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ABSTRACT

Experimental and numerical modeling studies are used to place constraints on the
kinetics of chemical exchange during partial melting within the mantles of the terrestrial planets.
Chapter 1 presents experiments on the diffusion rates of La, Ce, Nd, Dy and Yb in diopside at
pressures of 0 to 2.5 GPa and temperatures of 1050 to 1450 'C. The results demonstrate a
large variation in diffusivity among the rare earth elements, with the diffusion coefficient for La
a factor of -35 smaller than for Yb at a given temperature and pressure. Chapter 2 presents
experiments on the diffusion of Sm, Dy and Yb in pyrope at 2.8 GPa and 1200-1450 "C. No
significant difference in diffusivity is found among these elements, and their absolute diffusion
rates are similar to those of the heavy rare earth elements in diopside at the same pressure and
temperature. Chapter 3 presents a numerical model for diffusion-controlled fractionation of
trace elements during adiabatic decompression melting of a polyphase solid. The model is used
to simulate the fractionation of rare earth elements between solid and melt during partial melting
of Earth's upper mantle. Diffusion is found to exert a strong control on the evolution of the
system at conditions typical of melting beneath ocean spreading centers, leading to less efficient
fractionation of the rare earth elements than under conditions of local chemical equilibrium.
Chapter 4 presents experiments on the diffusion of U and Th in diopside at I atm pressure.
Uranium and thorium are found to diffuse at similar rates, and diffusive fractionation between
these elements is therefore unlikely to be significant during partial melting in Earth's upper
mantle. Thorium and radium may be diffusively fractionated, however, enhancing the
production of 22 Ra/230Th radioactive disequilibrium during partial melting while inhibiting
chromatographic fractionation during melt transport. Chapter 5 presents phase equilibrium and
dissolution kinetics experiments that constrain hypotheses for the origin of lunar high-Ti
ultramafic glasses. The experimental results demonstrate that assimilation of ilmenite-bearing
cumulates is not a viable mechanism for production of the high-Ti glasses. It is proposed that
the source of the high-Ti ultramafic glasses formed by shallow level mixing and reaction of
late-stage magma ocean liquids with underlying olivine-orthopyroxene cumulates, followed by
sinking of these dense hybrid materials into the lunar mantle.
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INTRODUCTION

Basaltic magmas provide a primary source of information on the constitution and

dynamics of terrestrial planet interiors. Elements are fractionated between the melt and solid

during melting, and this modifies the composition of the melt from that of the solid source. To

interpret the chemical information that basaltic magmas provide, the processes of chemical

fractionation must be understood. Our understanding of the thermodynamic controls on

chemical fractionation has advanced considerably in the recent past. A considerable body of

data exists on phase equilibria and partitioning in relevant systems, and models based on these

data have been successful in recovering the global compositional variation in mid-ocean ridge

basalts on Earth (Klein and Langmuir, 1987; Kinzler and Grove, 1992a,b; Langmuir et al.,

1992). Understanding of the kinetic controls on chemical fractionation is not nearly so

advanced. Recent theoretical treatments of solid-melt separation during decompression melting

have introduced the possibility that melting in Earth's upper mantle may take place under

disequilibrium conditions (Qin, 1992; Iwamori, 1993a,b; Hart, 1993; Spiegelman and Kenyon,

1992). The extent to which disequilibrium may influence the chemical exchange process during

melting depends on the time available for interaction between melt and solid before they

separate, and the time required for chemical species to be transported from the interior of solid

grains to their interface with the melt. Very limited information exists on the rates at which

elements migrate in silicate minerals under conditions relevant to melting, and the lack of this

basic kinetic data has limited the application of disequilibrium melting models to partial melting

in planetary interiors.

The first two chapters of this dissertation provide experimental data on diffusion rates of

the rare earth elements (REE) in high-Ca pyroxene and garnet. Rare earth elements are widely

used as tracers of igneous processes, and high-Ca pyroxene and garnet are the principal solid

hosts of these elements within the melting regime in Earth's upper mantle. Solid-state diffusion

is the slowest mechanism for transport of elements in the mantle, and in many situations will

control the rate of equilibration between solid and melt. Chapter 1 presents experiments on the



diffusion of La, Ce, Nd, Dy and Yb in high-Ca pyroxene at temperatures of 1050 to 1450 0C

and pressures of 0 to 2.5 GPa. These are the first diffusion data that have been reported for

these elements in pyroxene. The experimental results demonstrate a large variation in

diffusivity among the REE that can lead to diffusive fractionation of these elements during

melting. Diffusion rates are strongly correlated with ionic radius; La, the largest of the rare

earth elements, diffuses -35 times more slowly than Yb at a given temperature and pressure.

The relationship between the diffusion coefficient and ionic radius is shown to be consistent

with a simple model that considers the elastic strain associated with an atomic jump. Chapter 2

presents experiments on rare earth element diffusion in pyrope garnet at pressures and

temperatures within its stability field (2.8 GPa and 1200-1450 'C). Unlike clinopyroxene, there

is no significant difference in diffusion rates among the REE in garnet.

Implications of the rare earth element diffusion data for chemical fractionation during

melting in Earth's upper mantle are discussed in Chapter 3. A numerical model is developed to

describe diffusion-controlled chemical exchange between melt and a solid composed of several

phases, each with different diffusion and partitioning properties. This model is used to simulate

the distribution of rare earth elements among the solid, residual melt, and segregated melt during

adiabatic decompression melting in the mantle. Under conditions typical of melting beneath

ocean spreading centers, diffusion in high-Ca pyroxene is predicted to have a strong influence

on the chemical evolution of the system. The slowly diffusing light REE are held within the

cores of high-Ca pyroxene grains at abundance levels considerably higher than at equilibrium,

and this leads to less efficient fractionation of the REE between solid and melt than under

equilibrium conditions. Comparison of the model predictions with rare earth element data from

abyssal peridotites of the America-Antarctic and Southeast Indian ridge systems (Johnson et al.,

1990; Johnson and Dick, 1992) demonstrates that the effective grain radius beneath these

spreading centers must be < 3 mm, and the residual melt fraction must be <0.03.

Chapter 4 presents data on the diffusion rates of U and Th in diopside, and discusses

their implications for U-series disequilibrium in mid-ocean ridge basalts (MORB). Uranium



and thorium are found to diffuse at rates similar to the light rare earth elements in diopside, and

may not be distributed between solid and melt in equilibrium proportions during near-fractional

melting of spinel peridotite. Although diffusion of U and Th may be too slow to allow

complete equilibration between high-Ca pyroxene and melt during partial melting, diffusive

fractionation between these two elements is unlikely to be important because their diffusion

rates are similar at peridotite melting temperatures. Diffusive fractionation of Ra from Th may

be important, however, especially if Ra diffusion rates are similar to those of other large divalent

cations like Sr (Sneeringer et al., 1984) and Pb (Cherniak, 1998). Slow diffusion of Th and

relatively rapid diffusion of Ra would enhance Ra/Th fractionation during partial melting, and

inhibit chromatographic separation of Ra and Th during melt transport. It is suggested that the

negative correlation between [2 26Ra] and [23Th] observed in the MORB data set (Kelemen et

al., 1997) may be a natural consequence of disequilibrium chemical fractionation during partial

melting, without the requirement of separate porosity regimes for the production of 22 6Ra and

30Th excesses.

Chapter 5 presents phase equilibrium and dissolution kinetics experiments that

constrain hypotheses for the origin of lunar high-Ti ultramafic glasses. Unlike the first four

chapters, which are concerned with the relatively slow kinetics of chemical exchange across a

solid/melt interface, this chapter focuses on the kinetics of mass transfer associated with

dissolution (phase change from solid to melt). Dissolution in most regimes is controlled by

diffusion in the melt, and may be many orders of magnitude faster than chemical exchanges

limited by diffusion in the solid. The experimental results demonstrate that assimilation of

ilmenite-bearing cumulates is not a viable mechanism for production of the high-Ti ultramafic

glasses. Instead, the very high titanium contents of these magmas (up to 16.4 wt.%; Delano,

1986) must be derived from the source. It is proposed that the source of the high-Ti glasses

may have formed by shallow level mixing and reaction of late-stage magma ocean liquids with

underlying olivine-orthopyroxene cumulates, followed by sinking of these dense hybrid

materials into the lunar mantle.





REFERENCES

Cherniak D. J. (1998) Pb diffusion in clinopyroxene. Chem. Geol. 150, 105-117.

Hart S. R. (1993) Equilibration during mantle melting: A fractal tree model, Proc. Natl. Acad.
Sci. 90, 11,914-11,918.

Iwamori H. (1993a) Dynamic disequilibrium melting model with porous flow and diffusion
controlled chemical equilibration. Earth Planet. Sci. Lett. 114, 301-313.

Iwamori H. (1993b) A model for disequilibrium mantle melting incorporating melt transport by
porous and channel flows. Nature 366, 734-737.

Johnson K. T. M. and Dick H. J. B. (1992) Open system melting and temporal and spatial
variation of peridotite and basalt at the Atlantis-II fracture-zone. J. Geophys. Res. 97, 9219-
9241.

Johnson K. T. M., Dick H. J. B. and Shimizu N. (1990) Melting in the oceanic upper mantle:
an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661-2678.

Kelemen P. B., Hirth G., Shimizu N., Spiegelman M., and Dick H. J. B. (1997) A review of
melt migration processes in the adiabatically upwelling mantle beneath ocean spreading ridges.
Phil. Trans. R. Soc. Lond. A 355, 283-318.

Kinzler R. J. and Grove T. L. (1992a) Primary magmas of mid-ocean ridge basalts, 1.
Experiments and methods. J. Geophys. Res. 97, 6885-6906.

Kinzler R. J. and Grove T. L. (1992b) Primary magmas of mid-ocean ridge basalts, 2.
Applications. J. Geophys. Res. 97, 6907-6926.

Klein E. M. and Langmuir C. H. (1987) Global correlations of ocean ridge basalt chemistry
with axial depth and crustal thickness. J. Geophys Res 92, 8089-8115.

Langmuir C. H., Klein, E. M. and Plank T. (1992) Petrological systematics of mid-ocean ridge
basalts: Constraints on melt generation beneath ocean ridges. In J. Phipps-Morgan et al., eds.,
Mantle Flow and Melt Generation, AGU Monograph 71, 183-280.

Qin Z. (1992) Disequilibrium partial melting model and its implications for trace element
fractionations during mantle melting. Earth Planet. Sci. Lett. 112, 75-90.

Sneeringer M., Hart S. R. and Shimizu N. (1984) Strontium and samarium diffusion in
diopside. Geochim. Cosmochim. Acta 48, 1589-1608.

Spiegelman M. and Kenyon P. (1992) The requirements for chemical disequilibrium during
magma migration. Earth Planet. Sci. Lett. 109, 611-620.



REFERENCES

Cherniak D. J. (1998) Pb diffusion in clinopyroxene. Chem. Geol. 150, 105-117.

Hart S. R. (1993) Equilibration during mantle melting: A fractal tree model, Proc. Natl. Acad.
Sci. 90, 11,914-11,918.

Iwamori H. (1993a) Dynamic disequilibrium melting model with porous flow and diffusion
controlled chemical equilibration. Earth Planet. Sci. Lett. 114, 301-313.

Iwamori H. (1 993b) A model for disequilibrium mantle melting incorporating melt transport by
porous and channel flows. Nature 366, 734-737.

Johnson K. T. M. and Dick H. J. B. (1992) Open system melting and temporal and spatial
variation of peridotite and basalt at the Atlantis-II fracture-zone. J. Geophys. Res. 97, 9219-
9241.

Johnson K. T. M., Dick H. J. B. and Shimizu N. (1990) Melting in the oceanic upper mantle:
an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661-2678.

Kelemen P. B., Hirth G., Shimizu N., Spiegelman M., and Dick H. J. B. (1997) A review of
melt migration processes in the adiabatically upwelling mantle beneath ocean spreading ridges.
Phil. Trans. R. Soc. Lond. A 355, 283-318.

Kinzler R. J. and Grove T. L. (1992a) Primary magmas of mid-ocean ridge basalts, 1.
Experiments and methods. J. Geophys. Res. 97, 6885-6906.

Kinzler R. J. and Grove T. L. (1992b) Primary magmas of mid-ocean ridge basalts, 2.
Applications. J. Geophys. Res. 97, 6907-6926.

Klein E. M. and Langmuir C. H. (1987) Global correlations of ocean ridge basalt chemistry
with axial depth and crustal thickness. J. Geophys Res 92, 8089-8115.

Langmuir C. H., Klein, E. M. and Plank T. (1992) Petrological systematics of mid-ocean ridge
basalts: Constraints on melt generation beneath ocean ridges. In J. Phipps-Morgan et al., eds.,
Mantle Flow and Melt Generation, AGU Monograph 71, 183-280.

Qin Z. (1992) Disequilibrium partial melting model and its implications for trace element
fractionations during mantle melting. Earth Planet. Sci. Lett. 112, 75-90.

Sneeringer M., Hart S. R. and Shimizu N. (1984) Strontium and samarium diffusion in
diopside. Geochim. Cosmochim. Acta 48, 1589-1608.

Spiegelman M. and Kenyon P. (1992) The requirements for chemical disequilibrium during
magma migration. Earth Planet. Sci. Lett. 109, 611-620.



CHAPTER 1.

RARE EARTH ELEMENT DIFFUSION IN DIOPSIDE: INFLUENCE OF
TEMPERATURE, PRESSURE AND IONIC RADIUS

ABSTRACT

Volume diffusion rates for five rare earth elements (La, Ce, Nd, Dy and Yb) have been

measured in natural diopside crystals at pressures of 0.1 MPa to 2.5 GPa and temperatures of

1050 to 1450 *C. Polished, pre-annealed diopside single crystals were coated with a thin film of

rare earth element oxides, then held at constant temperature and pressure for times ranging from

20 to 882 hours. Diffusion profiles in quenched samples were measured by SIMS (secondary

ion mass spectrometry) depth profiling. At 1 atm pressure, with the oxygen fugacity controlled

near the quartz-fayalite-magnetite buffer, the following Arrhenius relations were obtained for

diffusion normal to (001) (diffusion coefficient D in m2 s-):

logo Dyb = (-4.64 ± 0.42) - (411 ±12 kJ mol'/2.303RT)

logo DD, = (-3.31 ± 1.44) - (461 ± 41 kJ mol'/2.303RT)

logo DNd = (-2.95 ± 2.64) - (496 ±77 kJ moli/2.303RT)

logo Dce = (-4.10 ±1.08) - (463 ±31 kJ mol'/2.303RT)

log 0 DL = (-4.22 ± 2.66) - (466 ±78 kJ mol'/2.303RT)

Diffusion rates decrease with pressure, with similar activation volumes for Yb (9.5 ± 2.0 cm3

mol') and Ce (10.2 ± 3.2 cm3 mol').

The data show a systematic increase in diffusivity with decreasing ionic radius.

Diffusion rates for La (0.116 nm radius in eight-fold coordination) and Yb (0.099 nm) differ by

a factor of -35. The relationship between diffusivity and ionic radius is consistent with a model

in which elastic strain energy plays a critical role in governing the motion of an ion through the

crystal lattice.



INTRODUCTION

High-Ca pyroxene is an important host for rare earth elements in the upper mantle, and

the partitioning and diffusion properties of this mineral have a central role in determining the

distribution of REE between solid and melt during adiabatic decompression melting. This

study presents experiments on the diffusional transport of REE in diopside, a representative

high-Ca pyroxene with the chemical formula CaMgSi20 6 . The influence of temperature,

pressure and oxygen fugacity on rare earth element diffusion rates are examined under

conditions relevant to melting beneath oceanic spreading centers and hot spots.

Although the rare earth elements share similar properties, small differences in ionic radii

can lead to pronounced differences in geochemical behavior. One example is the strong

preferential partitioning of heavy REE relative to light REE into high-Ca pyroxene. Differences

in ionic radius may similarly affect diffusion rates, with the potential to induce diffusive

fractionation of the rare earth elements. We have examined the relationship between diffusivity

and ionic radius by measuring the diffusion rates of five rare earth elements, La, Ce, Nd, Dy and

Yb, spanning ionic radii of 0.099 to 0.116 nm. The data show a systematic increase in diffusion

rates with decreasing ionic radius, and this trend is shown to be consistent with a model in

which a large fraction of the migration energy is expended in elastic strain of the crystal lattice.

The diffusion data presented in this chapter have application to problems that involve

transfer of rare earth elements among minerals and fluids in Earth's mantle and crust. The

influence of diffusion in high-Ca pyroxene on the distribution of REE between melt and solid

during adiabatic decompression melting is discussed in Chapter 3. Two other applications are

discussed in this chapter. The data are used to evaluate the amplitude of Nd isotopic

heterogeneity that can be sustained at the scale of individual mineral grains in the upper mantle,

and to assess kinetic controls on the uptake of REE by clinopyroxene phenocrysts during basalt

crystallization.



EXPERIMENTAL METHODS

Diffusion coefficients were determined from isothermal annealing experiments in which

an oriented, polished diopside single crystal was coated with a thin layer of REE oxides and

then held at constant temperature and pressure for times of 20 to 882 hours. Diffusion profiles

in quenched samples were measured by SIMS (Secondary Ion Mass Spectrometry) depth

profiling, and diffusion coefficients were determined by fitting the profiles to an appropriate

solution of the diffusion equation. Most experiments were designed to examine diffusion of

two or three rare earth elements in the same experiment. This approach reduces the uncertainty

in the relative diffusion rates of the elements, and is more efficient than performing a separate

set of experiments for each element. In order to determine whether multi-component coupling

effects among the REE may be important (in other words, whether the concentration gradient in

one rare earth element may affect the diffusive flux of another), a set of experiments was

performed in which Ce was the only diffusing element.

The influence of temperature on diffusion of the rare earth elements was evaluated by

performing a set of experiments at atmospheric pressure between 1050 and 1300 'C. The

oxygen fugacity in these experiments was controlled near the quartz-fayalite-magnetite (QFM)

buffer, similar to the fo2 inferred for MORB (Christie et al., 1986). One experiment was also

performed with the oxygen fugacity held four log units above the QFM buffer, as a preliminary

investigation of the influence of fo2 on diffusion. To evaluate the influence of pressure on

diffusion of the REE, a set of high pressure experiments was performed to measure Ce and Yb

diffusivities at pressures of 1.3 to 2.5 GPa and temperatures of 1250 to 1450 'C.

In the present study we have focused on diffusion normal to the (001) plane. Previous

studies of Sr, Ca and Pb diffusion in diopside (Sneeringer et al. 1984; Dimanov et al., 1996;

Dimanov and Jaoul, 1998; Cherniak, 1998) have found little anisotropy, and we tentatively

expect that the REE, which partition onto the same crystallographic site (M2), behave similarly

in this respect.



Starting Material

The starting material for the diffusion experiments consisted of gem-quality diopside

single crystals from the Kunlun Mts., China. These crystals are from the same locality as those

used by Van Orman et al. (1998) in a study of U and Th diffusion in diopside. The crystals

were free of cracks and visible inclusions and homogeneous in major element composition, as

determined by electron microprobe (Table 1). Well-developed growth faces allowed the

crystals to be oriented optically with respect to their crystallographic axes. Each crystal was cut

perpendicular to the c axis into -0.5 mm thick wafers, and one side of each wafer was

mechanically polished with diamond and alumina pastes, then chemically polished with an

alkaline colloidal silica (0.06 gm) suspension. The polished diopside wafers were rinsed in

purified water, then pre-annealed for 1 to 2 days at 1150-1200 "C under a controlled

atmosphere. The purpose of this pre-conditioning step is to heal surface damage caused by

polishing and to equilibrate point defects at temperature and f2 conditions near those to be

used in the diffusion experiments.

1 atm diffusion anneals

The tracer layer was deposited by evaporating an aqueous solution onto the polished,

pre-annealed surface of the diopside. Four different tracer solutions were used, containing Ce,

Ce+Yb, La+Nd+Dy, and Yb, respectively, each in dilute (-0.05 M) nitric acid with -300-500

ppm REE. The solutions were mixed in 1:1 proportions with methanol, which acted as a

surfactant, and a few drops (-10 gl) were delivered to the polished diopside surface with a

microsyringe. After allowing the solution to evaporate on a hot plate at 120 0C, the nitrates were

decomposed by heating the sample in a furnace for ten minutes at 800 "C, leaving a thin layer of

REE oxides on the surface. This thin oxide layer, consisting of microgranular particles

distributed uniformly over the diopside surface, provided the tracer source for the diffusion

experiments. The total concentration of REE in the tracer layer was approximately 0.2 pg/mm 2.



Samples were placed in open Pt crucibles with the coated side facing up and held in the

hotspot of a Deltech DT3 1 VT vertical gas mixing furnace for times ranging from 23 to 882

hours. The temperature and oxygen fugacity were adjusted to run conditions before

introducing the sample into the furnace, and were held constant during the diffusion anneal.

Temperature was monitored continuously with a Pt-Pt9 Rh10 thermocouple calibrated against

the melting points of NaCl, Au, and Pd on the IPTS 1968 temperature scale, and fluctuated

within less than ±2 "C over the course of each experiment. Oxygen fugacity was controlled by

mixing CO 2 and H2 gases and was monitored using a solid ZrO2-CaO electrolyte oxygen

sensor calibrated against the Fe-FeO, Ni-NiO, and Cu-Cu 20 buffers. Variation in fo during an

experiment was within less than ±0.1 log unit. Removing the sample from the furnace and

allowing it to cool in air served to quench an experiment.

After the diffusion anneal, samples were rinsed ultrasonically in purified H20 and

examined under a reflected light microscope and by SEM. Recrystallization and surface

migration took place within the tracer layer during the diffusion anneal, evidenced by the

formation of coarser REE oxide crystals and more isolated islands of coating compared to the

starting samples. The surface of the diopside maintained a mirror finish, and there was no

evidence for chemical reaction with the REE oxide coating.

High pressure diffusion anneals

High pressure diffusion anneals were performed in 0.5 inch solid-medium piston-

cylinder devices (Boyd and England, 1960). A polished diopside wafer, pre-annealed under

QFM buffered conditions at 1150-1200 "C and coated with Ce and Yb oxides using the method

described above, was loaded with packed graphite powder into a cylindrical 0.175" diameter Pt

capsule. The coated surface of the diopside was positioned in the center (hotspot) of the

capsule. Most of the experiments were run with the sample in direct contact with graphite

powder, but two experiments were run with the sample wrapped in Pt foil within graphite, and

one sample was placed in a Au80Pd20 inner capsule that was surrounded by powdered NaCl



within the Pt outer capsule. After drying for 24-48 hours at 120 "C, the Pt outer capsule was

welded shut, placed into a high-density alumina sleeve, and centered in a straight walled graphite

furnace using crushable MgO spacers. This assembly was then inserted into a sintered barium

carbonate sleeve, which served as the pressure medium. Pressure for our piston cylinder

assembly has been calibrated using the Ca-Tschermakite breakdown reaction (Hays, 1966).

The friction correction was found to be less than 0.1 GPa at 1.3 GPa and 1350 "C, and the

pressures reported in Table 4 do not include a friction correction.

Temperature was continuously monitored and controlled with a W97Re3-W75Re25

thermocouple that was separated from the Pt capsule by a thin crushable MgO wafer. The

temperature difference between the center of the capsule and the position of the thermocouple

has been determined to be 20 0C using offset thermocouples, and temperatures reported in

Table 4 are corrected for this difference. No correction for the effect of pressure on

thermocouple emf has been applied. Runs were pressed cold to 0.7 GPa and then heated at 100

"C/min to 865 "C, where they were held for 6 minutes. They were then pumped to run pressure

and heated to run temperature at a rate of 50 "C/min. Experiments were held at constant

temperature and pressure for times ranging from 20 to 76 hours and were quenched by shutting

off the power. Diopside single crystals were carefully removed from the capsule after the high

pressure runs and ultrasonically rinsed in purified water. Some crystals were cracked in a few

places, but in each sample large crack free regions were available for analysis by SIMS depth

profiling.

Analyses

Diffusion profiles in the annealed diopside crystals were measured using the Cameca

Ims 3f ion microprobe at the Woods Hole Oceanographic Institution. The samples were

mounted in epoxy with the polished, tracer-coated surface exposed and covered with a thin (-20

nm) gold film. A primary beam of 0 ions, accelerated under a potential of 8.2 kV and with the

total current held constant at 10 to 40 nA, was focused onto the sample surface to a diameter of

W-1-1-- .' __



20-30 gm. The primary beam was rastered over a square area on a region of the diopside

surface that was flat and free of large patches of REE oxides. Secondary ions produced as the

primary beam sputtered through the diopside crystal were analyzed in a magnetic sector mass

spectrometer. The secondary voltage was offset by -50 V, with a +20 V energy window, to

reduce the contribution of molecular ions. Isotopes of the REE were monitored throughout the

depth profiling analysis by repeatedly cycling through a sequence of ascending masses. 30Si

and "Ca were also monitored to check the stoichiometry of the analyses and to keep track of

any instrumental drift. Beyond the first one or two cycles, 30Si and "Ca intensities were

constant. The measured intensities for each mass were adjusted to the midpoint of the cycle by

linear interpolation so that concentrations for each element would refer to the same depth. No

standardization was used to convert secondary ion intensities to absolute concentrations;

diffusion coefficients were calculated directly from profiles of REE/ Si intensity ratios.

A circular field aperture was inserted into the secondary ion optics to restrict data

collection to the flat central portion of the sputtered area and thus to minimize contamination of

the diffusion profile with material from the tracer layer. In most analyses the sputtered area was

150 x 150 Rm2 , and sampling was restricted to a central circular region 68 im in diameter, but

for some samples it was necessary to reduce the sampled area to an 8 jm circle in order to

avoid coarse REE oxide crystals. Even with the field aperture, it was impossible to completely

eliminate contamination from the surface tracer material during collection of the upper part of

the diffusion profile. Small, heterogeneously distributed REE oxide crystals were present

everywhere on the diopside surface, and these were inevitably sampled along with the diopside

over the first several cycles. It was possible to identify the contaminated part of the diffusion

profile, as discussed below, and these data points were not included when calculating diffusion

coefficients.

Following the depth profiling analysis, the gold coat was removed by ultrasonicating the

sample in an aqueous potassium iodide solution (Ryerson and McKeegan, 1994), and the depth



of the sputtered pit was measured using a Sloan Dektak 8000 surface-contact profilometer

equipped with a 2.5 prm diamond-tipped stylus. Several scans of each pit were made, from at

least 3 different directions, and the mean depth over the central -70 pm of the sputtered area

was considered. The uncertainty in the depth estimate was set primarily by the roughness and

curvature of the diopside surface, and was estimated to be between 20 and 40 nm in most cases.

Pits that were sputtered under the same beam conditions for different times yielded consistent

estimates of the sputtering rate. This confirms that the sputtering rate during a depth profiling

analysis was constant, and that diffusion profiles measured as a function of sputtering time

could be scaled linearly to depth.

Determination of diffusion coefficients

Diffusion in our experiments can be modeled as one-dimensional diffusion into a semi-

infinite medium, with a constant concentration boundary condition at the interface between the

diopside and the tracer layer. The solution to the diffusion equation under these conditions is:

C(x,t )-C C x
~ 0 = ef (1), - Co e24Dt

where C refers to the concentration at depth x after annealing time t, Co is the concentration at

the interface, C is the initial concentration in the diopside crystal, and D is the diffusion

coefficient. Diffusivities were evaluated by plotting the inverse error function of the left-hand

side of Eq. 1 versus depth (Fig. 1 a). This results in a straight line of slope (4Dt)-" if the data

satisfy the conditions of the diffusion model. The erf' profiles are fit by linear least squares

regression, with the value of Co adjusted by an iterative procedure until the fitted line passes

through the origin. Only the linear segment of the inverse error function profiles is considered

in the fitting procedure. The shallow portion of most erf' profiles is steep and curved, and is

considered to represent contamination from the REE oxide surface layer. Depth profiles

measured on samples that were coated with REE oxides but not annealed ("zero-time"

experiments) were very similar in length and in form to the near surface segment of the profiles



from annealed samples, with high surface REE intensities falling to background levels over a

depth of 50-75 nm. The linear portion of the erf' profiles in most annealed samples begins at a

depth of 120 nm or less, and can be as shallow as 20 nm on exceptionally "clean" surfaces.

Diffusion coefficients could be extracted only from diffusion profiles that extended

significantly beyond the contaminated region and exhibited a distinct linear segment on the

inverse error function plot.

RESULTS

The results of diffusion anneals performed under atmospheric pressure are listed in

Tables 2 and 3, and the high pressure results are presented in Table 4. Two or more depth

profiles were typically measured on each sample, and the diffusion coefficients reported in

Tables 2-4 represent the mean of values determined from these repeat analyses. Diffusion

coefficients obtained from different profiles on the same sample agreed to better than ±25% in

nearly every case, and always to better than ±40%. Much of the variation in diffusion

coefficients can be attributed to error in the measurement of SIMS pit depths, which typically

led to an uncertainty in D of ±20%.

A time series study was performed at 1 atm and 1200 C, and the results are plotted in

Fig. 2. Diffusion coefficients from these experiments, with anneal times ranging from 119 to

456 hours, are in excellent agreement; the total range of diffusion coefficients among the

experiments is similar to the interprofile variation within a single sample. This demonstrates

that diffusion coefficients are independent of anneal time and is consistent with transport by

volume diffusion.

There is no significant effect on Ce diffusion of the simultaneous transport of Yb.

Diffusion coefficients determined from experiments in which Ce was the only rare earth

element present in the tracer layer were indistinguishable from those determined from

experiments in which both Ce and Yb diffused into the diopside.



One experiment was performed to measure the diffusivity of Yb with the oxygen

fugacity held four log units above the QFM buffer at 1200 'C. The diffusion coefficient

determined from this experiment was more than a factor of 3 higher than in the three

experiments performed at the QFM buffer, suggesting a positive dependence of D on fo2 (Fig.

3). This result is important because it suggests that the point defects responsible for diffusion

of the REE are those present to compensate the charge of an impurity whose valence is sensitive

to oxygen fugacity (e.g. Fe3*). The positive dependence of D on fo2 is consistent with

diffusion by a vacancy mechanism, with the dominant vacancies being those present to

compensate Fe3* impurities on M1 sites, as discussed below.

Figure 4 is an Arrhenius plot summarizing the results of diffusion experiments

performed along the QFM buffer at 1 atm. The diffusion data for each element are consistent

with an Arrhenius relationship, D = Doe-E/RT, where Do is the pre-exponential factor, E is the

activation energy, and R is the gas constant. Values of Do and E were determined by linear least

squares regression and are listed in Table 5. The uncertainties reported in Table 5 are those

obtained from the linear regression (1 a-). Diffusion coefficients among the rare earth elements

are strongly dependent on ionic radius, with Dy (0.0985 nm in eight-fold coordination) being

-3 times greater than DDy (0.103 nm), -20 times greater than DNd (0.111 nm) and Dce (0.114

nm), and -35 times greater than D, (0.116 nm). This trend of decreasing diffusivity with

increasing ionic radius is consistent with an elastic strain model for diffusion, as discussed

below.

In the high pressure experiments, a systematic difference in diffusion rates is observed

between samples annealed in contact with Pt or AuPd and those annealed in contact with

graphite. This difference appears to be related to loss of Fe from diopside crystals that were

annealed in noble metal capsules, and because of these difficulties we have considered only data

from runs in graphite capsules to evaluate the influence of pressure on diffusion of Ce and Yb.



