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Abstract

Many wave energy devices are currently studied. In this thesis we focus on two specific
devices: the Oscillating Water Column (OWC), and the buoys.
In the first part of this thesis we examine the effects of coastline geometry on the per-
formance of an OWC. Under the assumption of inviscid irrotationnal flow, we develop
a linear theory for the velocity potential for the case of a coastline of arbitrary apex
angle. Scattering and radiation problems are solved separately using eigenfunctions
expansions, and are then combined to study the energy extraction rate. Numerical
simulations for a convex and a concave corner are considered and comparison with an
OWC at the tip of a thin breakwater and on a straight coast are discussed. Assuming
that the multiple-turbine system can be controlled over a wide range of frequencies,
we study the effects of fixed chamber size and air compressibility on the optimal power
extraction. A simpler way of optimization is then develop and we show that this sim-
pler scheme can achieve almost as high an efficiency as the idealized many-frequency
optimization.
In the second part of this thesis, we first model theoretically an array of cylinders
and then apply the theory developped to an array of buoys. However, numerical
difficulties encountered for the array of cylinders have led to the conclusion that the
theory developed is numerically inefficient, although it is accurate.
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Chapter 1

Introduction

As the world is facing the challenge to reduce its gaz emmission and to find new

renewable source of energy, wave power extraction can provide a viable solution. The

interest for wave power extraction is not new and the first machine to be taken out

was probably by Girard, father and son in 1799 (see Charlier and Finkl (2009))and

proposed to take out mechanical energy using a raft. However systematic studies

began only in the seventies (see Evans (1981), McCormick (1981)). Many devices

have been invented so far, for example the Cockerell's raft (see Haren (1978)) and

Salte's duck (see Salter (1976)). However at the present time wave power generation

is not a widely employed commercial technology and a lot of research is done to

determine which will be the winning device.

Most of the systems use either a movable body (for example buoys) or an oscil-

lating column to extract the energy. The first three chapters of the present thesis

concentrate on the oscillating water column (OWC) and on the effect of coastline on

its energy extraction performance. OWC geometries have been studied intensively in

the past decades. Smith (1958) and then Evans and Porter (1995) have derived meth-

ods for simple two-dimensionnal geometries. Three-dimensionnal OWC geometry has

been studied by Fernandes (1983).

Recently a pilot OWC plant has been constructed in the 90's in the island of

Azores, Portugal, (see picture 1-la) with a rated power of 400kW (see Falcio (2000)

and more recently Neumann et al. (2008)). Lately a new project in Portugal plans



(a) OWC at Pico, island of Azores. Image taken from PI-
OWC project.

(b) OWC in a breakwater. Mouth of Foz do Douro River,
Portugal. Image taken from Martins et al. (2005)

Figure 1-1: Oscillating water column device



to integrate an OWC plant into the head of a new breakwater at the mouth of

Douro River in Porto (see figure 1-1b). Ultimately, the installation would include

three OWCs, which together would generate 750 kilowatts (see Martins et al. (2005)).

Stimulated by this project, two simplified coastline models have already been studied:

the case of a thin breakwater has been studied by Martin-Rivas and Mei (2008) and

the case of a straight coastline by Martin-Rivas and Mei (2009).

In chapter 2 of the present thesis we develop a general theory for any arbitrary

apex angle of the coastline. Scattering problem and radiation problem are solved

using eigenfunction expansion and matching conditions. The two problems are then

combined to examine the energy extraction rate. We first assume that the power

take-off system can be controlled over a wide range of frequencies and study the

energy extraction rate. We then develop a new and simpler way of optimization.

Numerical computations are then considered for two specific cases: an OWC at the

convex corner of right angle coast in chapter 3 and an OWC at the concave corner

of right angle coast in chapter 4. In particular we show that the simpler scheme of

optimization can achieve almost as high an efficiency as the many-frequency idealized

optimization.

In chapter 5 we consider an array of vertical circular cylinders extending to the

bottom and in staggered rows. We want to find a new method to find an explicit

analytical solution for this problem so that the method can then be applied in chapter

6 to an array of buoys in staggered row as represented in figure 1-2. Many studies have

been conducted on array of cylinder, as they are of interest for off-shore structures

as oil rigs. A general situation of an arbitrary configuration of N vertical cylinders

has been studied by Linton and Evans (1990) who improved the multiple scattering

method used by Spring and Monkmeyer (1974). They associate with each cylinder

a general wave potential describing wave radiating away from that cylinder, which,

together wih the incident wave potential, describes the total wave field.

By the method of images the situation we are focusing on is formally equivalent to

the one of three half cylinders in a rectangular channel. The case of a vertical circular

cylinder placed at the centreline of a channel has been examined by Linton and Evans



Figure 1-2: Array of buoys. Image taken from Ocean Power Technologies Inc.

(1992a). The method used is based around the construction of suitable multipoles for

channel problems. The key to the construction of these multipoles is the derivation

of suitable integral representations for solutions to Laplace's equation in the laterally

unbounded fluid which can then be modified to take account of the channel walls

using a technique similar to that used by Thorne (1953). The procedure is fairly

complicated but picks out the correct far-field behaviour. Linton and Evans (1992b)

have used Green's functions suitable for a two-dimensional waveguide to construct a

homogeneous integral for the case of a obstacle of arbitrary shape, where the cross-

section is symmetric with respect to the centreline of the channel. The problem of

the scattering of a plane incident wave for a circular cylinder is then considered in

detail.

In the present thesis, we first derive the solution that satisies the Laplace equation

in the channel and the boundary condition on the laterral walls. We then impose the

remaining boundary conditions and derive an infinite system of linear algebraic equa-

tions that are truncated and solved numerically. Computational difficulties have been

encountered and investigations have led to the conclusion that the theory developed

is numerically unefficient, although it is accurate.



Chapter 2

OWC at the tip of a wedge of v7r

degree

We consider an oscillating water column (OWC) at the tip of a wedge of vir degree as

shown in figure 2-1 where v is a real number comprised between 0 and 2. The OWC

is composed by a cylinder of radius a, open to the sea at the bottom. The water can

enter the cylinder and rises to a certain level. A Wells' turbine is installed at the

top of the cylinder at some height above the water surface. It rotates in only one

direction and converts mechanical energy to electricity. We consider the sea depth to

be constant and equal to h. The opening of the OWC is at a depth d. We consider

that the walls of the cylinder and the wedge are vertical.

Sea 8=0

Coast hca

(a) Up view (b) Side view

Figure 2-1: OWC at the tip of a wedge, up view (left) and side view (right)

Let the tip of the wedge be the z axis. The still water surface is the (x, y) plane.



In the cylindrical polar coordinate system (r, 0, z) the walls are given by 0 = 0 and

O = v7r. In all this study we consider simple harmonic motion with frequency w. We

will also assume that the amplitude of the waves is small enough so that the linearized

theory applies. The problem will be decomposed into the sum of a radiation problem

and a diffraction problem.

2.1 Model of energy extraction

Let us consider one or more Wells'turbine installed at the top of the OWC. We

consider a linear turbine model and thus the mass flux through the Wells' turbines is

proportional to the chamber air pressure. We assume the air pressure pa inside the

chamber is uniform in space. This assumption is relevant due to the high sound speed

in air and the low frequency of sea waves. Following Saramento and Falcao (1985)

we relate the mass flux of air Al through the chamber to the turbine characteristics:

dM d(paiV) KD
NPa (2.1.1)dt dt N

where pa is the air density, V is the volume of the chamber, N the rotational speed

of turbine blades, D the turbine rotor outer diameter and K an empirical factor that

depends of the design, numbers and setup of the Wells'turbine. Taking into account

the air compressibility, we have

d(p0 V) dV ±dpa
= pa +V (2.1.2)

dt dt dit

Let us denote by Q the rate of total upward displacement of the water surface:

dV ja j27 w(r, 0, z = 0)rdrdO = w dS (2.1.3)

where Sc is the water surface in the chamber. Let us assume isentropy. Thus

Sdpa _dp~a

c - = - (2.1.4)
dt dt



where ca is the sound velocity in air. Substituting the two previous equalities in

(2.1.2) gives
dil M V dpa

=p-Q - 2t
dt Ca dt

Let us consider simple harmonic motion so that Q = Re (Qe-iwt) and pa =

Equations (2.1.1) and (2.1.5) give then

iwVoV.
Pa

c2p0

(2.1.5)

Re ('ee t )

(2.1.6)

The vertical flux can be decomposed into two parts: a contribution from the diffrac-

tion problem QD and a contribution from the radiation problem QR.

Q = QD Q (2.17)

Following Evans (1982) we express the volume flux due to the radiation potential as

QR (BiC) (2.1.8)

where B and C are real. These coefficients are analogous respectively to the damping

coefficient and the added mass for a rigid body system: indeed C is in phase with the

flux acceleration whereas B is in phase with the flux velocity. We also write

QD = FAo (2.1.9)

where AO is the amplitude of the plane incident wave. F will be further called the

scattering coefficient. Substituting (2.1.8) and (2.1.9) into (2.1.6) gives

(2.1.10)

Npa
_ (+2 caa

P a
Ao

- KD
Q = Npa



Using (2.1.1), the time-averaged power output to the turbine is equal to

d (paV) p, KD-- KD 2

Pout =P =P'a 6|(..1
dt pa Npa 2Npa

Thus replacing P5a by its expression given in (2.1.10) we have

KD Al |2 1

Pout = 2 2 (2.1.12)
2I pa KD + 2 )2

Npa ca 

We will define the normalized capture length, kL to be the fraction of available power

per unit crest length of the incident wave which is extracted from the OWC:

Pon KD k |F|2
kL o (2.1.13)

pgA~C 2 T C 2 , '2Sc< NPa pg9g + B) ± +

Let us introduce dimensionless variables B, C and F. We shall use here a different

normalisation as the one used by Martin-Rivas and Mei (2008) for the study of an

OWC at the tip of a thin breakwater or Martin-Rivas and Mei (2009) for the case of

an OWC in a straight coastline. Indeed to study the effect of column radius a and

frequence w, we should not immerse them as scales. Otherwise the effects of varying

a or w are not pure and only partially accounted for. For this reason we will use h

for length scale and 0h as time scale, and introduce the following dimensionless

variables:

pw hg g/h p g/h (2.1.14)
_ hy

With these definitions, (2.1.13) becomes

f 
2

k L khg (2.1.15)Qgll ' +82+(



where
p10KD& '1 _pmyg|I

gu=WVO3=-/li(2.1.16)
paNh ' C2pah

The parameter x represents the effects of power takeoff and characterizes the turbines.

We shall assume that its magnitude can be controlled by proper design. Coefficient

/ is analogous to a negative spring constant, which varies with w and is finite only

because air is compressible. As noted by Saramento and Falcao (1985), this springlike

effect of air compressibility is equivalent to adding an imaginary term to the turbine

proportinality constant K, thus introducing a phase difference between the pressure

and the mass flow rate.

