapter 4

Conclusion

The sequence of models developed here can be linked in the following way. The first

model in the series is that of Vennell and Malanotte-Rizzoli (1987). It assumes that

the horizontal density field of the vertical well mixed flow is known everywhere a priori

and that it does not change. This diagnostic approach is useful in determining the flow

induced by an alongshore density gradient. Such an approach unrealistically ignores

the advection of density by the induced flow but does avoid the difficulty of solving the

non-linear advective density equation, and thus it yields a tractable model.

The second model in the series is the vertically well mixed model of chapter 2. This

model incorporates horizontal advection of density. The governing equation (2.29)

is in general non-linear. However for particular boundary conditions, i.e. when the

density and streamfunction are linearly related on the boundaries, the equation is

linear and relatively easily solved. Such a model is a significant improvement over that

of Vennell and Malanotte-Rizzoli (1987) but can only determine the influence of the

deep ocean once it impinges on the shelf because it is limited to situations where the

flow is vertically well mixed, i.e. to depths of order 100m. Thus it assumes that the

deep ocean is able to cross the steep continental slope. The solutions of Wang (1982)

and others show that the continental slope has a significant influence on barotropic

flow. The well mixed model is limited to depths significantly less than oceanic depths

and thus cannot include the topography of the continental slope.

The third model in the series is the three-layer model of section 3.3. Due to the

latitudinal and depth restrictions on the f-plane model ( see (3.11) and (3.12)) it is
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applicable to the upper continental slope, i.e. depths of 500m or less, a significant

advance over the vertically well mixed model. Its limitation is that it does not deter-

mine the flow pattern in layers above the first motionless layer because the model is

geostrophically degenerate. Consequently it cannot give a solution for the potentially

most interesting case where the lower water column of the deep ocean inflow is motion-

less. This case is interesting because intuitively it is expected that such a deep ocean

flow will not be influenced by the steep topography of the continental slope until it

flows into water shallow enough to encounter the bottom.

The fourth model is the two-layer interfacial friction model on an f-plane of chapter

3.4 in sections 3.4f through 3.4i. This model resolves the geostrophic degeneracy of the

previous three-layer model and verifies the intuitive result for a deep ocean where the

lower layer is motionless. Neglect of planetary 8 restricts both the three-layer model

and two-layer f-plane model to a 250km wide deep ocean inflow and to depths 500m

or less which are scales appropriate for the upper continental slope. Thus it is assumed

that a deep ocean flow has already crossed the lower continental slope before impinging

on the upper continental slope. This is a valid assumption only if the deep ocean's lower

layer is motionless. If the deep ocean's lower layer is moving, then the topography of

the lower slope should be included in the model.

The fifth and final model in the series is the extension of the two-layer interfacial

friction model to a #-plane in section 3.4j. This model is applicable to deep ocean

inflows 1000km wide, comparable to the scale of the general oceanic circulation, and

to depths of order 3000m or more. The evolution of this series of models has expanded

the depth range of applicability while retaining vertical structure in the deep ocean and

while keeping the models simple enough that physical mechanisms which influence the

flow pattern can be determined. The final model in the series, the two-layer #-plane

model, is valid over the full depth range of the continental slope and to horizontal scales

representative of the deep ocean, and thus can properly address the question of deep

ocean influence on the shallow continental shelf.
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The vertically well mixed and layered models have a number of common features

and differences. In both flow is in geostrophic balance outside the Ekman layers. Flow

in the well mixed model, in the lowest layer of the three-layer model, in the two-layer

model shoreward of the interface/bottom intersection and in the bottom lower layer of

the two-layer model is in the same direction at all depths above the bottom Ekman

layer. Therefore the influence of the topography on the near bottom flow permeates the

entire depth of these flow regions and they can be considered to be in direct contact with

the bottom. Since flow in direct contact with the bottom is determined by topography

and bottom friction the cross-topography scale of flow in these regions on an f-plane

is primarily given by the ATW scale relationship (3.35).

In the vertically well mixed model vertical shear causes a variation in the cross-

topography scale, however this variation is of secondary importance. Shear affects the

strength of the near bottom velocities and hence the strength of bottom friction. For the

layered models layers in direct contact with the bottom have horizontal velocities which

are depth independent within the layers and this secondary variation is not present. For

typical values the ATW scale relationship predicts a small cross-topography scale for all

flow in direct contact with the bottom. Although planetary # can significantly increase

the cross-topography scale of these flows in deep water this increase is insufficient to

permit such flows to cross the steep continental slope.

The vertically well mixed model shows that geostrophic flow requires bottom friction

to cross isobaths thus flows with weak bottom velocities should not cross the topography

very well as bottom stresses are weak. The layered interfacial friction model shows that

the upper water column flow should have little knowledge of the topography if bottom

velocities are weak and therefore should not be strongly influenced by it. Thus the

vertically well mixed and two-layer models are apparently contradictory in that the

well mixed model shows that surface intensification reduces the cross-topography scale

whereas the two-layer model shows that it increases the cross-topography scale. In

the well mixed model the cross-topography scale is primarily determined by the ATW

scaling while vertical shear is of secondary importance. In the two-layer model vertical
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shear is of primary importance. Stratification combined with surface intensification can

significantly increase the cross-topography scale beyond that predicted by the ATW

scaling because it decouples upper level flow from the topography below. Essentially

the well mixed model only considers the secondary effect of the near bottom shear

on the spatial variation of bottom stress, whereas the two-layer model considers the

primary effect of vertical shear on the much deeper stratified water column.

In the two- and three-layer models the influence of topography on the layers overly-

ing the lowest layer depends on the vertical profile of the flow. Motion in the three-layer

model in layers above a moving layer but below the first motionless layer must be par-

allel or anti-parallel to motion in the lowest layer. These layers can be considered to be

in indirect contact with the topography below them through the effects of interfacial

displacements. Consequently flow in these layers will also exhibit a very short. cross-

topography scale given by the ATW scaling. Flow in layers above the lowest motionless

layer is completely decoupled from the topography below and cannot be determined by

the three-layer model. In fact the behavior of flows in the upper layers of the three-layer

model is singular depending on whether the flow in the layer immediately below is zero

or non-zero.

This singular behavior is bridged by the two-layer interfacial friction model. The

coupling of the flow in the two layers is a continuous function of the flow's vertical

profile. For near barotropic flows coupling of the upper layer to the lower layer is

strong and the upper layer's cross-topography scale is given approximately by the

ATW scaling. When flow is surface intensified upper layer flow is decoupled from lower

layer flow and has a much wider cross-topography scale than that given by the ATW

scaling. Planetary # acts to reduce the coupling in surface intensified flows.

The models presented here are dynamically similar to the model given in Kelly and

Chapman (1987) (hereafter KC). KC showed that diffusion due to mixing had little

effect on the cross-topography penetration of the deep ocean. This suggests, despite

the mixing of momentum, that their model is close to geostrophic balance outside of

the thin bottom frictional layer. KC assume that the bottom stress is proportional to
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the velocity just above the bottom boundary layer. This leads to a bottom boundary

condition which is very similar to those used in this work, where the vertical velocity

just above the frictional layer is the sum of the vertical velocities due to topography

and Ekman pumping.

Despite the similar dynamics and boundary conditions the model of KC and those

presented here are very different in the manner in which density is included. The

density equation for steady flow can be stated

u"P +v +w2- = KHV'p +Ky2

axa19 OZ HP OZ (4.1)
A B C D E

where KH and Ky are the horizontal and vertical eddy diffusivities. KC assumes

that density can be written as a mean background stratification and a perturbation

density, i.e. p = po(1 + pb (z) + p'(x, y, z)). They ignore horizontal advection of density

and balance terms C,D and E in (4.1). Such an assumption leads to a linear model.