Diffusion coefficients determined from experiments run in noble metal capsules are

internally consistent-a sample run in a sealed AuPd inner capsule within a molten NaCl

medium yielded the same value of Dyb as a run in which the sample was wrapped in Pt foil and

surrounded by graphite. Samples annealed within a molten salt confining medium should have

experienced isostatic stress, and the consistency among these results shows that deviatoric

stresses that might be experienced by samples held within a graphite medium have no

significant effect on diffusion. Samples that were held in direct contact with graphite, with no

intervening Pt foil, also yield internally consistent diffusion coefficients, but Dce and DYb from

these runs are a factor of 3-4 higher than in runs performed in noble metal containers. We

measured SIMS depth profiles of 56Fe in two samples that had been annealed in contact with a

noble metal (B474 and B553), with the secondary ion voltage displaced by -110 V to reduce

molecular interferences. In both samples, the concentration of Fe decreases smoothly toward

the interface with the noble metal (Fig. 5). Immediately adjacent to the interface the relative loss

of Fe is -90%. In both samples the Fe loss profiles conform to an error function solution to

the diffusion equation, and similar diffusion coefficients of 7.0 ± 3.2 x 1020 m2/s and 4.9 ±

2.0 x 1020 m2/s are obtained for runs B474 and B553, respectively. The diffusivity of Fe is

very similar to that of Yb in these experiments. The relative difference in Ce and Yb diffusion

rates is similar to that observed in the graphite capsule experiments, and in the 1 atm

experiments.

The reduction in Ce and Yb diffusivities in samples run in noble metal capsules may be

related to changes in defect chemistry associated with the loss of Fe. The positive dependence

of D on oxygen fugacity observed in the 1 atm experiments suggests that the dominant

vacancies in the Kunlun Mts. diopside are those that have been created to compensate Fe3*.

Loss of Fe3' and associated vacancies would lead directly to a decrease in diffusivity by

reducing the number of vacant sites available for Ce and Yb atoms to hop to.

Diffusion data from the high pressure experiments performed in graphite capsules and

from 1 atm anneals performed along the QFM buffer were multiply regressed against P and T'



(Figs. 6 and 7). The data are consistent with an Arrhenius relationship D = Doe-(E+PV)/RT)

where V is the activation volume. Values of DO, E and V determined from the regressions are

listed in Table 6, along with their 1 a uncertainties. The values of Do and E are nearly identical

to those determined from the I atm data set alone, but have somewhat lower uncertainties.

In Figure 7 the I atm and high pressure diffusion data are shown together on a plot of

log D vs. inverse temperature, with the high pressure data corrected to 1 atm using the activation

volumes for Ce and Yb determined above. The 1 atm and high-pressure data are in excellent

agreement, and there are no changes in slope that would suggest a change in diffusion

mechanism between 1050 and 1450 "C.

Activation volumes for Ce and Yb are similar, and over the temperature range

investigated amount to a decrease in diffusivity by a factor of -6.5 as pressure is increased from

I atm to 2.5 GPa. The reported uncertainties in the activation volumes are those determined

from statistical fits to the data, and do not include systematic errors that may arise from

differences in oxygen fugacity or other parameters between the 1 atm and high pressure

experiments. The oxygen fugacity in the high pressure experiments, if buffered by the presence

of graphite in equilibrium with a C0 2-CO-0 2 fluid, would be about two orders of magnitude

lower than the f02 of 1 atm experiments that were performed along the QFM buffer (Huebner,

1971). According to our preliminary results on the f0 2 dependence of Yb diffusion at I atm, a

2 log unit shift in oxygen fugacity would shift diffusion coefficients upward by -0.25 log units.

Correcting the high pressure diffusion coefficients to the same oxygen fugacity would reduce

the calculated activation volume for Yb by 38%, from 9.5 to 5.9 cm 3/mol, and for Ce by 44%,

from 10.2 to 5.7 cm3/mol.

The only previous determination of the pressure dependence of diffusion in pyroxene

was made by Sneeringer et al. (1984), who found an apparent negative activation volume for Sr

diffusion in synthetic diopside. Sneeringer et al. (1984) also found a relatively large anisotropy

in the activation volume, with diffusion parallel to a and b having a stronger pressure



dependence than diffusion parallel to c. The scatter in the data is relatively large, and a small

positive activation volume for the c direction (the same crystallographic direction investigated in

this study) is within the uncertainty in the Sr diffusion measurements. The high pressure

experiments of Sneeringer et al. (1984) were performed by placing two diopside crystals, one

doped with Sr and the other undoped, together within a high-pressure cell. It is possible that the

boundary between the two crystals migrated during the diffusion anneal, and that this enhanced

the re-distribution of Sr during the diffusion anneal (see Hay and Evans, 1987, for a discussion

of enhanced solute transport associated with grain boundary migration). Such non-diffusive

transport might account for the apparent positive dependence of Sr diffusivity on pressure.

Comparison with other diffusion data

The only previous experimental study of rare earth element diffusion in diopside was

that of Sneeringer et al. (1984) and Sneeringer (1981), who measured Sm diffusion rates in a

synthetic diopside single crystal. Figure 8 shows an Arrhenius plot comparing the Sm

diffusion data with our 1 atm data for La, Ce, Nd, Dy and Yb. On the basis of the relationship

observed in our data set between D and ionic radius, we would expect Dsm to be less than DDy

and greater than DNd. The 1 atm Arrhenius curve of Sneeringer (1981) is slightly lower than our

curve for Nd. Given the relatively large scatter in the Sm diffusion data (up to an order of

magnitude at a given temperature), these results are in reasonable agreement with our data. The

high pressure Sm data of Sneeringer et al. (1984) are about an order of magnitude higher than

our data for Dy at I atm, and the difference increases if our data are corrected to higher

pressures.

Figure 9 shows a comparison of our 1 atm diffusion data for the rare earth elements

with diffusion data for other elements in diopside. Arrhenius curves for most elements,

including the REE, U, Th, Ca and 0, fall within a relatively narrow band spanning about two

orders of magnitude at a given temperature. Lead and strontium (in natural diopside crystals)

fall about two orders of magnitude above this band, and Si falls below. Much of the variation in
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diffusivity among these elements may be explained as a consequence of the different sites that

the ions occupy (the tetrahedral site in diopside has a much deeper energy well than the M1 or

M2 site (Smyth and Bish, 1988), which probably explains the slow diffusivity of Si relative to

cations that partition onto the metal sites) and the size and charge of the ion relative to the ideal

size and charge of the site. Diffusion rates are also influenced by the composition of the

pyroxene. Strontium diffusion in natural diopside crystals, with the dominant impurity being

Fe at the level of 1.5 wt.% FeO*, is two orders of magnitude faster than Sr diffusion in

nominally pure synthetic diopside crystals (Sneeringer et al., 1984). Calcium self-diffusion

rates in natural diopside crystals containing -1-2 wt.% FeO are also faster than in pure

synthetic diopside, by about an order of magnitude (Dimanov et al., 1996). In contrast to the

relatively large compositional dependence of diffusion found by Sneeringer et al. (1984) and

Dimanov et al. (1996) for Sr and Ca diffusion, Cherniak (1998) found similar diffusion rates

for Pb in two natural diopside crystals containing -1 wt.% and -17 wt.% FeO, respectively.

Although further experimental work must be done in order to characterize the influence of

pyroxene composition on diffusion rates, it may be that cation diffusion rates are reduced

drastically only when impurity concentrations are very low. Increasing the Fe concentration

beyond 1 wt.% does not appear to increase cation diffusion rates significantly, which may

suggest that Fey-associated cation vacancies are present at nearly saturated levels even in

pyroxene crystals with relatively low Fe contents.

DISCUSSION

Coupled element exchange during "tracer" diffusion

Coupled substitution is required to balance the extra positive charge that is introduced

when a trivalent rare earth element is exchanged with a divalent cation on the diopside M2 site.

Unfortunately, we cannot directly infer the coupled substitution responsible for the uptake of

REE in our experiments. The concentration of REE is on the order of a few thousand ppm at

most, and at these low abundances it is not possible to resolve coupled variations in major



element concentration that would indicate which substitution is taking place. However, because

the tracer layer contained only rare earth element oxides, with no charge balancing species such

as Al or Na present, it is likely that the introduction of REE into the diopside in our experiments

involved an Eskola-type exchange, with charge balance achieved through the formation of

vacancies on M1 or M2 sites. Two possible exchange reactions can be written as follows:

REE20 3 + 2CaM2 + Mg 1 -> 2REEM2 +VM1 + MgO + 2CaO (2)

or,

REE203 +3CaX -+ 2REEM2 + VM2 +3CaO (3)

using Krdger-Vink notation (e.g. Kr6ger, 1974). In this notation Xz refers to an element X or

vacancy V on a crystallographic site Y, with Z referring to the excess charge relative to that of

the normally occupied site. A dot (') denotes one excess positive charge, a prime (') stands for

one excess negative charge, and a cross (x) indicates that the site is negatively charged.

Equation 2 describes the substitution of two REE3, ions for two Ca2* ions on the M2 site, with

the formation of a vacancy on the M1 (Mg) site. Mg and Ca are transported out of the diopside

crystal and deposited on the surface as MgO and CaO. The reaction described by Eq. (3) is

similar but involves formation of a vacancy on M2 (Ca) rather than M1. We can not rule out

other exchanges, such as a Tschermak's (REEAl-CaSi) or jadeite (REENa-CaCa) type

substitution. However, because no Na or Al is available in the tracer layer in our experiments,

such exchanges would necessarily be accompanied by a net decrease in the number of lattice

units in the diopside crystal, and outward transport of Si and other components. We consider

this unlikely, because the self-diffusivity of Si in diopside (Bejina and Jaoul, 1996) is an order

of magnitude slower than the La diffusivity we have measured and more than two orders of

magnitude slower than Yb. If a Tschermak's or jadeite substitution were responsible for uptake

of REE in our experiments, we would expect transport to have been limited by diffusion of Si

and for all of the rare earth elements to have diffusion profiles of similar length. The fact that



we observed large differences in diffusivity among the REE indicates that transport is limited by

the mobility of the rare earth elements themselves.

Diffusion mechanism

The positive dependence of D Ybon oxygen fugacity is consistent with diffusion by a

vacancy mechanism. Under oxidizing conditions excess oxygen may be incorporated into the

diopside structure, creating cation vacancies that are electronically compensated by Fe" on MI

sites (FemI). This reaction can be described by the following equation:

8Fe , +20 2 = 40O +V 2 +V + +8Fe, (4)

with the corresponding mass action law:

[V. 2 [V"][V""][FeMI]8 = K[Fe f]8 f2 (5)

If the electroneutrality condition [FeM,= 2[VM2]+ 2[VMI] + 4[V,"] is satisfied and the

concentrations of M1, M2 and Si vacancies are approximately equal (as would be the case if

most vacancies were produced by reaction (5)), then [VM2] <C fO", with m = +2/11. If diffusion

of the rare earth elements is governed by M2 vacancies, the diffusion coefficients should have

the same proportionality with fo2 . Our preliminary investigation of the fo2 dependence of Yb

diffusivity at 1200 'C suggests that m = 0.13, slightly lower than the value of -0.18 predicted

from the point defect model. Cherniak (1999) has investigated the influence of f02 on diffusion

of Pb in four different high-Ca clinopyroxene samples spanning a wide range of compositions.

A positive dependence of the diffusion coefficient on fo2 was observed in all cases, with m=

0.18 for a near end-member diopside sample. In contrast to the results of Cherniak (1999) for

Pb and our preliminary result for Yb, Dimanov and co-workers have found that diffusion of Ca

in diopside is inversely proportional to f0 2, with m= -0.19. This result suggests that Ca

diffuses by an interstitial rather than a vacancy mechanism; the observed dependence on oxygen

fugacity is consistent with a point defect model in which Ca interstitials are formed in response



to oxygen desorption and associated reduction of Fe'l to Fe'I (Jaoul and Raterron, 1994;

Dimanov and Jaoul, 1998). Apparently the energy required for an M2 cation to move to an

adjacent vacancy is not very different from that required for a jump to an interstitial site, and as a

result the diffusion mechanism that an ion prefers is very sensitive to its size and charge.

The diffusion coefficient measured in annealing experiments can be related to atomic

jump parameters by the following equation (e.g. Flynn, 1972):

D = nya fvO exp exp T , (6)
RS RT

where n is the mole fraction of vacancies or interstitial sites that govern diffusion, yis a

geometrical factor, a is the atomic jump distance,f is a correlation factor, and v is the jump

attempt frequency (which is close to the vibrational frequency of an atom in its lattice site). Sm,

E, and Vm are the entropy, energy and volume of motion, respectively. Because our 1 atm

experiments were performed along the QFM buffer rather than at constant oxygen fugacity, the

apparent activation energies we have measured for diffusion of the REE do not represent motion

energies alone, but include the influence of fo2 on diffusivity. At constant fo2 the activation

energies for the REE would be less by mHQFM, where HQFM is the enthalpy of the QFM

reaction, equal to +493 kJ/mol (Huebner, 1971). If m = +0.13, the activation energy at constant

fo2 would be 64 kJ/mol less than along the QFM buffer, and if m = +2/11 as expected from

the point defect model, the activation energy at constant fo2 would be 90 kJ/mol less than along

the QFM buffer. The activation energy at constant fo2 is still not equivalent to the motion

energy E, because there is also a contribution from the enthalpy of the vacancy formation

reaction (Eq. 5). Unfortunately, the thermodynamic data needed to estimate the enthalpy of this

reaction are not available. Thermodynamic data do exist for a similar reaction in olivine

(Nakamura and Schmalzried, 1983; Hirsch and Shankland, 1993), and the enthalpy is found to

be small-approximately +13 kJ/mol. Taking this as an estimate for the enthalpy of the

reaction expressed in Eq. 5, the motion energy for Yb in diopside would be -[411-(90+13)]=



308 kJ/mol. It is interesting to compare this to the calculated motion energy for Ca diffusion in

diopside by a vacancy mechanism. Azough et al. (1998), using the Mott-Littleton approach

with empirical interatomic potentials, found that the most favorable Ca jump requires -190

kJ/mol. This is close to 2/3 of the motion energy we estimate for Yb diffusion, which is the

ratio expected if the motion energy is proportional to the charge of the cation.

AN ELASTIC DIFFUSION MODEL

Because diffusion data for minerals remain sparse, there is considerable interest in

obtaining an empirical or theoretical relationship that can be used to predict the diffusion

parameters of ions that have not yet been studied in the laboratory. In this section we introduce

an elastic strain model for diffusion and discuss its application to diopside and other silicate

minerals.

Relation between D and ionic radius

Mullen (1966) derived a theoretical expression relating the motion energy of an

impurity in an ionic solid to the difference between the ionic radius of the impurity and the ideal

site radius. Ions are represented as hard spheres linked by Einstein springs, and the motion

energy is taken to be the work required to move ions into a configuration (the so-called

"saddle-point" configuration) that allows motion of a jumping ion along a straight-line path to

an adjoining vacancy (Mullen, 1966). The motion energy is assumed to be purely due to elastic

strain and does not include the change in Coulomb energy between the equilibrium

configuration and the saddle-point configuration. With these assumptions, a relation between

the motion energy and the ionic radius is given by the following equation (combining Mullen's

Eqs. 2 and 4):

E = E{ +2[S(1 -1 ) -8(1 -21 )}. (7)

The parameter E , in Eq. 7 refers to the motion energy for an ion with ideal radius, and 8 is a

size factor defined as (r,-r,,,)/ro, where r, is the radius of the impurity ion, ri,, is the ideal site



radius, and r, is the average cation-anion bond length for the site. The Mullen equation predicts

a parabolic relation between the motion energy and the ionic radius for ions occupying a

particular site. The maximum motion energy is predicted for an ion with 3 = 0.147. The REE

in diopside have values of 3 between 0.0440 (for La) and -0.0260 (for Yb), assuming an ideal

M2 site radius of 0.105 nm (Blundy and Wood, 1994) and an average M2-0 bond length of

0.250 nm (Smyth and Bish, 1988). If E' for a trivalent ion has a value of -330 kJ/mol

(estimated from the inferred motion energies for the REE, interpolated to 3 = 0), the motion

energy is predicted to increase by -140 kJ/mol from Yb to La. There does appear to be an

increase in the activation energy (and by extension, the motion energy) with increasing ionic

radius among the REE in diopside, but the trend is poorly resolved due to relatively large

uncertainties in the activation energies.

The relative variation in diffusivity among the rare earth elements at a particular

temperature is much greater than the variation in activation energy, and the Mullen equation can

be compared to the data more readily if it is recast in terms of D rather than E,. This can be

done provided that a relationship can be formulated between Do and ionic radius. In many

materials, including silicate minerals (Hart, 1981) and melts (Hofmann, 1980), a positive

correlation is found among D. and E. Zener (1952) showed that such a correlation is expected

if a large part of the energy expended during an atomic jump is due to lattice strain. In this case

a relation between the motion entropy and the temperature coefficient of the bulk (or shear)

modulus y is expected, as described by the following equation:

In Do oc Sm = -d(1t y)/dTJ}Em. (8)

Do is a composite term comprising several atomic jump parameters (the first 6 terms in Eq. 6,

for extrinsic diffusion), but most of them are related to the mineral structure and only S,, and v,

depend on the properties of the jumping ion. If it is assumed that variations in v, among the

REE are small and that variation in Do is due primarily to differences in S,, (in other words, that

the jump attempt frequencies among the REE are similar, but that the success of a jump is



determined by the size of the ion), then the Mullen equation (Eq. 7) can be combined with the

Zener relation (Eq. 8) to give:

In D =In D5 =- 2b8d(1-I/ ) r-o)-/ (9)

where

b~ "'d(u lo) + 1. (10)
R I dT T

Equation 9 describes a parabola on a plot of InD vs. 8, with a minimum at 5= 0.147. For the

diopside M2 site, the minimum in diffusivity is predicted for an ion with radius -0.142 nm.

The REE are all much smaller than this "minimum diffusivity" radius and thus their diffusion

coefficients are expected to decrease monotonically with increasing ionic radius. This

prediction is in accord with the results of our experiments. Figure 10 shows our experimental

results for diffusion of La, Ce, Nd, Dy and Yb at 1 atm and 1200 *C on a plot of ln D vs. 3.

The curve through the data was obtained by a least squares fit to Eq. 9, with In D- 0 and b as the

only adjustable parameters. The parameter b controls the "tightness" of the parabola-the

larger the value of b, the tighter the parabola-and In D5=& determines the vertical placement of

the curve. The parabola is not adjusted along the S axis; its horizontal position on the plot is

fixed by specifying the ideal M2 site radius (0.105 nm; Blundy and Wood, 1994) and mean

M2-O bond length (0.250 nm; Smyth and Bish, 1988). The values of b and In D5=0 obtained

from the fit are given in Table 7.

The Mullen/Zener model appears to provide an excellent description of REE diffusion

rates in diopside at 1200 C. As shown in Fig. 11, it also describes the temperature dependence

of REE diffusion quite well. The lines shown in Fig. 11 are not fits to the data but were

obtained from the Mullen/Zener model, as follows. The motion energy for each element is

assumed to follow Eq. 7, with E, = 330 kJ/mol. Because the diffusion data were obtained

along the QFM buffer rather than at constant oxygen fugacity, the activation energy



(represented by the slope of the Arrhenius line) is taken to equal (E,+92+13) kJ/mol. Relative

values of InDO are given by Eq. 8, using the value of -d(p/pO)/dT obtained from the fit of

Eqs. 9 and 10 to the data at 1200 'C. The Arrhenius curves obtained from the Mullen/Zener

model (Fig. 11) pass through nearly all of the data points for each element within error, and

agree with the data nearly as well as Arrhenius curves fitted to the data by least-squares

regression (Fig. 4). The Mullen/Zener model thus appears to provide a useful means for

estimating the Arrhenius parameters of rare earth elements (as well as other trivalent elements

that partition onto the M2 site) that have not yet been determined experimentally.

Diffusion data are also available for ions with a range of ionic radii in the silicate

minerals zircon and anorthite. Diffusion coefficients for the REE in zircon (Cherniak et al.,

1997a) and the alkaline earth elements in anorthite (LaTourrette and Wasserburg, 1998) at 1200

'C were fit to Eq. 9, and the results are shown in Fig. 12 along with those for the REE in

diopside. Each data set is fit quite well by the Mullen/Zener model, and the relative values of b

for each mineral (Table 7) are consistent with the relationship given in Eq. 10. The dependence

of diffusivity on the size factor S is greatest for zircon, which also has the largest motion energy

(and the stiffest lattice). Diffusion in plagioclase has the weakest dependence on ionic radius

among the three minerals, and the smallest activation energy for diffusion (as well as the most

compliant lattice). Although there is a general correspondence between the data and the

predictions of the Mullen/Zener model, the value of b predicted from Eq. 10 is a factor of -2-3

greater than the value obtained from the fit to the diffusion data (Table 7). In other words, the

dependence of diffusivity on ionic radius that is predicted from the Mullen/Zener model, using

experimentally determined motion energies and temperature derivatives of the elastic moduli, is

greater than that observed in the diffusion data.

Relation between D and ionic charge

The change in electrostatic energy required to move an ion to an adjacent vacant site in a

solid is, to a first approximation, linearly related to ionic charge (e.g. Anderson and Stuart,



1954). Taking the motion energy to be proportional to cation charge, and assuming that the

motion energy and motion entropy are linearly related according to Eq. 7, a relationship among

the diffusion coefficient D, ionic charge z and size factor 8 can be formulated as follows:

InD =InDz0 +b 1-- 2b z2
ref ~Zrej re

where b is as defined above (Eq. 10) with E' equal to the motion energy for a cation with ideal

radius and the reference charge zref This relationship can be compared to the diffusion data for

divalent, trivalent and tetravalent cations in diopside and zircon using the values of ln D=3 and b

determined from the REE diffusion data (Fig. 13). The diffusion data shown in Fig. 13 are

corrected to 3= 0 using the relationship given by Eq. 11. The lines represent solutions to Eq.

11, and intersect In D with a slope of -b3. Although there is considerable scatter in the data

for divalent ions in diopside and tetravalent ions in zircon, the model captures the general trends

for the two minerals remarkably well. Equation 11 predicts that a mineral in which D depends

strongly on ionic radius should also exhibit a strong dependence of D on ionic charge.

Diopside and zircon are consistent with this relationship; diffusion rates in zircon are more

sensitive to both size and charge than are diffusion rates in diopside.

Activation volume

An elastic strain energy model relating the activation volume and activation energy for

diffusion was introduced by Keyes (1963) and has been discussed further by Flynn (1972) and

Sammis et al. (1981). If the lattice distortions involved in the motion of an ion are perfectly

elastic, then a lower bound on the activation volume is obtained by assuming that the lattice

strain is purely shear, and an upper bound is obtained by assuming that strain is entirely

dilatational. In the case of shear strain, the activation volume is given by:

F(d(lnG)~ 1 iF_(In G) -i
V = E, )1- - T (12)

[(dP rT Kr d(In T) )P
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where G is the shear modulus, KT is the isothermal bulk modulus, and # is the coefficient of

thermal expansion (Sammis et al., 1981). If the strain energy is assumed to be purely

dilatational, then:

~= Em[( d(InKr) 1 d(ln Kr) OT (13)
'" '" dPKT) r Kr d(In T) ,p

Using values given by Anderson (1989) for the elastic moduli and their temperature and

pressure derivatives, and the thermal expansion coefficient for diopside given by Fei (1995),

Eqs. 12 and 13 yield estimates of 6.1 and 11.2 cm3/mol, respectively, for the activation volume

of Yb diffusion. These estimates are in agreement with the measured activation volume of 9.5

2.0 cm 3/mol. For Ce, the measured activation volume of 10.2 ± 3.2 cm 3/mol also falls within

the predicted range of 7.0 to 12.8 cm 3/mol (for a Ce motion energy of 358 kJ/mol).

APPLICATIONS OF THE DATA

The diffusion data presented above are applicable to a wide range of kinetic problems in

high temperature geochemistry. Rare earth element diffusion rates in diopside are slow enough

that melts may not completely equilibrate with high-Ca pyroxene during partial melting of the

upper mantle. Diffusive fractionation of the REE during adiabatic decompression melting is

discussed in Chapter 3. Koga et al. (1999) discuss the diffusion-limited redistribution of trace

elements, and the inheritance of "garnet signatures" in pyroxene grains, that may take place

when upwelling mantle passes through the garnet-spinel facies transition. In this section the

REE diffusion data are used to evaluate the length scale over which Nd isotopic heterogeneity

can be maintained in the upper mantle, and to assess kinetic controls on REE uptake during

basalt crystallization.

Isotopic heterogeneity

A large body of data from mid-ocean ridge basalts (MORB) and ocean island basalts

(OIB) shows that the Earth's mantle is heterogeneous in isotopic composition (see Zindler and

Hart, 1986; Allegre et al., 1986; Hart et al., 1992; Hofmann, 1997; and references therein).



Hofmann and Hart (1978) argued for a mantle that is heterogeneous on a regional scale but

homogeneous on a local (grain size) scale. The original argument for local isotopic equilibrium

was based on a diffusion data set that was quite sparse; in 1978 no experimental data were

available for diffusion of radioisotopes in major upper mantle minerals. In 1984, Sneeringer et

al. showed that diffusion of Sr in clinopyroxene is rapid enough at temperatures near the

solidus of peridotite to easily maintain grain-scale "Sr/ 86Sr homogeneity. Here we revisit the

question of local equilibrium for Nd isotopes. The calculations that follow assume that isotopic

equilibration is governed by volume diffusion in the minerals. Mineral grains are also assumed

to maintain communication with each other through a network of high diffusivity paths (e.g.

grain boundaries or melt tubules along 3-grain junctions), with no intervening solid barriers to

diffusional exchange between individual mineral grains. If clinopyroxene grains are

"armored" by olivine or orthopyroxene, which dissolve very little Nd, then isotopic

equilibration could be significantly slower than in the case considered here. On the other hand,

equilibration could be considerably faster if recrystallization or some other process acts to

short-circuit volume diffusion.

Because diffusion of Nd is slower in clinopyroxene than in garnet (Chapter 2 of this

thesis; Coghlan, 1990; Ganguly et al., 1998), cpx probably controls the rate of equilibration of

Nd isotopes in mantle rocks. In garnet lherzolite at temperatures near the solidus (-1450 C at

a pressure of 2.5 GPa) the diffusion coefficient for Nd in diopside is estimated to be -1.8 x 10-

19 m2/s, assuming an activation volume of 10 cm 3/mol. Under these conditions, a spherical cpx

grain 5 mm in diameter can remain closed to Nd isotope exchange for only -1 My. In this

time, garnet and cpx with Sm/Nd ratios that differ by a factor of -3-4 can maintain differences

in 14 3Nd/'"Nd of only ~ 10-6. This local scale heterogeneity is very small compared to

variations in 143Nd/'"Nd of 10-4to10-3 among MORB and OIB. Thus the common

assumption that Nd isotopes are locally in equilibrium during melting of garnet lherzolite

appears to be a good one.



Melting of eclogite may be a different story. The solidus of eclogite could be as low as

1150 'C at 1.5 GPa pressure (e.g. Hirschmann and Stolper, 1996), and at these conditions the

diffusion coefficient for Nd in diopside is estimated to be -2 x 10-22 m2/s. Significant isotopic

disequilibrium could be maintained between 5 mm cpx and garnet grains for times on the order

of a billion years, which could lead to differences in 143Nd/I'Nd between cpx and garnet of

~1073. This degree of local disequilibrium is quite large compared to the variation in Nd

isotopic ratios observed in oceanic basalts. If eclogitic material makes an important contribution

to basaltic magmas, the assumption of local isotopic equilibrium in the source may not be valid.

Disequilibrium REE uptake by clinopyroxene phenocrysts

Clinopyroxene phenocrysts grown from silicate melts commonly exhibit disequilibrium

features such as oscillatory zoning or sectoral enrichment. The underlying cause of

disequilibrium may be related to boundary layer effects in the melt adjacent to the growing

crystal (e.g. Albarede and Bottinga, 1972) or to enrichment/adsorption at the crystal surface

(Shimizu, 1981; Watson and Liang, 1995; Watson, 1996). Preservation of the chemical zoning

produced by either process is controlled by volume diffusion in the crystal. In the case of

disequilibrium uptake due to surface enrichment phenomena, preservation of zoning depends on

the value of the "growth" Peclet number, Pe = Vl/D, where V is the crystal growth rate, I is the

enriched surface layer thickness, and D is the diffusion coefficient in the crystal (Watson,

1996). Watson and Liang (1995) and Watson (1996) showed that perceptible disequilibrium

uptake is possible if the Peclet number is greater than -0.1. Phenocryst growth rates in basaltic

lava lakes have been estimated to be 1012 to 10-" m/s from direct sampling of phenocryst size

distributions over time (Kirkpatrick et al., 1977). Assuming a surface enrichment layer on order

of a single silicate monolayer (-0.5 nm), these crystal growth rates are rapid enough to allow

significant disequilibrium uptake of REE. For phenocrysts growing at a rate of 5 x 1012 m/s at

a temperature of 1100 "C, Peclet numbers for the REE range from 0.5 for Yb to 22 for La.

Uptake of the HREE may thus take place under near-equilibrium conditions, while uptake of
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LREE may be dominated by surface enrichment effects. The REE patterns preserved in

clinopyroxene phenocrysts, under typical conditions of basalt crystallization, will be sensitive

not only to variations in bulk and surface partitioning but to phenocryst growth rates. Zoning

of REE in clinopyroxene phenocrysts is expected under many conditions of basalt

crystallization, and may provide a sensitive record of cooling and crystallization rates.
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Table 1. Kunlun Mts. diopside composition.

Oxide Weight %"
SiO 2  55.75 (0.34)
TiO2  0.04 (0.01)
Al20 3  0.88 (0.17)
Cr 2O3  0.02 (0.01)
FeO* 0.70 (0.07)
MnO 0.05 (0.02)
MgO 17.73 (0.36)
CaO 24.53 (0.29)
Na 2O 0.48 (0.09)
Tot 100.2 (0.6)
a. Average of 15 electron microprobe analyses of three
different crystals. Numbers in parentheses represent one
standard deviation.



Table 2. Summary of 1 atm run conditions and diffusion data for Ce and Yb.

Diffusion Coefficients (x1 021 m2/s)
Run # T Anneal logf0 2

(OC) time (hrs) (bars) Ce Yb
CeYb6 1300 23.2 -7.8 31.9 ± 11.5 537 ± 96
CeYb9 1275 76.9 -7.7 25.0 ± 10.1 465 ± 86
CeYb3 1250 74.7 -7.9 11.5 ± 2.8 143 ± 37
CeYb2 1250 190.8 -7.9 6.83 ± 1.35 142 60
CeYb7 1225 183.3 -8.5 5.83 ± 2.26 130 ± 27
CeYb8 1200 455.6 -8.6 2.53 0.47 43.7 ± 8.6
CeYb10 1200 235.0 -8.6 4.45 ± 0.92 54.7 ± 11.3
CeYb4 1200 191.4 -8.4 4.01 ± 1.42 49.8 ± 17.7
Cel 1200 118.9 -8.4 4.53 ± 2.10
Yb1 1200 145.6 -4.5 158 ± 34
CeYb12 1175 170.3 -8.4 27.0 ± 8.8
Ce3 1150 577.8 -9.1 0.68 ± 0.12
CeYb1 1150 455.6 -9.2 0.62 ± 0.36 24.2 ± 9.1
CeYb11 1125 477.8 -9.7 13.7 ± 2.6
CeYb5 1100 425.0 -9.8 4.62 ± 1.6
CeYb15 1050 794.4 -10.5 1.41 ± 0.20



Table 3. Summary of 1 atm run conditions and diffusion data for La, Nd and Dy.