2.2 Diffraction problem

2.2.1 Analysis

We consider an incident wave from infinity at the angle 0 = a with respect to the

wedge. Inside the water the potential is governed by:

V2 y=0 (2.2.1)

The boundary conditions are:

- 0 on the bottom and the walls (2.2.2)
On

-0 2= 0 at z=0 (2.2.3)
Az g

Let k be the positive real root of the dispersion relation:

W2 - gk tanh(kh) (2.2.4)



and ki, I = 1, 2,3, ... the positive real roots of:

W2 = -gkl tanh(k1h)

Let Zo(z) and Z,(z), 1 = 1, 2, 3... be the corresponding eigenfunctions:

cosh(k(z + h)) 1
Zo(z) = , No 2- 1

No; 2 (

cos(ki(z + h))
Ziz) = N1

N= 1 ( A sin(2kh)
2 2kih

S 1, 2,3...

The eigenfunctions are orthogonal for -h < z < 0:

IoZi(z)Z,(z) = ho61P (2.2.8)

For simplicity we denote k = iko and include Zo(z) in the set of (2.2.5) with I = 0.

All Z, satisfy (2.2.3) and the no flux boundary condition at the bottom.

Potential outside The potential outside the cylinder (r > a) can be expressed as

the sun of two potentials:

(2.2.9)Oext = -I + CP2

where W1 is the potential due to a cylinder extending to the bottom at the end of a

wedge and ;2 is a correction due to the opening. 91 is solved exactly by Martin-Rivas

and Mei (2008). The calculation is reported in Appendix A with the following result:

ig A

o -0

27ri cos("' e- Y, (h a)
-1' ( (kr)

Zo(z)

Zo(0)
(2.2.10)

J(ka)
- " ( Yn(kr)

Y ', ka) -

1, 2, 3,... (2.2.5)

and

sinh(2kh)
+ 2kh (2.2.6)

(2.2.7)

vIr i

( 

a)

n6
Cos



where co = I and cn = 2 for n > 1. 02 can be written as the infinite serie of modified

Bessel functions vanishing at infinity:

igA K(kir)

w - kiaK'n (kia)
n=0 1=0 v

nc
cos -- Ziz)I/v

where An, are unknown coefficients. P2 satifies the no flux condition on the two walls

of the wedge. The coefficient for I = 0 corresponds to the outgoing wave (Abramowitz

and Stegun (1964), formula 9.6.4):

Ka (kr) - Ki (-ikr) 2 ie 2 H (kr) (2.2.12)

For all I # 0, Kn (kir) dies out at infinity.

Potential inside. Inside the cylinder (r < a) the potential is due only to the

opening and can be expressed as an infinite serie of modified Bessel functions finite

at the origin r = 0:

- E (B 1 cos(nO) + Cnj sin(n 0)) kiajkia) Zi(z)
n=0 1=0

where Bnz and Cj are unknown coefficients. For 1 = 0 we have:

In(kor) = Ir(-ikr) = (-i)"Ja(kr)

(2.2.13)

(2.2.14)

Flux continuity at the opening Since (P1 satisfies the condition of no flux on the

surface r = a, continuity of the radial flux at r = a leads to:

2 _ - U(6, z),
Or Or

0 < 0 < v-r, -h < z < -d (2.2.15)

In addition, the no flux condition on the wall of the cylinder imposes at r = a:

0 ,2 = 0, 0<50<vr -d<Z<0

(2.2.11)

(2.2.16)



for v7 < 0 < 27r - h < z < -d

0 < 0 < 27 - d < z <0

Combining (2.2.15), (2.2.16) and (2.2.17) we finally get:

0
= U(0, z)

0

for 0 <0< v - d < z < 0

for 0 K 0 K v7 - I < z < -d

for 0 < 0 < 27r, -d < z < 0

for 0 K 0 K v7r, -h < z < -d

for v-r K 0 < 2-r, -h < z < -d

Equation (2.2.18) gives:

A, cos (+)
a -01 U(0, z),

0 <0 < vt,, -d K z <0

0 < 0 < vKr, -h < z < -d
(2.2.20)

Using orthogonality we obtain:

V7 A I- aw I-(I J*11

Ai = IA ,
en ghA1 _-h J

(nO
J(0, z)Z( z) cos )ddz

Similarly equation (2.2.19) gives:

ig A Y
aw n1=0 1=0

0

0

(Bni cos(n0) + C, 1 sin(n0)) Zi(z)=

for 0 < 0 < 27r, -d < z < 0

for 0 < 0 < v7r, -h < z < -d

for vc < 0 < 27c. -h < z < -d

Using orthogonality we obtain for any I and any n:

27r

En
= 1u I- U(0, z)Zi (z) cos(nO)d0dz

ghA -h,

o 0p (2.2.17)

O22 0
U(0,u z),

and:

Urc

(2.2.18)

(2.2.19)

(2.2.21)

(2.2.22)

(2.2.23)



-d f 
u

En ghA -h
U(0, z)Zi(z) sin(Pn0)d~dz

Continuity of the pressure At the opening r = a the continuity of the pressure

requires:

P1 +(P2=VC for 0<0< 1/7r -h<z< -d

For brievety we shall use the following notation:

27ri cos(")e-Y (ka)
E=h" J(kr) -

" IF Zo(0)H (ka)

Thus equation (2.2.25) can be written as:

J' (ka)

Y' (ka)
Yn(kr))

(2.2.25)

(2.2.26)

Kn(ka)
Zo(z) +( A.1 kaK' (k a)

n=0 1=0 v

cos Z(z)
li/

(B 11 cos(n.) + C,,, sin(nO)) kIal'A(ka) Zi(z) (2.2.27)
n=-0 1=0

Ani, B,,i and C,,1 can be replaced by their expression in equation (2.2.21), (2.2.23)

and (2.2.24). This leads to:

Enzaw -d

27ghA .Jh

Eniaw

27ghA

Eliaw

v~'rghA

-~1 d fy11r

fh i,0

U(0' z')Zi(z') cos(nO')d0'dz' I (ka)
kjoI,', (kia)

U(' z')Zz(z') sin(

U'.') Z, (') Cos

k 1In',(kia)

(no, 1(11 (k~
d0'dz' V

kjci.K71

cos(n.0)Zi(z) +

sin(n)Zi (z) -

(2a) ( 2O

(2.2.28)

Z En~cos
n=0

n-)

E=0 cos
n-o

no Zo (z)

n01 0

n=0 1-0

71=0 1-0

(2.2.24)



Fredholm integral equation for U The previous equation can be rewritten as

the integral equation:

-d U(', z')C(O, 0', z, ')dO'dz' = Encos z)(
-h 0 =0 (2.2.29)

for 0<0<v r and -h<z<-d

with the kernel:

/C(8, 0', z, z' ) =

C O I,, (k ka)
Z,(z'),Z(z) I(ka [cos(n0') cos(n0) + sin(nO') sin(nO)]2,r gh A k Ia I,',(k k1 a)n=0 1=0

e i aw K-n(ki a) nO nO'
-II Z W(')ZZi (Z) COS cos - (2.2.30)

v7ghA kiaK'n (kia) V Vnt= 1=0 --

Expansion of U We expect U(0, z) to be singular at the opening z -d. Following

Porter and Evans (1995) we expand it as follow:

U(0, z) = 7A - ,'T,..(0)1p(z) (2.2.31)
m=0 p=O

with

up(z) = 2(-)P T2 (2.2.32)
-rF '(h - d)2'-(z +h)-' h- d

'Tn(0) =- T*, -(2.2.33)V7

where T, is the Chebyshev polynomial of order n and T* (s) is the shifted Chebyshev

polynomial (see J.C. Mason (2003), chapter 1, paragraph 1.3). The shifted Chebyshev

polynonial expansion in 0 is used to speed up the convergence of the serie. Let us

described the shifted Chebyshev polynomial and for this let us denote x = 0/v7r. We

map the independent variable x E [0, 1] to the independant variable s E [-1, 1] by

the relation

s = 2x - 1



Then s = -1 corresponds to 0 = 0 and s = 1 to 0 = v7r. The shifted Chebyshev

polynomial of degree n in x E [0, 1] is defined by

T*(x) = T,(s) = T(2x - 1)

The first polynomials are then

T1*(x) = 2x - 1, T2*(x) = 8X2 - 8x + 1, ...

The shifted polynomial satified the following recurrence relation:

T*(x) = 2(2x - 1)T* t(x) - T*-2(X)

with the initial conditions:

TO*(x) = 1, TI*(x) = 2x - 1

We shall make use of the following identity:

IthUp(Zl(r)dz 1/2 p2 p {n (h - d)} Fpi

For brievety let us use the following notations for the following integrals:

~(7krn) =

S(n, n)

C,,(n, n) =

Tm(0) cos (n0) dO

1 Tm() sin (nO) do

[ (0) cos do10 (rO) d

To*(x) = 1,

(2.2.34)

(2.2.35)

(2.2.36)

(2.2.37)



For the numerical computations the previous equations can be easily evaluated as

follows. Expanding 'T, as a sum of power of 0, we write:

mn

(2.2.38)Tm(0) = 7k0
k=0

The three previous integrals become then:

n, m) = Y 0A cos (nO) dO
k=0

rnr
S (n, m) Z yk / k osi (n1) dO

k=0

(2.2.39)

(2.2.40)

(2.2.41)

Each integral can now be calculated by making use of the following recurrence rela-

tions:

0 k sin 0 + kok 1JOk cos(0)d0 =

6k sin(O)dO = - 0 k cos 0 + k0A-

cos 0 - k(k - 1) Ok2cos(0)dO

'sin 0 - k(k - 1) f k-2 sin(O)dO

Replacing U(, z) by its expansion (2.2.31) in equation (2.2.28) leads to:

jEncos
n1=0

(0' Zo(z ) =flo

amp
mn=0 p=0 n=0 1=0

-EE
'm=0 p=0

267 kIa (kla) Z (z)Flpi (cos (nO) (n, n) + sin (nO) S(m, n))

CSo Z1 (z)FpiQ2v(n, In)
( V )

(2.2.42)

(2.2.43)

vkjaK' (a)n1=0 1=0

(2.2.44)

00 00

EE



We multiply both side of equation (2.2.44) by T(O)up(z) and integrate for

0 < 0 < v7 and -h < z < -d. For any Al and P we get:

-I Ecos J Zo(z) =
nI=0 ( V')

-71 k a) Z,(z)Fpi ((n, M)(n, m) + S(n, M)S(n, m))amp E
n=0 1=0

(2.2.45)

The coefficients amp are solutions of a linear infinite system of equations defined by

(2.2.45). This system will be solved by truncating the series after the N"I term.

Once it is solved, we can obtain the coefficients Ani,Bnii and Cni from respectively

(2.2.21),(2.2.23) and (2.2.24). Then the potentials are given by expressions (2.2.11)

and (2.2.13).