Horizontal advection of density can be ignored by KC provided horizontal velocities

are not too strong. The vertically well mixed model presented here balances terms A

and B in (4.1), exactly those terms neglected by KC, yet they both demonstrate the

strong influence topography has on the flow. Unlike KC the layered models presented

here neglect the mixing of density. Thus a fluid parcel does not change its density as it

is advected around within layer. In this sense the layered models are purely advective.

Consequently both the well mixed and layered models treat density in the opposite

manner to KC.

KC's results show that the cross-topography influence is primarily determined by

the deep ocean's velocity profile, near bottom flow has a limited cross-topography

penetration, stratification decouples the upper and lower water column and surface

intensified flows are able to move shoreward until they encounter the bottom. The

similarity of the results to those found here is interesting in the light of the opposing

treatments of density. This suggests that it is not the form of the density equation which

determines the nature of the flow pattern but the common dynamics. Essentially all
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the models show that, despite bottom friction, steady geostrophic flow does not cross

isobaths very rapidly unless stratification isolates if from the topography below.

Different dynamics are used by Chapman and Brink (1987) in considering the in-

fluence of an unsteady deep ocean on the shelf. Their linear f-plane model includes

bottom friction and ignores the mixing of density and momentum. The density equa-

tion balances the time rate of change of perturbation density against vertical advection

of the background stratification. Despite the differences their conclusions for low fre-

quencies are similar to those obtained here. They find that if the deep ocean flow

encounters the bottom within the forcing's horizontal decay scale then the flow turns

to follow isobaths ( although in their model such a flow forms a bottom trapped wave

mode with a velocity maximum offshore of the shelf break) and that the shelf response

is always weak and barotropic. The results common to this work, KC and Chapman

and Brink (1987) are that stratification decouples the upper and lower water column

and that deep ocean flow is not strongly influenced by the topography until it encoun-

ters the bottom. Once the bottom is encountered further cross topography motion is

severely limited by the continental slope.

The mean currents observed over the shelf and slope during both NSFE79 and

SEEP were closely aligned with the isobaths. All the models presented here show this

alignment. Aikman et al.(1986) noted that the mean velocities had a minimum at the

shelf break. The oxygen isotope data of Chapman et al. (1986) show that Scotian shelf

water remains on the shelf during its southwestward passage down the Mid-Atlantic

Bight . The combined deep ocean and alongshore forcing of section 3.4k suggests that

Scotian shelf water and deep ocean water should remain distinct water masses confined

over the shelf and slope respectively. The two water masses can dynamically influence

each other only when the upper layer is thinner than the depth at the shelf break.

For such a thin upper layer Scotian shelf water can escape the shelf into the deep

ocean unless there is a deep ocean inflow. Consequently the deep ocean acts to hold

Scotian shelf water on the shelf. When combined with the oxygen isotope and mean

flow observations the results of this model suggest that the observed mean flow over

166



the shelf is of Scotian shelf origin, the mean flow over the slope is of deep ocean origin

and the mean flow minimum marks the boundary between the two water types.

Although KC found that mixing had little effect on the penetration of the deep

ocean the oxygen isotope data shows that horizontal mixing does occur between the

shelf and slope. The neglect of horizontal mixing in the vertically well mixed model

and the neglect of all mixing in the layered models is clearly a limitation.

The well mixed model is of limited use in addressing the question of deep ocean

influence on the shelf because it does not include the steep topography of the continental

slope. This question, which is central to this work, is best addressed by the layered

models since they include the continental slope. The two-layer model demonstrates

that the deep ocean can influence the shelf if the the depth scale of both density and

velocity is less than the depth at the shelf break. Consequently a large proportion

of a steep shelf could be influenced by the deep ocean. A wide gently sloping shelf

could only be influenced by deep ocean flows with a very small depth scale. The main

thermocline at mid-latitudes is at about 1000m depth which is too deep to permit deep

ocean influence on the shelf. Gulf Stream Rings have a considerably smaller depth scale

(0(500m) Joyce (1984)) and therefore could influence the shelf if the shelf break were

deep enough. In the Mid-Atlantic Bight this is not the case since the shelf is both wide

(O(100km)) and shallow at the shelf break (0(100 - 200m)). Consequently features

with such depth scales could not be responsible for the observed mean shelf flow.

In conclusion the degree of cross-topography influence of any given deep ocean flow

depends on its vertical structure. Near-bottom deep ocean flow has a very short cross-

topography scale due to the steep continental slope and consequently never reaches the

shallow shelf. The effect of the continental slope on the upper water column of the deep

ocean depends on the vertical structure of the deep ocean flow. For a barotropic or near

barotropic deep ocean the upper water column tends to follow the near bottom flow and

thus does not cause significant flow over the shelf. In a surface-intensified deep ocean

the upper water column is decoupled from the lower water column and consequently

is not influenced by the topography below it until it encounters the bottom. Therefore
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a surface-intensified deep ocean may have a much larger cross-topography scale than a

barotropic or near barotropic deep ocean. A surface-intensified deep ocean can cause

significant shelf flow but only if flow is confined to a layer thinner than the depth at the

shelf break and if the flow in this layer is at least an order of magnitude stronger than

the flow below the surface layer. In the deep ocean the depth scale for both the density

and velocity is generally larger than the depth at the shelf break . Consequently the

steep continental slope insulates the shelf from deep ocean influence.

168



Appendix A

Near Field Solution for a Vertically Well Mixed Shelf

By deriving an approximate form of the density equation valid in the "near field" and

by solving the transport equations for surface pressure and density, it is possible to

obtain an analytical solution which greatly aids physical understanding of the manner

in which topography influences flow. The near field solution can be used to analytically

obtain the flow induced over the shelf by the edge of a Gulf Stream Ring.

A.1 Near Field Advective Density Equation

The transport equations (2.12a) and (2.12b) suggest a partition of the total cross-shelf

transport into geostrophic and ageostrophic transport. The latter is due to frictional

effects at the lower boundary. The cross-shelf geostrophic transport is defined as

fUg = -gh(- + ha (A.1)
ay 2 ay

and the cross-shelf ageostrophic transport is

f U"g = r . (A.2)
f

The total cross-shelf transport, U, is equal to U' + U"9. Under the assumption that

cross-shelf scales are small compared to alongshore scales, alongshore frictional trans-

ports can be neglected and alongshore flow is in approximate geostrophic balance.

The ratio of cross-shelf ageostrophic transport to geostrophic transport, using the

definitions of bottom velocities (A.2) and assuming that surface pressure and density
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make approximately equal contributions to total pressure, is of order

Uag r L

(A.3)Ug f ho L.

is equal to E? which is small, however under the long wave assumption f is

large. The product of these two ratios can be shown to be small in a particular region,

and thus the transport of density by cross-shelf Ekman transport can be neglected.

Noting that the ATW relationship between horizontal scales (2.34) can be rewritten

as =

r L, _ sL, (A.4)

fho Lz ho

The near field is where the above non-dimensional number is small and this occurs

when the depth change over the flow's cross-shelf scale is small compared to the water

depth, i.e. where

s L.-«<1 . (A.5)
ho

ho is approximately se, ( t is the shelf width), if the depth at the coast is small, and

therefore the near field is the region where

<< 1< 
(A.6)

i.e. where the inflow from the deep ocean has not expanded too far across the shelf.