Diffusion Coefficients (xl 021 rn2/s)

Run# T Anneal logf 0 2

C) time (hrs) (bars) La Nd Dy
LaNdDy4 1300 25.1 -7.3 21.5 7.6 38.1 13.0 190 65
LaNdDy2 1275 76.9 -7.7 10.0 4.0 22.5 9.2 170 69
LaNdDy10 1250 95.5 -7.9 4.46 3.10 1O.2 7.1 97.2 43.0
LaNdDy7 1250 42.5 -8.2 72.8 49.2
LaNdDyl 1200 455.6 -8.6 1.82 0.62 2.95 1.00 17.9 6.1
LaNdDy3 1200 235.0 -8.6 24.8 9.5
LaNdDy6 1175 170.3 -8.4 12.4 6.0
LaNdDy9 1100 882.2 -9.8 1.30 ±0.76

Diffusion coefficients were obtained by fitting the diffusion profiles to Eqn. (1) by non-linear least
squares regression.
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Table 4. Summary of high pressure run conditions and diffusion data for Ce and Yb.

Run # Capsule T P duration D [5
(0C) (GPa) (hr) (x 1021 M2/s) (x 1021 m2/s)

B588 graphite 1450 1.8 25.1 183 ± 136 3100 1570
B584 graphite 1350 1.3 20.2 665 ± 224
C163 graphite 1350 1.5 70.0 33 ± 19 322 ± 176
C177 graphite 1350 2.5 72.2 202 ± 73
C207 graphite 1300 1.5 67.2 166 ± 89
B596 graphite 1250 1.8 75.8 60± 34
B475 Pt 1450 1.8 68.1 66 ±29 781 ± 355
B474 Pt 1350 1.8 68.1 10 ± 7 71 ± 34
B553 AuPd 1350 1.8 42.2 73 ± 23



Table 5. Arrhenius parameters ( D = Doe-EIRT) for diffusion
at I atm along the QFM buffer. Uncertainties (1 (-) were
determined from the linear regression.

Element log, Q(mL/s) E (kJ/mol)
Yb -4.64 ±0.42 411 ±12
Dy -3.31 ± 1.44 461 ± 41
Nd -2.95 ± 2.64 496 ± 77
Ce -4.10 ± 1.08 463 + 31
La -4.22 ± 2.66 466 ± 78
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Table 6. Arrhenius parameters (D = Doe-(E+PV)IRT) for pressures of 0.1 MPa to 2.5 GPa and
temperatures of 1050-1450 'C. Uncertainties (1 a) were determined from the linear regression.
Element , (m/s) E (kJ/mol) V (cm./mol)
Yb -4.63 ±0.39 411 ±11 9. ± 2
Ce -4.12 ± 0.94 463 ± 27 10.2 3.2



Table 7. Parameters in Mullen/Zener model.

rro d(pl/p.)2T E InD* b "b*
(nm) (nm) (x10 4 K-1) (kJ/mol)

'Diopside, 3+ 40.105 0.250 '-1.3 330 -45.78 8.1 22
2Zircon, 3+ '0.084 0.220 8_0.89 670 -37.25 25 48
3Anorthite, 2+ 40.120 0.253 -- 250 -41.48 2.1 --

1. This study.
2. Cherniak et al. (1997a).
3. LaTourrette and Wasserburg (1998).
4. Ideal cation site radius (Blundy and Wood, 1994).
5. Ideal site radius calculated as the mean cation-oxygen bond distance (r) minus the ionic

radius of 02- (0.138 nm).
6. Values from Smyth and Bish (1988).
7. Anderson (1989) p. 105. Average of temperature derivatives of shear modulus and bulk

modulus.
8. Bass (1995). Average of temperature derivatives of shear modulus and bulk modulus.
9. Migration enthalpy at S = 0 (estimated from measured activation enthalpies).
10. Determined from least squares fit to Eq. 7 of diffusion coefficients at 1200 'C.
11. Calculated from Eq. (8).



FIGURE CAPTIONS

Figure 1. Typical diffusion profiles (Experiment LaNdDy2-1275 'C, 0.1 MPa, 76.9 hr). a)

Plot of erf" [(CO-C)/CO] versus depth in nanometers. C represents [REE/30Si] in counts per

second, and Co is the interface concentration (adjusted in the fitting procedure so that the linear

portion of each diffusion profile passes through the point (0,0)). Profiles for La, Nd and Dy

overlap in the shallow region, but fall along distinct linear trends beyond a depth of -90 nm.

The shallow part of the profile is considered to reflect sampling of heterogeneously distributed

REE oxide crystals remaining on the diopside surface after the experiment, and only the linear

portion of the profile is fitted to obtain the diffusion coefficient. In b) the concentration data are

plotted versus depth, along with fitted error function curves.

Figure 2. Time series showing diffusion coefficients for Yb, Dy and Ce versus run duration,

for experiments run at I atm and 1200 *C. The diffusion coefficient for each element is

independent of anneal time, a necessary condition for mass transport by volume diffusion.

Figure 3. Plot of logDY, versus oxygen fugacity at 1200 C. Yb diffusivity increases with

oxygen fugacity, suggesting that an impurity whose valence is sensitive to f02 (e.g. Fe) controls

the point defects that are responsible for Yb diffusion in diopside.

Figure 4. Arrhenius plot showing diffusion coefficients versus T' for experiments run at 1

atm total pressure, with oxygen fugacity controlled along the QFM buffer. Open circles-Yb;

filled circles-Dy; 'x'-Nd; open squares-Ce; '*' -La. Arrhenius parameters are given in

Table 5.



Figure 5. SIMS depth profiles for Fe, Yb and Ce from a high pressure experiment performed

in a Pt container (B474-1350 0C, 1.8 GPa). Fe is lost from the diopside to the Pt.

Concentrations refer to element/30Si intensity ratios.

Figure 6. Plot of Yb and Ce diffusion coefficients versus pressure, at 1350 C. Data obtained

at other temperatures have been corrected to 1350 C using the temperature dependence for

diffusion determined from multiple linear regression of the data (Table 6). Only data from 1

atm experiments and high pressure experiments performed in graphite capsules are shown; 1

atm data are shown as a single point representing the mean value of D.

Figure 7. Arrhenius plot comparing high- and low-pressure diffusion data for Yb and Ce. The

high pressure data (filled circles) have been corrected to 1 atm pressure using the activation

volumes determined from multiple linear regression of the data (Table 6).

Figure 8. Arrhenius plot comparing REE diffusion data from this study (at 1 atm) with Sm

diffusion data for synthetic diopside. The 1 atm Sm diffusion data are from Sneeringer (1981)

and the high pressure data are from Sneeringer et al. (1984).

Figure 9. Arrhenius plot of cation diffusion data in high-Ca clinopyroxene. References for the

data are as follows: Sr (in both natural (n) and synthetic (s) diopside crystals) and Sm

(synthetic)-Sneeringer et al., 1984; Pb-Cherniak, 1998; Ca-Dimanov and Jaoul, 1998; Ca-

Mg interdiffusion-Brady and McCallister, 1983; O-Ryerson and McKeegan, 1994;

Al-Sautter et al., 1988; U and Th-Van Orman et al., 1998; Si-Bejina and Jaoul, 1996; Yb,

Dy and La-this study.

Figure 10. Plot of InD versus the ionic size factor 8= (r,-rt)/r, for REE diffusion in diopside

at 1200 C and 0.1 MPa. r is the radius of the trivalent ion in eight-fold coordination



(Shannon, 1976), rsi is the ideal site radius (0.105 nm; Blundy and Wood, 1994), and r. is the

average cation-anion bond length (0.250 nm; Smyth and Bish, 1988). The curve is a least

squares fit to Eq. 7 with in D50 and b as the only adjustable parameters.

Figure 11. Comparison of 1 atm diffusion data for the rare earth elements in diopside with

Arrhenius curves obtained from the Mullen/Zener elastic diffusion model.

Figure 12. Plot of InD 473Kversus 3 for alkaline earth elements in anorthite (LaTourrette and

Wasserburg, 1998), REE in zircon (Cherniak et al., 1997a), and REE in diopside (this study).

Curves are least squares fits to Eq. 7; parameters obtained from the fits are given in Table 6.

Figure 13. Plot of In DI45K versus ionic charge for cations that partition onto the eight-fold

site in diopside and zircon. Diffusion coefficients are corrected to 3= 0 using Eq. 10. The two

lines on the plot are not fits to the data, but instead show the trends expected from Eq. 10, given

the values of In D=3 and b determined from fits of the REE data to Eq. 7 (see Table 6). Open

circles-diopside; filled circles-zircon. References for zircon diffusion data: REE-Cherniak

et al., 1997a; U, Th and Hf -Cherniak et al., 1997b. References for diopside diffusion data: U,

Th-Van Orman et al., 1998; REE-this study; Pb-Cherniak, 1998; Sr-Sneeringer et al.,

1984; Ca-Dimanov and Jaoul, 1998.
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Figure 3
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Figure 5

0.3F

0.2F

0.1 k

Ce

100 200 300 400
Depth (nm)

500 600

0.5

Yb
0.4

Fec
0

C.)

E
0z

0 0

700



Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10

E

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

8 (size factor)

-48[

-0.03



Figure

Temperature (SC)

1200 1100

o Yb
* Dy
x Nd
* Ce
* La

Yb

Dy

6.4 6.6 6.8 7.0 7.2 7.4

1/T x 10,000

1300
-18

19F

E

c0 -20 F La

-21

7.6

I I- -

11



Figure 12

-35

Mg anrht

-40 -

C)l0

Q Yb

- -45 -

diopsid

-50
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1

0 (size factor)

Dy

e Ce

d
La

zircon



Figure 13

ionic charge (z)

Cj
0

0
0
C\j

0OC
C:

-30-

-35-

-40-

-45-

-50

-55-

Pb
Sr, nat

zirconREE

OSr, syn

diopsid~e

Hf
0

-60



CHAPTER 2.

RARE EARTH ELEMENT DIFFUSION IN A NATURAL PYROPE SINGLE CRYSTAL
AT 2.8 GPA

ABSTRACT

Volume diffusion rates of Sm, Dy and Yb have been measured in a natural pyrope

single crystal (Py71Alm16Gr13) at 2.8 GPa and 1200-1450 C. Pieces of a single gem-quality

pyrope megacryst were polished, coated with a thin layer of REE oxide, then annealed in a

piston cylinder device for times between 2.6 and 90 hours. Diffusion profiles in the annealed

samples were measured by SIMS depth profiling. The dependence of diffusion on temperature

can be described by the following Arrhenius equations (diffusion coefficients in m2/s):

logo Ds. = (-9.05 ± 0.97) - (304 ±30 U mol-'/2.303RT)

logo DD, = (-9.09 ± 0.97) - (300 ±30 U mol'/2.303RT)

logo Dyb = (-7.74 ± 0.97) - (343 ±30 kJ mol-'/2.303RT)

Diffusion coefficients for Sm, Dy and Yb are indistinguishable within the measurement

uncertainty; there is no significant influence of ionic radius on diffusion rates in garnet. At

temperatures near the solidus of garnet lherzolite (-1450 C at 2.8 GPa), REE diffusion rates in

pyrope are similar to Yb and Dy in diopside, and an order of magnitude faster than Nd, Ce and

La in diopside. At lower temperatures relevant to metamorphism in the crust, REE diffusion

rates in garnet are several orders of magnitude faster than in diopside. Closure temperatures for

the REE are calculated to be between 765 and 920 'C for pyrope spheres 1 mm in diameter

cooling at 1 to 100 C My-1; in diopside the closure temperature for Nd is about 200 C higher.



INTRODUCTION

Pyrope-rich garnet is the stable aluminous phase in peridotite at depths below -75 km.

Melting commonly begins at depths where garnet is stable (Shimizu and Arculus, 1975; Frey et

al., 1978; Salters and Hart, 1989; Beattie, 1993; LaTourrette et al., 1993), and in this regime

garnet exerts an important control on the distribution of rare earth elements between solid and

melt. This chapter presents experimental data on the diffusion rates of REE in a natural pyrope

single crystal under pressure and temperature conditions relevant to melting beneath ocean

spreading centers (2.8 GPa and 1200-1450 C). The implications of the data for diffusion-

controlled fractionation of the REE during melting within the garnet stability field are discussed

in Chapter 3.

Garnet is also an important phase in many crustal rocks, and zoning within metamorphic

garnets often preserves a record of the temperatures, pressures, and fluid interactions

experienced by the host rock over its history. Information on the timescales of the processes

recorded by zoned garnet crystals can be obtained provided that diffusion rates are known for

the appropriate P, T conditions. The Sm/Nd isotopic system in garnet is often used for

radiometric dating and the data presented here can be used to predict closure temperatures for

this system.

EXPERIMENTAL METHODS

One section of a single pyrope megacryst was used for the diffusion experiments. The

sample was taken from an ultramafic diatreme of the Colorado Plateau, and contained no visible

cracks or inclusions. Another piece cut from the same crystal was used by Wang et al. (1996)

in a study of hydrogen diffusion in pyrope, and the major and minor element composition of

the crystal is given in that paper (their sample Py-6). The initial content of H20 was 102 ±10

ppm (Wang et al., 1996; FT'IR measurement); no attempt was made to measure the hydrogen

content after the REE diffusion anneals. The pyrope crystal was ground flat, in a random



orientation, and polished to 0.06 gm alumina, then rinsed ultrasonically in a purified water bath.

No further surface preparation was undertaken, and the sample was not pre-annealed because

pyrope is unstable at atmospheric pressure.

A dilute nitric acid solution containing Ce, Sm, Dy and Yb in equimolar proportions,

with a total concentration of 750 ppm REE, was dropped onto the polished surface and then

denitrified by heating at 800 *C for a few minutes. A thin layer of microcrystalline oxide

particles remained on the surface, and this provided the tracer source for the diffusion

experiments. After deposition of the tracer layer, a diamond wafering saw was used to cut the

pyrope sample into -12 pieces, each roughly cubical with an edge length of about one

millimeter.

The diffusion anneals were performed in 0.5 inch solid-medium piston-cylinder devices

(Boyd and England, 1960) using techniques similar to those reported in Chapter 1. A coated

pyrope cube was loaded with graphite powder into a 0.175" platinum outer capsule, taking care

to position the coated surface in the center of the capsule. Four experiments were run with the

pyrope cube in direct contact with the graphite powder. In two other experiments, the coated

surface of the pyrope was placed against a polished disk of vitreous carbon (Alfa Aesar type II),

and the pyrope/vitreous-carbon pair was separated from the graphite.powder with two pieces of

platinum foil. Each sample assembly was dried for one to two days at 120 "C, then the Pt outer

capsule was welded shut, gently pounded flat, and placed within a high density alumina sleeve.

The sample was centered within a graphite furnace using MgO spacers and then inserted into a

BaCO3 sleeve that served as the pressure medium. Each run was pressed cold to 0.7 GPa, then

heated to 865 'C at 50 'C /minute. After a 6 minute dwell, the sample was compressed to 2.8

GPa while heating to the final run temperature at a rate of 100 'C/minute. Runs were held at

constant temperature and pressure for times between 2.6 and 90 hours, then quenched by

shutting off the power. After quenching, the pyrope cube was carefully extracted from the Pt

capsule by scraping away the graphite. Pyrope cubes that were run in direct contact with

graphite powder could generally be extracted as whole pieces, while samples that were in contact



with the vitreous carbon disk parted along planes parallel to the pyrope/carbon interface. In

every case the coated surface of the pyrope crystal was preserved intact.

Pyrope crystals that were annealed in graphite bore the imprint of the polycrystalline

graphite confining medium on their coated surfaces. The surface was visibly roughened, and

Dektak profilometer scans showed that the mean surface roughness had increased from 5-10

nm in unannealed samples to 30-50 nm after the anneal. Samples that were annealed in contact

with the vitreous carbon disk maintained a mirror finish on their coated surfaces after the

experiment, and the surface roughness did not increase significantly.

The samples were mounted in epoxy with the tracer-coated surface exposed and covered

with a thin (-20 nm) gold film in preparation for SIMS depth profiling analysis. Analyses

were performed using the Cameca IMS 3f ion microprobe at the Woods Hole Oceanographic

Institution, using the same general procedure discussed in Chapter 1. A 10 nA 0 primary

beam was rastered over a square area 50 gm on a side, and sampling was restricted to a circle 8

gm in diameter through the use of a mechanical field aperture. 30 5i, 44Ca, 140 Ce, 147Sm or 1Sm

164 Dy and 1 4 yb intensities were monitored, with the secondary voltage offset by -50V to reduce

molecular interferences. The gold coat was removed after the analysis by ultrasonicating the

sample in a potassium iodide solution, and the depths of the sputtered pits were measured using

a Dektak 8000 diamond-tipped stylus profilometer.

Diffusion coefficients were determined by fitting the REE concentration profiles to an

error function solution to the diffusion equation. In fitting the profiles, the pyrope crystal was

considered to represent a semi-infinite medium, and the concentration at the interface between

the pyrope and REE oxide layer was assumed to have been constant throughout the experiment.

Representative diffusion profiles from a sample annealed in a graphite capsule at 1450 C are

shown in Fig. 1. The relative abundances of Yb, Dy and Sm in the annealed pyrope crystals are

qualitatively consistent with experimental studies on the partitioning of rare earth elements into

garnet (e.g. Hauri et al., 1994; van Westrenen et al., 1999).



Because of the low solubility of Ce in pyrope, "4 Ce intensities in the annealed samples

were very low, and Ce diffusion profiles could not be detected reliably. 140Ce counts were quite

low even near the surface (Fig. 1), and in each sample fell to background levels within the first

two cycles, corresponding to a depth of 100 nm or less. Diffusion coefficients for Ce could not

be estimated from any of the experiments.

RESULTS

The results of the diffusion experiments are listed in Table 1. At each temperature the

diffusion coefficients for Sm, Dy and Yb are indistinguishable from each other within the

measurement uncertainty. This is in striking contrast to our results for rare earth element

diffusion in diopside (Chapter 1), where diffusivities were found to differ by a factor of -3

between Yb and Dy, and by a factor of -35 between Yb and La.

Two experiments performed at 1400 'C for times 2.6 and 24 hours yielded similar

diffusion coefficients (Fig. 2). The close agreement between these experiments indicates that

the diffusion coefficients are independent of time, and suggests that transport of REE into the

pyrope crystal was indeed accomplished by lattice diffusion. No difference in diffusivity was

observed between experiments in which the sample was in contact with graphite powder and

experiments that used a polished vitreous carbon disk (Table 1). The greater surface roughness

of the samples annealed in graphite powder resulted in poorer depth resolution, but had no

significant effect on the diffusion coefficients.

Diffusion coefficients are plotted as a function of inverse temperature in Fig. 3. The

data for each element define a linear trend on the plot and are consistent with an Arrhenius

relationship, D = Doe-HI RT. Values of the pre-exponential factor Do and activation enthalpy H

( =E+PV) are similar for each element, and are listed in Table 2.



DISCUSSION

Figure 4 shows an Arrhenius plot comparing our data with other rare earth element

diffusion data in garnets. The diffusion data of Harrison and Wood (1980) for samarium in

pure pyrope are more than two orders of magnitude higher than our data under similar pressure

and temperature conditions. Harrison and Wood calculated apparent diffusion coefficients

from the time required to attain steady state partitioning between -10 micron pyrope crystals

and a silicate melt (at 3.0 GPa). The high apparent diffusivities and low activation energies that

they obtained suggest that recrystallization, rather than diffusion, may have been the primary

mechanism for Sm transfer between crystals and melt in their experiments. Coghlan (1990)

determined Nd and Er diffusion coefficients in almandine (Alm67Sp 28An 3Py2) single crystals

from hydrothermal experiments at 0.1 GPa and 800-1000 "C, using an isotopically enriched

aqueous tracer solution as the diffusion source. Coghlan's data, extrapolated to the

temperatures of our experiments, are in reasonable agreement with our data.

Ganguly et al. (1998) measured Sm and Nd diffusion coefficients in metastable

almandine (Alm75 Py2 2) single crystals at 1 bar and 777-877 'C, using thin film and ion probe

depth profiling techniques similar to those we have employed. The extension of their Arrhenius

trend, uncorrected for pressure, plots more than an order of magnitude above our data. While

no experimental estimate of the activation volume for REE diffusion in garnet is available, the

activation volume for Mg tracer diffusion is -8 cm3/mol (Chakraborty and Rubie, 1996) and for

Ca-(Mg,Fe) interdiffusion is 11.2 cm 3/mol (Freer and Edwards, 1999). If the activation volume

for rare earth element diffusion is similar (-10 cm 3/mol), then the Arrhenius curve of Ganguly

et al. (1998), corrected to 2.8 GPa, lies about one order of magnitude above our data. This

discrepancy may arise from the error involved in extrapolating the data over a large temperature

(and pressure) interval, or may indicate a dependence of REE diffusion rates on the composition

of the garnet. Chakraborty and Rubie (1996) reported a small but significant increase in Mg

tracer diffusion rates with increasing almandine content, and if this trend also applies to REE

diffusion it may account for the difference between our measurements and those of Ganguly et



al. (1998). The activation enthalpy of 254 kJ/mol calculated by Ganguly et al. (1998) for Nd

and Sm diffusion at 1 bar is similar to the activation enthalpies we have obtained, and even more

so if the effect of pressure is considered. Corrected to 1 bar using an activation volume of 10

cm 3/mol, our activation enthalpies are in the range 272-315 kJ/mol.

Also shown in Fig. 4 are diffusion data for La, Nd, Dy and Yb in yttrium aluminum

garnet (YAG) determined by Chemiak (1998). The data for REE diffusion in YAG are similar

to our data at temperatures of 1300-1400 C but the activation enthalpies for YAG are much

higher (-540-600 kJ/mol), and diffusion rates in YAG at lower temperatures are significantly

slower than in aluminosilicate garnets.

None of the studies of rare earth element diffusion in garnet show any significant effect

of ionic radius on diffusion rates. This is surprising, because according to the elastic strain

model presented in Chapter 1 a significant dependence of D on ionic radius is expected. The

eight-fold site onto which rare earth elements partition in pyrope is similar in size to the eight-

fold site in high-Ca pyroxene (Smyth and Bish, 1988; Blundy and Wood, 1994; van Westrenen

et al., 1999) and the temperature dependence of the bulk and shear moduli in garnet and

pyroxene are also similar (Bass, 1995). On the basis of these considerations, diffusion rates in

garnet might be expected to have a dependence on ionic radius similar to that observed in

diopside. One possible explanation for the absence of a relationship between D and ionic

radius in pyrope is that REE diffusion is limited by the coupled transport of another ion or

defect. If the rare earth elements are incorporated into pyrope via a REEAl-MgSi exchange, for

example, transport may be limited by the interdiffusion of Al and Si rather than by diffusion of

the REE themselves. Although it is possible that coupled transport limits the diffusion of REE

in pyrope, it does not explain the lack of a D-ionic radius dependence in yttrium aluminum

garnet (Cherniak, 1998), in which REE3 ' exchange directly for y 3* with no coupled transport

required. Diffusion of divalent cations in aluminosilicate garnets also involves a direct

exchange, and only very small differences in diffusion rates are observed among Fe, Mg, Mn

and Ca in aluminosilicate garnets (Chakraborty and Ganguly, 1992; Freer and Edwards, 1999).



These observations suggest that the insensitivity of diffusion rates in garnet to the radius of the

diffusing ion does not result from the influence of a coupled exchange, but instead is related to

the structure and properties of the garnet lattice. It does not appear that the elastic properties of

the eight-fold site in pyrope are anomalous. Trace element partitioning trends in garnet

conform very well to an elastic strain model (van Westrenen et al., 1999), and the dependence of

the partition coefficient on ionic radius is actually more pronounced in garnet than it is in

diopside. Instead, it appears that there is something about the geometry of the path that an ion

takes when jumping to an adjacent vacancy in garnet that makes the jump frequency insensitive

to the size of the ion. Computer simulations of the type performed by Wright et al. (1995) to

investigate the mechanism of oxygen diffusion in garnet may help to shed light on this issue. A

computational investigation of the migration pathway and migration energy for cations of

various sizes should lend insight into underlying reasons for the lack of a perceivable

relationship between diffusivity and cation radii.

There does appear to be a decrease in diffusivity with increasing ionic charge in garnet.

Figure 5 shows our data for rare earth element diffusion along with two different data sets for

divalent cation diffusion collected under similar P-T conditions (Chakraborty and Ganguly,

1992; Freer and Edwards, 1999). Divalent cation diffusion rates are more than two orders of

magnitude faster than trivalent REE diffusion rates at the same pressure and temperature. This

large difference in diffusivity between REE and divalent cations has important implications for

the interpretation of thermal histories of metamorphic rocks. It suggests that the Sm-Nd

isotopic system in garnet is considerably more resistant to diffusional resetting than major

element cation exchanges used for thermometry (e.g. Fe-Mg exchange between garnet and

biotite). The temperature recorded by the garnet biotite exchange thermometer may be much

lower than the temperature corresponding to the Sm-Nd age.

In Figure 6 rare earth element diffusion rates in pyrope are compared to REE diffusion

rates in diopside. At temperatures of 1300-1400 'C, diffusion rates of Yb, Dy and Sm in

pyrope are similar to Yb and Dy diffusion rates in diopside, and are about an order of



magnitude faster than Nd, Ce and La in diopside. At lower temperatures the Arrhenius curves

diverge. Rare earth element diffusion rates in pyrope, extrapolated to 900 'C, are more than an

order of magnitude faster than Yb, and three orders of magnitude faster than Nd, in diopside.

Closure temperatures for the REE in garnet are significantly lower than in diopside (Fig. 7).

For spherical crystals 1 mm in diameter cooling at 1 to 100 'C My-], the closure temperature for

Nd in pyrope is in the range 765-920 'C, and for diopside is about 200 'C higher. The closure

temperatures for Nd in garnet that we have estimated here based on our experimental data are

similar to the empirical estimate of Jagoutz (1988) for slowly cooled eclogite xenoliths from

Tanzania (-850 'C), and higher than the estimate of Mezger et al. (1992) for amphibolites and

granulites (-600 'C).

The experimental data presented in this chapter and in Chapter 1 indicate that at

temperatures below -1400 0C, clinopyroxene will limit the diffusive mass transfer of REE in

rocks that contain both garnet and clinopyroxene. This is consistent with geochemical

observations in granulites from the Bergen Arcs in western Norway (Burton et al., 1995), where

garnet adjacent to clinopyroxene preserves significantly older Sm/Nd ages than garnet adjacent

to any other mineral. Major element zoning profiles preserved in eclogite xenoliths where

garnet has exsolved from clinopyroxene are also consistent with the experimental finding that

diffusion rates in clinopyroxene are more sluggish than in garnet. Eclogites from the Roberts

Victor kimberlite (Sautter and Harte, 1990) preserve compositional gradients in clinopyroxene

that are much steeper than in adjacent garnet lamellae.

Observations in some peridotite xenoliths appear to suggest that clinopyroxene

equilibrates more rapidly than co-existing garnet. While garnet crystals in peridotite xenoliths

commonly exhibit zoning in major and trace elements, chemical zoning is usually absent in

high-Ca pyroxene crystals from the same rocks (e.g. Griffin et al., 1989; Smith et al., 1991;

Smith and Boyd, 1992). There are at least two possible interpretations for this apparently

contradictory observation. One is that diffusion profiles actually do exist in the clinopyroxene,

but that their length is too short to be detected. A second possibility is that clinopyroxene



crystals in these rocks are not primary, but have precipitated from a silicate melt or undergone

recrystallization in the presence of a fluid (e.g. Shimizu, 1999). All of the peridotite samples in

which garnet zoning has been observed, in the absence of any detectable chemical zoning in co-

existing pyroxene, preserve clear evidence for interaction with metasomatic fluids.

Clinopyroxene may react with the fluid by a dissolution/precipitation process, while interaction

between garnet and fluid may take place primarily via solid-state diffusion. Another possibility

is that the garnet zoning profiles are strictly growth features, and do not represent diffusion at

all.

In any case, the body of experimental data on cation diffusion in clinopyroxene and

garnet clearly shows that clinopyroxene has the more sluggish diffusion kinetics at low

temperatures. This experimental constraint in itself provides an important bound on the

interpretation of data from natural samples. Quantitative constraints on the time-scales of

cooling and metasomatism in the upper mantle may be obtained by applying the rare earth

element diffusion data presented here to garnet zoning profiles in peridotite xenoliths.



REFERENCES

Bass J. D. (1995) Elasticity of minerals, glasses, and melts. In Ahrens, T. J., ed., Mineral
Physics and Crystallography: A Handbook of Physical Constants, 45-63. American
Geophysical Union, Washington, DC.

Beattie P. (1993) Uranium-thorium disequilibria and partitioning on melting of garnet
peridotite. Nature 363, 63-65.

Blundy J. and Wood B. (1994) Prediction of crystal-melt partition coefficients from elastic
moduli. Nature 372,452-454.

Burton K. W., Kohn M. J., Cohen A. S. and O'Nions R. K. (1995) The relative diffusion of
Pb, Nd, Sr and 0 in garnet. Earth Planet. Sci. Lett. 133, 199-211.

Chakraborty S. and Ganguly J. (1992) Cation diffusion in aluminosilicate garnets: experimental
determination in spessartine-almandine diffusion couples, evaluation of effective binary
diffusion coefficients, and applications. Contrib. Miineral. Petrol. 111, 74-86.

Chakraborty S. and Rubie D. C. (1996) Mg tracer diffusion in aluminosilicate garnets at 750-
850 C, 1 atm and 1300 C, 8.5 GPa. Contrib. Mineral. Petrol. 122, 406-414.

Cherniak D. J. (1998) Rare earth element and gallium diffusion in yttrium aluminum garnet.
Phys. Chem. Minerals 26, 156-163.

Coghlan R. A. N. (1990) Studies of diffusional transport: grain boundary transport of oxygen
in feldspars, strontium and the REE's in garnet, and thermal histories of granitic intrusions in
south-central Maine using oxygen isotopes. Ph.D. thesis, Brown University, Providence, Rhode
Island.

Dodson, M. H. (1973) Closure temperature in cooling geochronological and petrological
systems. Contrib. Mineral. Petrol. 40, 259-274.

Freer R. and Edwards A. (1999) An experimental study of Ca-(Fe,Mg) interdiffusion in silicate
garnets. Contrib. Mineral. Petrol. 134, 370-379.

Frey F. A., Green D. H. and Roy S. D. (1978) Integrated models of basalt petrogenesis; a
study of quartz tholeiites to olivine mellilites from Southeastern Australia utilizing geochemical
and experimental petrological data. J. Petrol. 19, 463-513.

Ganguly J. and Tirone M. (1998) Diffusion closure temperature and age of a mineral with
arbitrary extent of diffusion: theoretical formulation and applications. Earth Planet. Sci. Lett.
170, 131-140.

Griffin W. L., Smith D., Boyd F. R., Cousens D. R., Ryan C. G., Sie S. H. and Suter F. (1989)
Trace-element zoning in garnets from sheared mantle xenoliths. Geochim. Cosmochim. Acta
53, 561-567.

Hauri E. H., Wagner T. P. and Grove T. L. (1994) Experimental and natural partitioning of Th,
U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem. Geol.
117, 149-166.