2.3 Radiation problem

2.3.1 Analysis

The potentials in the water inside and outside the cylinder are governed by Laplace

equation and satisfy the no flux condition on all solid surfaces. On the free surface

they satisfy

-Pa at z = 0 for 0 < r < a
P9

0 at z = 0 for r > a

The potential outside must also behave as outgoing waves at infinity. Taking into

account the symmetry of the problem with respect to 0 = ",the potential inside can

be expanded as the infinite serie of eigenfunctions as follows:

- c1= ia Di "I(kir)
[pW D kiaI;kia)

n =0 1=0
cos n (4 - ZiT)] Z1(z) -

tza (2.3.2)
p[9

-EEm=0 p=0

m=0 p=0

c 0C ~Kn (ka)Al

aaI V k Z I (-z) 0F pit (n , )t (n , M )

n1=0 1=0

Oz
4C

g
(2.3.1)



where D,, are unknown coefficients. The potential outside can be expressed as:

.- ()Cjj
0o = -- a

nW7=0 1=0
cos (2,nO) Zi(z)

where Er, are unknown coefficients. The potentials ec,, and $o satisfy the no flux

condition on the bottom, on the walls of the wedge, r > a, 0 = 0 and 0 = v7Tr, as

well as the free surface boundary condition given in equation (2.3.1). Note that the

radiation problem, the added mass and damping coefficient, do not depend on the

angle of incidence.

Continuity of the radial flux At the opening of the cylinder (r = a, 0 E [0, v7r])

the radial flux must be continuous:

- - U(,z), 0 < 0 <v
Or

- h z < -d

In addition, the no flux condition must be imposed at r = a on the vertical wall:

=b 0 ,

= 0, [v7r < 0 < 27 - h < z < -d] and [0 < 0 < 27
br

Combining (2.3.7), (2.3.5) and (2.3.6) we finally get:

00

and:

0ec
Or

- d K z <0]

(2.3.3)

dr
(2.3.4)

(2.3.6)

(2.3.7)
0 for 0 K 0 < v7t - d < z < 0

U(, z) for 0 0 <; v - h z < -d

0 for 0 < 0 27r, -d < < 0

U(0, z) for 0 < 0 < vr, -h < z < -d

0 for v7 < < 2, -h < z < -d

(2.3.8)

Era K2,(,r
kjaK-2,,(k k(a)



The derivatives at r = a are given by:

- I jD cos In
apw n=0 1=0

-
nPa- E cos

n =0 1=0

- 2 )] Z1(z)

2n0 Z' (z)

Using equations (2.3.7) and (2.3.10) on the one hand and (2.3.8) and (2.3.9) on the

other, and the orthogonality properties, we get:

-d27D = iap.
D h fEn. pah

j U(, z)

and

C7n Pa -

cos In (0 - 2)] Z,/)]Z(z)dOdz

U(O, z) cos [2n ZI(z)d0dz

Note that for n = 0 the previons equations gives:

2
E0l = - Do,V0

Pressure continuity Continuity of potential at the opening imposes:

#OJr=a = dCjr=a for 0 < 0 < vr and - h < r < -d

thus for 0 < 0 < vr' and -h< r < -d,

K2 ,, (kia)
kjaKn(kia)

cos - ZI(z)
v

(2.3.15)Dei k1 7, (k) (os
k, a' (k, a) I,(

We replace in the previous equation D,, and

En, by their expressions in (2.3.11) and (2.3.12). We get an integral equation for

and

-I r=a

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

n=0 1=0

n=0 1=0

Fredholm integral equation for U

OrIr=a

1*2,)IZ, (z) + 1I



-I V1c d

pwa= 0 hU(6' z')/C(6, 0', 2, z)=d6'dz'

with the kernel:

IC(0,', z, z')

E ., K),, ki a)_
,= 1 vr k_ aK_ (kia)

27 kaI' (ka)
n=0 1=0

(2n0 Ncos (
V

(0 - 2)] Zi(z)Zi(z)

Expansion of U Taking into account the symmetry of the problem we can expect

U(0, z) to be symmetrical with respect to 0 = v7r/2 and as a consequence we expect

U(0, Z) - U(v7r, z). Thus it can be expanded as a continuous function in 0. Therefore

for this problem the Fourier expansion will converge fast enough and we don't need

to use the expansion with Chebyshev polynomials for the independant variable 0:

U(0, z) =
fiw

Cos -
0 V

f f amp cos
m=0 p=O

2m0 
v7

v 2 uz)

(2nO v7
c Vos -' d ownn( 1)'"

v~ em

Let us use the following notation for brievety:

R = Jjv cos 2m
0 v

(0- -)
2 _

cos In (0 - dO (2.3.20)

Replacing U(O, z) by its expansion in equation (2.3.16) gives:

m=0 p=0 n=0 1=0

en om (-)I7 K2n1' kia)
7r emkjaK--n(kja)

1 I ,(kia) Cos T
2 F k f i aI (kia)

cos (2-n

- Zi (z)}2

U(O, z):

(2.3.16)

(2.3.17)

We have

(2.3.18)

(2.3.19)

(2.3.21)

Cos -,O ZI z)ZI (z'
V

Cos In

2



We multiply both side of the equation by cos [7 (0 - 2)] up(z) and integrate for

0 < 0< v7r and -it < z < 0. We get for any Al and P:

h vC C K2Akia)

a -- 0 1E0 EAI kiaK2A,(kia)

(2.3.22)
- E E amp

m=0 p=0

Similar to the scattering problem, we have a linear infinite system of equations that

will be solved numerically by truncating after the NtI term.

2.3.2 Energy conservation

We consider a large vertical cylindrical surface S,, enclosing all free surfaces and

rigid boundaries and extending from the free surface to the bottom. Let us define the

following notations:

* Sc the free surface inside the OWC

" So the free surface outside the OWC

" Sb the bottom surface in and outside the OWC at z -h.

" S, the vertical surface of the cylinder (internal and external surface)

Let us denote for simplicity # the potential solution of the radiation problem:

# = #c inside the cylinder and #- = o outside. By using Green's identity and the

Laplace equation , we get

2i . Im (J dS) = 0 (2.3.23)

with

S = S1 Sc U SoUS U SWU S(.

2rFpj Fpi Rmn, RunTI ki'a)
,n=0 i=0

(2.3.24)



We already know that the integrals for So, Sb, and S. are equal to zero, using the

properties of outgoing waves and the boundaries conditions. Thus we get:

$ dS+IniOn,
#dS = 0

( Z' (J~)jZ=

(2.3.25)

dS (2.3.26)
0-66vr - Ir|<a

Inside the cylinder, on the free surface (z = 0) we have the condition:

aC - _Pa

which gives

C 7 Dz - -PaW, OZ pw

a Wc 2

w2 Dz

2

p a Oz

c Re

(2.3.27)

(2.3.28)

(2.3.29)

(2.3.30)

rdOdz) = m j

Using the identity: Im(iz) = Re(z) we obtain finally:

= -Re ( 7,ja
Pa5
PWO

00615 rdrdo)

(2.3.32)

Equation (2.3.32) means that the power input by the chamber air inside the cylinder

must be equal the power outflux through a vertical cylinder around the column. Using

(2.3.3), the left-hand side of (2.3.32) becomes:

Re i hrv7=
a_0

SK 2n (kor)A72(kor )*|Etto 2 C ka ' I
n ko 2n|G( koa)|

(2.3.33)

J i;
Im ( 0 dS = -Im

So i"( O)

Since

We obtain:

(-A

Re (

rdrdO)
(2.3.31)

0o00Or ) rdOdz)

Im00 a(O

|6,|I 2

pW



which involves only the propagating mode E1o. Making use of the relation:

K 2n(kor) = 2 '' H 2ni(kr)

it becomes:

Re (i
|p( | 2
PLO

On Sc kr is very large and the Hankel function can be replaced by its asymptotic

H2,, (r) 2 ~i(kr-v7r/2-7/4) (2.3.36)

Thus the left-hand side of (2.3.32) is finally reduced to:

2 IF2( " 2hv Eno3 2 1
PC , n=0 En kaH2,(ka)|

(2.3.37)

Using the definition of the damping coefficient, the right-hand side of (2.3.32) becomes

a 1B (2.3.38)

or with non dimensionalized damping coefficient

(fI ) 2 11

\ p (23/7 g1

Combining equations (2.3.39) and (2.3.37) gives finally

53= 2v | 9 "'C' (Eno 2
W E ~ C7n koaK2,n(koa)|1

(2.3.39)

(2.3.40)

This identity can be used to check numerical computations.

(2.3.34)

hrvr E
71=0

form:

(2.3.35)F 2,n(kr)HJ1,,(kr-)*
Eno 2 .ka2|HI-2'n (ka)|1



2.4 Reciprocal relation of Haskind

In this section we demonstrate a reciprocal relation between the damping coefficient

and the scattering coefficient for an OWC at the tip of a wedge of v7. Following Evans

(1982), let us consider again a large vertical cylindrical surface Soo enclosing all free

surfaces and rigid boundaries and extending from the free surface to the bottom. We

keep the notations of the previous section. Let us recall that the radiated potential

outside the OWC must be outgoing at infinity and thus it satifies:

#o ~ Ao (0) Z(z) (2.4.1)

where AO is the amplitude of the radiated wave at infinity. The vertical displacement

inside the cylinder is given by:

/' O(#c dSSf '4 d 5
- (B - iC) a

Equation (2.3.32) gives:

Re ( rd dz = - Re (j 0, I D00Cj
rdrd0)

(2.4.3)

And we know from (2.3.38) that, the right-hand side of this equality is equal to:

" B (2.4.4)

Using equation 2.4.1 the left-hand-side becomes

RHS =Re ( rd0dz)
I -i (#0 0 j

-Re lim :
orC JO -1

eikr
Ao (0)

Vkr

-Re lim h |A0 (0) 2

=h | Ao(0 )|2 d0

(0) C-ikr

2r ) (2.4.5)
S i )2kr

do)

(2.4.2)

-i #0



Equaling the two sides gives finally

S3_ hpw fJo
Pa, .10

IAo(O)|2 dO (2.4.6)

Let us focus now on the diffraction problem and consider an incident wave of ampli-

tude A0 from the direction a. The diffraction potential is the sum of the potential

of the incident wave pg and the potential of the scattered wave: p = p1  + p's with

<pS outgoing at infinity. We apply Green's theorem to p and # and use the boundary

conditions. We have:

sc 00C
,I

(s000i
Using equation 2.3.27, we can write the left-hand side as:

L. ( -c z O+)dS

a
pg

j 0 8dS

pbw

dS = 0 andBoth <p and #0 are outgoing at infinity thus - f f ,
thus the left-hand side can be written as:

- o dS

- C-ik(xcos(a)+ysin())Zo(z)dS
Or)

ig 0

W Zo(0 )
0 0
or

@ 0o 0) dS (2.4.7)

LHS=1

J1
1P( JAl

- &OC!Oz dS
Oz j (2.4.8)

- iI,,
(2.4.9)

-0 ds

g) 2

psooo - P )o



Replacing #o by its far-field expression given in 2.4.1 we obtain for the previous

expression:

lim -/ L
0"

SCkr -
AT ik (

±1 ekr
+ Aoe ik (cos 0 cos a + sin 0 sin a)

x e ikr(cos 0cosa+sinOsina) rdO

S- ghAo r

WZO(0) Jo
A0(0)(1 + cos(0 - a)) cikr(cos(0- ))dO

From the method of stationnary phase it follows that the right-hand side of equation

(2.4.7) is finally equal to:

A , 2A (a)
w Zo(0) K r/4kr

gh Ao
=- 2 27re ir Ao(o)

w Zo (0)
(2.4.11)

Thus equaling (2.4.8) and (2.4.11) we obtain:

iZo(0)p'C ei"/ 4 -
Ao(at) - P a D

2V 2_pghAo
(2.4.12)

which is a relation between the radiation and the scattering problems. We can now

replace in (2.4.6) the expression we got. previously in equation (2.4.12). This gives

wZo(0)2 - V7 D() dO
8,rpg2hAB 20O

(2.4.13)

Since Zo(0) 2 = __, we obtain the final relation:

BrCgpgA jO

and with (2.1.9)

(2.4.14)

k
B = K

8,rC9 pg2 IF (0)|2 d6

ighA0

w ,ZO(0)

(2.4.10)

(2.4.15)



This can be rewritten with dimensionless variables as

~ kh2  / ~, 2

87rC 0
(2.4.16)

This expression is the generalisation of the formula given by Evans (1982) for the case

of v = 2 and by Martin-Rivas and Mei (2009) and Evans (1988) for the case v = 1.