A flow which enters the shelf across x = f follows the topography while expanding

slowly across it due to friction. This is a consequence of the ATW scaling (2.34). In

the near field region this expansion across the shelf is still small implying that the flow

has not moved too far along the shelf. Therefore the near field is the region of the

shelf confined to the shelf edge within a few L's of the point where flow first enters the

shelf. Dimensionally the advective density equation (2.26) in the near field where total
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transport may be approximated by geostrophic transport is

aa = 0 .(A.7)
ay ax ax ay

This may be written in terms of a Jacobian

J (6, r7) = 0 .(A.8)

Therefore density is conserved along surface displacement contours in the near field.

Neglecting the ageostrophic advection of density allows an approximation of the Jaco-

bian (2.27) by (A.8) in the near field. This is a good approximation only as long as

surface displacement contours are almost the same as transport streamlines - a condi-

tion that is true only for a finite distance along the shelf.

From (A.8) the density is a function of the free surface displacement, r7, i.e.

(A.9)

If r and E are prescribed along the outer edge of the shelf then 9 (r7) will be known

there and, because of density conservation (A.8), this functional relation will hold in

the near field in regions which contain flow which crossed the outer edge.

A.2 Surface Pressure Flow Equation

An alternative form of the flow equation (2.16) can be obtained by solving the transport

equations (2.12a), (2.12b) and (2.12c) for the free surface displacement yielding

r a 277 ar _ ah &e rat ac\
__+ h,- =- h h .(A.10)

faX2 ay ax ay f ax ax

This is the same as the equation derived by Csanady (1979) but for a vertically well

mixed shelf.

Combining (A.9) and (A.10) yields an equation in a single variable

a ((1 + h ) + h.(1 + h--)L = 0 (A.11)fax d7 ax d ay
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which can be solved for r7. Given the solution for r the density C can be calculated

using (A.9).

An example of a case when (A.11) has an analytical solution is when the boundary

conditions are such that rq and the density E are proportional to each other, i.e.

e = Kr7 . (A.12)

In this case I is the constant, K, and (A.11) becomes

r 8 B78S(1 +Kh)-L) + h,(1+Kh)-=0 (A.13)f7 TX x ay

From the hydrostatic relation (2.4c) and (A.12) the flow's geostrophic velocities for

a well mixed shelf can be written

--f' = -g(1 + Kz)2 (A.14)

fug = -g(1 + Kz)2 (A.15)

showing that K can be physically interpreted as a measure of the vertical shear in

geostrophic velocity. These equations also show that the geostrophic velocity is parallel

to the surface displacement contours at all depths.

The relative size of the cross-shelf transport of density by geostrophic flow to that

by ageostrophic flow in this special case of parallel density and surface displacement

contours is given by the ratio

Uag E(1 +Kh)f= f (A. 16)
Uarotropc (6

This ratio will be calculated from the final solution to ensure it remains small in the

near field, in which case (A.7) will be valid. This ratio shows that the near field will be

longer for bottom intensified flows ( K < 0 ) than for surface intensified flows (K > 0).
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A.3 Near Field Boundary Conditions

Equation (A.13) is parabolic. Its boundary conditions are:

(i) a = 0 where h =0, no flow through coast.

(ii) r7 = 0 at y = 0, "initial condition" no inflow from higher latitudes.

These conditions are the same as those used by Csanady in his ATW model. At the

shelf edge the jet will be driven by a linear ramp in the free surface.

(iii)

0
1 = { A

The boundary condition for density, e

ramp,

(B y

0 < y
y 0

(A.17)
at x=t

, at the shelf edge will be also taken as a linear

0 < y

y < 0
(A.18)

at x=e

so that the functional relation, K, is A.

A.4 Near Field Solution

Equation A.13 can be solved for linear topography, i.e. h = sx, by noting its analogy

to that governing heat diffusion in a cylinder. (A.13) becomes

(1 + Ksz)- + (1 + Ksx) - = 0fsaz (z axBy (A.19)

which can be rewritten

rsK2  a ( R ' a7 =f R a+R-=0f R) ay (A.20)

where R = 1 + Ksx. The boundary conditions for surface displacement are:
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(i) - = 0 at R= 1, no flow through coast8R

(ii) q = 0 at y = 0

(iii)

(0 (A.21)
#y, y<O atR=1+Kst

The analogous cylindrical heat conduction problem for K positive is an infinitely long

annulus with an insulated core, zero initial temperature, and a prescribed temperature

at the outer surface which grows linearly with time (-y). A solution to this heat

flow problem can be obtained using Carslaw and Jaeger (1959) (Section 13.4, p322)

to obtain the solution for a fixed temperature at the outer boundary and extending

this to a time variable outer boundary temperature using Duhamels Theorem (Carslaw

and Jaeger (1959), Section 1.14, p30). For negative K it is the outer surface which is

insulated and the inner one which has the prescribed temperature. Manipulation of

the solution obtained from Carslaw and Jaeger (1959) for this heat flow problem shows

it to be the same as the solution for positive K. The solution is

{7 (0 (A.22)
#771(x, Y), y < 0

where

_= Y r oo Jo(ba.)Jd~a.)7(X, y) - y + 2 =1 22Ker~n(cfn)-JO(bxn))

x (Jo(R an)Y(an) - Yo(R an)J1 (an))

x (exp (K 2
8rs -) (A.23)

b = 1 + Kat and Jo, J1, Y and Y are Bessel functions of the first and second kind. In

order to satisfy the outer and inner boundary conditions the transcendental equation

for an

Jo(ban)Y1 (an) - Yo(ban)J 1 (an) = 0 (A.24)
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must be solved. For Kst < -1 the radius of the cylinder becomes negative for some

range of x. This is physically impossible and hence there is no solution for this range

of shear. It should be noted that restricting the solution to Kst > -1 is the same as

requiring that there is no level of no motion in the geostrophic flow.

Scaling the surface displacement by its maximum value i.e. assuming that no = A L,,

the non-dimensional form of the solution is

77' = (A.25)
Sj(z, y y < 0

where

00

I1 + ____ -jn(bcx.)Ji(cx.)

(Khoa)2 n IJ? )-J(.))

x (Jo(R an)Y1 (an) - (Yo(R an)J1 (an))

x (exp ((Khoa) 2a2y) - 1) (A.26)

R = 1 + (Kho)ax', b = 1 + (Kho), and ho = st is the water depth at the shelf edge.

A.5 Results and Discussion of Near Field Solution

The solution depends on only two dimensionless numbers. The first, Kho, gives the

importance of density effects within the flow. It is large for high shear and because

density forces increase with water depth it is also large for a deep shelf.

In the heat conduction analogy (Khoa)2 is the thermal diffusivity. High diffusivity

implies rapid conduction of heat and hence rapid heating of the cylinder. This translates

into a shorter alongshore distance for the boundary layer to grow to a given width or

more effective flow penetration of the shelf. From this analogy it can be seen that the

flow penetration is enhanced by the following: high shear, a deep shelf, strong bottom

friction, low latitude, a wide flow or a narrow shelf.

For this near field solution the free surface displacement over 100km is 0.2cm and

the maximum density anomaly was chosen for three cases to be +0.018, +0.01, -0.005

parts per thousand over 100km.

175



A small extension of this model is to use it to illustrate the effect on the shelf

of the outer edge of a Gulf Stream Ring. This gives an analytical solution to the

case considered in section 2.3b. The forcing of the shelf by the ring is idealized as

a linear peak in surface displacement and density along the models offshore edge. In

non-dimensional form these conditions can be stated

0

a'y'

-a'(y' + 2)

0

0 < y'

-1 < y 0
-2 < y' < -1

Y' < -2

a' < 0 represents a cyclonic ring and a' > 0, a anti-cyclonic ring.

0aKy'
-aK(y' + 2)

0

0<y
-1 Ky' < 0

-2 < y' < -L,

y' < -2

at x = t (A.28)

For both Warm and Cold Core Gulf Stream Rings the

the flow is surface intensified (in our model K < 0).