__1--__



Jagoutz E. (1988) Nd and Sr systematics in an eclogite xenolith from Tanzania: Evidence for
frozen mineral equilibria in continental lithosphere. Geochim. Cosmochim. Acta 52, 1285-1293.

LaTourrette T. Z., Kennedy A. K. and Wasserburg G. J., (1993) Thorium-uranium
fractionation by garnet: Evidence for a deep source and rapid rise of oceanic basalts. Science
261, 739-742.

Mezger K., Essene E. J. and Halliday A. N. (1992) Closure temperatures of the Sm-Nd system
in metamorphic garnets. Earth Planet. Sci. Lett. 113, 397-409.

Salters V. J. M. and Hart S. R. (1989) The hafnium paradox and the role of garnet in the source
of mid-ocean-ridge basalts. Nature 343, 420-422.

Sautter V. and Harte B. (1990) Diffusion gradients in an eclogite xenolith from the Roberts
Victor kimberlite pipe: (2) kinetics and implications for petrogenesis. Contrib. Mineral. Petrol.
105, 637-649.

Shannon R. D. (1976) Revised effective ionic radii and systematic studies of interatomic
distances in halides and chalcogenides. Acta Crystall. A 32, 751-767.

Shimizu N. (1999) Young geochemical features in cratonic peridotites from Southern Africa
and Siberia. In Fei Y., Bertka C. M. and Mysen B. 0., eds., Mantle Petrology: Field
Observations and High Pressure Experimentation. The Geochemical Society Spec. Publ. 6,
47-55.

Shimizu N. and Arculus R. J. (1975) Rare earth element concentrations in a suite of basanitoids
and alkali olivine basalts from Grenada, Lesser Antilles. Contrib. Mineral. Petrol. 50, 231-240.

Smith D. and Boyd F. R. (1992) Compositional zonation in garnets in peridotite xenoliths.
Contrib. Mineral. Petrol. 112, 134-147.

Smith D., Griffin W. L., Ryan C. G. and Sie S. H. (1991) Trace-element zonation in garnets
from The Thumb: heating and melt infiltration below the Colorado Plateau. Contrib. Mineral.
Petrol. 107, 60-79.

Smyth J. R. and Bish D. L. (1988) Crystal Structures and Cation Sites of the Rock Forming
Minerals. Allen & Unwin, Boston.

Van Orman J. A., Grove T. L. and Shimizu N. (1998) Uranium and thorium diffusion in
diopside. Earth Planet. Sci. Lett. 160, 505-519.

Van Westrenen W., Blundy J. D. and Wood B. J. (1999) Crystal-chemical controls on trace
element partitioning between garnet and anhydrous silicate melt. Am. Min. 84, 838-847.

Wang L., Zhang Y. and Essene E. J. (1996) Diffusion of the hydrous component in pyrope.
Am. Mineral. 81, 706-718.

Wright K., Freer R. and Catlow C. R. A. (1995) Oxygen diffusion in grossular and some
geological implications. Am. Mineral. 80, 1020-1025.



Table 1. Summary of run conditions and diffusion data for Sm, Dy and Yb in pyrope at 2.8 GPa.

Run # Capsule T duration Dsm D Dy
(0C) (hr) (x 1021 m2/s) (x 1 021m 2/s) (x 1 027 m2/s)

C229 Graphite 1450 4.0 370 ± 109 433 ± 128 434 ± 128
B619 Graphite 1400 24.0 315 ± 137 484 ± 210 485 ± 210
B738 Vitreous C 1400 2.6 332 ± 98 454 ± 134 599 ± 171
D30 Graphite 1350 20.2 171 ± 50 144 ± 43 140 ± 42
C223 Graphite 1300 90.0 124 ± 75 126 ± 67 155 ± 103
B740 Vitreous C 1200 40.3 12.7 ± 3.8 17.2 ± 5.1 12.0± 3.5
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Table 2. Arrhenius parameters (D = Doe-HIRT) for diffusion
in pyrope at 2.8 GPa.

Element Jog20 g mIs H (kJ/mol)

Yb -7.74 ± 0.97 343 ± 30
Dy -9.09 ± 0.97 300 ± 30
Sm -9.05 ± 0.97 304 ± 30



FIGURE CAPTIONS

Figure 1. Typical diffusion profiles (a) and their error function inversions (b). Experiment

C229-1450 'C, 4 hours.

Figure 2. Time series at 1400 "C. Diffusion coefficients for Yb, Dy and Sm are independent

of the anneal duration, consistent with transport by lattice diffusion.

Figure 3. Arrhenius plot showing Yb, Dy and Sm diffusion coefficients from this study versus

T'. Values of Do and H are given in Table 2.

Figure 4. Comparison of diffusion data obtained in this study with other published data for

rare earth elements in silicate and aluminate garnets.

Figure 5. Arrhenius plot comparing REE diffusion data obtained in this study with diffusion

data for divalent cations obtained under similar conditions. All data are corrected to 2.8 GPa

using the expressions given in the data sources-Chakraborty and Ganguly, 1992; Freer and

Edwards, 1999.

Figure 6. Comparison of REE diffusion rates in pyrope (this study; solid lines) and diopside

(Chapter 1; dashed lines). Diopside data are corrected to 2.8 GPa.

Figure 7. Closure temperatures for Nd in pyrope and diopside, calculated using the Dodson

equation for spherical grains (Dodson, 1973). Dashed lines-diopside; solid lines-pyrope.

Numbers on curves indicate the grain diameter in millimeters.
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CHAPTER 3.

A MODEL FOR DIFFUSION-CONTROLLED CHEMICAL EXCHANGE DURING
MANTLE MELTING, WITH IMPLICATIONS FOR RARE EARTH ELEMENT

FRACTIONATION

ABSTRA CT

A numerical model is developed to describe diffusion-controlled exchange of trace

elements between solid and melt during dynamic partial melting. The model differs from

previous disequilibrium melting models by treating the solid as a polyphase aggregate and

accounting for mass transfer between the melt and each solid phase. Based on diffusion data

for clinopyroxene and garnet presented in Chapters 1 and 2, the model is used to assess rare

earth element fractionation during adiabatic decompression melting in Earth's upper mantle.

For conditions typical of near-fractional melting beneath slow spreading centers (melting rate

~ 5 x 10- yr'), diffusion is found to significantly affect REE fractionation if the initial radius of

clinopyroxene grains is -1 mm or greater. The effect of diffusion is to reduce the relative

fractionation of light and heavy REE; this effect becomes more pronounced with increased

melting rate, increased grain size, and increased efficiency of melt segregation. Comparison of

the model predictions with REE data from abyssal peridotites dredged on the America-Antarctic

and Southwest Indian ridge systems shows that the residual porosity beneath these ridges must

be less than -0.03 and that the effective grain radius must be less than -3 mm.



INTRODUCTION

The solid and liquid products of partial melting in Earth's upper mantle preserve

information on the chemical composition of the mantle and on the dynamics of the melting

process itself. To interpret the chemical information that is recorded in igneous rocks it is

necessary to understand how elements are fractionated during the production and segregation of

melt. The partial melting process in the upper mantle is thought to be a dynamic one in which

melt is extracted from the solid matrix at small melt fractions (e.g. McKenzie, 1985; Johnson

and Dick, 1990). In this situation it is important to consider the possibility of chemical

disequilibrium between the melt and the residual solid, because the time available for reaction

between them is limited.

Several models have been developed recently to account for the effects of chemical

disequilibrium during partial melting and melt transport (Navon and Stolper, 1987; Qin, 1992;

Spiegelman and Kenyon, 1992; Hart, 1993; Iwamori, 1993a,b; Hauri, 1997; Korenaga and

Kelemen, 1998; Van Orman and Grove, 1998). A limitation of each of these models is that they

have treated the solid as a single phase. Many elements in upper mantle rocks are distributed in

significant proportions among two or more solid phases, and to provide a complete description

of the chemical evolution of the system during partial melting it is necessary to consider

chemical exchanges among all phases in the system. The model developed in this chapter

differs from previous disequilibrium melting models by treating the solid as a polyphase

aggregate, and by accounting explicitly for mass transfer between the melt and each solid phase.

The rate of chemical exchange is controlled by diffusion in the solid phases, each of which has

different diffusion and partitioning properties. Based on the diffusion data presented in

Chapters 1 and 2, and published data on the equilibrium partitioning of elements between

minerals and basaltic melts, the model is used to predict the behavior of rare earth elements

(REE) during adiabatic decompression melting in the upper mantle. We demonstrate the

conditions under which diffusion may play a significant role in fractionating the REE, and show



how the melting rate, grain size, and efficiency of melt extraction influence REE abundance

patterns in the solid and liquid products of partial melting.

MODEL FORMULATION

The model presented here simulates diffusion-controlled redistribution of trace elements

during dynamic partial melting of a polyphase solid. The system under consideration is a

representative volume of a mantle rock comprising several solid phases. Solid grains are

approximated as spheres, and each solid phase is considered to have a uniform grain size. The

purpose of the model is to simulate the chemical evolution of this system as it ascends at

constant velocity and undergoes partial melting due to adiabatic decompression. Partial melting

begins when the system encounters the solidus at a pressure P0 and temperature To, and ceases

at P and T, The first increment of melt is assumed to be a complete disequilibrium (modal)

melt whose composition simply reflects the weighted average of the compositions of solid

phases that have been dissolved. This disequilibrium melt is assumed to equilibrate

instantaneously with the contact surfaces of the solid grains, inducing chemical gradients within

the grains that are relaxed with time by solid-state diffusion. The extent to which the solid

grains and melt are able to re-equilibrate as partial melting proceeds depends on the ratio of the

diffusive relaxation time to the time required for production and extraction of melt from the

solid matrix.

The model traces the chemical evolution of several reservoirs: each solid phase that

hosts the trace elements of interest; the residual melt that remains within the solid matrix; and

the segregated melt formed by continuous extraction of melt from the matrix. Melt is assumed

to remain with the solid until a critical melt fraction is reached and thereafter is extracted so that

the porosity remains constant. The extracted melt is pooled in a chemically isolated reservoir

and undergoes no further chemical interaction with the solid.

The concentration of a chemical species i within a spherical grain of solid phase j is

given by the following equation:



dC .'d2Ci 2 dCi
___= D i ±-+ i. (1)

dt ' dr,2

This is an expression of Fick's second law in spherical coordinates, where C) = C(r,t) is the

concentration at a distance r from the center of the grain. A list of model parameters and their

dimensions is given in Table 1. The diffusion coefficient D. is considered to have an

Arrhenian dependence on temperature and pressure,

-(E j + P V
Dj' = D exp .T (2)

The boundary conditions for Eq. 1 are based on the following assumptions: (1) Before melting

begins, there is no compositional zoning within the solid grains and (2) chemical species are

distributed among the solid phases in equilibrium proportions; (3) during melting, chemical

equilibrium between the residual melt and the surfaces of solid grains is maintained at all times;

(4) there is no flux across the center of the solid grains (i.e. compositional zoning within each

grain during melting is symmetrical). These boundary conditions are expressed by the

following equations:

=0 and C = Co (3)
d t=o

C C*2,o C _( _ ... (4)K1  KJ2  K'

CI r=R = KjC', (5)

dC'
' -0 (6)

dr

where K is the equilibrium mineral/melt partition coefficient and C , is the concentration of

chemical species i in the residual melt.

The mass balance equation for a chemical species in the residual melt can be written:



d(VmC,) (\2 DC

dt = Nr 4.(Rj) D + vma C -
A r,=R, i r,=R,

=- N jR7 r 2 Cm

Jt j

where V is the volume of residual melt, R is the time-dependent radius of a solid grain of

phase j, N is the number of grains of phase j in the system, Vm and v, are the volumetric melting

and melt extraction rates, respectively, and a is the stoichiometric coefficient of phasej in the

melting reaction. In writing Eqs. (7) and (8), density differences among the melt and solid

phases have been ignored. The terms on the right-hand side of Eq. 7 represent, in order, the

total diffusive current of a chemical species across the interface between the melt and each solid

phase, mass transfer from solid to melt due to phase change (dissolution), and the removal of a

chemical species from the residual melt by melt extraction. In Eq. 8 the diffusion and

dissolution terms are combined within the integral. This equation, instead of Eq. 7, is used in

the calculations because the numerical evaluation of the integral is more accurate than the

evaluation of dC/drj at rj = R, (Navon and Stolper, 1987; Korenaga and Kelemen, 1998).

Mass balance in the pooled extracted melt is given by the equation:

dVmC'
dt M VCr, (9)

where C' is the concentration of element i in the extracted melt and VM is the volume of melt

extracted. Both the residual and pooled extracted melts are assumed to be compositionally

homogeneous at all times. This assumption is justified for the residual melt because chemical

diffusion rates in silicate melts are much faster than in silicate minerals and because the length

scale over which diffusion must take place to homogenize the melt is relatively small.

Homogenization of the segregated melt is not assured, as it will depend on the geometry and

size of the reservoir and on the vigor of convective mixing; but the assumption of homogeneity
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for this reservoir is not critical to the model as it has no bearing on the chemical evolution of the

solid phases or the residual melt.

The melting rate, in m3/s, is given by:

dF

om = VW d(10)dz

where V is the initial solid volume, defined as Nj 4 / 3r(RjO) , W is the upwelling velocity,

and (dF/dz) is the melt productivity, or the fraction of melt produced per meter of adiabatic

ascent. In most calculations v,, was taken to be constant, but for comparison we also examined

a case in which melt productivity (and consequently v,) increase during melting, as proposed

by Asimow et al. (1997). With progressive melting, the volume of each solid phase changes

d V.
according to i = -ajo, v where a is the stoichiometric coefficient of phase j in the melting

d t

reaction. Solid grains are assumed to dissolve from their outer rims, preserving their spherical

symmetry at all times, and the number of grains within the system is held constant (i.e. there is

no formation of new grains, and no coalescence of grains). Given these assumptions, the radius

of each solid grain changes with time according to:

1/3

R = R 1 -

1a1t

for constant vm.

The rate of extraction of melt from the solid matrix, , is initially zero and when the

melt fraction exceeds the critical porosity # is given by:

o, = V,. (12)

Thus the melt segregation rate is treated as a simple step function in which melt remains within

the solid matrix until a critical porosity is reached and thereafter is removed at the rate described

by Eq. 12. Although this simple functional form certainly does not represent the actual melt
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segregation process, it encompasses the end-members of fractional (0 = 0) and batch ( = F)

melting and we believe that it captures the essence of dynamic partial melting in the upper

mantle.

In general it is expected that there will be a relative flow between the residual melt and its

enclosing solid matrix. However, stable elements are sensitive to differential flow between solid

and melt only in two- or three-dimensional systems where the melt flow field diverges from that

of the solid (e.g. Spiegelman, 1996). In situations where the melt and solid flow in one

dimension the compositions of the solid and melt are essentially independent of their relative

velocities (Ribe, 1985). Here we restrict ourselves to 1-D systems, such as the axial part of a

mid-ocean ridge or a plume, and assume that the residual melt and the solid travel upward at the

same rate. Relative flow between residual melt and solid does have an influence on the time

available for chemical reaction between the two reservoirs, and therefore influences the approach

of the system to equilibrium. The assumption made here that residual melt and solid travel at

the same velocity maximizes the reaction time, for a given solid upwelling rate. Equilibration is

enhanced relative to any case in which there is a relative flow between residual melt and solid.

Equations 1-12 are solved numerically using a fully implicit Crank-Nicolson finite

difference algorithm. At each time step, the concentration of an element in the residual melt and

the concentration distribution within each solid grain are calculated simultaneously. For each

solid grain a fixed number of radial grid points is maintained throughout the calculation, and the

moving boundary is accommodated by re-scaling the grid to the new grain radius R. at each time

step. The numerical algorithm is unconditionally stable, and at the limits of very large and very

small Dj it successfully recovers the analytical solutions for complete equilibrium and complete

disequilibrium melting, respectively. The accuracy of the calculations was assessed further by

checking the mass balance of an element among the solid, residual melt, and segregated melt

reservoirs at each time step, and by comparing the results of calculations using different grid

spacings. Mass balance is achieved within less than 1.3% relative for the grid used in most of



102

the calculations (40 radial steps for each solid grain and 320 time steps). Using a finer grid

changes the calculated compositions of residual melt, pooled melt, and solid phases by less than

a few percent.

Assumptions

Several assumptions have been made in constructing this model, the most important of

which concern the chemical exchange process, the mechanical integrity of the solid grains, and

the boundary condition at the interface between solid grains and residual melt. Chemical

exchange between solid and melt in this model is considered to result only from diffusion and

from the incremental dissolution of mineral grains as partial melting proceeds. Solid grains are

assumed to maintain their mechanical integrity at all times, with no internal deformation and no

motion of grain boundaries other than that due to continuous dissolution into the melt.

Deformation must take place as the mantle ascends, and recrystallization processes

associated with this deformation may significantly enhance the rate of chemical exchange.

Clinopyroxene and garnet, the principal solid hosts of incompatible elements in the upper

mantle, are considerably more resistant to high-temperature plastic deformation than the most

abundant minerals, olivine and orthopyroxene (Karato and Wu, 1993; Karato et al., 1995; Kirby

and Kronenberg, 1984; Mackwell, 1991). Most of the deformation associated with mantle

upwelling may thus be accommodated by orthopyroxene and olivine, with garnet and cpx

behaving as essentially rigid grains within a viscous olivine/opx matrix. Also, because of their

relatively low abundances in peridotites, garnet and clinopyroxene are not susceptible to

recrystallization processes that involve grain boundary migration. Most garnet and cpx grains

are surrounded by olivine and orthopyroxene, and few cpx-cpx and garnet-garnet grain

boundaries exist. These considerations suggest that deformation and recrystallization may not

be important for clinopyroxene and garnet during mantle upwelling, and that our assumption of

rigid solid grains may be a reasonable approximation. In any case the present model considers

an end-member situation, and comparison of the model predictions with the compositions of
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natural basalts, melt inclusions, and residual peridotites will help to determine the extent to

which non-diffusive processes may enhance the redistribution of trace elements during mantle

melting.

Another important assumption of the model is that the outer boundary of each solid

grain is at all points in equilibrium with the residual melt. Because silicate melts probably do

not wet grain boundaries in mantle rocks, residing instead along three-grain junctions (e.g.

Kohlstedt, 1992), satisfying this boundary condition requires rapid grain boundary diffusion to

allow all parts of the grain boundary to maintain communication with the residual melt. In the

absence of grain boundary diffusion, equilibrium would be maintained only over the small

portion of the surface where the grain and the melt were in physical contact, and the rate of

diffusive exchange between solid and melt would be significantly reduced. The available data

for polycrystalline olivine and enstatite (Farver et al., 1994; Yund, 1997) suggest that grain

boundary diffusion rates are on the order of 1012 m2/s at temperatures close to the solidus of

peridotite. Given this diffusivity, the time required for transport along a grain boundary that

connects melt tubules separated by one centimeter is on the order of a few years. This time is

short compared to typical timescales for melting and melt extraction in the mantle, and thus the

assumption that solid grains are in equilibrium with residual melt over their entire boundary

appears to be justified.

RARE EARTH ELEMENT FRACTIONATION DURING MANTLE MELTING

The rare earth elements are among the most widely used tracers of partial melting

processes in the upper mantle. In this section we use the numerical model developed above,

along with the diffusion results for clinopyroxene and garnet presented in Chapters 1 and 2, to

examine the behavior of the REE during adiabatic decompression melting. Our purpose is to

demonstrate the conditions under which disequilibrium fractionation of rare earth elements may

take place and to show how the melting rate, solid grain size, and efficiency of melt extraction

may influence REE abundance patterns in the solid and liquid products of partial melting.
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Melting in the spinel stability field

We first consider models in which melting begins in the spinel stability field. High-Ca

pyroxene is the primary host of rare earth elements in spinel lherzolite, and in the calculations

discussed below this phase is assumed to contain all of the rare earth elements in the solid

matrix, with all other solid phases having REE partition coefficients equal to zero. We have also

performed calculations in which orthopyroxene and clinopyroxene are both allowed to

exchange REE with the melt, and these results are not significantly different from those in

which the orthopyroxene partition coefficients are equal to zero, regardless of the diffusion

properties assumed for opx. Orthopyroxene contains a small proportion of the REE in upper

mantle rocks and has only a minor influence on their chemical evolution during partial melting.

The partition coefficients and diffusion parameters used in making the calculations are

listed in Table 2. The proportions of solid phases in the system initially, and the proportions in

which the solid phases dissolve into the melt (melt reaction coefficients), are given in Table 3.

We assume that the partition coefficients and melt reaction coefficient for each solid phase are

constant during melting. Although cpx/melt partition coefficients are known to vary with

pressure, temperature and composition (e.g. Wood and Blundy, 1997; Blundy et al., 1998;

Salters and Longhi, 1999), the relative values of the partition coefficients among the REE remain

nearly constant. Our primary interest is in examining the influence of diffusion on fractionation

of the rare earth elements, and for this purpose the use of constant cpx/melt partition

coefficients is an adequate approximation.

Although the melting reaction may change as melting progresses, clinopyroxene always

dominates the melt mode (Kinzler and Grove, 1992a; Baker and Stolper, 1994; Kinzler, 1997)

and while cpx remains in the residue its reaction coefficient exhibits relatively little variation.

The primary effect of changes in the melting reaction is to change the relative proportions of

orthopyroxene and olivine dissolving into or crystallizing from the melt with decreasing

pressure (e.g. Kinzler, 1997), and this has no bearing on the present results since opx and

olivine are considered to be barren of rare earth elements.
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Figures 1 and 2 show the results of a series of calculations that simulate diffusive REE

exchange during adiabatic decompression melting within a one-dimensional mantle column. In

these calculations the solidus is intersected at a pressure of 2.0 GPa and temperature of 1400

0C, and the temperature decreases linearly at 100 "C GPa' until melting ceases at 0.4 GPa and

1240 "C. The diffusion coefficient for each element is dependent on temperature and pressure

(Table 2) and decreases by approximately an order of magnitude from the bottom of the melting

column to the top. In these calculations the melt productivity is assumed to have a constant

value of 0.1 GPa', leading to a total melting fraction of 16% at the top of the column. The

melting rate is directly proportional to the upwelling rate W. We have chosen to present the

results in terms of a common initial grain radius of 2 mm, and to vary the degree of

disequilibrium by changing the upwelling rate. There is a direct correspondence between the

upwelling rate (which controls the time scale of the calculation) and the grain size squared

(which controls the length scale of diffusion), and this relation can be used to extend the results

presented in the figures below to other initial grain radii. Increasing the upwelling rate by a

factor of four, for example, is exactly equivalent to increasing the grain size by a factor of two.

Figure 1 shows La and Yb diffusion profiles developed within a 2 mm radius

clinopyroxene grain with progressive melting. Lanthanum is the most incompatible of the rare

earth elements and has the most sluggish diffusion kinetics; Yb is moderately incompatible and

diffuses -30 times more rapidly than La. At upwelling rates of 1 cm/yr (representative of

passive upwelling beneath a slow spreading ridge) and 10 cm/yr (fast spreading ridge) Yb

concentration profiles are nearly flat, indicating that Yb is close to equilibrium with the residual

melt over the entire grain. Lanthanum is moderately zoned even at an upwelling rate of 1 cm/yr,

and at an upwelling rate of 10 cm/yr is very strongly enriched in the core of the grain relative to

the rim (which is in equilibrium with the residual melt). These calculations show that under

conditions typical of melting beneath mid-ocean ridges, La, a representative light rare earth

element, may be extracted from the solid much less efficiently than under conditions of
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complete grain-scale equilibrium, while Yb (and other heavy rare earth elements) diffuse rapidly

enough to be near equilibrium with the melt under the same conditions.

Figure 2 shows how the contrasting diffusivities of the light and heavy REE influence

the rare earth element compositions of solid and liquid products of partial melting. Shown in

figures 2a and b, as a function of upwelling rate, are the compositions of the residual solid and

aggregated melt, respectively, after 16% near-fractional melting (with 1% residual porosity).

Under conditions of local equilibrium, the removal of light rare earth elements from the residual

solid is very efficient; after 16% melting, La is depleted by a factor of nearly 10' compared to

the initial solid (Fig. 2a). Such strong depletions in light REE are unlikely to be realized during

partial melting in the upper mantle if diffusion controls the rate of chemical exchange. Even at

an upwelling rate as slow as 0.3 cm yr~', corresponding to a melting rate of 10-8 yr-', the

predicted La concentration in the residual solid is nearly an order of magnitude higher than at

equilibrium, and for an upwelling rate of 1 cm yr-' the La concentration is two orders of

magnitude higher than at equilibrium. Heavier rare earth elements are less severely affected.

With increasing atomic number the difference between the equilibrium concentration and the

concentration predicted by the disequilibrium model diminishes, and Yb concentrations do not

increase significantly unless the upwelling rate is greater than about 10 cm yr-'. At upwelling

rates greater than 100 cm yr-' the REE composition of the residue approaches that of a solid

produced by the extraction of a complete disequilibrium ("modal") melt.

The aggregated melt is less sensitive than the residual solid to small variations in the

effective partitioning of highly incompatible elements, and does not show the effects of

disequilibrium at upwelling rates slower than -3 cm yr~'(Fig. 2b). As the upwelling rate

increases, rare earth element concentrations in the aggregated melt decrease, but there is almost

no change in the slope of the REE abundance pattern. This is a consequence of the increase in

diffusivity across the lanthanide series, combined with the insensitivity of large degree

aggregated melts to small variations in the effective partitioning of highly incompatible

elements. The concentration of a highly incompatible element in the aggregated melt changes
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significantly only when its effective partition coefficient exceeds the melting fraction (in this

case 0.16). For the light REE such a change in effective partitioning requires a relatively large

degree of local disequilibrium. The moderately incompatible heavy rare earth elements are

sensitive to small variations in effective partitioning, and begin to show the effects of

disequilibrium partitioning when the deviation from local equilibrium is relatively small. If

diffusion rates among the REE were uniform, then with increasing upwelling rate the REE

patterns in the aggregated melt would decrease in slope, simply reflecting the difference in

behavior of highly and moderately incompatible elements. The increase in diffusivity across the

lanthanide series is sufficient to offset this effect and keep the slope of the REE pattern nearly

constant. An unfortunate consequence of this is that the shape of the REE pattern produced by

disequilibrium melting is very similar to that produced by melting under conditions of local

equilibrium. A disequilibrium exchange process will thus be difficult to detect in the aggregated

melt. The REE composition of a disequilibrium aggregated melt is similar to that of a higher-

degree equilibrium melt, or an equilibrium melt of a more depleted source.

The efficiency of melt extraction, represented by the parameter #, has a strong influence

on the chemical evolution of the residual solid under conditions of local equilibrium, but its

importance diminishes as the deviation from equilibrium increases (Fig. 3). Incompatible

elements are removed from the solid most readily if solid grains and melt are in equilibrium, and

the melt is removed instantaneously as it is produced (equilibrium fractional melting).

Depletion of the solid is less efficient if some or all of the melt is retained within the solid

matrix, or if the magnitude of diffusional exchange is decreased-inefficient melt removal and

chemical disequilibrium both impede the extraction of incompatible elements from the solid.

With increasing degree of disequilibrium, the difference between instantaneous melt removal

(fractional melting) and no melt removal (batch melting) on the composition of the residual

solid becomes less pronounced (Fig. 3). In the end-member case of complete disequilibrium

the chemical evolution of the residual solid is the same whether melt is instantaneously extracted

or not removed at all.
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In the calculations discussed above the melt productivity, (f/dP), is assumed to be

constant. As discussed by Asimow et al. (1995) and Asimow et al. (1997) the melt productivity

is likely to vary significantly during adiabatic decompression melting. For near-fractional

melting beginning within the spinel stability field, the productivity is predicted to remain nearly

constant up to 1.0 GPa (-30 km depth) and to increase sharply as the mantle ascends to lower

pressures (Asimow et al., 1997). Such a variation in productivity will have a significant

influence on diffusion-controlled chemical exchange; the approach to equilibrium will be

enhanced early in the melting process when the melting rate is slow, but will diminish as the

melting rate increases. To examine the influence of variable melt productivity on the

distribution of the REE we have performed a set of calculations in which the productivity is held

constant at 0.02 GPa' between 2.0 and 1.0 GPa, and then increases linearly at 0.717 GPa2

from 1.0 to 0.4 GPa. The total degree of melting at the top of the melting column is 16%, as in

the calculations above. Figure 4 shows how the evolution of the residual solid differs from the

case in which the melt productivity is constant. During the early stages of melting the

productivity is low and the REE are removed efficiently from the solid, but as melting

progresses the degree of disequilibrium increases sharply and removal of REE from the solid

becomes increasingly difficult. At shallow depths, where most of the melt is produced, melting

rates are high and REE diffusivities are low; both of these factors act to limit chemical exchange

between solid phases and melt. At low extents of melting (-2% or less) the solid is depleted

more efficiently under the increasing productivity function than at constant productivity, but at

higher degrees of melting the reverse is true. In the calculations shown in Fig. 4, the crossover

in relative depletion between the two productivity functions occurs at less than 4% melting.

Although the results shown in Fig. 4 are for the specific case of fractional melting of a solid

with initial grain radius of 2 mm, at an upwelling rate of 1 mm yri', the general aspects of the

chemical evolution are representative. We have examined a large region of parameter space and
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have found no conditions under which increasing productivity depletes the solid more

effectively than constant productivity, at degrees of melting greater than -0.1.

Melting in the garnet stability field

We now extend the model to situations in which melting begins in the garnet stability

field at depths greater than -75 km and continues into the spinel stability field at shallower

depths. Before melting begins the rare earth elements are partitioned between garnet and

clinopyroxene in equilibrium proportions, and after the solidus is crossed both solid phases

exchange REE with the melt. When the upwelling mantle encounters the garnet-spinel facies

boundary, here assumed to be located at a pressure of 2.5 GPa, garnet and olivine react to

produce pyroxenes and spinel until garnet is exhausted from the residue. Clinopyroxene is

likely to be a reaction product during the transformation to the spinel-facies assemblage, but in

most bulk compositions the amount of cpx produced will be small. We ignore any new

clinopyroxene that may be produced during the reaction to the spinel facies and consider the

number of cpx grains to remain constant. All of the REE that are held within garnet when the

transformation takes place are assumed to be released instantly into the residual melt.

Clinopyroxene grains then attempt to re-equilibrate with this new residual melt composition via

solid-state diffusion. We do not consider here the possibility that REE in the garnet are

inherited by newly formed orthopyroxene grains during the garnet-spinel transformation; for a

discussion of this possibility see Koga et al. (1999). Melt productivity is assumed here to

remain constant across the gamet-spinel transition, although thermodynamic considerations

suggest that it may drop significantly (Asimow et al., 1995).

Figures 5-7 illustrate the chemical evolution of a system undergoing near-fractional

melting beginning in the garnet stability field at 2.8 GPa and 1480 C. In this example,

3% melting takes place in the presence of garnet, and an additional 21% melting takes place in

the spinel stability field. The initial grain radius is 2 mm for both clinopyroxene and garnet, and

the upwelling rate is 3 cm yr'. Rare earth element diffusion rates in garnet are similar to heavy
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REE diffusion rates in clinopyroxene under the T-P conditions of interest, and for the grain

size and upwelling rate used in the calculations garnet is near equilibrium with the melt (Fig. 5).