2.5 Energy extraction

Recall from 2.1.15 that the extraction efficiency is given by

(2.5.1)kL = khg
0 ,g J/hg

and let us focus on method to optimize the power output.

2.5.1 Optimization for a given frequency

A natural optimization method is to differentiate the previous expression with re-

spect to both 0 (size of the cylinder) and x (turbine characteristics) and to set these

derivatives equal to zero. This leads to the well-known criteria:

/3(w) = (w) and X(w) = 9(w)

Under these criteria, (2.5.1) becomes

ALmax - Ckhg 1(a) 2
"C 9 g/h 453

(2.5.2)

(2.5.3)

2



Replacing B by its expression in (2.4.16) we obtain that the maximum capture length

is equal to

27r P(ai)2
kLmax (a) 2 (2.5.4)

J F(0) d9

However in practice it is impossible to use the strategy for all W. Indeed, once the

OWC is built, the value of /37w is fixed (see equation (2.1.16)). However the value

of x miay still be controled in real time through the rotationnal speed of the turbine

blades. An idealized strategy for the OWC is thus to optimize the power output for

all frequencies. This strategy will be studied in the next section and used further in

our pratical cases.

2.5.2 Optimization for all frequencies

Let us find now the best extraction rate for maximum extracted energy at all freque-

cies. The coefficient # is now a known function of the frequency. By differentiating

(2.5.1) with respect to the extraction coefficient y and setting the derivative equal to

zero leads to the following criterion:

opt (W) = 2 + ( - ) (2.5.5)

Pluging this result into (2.5.1) and making use of the reciprocal relation (2.4.16), we

obtain the expression of the optimum capture length:

22
kLopt =7 2 (2.5.6)

B2 + ( # + + C -2}* f ~ ' a

Note that

2
27r F(a)

k LOpt (a) =k Lmiax(a') =i2 if and only if #3(w) =C(w) (2.5.7)

X " da!



Thus when 3(w) = C(w), the angular average, i.e. average over all angles of incidence,

of the capture length is equal to

kLOPt =kp(a) da (2.5.8)
VA 0

The angular average kLpt is a decreasing function of v represented on figure (2-2).

In particular, it is equal to 1 for a thin breakwater (v = 2) as already found by

Martin-Rivas and Mei (2008) and to 2 for a straight coastline (v = 1) as described

by Martin-Rivas and Mei (2009). Let us note that at the limit when v goes to zero,

10
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5 -

4

3

2

1

0 0.5 1 1.5 2

V

Figure 2-2: Evolution of the angular average of the capture length with v

kLopt goes to infinity. Indeed (2.5.3) shows that kLopt is proportial to the inverse of

B. As v -* 0, numerical simulations (see figure 2-3) show that the damping coefficient

diminishes with the angle (2 - v)r. Also even for a small opening angle, using optical

geometry analogy (see figure 2-4), all the incident wave energy is channeled to focus

at the OWC. This explains why the averaged capture width goes to infinity.

2.5.3 A more practical optimization

The previous optimization assumes that the value of X can be controlled in real-time

so that for any frequency x = Xopt where xopt has been defined in equation (2.5.5).

However this may be difficult in reality, especially if the range of value of Xowt(w) is

large. Thus a more practical optimization can be achieved by considering that X is

a simple function taking only two values. Let us now turn to two specific cases for
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Figure 2-3: Damping coefficient as
(dotted) and 1/4 (dashed-dotted)

function of kh for v equal to 3/2 (plain), 1/2

Figure 2-4: Pattern of an incident wave focused toward the OWC



further details. The method on how to choose the two values for x will be explained

then. We now describe explicit results for two special cases: v = 3/2 (convex corner)

and v = 1/2 (concave corner).
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Chapter 3

OWC at the convex corner of right

angle coast

In this chapter we consider the specific case where v = 3/2 and thus the angle of

the wedge is comprised between 0 = 37r/2 and 0 = 21r as shown in figure 3-1. We

only need to replace v by 3/2 in the previous chapter to obtain the equations for this

specific case. We will only summarize the results here.

sea

3r/2

F r 3Coast

Figure 3-1: OWC at the tip of a wedge of angle 37r/2, top view



3.1 Diffraction problem

We consider an incident wave from infinity at the angle 0 = o- with respect to the

wedge. The potential outside is given by equations (2.2.9), (2.2.10) and (2.2.11):

(3.1.1)Vext = (i + V2

with:

= igA 4cr,
3

n=0

icos )e-1" Y2. (ka)
3

311 (ka)
3

(J2n(kr)
J', (ka)
-3 Y2?t
Y, (ka) -T

(kr)) (3.1.2)

co = land c, = 2for n. > 1

ig A ">- C K 2nI( kir )
kaK', (kia)

The potential inside is given by (2.2.13)

Pc = igA (BnI cos(n0) + C
n=0 1_ 0

cos ( -2A ) Zi(z)3

sin(nO)) 1", (kiar) Z1 (z)
k a I,' (k, a)

Coefficients An,, B,, and C, are given respectively by (2.2.21), (2.2.23) and (2.2.24):

37
21An

iaw
yhA

f -d 3-/2

ih 

27 iaw .- d 137/2

-B1  = I
En ghA _h J

27 iaw -d f37/2

yhA _h 0

U(0, z)Z(z) cos ( ) d~dz

U(0, z)Z(z) cos(n0)d~dz

U(0, z)Z(z) sin(n0)d~dz

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

.0 2n6) Zo(z )
3 Zo (0)



where U(0, z) is defined in equation (2.2.31)

U(O, z) = gA amp 7-Tm(0) 1z)

m=0 p=0

where

u~(z 2 (-1 )P
Up (z) = (h d)(z T2p

7cF ( h - d)32 - ( z + h1)2

z + h

h - d)

T * 20 )'Im (0) =Tn (
Coefficients amp are solution of the system defined by equation (2.2.45):

h 00

az8,ncos
n=0

a

- a
m0 0

m-0 a-

( 2n)Z()
S3 () =

- 2 k1 1 (k aa)) Fej Fp, (Q(n, M) i((n, m) + S(n, M)Sr(n, m))
,n=0 1=027ka,(k )

2 K 2 n(kia)
mp kaI7,3 (ka) Fp (z)Ft,3/2(n, m)731 2 (n, M)

n=0 3=0 -1~

with the notations given by (2.2.35), (2.2.36) and (2.2.37):

37r/2
f(n, M) =

37r/2

Sn m) =

f 37r/2.0

Tm(0) cos (nO) dO

'T,(0) sin (nO) dO

m(0) cos 2nO dO

3.2 Radiation problem

The potential inside the cylinder is given by equation (2.3.2):

Cos nK4c E Dni 1 1(kr)
Pwn=0 1=0 k ,,(,a

37r Z1(z) Pw

(3.1.8)

(3.1.9)

(3.1.10)

( 3/ 2 (n, n)

(3.1.12)

(3.1.13)

(3.1.14)

(0- (3.2.1)



The potential outside is given by equation (2.3.3):

i00 Kn_(kir)
$o ZZEn An(i)

pw ntkiaK,( kia)
n=0 0

cos (n Zi(z)3 Z (3.2.2)

Coefficients D,, and E., are can be calculated with equations (2.3.11) and (2.3.12):

27r
Dn

en

zapow

pah
h

3w Eni =
26 1

U(0, z) cos [n (8 - 37) Zi(z)d~dz
, 3ir/2 4

iapw
- hFa

'~d JO

-h 37r/2
U(0, z) cos

(3.2.3)

(3.2.4)S1Zi(z)ddz

The expansion of U(0, z) is given by (2.3.18):

U(0,Yz) = -'l (famcos
m=0 p=0t

(3.2.5)

Coefficients a,, are calculated by solving the linear system given by (2.3.22):

h
- 3 7

6A&06ip0
a

P=O 1=0

37 1V2A(kla)
EAI kIaA 2 AI(kla)

anp -FpI F 1Rin
n= p= n=0 1=0

Rin = jf37/2

0

cos -
3

cos n
37r

0- - dG
4 )

3.3 Numerical results

We present in this section the results obtained with the program for the diffraction

problem and the radiation problem separately. The results of two programs will be

combined further to study the energy extraction rate. All the results are computed

with non-dimensionalized variables.

where

k I 'kia) (3.2.6)

(3.2.7)
37 ~
4 _]

4m 0-37r ~P(Z
3 - 4 i()]



3.3.1 Numerical results for the diffraction problem

It has been shown by Martin-Rivas and Mei (2008) that for an axi-symmetric structure

in the open sea (corresponding to v = 2) the vertical flux rate inside the cylinder is

independant of the angle of incidence a. This is no longer the case if v # 2 and the

scattered wave must depend strongly of the angle of incidence.

Figure 3-2a presents the square of the absolute value of the scattering coefficient

1 at three different frequencies, kh = 2.21, 4.12, 6.34 as a function of a. The inputs

are h/a =2 and d/h = 0.2. Figure 3-2b presents the same coefficient for a/h=1/4 and

kh=2.909. Due to the symmetry of the problem with respect to 0 = 37/4, the figures

only present the results for a range of a between 0 and 37/4. We see that for the two

40 76

35 --kh=2.2 I
35

30

25-

20 kh=2.909

15- kh=4.12

5

kh=.30.5 1 1.5 2 70 0.5 1 1. 5 2

(a) a/h=1/2 (b) a/h=1/4

Figure 3-2: Scattering coefficient function of a. Left: a/li=1/2 and right: a/h=1/4.
d/h=0.2

2
configurations the incidence angle has a strong influence on ((a) . This influence

is more or less strong depending on the frequency. Figure 3-3 presents the relative

difference between the scattering coefficient at the angle a and at the angle 0. We
2

see that for a/h = 1/2 and kh = 2.21 the value of If(a) remains almost, constant as

a increases whereas for kh = 4.12 the relative difference decreases of 85% and then

increases up to 95%.
2

Figure 3-4 presents the variation of 1(kh) as a. function of kh for a fixed incidence

angle a = 7r/4 and a/h = 1/2, 1/4. In the two cases, the scattering coefficient

presents one broad maximum. Its intensity decreases and its frequency increases as
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Figure 3-3: Relative difference of the scattering
a/h=1/2 and right: a/h=1/4. d/h=0.2
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Figure 3-4: Diffraction-induced vertical flux coefficient as a function of kh. Plain:
a/h=1/4, dahs-dots: 1/2 and dash: a/h=1/4. d/h=0.2 and a - -r/4
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a/h decreases.