The solution is

0

a'r(', y')

;= a'(7l(x', y') - 2rj1(x', y' + 1)

a'(r1(x', y') - 2r;i(x', y' + 1) + rn(x', y' + 2)

density structure is such that

O<y

-1 <y' < 0

-2 < y' K -1

Y' < -2

(A.29)

where rll is given by (A-3). The solutions for Kho = -0.9, -0.5 and +.25 for a = 0.167

are shown in Figure A-3. These contours are also density contours of the interior layer

when scaled by K. The relative error in neglecting ageostrophic transport calculated

for (A.16) is 5% or less in each case. The near field density equation is valid over

a larger alongshore distance than the previous inflow example because an outflow is

adjacent to the inflow, which reduces the flow's cross-shelf scale making (A.6) a good

176

at x' =1
(A.27)



approximation. For typical scales the plotted domain corresponds to 150km of a 100km

wide shelf. The contours in Figure A-3 give the flow direction at the free surface and

because the geostrophic flow is in the same direction at all depths they are flow lines for

the geostrophic flow. In using the approximated density Jacobian (A.8) it is assumed

that r7 contours are approximate transport streamlines in the nearfield. Therefore

these Figures may be viewed in four ways; as barotropic pressure contours, as density

contours, as geostrophic flow direction or transport streamlines.

The ring does not penetrate the shelf very well. The steering of the flow by the

topography is evident by the skewed flow pattern. The length of shelf influenced by

the ring is quite short, about three times L.. The density structure on shelf penetration

is such that both Warm and Cold Core Rings are able to influence the shelf less than

a barotropic ring because the flow is surface intensified (K < 0).

Figure A-3 shows how increased shear, Kho, causes the flow to penetrate less along

the shore and more across the topography. A simplistic reason for this is that shear

increases the bottom velocities and therefore increases the frictional drag on the flow

enhancing the ability of the geostrophic flow to cross isobaths. That this is incorrect

is shown by considering a barotropic flow ( Kho = 0 ). In this case doubling the

bottom velocities does not alter the flow's pattern because the amount of fluid to be

absorbed into the Ekman layer, as measured by the flow's transport, is also doubled.

The more subtle reason for enhanced shelf penetration by sheared flows lies in the rate

of absorption into the Ekman layer relative to the volume being transported by the

flow.

Equation A.20 can be thought of as the equation governing heat diffusion in a thin

tapered bar of thickness 1+ Ksx. The boundary conditions are that the bar is insulated

at x = 0 and that the temperature is prescribed at x = t and varies with time. The

rate at which the bar heats is governed by the cross-sectional area at the heated end

and the volume of the bar. For the same prescribed temperature, the heat flux into

the bar is proportional to the area of the end, 1 + Kho. The volume to be heated is

proportional to f(1 + Kho). Hence, since the flux increases faster than the volume with
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increasing taper, i.e. larger K, a more highly tapered bar will heat more quickly. The

heating rate of the bar is therefore governed by the ratio

1 + Kho
(l+ Khn) (A.30)

In oceanographic terms the greater the shear, (taper), the shorter the alongshore dis-

tance traveled (time) required by the barotropic pressure, rl, (heat) to penetrate the

shelf.

This ratio (A.30) is in fact proportional to the inflow's near bottom cross-shelf

velocity at the shelf edge divided by the inflow's transport. Ekman pumping, which

determines the rate of absorption into the Ekman layer, is

WE =hub =-hz (1+ Kh) .L (A.31)

The total transport onto the shelf as measured by the flow's depth averaged cross-shelf

geostrophic velocity at the shelf edge is

i = - = - (1 + Kh) L at x=I (A.32)
h f ay

which is the cross-shelf velocity of a barotropic flow with the same transport as the

sheared flow. Using the above definitions evaluated at the shelf edge the ratio becomes

Cross-shelf flow penetration oc Cross-shelf bottom velocity
Depth averaged cross-shelf vel.

Ekman pumping ( absorption rate) (A.33)Geostrop ic inflow transport
1 + Kho

(1+ Khn)

Therefore, as alluded to earlier, cross-shelf penetration of the inflow is determined by

the ratio of absorption rate ( Ekman pumping ) to volume to be absorbed ( geostrophic

transport on to the shelf). The ratio, plotted in Figure A-2, gives a measure of how well

the inflow is able to penetrate the shelf compared to the penetration of a a barotropic

inflow. High ratios indicate more effective penetration of the shelf. From Figure A-2
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it is clear that a bottom intensified flow (K > 0) crosses the topography more easily

than a surface intensified flow (K < 0).

In chapter 2 it was determined that the vertical well mixed model is not valid when

the bottom velocity is too small because effects such as inertia become too large to be

neglected. This near field solution can be used to examine cases where the inflow has

a level of no motion. The range Kho < -1 was eliminated from the near field solution

because it corresponded to a cylinder with negative radius, the thin tapered bar analogy

will be used to explore this range. Using the tapered bar analogy, when Khe7 it = -1 the

bar has zero thickness at at the cross-shelf point xeit. Oceanographically, from (A.12),
(A.14) and (A.15) this is the line where the depth of no motion in the geostrophic

flow equals the water depth. Expanding the cross-shore derivative in the flow equation

(A.19) and setting h = h,. yields

= 0 (A .34)

at this line. Hence no heat may cross the line Xrt (and geostrophic flow must cross

normal to it) and there will be no heat (and no flow) for x less than x,6 because the

bar has no thickness there. Thus flow must make a sharp right angle turn at xc,it.

Inertial effects will become large enough to violate the scaling (2.6) and therefore the

range Kho < -1 cannot be covered by this model.

The near field solution yields a useful analogy with heat diffusion in a thin tapered

bar. This analogy leads to the conclusion that it is not absolute magnitude of the

bottom velocity which determines the rate at which topography is crossed but rather

the ratio of near bottom cross-shelf velocity to the geostrophic transport. This ratio is

the same as the ratio of Ekman pumping to flow transport, showing that it is the rate

of absorption into the Ekman layer relative to the volume of fluid to be absorbed that

determines the ability of a geostrophic flow to cross topography.
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Figure A-1: Free surface displacement contours for varying degrees of vertical shear
in the flow which enters the shelf between y' = -1 and y'= 0. The contours also
give the density, the flow direction in the geostrophic layer and approximate transport
streamlines. The alongshore extent of these Figures is 100km for typical scales and the
solid contour spacing is 0.2. a) Kho = -0.9, a surface intensified flow penetrates the
shelf poorly. b) Kho = -0.5. c) Kho = 0.25. The barotropic flow pattern lies between
the shapes give in b) and c). The relative size of the ageostrophic transport, which was
ignored in calculating these near field solutions is 5%, 11%, 20% respectively.
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Figure A-2: Ratio which determines the degree of shelf penetration of the flow flow,
plotted against the degree of shear in the flow's horizontal velocity ( Kho ). The
penetration of a barotropic flow is assumed to be unity. High ratios indicate more
effective penetration of the shelf. If Kho > 0, the flow is more effective than a barotropic
flow and if Kho < 0, it is less effective. The geostrophic velocity profile for different
ranges of shear is shown schematically. The degree of flow penetration is zero when
Kho = -1, corresponding to flow with zero near bottom velocities.
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Figure A-3: Free surface displacement contours for varying degrees of vertical shear
in the flow which enters the shelf between y' = -1 and y' = 0 and which leaves the
shelf between y' = -2 and y' = -1. This example is intended to show the effect on
the shelf of the outer edge of a 100km diameter Gulf Stream Ring. The contours also
give the density, the flow direction in the geostrophic layer and approximate transport
streamlines. The alongshore extent of these Figures is 150km for typical scales. The
solid contour spacing is 0.2. a) Kho = -0.9, a surface intensified flow penetrates the
shelf poorly. b) Kho = -0.5. c) Kho = 0.25. The barotropic flow pattern lies between
the shapes given in b) and c). The skewed flow pattern is due to the tendency for flow
to follow isobaths.
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Appendix B

Ekman Layers at an Interface

When two layers are in relative motion some frictional stress will result from the shear

in horizontal velocity. One way to include the effects of internal friction is to allow

each homogeneous density layer to contain an Ekman layer adjacent to the interface.