The presence of garnet has a strong influence on the chemical evolution of co-existing

clinopyroxene (Fig. 6). Heavy REE are strongly partitioned into garnet, and while garnet

remains in the residue clinopyroxene exhibits a characteristic "humped" REE pattern with low

relative concentrations of heavy REE (Fig. 6e). When the system crosses the garnet-spinel

boundary the concentrations of heavy REE in the residual melt increase abruptly, but the light

REE (especially La and Ce) show little effect (Fig. 7). Clinopyroxene adjusts to the new

residual melt composition to the extent that diffusion allows, and this is reflected by increased

concentrations of heavy REE shortly after the garnet-spinel boundary is crossed. As melting

continues in the spinel stability field, the high relative concentrations of heavy REE in

clinopyroxene and in the residual melt gradually diminish.

Comparison with abyssal peridotite data

Under most conditions the residual solid is more sensitive than the aggregated melt to

the effects of disequilibrium chemical exchange during partial melting. Here we assess the

melting processes beneath mid-ocean ridges by comparing the predictions of the model with the

rare earth element compositions of abyssal peridotites dredged from the slow-spreading

America-Antarctic and Southwest Indian ridge systems (Johnson et al., 1990; Johnson and

Dick, 1992). These peridotites are thought to be the residues of variable degrees of adiabatic

decompression melting with efficient extraction of melt (Johnson et al., 1990). The chondrite-

normalized Ce/Yb and Nd/Yb ratios of clinopyroxene grains from the abyssal peridotites are

plotted in Figure 8 together with calculated residual bulk compositions for various melting

conditions. Figure 8a shows the predicted Ce/Yb and Nd/Yb under conditions of local

equilibrium for 0-20% melting in the spinel stability field. Some of the data can be explained

by equilibrium melting with residual porosity between 0.003 and 0.03, but many of the data

with low Nd/Yb fall below the melting trends. The concave-downward curvature of the
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clinopyroxene data is not reproduced by any melting model that assumes local equilibrium

between solid and melt.

Figures 8b and c show melting trends for 0-20% disequilibrium fractional melting

beginning in the spinel stability field at 2.4 GPa. The upwelling rate in the calculations is 0.9

cm/yr, representative of half-spreading rates along the America-Antarctic and Southwest Indian

ridges, and the curves represent melting trends for different initial grain radii varying between 0

and 3 mm. The calculations shown in Fig. 8b are for constant melt productivity, and in Fig. 8c

the productivity is assumed to increase linearly between 1.0 and 0.4 GPa. As melting

progresses, the effective compatibility of both Ce and Nd increase due to decreasing

temperature and diffusivity. Ce, the slower diffusing element, is more severely affected, and this

leads to a concave-downward curvature of the melting trend. For large grain sizes (high degrees

of disequilibrium), the Ce/Yb and Nd/Yb ratios actually begin to increase at high melting

extents, leading to a "hook" in the melting trend. This behavior is unique to disequilibrium

melting and results from the large variation in diffusivity among the REE in clinopyroxene.

Figure 8d shows melting trends for fractional disequilibrium melting beginning in the garnet

stability field at 2.8 GPa. The residual solid is more severely depleted in this case, both because

the melting extent is higher and because a larger proportion of the melting takes place at higher

temperatures where the solid is closer to equilibrium with the melt and the REE are removed

more efficiently.

Most of the abyssal peridotite data can be explained by disequilibrium fractional melting

with initial grain radii of 1-3 mm, for constant melt productivity models (Figs. 8b and d), or 0.5-

1 mm, for models with increasing productivity (Fig. 8c). Like the equilibrium models, the

disequilibrium models are unable to explain the clinopyroxene data with low Nd/Yb, but unlike

the equilibrium models they are able to reproduce the concave-downward curvature of the

abyssal peridotite trend. We have not performed a complete search of parameter space, and it is

possible that there are combinations of grain size, residual porosity, productivity function, depth

of solidus intersection, and initial source composition that can account for all of the peridotite
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data. It is also possible that a two-stage process is responsible for the near-vertical part of the

data trend, with near-fractional melting followed by interaction with a Ce-enriched melt or fluid.

If we disregard the near-vertical part of the abyssal peridotite trend and consider only samples

with Nd/Yb greater than -0.1, then the data may be explained either by melting at local

equilibrium (RO <0.5 mm) with 0 between 0.003 and 0.03, or by perfect fractional melting ($=

0) with R0 between 0.5 and 3 mm. The actual condition is probably between these extremes,

with imperfect fractional melting and incomplete local equilibrium. In any case the residual

porosity beneath the ridges must be less than -0.03 in order to fit the data, and the effective

radii of clinopyroxene grains must be less than -3 mm.

Further constraints on the melting processes beneath mid-ocean ridges could be

obtained if there were information on the spatial distribution of trace elements within individual

clinopyroxene grains in abyssal peridotites. At present no such high-resolution spatial

information exists. The presence of diffusional zoning profiles in residual grains would

provide clear evidence of the importance of diffusion-limited exchange, and would allow more

stringent constraints to be placed on the style and rate of melting beneath mid-ocean ridges.
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Table 1. Model parameters.

Variable Description Dimension
Ci' . Concentration of element i within solid phase j kg m-3

C 0  Concentration of element i within solid phase j before melting begins kg m-3

C Concentration of element i within the residual melt kg m-3

C Concentration of element i within the pooled extracted melt kg m-3

D Diffusion coefficient of element i within solid phasej m2 s~
I

D', j Pre-exponential factor for diffusion of element i within solid phase j m2 s-

Activation energy for diffusion of element i within solid phasej J mol-

f Fraction of melting None
F Total fraction of melting at the top of the melting column None
H Height of melting column m
K' Mineral/melt equilibrium partition coefficient for element i None

N. Number of grains of solid phase j None
P Pressure Pa
PO Pressure when melting begins Pa
P Pressure when melting stops Pa

P Pressure of the garnet to spinel facies transition Pa
r Radial coordinate within solid phase j m

9z Gas constant J mol- K-'

Rj Grain radius of solid phase j m
R, Grain radius of solid phase j before melting begins m
t Time s
T Temperature K
TO Temperature when melting begins K

T Temperature when melting stops K
Tt Sp Temperature of the garnet to spinel facies transition K

V Volume of solid before melting begins m3

V Volume of solid phase j m3

V Volume of residual melt m3
VM Volume of pooled extracted melt m3

yf Activation volume for diffusion of element i within solid phase j m3 mol-
W Mantle upwelling rate m s-1

Xi Volume fraction of solid phase j None

XO Volume fraction of solid phase j before melting begins None
z Vertical coordinate m
a Stoichiometric coefficient of solid phase jin melting reaction None
# Critical porosity None
Ve Melt extraction rate m 3 s-

V, Melting rate m 3 s-
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Table 2. Partition coefficients, diffusion parameters, and initial bulk concentration.

Kcp IK0 , I K,, 2 DO, DO, 2E, E,, y y 3 CO
m2/s m2/s kJ/mol kJ/mol m3/mol m3/mol

La 0.054 5e-4 le-3 4.20e-3 2.34e-9 519.3 287.7 le-5 le-5 0.296
Ce 0.086 9e-4 4e-3 2.20e-3 2.34e-9 508.2 287.7 le-5 le-5 0.361
Nd 0.19 9e-3 0.06 5.54e-4 2.34e-9 483.9 287.7 le-5 le-5 0.482
Sm 0.29 0.02 0.5 1.42e-4 2.34e-9 460.1 287.7 le-5 le-5 0.593
Dy 0.44 0.06 2.5 9.97e-6 2.34e-9 413.6 287.7 le-5 le-5 0.770
Er 0.44 0.07 3 2.73e-6 2.34e-9 390.9 287.7 le-5 le-5 0.785
Yb 0.43 0.1 4 8.83e-7 2.34e-9 371.2 287.7 le-5 le-5 0.800

1. Mineral/melt equilibrium partition coefficient. References: Kelemen et al. (1993), Salters and Longhi (1999).
2. Do and E values for cpx are interpolated using the elastic model discussed in Chapter 1.
3. Initial concentrations in the bulk solid. Relative abundances reflect the values estimated by Shimizu (1998)

for depleted MORB mantle.
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Table 3. Phase proportions.
phase 'nta oi

spinel facies g
cpx 0.20
opx 0.24
garnet 0
other 0.56

nitial solid
arnet facies

0.20

0.08
0.72

melt mode
spinel facies

0.80
0.30

0
-0.10

melt mode
garnet facies

0.80

0.30
-0.10

1. Phase proportions for depleted MORB mantle in spinel facies
(Kinzler and Grove, 1992b).

2. Garnet facies melt mode from melting reactions at 3.0 GPa
(Walter, 1998).
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FIGURE CAPTIONS

Figure 1. Model diffusion profiles developed within a 2 mm radius clinopyroxene grain

during progressive melting within the spinel stability field. Melting begins at 2.0 GPa and 1400

"C and ceases at 0.4 GPa and 1240 "C. Each panel shows rim-to-rim diffusion profiles at five

equally spaced melting increments (3.2%, 6.4%, 9.6%, 12.8% and 16%). (a) and (c) show La

and Yb profiles, respectively, for an upwelling rate of 1 cm yr'; (b) and (d) show La and Yb

profiles for an upwelling rate of 10 cm yr'. dF/dP= 0.1 GPa', F = 0.16, $ = 0.01.

Figure 2. Influence of upwelling rate on the rare earth element compositions of the residual

solid (a) and aggregated melt (b) after 16% near-fractional melting in the spinel stability field.

Numbers on curves indicate upwelling rates in cm yr-. Initial grain radius is 2 mm, $ = 0.01.

Figure 3. Influence of residual porosity on the composition of the residual solid after 16%

melting, under the condition of local equilibrium (a) and for various degrees of disequilibrium

(b, c, d). With increasing deviation from equilibrium, the solid residue of fractional melting ($=

0; instantaneous melt extraction) becomes more similar in composition to that produced by

batch melting ($ = F; no melt extraction). The La concentration after 16% batch melting is

higher by a factor of ~108 than for fractional melting, if local equilibrium is achieved; the

difference is less than a factor of two for disequilibrium melting at an upwelling rate of 10

cm/yr (d). Initial grain radius is 2 mm.

Figure 4. Influence of melt productivity (df/dP) on the chemical evolution of the residual

solid. La diffusion profiles in clinopyroxene (a, b) and the integrated REE composition of the

residual solid (c, d) are shown for the increasing productivity and constant productivity

functions illustrated in (e). In the case of increasing productivity, equilibration is favored at low

extents of melting (< 3%) but is hindered at higher melting degrees. The calculations shown are
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for # = 0, Ro = 2 mm, and W = 1 cm yr-', but general aspects of the chemical evolution are

similar for other parameter values.

Figure 5. Chemical evolution of garnet during partial melting in the garnet stability field

between 2.8 and 2.5 GPa. Diffusion profiles for La, Nd, Sm and Yb are shown in (a-d), and

the integrated REE composition of garnet is shown in (e). For the upwelling rate (3 cm yr-'),

initial grain radius (2 mm), and residual porosity (0.01) used in the calculations, garnet is near

equilibrium with the residual melt.

Figure 6. Diffusion profiles (a-d) and REE patterns (e) in clinopyroxene during progressive

melting beginning in the garnet stability field at 2.8 GPa. 3% melting takes place in the

presence of garnet, with an additional 21 % melting in the spinel stability field. Garnet has little

influence on the chemical evolution of La (a) and Nd (b), but exerts a strong control on the

abundances of Sm (c) and Yb (d) in clinopyroxene. Abundances of Sm, Yb, and other middle-

and heavy-REE in cpx increase abruptly at the garnet-spinel transition when all of the REE that

were stored in garnet are released instantly into the residual melt. R0 = 2 mm, W = 3 cm yr-1, 0

= 0.01.

Figure 7. REE compositions of the residual (a) and aggregated melts (b) produced during

partial melting across the garnet-spinel transition, between 2.8 and 0.4 GPa. R0 = 2 mm, W = 3

cm yr~', $= 0.01.

Figure 8. Comparison of model predictions with the observed (Ce/Yb) and (Nd/Yb) variations

in clinopyroxenes from abyssal peridotites (open circles-Johnson et al., 1990; Johnson and

Dick, 1992). Concentration data are normalized to chondritic values, and all calculations

assume an upwelling rate of 0.9 cm yr~'. (a) Local equilibrium melting in spinel stability field

I - . , -- --1-14W '-- -
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- Po = 2.4 GPa; 0 < # < 0.03. (b) Disequilibrium fractional melting in spinel stability field -

PO = 2.4 GPa; (f/dP) constant; 0 < R < 3 mm. (c) Disequilibrium fractional melting in spinel

stability field - PO = 2.4 GPa; (f/dP) increasing; 0 < R0 < 1 mm. (d) Disequilibrium

fractional melting beginning in garnet stability field - PO = 2.8 GPa; (f/dP) constant; 1 < R

< 3 mm.
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Figure 1
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Figure 2a
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Figure 3
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Figure 4
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Figure 5

Diffusion profiles in garnet

2 -1 0
r (mm)

Sm

-1 0

r (mm)

1

0.8

0.6

Nd

b

0.4 -

0.2 -

0.4

0.2

1 2

S-1 0 1nmr (mm)

Yb

-1 0 1 2

r (mm)

REE patterns in garnet

100

10~

10-2

LaCe Nd Sm Dy Er Yb

a

1%

2%

3%

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2
- -C



129

Figure 6
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Figure 7
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Figure 8
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CHAPTER 4.

URANIUM AND THORIUM DIFFUSION IN DIOPSIDE: IMPLICATIONS FOR U-
SERIES DISEQUILIBRIUM IN MORB

ABSTRACT

This paper presents new experimental data on the tracer diffusion rates of U and Th in

diopside at 1 atm and 1150-1300 "C. Diffusion couples were prepared by depositing a thin

layer of U-Th oxide onto the polished surface of a natural diopside single crystal, and diffusion

profiles were measured by ion microprobe depth profiling. For diffusion parallel to [001] the

following Arrhenius relations were obtained:

logo Du = (-5.75 0.98) - (418 28 kJ/mol)/2.303RT

logo DTh = (-7.77 ± 0.92) - (356 26 kJ/mol)/2.303RT

The diffusion data are used to assess the extent to which equilibrium is obtained during near

fractional melting of a high-Ca pyroxene bearing mantle peridotite. We find that

the diffusion rates for both elements are slow and that disequilibrium between solid and melt

will occur under certain melting conditions. For near-fractional adiabatic decompression

melting at ascent rates > 3 cm/yr, high-Ca pyroxene will exhibit disequilibrium effects. High-

Ca pyroxene will become zoned in U and Th and the melts extracted will be depleted in these

incompatible elements relative to melts produced by equilibrium fractional melting. U and Th

diffusivities in high-Ca pyroxene are similar, and diffusive fractionation of these elements will

be limited. Numerical solutions to a dynamic melting model with diffusion-controlled chemical

equilibration indicate that the activity ratio [ 30Th/238U] in a partial melt of spinel peridotite will

be slightly less than 1 for a broad range of melting parameters. This result reinforces the

conclusion that melting of spinel peridotite cannot account for 13"Th excesses in mid-ocean

ridge and ocean island basalts, and that garnet must therefore be present over part of the melting

column.
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INTRODUCTION

Radioactive disequilibrium between 238U and "'Th is widely used to infer the rate and

style of melting and melt transport in the mantle (McKenzie, 1984; Williams and Gill, 1989;

Spiegelman and Elliott, 1993; Qin, 1993; Iwamori, 1994; Richardson and McKenzie, 1994;

Lundstrom et al., 1995; Elliott, 1997). Making full use of the 238U- 2"Th system requires

knowing in which minerals and at what depths in the mantle U and Th are fractionated from

each other. Clinopyroxene (cpx) and garnet are the principal hosts of U and Th in upper mantle

rocks and control the fluxes of these elements during melting. Equilibrium mineral/melt

partition coefficients for U and Th between clinopyroxene and basaltic melt are small (-10-' to

10-2) and differ by only about a factor of 2, with U being the more incompatible element

(LaTourrette and Burnett, 1992; Beattie, 1993a; Hauri et al., 1994; Lundstrom et al., 1994;

Salters and Longhi, 1996). The similarity between U and Th partition coefficients implies that

clinopyroxene has little ability to fractionate these elements. Even if significant fractionation

were possible it would be in the wrong sense to explain the 230Th excesses observed in nearly

all recently erupted mid-ocean ridge basalts (MORB) (Condomines et al., 1988; Bourdon et al.,

1996). On the other hand, U and Th partition coefficients between garnet and basaltic melt

differ by nearly an order of magnitude (Beattie, 1993b; LaTourrette et al., 1993; Hauri et al.,

1994), with Th being the more incompatible element. The equilibrium partitioning data, then,

appear to require melting in the presence of garnet to explain the excess 230'Th in MORB. This

is an important conclusion because it requires that melting begins at depths greater than -75

km, where garnet becomes the stable aluminous phase in peridotite (Takahashi and Kushiro,

1983; Takahashi, 1986) or, alternatively, that garnet pyroxenite is an important component of the

MORB source (Hirschmann and Stolper, 1996).

The conclusion that clinopyroxene cannot deliver excess 23 Th to the melt is valid if

chemical equilibrium between cpx and melt is maintained during melting. If, however, diffusion

in clinopyroxene is slow relative to the melting rate, then equilibrium may not be achieved. In

this case fractionation between U and Th depends strongly on the relative diffusion rates of

1-M-4w- ---
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these elements (Qin, 1992; Iwamori 1993a,b). A reversal in the effective compatibility order of

two elements is possible if the more compatible element diffuses significantly faster than the

incompatible element (Qin, 1992). To produce excess 230Th in the melt by a disequilibrium

mechanism would require that (1) U diffuses slowly enough in clinopyroxene that equilibrium

between cpx and melt is not achieved, and (2) Th diffuses significantly faster than U. To

determine whether disequilibrium melting can influence U and Th partitioning, we performed a

series of experiments to measure the diffusion rates of U and Th in diopside in the temperature

range 1150-1300 'C.

EXPERIMENTAL METHODS

Sample preparation

Diffusion experiments were performed on gem-quality natural diopside crystals from

the Kunlun Mts., China (American Museum of Natural History samples #100242 and

#104501). The crystals were light green, transparent, free of cracks and visible inclusions, and

had major element compositions very near pure diopside (Table 1). Each crystal was sectioned

perpendicular to the c crystallographic axis into slabs -0.5 mm thick. One side of each slab

was polished to 0.06 gm alumina grit and then cut into pieces 1-2 mm on a side. These pieces

weie cleaned ultrasonically in deionized water and then pre-annealed for 2 days at 1200 0C, with

oxygen fugacity controlled near the quartz-fayalite-magnetite (QFM) buffer.

The diffusion source material was deposited as an aqueous solution onto the polished

surface of the diopside. A dilute (0.05 M) nitric acid solution that contained dissolved U, Th,

and Al in 1:1:4 molar proportions was prepared from 10,000 jig/mI ICP standard solutions and

diluted with purified water to 270 jg U/ml. Approximately 1 pl of this solution was deposited

onto the polished surface of the diopside, along with a small amount of methanol to reduce

surface tension and allow the solution to spread uniformly over the sample surface. The

solution was evaporated in air at 120 "C, which left a thin layer of nitrates with concentration

- 5 x 10~10 mol/mm2 . At the conditions of the diffusion anneal, with fo2 at the QFM buffer, the



136

nitrates decompose to Al20 3 and nearly stoichiometric UThO4 (Levin et al., 1964; Chapman et

al., 1964). Because U and Th have the same formal charge in the oxide (+4) that they

presumably have in diopside, no further redox reactions are necessary to introduce these

elements into the diopside lattice. There was no evidence in any of the experiments that the

tracer layer reacted with the diopside. We calculate that less than 0.01% of the U and Th

diffused into the diopside crystal during any of the experiments, and thus the tracer layer

provided an effectively infinite reservoir of U and Th.

Al was added to the tracer solution as a possible charge-balancing species. However, as

discussed below in the Analyses section, we were unable to detect Al diffusion profiles in any of

our samples, and it is unclear whether Al was actually transported into the crystal during any of

the diffusion anneals.

Diffusion anneals

Diffusion anneals were performed at constant temperature in open Pt crucibles placed in

the hotspot of a Deltech DT3 I VT vertical gas mixing furnace, with anneal times ranging from 2

to 24 days. Run temperature was attained within approximately 5 minutes after introducing the

charge into the furnace and was continuously monitored using a Pt-Pt9RhI0 thermocouple

calibrated against the melting points of NaCl, Au, and Pd. Fluctuation in temperature over the

course of each anneal was generally within + 2 C, with the exception of a single experiment

(UThl200b) in which the thermocouple degraded during the anneal; temperature for this

experiment was assigned an uncertainty of ± 5 'C. Oxygen fugacity was controlled near the

QFM buffer by mixing CO 2 and H2 gases and was continuously monitored with a solid ZrO2-

CaO electrolyte oxygen sensor calibrated against the Fe-FeO, Ni-NiO, and Cu-Cu 2O buffers.

Variation in f0 2 over the course of each experiment was within ±0.1 log unit. Experiments were

quenched by removing the sample from the furnace and allowing it to cool in air. Heating and

cooling times were insignificant compared to the anneal durations, and therefore no attempt was

made to account for diffusion during run-up or quenching.
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In addition to the diffusion anneals, we performed "zero-time" experiments in order to

evaluate systematic errors associated with analysis of the diffusion profiles. Diffusion couples

were prepared as above, taken to 1200 *C and held there for approximately five minutes, then

quenched in air.

After quenching, samples were rinsed ultrasonically in deionized water, then ethanol.

They were then mounted in epoxy with the diffusion source layer facing up and coated with a

thin layer of gold, which provided a conductive surface for ion microprobe depth profiling.

Analyses

Concentration profiles in the annealed samples were measured using the Cameca IMS

3f ion microprobe at the Woods Hole Oceanographic Institution. A primary beam of O~ ions

was focused onto the surface of the sample, producing secondary ions that were continuously

analyzed in a mass spectrometer. In this procedure successively deeper layers are sampled as

the primary beam sputters through the sample, allowing concentrations to be measured as

functions of depth. The primary beam was accelerated under a potential of -8.2 kV and was

focused to a diameter of -20-30 gm, with beam currents usually in the range 10-20 nA. By

analyzing "zero-time" experiments, we found that optimum resolution was achieved by

rastering the primary beam over a square area 150-200 gm on a side and inserting a circular

mechanical aperture 68 gm in diameter into the secondary optics. The aperture was centered

over the sputtered area so that secondary ions were collected only from the central, flat portion

of the pit. This configuration optimized depth resolution and minimized contamination of the

diffusion profile with material from the tracer layer. In analyses of "zero-time" experiments, U

and Th counts dropped sharply after penetration of the tracer layer, and fell to background

levels at a depth of approximately 40 nm.

Secondary ions were measured in a series of cycles in which electron multiplier counts

were collected in sequence on masses 27Al (3 s), "Ca (5 s), 2m2Th (15-30 s) and 23 8U (15-30 s).

The "Ca signal was monitored to determine the position of the interface between the tracer layer
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and the diopside. "Ca counts increased sharply after the tracer layer was penetrated, which was

usually within the first two or three cycles, and then decreased very gradually due to charging of

the sample surface. To correct for the charging effect and for small fluctuations in primary

beam intensity, 2 nTh and 238U counts were normalized to "Ca, and the ratios 2 Th/"Ca and

238U/"Ca were used in place of raw Th and U counts to model diffusion coefficients.

Aluminum concentration profiles in annealed samples were indistinguishable from those

from "zero-time" experiments: Al counts dropped sharply over the upper 20-30 nm and were

nearly constant over the remaining depth interval.

Analysis "Reversals"

In order to be certain that the ion microprobe depth profiling technique was measuring

the true concentration profile in the sample, we devised an analysis "reversal." We wanted to

determine whether the diffusion profile was contaminated during the analysis by material from

the tracer layer. Therefore, we reanalyzed one experiment (UTh1 200a) from the reverse

direction. The sample was extracted from its epoxy mount and remounted in high-strength thin

section epoxy on a glass slide, with the tracer layer facing down. It was then carefully ground

to a thickness of -7 pm. After grinding, the thin section was polished with diamond and

alumina pastes (to 0.06 gm alumina) and prepared as described above for SIMS depth

profiling. Sputtering began on the polished surface and proceeded through the diopside crystal

to the tracer layer. A higher primary beam current (30 nA) and smaller raster area (100 pm X

100 gm) were used for this analysis so that the relatively thick sample could be penetrated in a

reasonable time (approximately 10 hours). In the discussion below, results of this analysis are

referred to as a reversal.

Depth measurement

The depth of each sputtered pit was measured with a Sloan Dektak 8000 surface-contact

profilometer equipped with a 2.5 gm diamond-tipped stylus. Prior to making the depth

measurements, the gold coat was removed from the sample by ultrasonic rinsing in a KI
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solution. At least two orthogonal scans were made for each pit, and in each we considered the

mean depth over the central -70 gm. Pits produced under the same primary beam conditions

yielded consistent sputtering rate estimates, confirming that the sputtering rate during each

analysis was constant. Although the profilometer is capable of measuring depth to a precision

of -1 nm, the uncertainty in the depth measurement was considerably greater, being controlled

primarily by the roughness of the sample surface. In most cases the vertical relief at the bottom

of the sputtered pit was between 10 and 40 nm.

Determination of diffusion coefficients

Diffusion in these experiments is well described by the equation for one-dimensional

diffusion in a semi-infinite medium, with constant interface concentration (Crank, 1975):

C(x,t) -C C ( x= K Dt) (1)
C, - Co 2 4 t

where C is the concentration at depth x after annealing time t, Co is the concentration at the

interface, C, is the initial concentration in the diopside crystal (essentially zero for both U and

Th), and D is the diffusion coefficient. A typical diffusion profile is shown in Fig. la. The first

few points in the profile were sometimes high due to contamination from the tracer layer, and

these points were disregarded in the fitting procedure. To extract a diffusion coefficient from

the data, each profile was linearized by plotting the inverse error function of the left-hand side of

Eq. 1 against depth (Fig. lb). The diffusion coefficient was then calculated from the relation D

= (4m2 t)-1, where m is the slope of the least-squares line fit to the inverted data. On the inverse

error function plot, the data scatter and tail off slightly at the deep end of the profile as the

concentration drops toward the detectability limit. We fit only the shallower part of the

concentration profile and stopped including points when count rates approached background

levels. Small adjustments in the interface concentration, C0, were made in the fitting procedure

to force the line through the origin.
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RESULTS

Error Analysis

There are two types of uncertainty in our data set, one associated with intra-run

variability and the second associated with reproducibility of diffusion coefficients for multiple

experiments run at similar conditions. The source of uncertainty in the first is associated with

error in measurement of the depth profile. In the second case there is the additional source of

systematic error associated with our ability to exactly reproduce the conditions of the

experiment.

The uncertainties associated with measurement of the diffusion profile can be assessed

by comparing diffusion coefficients extracted from individual diffusion profiles from the same

experiment. The uncertainty in the reported value of D for each profile was estimated from a

combination of the error in the crater depth measurement and the formal uncertainty from the

linear fit to the erf-inverted diffusion profile. When multiple diffusion profiles were measured

on a single sample, these yielded diffusion coefficients that in nearly all cases were identical

within error (Table 2). A single diffusion coefficient for each experiment was calculated by

taking the weighted average of the results from each diffusion profile, with the weights being

equal to the inverse square of the uncertainty in each measurement (Bevington and Robinson,

1992). These are the uncertainties reported in bold type in Table 2 and shown in the Arrhenius

plots in Figure 4. An independent assessment of the diffusion coefficient measured in the

"forward" profiles is given by our "reverse" profile measurement. Diffusion coefficients

extracted from the reverse concentration profile were in excellent agreement with the forward

measurements of the same experiment, and the quality of the profiles was very similar (Fig. 2).

A measure of the inter-run reproducibility can be inferred by comparing experiments that were

performed under the same temperature conditions. The range of values among duplicate runs is

similar to that determined from separate profiles in a single sample (Table 2).
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Time series

If volume diffusion is the mechanism responsible for U and Th transport, then the

calculated diffusion coefficients should be independent of the duration of the experiment. We

ran three experiments at 1200 "C that ranged in duration from 71 to 278 hours (nearly a factor

of 4). U and Th diffusion coefficients in these experiments agreed within less than a factor of

two (Fig. 3). Two experiments at 1300 "C also were in excellent agreement, although they

covered a much smaller range in time (56-86 hours).

Temperature dependence

The diffusion coefficients calculated for each experiment were used to assess the

temperature dependence of U and Th diffusion, which can be described by the Arrhenius

equation:

D = Doe-H RT (2)

where Do is a frequency factor, Ha is the activation enthalpy, R is the gas constant and T is

absolute temperature. Both U and Th show good Arrhenian behavior, exhibiting linear trends

on a plot of logD vs. inverse temperature (Fig. 4). Linear least-squares regressions of the data

(York, 1969) yield the following Arrhenius relations:

log Du = (-5.75 0.98) - (418 28 kJ/mol)/2.303RT (3)

log DTh = (-7.77 ± 0.92) - (356 26 kJ/mol)/2.303RT (4)

where the diffusion coefficients are in units of m2/s and the uncertainties quoted are ±10.

Uranium and thorium diffusivities converge with increasing temperature and are very similar

near the melting point of diopside (-1390 C).

DISCUSSION

Comparison with other diffusion data in diopside

Seitz (1973) reported a U tracer diffusion coefficient for diopside of 10-16 m2/s at 1240

"C, which is four orders of magnitude higher than our results for U diffusion. His experiments
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involved diopside crystals annealed in a diopside-albite-anorthite melt, and it is possible that

growth of the crystals during the experiment accounts for the high apparent diffusivity.

Experimental measurements of tracer-, self-, and inter-diffusion coefficients have been

reported for several other cations in natural diopside, and these are in good general agreement

with our results (Fig. 5). The tracer diffusion data for cations that partition onto the M2 site are

broadly consistent with trends observed in other minerals: diffusion rates increase with

decreasing ionic charge and with decreasing ionic radius. The influence of ionic radius on

tetravalent and trivalent cation diffusion rates in diopside is of the same order of magnitude as

that observed in zircon (Cherniak et al., 1997a,b). In diopside, for example, the diffusion

coefficient for Yb (0.985 A radius in VIII-fold coordination; Shannon, 1976) is a factor of ~16

higher than for Ce (1.14 A) at 1300 "C. In zircon, the diffusion coefficient for Yb is a factor of

~19 higher than Sm (1.08 A) at the same temperature. In contrast, ionic charge appears to be

much less important in diopside than in zircon, particularly for the +3 and +4 ions. In diopside

the diffusion coefficients for U4* (1.00 A) and Yb* (0.985 A ) differ by about an order of

magnitude. In zircon the effect of ionic charge is much greater, with Yb diffusivity being about

5 orders of magnitude faster than U (Cherniak et al., 1997a,b). This difference may be a

consequence of the relatively small energy of the divalent M2 lattice site in diopside compared

to that of the tetravalent VIII-fold site in zircon.

Early Partial Melting?

Several studies have observed that Fe-bearing pyroxenes exsolve a silica-enriched melt

phase at temperatures far below their nominal melting temperatures (Ingrin et al., 1991;

Doukhan et al., 1993). This phenomenon, termed early partial melting (EPM), appears to be

related to cation vacancies associated with Fe3" impurities (Jaoul and Raterron, 1994) and is

sensitive to the Fe content of the pyroxene and the fo2 of the surrounding atmosphere. The

diopside we used has less Fe (less than half by mole) than pyroxenes in which EPM has so far
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been observed, and it is unclear whether EPM would be expected under the conditions of our

experiments. Optical inspection of our samples revealed no evidence for EPM, and if present,

melt precipitates must be quite small in size. We note that where EPM has been

unambiguously observed it has little effect on cation diffusion because the precipitates do not

form an interconnected network. Dimanov et al. (1996) observed abundant glassy precipitates

under the optical microscope in their experiments on Ca self-diffusion in Fe-bearing diopside,

yet observed only a very small (one might argue unresolvable) inflection in the Arrhenius curve

at the onset of EPM. We consider EPM effects absent in our data.