3.3.2 Numerical results for the radiation problem

Two important quantities for this problem are the damping coefficient B and the

added mass C. They will further be usefull to calculate the energy extraction rate.

We recall that these coefficients are given by

QR -(B- iC) - = (3.3.1)I.fi 00 dS

Replacing the potential by its expression in (3.2.1) and using the dimensionless vari-

ables defined in (2.1.14) gives

1 (

khtanh(kh) .

ki tanh(kh)(.f

where we have used the relation Vg/I? w =

S iD Io(ki'r) Z'(0)dS
h kiaI&(ki'r)

(3.3.2)

(3.3.3)aiD o(kr)h kaIkr)'()

1 /kh tanh(klh). The previous inte-

grales have been discretized with a integration step of equals to 6r = 0.01 in order to

perform the integration numerically.

Variation of B and C with kh for a large OWC

We first fix a/h = 1/2 and d/h = 0.2. Figure 3-5 presents the variation of B and

C as kh increases.

The damping coefficient presents three peaks of resonance at kh equals to 2.18,

4.12 and 6.34. The intensity of the first peak (equal to 4.72) is much larger and

broader than the second (1.78) and third one (0.54). The added mass C presents also

peaks at the same frequence as those of B and changes sign around kh = 2.15. This is
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Figure 3-5: Variation of the damping coefficient and the added mass as kh increases
for a/h = 1/2 and d/h = 0.2

an important property of OWC already known and dicussed by Smith (1958), Evans

and Porter (1997) and Evans and Porter (1995). Here C only changes one time of

sign and has a shape similar to two N juxtaposed. It is now interesting to understand

which modes are responsible for the peaks we observed before. For this purpose, let

us focus on the free surface elevation inside the cylinder for frequences near to each

peak's frequency.

First peak of resonance

Figure 3-6 presents for different instants a 3D view of the free surface oscillation inside

the cylinder for kh near the first peak of B. The surface oscillates and is very flat with

a slight tilt (see for example figure 3-6d). These oscillations of the surface are similar

to Helmholtz mode oscillation. The free surface inside the cylinder has a piston-like

motion. However pure Helmholtz mode cannot exist because of the asymmetry of

the opening. Another mode must be excited, and is responsible for the slight slope.

This can be verified in the following way: from equation (3.2.1), we know that the

coefficient associated with each cosine is given by:

cn = Z Dn I"(kr) Z1(0) (3.3.4)
k1 aI' (kia)
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Figure 3-6: 3D plot of the free surface elevation inside the cylinder, i/Ao for kh = 2.21.

a/h = 1/2, d/h = 0.2. Radiation problem
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(a) t = 0.67r/2w

(c) t = 2.57r/2wx

(b) t = 1.2ir/2w

(d) t = 37r/2w

Figure 3-6: 3D plot of the free surface elevation inside the cylinder, rl/Ao for kh = 2.21.
a/h = 1/2, d/h = 0.2. Radiation problem
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Figure 3-8: 3D plot of the free surface elevation inside the cylinder for kh = 4.12.
a/h = 1/2, d/h = 0.2. Radiation problem

m 0 1 2 3

Jml 0 1.84118 3.05424 4.20119

Table 3.1: Value of j,' 1, eigenvalues of a close circular basin
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Third peak of resonance

Figure 3-9 presents for different time a 3D view of the free surface oscillation inside

the OWC for kh 6.34. We see that these oscillations are very different from the

y
x

(a 0 .17n/2w
x

(b) t- /w

Figure 3-9: 3D
a/h = 1/2, d/h

020

d 10-

-- 1

0 0

(c) t 2-r/2w (d) t 37/2w

plot of the free surface elevation inside the cylinder
= 0.2. Radiation problem

two previous situations. The free surface has sometimes the shape of a simple saddle

whose curvature changes sign with time (figure 3-9b and 3-9d). The amplitude of the

oscillation is comparable to that of the second peak: between -20 and 20. Figure 3-7c

presents the absolute value of the coefficients of the first four modes for r/a = 0,5.

Clearly the coefficient c2 corresponding to cos(20) dominates. In addition, for this

peak ka = 3.17 is close to j21 = 3.05424 that corresponds to the natural mode

acJ 1(kir) cos(29) + 1J1(kumr) sin(20).

Figure 3-10 presents the free surface elevation for the diffraction problem at the

same frequencies. We see that the pattern of the surface is identical to the one

observed previously.

)105

-10

-5

for kh =6,34.
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Figure 3-10: 3D plot of the free surface elevation inside the cylinder for kh = 6.34.
a/h = 1/2, d/h = 0.2, a = 37r/4. Diffraction problem

As we can see from the study of each peak, the amplitude of the free surface inside

the cylinder is not large in the three cases. This is because the opening of the cylinder

is large (d/h = 0.2). If we reduce the dimension of the opening (d/h --+ 1), the results

are no longer the same. It can be expected for this case that the first mode corresponds

to the Helmholtz mode. The free surface inside the cylinder acts like a piston and the

amplitude of its elevation is very large. This mode is predominent and the amplitudes

of the other mode are extremely small. In order to veridy these assumptions, figure

3-11 presents the damping coefficient and the added mass for d/h = 0.7. There is

7 4

6 3-

2 -- 2
-

00 1 2 3 4 5 6 77

kh kh
(a) Damping coefficient (b) Added mass

Figure 3-11: Variation of the damping coefficient and the added mass as kh increases.

a/h = 1/2 and d/h = 0.7

only one large peak for kh = 1.07. Figure 3-12 presents the variation of the free



surface elevation inside the cylinder at different times for kh = 1.07. We see that the

free surface acts like a piston, thus the peak we observe corresponds to Helmholtz

mode. Let us note that a second and extremely small peak is visible on figure 3-11b

10-

5.

0-

-5.

-10,

(a) t = 27r/2w

10-

-

(c) t 6.27r/2w

Figure 3-12: 3D plot of the free
a/h = 1/2, d/h = 0.7

(b) t = 57r/2w

(d) e = 77r/2o

surface elevation inside the cylinder for

for kh = 3.689, that is ka = 1.845. This frequency is now very close to the eigenvalue

Xi = 1.84118. Thus, as it can be expected, as d/h -- 1 the frequency of each peaks

tends toward the frequency of a natural mode of a close circular basin.

10

.0

-5

-10

kh = 2.21.



Variation of B and C with a/h

Figure 3-13 presents the dependence of B and C on kh for three different values

of the ratio a/h: 1/4, 1/3, and 1/2.

1/2 1 /
4- 1/3

1/2,7' 1/4
I1/4

2 -2

- -3
o 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

kh kh
(a) Damping coefficient (b) Added mass

Figure 3-13: Variation of the damping coefficient and the added mass as kh increases.
Plain: a/h = 1/4, dash-dot: a/h = 1/3, dash: a/h = 1/2. In every cases, d/h = 0.2.

Let us comment on the variation of B. As a/h decreases, the frequency of each

peaks of resonance increases: for a/h respectively equal to 1/4, 1/3, and 1/2, the first

peak of resonance happens for kh, respectively equal to 2.2, 2.6, and 2.9. Physically,

as a/lh decreases, the fluid inside the OWC tends to behave like a piston. In the

limit, a hydrostatic approximation predicts resonance at kd = tanh(kh) = 1, which

corresponds to kh ~~ 5. This trend is confirmed by our computations. For a/h = 1/4

the curve of B shows only one peak of resonance at kh = 2.9. For a/h = 1/3, the curve

shows two peaks of resonance (at kh = 2.6 and 5.8) and for a/h = 1/2 the curves

shows the three peaks that have been studied in a previous section. For a fixed depth

h, the peaks of resonance are narrower for a small radius a and the intensity of the

peaks increases if the radius increases.



Variation of 8 and C with d/h

Let us now consider a fixed radius a/h=1/4 and examine the influence of d/h.

Figure 3-14 presents the variation of B and C for d/h equal to 0.1, 0.2 and 0.3. As

d/h decreases (which corresponds to a larger opening) the curves are flatter. The

peaks are lower and broader and their intensity is higher. Thus for d/h = 0.1, the

peak of resonance of 8 happens for kh = 4.18 and is equal to 1.85 whereas for d/h=0.3

it happens for kh 2.22 and is equal to 3.8.
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Figure 3-14: Variation of the damping coefficient and the added mass as kh increases
for different values of d. Plain: d/h = 0.1, dash-dot: d/h = 0.2, dash: d/h = 0.3. In
every cases, a/h = 1/4

Figure 3-15 presents the same curves for a/h = 1/2. The damping coefficient

presents several peaks of resonance but the previous observations are still valid for

this case.

For most of the simulations, we will take d/h=0.2.

Comparison between a thin beakwater and a straight coastline

The case of an OWC at the tip of a thin breakwater has been study by Martin-Rivas

and Mei (2008) arid the case of an OWC along a straight coast by Martin-Rivas and

Mei (2009). Their results, as well as the results of this nd the following chapter are

combined in the section 4.3 of the following chapter for comparison.
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Figure 3-15: Variation of the damping
for different values of d. Plain: d/h
every cases, a/h 1/2

(b) Added mass

coefficient and the added mass as kh increases
0.1, dash-dot: d/h = 0.2, dash: d/h = 0.3. In

3.4 Energy extraction

By combining the diffraction and radiation problems, we can now study the power

that one may extract from this device. Let us recall from equation (2.5.1) that the

capture length is given by

k L , = hg X

Cg 0 + 5J) + 3)2-
(3.4.1)

where x is the turbine characteristic and 13 the size of the chamber/turbine.

3.4.1 Optimization for all frequencies

This strategy has been developped in section 2.5.2. Let us recall that it assumes that

it is possible to adapt in real-time the value of x to extract the maximum power.

From equation (2.5.6) we have:

(3.4.2)

- ) V( f( ' do'F2 +153Yg



and the maximum efficiency is given by

27r l(a)
kLpt (a) = 37/ (a)_2 if and only if f(kh) = C(kh)

fL" Z(a) da

(3.4.3)

The result are presented with nunerical values similar to those of the pilot station

in Pico Island, Azores, Portugal (Falcao (2000)). The inputs are: D = 2a, N =

2000rpm, K = 0.45 (for one turbine), V = 7ra 2 h, I = 10, Pw/Pa = 1000, g = 9.81
- 2 1

m11.s and Ca=3 4 0 m.s.

Influence of the radius a/h

Let us fix a = 7r/2 and examine the variation of the capture length and the turbine

parameter for 3 values of the ratio a/h. The results are presented on figures 3-16a

and 3-16b. The shape of the curves and their amplitude depend strongly of the value

3.5

2.5

0.5s

1/2

1/3

/4

1/2

A

0 1 -
0 1 2 3 4 5 6 7 0

kh
(a) Capture length

Figure 3-16: Capture length function of kh for a/
case a = 0, d/h = 0.2 and Vo = -ra 2h

1 2 3 4 5 6 7

kh
(b) T/rbine parameter

ht = 1/2, 1/3 and =1/4. For each

of a/h. When a/lh decreases, the curve of the capture length becomes flatter and the

peak of resonance has a smaller value. For a/h=1/4, the capture length has only two

maxima whereas it has 4 maxima for the two other cases. The frequence of the peak

of resonance increases when a/h is smaller. The variation of the turbine parameter is

smoother as a/h decreases.