Solutions will be developed for flow within the interfacial Ekman layers assuming that

the Ekman layers are thin compared to the thickness of the density layer. The aim of

this appendix is to determine the vertical velocity induced by Ekman layers adjacent

to an interface in the geostrophic interior of the density layers, and to evaluate the

frictional transports within the interfacial Ekman layers.

The equations governing flow in an Ekman layer on a sloping interface are essentially

the same as those derived by Pedlosky (1979) for an Ekman layer on a rigid sloping

bottom. Pedlosky's derivation assumes that while bottom slope may be as large as the

vertical aspect ratio, changes in slope occur on scales which are large compared to the

horizontal scale of the motion. Changes in the "topography" of an interface must occur

over the motion's horizontal scale. However Pedlosky's derivation may be used and is

simplified for a sloping interface because interface slopes must be small compared to

the vertical aspect ratio.

Following Pedlosky (1979) the "natural" coordinate system for a sloping boundary

is one rotated to be normal to the boundary. Assuming that y is locally parallel to

contours of interface displacement, then the horizontal and vertical (x, y, z) coordinate

system can be rotated into the (z', y, z') coordinate system, where z' is normal to the

interface, by a non-dimensional rotation 0 in the x,z plane. This angle is related to the
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dimensional slope 9 by

t* = d
ax* L

d is a representative layer thickness and L, the horizontal scale of the motion. Variables

in the rotated and unrotated frames are related for small angles to order O', where 0

is the magnitude of 0, by

x = X'

z = Ox'+z'

u = u' (B.1)

w = Ou'+w'.

Note that both horizontal distances and velocities are the approximately the same in

both frames. Horizontal derivatives are related to O(0') by

a a a
- = -. (B.2)

From Pedlosky (1979), equations (4.9.8a), (4.9.11), (4.9.12) and (4.9.14), the steady

non-dimensional equations governing motion in frictional boundary layers in the rotated

frame when the rotation is small are

- a p + (B.3)ax' 2 aB2

ap 1 a 2v
U =a + (B.4)ay 2a0 2

au av 1 aw'
+ + - 0 (B.5)ax' ay B2E' a

ap--P = 0 (B.6)aa

184



where a is the stretched boundary layer coordinate

ZI (B.7)
2E?

Ev' is the vertical Ekman number in the unrotated frame equal to A. A' is the verticalf d2 ~ V

turbulent eddy viscosity appropriate to the interface.

Dynamically significant pressure does not vary with depth in the geostrophic core

of the layer (see Section 3.2) and , by (B.6), also does not change across the thickness

of any boundary layers. Therefore the horizontal gradient of pressure from (B.2) is

approximately the same in both forms, i.e. -- = 2. Consequently (B.3) is also

approximately the same in both frames and the boundary conditions that velocity is

geostrophic outside the boundary layers may be stated

U 0 = (B.8)

Vi = P- -+ oo
V = a(B.9)

V2 = 2a - -oo

where ui and vi are the components of geostrophic velocity just above the upper in-

terfacial Ekman layer and u2 and v2 are the components of geostrophic velocity just

below the lower interfacial Ekman layer.

Pressure and therefore the geostrophic velocities defined by (B.8) and (B.9) are

depth-independent within a density layer. Thus if the geostrophic velocity in adjacent

layers is different, then the horizontal pressure gradient must be discontinuous across

the interface.

Matching conditions at the interface, a = 0, are that u and v are continuous across

the interface and that the shear stresses a and - are also continuous. Combining

(B.3) and (B.4) into a single equation and using (B.8) yields for the upper interfacial
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Ekman layer

1 aU

4 Bad + (U - Ui) = 0 - > 0 (B.10)

and for the lower interfacial Ekman layer

1 a 4U
4+ (U - U2) = 0
41BU4

(B.11)- < 0

Solutions satisfying the boundary and matching conditions for flow in the upper inter-

facial Ekman layer are

u - u 1 = - - v2)e"sin - I

v - vi = V - v2)ecos -

and in the lower interfacial Ekman layer are

- u2)e-ocosa

- u 2)e-"sino

a > 0 (B.12)

u-u 2 = -}(v1 - v 2)e'sina + }(ui -U 2)eocosu

a < 0

V - V 2

(B.13)

= ((V - v2)eocosu + }(ui - u 2)e'sinu

The horizontal velocity components at the interface are

Uint

vint

1
= (Ui + U2)

1
2 (Vi + V2) . (B.14)

Note that the interfacial velocities are the average of the geostrophic velocities in the

layers either side of the interface. The components of interfacial stress are

1 1
= -- (ui - u2) + -(v 1 - v 2 )2 2

1 1
=- (Ui - u 2 ) - (V - v 2 ) .2 2
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Integrating the right hand sides of (B.12) between the interface and the interior (a =

0 to oo) yields the interfacial Ekman transports due to frictional effects

Uf = - E ((u 1 - u2) + (v1 - v 2 )) (B.17)

4Vi2 = IV ((Ui - U2) - (V1 - V2)) . (B. 18)

Similarly, integrating the right hand sides of (B.13) between -oo and zero gives the

frictional transports in the lower interfacial Ekman layer

U2= 4 ((Ui - U2) + (vi - v 2 )) (B.19)

1E0
V2  = (-(u 1 - u2) + (v1 - v 2 )) . (B.20)

Note that these transports are equal and opposite to those in the upper interfacial

Ekman layer, and that even if geostrophic flow in a given density layer is zero, there

can be an Ekman transport induced in that layer by motion in the other density layer

of the pair.

To determine the vertical velocity just outside the boundary layer the continuity

equation (B.5) must be integrated. For the upper density layer in the stretched a

coordinate system this can be stated as

Wz=-(di+6E) - 'r= - 2 ( + d (B.21)

where w' is the vertical velocity at the interface. If there is locally no net flow across

the interface, then the vertical velocity in the interior of the upper density layer from

(B.21) and (B.12) is

Wz=-(d1+6E) = 4 (Ev '(vi - v 2 ) - (Ui - u 2) . (B.22)

187



As demonstrated geostrophic velocities are independent of depth within a density layer.

Consequently from (B.2) horizontal gradients of geostrophic velocity will be the same

in both rotated and unrotated frames e.g. -= . Using this and the relationship

between w' and w the vertical velocity in the unrotated frame in the upper density

layer just outside the upper interfacial Ekman layer is

Wlz=-(dl+bB) = 0u 1 + (2 (Vi - V2 ) (Ui - U 2 ) (B.23)

For a y axis which is not aligned to the contours of interface displacement this can

be generalized to

W~z=-(dl+6_E,) = Ul 9 + 2V1 -a2 (1-U) (B.24)
2E ax aye z=-(i~s)= ile r+ 4 ( (i-2) - i- U2)) (.4

where til is the geostrophic velocity vector in the upper density layer and V' is a vector

whose components are non-dimensional interface slopes. Similarly the vertical velocity

just outside the lower interfacial Ekman layer in the lower density layer is

# 4E a - a
Wlz=-(d+6B) = t V + ( V (v- v 2 ) - ( - U2 )) . (B.25)
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Appendix C

Coastal Flows Driven by Alongshore Density Gradients.