EQUILIBRATION DURING MELTING AND MELT TRANSPORT

In this section we use the U and Th diffusion data presented above to estimate the time

scale of chemical equilibration during melting and melt transport. We first develop a scaling

argument which shows that equilibrium between melt and the interiors of cpx grains is unlikely

under most conditions appropriate to melting beneath mid-ocean ridges. We then use a

numerical melting model to assess the degree of fractionation between U and Th during

disequilibrium near-fractional melting.

Scaling argument

We follow the scaling approach adopted by Spiegelman and Kenyon (1992) and Hart

(1993) to evaluate equilibration between clinopyroxene and melt during melt transport. The

question we address is whether partitioning of U and Th between clinopyroxene and melt will

approach equilibrium under conditions relevant to the production and transport of mid-ocean

ridge basalts.

For melt percolating upward through an upwelling porous matrix, diffusive equilibration

is governed by the Peclet number, which is equal to the ratio of the characteristic time required

for diffusive transport in the solid grains of the matrix to the time required for melt to move

through the system. For melt flowing across a layer of thickness H, which for our purposes
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can be taken to be the height of the mantle melting column, the characteristic advection time can

be written:

H
tadv (6)

where w is the melt velocity.

As discussed by Hart (1993), the characteristic diffusion time, or more specifically the

time required for the concentration of an element in the melt to reach 83% of its ultimate

equilibrium value, is approximately:

2

tD ~( .5  (7)
D(K)"

where r is the radius of a cylinder of melt, D is the diffusion coefficient in the solid, and K is the

solid/melt equilibrium partition coefficient. In this expression, the characteristic diffusion time

depends on the compatibility of the element being considered. An incompatible element (K < 1)

requires longer diffusion times than a compatible element because a larger volume of solid must

be tapped in order to provide its higher relative abundance in the melt.

In a grain-scale porous network with wetting angle ~50', the radius of a melt tubule is

related to the grain size d and porosity # by (Hart, 1993; von Bargen and Waff, 1986):

r ~ 0.13d(#)" 2  (8)

Conservation of mass in a one-dimensional upwelling column requires that (Spiegelman, 1993):

#W= (9)
w

where W is the solid velocity, w is the melt velocity, and F is the melting degree. Combining

Eqs. 6-9, the Peclet number can be written:

d 2WF
tad= 59D(K)'" H

For a Peclet number >1, equilibration will be <83%.
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Equation 10 is equivalent to the expression derived by Hart (1993) (his Eq. 6), who

considered the time scale for growth of a melt tubule lying along grain boundaries rather than

the time scale for porous flow through a network of melt tubules. These two time scales are the

same because mass balance requires that the melt production and extraction rates are equal.

At 1400 C, a temperature relevant to melting beneath mid-ocean ridges (Klein et al.,

1987; McKenzie and Bickle, 1988; Kinzler and Grove, 1992), the diffusion coefficients for U

and Th in clinopyroxene are both approximately 1.5 x 10-'9 m2/s, extrapolating from the

Arrhenius relations given in Eqs. 3 and 4. Both U and Th have cpx/melt partition coefficients in

the range 0.001-0.01 (LaTourrette and Burnett, 1992; Beattie, 1993a; Hauri et al., 1994;

Lundstrom et al., 1994; Salters and Longhi, 1996). Taking a partition coefficient of 0.005, cpx

grain diameter of 5 mm, mantle upwelling rate of 3 cm/yr, melting degree of 15%, and melting

column height of 60 km, the Peclet number is -20, which is within the disequilibrium domain.

Figure 6 explores a more complete range of parameter values and shows that partitioning of U

and Th between clinopyroxene and melt will be a disequilibrium process except at very slow

spreading ridges. For example, a 5 mm grain at peridotite solidus temperatures (- 1400-1500

'C) will approach partitioning equilibrium only at upwelling rates of -1 cm/yr or slower. In

contrast to the usual assumption (Spiegelman and Elliott, 1993; Lundstrom et al., 1995; Hart,

1993), we conclude that equilibrium may not be achieved during melting or grain-scale porous

flow for highly incompatible and slowly-diffusing elements.

Numerical model

The scaling argument developed above allows us to estimate the conditions under which

disequilibrium is expected during near-fractional melting, but it does not allow us to

quantitatively predict the degree to which elements are fractionated due to their different

diffusion rates. Numerical models have shown that the extent of elemental fractionation during

disequilibrium melting is sensitive to the relative diffusion rates (e.g. Qin, 1992; Iwamori,

1993a,b). We adopt the disequilibrium melting model of Qin (1992), modified to allow for
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non-modal melting and for temperature-dependent (and therefore time-dependent) diffusion

coefficients, in order to evaluate whether U and Th can be fractionated significantly by

clinopyroxene, and in particular whether there are any conditions under which their

compatibility order may be reversed.

The model we adopt is a near-fractional melting model modified to account for

diffusion-controlled chemical equilibration between solid and its enclosing melt. The solid is

assumed to be composed of spherical grains of equal size which retain their spherical symmetry

during melting. These grains are assumed to be homogeneous in composition when melting

begins, with 238U and 23"Th in radioactive equilibrium. During melting, the interface between

the solid and melt is always in chemical equilibrium, and concentrations in the interiors of

grains are controlled by diffusion. Melt remains with the residue until a critical melt fraction is

reached and is thereafter removed at the rate that keeps the porosity constant. Extracted melt is

pooled in a chemically isolated reservoir, and both residual and extracted melts are assumed to

homogenize continuously and instantaneously, an excellent approximation considering that U

and Th diffusion in silicate melts is -8 orders of magnitude faster than in clinopyroxene

(LaTourrette and Wasserburg, 1997).

For simplicity, the melting rate is assumed to be constant, but clinopyroxene is allowed

to dissolve at a rate different from that of the bulk rock, that rate depending on the

stoichiometric coefficient for cpx in the melting reaction and on the abundance of cpx in the

rock. We consider U and Th fluxes between clinopyroxene and melt only; in other words, we

assume that when melting begins all of the U and Th in the system reside in cpx and that the

solid/liquid partition coefficients for other solid phases are equal to zero.

The concentrations of 238U and 230Th in a cpx grain are expressed by:

dC" 2 CUJ 2 dC"
= D(t) d +- -C&t dr2 r &r U "

dCh d2C'^ 2 dC'" m_ m (1
= D r_ (t) CPX + UMTh C u - 7 Cx

dt ( 2 r1dr
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where Cu, and C are concentrations of 238U and 230Th at time t and radial distance r. Ay and

7hare the decay constants and mu and mr the masses of 238U and 230Th, respectively. These

are expressions of Fick's second law in spherical coordinates, modified to account for decay of

2 3 8U and 230Th. The diffusion coefficients DU and Dr depend on the temperature-time path

followed during melting and are thus functions of time. We assume that temperature decreases

linearly with time and specify initial and final temperatures T, and T

Initial and boundary conditions for Eqs. (11) are:

Cu(r,O) Cu

c O =AU U (12)
C (r, 0)= I C

Cu (R(t),t) = KuC,,,(t)
(13)

C7 (R(t),t) = KThCh (t)

where Cov is the initial concentration of 2 38U in the clinopyroxene and Ku and Kr are the

equilibrium cpx/melt partition coefficients for U and Th. The first pair of equations describes

the initial condition, in which 238U and 2130Th are assumed to be in radioactive equilibrium and

distributed homogeneously in a grain of clinopyroxene. The second states that the

clinopyroxene rim is at all times in equilibrium with the residual melt.

Concentrations in the residual melt are described by:

d(V,Cmu) dCru
= -41rR(t )2 D(t) +V,Cpx(R(t),t)- vC,,I - VC,,

dt dr __

d(V~?,,~h) d Th
dt = -41rR(t) 2 Drh=t) + VmCcr ̂ (R(t),t)-%,Cmh +V A( mr C,, - ArhC

where Cu,,, and CTh are concentrations in the residual melt, Vm is the volume of residual melt, R(t) is the

radius of a clinopyroxene grain, vm and v, are the volumetric melting and melt extraction rates,

respectively, and yis the stoichiometric coefficient of clinopyroxene in the melting reaction. The terms

on the right-hand side of Eq. (14) represent, in order, (1) the total diffusive current across the cpx/melt
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interface at time t, (2) the U or Th mass flux out of the clinopyroxene by melting, (3) the mass flux out

of the system by melt extraction, and (4) changes in mass due to decay of 2 3 8U and 230Th.

In the pooled extracted melt, concentrations are given by:

d(VmCm) V U

dt

d (Vm CmT) AMhU M (5
d = VCTh + M U Th U _Th

dt me (15)

where CMU and CM are concentrations in the extracted melt and VM is the volume of melt extracted.

The melting rate, v,,,, is taken to be constant and is equal to:

Vm = H (16)
H

where W is the solid upwelling velocity, F is the total degree of melting, and H is the height of

the melting column. VO is the initial solid volume, defined as VO=4/37cRO3/X, where X,,is the

volume fraction of clinopyroxene in the solid. The melt extraction rate, ve, is initially zero and

is equal to:

1
Ve= Vm (17)

1 - $1",

when the melt fraction exceeds the critical value, # ,,. The radius of a clinopyroxene grain, R(t),

changes with time according to:

Vo1/3

Equations 11-18 were solved numerically using an implicit Crank-Nicolson finite

difference scheme. The moving boundary between clinopyroxene and melt was accommodated

by keeping a fixed number of radial grid points and rescaling the grid to the new grain radius at

each time step.

We performed a series of model runs using the parameter values listed in Table 3. In

each, the radial distribution of 238U and 234Th in cpx spheres and their concentrations in the
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residual and aggregated melts are calculated as functions of time. Figure 7a illustrates the

evolution of Th and U distributions in a cpx sphere under melting conditions typical for fast

spreading ridges. Note that the interior of the crystal maintains high relative concentrations of

U and Th and is far from equilibrium with the residual melt even at high degrees of melting. In

contrast, at slow spreading ridges (Fig. 7b) clinopyroxene crystals approach equilibrium with

the residual liquid. The upwelling rate at which disequilibrium becomes important depends on

several factors, most importantly the grain size. The examples shown in Fig. 7 both used an

initial grain diameter of 5 mm. This is within the range of cpx grain sizes (-2- 10 mm diameter)

in fertile peridotite xenoliths from Pali-Aike, Chile, which geochemically and isotopically

resemble MORB-source mantle (Stem et al., 1989). Clinopyroxene grains from abyssal

peridotites are typically smaller, with diameters up to 2-3 mm (Komor et al., 1990; Dick and

Natland, 1996), but these rocks represent melting residues and are more appropriate for

estimating the final, rather than initial, cpx radii. The actual size of cpx grains in MORB mantle

is not well known, but a range of 2-10 mm provides a realistic lower limit. In model runs using

an initial cpx diameter of 2 mm (not shown), cpx is in moderate disequilibrium with residual

melt for fast spreading ridges (upwelling rate of 10 cm/yr). For an initial diameter of 10 mm,

strong disequilibrium develops even at upwelling rates as slow as 1 cm/yr.

Deformation of high-Ca pyroxene during mantle upwelling

It is reasonable to question whether the model presented above is realistic for describing

a solid mantle that deforms as it ascends. The model considers spherical high-Ca pyroxene

grains that remain undeformed during decompression melting. Deformation of these grains

would decrease the net diffusion length, thereby increasing the degree of equilibration between

solid and melt. The degree to which high-Ca pyroxene is deformed during upwelling depends

on its viscosity relative to the viscosities of olivine and orthopyroxene. Under typical upper

mantle conditions of T = 1400 'C, P = 1.5 GPa and a= 0.3 MPa, the viscosities of olivine and

orthopyroxene are similar at approximately 5 x 10'9 Pa s (Karato and Wu, 1993; Mackwell,
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1991). Diopside is several orders of magnitude stiffer than either of these minerals, having a

viscosity of about 4 x 1025 Pa s under the same conditions (Kirby and Kronenberg, 1984).

Olivine and orthopyroxene, being much weaker than cpx, are expected to accommodate most of

the strain associated with upwelling. The assumption in our model that high-Ca pyroxene

grains remain undeformed during adiabatic decompression melting therefore seems reasonable.

Implications for 230Th/3 U disequilibrium in MORB

It is clear that under certain melting conditions solid-state diffusion may exert strong

control on the fluxes of U and Th between cpx and melt. Can excess 23 0Th in the melt be

generated under these conditions? Figure 8a shows activity ratios [2 4Th/238U] in the

aggregated melt for a model run with cpx diameter of 5 mm and upwelling rate of 10 cm/yr.

The solid curve was generated using the Arrhenius relations for U and Th given in Eqs. (3) and

(4). The activity ratio is always below I and gradually converges on a steady-state value of

-0.97 as melting progresses. 23 Th excesses never occur because during the early stages of

melting, at high temperature, U has a higher diffusivity than Th and is thus released more

quickly into the melt. The dashed curves reflect the uncertainty in the relative diffusivity of U

and Th, and were generated by running the model with U and Th Arrhenius lines rotated within

their la uncertainty limits. The upper curve pairs the steepest Th Arrhenius line with the

shallowest U Arrhenius line, and the lower curve vice versa. The uncertainty envelope covers a

moderate range of activity ratios at small melting degrees, including a region of small 2 0
"Th

excesses, but at higher degrees of melting becomes quite narrow and does not overlap the

region with [2"Th/ 2 38U] > 1.

Figure 8b shows a similar plot for an upwelling rate of 1 cm/yr. In this case cpx is

close to equilibrium with the melt, and varying the U and Th Arrhenius parameters within their

uncertainty limits has little effect on the activity curves. The activity ratio has a nearly constant

value of -0.96 for melting degrees above -2%.
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We conclude that it is highly unlikely that high-Ca pyroxene could be responsible for

generating the 230Th excesses observed in MORB. Most MORB lavas have [2 30 TW238 U]

activity ratios of 1.1-1.4 (e.g. Condomines et al., 1988; Bourdon et al., 1996), well outside the

uncertainty limits defined by the upper and lower curves in Figs. 8a or 8b. Even at a very high

degree of chemical disequilibrium, with a cpx diameter of 10 mm and an upwelling rate of 10

cm/yr, the uncertainty envelope never extends to an activity ratio above 1.15. Clinopyroxene can

therefore be ruled out as the source of the 23 Th excess signal observed in ocean floor basalts,

as it is unable to produce significant 230Th excesses under either equilibrium or disequilibrium

conditions.

Implications for 226Ra/ 30Th disequilibrium in MORB

The slow diffusivities of U and Th in high-Ca pyroxene have important consequences

for the production of 2 2 6Ra/230Th disequilibrium in basalts. Radium is highly incompatible in

both the garnet and spinel stability fields, and 22 6Ra excesses in the melt may be produced at

any depth within the melting column. However, during near-fractional melting under conditions

of local equilibrium U, Th and Ra are efficiently stripped from the solid residue, and most of the

226Ra excess must be produced near the bottom of the melting column. If 22 6Ra excesses are

produced at great depths, in the garnet stability field, then the rate of melt transport from these

depths must be very rapid. To preserve the large Ra excesses that are observed in many MORB

and OIB the melt transport time must be on the order of the half-life of 2 26Ra (- 1600 years) or

less. For 2 26Ra excesses produced at 80 km depth, the average rate of melt transport to the

surface must be at least -50 m yr'. Such rapid melt transport requires efficient channelized

flow, with melt channels extending to depths near the site of excess 22 6Ra production.

The constraint on minimum melt transport rates is relaxed if melting takes place under

conditions of incomplete local equilibrium. Under disequilibrium conditions the effective

compatibility of U and Th is increased, and because U and Th are stripped less efficiently from

the solid 22 6Ra can be produced at higher degrees of melting, and at shallower depths. In this
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case the minimum melt transport rate is reduced, and channelized melt transport need not extend

into the garnet stability field. Fractionation of Ra and Th is likely to be more efficient under

disequilibrium conditions than under conditions of local equilibrium. Large divalent cations

like Pb (Cherniak, 1998) and Sr (Sneeringer et al., 1984) diffuse several orders of magnitude

more rapidly than Th. If Ra diffusion is similarly fast, then Ra will locally equilibrate during

melting under conditions relevant to melting beneath ridges, and its effective partition coefficient

will remain very low. As discussed above, Th is not expected to approach equilibrium under

many conditions, and its effective partition coefficient will increase as the deviation from

equilibrium increases. Thus, with increasing upwelling rate (and/or increasing grain size) the

effective partition coefficients of Th and Ra diverge, and Ra/Th fractionation becomes

increasingly efficient. If disequilibrium fractionation during melting has an important role in

226Ra/230Th disequilibrium, then the magnitude of 226Ra disequilibrium should be higher at fast

spreading ridges than at slow spreading ridges. Because less time is available for ingrowth, the

magnitude of 230Th excess decreases with increasing upwelling rate; therefore, if disequilibrium

fractionation of Ra and Th is responsible for Ra excess there should be a negative correlation

between 22 6Ra excess and 23Th excess. Such a correlation is indeed observed in the MORB

data set (Kelemen et al., 1997), and may indicate disequilibrium fractionation. As Kelemen et

al. (1997) point out, however, there are other ways to explain this trend. A more definitive test

of the disequilibrium fractionation hypothesis awaits further 2 2 6Ra/ 2'oTh data from ridges

covering a large range of spreading rates.

Partial melting is not the only process that can lead to secular disequilibrium of

226Ra/2 Th; excess 226Ra may also be produced by chromatographic fractionation during melt

transport (e.g. Spiegelman and Elliott, 1993). While slow diffusion of Th may increase the

efficiency of Ra/Th fractionation during partial melting, the opposite is true during melt

transport. During melt transport, the effective compatibility of Th decreases as the rate of

chemical exchange between melt and solid decreases. With increasing deviation from

equilibrium the effective mineral/melt partition coefficient tends toward 0, in contrast to melting



153

where the effective partition coefficient tends toward 1. During melt transport under conditions

of incomplete local equilibrium, the Th partition coefficient will decrease, approaching that of

Ra, and fractionation of the two elements will be less efficient than at local equilibrium. The

model results presented above suggest that Th will not be in local equilibrium beneath mid-

ocean ridges even at the relatively long time-scales over which the solid mantle moves through

the melting regime. Considering that the melt must move upward even more rapidly than the

solid given its greater intrinsic buoyancy, it is doubtful that Th will be able to achieve

equilibrium with the solid during melt transport by a diffusive chemical exchange process. As a

consequence, it is doubtful that large 226Ra excesses can be produced by chromatographic

fractionation.

That the slow diffusion of Th enhances the production of excess 22 6Ra during melting,

but inhibits 22 6Ra/2"Th disequilibrium during melt transport, may help to resolve an important

paradox that exists in the combined 2 38U/ 2 3Th/2 26Ra data set. The presence of 230Th excesses

in MORB requires melting in the presence of garnet. To avoid chromatographic fractionation

in the spinel stability field that will tend to erase 21Th excesses, much of the melt must be

transported in chemical disequilibrium. In contrast, the presence of 22 6Ra excesses in MORB

has usually been thought to require equilibrium transport of melt, and associated

chromatographic fractionation of Ra and Th, because of the unrealistically rapid melt transport

rates that are required to explain 226Ra excesses by a melting process. Kelemen et al. (1997)

have suggested that melt is transported in a two porosity regime, with some melt transported in

channels (and contributing the 2"Th excess), and the rest transported by equilibrium porous

flow (leading to 226Ra excess). Alternatively, our results suggest that both the 2BTh and 226Ra

data may be explained by disequilibrium chemical fractionation during melting, without the need

for chromatographic fractionation. Whether the U-series data are best explained in terms of a

two porosity flow regime or by disequilibrium fractionation during melting can be tested by

demonstrating whether there is a positive correlation between spreading rate and 22 6Ra excess.

Such a correlation should exist if disequilibrium melting is responsible for the production of
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226Ra excesses. If equilibrium porous flow is instead responsible for Ra/Th disequilibrium

there should be no positive correlation between spreading rate and 2 2 6Ra excess, unless the

proportion of melt that occupies a grain-scale porous network increases with the solid upwelling

rate.



155

REFERENCES

Beattie P. (1 993a) The generation of uranium series disequilibria by partial melting of spinel
peridotite: Constraints from partitioning studies. Earth Planet. Sci. Lett. 117, 379-391.

Beattie P. (1993b) Uranium-thorium disequilibria and partitioning on melting of garnet
peridotite. Nature 363, 63-65.

Bevington P. R. and Robinson D.K. (1992) Data Reduction and Error Analysis for the
Physical Sciences, 2nd ed., McGraw-Hill.

Bourdon B., Zindler A., Elliott T. and Langmuir C. H. (1996) Constraints on mantle melting at
mid-ocean ridges from global 2 38U- 23 Th disequilibrium data. Nature 385, 231-235.

Chapman A. T. and Meadows R. E. (1964) Volatility of UO2,x and phase relations in the
system uranium-oxygen. J. Amer. Ceram. Soc. 47, 614-621.

Cherniak D. J. (1998) Pb diffusion in clinopyroxene. Chem. Geol. 150, 105-117.

Cherniak D. J., Hanchar J. M. and Watson, E. B. (1997a) Rare-earth diffusion in zircon.
Chem. Geol. 134, 289-301.

Cherniak D. J., Hanchar J. M. and Watson, E. B. (1997b) Diffusion of tetravalent cations in
zircon. Contrib. Mineral. Petrol. 127, 383-390.

Condomines M., Hemond Ch., and Allegre C. J. (1988) U-Th-Ra radioactive disequilibria and
magmatic processes. Earth Planet. Sci. Lett. 90, 243-262.

Crank J. (1975) The Mathematics of Diffusion, 2nd ed. Oxford Univ. Press, Oxford.

Dick H. J.B. and Natland J. H. (1996) Late-stage melt evolution and transport in the shallow
mantle beneath the East Pacific Rise. In C. Mevel, K.M. Gillis, J.F. Allan, and P.S. Meyer, eds.,
Proc. ODP, Sci. Results 147, 103-134.

Dimanov A., Jaoul 0., and Sautter V. (1996) Calcium self-diffusion in natural diopside single
crystals. Geochim. Cosmochim. Acta 60, 4095-4106.

Doukhan N., Doukhan J. C., Ingrin J., Jaoul 0. and Raterron P. (1993) Early partial melting in
pyroxenes. Amer. Mineral. 78, 1247-1257.

Elliott T. (1997) Fractionation of U and Th during mantle melting: A reprise. Chem. Geol. 139,
165-183.

Grove T. L. and Wagner T. P. (1993) Is adiabatic melting of oceanic mantle a disequilibrium
process? Constraints from experimental measurement of element diffusion rates in high-Ca
pyroxene. EOS Trans. AGU 74, 284.

Hart S. R. (1993) Equilibration during mantle melting: A fractal tree model, Proc. Natl. Acad.
Sci. 90, 11,914-11,918.

Hauri E. H., Wagner T. P. and Grove T. L. (1994) Experimental and natural partitioning of Th,
U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem. Geol.
117, 149-166.



156

Hirschmann M. M. and Stolper E. M. (1996) A possible role for garnet pyroxenite in the origin
of the "garnet signature" in MORB. Contrib. Mineral. Petrol. 124, 185-208.

Ingrin J., Doukhan N. and Doukhan J. C. (1991) High temperature deformation of diopside
single crystal: 2. TEM investigation of the defect microstructures. J. Geophys. Res. 96, 14287-
14297.

Iwamori H. (1993a) Dynamic disequilibrium melting model with porous flow and diffusion
controlled chemical equilibration. Earth Planet. Sci. Lett. 114, 301-313.

Iwamori H. (1 993b) A model for disequilibrium mantle melting incorporating melt transport by
porous and channel flows. Nature 366, 734-737.

Iwamori H. (1994) 2 38 U-23 Th- 22 6Ra and 231U- 231Pa disequilibria produced by mantle melting
with porous and channel flows. Earth Planet. Sci. Lett. 125, 1-16.

Jaoul 0. and Raterron P. (1994) High-temperature deformation of diopside crystal 3.
Influences of p0 2 and Si0 2 precipitation. J. Geophys. Res. 99, 9423-9439.

Karato S. and Wu P. (1993) Rheology of the upper mantle: a synthesis. Science 260, 771-778.

Kelemen P. B., Hirth G., Shimizu N., Spiegelman M., and Dick H. J. B. (1997) A review of
melt migration processes in the adiabatically upwelling mantle beneath ocean spreading ridges.
Phil. Trans. R. Soc. Lond. A 355, 283-318.

Kinzler R. J. and Grove T. L. (1992) Primary magmas of mid-ocean ridge basalts, 2.
Applications. J. Geophys. Res. 97, 6907-6926.

Kirby S. H. and Kronenberg A. K. (1984) Deformation of clinopyroxenite: Evidence for a
transition in flow mechanisms and semi-brittle behavior. J. Geophys. Res. 89, 3177-3192.

Klein E. M. and Langmuir C. H. (1987) Global correlations of ocean ridge basalt chemistry
with axial depth and crustal thickness. J. Geophys. Res. 92, 8089-8115.

Komor S. C., Grove T. L., and Hebert R. (1990) Abyssal peridotites from ODP Hole 670A
(21 10'N, 45002'W): Residues of mantle melting exposed by non-constructive axial
divergence. In R. Detrick, J. Honnorez, W.B. Bryan, T. Juteau, et al., eds., Proc. ODP, Sci.
Results 106/109, 85-99.

LaTourrette T. Z. and Burnett D. S. (1992) Experimental determination of U and Th
partitioning between clinopyroxene and natural and synthetic basaltic liquid. Earth Planet. Sci.
Lett. 110, 227-244.

LaTourrette T. and Wasserburg G. J. (1997) Self diffusion of europium, neodymium, thorium,
and uranium in haplobasaltic melt: The effect of oxygen fugacity and the relationship to melt
structure. Geochim. Cosmochim. Acta 61, 755-764.

LaTourrette T. Z., Kennedy A. K. and Wasserburg G. J., (1993) Thorium-uranium
fractionation by garnet: Evidence for a deep source and rapid rise of oceanic basalts. Science
261, 739-742.



157

Levin E. M., Robbins C. R. and McMurdie H. F. (1964) Phase Diagramsfor Ceramists,
American Ceramic Society, Columbus, Ohio.

Lundstrom C. C., Gill J., Williams Q., and Perfit M. R (1995) Mantle melting and basalt
extraction by equilibrium porous flow. Science 270, 1958-1961.

Lundstrom C. C., Shaw H. F., Ryerson F. J., Phinney D. L., Gill J. B., and Williams Q. (1994)
Compositional controls on the partitioning of U, Th, Ba, Pb, Sr, and Zr between clinopyroxene
and haplobasaltic melts: Implications for uranium series disequilibria in basalts. Earth Planet.
Sci. Lett. 128, 407-423.

Mackwell S. J. (1991) High-temperature rheology of enstatite: Implications for creep in the
mantle. Geophys. Res. Lett. 18, 2027-2030.

McKenzie D. (1985) 230Th-23sU disequilibrium and the melting process beneath ridge axes.
Earth Planet. Sci. Lett. 72, 149-157.

McKenzie D. and Bickle M. J. (1988) The volume and composition of melt generated by
extension of the lithosphere. J. Petrol. 29, 625-679.

Qin Z. (1992) Disequilibrium partial melting model and its implications for trace element
fractionations during mantle melting. Earth Planet. Sci. Lett. 112, 75-90.

Qin Z. (1993) Dynamics of melt generation beneath mid-ocean ridge axes: Theoretical analysis
based on 2 38U- 2 "Th- 22 6Ra and 2 3 5U-2 1 Pa disequilibria. Geochim. Cosmochim. Acta 57, 1629-
1634.

Richardson C. and McKenzie D. (1994) Radioactive disequilibria from 2D models of melt
generation by plumes and ridges. Earth Planet. Sci. Lett. 128, 425-437.

Salters V. J. M. and Longhi J. (1996) Partitioning of trace elements during primary melting of
MORB mantle. J. Conf Abstr. 1, 529.

Seitz M. G. (1973) Uranium and thorium diffusion in diopside and fluorapatite. Carnegie Inst.
Wash. Yrbk. 72, 586-588.

Shannon R. D. (1976) Revised effective ionic radii and systematic studies of interatomic
distances in halides and chalcogenides. Acta Crystall. A32, 751-767.

Sneeringer M., Hart S. R. and Shimizu N. (1984) Strontium and samarium diffusion in
diopside. Geochim. Cosmochim. Acta 48, 1589-1608.

Spiegelman M. (1993) Physics of melt extraction: Theory, implications, and applications. Phil.
Trans. R. Soc. Lond. A 342, 23-41.

Spiegelman M. and Elliott T. (1993) Consequences of melt transport for uranium series
disequilibrium in young lavas. Earth Planet. Sci. Lett. 118, 1-20.

Spiegelman M. and Kenyon P. (1992) The requirements for chemical disequilibrium during
magma migration. Earth Planet. Sci. Lett. 109, 611-620.



158

Stem C. R., Saul S., Skewes M. A. and Futa K. (1989) Garnet peridotite xenoliths from the
Pali-Aike alkali basalts of southernmost South America. Geol. Soc. Australia Spec. Pub. 14,
735-744.

Takahashi E. (1986) Melting of a dry peridotite KLB-1 up to 14 GPa: Implication on the origin
of peridotitic upper mantle. J. Geophys. Res. 91, 9367-9382.

Takahashi E. and Kushiro I. (1983) Melting of a dry peridotite at high pressures and basalt
magma genesis. Am. Mineral. 68, 859-879.

Williams R. W. and Gill J. B. (1989) Effects of partial melting on the uranium decay series.
Geochim. Cosmochim. Acta 53, 1607-1619.

von Bargen N. and Waff H. S. (1986) Permeabilities, interfacial areas, and curvatures of
partially molten systems: Results of numerical computations of equilibrium microstructures. J.
Geophys. Res. 91, 9261-9276.

York D. (1969) Least squares fitting of a straight line with correlated errors. Earth Planet. Sci.
Lett. 3, 320-324.



159

Table 1. Kunlun Mts. diopside composition.

Oxide Weight %
SiO 2  55.5
TiO 2  0.06
Al2 0.88
FeO 0  0.55
MgO 18.1
CaO 24.7
Na 20 0.53
Total 100.3
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Table 2. Run conditions and experimental results.