We know from the theory (see equation (3.4.3)) that maxima of the capture length

correpond to point of intersection of the curve of 13 and C. This can be verified on

figure 3-17.

2 3 4 5 6 7

(a) Capture length
kh1

(b) Added mass and 13 coefficient

Figure 3-17: Left: Capture length function of kh. Right: C (plain) and 0 (dotted)

function of kh. a/h = 1/4, d/h = 0.2, a = 0 and V = 7ra 2h

Finally let us recall that # = C-"2

3c v/ kh.

c - oc w Ckh tanh(kh). Thus for kh > 2,

Figure 3-18 presents the same curves for a = 7r/2.

kh
(a) Capture length

kh
(b) Turbine parameter

Figure 3-18: Capture length function of kh for a/h = 1/2, 1/3 and =1/4. For each

case a = r/2, d/h = 0.2 and V = -ra2h



Infuence of the incidence angle on the energy extraction rate

As we have seen previously, the scattering coefficient depends strongly on the inci-

dence angle a. Thus one can predict that the capture length kL will also depends

on it. Figure 3-19a presents the variation of kL with kh for different incidence angles

and a/h = 1/4. Figure 3-19b presents the same variation for a/h = 1/2.
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(a) a/h = 1/4 (b) a/h = 1/2

Figure 3-19: Capture length function of kh for different incidence angle a: a = 0
a = r/2. Vo = gra 2h

We see that indeed the incidence angle has a strong influence on the shape of the

curve as well as its amplitude. The capure length remains mostly under 2.

For some angle of incidence and some frequencies (in particular kh = 3.93 (ka=1.96)

for a = 7r/2 and a/h=1/2), the capture length is equal to zero: no power is ex-

tracted from the incident wave. This frequency is closed to the first zero of Jj (ka)

(Jj(ka = 1.84) = 0). From section 2.5.2 that the angular average, i.e. average over

all angles of incidence, of the capture length is equal to

kLopt 37/2 kLopt(a) da = - (3.4.4)
37,/210, 3



Influence of the size of the chamber.

In general, to increase the energy extraction rate, a strategy is to introduce control in

the power-takeoff system and to have a extraction rate complex where the real part

corresponds to elasticity. For the OWC, air compressibility provides such elasticity.

Let us recal that air compressibility is related to the parameter # through 3 =

Cpvh , and depends thus of the volume of the chamber Vo. Since the energy

extraction depends of the relativ behavior of the curve of 4 and C, we will examine

in this paragraph the influence of the volume of the chamber on the efficiency of the

device.

Figure 3-20 presents the results for a/h = 1/4 and a = 7/2. The first case (V = 0

on figure 3-20a) corresponds to incompressible air. In this case the curve of 0 merges

with the x-axis and intersects the curve of C at one point at kh ~ 3. At this frequency

the curve of kL has a maximum. As the volume V increases the curve of 4 is shifted

downwards and the number of points of intersection between the curves of 13 and C

increases up to 2 points (see figure 3-20c). Each point of intersection corresponds

to a maximum of the capture length kL. As V continues to increase and reaches

57ra 2h, the two points of intersection of 3 and C converge toward a single point of

intersection corresponding to the minimum of C at kh a 3.2 and as a result the two

maxima of kL merge into a single one (see figure 3-20e). As the volume of the chamber

exceeds 5 (see figure 3-20f) the curves of # and C do not intersect anymore and the

capture length shows one local maxima, which intensity decreases as the volume of

the chamber increases. This corresponds to a situation of poor energy efficiency.

Figure 3-21 presents the same study for a = 0. The same discussion can be done

for a/h = 1/3 and is presented in figure 3-22 for a = 0 and in figure 3-23 for a = r/2..

For incompressible air the curves of 13 merges with the x-axis and intersects the

curve of C at one point at kh 2.5. At this frequency the curve of kL has a maximum.

A second maximum is visible around kh ~ 5.7. As the volume V increases the curve of

43 is shifted downwards and the number of points of intersection between the curves
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Figure 3-20: Capture length (dashed), added mass (plain) and f# coefficient (dashed-
dotted) against the normalized frequency kh for different pneumatic chamber volume
Vo. a/h =- 1/4, d/h = 0.2, at = 7/2, ht = 10m.
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Figure 3-21: Capture length (dashed), added mass (plain) and 3 coefficient (dashed-

dotted) against the normalized frequency kh for different pneumatic chamber volume

Vo. a/h = 1/4, d/h, = 0.2, a = 0, h = 10m.
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of 3 and C increases up to 4 points (see figure 3-22c). Each point of intersection

corresponds to a maximum of the capture length kL. As V continues to increase

and reaches 1.57ra 2h, the last two points of intersection of ,3 and C converge toward a

single point corresponding to the minimum of C at kh = 5.8. As a result the two last

maxima of kL merge into a single one (see figure 3-22d). Similarly as V increases

up to 47ra 2h the fist two points of intersection converge toward the minimum of C

at kh = 3.1 and thus the two first maxima of kL merge into one maxima. In the

same time the value of the last maximum (ecreases with the increase of V. As the

volume of the chamber exceeds 4 (see figure 3-22f) the curves of / and C do not

intersect anymore and the capture length presents two local maxima, which intensity

decreases as the volume of the chamber increases. This corresponds to a situation of

poor energy efficiency.

3.4.2 Comparison between a thin breakwater and a straight

coastline

The present case will be compared in the next chapter with the case of a thin break-

water, studied by Martin-Rivas and Mei (2008), the straight coastline, studied by

Martin-Rivas and Mei (2009) and the convex corner, studied in the next chapter.

3.4.3 A more practical optimization

In this section we shall develop a simpler and more practical way of optimizing the

energy extraction rate than the previous method. Indeed the previous optimization

assumes that the value of V can be controlled and adapted for all W which in practice

may be difficult. Figure 3-16b shows indeed that the range of variation y is large.

In this new strategy the turbine parameter X will only have two values Y1 and

X2. From the curve of the capture length kL obtained from the previous optimization

method we choose to focus on two maxima of kL. The frequency of each maxima

(khi and kh 2) corresponds to a given value of kopt. These two values of kopt are the

one we consider for our new strategy. Let us note that each of these two value is



equal to the damping coefficient at the resonance frequency khi or kh 2 . Indeed, at

the two maxima frequencies we have 8 = C and thus Xopt(w) = B2 + (- ) B

From now on x is a step function V, only taking two values and the capture length

is then calculated using formula (3.4.1). With this strategy the new curve of the

capture length, kL, is calculated. We will denote by (kh)* the frequency at wich the

turbine parameter changes of value. It is chosen in order to optimize kL, as it will

be described later.

Let us illustrate this method for two different configurations: a/h = 1/2 and

a/h = 1/4.

We first fix a/h=1/4, d/h=0.2 and the angle of incidence is equal to -r/2. The

curve of kL and Xopt from the previous optimization are presented on figure 3-24

in plain line. The two crosses on the curve of kL indicate the maxima we choose.
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(a) Capture length (b) Turbine parameter V

Figure 3-24: Optimization for all frequencies. a/h=1/4, d/h=0.2, a=7/2 and Vo =

ira2 h.

The two crosses on figure 3-24b indicates the corresponding points on the curve of

kopt. Here we take thus Xi = 2.912 and X2 = 0.02. For each of these two values,

the corresponding capture length has been plot in dashed line on figure 3-24a. They

intersect in one point for kh = 4.93 and thus we choose (kh)* = 4.93.

The new curves kL, and Xs are now presented on figure 3-25. The curve of kL

has been superposed in dash line for comparison. The curves of kL and kL, agree

at kh = 2.91 and kh = 6.20. We see that the simpler scheme can achieve almost as

high as an efficiency than the idealized optimization except for frequencies between



kh = 4 and kh = 6. For comparison, figure 3-26 presents the optimization with
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Figure 3-25: Practical optimization
Vo = wa2h. Left: Capture length.

results for a/h=1/4, d/h=0.2, a=7/2 and
Right: Turbine parameter. Plain: practical

optimization, dashed: optimization for all frequencies

only one value for the turbine (k1 2.912).We see that we miss the second peak of

resonance in this case.
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Figure 3-26: Practical optimization results for a/h=1/4, d/h=0.2, a=r/2 and Vo =
7a 2 1 and one value of x. Left: Capture length. Right: Turbine parameter. Plain:
practical optimization, dashed: optimization for all frequencies

It may be surprising at the first glance that the small value of X2 corresponds

to such a maxima of the capture length. However, let us recall that the analytical

expression of the optimum of the capture length is given by equation 2.5.3:

2

khg F(kI, C)
max = / 4X (3.4.5)

5 6 7
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The curves of l(kh) and x are given in figure 3-27. At the frequency of the first
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Figure 3-27: Diffraction coefficient (dashed) and turbine coefficient (plain) function

of kh for a/h = 1/4, d/h = 0.2 and a = 7r/2.

peak of resonance of the capture length (kh = 2.91) both the diffraction coefficient

and the turbine parameter presents a maxima and they are of the same order. As a

consequence their ratio is of order 1. For the frequency of the second maxima of kL

(kh = 6.20), both the diffraction coefficient and the turbine parameter are extremely

small and thus their ratio is again of order unity. Thus the value of the maximum of

the capture length will be roughly of the same order than the first maximum.

Figure 3-28 presents the results for the same configuration and the angle of in-

cidence a= 0. We have Xi = 2.926, X2 0.02 and (kh)* 4.98.We see that the
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(a) Capture length (b) Turbine parameter X.

Figure 3-28: Practical optimization results for a/h=1/4, d/h=0.2, a=0 and Vo =

ira2 h. Left: Capture length. Right: Turbine parameter. Plain: practical optimiza-

tion, dashed: optimization for all frequencies



observation are similar to previously.

We now fix a/h=1/2, d/h=0.2 and the angle of incidence is equal to 7r/2. For this

configuration y1 = 4.812, X2 = 0.202 and (kh)* = 3.97. The new curves kL, and ,

are presented on figure 3-29. The curve of kL has been superposed in dash line on

1.5 5 -
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(a) Capture length (b) Turbine parameter

Figure 3-29: Practical optimization results for a/h=1/2, d/h=0.2, c=7/2 and

V = -ra2h. Left: Capture length. Right: Turbine parameter. Plain: practical

optimization, dashed: optimization for all frequencies

figure 3-29a for comparison. As predicted the two curves coincide at the two maxima

at kh = 2.11 and 4.77. Broadly speaking, the curve of kL, is a good approximation

of the curve of kL. It is always under it and is close to it for kh below 2.11 and above

4.77.

The strategy developed here is thus very encouraging since only two values of x

are required to obtained a curve closed to the previous optimization method, with

two braod large peaks of resonance.

Figure 3-30 presents the optimization for a = 0. Here X1 = 4.81, X2 = 0.34 and

(kh)* = 3.28.
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Chapter 4

OWC at the concave corner of

right angle coast

Let us now consider the case where v = 1/2. The up view is presented on figure 4-1.