The following ,Vennell and Malanotte-Rizzoli (1987), is reproduced from the Journal of

Physical Oceanography. The model and calculations are the work of R. Vennell. The

text and discussion is the work of R. Vennell and P. Malanotte-Rizzoli.
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Reprinted from JOURNAL OF PHYSICAL OCEANOGRAPHY. Vol. 17, No. 6, June 1987
Amencan Meteoroloical Socety

Coastal Flows Driven by Alongshore Density Gradients

Ross VENNELL

Joint Program, MIT/WHI01

PAOLA MALANOTTE-RIZZOLI

Massachusetts Institute of Technology, Department of Earth, Atmospheric. and Planetary Sciences.
Center for Meteorology and Physical Oceanography, Cambridge, MA 02139

7 March 1986 and 2 September 1986

ABSTRACT

In this note we study the effect of an alongshore density gradient in driving the near-coastal circulation and
determining the direction of the alongshore flow. We revisit and extend the results obtained by Malanotte-
Rizzoli and Bergamasco (MRB) using the same simple analytical model but changing the longshore density
distribution and examining the full solution, not only its far-field behavior as done by MRB. We find as a new
result that the near-coastal flow is profoundly modified when passing from monotonic, northward increasing
density profiles, the case studied by MRB, to double-ramp profiles with a density maximum. In particular, the
reversal of the density gradient north of its maximum is a necessary condition for the creation of a strong
southward flowing coastal cell. This cell does not exist when the density increases monotonically northward.
The examples shown, even though idealized, compare well both in flow direction and in order of magnitude
with what is observed in winter in the northern Adriatic sea.

1. Introduction

In this note we exploit a simple analytical model of
Csanady's (1978) "Arrested Topographic Wave" type
which was used by Malanotte-Rizzoli and Bergamasco
(1983, hereafter referred to as MRB) to explain the
dynamical effects of an alongshore (north-south) den-
sity gradient in driving the coastal circulation on the
shelf.

Csanady's approach (1978) was also exploited by
Shaw and Csanady (1983). The starting dynamic equa-
tions of Shaw and Csanady (1983) and MRB are the
same, which is not surprising in view of the fact that
their basic physical assumptions are the same. It should
be pointed out, however, that both the Shaw and Csan-
ady (1983) and MRB models can be derived from a
model originally proposed by Hendershott and Malan-
otte-Rizzoli (1976) by neglecting some factors like
cross-shelf bottom friction and along-shelf topography
variations. This fact was clearly pointed out and dis-
cussed in detail in the MRB paper. Furthermore, even
though the starting MRB and Shaw and Csanady's
models are the same, the equations are manipulated
and analyzed in a rather different way to focus upon
different aspects of shelf dynamics.

The MRB model refers to the northern Adriatic sea
in which the north-south density gradient is deter-
mined in winter by the formation in the basin interior
of a pool of very dense water thanks to deep convective

cooling which mixes the water column to the bottom.
In summer, instead, the north-south density gradient
is established by the spreading of light river water, the
Po River being the major source of fresh water input
into the Northern Adriatic. MRB suggests that the
nearcoastal circulation is driven by the bottom torque,
which dominates the dynamical balance as soon as an
alongshore density gradient is present. To this gradient
the intensity and direction of the alongshore flow may
be ascribed.

In this note we revisit the results obtained by MRB,
extending them to more relevant, even though ideal-
ized, north-south density distributions and discuss the
full solution, not only its far field behavior as done by
MRB. Finally, we relate the direction of the alongshore
flow and its reversals to the shape of the alongshore
density profile and to the sign of its gradient (increasing
or decreasing northward), a point on which MRB has
given only an incomplete analysis.

2. The model

Csanady (1978, 1985) uses a diagnostic model where
the density field is assumed frozen to study shelf flows.
Such a decoupling of the density and velocity fields
greatly reduces the difficulty of obtaining a solution.
However, such a diagnostic model should not be ex-
pected to give more than the magnitude and sense of
that particular flow which is consistent with the as-

@ 1987 American Meteorological Society

190



JOURNAL OF PHYSICAL OCEANOGRAPHY

sumed density distribution. With this in mind we will
proceed to diagnostically examine the flow patterns
consistent with an idealization of the observed Adriatic
density field.

Following Csanady (1985) we write the steady trans-
port equations for a vertically well-mixed coastal strip
as

ghr
-fI= -h (la)

fU =-gh7Y- -- e(- rvb (lb)
2

U,+ V.= 0. (Ic)

No wind stress is present and we use the rigid-lid ap-
proximation. Subscripts indicate partial derivatives; (U,
V) are the transport components respectively across
shore (U) and alongshore (V); T(x, y) is the free surface
elevation; f is the (constant) Coriolis parameter; c is
the density anomaly defined as E = (p - po)/po if po is
a reference density; (ub, Vb) are the bottom geostrophic
velocity components; r is the bottom friction coeffi-
cient; h(x, y) is the depth.

The flow is envisioned as a geostrophic interior
overlying a frictional bottom layer. In the geostrophic
interior the flow obeys the thermal wind balance. The
bottom stress is taken to be proportional to the bottom
geostrophic velocity

Ub= - 9 (77y + he,) (2a)
f

v= (n.,+ he). (2b)
f

We also make the long wave assumption, for which
the cross-shore scale L, is assumed to be small com-
pared to the longshore one L,: LX/Ly < 1. Thus we are
able to neglect the cross-shore bottom stress. As a final
assumption, we take the depth to vary only in cross-
shore direction: h = h(x). We consider a north-south
coastline, with x pointing eastward, y north-
ward and the land corresponding to x < 0 (a western
boundary).

We can combine the model equations (la, b, c) and
the definitions (2a, b) for (ub, vb) as done by Shaw and
Csanady (1983) to obtain a single equation for Vb:

rvx +fva,=-gh,1,. (3a)

If the depth vanishes at x = 0 [i.e., h(O) = 0], from (Ib)
with U = 0 at the coast, the appropriate boundary con-
dition is

Vb=0 at x=0. (3b)

Alternatively, a single equation for Ub can be derived:

r ub. + hfuby= -gj hxf,). (4a)

The appropriate boundary condition is obtained as
follows. Combining (2a, b) one gets ub, + vj, = (-gh,
f,: noting that if vh = 0 at x = 0, then 80vj,1/ = 0 too,
then

-gh,

f
(4b)

The mathematical difficulty posed by systems (3)-
(4) can be reduced if we consider the simplified case
of a linear topography, h = sx, with s the slope >0 as
done in MRB, and a linear density variation: p = po(l
+ ax + Oy). In this case (3a, b) reduces to

avb r a2vt 0
- +-- = -gs-
ay fs ax' f
vb=O at x=0, (5)

and (4a, b) to

aub r a ub
-- + = 0ay -fs ax2

ub -gs3

dx f
at x=0. (6)

As pointed out by Csanadv (1978), Eqs. (5)-(6) are
one-dimensional heat diffusion equations with -y the
time-like coordinate and r/fs the "thermal diffusivity".
The right-hand side (rhs) of (5) is analogous to a con-
stant internal heating of the medium at a rate gs3/f

We shall furthermore restrict ourselves to cases in
which there is only a longshore density gradient all
over the coastal strip, i.e., a m 0. Even though this
restriction does not change Eqs. (5) and (6), there will
no longer be any vertical shear in the longshore velocity
Vb. Thus, the longshore bottom velocity vb is the ve-
locity at all depths.