ID T ('C) anneal time (hr) Da I 1 a (n1/s) DU ± 1 a (m/s)
UTh150a 1150 576.80 1.59 0.31 X10-I 4.54 ±1.55 X10

UThI150b 1150 456.61 1.18 0.21 X10-2 9.52± 1.69 X10-22
1.55 1.09 X10~2  5.78 ± 6.98 X10-22

1.20 0.20 X10- 2  9.44 ± 1.66 X10-22

UThl200a 1200 70.65 4.56 1.21 X1O-''* 3.33 ± 7.27 X10-2 1 *
6.38 2.37 X10-2  2.54 ± 1.99 X10-2
5.06 1.00 X10-21  2.39 ± 0.70 X102
6.87 3.33 X10-21  4.53 ±-2.28X10-2 1

5.26 0.72 X10-2' 2.90 ± 0.69 X10 21

UThl200d 1200 199.50 4.49 1.05 X10-2 5.46 ± 2.10 X102 1

2.87 0.78 X10-2  2.44 ± 0.94 X10-21

3.80 0.67 X10-2 ' 3.95 ± 1.08 X10 2 1

UThl200b 1200 277.67 2.82 ± 0.94 X10-21 2.29 ± 0.82 X10-2
3.45 0.87 X10-2  2.40 ± 0.85 X10-2

3.22 0.65 X10-2' 2.35 ± 0.59 X10 21

UTh1 1300 56.22 1.32 ± 0.62 X10-2 0  1.06 ± 0.50 X10-20
1.39 ± 0.75 X10-2 0  1.84 ± 0.86 X10-20
2.70 ± 0.83 X10-2 0  2.88 ±-0.74 X102 0
2.12 ± 0.49 X10- 2 0  2.35 ± 0.48 X10 2 0

UTh2 1300 86.10 1.97 ±0.81 X1020  1.36 ±0.69 X1020
3.98 ± 2.06 X10-2 0  3.30 ± 1.95 X10 2 0

2.75 0.89 X10-20 2.18 0.84 X10 2 0

Values in bold type are weighted averages for each experiment.

* This profile was measured in the reverse direction.
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Table 3. Model Parameters and Values.

Parameter
#, critical melt fraction
Ku, U Cpx/liq partition coefficient
KTh, Th Cpx/liq partition coefficient
y, Cpx coefficient in melting reaction
XCPX, volume fraction Cpx
RO, Cpx initial radius, mm
H, melting column height, km
F, melting degree
W, mantle upwelling rate, cm/yr
T, initial temperature, K
T, final temperature, K

Value(s)
0.001-0.01
0.005
0.01
0.80
0.15
1-5
33-63
0.10-0.20
1-10
1588-1748
1506-1514
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FIGURE CAPTIONS

Figure 1. A typical diffusion profile (a) and its error function inversion (b). The diffusion

coefficient is calculated from the slope of the line fit to the inverted data, which is equal to

(2rDt)-'. The error function curve shown in (a) is a solution to Eq. (1) using the diffusion

coefficient calculated from the linear inverse error function fit.

Figure 2. Comparison of diffusion profiles measured from opposite directions on the same

sample. The circles represent a concentration profile measured in the "forward" direction,

through the surface diffusant layer. The squares represent a depth profile made in the reverse

direction.

Figure 3. Time series at 1200 *C and 1300 C for U and Th diffusion anneals. The horizontal

dashes represent individual measurements of a single experiment, and circles indicate the

weighted average. Squares indicate diffusion coefficients extracted from "reverse" profiles.

Figure 4. Arrhenius plots of U and Th diffusivity between 1150 and 1300 "C. The circles

represent average diffusion coefficients for each experiment, and the solid lines are weighted

least-squares fits to the data. Activation enthalpies and pre-exponential factors are given in the

text.

Figure 5. Summary of cation diffusion data in natural, near end-member diopside. The dashed

line labeled "CATS-Di" refers to interdiffusion of CaAl2SiO6 and diopside (Grove and

Wagner, 1993). The dotted line shows Ca self-diffusion coefficients (Dimanov et al., 1996).

Solid lines refer to tracer diffusion coefficients for Sr (Sneeringer et al., 1984), Pb (Chemiak et

al., 1998), Yb and Ce (Chapter 1), and U and Th (this chapter).
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Figure 6. Plot of cpx grain diameter vs. temperature showing the conditions under which U

and Th partitioning equilibrium may be obtained during adiabatic melting. The curves represent

solutions to Eq. (10), with tjt,,d = 1, for upwelling rates of 1 and 10 cm/yr. Each curve

separates regions of greater than (above the curve) and less than 83% equilibration.

Figure 7. Model Th and U diffusion profiles developed across a 2.5 mm clinopyroxene grain

during progressive melting. (a) For a mantle upwelling rate of 10 cm/yr cpx is in strong

disequilibrium with the melt, even after 15% melting. (b) In contrast, at 1 cm/yr cpx is near

equilibrium with the melt after only -3% melting. Both figures show elemental rather than

isotopic concentrations. # = 1%, T = 1395 C, T= 1240 'C, H = 48 km.

Figure 8. [230Th/238U] activity ratios in the aggregated melt. The dashed curves define an

uncertainty envelope that is based on the error in the Arrhenius parameters for U and Th.

Uranium and thorium are not efficiently fractionated under either (a) disequilibrium or (b) near-

equilibrium melting conditions, and in both cases the activity ratio is near 1 throughout most of

the melting interval. Parameter values are the same as those used in the calculations shown in

Fig. 7.
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Figure 1
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Figure 2
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Figure 3a
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Figure 3b
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Figure 4a
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Figure 4b
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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CHAPTER 5.

ORIGIN OF LUNAR HIGH-TI ULTRAMAFIC GLASSES: CONSTRAINTS FROM
PHASE RELATIONS AND DISSOLUTION KINETICS OF CLINOPYROXENE-

ILMENITE CUMULATES

ABSTRACT

Phase equilibrium and dissolution kinetics experiments on synthetic late stage magma

ocean cumulates are used to place constraints on hypotheses for the origin of lunar high-Ti

ultramafic glasses. Models for the production of high-Ti lunar magmas have called for either

(1) assimilation of late stage clinopyroxene-ilmenite cumulates at shallow levels or (2) sinking

of cpx-ilmenite cumulates to form a hybrid mantle source. To satisfy the constraints of our

experiments, we propose an alternative model that involves shallow level reaction and mixing of

cumulates, followed by sinking of hybrid high-Ti materials. This model can fulfill

compositional requirements imposed by the pristine lunar glass suite that are difficult to satisfy

in assimilation models. It also avoids difficulties that arise in overturn models from the low

solidus temperatures of cpx-ilmenite cumulates. Partially molten cpx-ilmenite cumulates

become gravitationally unstable with respect to underlying mafic cumulates only when they have

cooled to within about 30 *C of their solidus (-1125 0C at 100 km depth), and at these

temperatures the viscosity of mafic cumulates is too high to allow for growth and descent of

cpx-ilmenite diapirs on the appropriate time scale. Reaction and mixing between late stage

liquids and mafic cumulates at shallow levels would produce a refractory hybrid material that is

negatively buoyant at higher temperatures, and could sink more efficiently to the depths inferred

for production of high-Ti ultramafic glasses.
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INTRODUCTION

Lunar volcanic glasses vary widely in composition, particularly in their content of

titanium (0.26-16.4 wt.% TiO2 ; Delano, 1986). The high Ti contents of these glasses are

usually attributed to ilmenite bearing cumulates that crystallized during late stages of magma

ocean differentiation (e.g. Anderson, 1971; Taylor and Jakes, 1974; Hubbard and Minear, 1975;

Ringwood and Kesson, 1976; Hess, 1991; Snyder et al., 1992; Shearer and Papike, 1993; Hess

and Parmentier, 1995; Wagner and Grove, 1997; Shearer and Papike, 1999b). The role of late

stage cumulates in lunar volcanism remains a subject of debate. Different models have called

for assimilation of these cumulates by ascending low-Ti magmas (e.g. Hubbard and Minear,

1975; Wagner and Grove, 1997) or global scale overturn of the magma ocean cumulate pile to

produce a heterogeneous mantle source (e.g. Ringwood and Kesson, 1976; Hess and

Parmentier, 1995). Each of these models implies a different chemical distribution within the

lunar mantle following magma ocean solidification, and each may have different consequences

for the subsequent thermal evolution of the Moon (Hess and Parmentier, 1995). The

experiments in this paper place constraints on hypotheses for high-Ti ultramafic magma

production by providing information on the melting behavior of clinopyroxene-ilmenite source

materials.

Models for the origin of lunar ultramafic glasses begin with the concept of an early

magma ocean differentiation event, as originally proposed by Smith et al. (1970) and Wood et

al. (1970). Crystallization of the magma ocean produced a layered pile of chemically diverse

cumulate zones, with olivine and orthopyroxene forming the base of the pile and plagioclase

floating upward to form the anorthositic crust (Taylor and Jakes, 1974; Walker et al., 1975;

Longhi, 1977; Snyder et al., 1992). Cumulates produced late in the crystallization sequence,

after -95% crystallization, were enriched in Ti, Fe and other incompatible elements, and

crystallized as a -20 km thick layer near the base of the crust (at -100 km depth). These late

stage cumulates are thought to be composed primarily of clinopyroxene (cpx) and ilmenite

(ilm).
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Early models called for production of low- and high-Ti magmas from different levels

within the layered cumulate pile. Low-Ti liquids were thought to be produced from mafic

cumulates at lower levels, and high-Ti liquids were thought to be formed by melting of late stage

cumulates at shallow depths (Taylor and Jakes, 1974; Walker et al., 1975). This conception

proved inconsistent with later experimental results. Both low- and high-Ti ultramafic glass

compositions are saturated with olivine + orthopyroxene at similar pressures (Green et al.,

1975; Delano, 1980; Chen et al., 1982; Chen and Lindsley, 1983; Wagner and Grove, 1997),

suggesting a similar depth of origin for all ultramafic glasses (-400 km). Also, neither cpx nor

ilmenite is saturated on the liquidus of any pristine high-Ti ultramafic glass at any pressure

(Kesson, 1975; Delano, 1980; Wagner and Grove, 1997), and this rules out a high-Ti magma

source that is composed predominantly of cpx and ilmenite. Subsequent models have had to

take into account these experimental restrictions.

One set of models involves in situ assimilation of clinopyroxene-ilmenite cumulates by

low-Ti ultramafic liquids (Anderson, 1971; Hubbard and Minear, 1975; Wagner and Grove

1997). In these models the cumulate pile maintains its original layered structure. Low-Ti

liquids are produced at depth by partial melting of mafic cumulates, and these magmas

assimilate late stage cumulates on their way to the surface to. produce high-Ti magmas.

Assimilation models have had difficulty accounting for some of the compositional traits of

high-Ti ultramafic glasses. To satisfy major element mass balance (in particular the CaO/TiO 2

ratio), the proportions of ilmenite and cpx entering the liquid must be approximately 3:1

(Wagner and Grove, 1997; Shearer and Papike, 1999a). In contrast, the relative abundance of

ilmenite and cpx in late stage cumulates is thought to be 1:5 to 1:6 (e.g. Snyder et al., 1992).

Severe non-modal assimilation, favoring ilmenite over cpx, is therefore required. Wagner and

Grove (1997) suggested that a disequilibrium dissolution process might lead to selective

assimilation of ilmenite, but did not have the experimental data to evaluate this model in detail.

Our experiments provide a test of the cpx-ilmenite assimilation model, and show that
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assimilation processes, whether equilibrium or disequilibrium, can not account for the

compositions of lunar high-Ti ultramafic glasses.

A second model for high-Ti magma production involves overturn of the gravitationally

unstable magma ocean cumulate pile to produce a mixed, hybrid lunar mantle (Ringwood and

Kesson, 1976; Herbert, 1980; Hess, 1991; Spera, 1992; Hess and Parmentier, 1995). Partial

melting within this heterogeneous mantle is thought to account for the compositions of low- and

high-Ti ultramafic glasses. An important constraint on overturn models is the temperature at

which the high-Ti layer becomes negatively buoyant with respect to underlying mafic

cumulates. Residual high-Ti liquids are less dense than mafic cumulates, and must partially

solidify before the high-Ti layer becomes gravitationally unstable. Our experiments on the

phase relations of cpx-ilmenite cumulates allow us to predict the temperature at which cpx-

ilmenite cumulates become denser than mafic cumulates. Estimates of the viscosity at this

temperature allow us to calculate rates of growth and descent of cpx-ilmenite cumulate diapirs.

EXPERIMENTAL METHODS

The experiments in this paper were designed to characterize the melting and dissolution

behavior of cpx-ilmenite cumulates under lunar mantle conditions. The solidus to liquidus

phase relations of a synthetic high-Ti cumulate composition were determined under dry,

reducing conditions in the pressure range 0.1 MPa to 1.8 GPa. These experiments yield

information on the proportions and compositions of solid and liquid phases as functions of

temperature and pressure, and provide a test for petrogenetic models that involve mixing

between partial melts of cpx-ilmenite cumulates and low-Ti ultramafic liquids. We also

performed two groups of dissolution experiments to determine the behavior of cpx-ilm

cumulates during disequilibrium melting and/or dissolution. The first group of experiments

was designed to measure the rate of clinopyroxene dissolution into a low-Ti lunar basalt, for

comparison with ilmenite dissolution rates determined by Wagner and Grove (1997). The

second group was designed to measure the rate of melt production at the interface between cpx



179

and ilmenite single crystals, and the relative rates of dissolution of cpx and ilmenite into the

growing melt layer.

Phase Equilibrium Experiments

Starting materials

Phase equilibrium experiments were performed on a model high-Ti cumulate

composition (TiCum; see Table 1) similar to that proposed by Snyder et al. (1992) for the solid

assemblage that would precipitate after -95% crystallization of the lunar magma ocean. In the

Snyder et al. (1992) model, most of the plagioclase floats upward to form the lunar crust, but a

small amount (2-5% of the total) remains with the denser mush, and this bit of entrained

plagioclase accounts for the modest A1203 content of the composition. A mechanical mixture of

the TiCum composition was prepared from high-purity oxides and silicates ground in an agate

mortar under ethanol for 6 hours.

0.1 MPa experiments

Experiments at 0.1 MPa pressure were performed under a controlled atmosphere at

temperatures that spanned the solidus and liquidus of the high-Ti cumulate composition. A

pressed pellet of TiCum powdered mix was sintered onto a 0.8 mm diameter Pt91-93-Fe7.9 loop

that was chosen to minimize Fe exchange with the TiCum composition. The loop and pellet

were suspended in the hotspot of a Deltech DT3 1VT vertical gas-mixing furnace. Oxygen

fugacity was controlled near the quartz-fayalite-magnetite (QFM) buffer by mixing CO2 and H2

gases and was continuously monitored with a solid ZrO2-CaO electrolyte oxygen sensor

calibrated against the Fe-FeO, Ni-NiO, and Cu-Cu2O buffers. Temperature was monitored

using a Pt-Pt9oRhio thermocouple calibrated against the melting points of NaCl, Au, and Pd on

the IPTS 1968 temperature scale. The thermocouple junction was placed immediately adjacent

to the experimental charge, and temperatures are believed to be accurate within ± 2 *C.

Experiments were run at constant temperature for 24 to 148 hours and were terminated by drop-

quenching the charge into a water bath.



180

High pressure experiments

The starting material for the high pressure experiments was prepared by pressing

approximately 0.5 g of TiCum powdered mix into a large pellet. The pellet was hung on 0.1

mm Pt wire and conditioned below the solidus for 39 hours at 1050 0C and oxygen fugacity

corresponding to the Fe-FeO buffer, using the same furnace and techniques employed for the

0.1 MPa experiments. The sintered pellet was then ground to a fine powder in an agate mortar.

Approximately 10 mg of the conditioned starting material was loaded into a graphite crucible

and then placed in a Pt outer capsule that was open at one end. After drying for 12-48 hours at

120 *C, the Pt outer capsule was welded shut, placed into a high-density A12 0 3 sleeve, and

centered in a straight-walled graphite furnace using crushable MgO spacers. The pressure

medium consisted of a sintered BaCO 3 sleeve. Pressure for this assembly was calibrated using

the Ca-Tschermakite breakdown reaction (Hays, 1966). The pressure correction was found to

be <0.1 GPa at 1.3 GPa and 1350 0C, and the values reported in Table 2 do not include a

friction correction. Temperature was monitored and controlled using a W97Re3-W75Re 25

thermocouple that was separated from the Pt capsule by a thin crushable MgO wafer. The

temperature difference between the position of the thermocouple junction and the hotspot was

determined to be 20 *C using offset thermocouples, and temperatures reported in Table 2 are

corrected for this difference. No correction for the effect of pressure on thermocouple emf has

been applied. Runs were pressed cold to 0.7 GPa and then heated at 100 "C/min to 865 0C,

where they were held for 6 minutes. They were then pumped to the desired run pressure and

heated to run temperature at 50 "C/min. Experiments were held at constant temperature and

pressure for 10 to 24 hours and were quenched by shutting off the power.

Analyses

Experimental run products were analyzed using either a 4- or 5-spectrometer JEOL 733

electron microprobe at the Massachusetts Institute of Technology (Table 3). A 10 nA beam

current and 15 kV accelerating potential were used for all analyses. A 2 gm beam diameter was
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used for analysis of solid phases, and a 10 gm beam diameter was used for glass analyses.

Data were reduced using the phi-rho-z correction scheme.

Clinopyroxene Dissolution Experiments

Dissolution of clinopyroxene in a synthetic analog of Luna 24 low-Ti basalt was

measured at temperatures between 1270 and 1450 "C and pressures of 1.0 to 1.3 GPa (Table

5). The design of the experiments was similar to those of Zhang et al. (1989) and Wagner and

Grove (1997). A single crystal of gem quality diopside from the Kunlun Mts., China (Table 1),

was cut perpendicular to the c axis into wafers -1 mm thick using a low-speed diamond

wafering saw. The Kunlun Mts. diopside is higher in CaO and MgO and lower in FeO than

pyroxenes expected to precipitate during late stages of magma ocean crystallization. As

discussed below, dissolution of Kunlun Mts. diopside in basaltic magmas is probably slower

than dissolution of a more Fe-rich pyroxene, and thus the rates we report below are probably

lower limits for the assimilation process under consideration. The diopside wafers were drilled

into cylindrical disks using a 2.8 mm inner diameter diamond coring bit, and the thickness of

each disk was measured with a micrometer to a precision of -10 im.

Each disk was sandwiched between equally thick layers of a synthetic Luna 24 basalt

analog powder (Table 1) in a tightly fitting graphite capsule 6.5 mm long. This sample

geometry was designed to minimize convection in the liquid portion of the charge and to

provide for one-dimensional diffusive dissolution of the crystal into Luna 24 basalt melt

reservoirs on either side of the disk. The thickness of the melt reservoir was effectively infinite

compared to the lengths of diffusion profiles developed during each of the runs.

The experimental charge was placed directly into a high-density alumina sleeve without

a Pt outer capsule, then loaded into a piston cylinder apparatus using the techniques described

above for the phase equilibrium experiments. A more rapid heating rate (200 "C/min) was used

for the dissolution experiments to minimize dissolution during the approach to run conditions.

Experiments were held at constant temperature for times ranging from 1000 seconds to 24
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hours and were quenched by shutting off the power. The sample assembly was cut into two

pieces perpendicular to the crystal-melt interface, and the thickness of the partially dissolved

disk was determined using a Zeiss reflected light microscope with an ocular scale accurate to 10

gm (Table 4). No attempt was made to account for dissolution during heating or quenching of

the experiment, as this effect was small compared to the precision of the thickness

measurements. In one experimental charge (B547), concentration profiles in the glass

perpendicular to the crystal-melt interface were measured, using the electron microprobe, as an

independent means of estimating the mass of diopside that had dissolved into the melt.

Melting Kinetics Experiments

The rate of melt production at the interface between diopside and ilmenite single crystals

was determined at 1.3 GPa and temperatures of 1300-1350 "C (Table 6). Kunlun Mts.

diopside and Frank Smith ilmenite single crystals (Table 1) were cut with a diamond wafering

saw into parallelepipeds of approximately equal size. One side of each piece was polished with

diamond pastes to 0.3 gm grit. The polished face of the diopside crystal was oriented

perpendicular to the c axis; polished ilmenite faces were oriented randomly. Ilmenite and

diopside pieces were placed together, with their polished surfaces in contact, in a tightly fitting

graphite capsule (Fig. 1), and were held at constant temperature and pressure in a piston

cylinder device. As with the single crystal diopside dissolution experiments, the assembly was

pressed cold and brought quickly to run temperature (at 200 *C/min), and was quenched by

shutting off the power. The initial and final thickness of the ilmenite and diopside crystals were

measured using the techniques described above for the cpx single crystal dissolution

experiments. Quench crystallization was especially pervasive in these experiments, due to the

highly depolymerized nature of the melt produced, making it difficult to measure concentration

profiles in quenched glass between the ilmenite and diopside crystals. In one experiment

(B634) that preserved a few large pools of glass it was possible to measure a portion of the

concentration profile using the electron microprobe.
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EXPERIMENTAL RESULTS

Phase Equilibrium Experiments

The subsolidus to near-liquidus phase relations of the synthetic high-Ti cumulate were

determined up to 1.3 GPa (Fig. 2). The sequence of phase appearances with decreasing

temperature was similar at all pressures investigated. Clinopyroxene is the only phase saturated

on the liquidus up to at least 1.3 GPa. Ilmenite is the next phase to crystallize with decreasing

temperature, followed by trace amounts of tridymite and ulvospinel at 0.1 MPa, and quartz at

1.3 GPa. The subsolidus assemblage at 0.1 MPa is cpx+ilm+plag; at 1.3 GPa plagioclase has

disappeared and the subsolidus phases are cpx+ilm. A single experiment at 1.8 GPa and 1290

C, which produced liq+cpx, suggests that the phase relations are similar at higher pressure

(Fig. 2).

Our results can be compared with those of Wyatt (1977), who performed experiments

between 2.0 and 4.8 GPa on starting material consisting of 29 wt.% ilmenite and 71 wt.% cpx,

with molar Mg# = 0.638 (our high-Ti cumulate composition, in contrast, contains -14 wt.%

ilmenite and 86 wt.% cpx, with Mg# = 0.311). Wyatt (1977) reported a nearly constant melting

interval of -140 "C between 2.0 and 4.8 GPa, with cpx being the liquidus phase in all but one

case. The liquidus and solidus of Wyatt's bulk composition, extrapolated to lower pressure,

coincide with our liquidus and solidus within -20 "C. The similarity between our results and

those of Wyatt (1977) suggests that the general aspects of the phase equilibria in cpx-ilmenite

assemblages are not very sensitive to changes in bulk composition and pressure.

The near-solidus melting reactions for our high-Ti cumulate composition are given in

Table 4. We ignore the trace amounts of ulvospinel and tridymite or quartz that are produced in

experiments just above the solidus and consider the simplified melting equation: a cpx + # ilm

= 1 melt. Within the uncertainty limits, the stoichiometric coefficients for cpx and ilm in the

melting reaction do not appear to change between 0.1 MPa and 1.3 GPa. However, the TiO2

content in the melt near the ilmenite-out phase boundary is -3 wt.% higher at 1.3 GPa than at
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0.1 MPa (Table 3), suggesting that there is actually a slight increase in the ratio of ilmenite to

cpx entering the melt with increasing pressure.

Clinopyroxene Dissolution Experiments

The results of the experiments on diopside dissolution in synthetic Luna 24 basaltic

liquid are summarized in Table 5. Dissolution rates are given in terms of mass dissolved per

square root run duration per m2 interfacial area between crystal and melt. The mass dissolved

during the experiment was calculated from the change in thickness of the single crystal disk,
3assuming a diopside density of 3300 kg/m . Dissolution rates are expressed in terms of mass,

rather than distance, to facilitate comparison with ilmenite dissolution rates measured by

Wagner and Grove (1997). Dissolution rates are given with respect to the square root of the

run duration because diffusion controlled dissolution proceeds linearly with -t .

The dissolution rate can be estimated independently, and chemical diffusion in the melt

verified to be the rate-controlling mechanism, by examining concentration profiles in the glass

adjacent to the diopside disk. Figure 3 shows SiO 2, TiO2, A1203 and MgO concentration

profiles from a dissolution experiment performed at 1350 "C and 1.3 GPa (B547). These

components all appear to display normal diffusion behavior; there is no evidence for

multicomponent coupling effects such as uphill diffusion. Not shown are concentration

profiles for CaO and FeO, which were nearly flat over the interval measured and could not be

used to extract effective binary diffusion coefficients nor to estimate the dissolution rate. The

curves in Fig. 3 are fits to the data of an analytical solution for one-dimensional diffusion

controlled dissolution into a semi-infinite melt reservoir (Zhang et al., 1989):

C(x t) = C. + (C .. erfc( - a), (1)
erfc(-a) 24Dt )

where C. is the concentration in the melt at infinite distance from the interface, CO is the

concentration in the melt at the interface, x is distance from the interface, t is run duration, and D

is the effective binary diffusion coefficient in the melt. The parameter a satisfies (Zhang et al.,

1989):



185

= - /.aea erfc(-a), (2)

CS - CO

where Cs is the concentration in the diopside crystal. The interface concentration Co is assumed

to be constant throughout the duration of the experiment. This appears to be a very good

approximation, at least in the case of diopside. Zhang et al. (1989) have shown, using interface

reaction rates for diopside inferred from the experiments of Kuo and Kirkpatrick (1985), that

the interfacial melt will attain a constant saturation condition in less than 1 second.

Effective binary diffusion coefficients obtained from fits to the SiO 2, TiO2, A120 3 and

MgO concentration profiles are given in Table 6. These provide an independent means of

estimating the dissolution rate, using the relation (Zhang et al., 1989):

rate = ap-, (3)

where p is diopside density and the rate is in units of g m- s-1 (Table 6). The mean value of

dissolution rates calculated from each of the four diffusion profiles is 1.67 ±0.46 g m- s-1

which agrees with the value of 2.18 ± 0.59 g m- s obtained from the measured change in

thickness of the diopside disk. Agreement between these two completely independent

dissolution rate estimates confirms that our experiments are well described by diffusive

dissolution into an infinite melt reservoir with constant interfacial melt composition.

Temperature dependence

The dissolution rate for Kunlun Mts. diopside at 1.3 GPa increases strongly with

temperature (Fig. 4). This dependence is due to the influence of temperature on chemical

diffusivity in the melt and on the temperature dependence of the parameter a. Referring to Eqn.

(3), the temperature dependence of the dissolution rate can be written (neglecting thermal

expansion of the diopside):
d(In rate) 1 d(In D) d(In a)=- + . (4)

d(1/ T) 2 d(1I/ T) d(1/ T)

The first term on the right hand side represents the temperature dependence of chemical

diffusivity in the melt. According to the Arrhenius equation, D = Do exp(-Ha / RT), this term
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is equal to -Ha/2R, where R is the molar Boltzmann constant and Ha is the activation enthalpy

for diffusion.

The second term in Eqn. (4) is nonlinear and more difficult to express in simple form.

We can estimate the magnitude of this term using Eqn. (2), provided that we can estimate the

values of C, and C. and the temperature dependence of the interface melt composition, Co. Cs,

C. and CO are proportional to the equilibrium activity of a component with Kunlun Mts.

diopside stoichiometry in the crystal, Luna 24 basaltic liquid, and the saturated interface melt,

respectively. C, by this definition is equal to 1, and C. can be calculated given an activity

model for the melt. A value of 0.307 for C_ is obtained using the solution model of Ghiorso

and Sack (1995; available online as the MELTS Supplemental Calculator at

http://gneiss.geology.washington.edu/-ghiorso/MELTSWWW/Melts.html). The temperature

dependence of Co is expressed as d(In CO) / d(1 / T) = H/R, where Hf is the enthalpy of fusion

of Kunlun Mts. diopside. We used the MELTS Supplemental Calculator to calculate Hf and CO

for Kunlun Mts. diopside at the conditions of our experiments. Hf has values between 111 and

127 kJ/mol at temperatures of 1270 to 1450 "C and 1.3 GPa, and CO has values between 0.33

and 0.75 at the same conditions. Given values for C, and C. of 1 and 0.307, Eqn. 2 gives the

relation between a and Co. This relation is approximately log linear, except when CO approaches

C.. For 0.33<Co<0.75 the average value of d ln a / lIn CO is -3.4. Combined with the

temperature dependence for CO given above, this gives d ln a / d ln(1/ T) ~ 3.4Hf / R. From

Eqn. (4), an expression for the temperature dependence of Kunlun Mts. diopside dissolution in

Luna 24 basalt at 1.3 GPa and 1270-1450 "C is then given by:
d(n~rate) - I-H + 3.4Hf, (5)

d(1/ T) R 2 "

This expression is an approximation of a more complicated functional form, and the factor of

3.4 multiplying the enthalpy of fusion holds only over the range of parameters we have

estimated here.



187

The activation enthalpy for diffusion of network-forming components in andesitic to

basaltic melts is typically 200-300 kJ/mol (e.g. Baker, 1990; Zhang et al., 1989). Taking a value

of 250 kJ/mol for the diffusion activation enthalpy and 120 kJ/mol for the enthalpy of fusion of

diopside, d ln rate / d(1 / T) for our experiments at 1.3 GPa is predicted from (5) to have a value

of -533 (kJ/mol)/R. This is in good agreement with the value of -503 (kJ/mol)/R determined

from the fit to our experimental data (Fig. 4).

Pressure dependence

The dissolution rate for diopside at 1350 "C is significantly greater at 1.0 GPa than at

1.3 GPa (Table 5, Fig. 4). Brearley and Scarfe (1986) observed a similar increase in

dissolution rate with decreasing pressure in their experiments on clinopyroxene dissolution in

alkali basalt. Diffusion of network forming cations in silicate melts has a modest pressure

dependence (e.g. Baker, 1990; Shimizu and Kushiro, 1991) which is not sufficient, and may be

in the wrong sense, to explain the pressure dependence of diopside dissolution rates. The

pressure dependence is probably due mostly to the increase in diopside solubility with

decreasing pressure. Using MELTS (Ghiorso and Sack, 1995) as above to calculate the

"saturated" activity of diopside in a melt at 1350 "C and 1.0-1.3 GPa, we find that the

parameter a is expected to increase from -0.15 at 1.3 GPa to -0.24 at 1.0 GPa. This

corresponds to a ratio of dissolution rates at 1.0 and 1.3 GPa of -1.6, which is in reasonable

agreement with the measured ratio of 2.25 ± 0.79 (Table 5).

Comparison of diopside and ilmenite dissolution rates

The dissolution rates reported here for diopside at 1.3 GPa are significantly slower than

ilmenite dissolution rates measured by Wagner and Grove (1997) in low-Ti lunar basalts at 1.0

GPa (Fig. 5). Part of this difference in dissolution rates may be attributed to pressure; the

dashed line in Figure 5 shows diopside dissolution rates shifted upward to pass through our

data point at 1.0 GPa and 1350 "C. At low temperatures there is still a significant difference in

dissolution rates, even with the correction for pressure. However, at temperatures
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corresponding to the liquidus of lunar high-Ti glasses (-1400 "C for Apollo 14 black glass at

1.0 GPa; Wagner and Grove, 1997) there is expected to be very little difference in the

dissolution rates of ilmenite and diopside. Pyroxenes in high-Ti cumulates may dissolve even

faster than the nearly pure diopside used in our experiments, because they are closer in

composition to the liquid they are dissolving into, particularly in terms of FeO, CaO and MgO.

In general, the smaller the compositional difference between mineral and melt, the faster the

dissolution rate (Zhang et al., 1989). Thus our results for nearly pure diopside probably

represent a lower limit for the dissolution rate of clinopyroxene in high-Ti cumulates.

Melting Kinetics Experiments

A summary of the results of diopside-ilmenite melting kinetics experiments is given in

Table 7. Dissolution rates for ilmenite and diopside were estimated by measuring the initial and

final thickness of the two crystals perpendicular to their interface. Densities of 3300 and 4600

kg/m3 for diopside and ilmenite, respectively, were used to convert the change in thickness to a

change in mass.