Let us first briefely recall the equations for this case.

coast

Figure 4-1: Scheme of the OWC at the end of a wedge of angle 37r/2

4.1 Diffraction problem

For a plane incident wave arriving with an angle 0 = a, the diffraction potential is

given by:

(4.1.1)(Pext = 01 + (P2
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The potential inside is given by
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Coefficients am are solution of the systeme defined by equation (2.2.45):
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(4.1.10)

with the notations:

(r/2
S (n, mn) = 1

4.2 Radiation problem

The potential inside the cylinder is given by

Di I (kr) os (0- )Z(z) - i;

The potential outside is given by:

00 0a
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Coefficients Dat and En1 are given by

iapw

Ipah ./ 1d j U(O, z) Cos
. -h T/2

[n (0 - Z,(z)dOdz

T, (0) cos (nO) dO

IT,(0) sin (nO) dO

j7r/2
n (0) cos (2n0) dO

(4.1.11)

(4.1.12)

(4.1.13)

11pa

Pdn=0 1=0

(4.2.1)

(4.2.2)

27 Dn
Cn

(4.2.3)

7r/2

(t(n,, m) = f

(1/2 (77, m0 =



37r iapo -d07En, = i U(, z) cos [4n0] Zi(z)dOdz
2cr P h r/2

The expansion of U(O, z) is given by:

U(0, z) = P.' 1E amZc cos 4m ( - ) p(z)0
n=O p=0

Coefficients amLp are calculated by solving the linear system

h7b0PO S r K 2MI(ka)
auAfp > FplFI ,

eN kaK' ki)f) 0A~

mp Fpi Fi Rmn R("k a)-m1 a n= E = Fp1F0P1R0fnRAI0TI
rn=O P=O n=0 1=0 7rklaI,,(kia)

(4.2.6)

4.3 Numerical results for each problem

Variation of the scattering coefficient with the incidence angle and kh.

Figure 4-2 presents the variation of the scattering coefficient with a for given fre-

quencies and a/h = 1/2, a/lh = 1/4. For reason of symmetry, the results are only

presented for a E [0, 7r/4]. We see that the scattering coefficient is constant and seems

to not depend of the angle of incidence.
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0 0~kh= 1. 122
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0'

0
kh=4.01

-0
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(a) a/h=1/2

Figure 4-2:
d/i=0.2

kh=1.89

80 -

S 60L

kh=4

0.2 0.4 0.6 0.8

(b) a/h=1/4

Scattering coefficient function of a. Left: a/h=1/2 and right: a/h=1/4.

Figure 4-3 presents in percent the variation of the relative difference between

(4.2.4)

(4.2.5)
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F(a) 2 and f(0) 2 with respect to a for a/h = 1/2 and a/h = 1/4 and for the same

frequencies.

0,1

0.1 0.2 0.3 0.4 0.5 0.6

(a) a/h=1/2 (b) a/h=1/4

Figure 4-3: Relative difference of the scattering coefficient function of (1. Left:

a/h=1/2 and right: a/h=1/4. d/h=0.2

As it can be observed, the value of the scattering coefficient depends indeed on

the incidence angle, however this dependence is very weak, less than 1% in all the

cases presented.
~2

Figure 4-4 presents the variation of F as a function of kh for a/h=1/2 and 1/4.

The scattering coefficient has in the two cases one large maxima. The value of the

maxima decreases and its frequency increases as a/h decreases. For a/h = 1/2 its

presents also two additionnal small local maxima at higher frequency.
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1/2
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4- %V~/4

2-'

0
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k/i

Figure 4-4: Diffraction-induced vertical flux coefficient as a function of kh. Plain:

a/h=1/4, dash-dots: 1/3 and dash: a/h=1/2. d/h=0.2 and a = r/4

1



Comparison of B and C with other coastal geometries

The case of a thin breakwater has been studied by Martin-Rivas and Mei (2008)

and the straight coastline by Martin-Rivas and Mei (2009). Figure 4-5 presents the

variation of B and C with respect to kh for a/h = 1/4 for the thin breakwater, the

convex corner, the straight coastline and the concave corner. As v decreases, the

magnitude of B and C decreases. In each case the damping coefficient presents one

peak of resonance. The peak of resonance of the concave corner, previously identified

as Helmholtz mode, is around 75% smaller than the peak of the thin breakwater. Let

us also note than for the straight coastline it is 50% smaller than for thin breakwater

and that for the convex corner of right angle it is 25% smaller.

The curve of the added mass is flatter and its amplitude smaller as v goes to zero.

We can finally note that the added mass changes sign only once for each configuration

and has the shape of a single N.

4 2,-

I2,

3

3n/2 o s
2.5-a

kh kh

2 gE

1.5 ntI -2

0  
1 3 4 5 6 L 2 3 4 5 6 7

kh kh,
(a) Damping coefficient (b) Added mass

Figure 4-5: Damping coefficient and added mass function of kh for different value of
v. Plain with points markers: -F/2, dashed: w, plain: 3w/2, dash-dot: 2-F. a/h = 1/4,
dl/h = 0.2

Figure 4-6 presents now the same comparison for a/h. 1/2. The damping coef-

ficient for the concave corner presents now three peaks of resonance at kh equal to

1.122, 4.01 and 6.186. Again their magnitude is smaller than the other cases. The

frequency of the first peak of resonance decrases strongly as v decreases, whereas the

frequency of the second and third peak remains almost constant, with only a light
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kh
(a) Damping coefficient,

Figure 4-6: Damping coefficient and added
v. Plain with points markers: -r/2, dashed:
d/h = 0.2

1 2 4 5 6 7

kh
(b) Added mass

mass function of kh for different value of
r, plain: 37r/2, dash-dot: 27F. a/h = 1/2,

deplacement to the lower frequencies.

Now, similarly to the straight coastline, the added mass for the concave corner

changes of sign several times for frequencies near the frequencies of the peak of reso-

nance of B. With the exception of the thin breakwater, the shape of the curves of C

is similar to two N juxtaposed.

Variation of B and C with a/h.

Figure 4-7 presents the variation of B and C for d/h=0.2 and three values of a/h. As

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

kh kh

(a) Damping coefficient (b) Added mass

Figure 4-7: Variation of the damping coefficient and the added mass as kh increases.

Plain: a/lh 1/2, dash: a/h = 1/3, dash-dot: a/h = 1/4. In every cases, d/h = 0.2



already seen in the previous section, as a/h decrases, the frequency of each peak of

resonance is higher. The intensity of the first peak descreases with the decrease of

a/h whereas the intensity of the second peak remains almost constant. The first peak

corresponds to Helmholtz mode and the second one to sloshing mode. The later is

shown on figure 4-8.

8
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4

2

0

-2

-4

y
x

Figure 4-8: Free surface elevation inside the OWC at kh=4, a/h=1/2 and d/h=0.2.
Radiation problem

4.4 Numerical results for energy extraction

4.4.1 Optimization for all frequencies

Combining diffraction and radiation problem we can now study the energy extraction

rate of our device. We have applied first the same optimization strategy for all w as

developped in section 2.5.2.

Influence of a/h.

We fix d/h=0.2 and the volume of the chamber is equal to Vo = ira2h. Figure 4-

9 presents the capture length and the turbine coefficient X for three values of the

radius of the chamber a/h. As a/h increases, the capture length kL shows more local

maxima and is less smooth. The value of these maxima does not depends strongly

on the value of a/h and is equal 4 except for the third thin peak at kh=6.18 for

a/h=1/2. Let us note that between the maxima of two different modes, there is a
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Figure 4-9: Capture length and turbine coefficient function of kh. Plain: a/h =_ 1/2,
dash: a/h = 1/3, dish-dot: a/h = 1/4. In every cases, d/h = 0.2, a = 7r/4 and

Vo = 7ra2,h.

frequency where no energy can be extracted: at kh ~3.68 (ka ~ 1.84) for a/? = 1/2

between the first and second mode and then at kh 26.06 (ka 3.03) between the

second and the third mode, and at kh ~ 5.55 (ka ~ 1.85) for a/h = 1/3 between the

first two modes. This frequency corresponds to a zero of J,',(ka) (J'(ka = 1.84) = 0,

J2'(ka = 3.05) = 0).

As a/h increases, the variation of the turbine coefficient y are higher and more

abrupt (see for example, a/h t = 1/2 and kh = 6.06). If we compare figures 4-9b with

4-7 , we see that for a given value of a/h, the curve presents peaks for the same fre-

frequencies of and C as it can be expected with the definition
2

of bwe B2 + C - sand for these peaks, X 6 = B.

Influence of the size of the charnber.

Let us now examine the influence of the air compressibility on our system, that, is the

influence of the parameter . As done in thheprevious chapter, we fix the size and

geometry of the immersed part of the OWC but we consider different size of the air

chamber volume Vo.

Figure 4-10 presents the curves of the capture length, the added mass and the

parameter # for 4 values of Vo and ah = 1/4. For incompressible air (Vo = 0), the
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Figure 4-10: Capture length (plain), added mass (d ashed- dotted) and coefficient /
(dashed) for different pneumatic chamber volume V0. a/h--1/4, d/hi=0.2, a = 7/4.



curves of 3 and j intersect only in one point and thus the capture length presents

only one peak of resonance. As the volume of the air chamber increases, the capture

length presents at most 2 distinct peaks of resonance (see figure 4-10b). Then as the

volume continues to increase, the two points of intersection of / and C move toward

the minimum of the added mass (kh around 2.2) and as a consequence the two peaks

of resonance of kL get confonded into one broad peak of resonance.

Now figure 4-11 presents the curves of the capture length, the added mass and

the parameter f3 for 6 values of Vo for a/h = 1/2. The curves of /3 and C intersect

at most 6 times (see figure 4-11b for V = 0.37ra 2h) which mean that the curve of

the capture length presents at most 6 local extrema, that are grouped into 3 double

peaks. The fist double peak is broader than the second one, which itself is broader

than the third one. Each double peak is separated from the next one by a zero of

the capture length that happens around zeros of J (ka). As V increases, the curve

is shifted downwards and the points of intersection with C moves two by two towards

the local minima of this function (at kh=1.89, 4.08 and 6.19). As a consequence,

the distance between the intersection point reduces and each double peak becomes

progressively a single peak as it can be observed in figure 4-11d. The limiting case is

obtained around V = ra2h (see figure 4-11e). For this configuration, the curve of / is

tangent to the curve of C at the first minima. Then if Vo continues to increase, there

are no points of intersection for the two curves and the maxima of the capture length

is smaller than before. A configuration where V > wa 2 h leads thus to poor efficiency.

Situation where the volume chamber is comprised between 0.37a 2 h and 0.87a2h. are

the most interesting for the energy extraction. Let us recall that Vo = 702 1 for the

pilot station in Pico Island, Azores, Portugal, which corresponds to our limiting case

for this configuration.

Influence of the incidence angle

As we have seen previously with figure 4-3, the dependance of the scattering coeffi-

cient with the incidence angle is extremely small in this case ( less than 1%). As a

consequence the capture length, that is proportionnal to the square of 11'l, depends
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Figure 4-11: Capture length (plain), added mass (dashed-dotted) and coefficient j3
(dotted) for different pneumatic chamber volume V. a/h=1/2, d/h=0.2, a = -r/4.



also very few of the incidence angle. Figure 4-12 presents the capture length for

incident angle equal to 0 and -r/4 for a/lh = 1/2. For low values of kh, we can con-

Figure 4-12: Capture length function of kh for a = 0 (dashed) and a=

For each case a/h=1/2, d/h=0.2 and Vo = ra 2h.
gr/4 (plain).

sider that the capture length does not depends of the incident angle. As kh increases

(kh > 5), this dependance becomes visible, even if it remains very small. Figure 4-13

presents the same curves for a/h = 1/4. We see that the angle of incidence has no

visible influence on the capture length. This could have been predicted with figure

4-3b.