With p = p(y) only, given the solution for v,, the
transport stream function defined by

can be evaluated by direct integration of the first def-
inition:

f hvbdx, (7)

with vh the solution of Eq. (5). The constant of inte-
gration, an arbitrary y-function, can be taken to be
zero if the boundary condition is assumed to be = 0
at x = 0. For a Northern Hemisphere western bound-
ary, the time-like direction of Eqs. (5)-(6) is southward.
In general, it is the longshore direction given by the
sign of -r/fs, and is also the direction of propagation
of the coastal Kelvin wave.

Equations (5)-(6) both require an "initial" condition,
that is we must specify the bottom geostrophic velocity
at some latitude y = 0. All we need to assume is that
the flow north of the origin has no influence on the
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NOTES AND CORRESPONDENCE

flow to the south, that is vh = 0 at v = 0 is the "initial"
condition for Eq. (5). The "initial" condition for Eq.
(6) can be obtained from a straightforward manipu-
lation of the model equations (la, b, c). First we derive
the equation (as did Shaw and Csanady, 1983):

hxu1 = r Vbx.

Then we note that if Vb = 0 at y 0. then avh/ax = 0
at Y = 0, and hence, using the above, ub = 0 at v = 0.

MRB took the origin of the time-like coordinate y
= 0 to be located at the density extremum (density
maximum in winter; minimum in summer). They also
assumed, rather arbitrarily,

vb=a+bx at Y=0.

As they only study the far-field limit of their solution,
the chosen initial condition does not affect the final
result. If, however, one wants to examine the behavior
of the solution in the near-field region, the history of
the flow north of the density extremum is very impor-
tant in determining the flow south of it. A meridional
density distribution including both the positive and
negative longshore density gradient is required. We
shall locate the density extremum south of the origin
y = 0, with vb = 0 [Eq. (5)] or ub = 0 [Eq. (6)], thus
idealizing a northern coast.

3. Direction of the flow and some simple examples

We first rewrite Eq. (5) as:

aVb r\fVb gsO-1 X -=-- (8)
w(-y) th 8x2 f (8)

with the standard sign convention for the heat diffusion
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FIG. 1. (a) One-ramp alongshore density distribution, monotoni-
cally increasing northward. (b) Pattern of the longshore velocity v5.
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are discussed in Table 1.
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FIG. 2. (a) Two-ramp alongshore densities distribution with #'
-I for -I I y' < 0. (b) Pattern of the longshore velocity vh. (c)

Pattern of the transport streamfunction t. Dimensionless units are
discussed in Table 1.

equation (Carslaw and Jaeger, 1956). In this geometry,
-y is the time-like direction. If we move southward
(forward in time), the velocity (temperature) will
change due to diffusive processes and to the heating
on the rhs of (8). If the initial "temperature" is Vb = 0
at y = 0, and the "heating rate" is positive, # > 0,
(density increasing northward), the "temperature", vb,
must increase with "time", -y, and Vb will always be
greater than its "initial" value of zero. This implies
that a ramplike longshore density distribution contin-
uously increasing northward will force a positive long-
shore flow, that is a northward flow everywhere. This
can be seen directly from (8) noticing that far away
from the coastline at x = 0 diffusive effects are small
and the prescribed boundary condition at x = 0 will
not be felt. Thus the longshore velocity is the "time"
integral of the "heating rate":

Vb(-Y) - vA(0) - d(-y)
f I

-gs f~ ap=-- d(-).
fpo J a(-y)

Integration of the above relationship gives

Vb = [p() - p(-y)] >0.
fpo

(9a)

(9b)

The longshore velocity far away from the coastline at
a given latitude is proportional to the difference be-
tween the density anomaly at the northern coastline
and the density anomaly at that latitude. This feature
of linear "heating" or "cooling" can clearly be seen in
the examples shown in Figs. I b, 2b and 3b.

Analogous considerations can be made for the

192

823JUNE 1987



JOURNAL OF PHYSICAL OCEANOGRAPHY

across-shore velocity ub governed by Eq. (6), which
shows the flow to be offshore for a northward positive
density gradient (ub > 0 if 0 > 0). Thus, with # > 0,
the flow will be northward and offshore. It must, how-
ever, be emphasized that these arguments for flow di-
rection based on the longshore density gradient apply
only to regions with a monotonic density variation.
Any "history" of density forcing at higher latitudes,
i.e., any deviation from the monotonic behavior, may
alter the flow direction in the region at study.

We now explicitly solve Eq. (5) for vb, under the
previous assumption h = sx with s > 0 and with a
ramp-like, northward increasing longshore density
profile:

lfmax, y> 0
(ma(I +#fy), y <0.

(10)

In the distribution (10) the origin y = 0 is located at
the position of the density anomaly maximum that is,
in a situation like that occurring in the Adriatic sea, at
the center of the winter interior dense water mass. The
initial condition is assumed to be vb = 0 at y = 0.

The solution of (8) is then (Carslaw and Jaeger,
1956):

VbO= for y>0

gs2/3 r x
V =- -(-y) erf1r < fS ( r 1112

2

+ 1 (er1/ rX2 for
2S11 (f-y)
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FIG. 3. As in Fig. 2, but with ' = -2 for -I < y' < 0. Dimensionless
units are discussed in Table 1.

density profile; Fig. Ib shows the distribution of the
positive longshore velocity Vb given by (11); Fig. I c the
transport streamfunction 41 evaluated through (7). The
flow is northward and directed into the basin interior,
away from the coastline.

The units in Figs. la, b, c are dimensionless. A con-
venient nondimensional form, used throughout in the
following, can be obtained taking

x= Lxx' y= Ly' #=ofl' 4= ' o4 '

Ub UOU' Vb=VOV' =oe'

in which primed quantities are dimensionless. The
various scales may be related by

y<O, (11)

which is the same solution obtained by MRB. Note,
however, that Vb is positive for # > 0; hence, as pre-
viously discussed, a positive longshore density gradient
forces a northward flow in the region y < 0 and not
southward as observed in the Adriatic sea. The crucial
point in deriving the solution (11) is the assumed den-
sity anomaly profile (10) for which the "initial" con-
dition of zero meridional flow is assigned at the point
of maximum density anomaly, vb = 0 for e = ema.
This in effect places an artificial northern wall at the
density maximum. We shall see in the following that
the flow pattern will change drastically with a double-
ramp density distribution, in which the northern wall
Vb = 0 is located in a region of constant density, near
the real northern boundary, and not in the middle of
a dense (or light) water mass. Figures la, b, c show the
above solution. Specifically, Fig. I a shows the one-ramp

Xf Y

i = gf L ] 1/2

gof 3

vo=gs/30rL 2f 2

v - max

3

#0= em/3Ly.

(I2a)

(12b)

(12c)

(12d)

(I 2e)

(12f)

The solutions for the heat Eqs. (5), (6) can then be
written quite generally:

0 for y'>0
b',Rx',y') for y'<O.

(13)
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In particular, for the solution (I I):

F(x', v')=(-') erf , -

+ - e (14)

To evaluate the scales defined by Eq. (13), and to
construct the figures, we use typical values observed in
winter in the Adriatic sea. In fact, our intent is to show
that the southward flow observed in winter in the Italian
nearcoastal region is due to the longshore density vari-
ations when the longshore density profile and the
northern coastline, representing the "initial" condition
for vb, are appropriately taken. Thus, we shall assume
a profile in which the density anomaly maximum Ema
is located 50 km south of the northern coastline y'= 0,
a value representative of the winter pattern in the Ad-
riatic. The reference density po is taken to be corre-
sponding to a, = 29.0, the anomaly value observed in
winter in the Jabuka pit (see MRB for geographical
locations). The pit is taken to be at y = -200 km,
where therefore e = 0. The density e at the northern
wall y' = 0 will be taken in the range 0 < e Cmi. We
have already discussed the solution fore = m shown
in Figs. la, b, c.