Backscattered electron images of run products from two experiments at 1350 0C are

shown in. Figure 6. In the longer experiment (B634; 6 hr) the configuration is gravitationally

stable, with diopside on top of ilmenite. The configuration is reversed in the shorter duration

experiment (B653; 1 hr), with ilmenite on top of diopside. In this case there is a driving force

for convective mixing between dense ilmenite-enriched melts at the top of the growing melt

layer and diopside-enriched melts below. If convection were an important mechanism for mass

transport in this experiment, one would expect the dissolution rate to be significantly more rapid

than in the gravitationally stable experiment. The ilmenite dissolution rate is slightly higher in

experiment B653, but the diopside dissolution rate is the same within the uncertainty of the

measurement. Convection thus appears not to have a large influence on dissolution rates in

these experiments.



189

In the melting kinetics experiments the interface between ilmenite and melt is always

observed to be smooth (Fig. 6). The diopside-melt interface is more rugged, and relict blocks

of diopside are suspended in the interstitial pool of melt. These blocks were probably the result

of dissolution along cleavage cracks that formed during pressurization and heating of the

experimental charge, as has been observed also by Greenwood and Hess (1998) in melting of

superheated albite. Relict blocks were not observed in the experiments on diopside dissolution

into Luna 24 basalt, probably because the diopside was surrounded by soft glass powder which

absorbed most of the deformation during pressurization and prevented cleavage cracks from

forming. In any case the relict blocks represent a significant volume of undissolved material,

and this was accounted for in estimating the amount of diopside that dissolved during the

experiments.

Figure 7 shows a plot of ilmenite and diopside dissolution distances versus the square

root of the run duration for melting kinetics experiments run at 1350 0C. The linear dependence

of dissolution distance on W/t suggests that melting is controlled by diffusion. It is presumed

that a saturation condition is maintained at each interface, such that the melt is saturated with

diopside at the diopside-melt interface and with ilmenite at the ilmenite-melt interface. Growth

of the melt layer is limited by diffusive transport of Ca, Si and Mg away from the diopside

interface and by complementary diffusive transport of Fe and Ti away from the ilmenite

interface. In one experimental charge (B634) a significant portion of the concentration profile

could be measured in quenched glass (Fig. 8). SiO 2 and CaO concentrations increase smoothly

across the melt layer from ilmenite to diopside, and TiO2 and FeO profiles have the opposite

trend.

An Arrhenius plot showing the dissolution rates of ilmenite and diopside in the melting

kinetics experiments is shown in Figure 9. Diopside dissolves significantly faster than ilmenite

at the conditions of the experiments. The trend of the data suggests that at higher temperatures

(above -1380 *C) the order of dissolution rates may reverse. The temperatures at which

melting of high-Ti cumulates may take place in the Moon are bracketed by the solidus of the
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high-Ti cumulate and the liquidus of lunar ultramafic liquids. At temperatures near the solidus

of the high-Ti cumulate (- 1200 0C at 1.3 GPa), ilmenite is predicted to dissolve an order of

magnitude more slowly than diopside with which it is in contact. At ultramafic glass liquidus

temperatures (-1400-1500 *C at 1.3 GPa) the melting rate will be very fast and dissolution rates

of ilmenite and diopside will be similar. At 1400 0C, cm-sized grains will dissolve completely

within hours.

DISCUSSION

Assimilation Model for High-Ti Magma Genesis

The cumulate assimilation model must meet two requirements: there should be sufficient

heat available to allow for assimilation, and the resulting melts must be similar in composition to

those represented in the lunar ultramafic glass suite. Wagner and Grove (1997) evaluated the

heat budget and found that it was sufficient to allow significant assimilation of cpx-ilmenite

cumulates by low-Ti ultramafic magmas. Here we focus on the compositional constraints and

ask whether an assimilation process can reproduce the compositional trend displayed by the

pristine lunar ultramafic glasses.

Partial fusion of clinopyroxene-ilmenite cumulates

One mechanism for the chemical interaction of low-Ti magmas with late stage cpx-

ilmenite cumulates involves heating and partial fusion of the cumulates. Do mixtures of cpx-

ilmenite cumulate partial melts and low-Ti ultramafic magmas resemble high-Ti ultramafic glass

compositions? The compositions of partial melts produced in our phase equilibrium

experiments are compared with the compositions of pristine lunar glasses on a plot of CaO vs.

TiO2 (Fig. 10). The lunar glasses, shown as filled circles, form a trend of decreasing CaO with

increasing TiO2. Partial melts of the cpx-ilmenite cumulate (open symbols) do not lie on this

trend or its extension; they have significantly lower TiO 2 and higher CaO concentrations than

the highest TiO 2 glasses. Thus simple mixing of equilibrium partial melts of a cpx-ilmenite

cumulate with a low-Ti parent liquid can not reproduce the compositional trend of the high-Ti
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glasses. Increasing the pressure of melting does not move cpx-ilmenite partial melts toward the

compositions of the lunar glasses; the TiO 2 content increases and CaO content decreases

somewhat with pressure, but the shift in composition is small and more or less parallel to the

lunar glass array. Neither can fractional crystallization cause hybrid liquids to evolve toward

lunar glass compositions. Fractional crystallization of olivine or orthopyroxene will increase

both the TiO 2 and CaO concentrations, moving melts along a trajectory away from and nearly

orthogonal to the trend of the lunar glasses. Fractionation of high-Ca pyroxene or plagioclase

would move melts in the right direction, but this is not an option because pristine lunar glass

liquids are not saturated with either of these phases at any pressure (Kesson, 1975; Delano,

1980; Wagner and Grove, 1997).

For assimilation to meet the compositional constraints provided by the pristine lunar

glass suite, a significantly higher ratio of ilmenite to cpx must enter the melt, on the order of

-3:1. Can a rapid disequilibrium melting process accomplish this? Our melting kinetics

experiments indicate that it can not. Clinopyroxene dissolves more rapidly than ilmenite with

which it is in contact, particularly at lower temperatures. At temperatures above 1350 C cpx

may dissolve more rapidly than ilmenite, but the melting rate at these temperatures is so fast that

solid cumulates are unlikely to be preserved at all. At 1400 "C, a 1 cm cpx grain in contact with

ilmenite is predicted to dissolve completely in only a few hours. It is doubtful that a melting

and mixing process could take place on such a short time scale.

Selective contamination may take place by diffusive fractionation in the melt (e.g.

Watson, 1982), but this is unlikely to increase the TiO/CaO ratio beyond that for simple binary

mixing between the assimilating magma and the cpx-ilmenite partial melt. Ti diffuses more

slowly than Ca in basaltic liquids (e.g. LaTourrette et al., 1996), and thus diffusive fractionation

would be likely to decrease rather than increase the TiOJCaO ratio in the assimilating magma.

Uphill diffusion could complicate matters, but is unlikely to play a major role in chemical

fractionation of TiO2 and CaO because both species have similar preferences for less

polymerized liquids (Zhang et al., 1989).
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Dissolution of clinopyroxene and ilmenite into low-Ti magmas

Another possible mechanism for assimilation of late stage cumulates involves

dissolution of cpx and ilmenite directly into low-Ti magmas. This is unlikely to be a significant

mechanism for assimilation of cpx-ilmenite cumulates, because dissolution at the boundary

between cpx and ilmenite crystals is more rapid than dissolution of these minerals into low-Ti

melts. At 1400 0C the melting rate is predicted to be a factor of -3 faster than the dissolution

rates of cpx and ilmenite into low-Ti melts (compare Figs. 5 and 9). Thus, a cpx-ilmenite

xenolith entrained in an ascending low-Ti magma would melt internally, at interfaces between

cpx and ilmenite, faster than the individual minerals would dissolve into the entraining low-Ti

magma. Dissolution of cpx and ilmenite into low-Ti liquids would be important only if cpx and

ilmenite were not in physical contact. Even in this case, the dissolution rates of ilmenite and cpx

are expected to be similar at ultramafic glass liquidus temperatures (see Fig. 5), making selective

assimilation of ilmenite unlikely. Selective assimilation could only take place at lower

temperatures, where ilmenite does dissolve significantly faster than cpx. The assimilating liquid

in this case would need to have a significantly lower liquidus temperature than any of the

ultramafic glasses.

Hybrid source models

Assimilation of cpx-ilmenite cumulates by the processes described above does not

account for the compositions of lunar high-Ti ultramafic glasses. An alternative is that the high-

Ti glasses were generated during partial melting of a hybrid source region at depth. Arguments

similar to those given above rule out simple mixing of melts from separate cpx-ilmenite and

olivine-orthopyroxene cumulate sources. Mixing between cpx-ilmenite partial melts and low-Ti

ultramafic magmas will lead to hybrid liquids deficient in TiO 2 and enriched in CaO relative to

high-Ti ultramafic glasses (see Fig. 10). Instead, high-Ti lunar magmas must have equilibrated

with a source that contained olivine ± orthopyroxene in addition to cpx and ilmenite.
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The prevailing model for creating such a source involves overturn of the gravitationally

unstable magma ocean cumulate pile. Several variants of this model have been proposed.

Ringwood and Kesson (1976) envisioned cpx-ilmenite pods decoupling from overlying crust,

sinking into the lunar mantle and partially melting and reacting with mafic cumulates at depth.

The heterogeneous hybrid mantle resulting from this process was considered to be the source

for high- and low-Ti ultramafic magmas and mare basalts. Hess and Parmentier (1995)

proposed that large cpx-ilmenite cumulate diapirs could have descended to the center of the

Moon, carrying with them a significant complement of the Moon's radionuclides. In this

version of the overturn model, the source region for high-Ti lunar magmas is thought to lie

within a convectively mixed layer just above the radioactively heated cpx-ilmenite core.

The dynamics of cumulate pile overturn depend on viscosity, which is strongly

dependent on temperature. The temperature during overturn is constrained by the phase

relations of cpx-ilmenite cumulates. The high-Ti layer becomes gravitationally unstable when

the temperature has fallen near the solidus; more than -30 'C above the solidus, the high-Ti

layer will be mostly molten (see Table 2) and less dense than underlying mafic cumulates.

Thus, when cpx-ilmenite diapirs begin to sink through underlying cumulates, the temperature

cannot be far above 1125 0C (the solidus at 100 km depth). The viscosity of mafic cumulates at

this temperature can be estimated using flow laws for dry olivine given by Karato and Wu

(1993). The viscosity in the power law creep regime is calculated to be in the range 1 x 102 to

5 x 1023 Pa s, assuming that stresses are similar to those in Earth's convecting mantle (1 MPa to

0.1 MPa). Similar viscosities are obtained for diffusion (Newtonian) creep; 1 x 1022 to 6 x 1021

Pa s for olivine grain sizes of 1 to 5 mm. These viscosities are much higher than have been

used in models of cumulate pile overturn, where the temperature constraint has not been taken

into account. Hess and Parmentier (1995), for example, assumed a viscosity for mafic

cumulates of ~1019 Pa s. This is a reasonable value for the early evolution of the magma ocean,

when the temperature is near the solidus of mafic cumulates, but is too low to apply during
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sinking of the high-Ti layer, when the temperature is constrained to be near the cpx-ilmenite

solidus.

The rate of settling of cpx-ilmenite diapirs through mafic cumulates can be calculated

from Stokes' law. If the temperature gradient within the lunar mantle is adiabatic (-0.15

'C/km; Finilla et al., 1994), there will be little change in the viscosity with depth. For a viscosity

of 3 x 102 Pa s (corresponding to power law creep with 0.3 MPa stress), and a density

difference between cpx-ilm and mafic cumulates of 350 kg/m3 , the settling rate in meters per

second is calculated to be -1 x 1021 d2, where d is the diameter of the diapir (assumed here to

be spherical) in meters. Given this relation for the settling rate, we can calculate how far diapirs

could descend into the lunar mantle in the -400 million years available between complete

solidification of the magma ocean and the onset of high-Ti volcanism on the Moon at -3.9 Ga.

A cumulate diapir 40 km in diameter is calculated to fall only 20 km in this time. Only diapirs

larger than about 180 km could descend to depths of several hundred kilometers where lunar

ultramafic glasses are thought to be produced, and -360 km diapirs are required if cumulates

are to descend to the lunar core.

A high-Ti cumulate layer evenly distributed beneath the lunar crust would be only about

20 kilometers thick (Snyder et al., 1992; Hess and Parmentier, 1995), so diapirs would have to

grow considerably to reach the -180 km size that is probably necessary for descent deep into

the lunar mantle. Whether diapirs can grow large enough depends critically on the viscosity of

the cpx-ilmenite cumulate layer. Analytical expressions for the growth time and characteristic

wavelength of Rayleigh-Taylor instabilities (Whitehead, 1988; Hess and Parmentier, 1995)

indicate that the viscosity of cpx-ilmenite cumulates must be -300 times less than the viscosity

of mafic cumulates in order to grow diapirs 180 km in diameter within 100 My. Such a low

viscosity seems unlikely, because clinopyroxene-dominated rocks in general are even stronger

than olivine rocks (e.g. Kirby and Kronenberg, 1984). Hess and Parmentier (1995) suggested

that a liquid phase that wets grain boundaries in the cpx-ilmenite cumulate might lower the

viscosity enough to generate very large diapirs. Grain boundary wetting is rare in silicates
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(Kohlstedt and Zimmerman, 1996) but whether it may occur in cpx-ilmenite rocks remains an

open question. If melts do not wet grain boundaries, then it probably is not possible to generate

cpx-ilmenite diapirs of the size required to transport cpx-ilmenite cumulates hundreds of

kilometers into the lunar mantle.

The preceding analysis illustrates an essential problem in redistributing cpx-ilmenite

cumulates to deep levels within the Moon. At the low temperatures that are needed to keep the

cpx-ilmenite cumulates negatively buoyant, settling of diapirs through the cold, stiff mafic

cumulates is difficult. This difficulty can be eased if the solidus of high-Ti material is increased

so that overturn can take place at higher temperatures, where settling is more efficient. We

suggest that physical mixing and chemical reaction between high-Ti liquids and mafic

cumulates produced a refractory hybrid material at shallow levels, during late stages of magma

ocean solidification. Large scale transport of this hybrid material could be accomplished more

easily than in the case of pure cpx-ilmenite cumulates. Calculations using the MELTS

algorithm (Ghiorso and Sack, 1995) indicate that the addition of as little as 20 wt.% Fo70

olivine to our TiCum composition would raise the solidus by -80 *C. The viscosity at this

temperature would be an order of magnitude lower than at the solidus of cpx-ilmenite

cumulates. The density of this material would be at least 200 kg/m3 greater than that of mafic

cumulates, and we calculate that diapirs as small as -60 km in diameter could descend several

hundred kilometers into the lunar mantle within a few hundred million years. The time required

for diapirs to develop would be on the order of -10 million years.

Shallow level hybridization is probably a natural consequence of the very long

solidification time inferred for late stage magma ocean liquids. Complete crystallization of late

stage liquids, after the formation of a stable anorthosite crust, is predicted to take 200 My or

more (Solomon and Longhi, 1977). During the long solidification process, late stage liquids

will react chemically with the mafic products of earlier fractional crystallization. Cumulates also

may mix physically over short length scales, driven by gravitational instabilities that develop

during crystallization (e.g. Snyder et al., 1992; Hess and Parmentier, 1995). Reaction and
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mixing among late stage liquids and mafic cumulates may have been enhanced by radioactive

heating in the crust. It has been shown recently that a large proportion of the Moon's budget of

radioactive elements may reside within a single crustal province on the nearside (e.g. Haskin,

1998). Heat produced in this highly radiogenic crust may significantly slow the crystallization

of late stage liquids (Wieczorek and Phillips, 1999), allowing more time for their interaction

with mafic cumulates.

CONCLUSIONS

The implications of our experiments for the origin of lunar high-Ti ultramafic glasses

can be summarized as follows:

1. Assimilation of late stage cumulates does not appear to be a viable mechanism for the

production of lunar high-Ti magmas. Assimilation processes involving equilibrium or

disequilibrium partial melting of cpx-ilmenite cumulates, followed by mixing with low-Ti

magmas, are not able to produce liquids with the appropriate compositions. Selective

contamination, either by diffusive fractionation in the melt or by preferential dissolution of

ilmenite into the assimilating magma, also is unlikely to lead to magmas similar in composition

to lunar high-Ti ultramafic glasses.

2. The low temperature (near 1125 'C at 100 km depth) at which the solidifying high-Ti

layer becomes gravitationally unstable with respect to underlying cumulates places severe

restrictions on the rate of settling of cpx-ilmenite cumulates through the lunar mantle. The

viscosity at this temperature is probably too high for cpx-ilmenite diapirs to descend to the

depths inferred for production of high-Ti ultramafic magmas within the appropriate time frame.

Chemical reaction and physical mixing between high Ti liquids and mafic cumulates at

shallow levels may have produced a hybrid material negatively buoyant at higher temperatures,

and able to descend to hundreds of kilometers depth before the onset of high-Ti volcanism on

the Moon. We suggest that shallow level hybridization, followed by sinking, may have been the
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process that created the heterogeneous mantle source for lunar ultramafic glasses and mare

basalts.
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Table 1. Compositions of starting materials used in phase equilibrium and kinetics experiments.

Material SiO TiO A120 Cr 2O FeO MnO MgO CaO Na 20 K2 0

~Higfh-Ti Cumulate (TiCum) 41.61 9.1 2.8 0 29.6 0 7.5 8.2 0 0

Diopside, Kunlun Mts.b 54.92 0.03 0.64 0 0.76 0.06 18.35 25.2 0.42 0

Ilmenite, Frank Smith Mineb 0.13 51.8 0.64 1.7 33.2 0.17 11.4 0.07 0 0

Luna 24 Ferrobasalt 47.1 0.88 12.6 0.23 20.2 0.25 6.31 12.8 0.2 0.02

Values are given in weight percent.
a Compositions determined by combining weighed amounts of synthetic oxides.
b Compositions determined by electron microprobe.
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Table 2. Conditions and results of phase equilibrium experiments on synthetic high-Ti cumulate composition (TiCum).

Run # P (GPa) T (-C) t (hr) Run Products' Phase Proportions'--- r
(mass)

TiCum 2 0.0001 1220 51 gI - -

TiCum 3 0.0001 1200 25 gl,cpx 96:4 0.2

TiCum 8 0.0001 1185 44 gl,cpx 91:9 0.55

TiCum 5 0.0001 1175 24 gl,cpx 89:11 0.74

TiCum 4 0.0001 1150 46 gl,cpx 82:18 0.54

TiCum 6 0.0001 1125 148 gl,cpx,ilm 72:25:3 0.01

TiCum 18 0.0001 1100 34 gl,cpx,ilm,trid,usp 49:40:11:tr:tr 0.04

TiCum 9 0.0001 1050 63 cpx,ilm,plag 79:14:7 1.1

TiCum 17 1.3 1340 17 gl,cpx 94:06 0.89

TiCum 16 1.3 1300 11 gl,cpx 78:22 0.04

TiCum 15 1.3 1280 10 gl,cpx 73:27 0.69

TiCum 14 1.3 1260 20 gl,cpx 64:36 0.05

TiCum 12 1.3 1240 23 gl,cpxilm 53:45:2 0.13

TiCum 11 1.3 1220 22 gl,cpx,ilm,qtz 35:56:9:tr 0.16

TiCum 10 1.3 1200 19 cpx,ilm 86:14 2.2

TiCum2O 1.8 1290 24 gl,cpx 62:38 0.11

a Abbreviations are: gi, glass; cpx, clinopyroxene; ilm, ilmenite; trid, tridymite; usp, ulvospinel; plag, plagioclase;
qtz, quartz.

b Phase proportions listed in same order as in Run Products column, estimated by unweighted multiple linear regression
of the phase compositions (Table 3) against the bulk composition (Table 1).

c Sum of squared residuals for the multiple regression
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Table 3. Compositions of run products from experiments on synthetic high-Ti cumulate (TiCum).

Ru# Phase N S TiO2  A120 3  FeO MgO CaO Total

TiCum 3 gI 7 41.7(0.4) 9.29(0.15) 2.98(0.04) 30.5(0.2) 6.85(0.11) 8.37(0.13) 99.7

cpx 9 53.8(0.3) 0.58(0.07) 0.10(0.03) 22.9(0.4) 21.8(0.6) 1.84(0.09) 101

TiCum 8 gl 7 40.8(0.2) 9.69(0.14) 3.08(0.08) 31.2(0.2) 6.42(0.07) 8.64(0.09) 99.8

cpx 5 52.7(1.4) 0.60(0.10) 0.11(0.03) 22.6(1.0) 22.6(1.0) 2.03(0.13) 101

TiCum 5 gl 7 40.4(0.3) 9.82(0.20) 3.11(0.04) 31.3(0.3) 6.25(0.13) 8.71(0.12) 99.6

cpx 6 53.2(0.3) 0.62(0.10) 0.13(0.06) 23.7(0.7) 21.2(0.4) 2.10(0.05) 101

TiCum 4 gl 7 39.4(0.2) 10.6(0.2) 3.32(0.05) 31.6(0.3) 5.26(0.04) 9.24(0.08) 99.4

cpx 8 52.5(0.4) 0.78(0.11) 0.17(0.05) 25.3(0.4) 19.3(0.4) 2.82(0.35) 101

TiCum 6 gl 8 40.5(0.2) 10.1(0.05) 3.80(0.04) 30.2(0.2) 4.49(0.04) 10.1(0.1) 99.2

cpx 8 51.3(0.2) 0.85(0.05) 0.31(0.09) 26.6(0.6) 17.2(0.2) 4.31(0.47) 101

ilm 3 n.d. 54.0(0.1) 0.20(0.01) 44.2(0.3) 3.74(0.06) 0.13(0.02) 102

TiCum 18 gl 6 42.5(0.2) 7.50(0.29) 5.59(0.34) 30.2(0.2) 2.89(0.62) 10.6(0.1) 99.2

cpx 5 49.9(1.0) 1.31(0.91) 0.54(0.14) 27.9(1.5) 14.2(0.4) 6.90(1.80) 101

ilm 3 n.d. 50.3(0.4) 0.25(0.01) 47.8(0.3) 2.51(0.05) 0.33(0.06) 100

trid 1 96.7 0.44 0.10 0.75 0.02 0.10 98.1

usp 3 0.08(0.07) 25.3(0.1) 1.72(0.05) 69.8(0.28) 1.99(0.05) 0.29(0.02) 99.2

TiCum 9 cpx 8 48.8(1.0) 1.51(0.49) 1.04(0.42) 29.9(1.7) 9.41(0.34) 9.69(1.74) 100

ilm 3 0.02(0.02) 52.6(0.5) n.d. 45.6(0.2) 1 67(0.06) 0.39(0.04) 100

plag 5 45.0(0.3) n.d. 31.8(1.1) 4.87(1.29) 0.35(0.14) 18.1(0.5) 100

TiCum 17 gl 3 41.4(0 07) 10.1(0.11) 3.07(0.02) 29.3(0.2) 6.53(0.09) 8.88(0.15) 99.4

cpx 3 52.7(0.3) 0.53(0.06) 0.32(0.04) 23.8(0.2) 20.4(0.2) 3.35(0.14) 101

TiCum 16 gl 3 39.5(0.1) 11.5(0.05) 3.56(0.05) 31.3(0.1) 4.95(0.02) 9.18(0 08) 99.9

cpx 4 52.2(0.3) 0.72(0.12) 0.51(0.02) 26.2(0.4) 17.1(0.3) 4.93(0.12) 102

TiCum 15 gl 3 39.1(0.3) 12.8(0.2) 3.76(0.06) 30.3(0.2) 4.38(0.11) 9.43(0.02) 99.8

cpx 7 51.3(0.4) 0.76(0.11) 0.60(0.08) 26.3(0.2) 15.9(0.2) 5.73(0.34) 101

TiCum 14 gl 8 37.4(0.2) 13.7(0.09) 4.01(0.06) 32.1(0.2) 3.78(0.16) 9.01(0.12) 99.9

cpx 8 50.5(0.4) 0.90(0.07) 0.81(0.06) 26.6(0.4) 14.5(0.4) 6.92(0.41) 100

TiCum 12 gl 8 36.9(0.2) 13.7(0.1) 4.48(0.04) 31.9(0.2) 3.24(0.05) 9.05(0.05) 99.3

cpx 8 49.8(0.6) 1.02(0.09) 1.04(0.07) 27.1(0.6) 13.1(0.24) 7.98(0.47) 100

ilm 3 0.05(0.01) 53.4(0.3) 0.39(0.03) 45.0(0.4) 2.67(0.08) 0 29(0.01) 102

TiCum 11 gl 7 41.2(0.5) 10.8(0.1) 6.30(0.06) 28.3(0.1) 2.47(0.14) 9.30(0.13) 98.4

cpx 8 49.5(0.2) 1.00(0.09) 1.51(0.16) 28.1(0.5) 11.7(0.15) 8.46(0.48) 100

ilm 3 0.06(0.01) 52.3(0.2) 0.42(0.03) 46.3(0.05) 2.26(0.03) 0.31(0.03) 102

qtz 1 99.6 0.15 0.07 0.31 n.d. n.d. 100

TiCum 10 cpx 11 48.4(0.5) 1.46(0.11) 3.08(0.57) 28.9(0.8) 8.96(0.47) 9.67(0.65) 100

ilm 2 0.05(0.04) 52.7(0.5) 0.52(0.03) 45.8(0.5) 1.67(0.06) 0.36(0.05) 101

TiCum2O gl 5 36.7(0.3) 14.2(0.2) 4.00(0.08) 32.2(0.3) 3.98(0.17) 9.15(0.04) 100

cpx 1 50.9 0.85 1.06 27.2 13.6 6.86 100

a Abbreviations are as in Table 2.
b Number of analyses.
c Values in parentheses represent one standard deviation of replicate analyses.
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Table 4. Stoichiometric coefficients for high-Ti cumulate melting reaction.

Experiment P (GPa) AF AT Melting Rate a
TI-T2 ("C) (%/"C)

TiCuml8-TiCum6 0.0001 0.24(0.02) 25 0.94 0.66(0.07) 0.34(0.03)
TiCumll-TiCuml2 1.3 0.18(0.03) 20 0.91 0.63(0.18) 0.37(0.09)

Stoichiometric coefficients refer to the reaction a cpx + s ilm = I melt and were calculated from the change
in phase proportions between experiments conducted at different temperatures. The values in parentheses
are I a, calculated by propagating the errors in estimation of phase proportions.
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Table 5. Conditions and results of experiments on dissolution of diopside single crystals
in Luna 24 basalt.

Run # T (*C) P (GPa) t (s) Initial length Final length (gm) Diss. rate
(pm) (g m-

2 
s-

1 2 )
B552 1270 1.3 87600 1333(10) 1277(9) 0.312(0.064)

B547 1350 1.3 9250 958(10) 831(33) 2.18(0.59)

C211 1350 1.0 3600 1085(10) 907(35) 4.90(1.1)

B548 1450 1.3 1000 1328(10) 970(39) 18.7(2.1)

Values in parentheses represent one standard deviation.
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Table 6. Effective binary diffusion coefficients (EBDC) of SiO 2, TiO2, A120 3 and MgO for diopside dissolution into Luna 24
basalt at 1350 "C, 1.3 GPa. Dissolution rates were calculated using the EBDC for each component and Eqn. 3.

SiO 2  TiO, Al,O MgO CaO FeO
EBDC (pmls) 25.4(9.0) 28.7(10) 25.0(6.3) 192(77) -- --

Co 48.8 0.68 10.45 8.10 14.1 17.4
a 0.12(0.01) 0.12(0.01) 0.068(0.01) 0.032(0.005) -- --

Dissolution Rate (g m-' s'.") 2.01(0.55) 2.09(0.59) 1.13(0.31) 1.46(0.52) -- --

Values in parentheses represent one standard deviation.
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Table 7. Conditions and results of diopside-ilmenite melting kinetics experiments.

Run # Mineral T ('C) P (GPa) t (s) Posa Initial length Final length Diss. rate
(gm) (gm) (g m-2 s-112)

B653 diopside 1350 1.3 3560 bot 1085(10) 832(13) 14.0(0.88)

ilmenite top 1049(10) 903(9) 11.5(1.1)

B634 diopside 1350 1.3 21600 top 1097(10) 501(10) 13.4(0.31)

ilmenite bot 1095(10) 812(10) 9.05(0.45)

B669 diopside 1300 1.3 21800 bot 1080(10) 915(10) 3.68(0.31)

ilmenite top 1062(10) 1013(7) 1.56(0.39)

Values in parentheses represent one standard deviation.
a. Position in the experimental charge.
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FIGURE CAPTIONS

Fig. 1. Piston cylinder assembly used for ilmenite-diopside melting kinetics experiments. The

interface between ilmenite and diopside is centered in the hotspot of the graphite furnace.

Fig. 2. Pressure-temperature phase diagram for synthetic high-Ti cumulate composition. Data

are from Table 2.

Fig. 3. Concentration profiles (wt.%) in quenched glass from diopside dissolution experiment

(B547; T = 1350 "C, P = 1.3 GPa), where x is distance from the diopside-melt interface.

Compositions near the interface could not be measured due to the presence of a ~150 Rm thick

layer of quench crystals adjacent to the diopside. The curves are fits of Eqn. 1 to the data.

Fig. 4. Arrhenius plot showing the dissolution rate of Kunlun Mts. diopside in Luna 24 basalt

vs. inverse temperature. Dissolution rates at 1.3 GPa can be described by: R = 3.24* 1016exp(-

6.05* 104/T), where T is temperature in K and R is the dissolution rate in g m-2 S1/2.

Fig. 5. Comparison of diopside and ilmenite dissolution rates in low-Ti lunar basaltic liquids.

Diopside dissolution rates are from this work, and ilmenite dissolution rates are from Wagner

and Grove (1996). The arrows and dashed line show the increase in dissolution rate of

diopside when pressure decreases from 1.3 to 1.0 GPa.

Fig. 6. Backscattered electron images of run products from diopside-ilmenite melting kinetics

experiments performed at 1350 *C and 1.3 GPa. a) Expt. B653, I hr run duration, ilmenite on

top of diopside. b) Expt. B634, 6 hr run duration, diopside on top of ilmenite. The field of

view in each micrograph is approximately 1.7 x 2.0 mm.
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Fig. 7. Dissolution distance vs. square root of run duration for diopside-ilmenite melting

kinetics experiments run at 1350 C and 1.3 GPa. Data are from Table 7. Diopside--circles;

ilmenite--squares.

Fig. 8. Concentration profiles (wt.%) across quenched melt layer in diopside-ilmenite melting

kinetics experiment B634. At the left of the diagram is the ilmenite-melt interface (x = 0); the

diopside-melt interface is at the right of the diagram, at x = 760 gm.

Fig. 9. Arrhenius plot showing rates of dissolution of ilmenite and diopside into the melt layer

formed at their mutual boundary, at 1.3 GPa. Ilmenite and diopside dissolution rates at 1.3 GPa

can be described by: Rim (g m-2 s-12) = 4.72*10 26exp(-9.59*10 4/T); Rd, = 1.17*10' 9exp(-

6.71* 104/T).

Fig. 10. Comparison of lunar ultramafic glass and high-Ti cumulate partial melt compositions,

on a plot of TiO2 vs. CaO (wt.%). Solid circles represent the most primitive lunar glasses from

each of the 26 groups defined by Delano (1986). Open symbols show the highest TiO 2 partial

melts of the TiCum composition, at 0.1 MPa (squares) and 1.3 to 1.8 GPa (circles). The X

symbol shows the composition of the TiCum starting material.
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Figure 2
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Figure 3
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Figure 4
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Figure 6a
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Figure 6b
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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