The values used for the scales (12a through f), char-
acteristic of the Adriatic winter situation, are listed in
Table I with short explanations of the way they were
obtained.

Before showing the successive examples, the far-field
solution of (14) [or (11) in dimensional form] will be
discussed. The far field examined here is "far along the
shore", that is y' - -a. This far-field solution is the
one examined both by Csanady (1978) and MRB, and
is obtained when y' - -c, or x'/(-y')'4 - 0. From
(14) this gives

lim Vb = #'x'(-y'2. (15)

Equation (15) again gives Vb > 0 in the far field for a
northward positive density gradient #', but also shows
the longshore velocity to grow without bound because
the region of forcing is infinite in extent. Actually, the
area in which far-field solutions apply is so thin in
cross-shore direction to be meaningless in this Adriatic
example, as the following considerations show. In order
for the argument of the error function to be small, say
0(0.05), then x'/(-y')' = O(0.05). Thus, to be in a
far-field region we must be closer to the western coast-
line than the limiting curve:

x'= 0.05(-y')/ 2

or

X= 0.05s (-y) dimensionally.

If r/fs = 2 km is a typical value for the chosen scales,

TABLE 1. Values used in the calculations.

Independent scales
Latitude 45*N
Coriolis parameter f 10-' rad s'
Bottom slope s 2 x 10-
Frictional coefficient r 5 x 10-' m s'
Longshore scale (units of L, 50 km

Y')
Thus the southern limit, the Jabuka pit. is at Y' = -4.

Density anomaly scale to= - t, = 0.167 X 10-3
3

with <, = 0.5 X 10-3 as a, is observed in winter to change
from 29.5 at the intenor maximum to 29.0 in the Jabuka pit
(from MRB)

Longshore density do 3.33 x 10~' km-'
gradient 150 km

Dependent Scales (r/fs = 2.5 km)
Cross-shore scale L, (units of x') ( 3a) 10 km
Longshore velocity vo (13c) (units of tf)* 3.2 cm s~'
Cross-shore velocity uo (13b) 0.7 cm s'
Streamfunction Oo (3d) (units of ')" 8 x 101 m3 s~

* For Figs. I b, 2b, 3b, 4b
For Figs. Ic, 2c, 3c, 4c

Each unit of nondimensional longshore flow is equivalent to 3.2
cm s'. The largest values of Vt from Figs. I b, 2b, 3b. 4b are +3, +2,
-2, -3 respectively or, dimensionally, +10, +6, -6, -10 cm s~'.
The observed longshore flows are of the order of -10 cm s~' in winter.

at y = -150 km we must be closer to the coast than
0.9 km; at y = -300 km we must be closer than 1.2
km. It is therefore rather meaningless to examine this
type of far-field solution. The solution is better consid-
ered in its full form and with finite regions of forcing.

In all the following examples the density anomaly
is taken to vanish at the Jabuka pit, e' = 0 at y' = -4;
the density gradient is positive south of the density
maximum, that is

f'=+I for -4<y'<-l

and to be variable and negative north of the maximum
for -I <Y< 0. We consider 0 < t' i ' in succession.
For these examples there is a far-field y' -o - as the
band of density variation is finite in its latitudinal ex-
tent.

The first example we have already discussed is given
by (10), ( 1) or (14) dimensionless. Equation (10) cor-
responds to the dimensionless condition on the density
gradient:

{#'=0 for -l y'<0
=+1 for -4<y' - 1;

(1 6a)

The flow pattern is given in Figs. I a, b, c and shows
the already discussed northward flow all over the coastal
strip. The dimensionful solution (11) corresponds in
dimensionless quantities to

0I

V'= Rx',y'+ 0

F'(x', y' + I) - F(x', y' + 4)

for y'> -l

for -4<y'<-l

for y'< -4,
(16b)
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with F(x', ') given by (14).
In the second example we choo

-1

0
with solution

for -1

-4 < y' V

otherwise

0

-Rx', y')

v'b= -F(x',y')+2F(x',y'+I)

-F(x', y') + 2F(x', y'+ 1)

-FRx',y'+4)

The solution is shown in Figs. 2a
corresponding to those of Figs. I
2a shows the alongshore density
shore velocity field; 2c the stream

In the successive examples we p
the density anomaly at the northe
cifically, the gradient:

0,=1-2 -14<y'
+1 -4<y'

leads to Figs. 3a, b, c, and

Passing from Fig. 2 to Fig. 4, we notice that the in-
se clusion of a region of negative-density gradient (density

V <0 anomaly decreasing from the interior maximum to the
reference value at the northern coastline) generates a

-1 (17a) region of southward flow north of the density maxi-
mum at y' 1 , simultaneously reducing the intensity
of the norihward flow I n the southern cell. For the
weak negative gradient of Fig. 2a, the southward flow

for y'>0 is weak and mostly confined to the region north of the
density maximum. When, however, we increase the

for -1 < y'< 0 negative gradient to 0' = -2, as in Fig. 3a, the northern,

for -4 < y'<-1 southward flowing cell enlarges and becomes much
stronger, pushing southward the northflowing current.
now much weaker.

Finally, in the patterns of Figs. 4b, c we observe a
for y'< -4. very intense and broad cell of southward flow. The

(1 7b) streamfunction pattern of Fig. 4c shows the current
entering the near coastal region north of the density

, b, c with patterns maximum at y' = -1, flowing southward for a consid-
a, b, c. Specifically, erable distance in the nearcoastal strip and finally
profile; 2b the long- turning offshore into the interior at the height of the
function pattern. Jabuka pit y' = -4. The northward-flowing cell is con-
rogressively decrease fined to the southernmost region of the coastal strip
rn wall y' = 0. Spe- and is very weakened (maximum intensity of +2 com-

pared to the negative maximum of -15). Notice that
the density anomaly profile of Fig. 4a, even though

0m(18) idealized, is much more representative of the winter
conditions in the northern Adriatic than the one-ramp
profile of Fig. I2a.

0'= {-3 -1 <y'<0
+1 -4<y'<-1

leads to Figs. 4a, b, c. We do not explicit
solutions for v', which are straightforward.

LONGS1IORE
VELOCITY

0 1 2 3 4

-

-2- -f5

0.5

0.0

FIG. 4. As in Fig. 2, but with 6' -3 for -1 I y'4 0.
units are discussed in Table 1.

(19) 4. Conclusions

The examples discussed' in section 3 clearly show
ly give the the profound effect of the reversal in density gradient

north of the density maximum in driving the near-
coastal circulation and determining the direction of
the alongshore flow. We have examined density profiles

STREAM which, even though idealized, represent the alongshore
FUNCTION density distribution observed in the northern Adriatic

in wintertime. Inasmuch as the simple analytical model
we have used is meaningful to represent the dynamical
balance in the near-coastal strip, the inclusion of the
negative northern density gradient, from the interior
maximum to the northern coastline, allows the creation

5 r of a strong southward-flowing coastal cell. This is ex-
actly the flow pattern observed in wintertime in the
western coastal region adjacent to the Italian shoreline,
both in numerical simulations (Hendershott and Ma-
lanotte-Rizzoli, 1976) and in current records (see MRB
for experimental vector diagrams). The alongshore
density profile reverses in summertime: the location of
the density maximum would be replaced by a density
minimum created by the light Po river water spreading
in the surface layer throughout the northern basin
(MRB). This reversed alongshore density profile would

Dimensionless then be responsible for the current reversals observed
in summertime in the same nearcoastal region, north-
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ward flowing (MRB experimental records). .The asso-
ciated nearcoastal patterns would then be exactly the
opposite of those shown in Figs. 4a, b, c.
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