0 1 2 3 -4 - 5 6

kh
(b) a = r/4(a)a =0

Figure 4-13: Capture length function of kh for a = 0 and a = 7/4. For each case

a/h=1/4, d/li=0.2 and Vo = wra 2h.

Let us recall from section 2.5.2 that the angular average, i.e. average over all



angles of incidence, of the capture length is equal to

kLopt = - kLopt(a) da -2 4 (4.4.1)

Since the capture length is almost independant of a, with approximation the previous

equality implies that the maximum capture length is around equal to 4. This can be

verify on figure 4-12 and 4-13.

Comparison with other coastal geometries.

Figures 4-14a and 4-15a compare, respectively for a/h = 1/4 and a/h = 1/2, the

capture length for the present situation with the case of a convexe corner of right

angle, a thin breakwater (see Martin-Rivas and Mei (2008)) and a straight coastline

(see Martin-Rivas and Mei (2009)) Figure 4-14d and 4-15d present the variation of

the optimized turbine parameter X. The capture length is significantly increased

with this configuration. The efficiency at resonance is even four times bigger than

for a thin breakwater and is, generally speaking, almost larger everywhere, except

for a/h = 1/2 near the zeros of Jt(ka). The variation of the parameter / is smaller

for this configuration but is less smooth. It is an advantage since it means that the

power-take does not need to be as versatile but also a disadvantage since it may

require more to the control system.

4.4.2 Practical optimization

As in the previous chapter, let us now turn to a more practical optimization. We

shall illustrate this strategy with two cases: a/h=1/4 and a/h=1/2. In every case

d/h=0.2, the angle of incidence is 0 and the volume of the chamber is Vo = ra 2h.

We first concentrate on a/h = 1/4. Figures 4-17a and 4-17b present the curves of

kL, and Xs. The two values of x are Xi = 1.048 and k1 = 0.06 and (kh)* = 3.1. Let

us recall that for this two kh of resonance, X = B.

We see that the strategy is efficient. We are able to achieve almost as high as an

efficient than the idealized case except around (kh)*.
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Figure 4-14: Comparison for different v. Plain with point markers: v = 1/2, dash:

V = 1, dash-dot: v = 3/2 and plain: v = 2. In every cases, d/h=0.2, a/h=1/4,

a=7/4 and V = 7ra 2 .



7r/2
4-

2 g'U I

0
0 1 2 3 4 5 6 7

kh
(a) Capture length

2 3 4 5 6 7

kh
(b) Added mass

iT/2

21c

3 4 5 6

kh
(c) Free surface elevation

Figure 4-15: Comparison for different
v = 1, dash-dot: v = 3/2 and plain: v
and V = ra2h.

kh
(d) Turbine paraneter X

v. Plain with point markers: v = 1/2, dash:
= 2. In every cases, d/h=0.2, a/h=1/2, a=O



kh kh
(a) Capture length (b) Added mass

231f/2'

0 1 2 3 4 5 6

kh
(c) Free surface elevation
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Figure 4-17: Left: kL, (plain) and kL (dashed) function of kh. Right: X, (plain) and

x (dashed) function of kh. a/h=1/4, d/h=0.2, a = 7/4 and Vo = 7ra 2 h.
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Figure 4-18 presents the same case but with only one value for the turbine pa-

rameter (x 1.048). We see that in this case we miss the second maximum of the

5 1.4

1.2

1
3k

20.8

0.4

1 % 0.2

o 1 3 4 5 6 7 0 1 2 3 4 5 6 7
kh kh

(a) Capture length (b) Turbine parameter X,

Figure 4-18: Left: kL, (plain) and kL (dashed) function of kh. Right: X, (plain) and

x (dotted) function of kh. a/h=1/4, d/h=0.2, t = /4 and Vo = Ta 2h.

capture length. We can note with this case that, as in the previous section, a small

value of the turbine parameter X can lead to a peak of frequency of the capture length.

Indeed, as presented on figure 4-19, at the frequence of the second peak of resonance,

both x and F are small and thus their ratio is order unity.

5

2 r

0
0 1 2 3 4 5 6 7

kh

Figure 4-19: F 12 (dashed) and x (plain) function of kh for a/h=1/4, d/h=0.2, a
Ti/4 and V0 = wa 2h.

Let us finally consider the situation when a/h=1/2. The results are presented in

figure 4-20. Here x1 = 0.604, X2 = 1.181 and (kh)* = 3.68. The correspondence

between the curve of kL and the curve of kL, obtained with the new method is

excellent. Indeed the two curves coincide for almost all frequencies, except for kit
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Figure 4-20: Practical optimization results for a/h=1/2, d/h=0.2, a = wr/4 and

V = ra2h. Left: Capture length and kL. Right: turbine parameter. Plain: practical

optimization, dashed: optimization for all frequencies

between 0.5 and 2. This result can be explained by considering figure 4-20b that

presents the curve of o1pt and the curve of Xs We see that they have 6 points of

intersection in addition to the two corresponding to the maxima of kL chosen. As a

consequence the curves of kL, merges prefectly with the one of kL not only at the

two maxima but also at 6 other points. We see here then than our strategy is very

efficient.
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Chapter 5

Circular array of cylinders

Before studying an array of buoys, let us consider an array of vertical circular cylinders

extending to the bottom as presented in figure 5-1a. We want to find an explicit

analytical solution for this problem. The method can then be applied to a circular

array of buoys. In this problem only normal incidence will be considered, that is the

incident wave arrives from infinity, parallel to the x axis. Because of the symmetry

of the problem, by the method of images it is formally equivalent to the one of three

half cylinders in a rectangular channel as represented on figure 5-1b. The wall of the

channel are vertical, along the z axis. Again the new problem can be decomposed as

(a) Array in open sea (b) Array in a channel

Figure 5-1: Circular array of cylinders

the superposition of a symmetric and an antisymmetric problem as shown on figure

5-2. Each problem will be solved separetely. Then the solution to the general problem

is given by the sum of the solution of the symmetric and antisymmetric problem. In
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Figure 5-2: Decomposition of the problem into a symmetric and an antisymmetric
problem

all this study we consider simple harmonic motion and symbol Re will be omitted for

simplicity.

5.1 Symmetric problem

Let us consider the case of two plane incident waves arriving from x c and x = -0o

with the same amplitude AO.The problem is symmetric with respect to x = 0 and

thus can be reduced to the study of half of the channel as presented on figure 5-3.

The symmetry of the initial problem imposes that there is no flux on the vertical

plan x 0. The channel is infinite in the direction x = +o and its width is 2c.

y

10 Ao

Xcii

Figure 5-3: Symmetric problem

The half cylinder (called cylinder 1 from here on) has a radius a, and its center is

located at (x, y) = (x,,, -c). The quarter of cylinder (called cylinder 2 from here on)

has a radius a2 and its center is located at ( 2, Y2) = (0, c). Each cylinder has a local

cartesian and polar coordinate system: (xi, yi) and (ri, O6). The depth is assumed to
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be constant and equal to h.

Equations Let us introduce the following notations:

" Qf is the fluid domain in the channel

" Sf is the free surface

" Sci is the lateral surface of cylinder 1

* Sc2 is the lateral surface of cylinder 2

" Sc are the lateral surfaces of the channel at y = tc

" So is the vertical wall x = 0, y E [-c, c - a21

The equations for the potential are:

93 w
&z g

0,
Bz

00 
= 0,

On

00 = 0,
Ox

(x, y, z) C Qf

atSf

z = -h

on Sc

on Scl U Sc2

on So

where n is the normal to the vertical surface of cylinder 1 or 2. The potential of the

plane incident wave is given by

-igAo -ikx cosh(k(z + I))
w cosh(kh)

(5.1.2)
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Introduction of dimensionless variables Let us introduce the following dimen-

sionless variables. We denote them by '.

xi = hx'.

@ = Ao ghp'. kh = k',

And the incident potential is given by

1 , ,kx cosh( k'(z' + 1))
i = icosh(k')

Equations with dimensionless variables With the previous definitions we can

rewrite the system of equations (5.1.1) as follow:

x' E Qf

atSf

z'=-1

Onl Sc

On Sci U Sc2

oil So

(5.1.5a)

(5.1.5b)

(5.1.5c)

(5.1.5d)

(5.1.5e)

(5.1.5f)

For simplicity we will omit the prime symbol from now on and if nothing is specified,

all the variables are dimensionless.

Reduction to a 2D problem All the wall being vertical and extending to the

bottom and the depth being constant and equal to h, we know that the problem can

be reduced to a 2D problem and the scattered potential is of the form

1 _ik, cosh(k'(z' + 1))

io, coshi(k')

1 cosh(k'(z'+1))
= ,((XYJ) ,,io cosh(k')
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(5.1.4)

0#'
Oz',

/2g' = 0,

=0,
Oz'

Oy'

Ox= 0,On'
__= 0

O(X1yz = (5.1.6)
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The function r/(x, y) corresponds to the free surface elevation. The new problem is

then:

x E Qf

at y = ic

on Sci U Sc2

at x = 0

(5.1.7a)

(5.1.7b)

(5.1.7c)

(5.1.7d)

Solution We look for a solution using separation of variables. In order to satisfy

(5.1.7a) and (5.1.7b), the solution must be of the following form (demonstration can

be found in appendix C).

(5.1.8)r;=eikx + -zi*Vg yVS= C 1 + aqcq=q(y)

q-O

where

V2q(y) = CSi y

2c

(5.1.9a)

(5.1.9b)

and
. 2 qr 2

2c

k 2
v= { if q< 2kc

IF

otherwise

The coefficients (}q are yet unknown and will be determined by applying the boundary

conditions given by (5.1.7d) and (5.1.7c). In (5.1.8) the potential correponds to the

sum of the incident wave and the scattered wave.
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Boundary condition on So Using the previous expression of the potential in

equation (5.1.7d) leads to

oo

-ik - a VqVq(y) = 0,
q=O

y E [-c, c - a2]

Multiplying both side of the equation by V%(y) and integrating for y E -c, c - a2]

we find that'

(5.1.12)VM, aq q(V, VAI) -cc-a2 = -ik(1, VA)_c,c-a2
q=0

Boundary condition on cylinder 1 Equation (5.1.7c) imposes that

01/

Ori _
(5.1.13)

where (ri, 01) is the local polar coordinate system of cylinder1. In order to apply

this condition, the potential must be expressed with (ri, 01) coordinates. The global

cartesian coordinates and the local polar coordinates are related by

X = Xci + x1

y = -c + yi

Xci + r1 cos( 1 )

= -c + r1 sin(61)

Expression (5.1.8) can thus be written as

7(,yi) = e xl -ikx 1 + " 0tqe- 1'qcl eVq
q=O

'We denote the scalar product by

b

(f, g~a,b = af (y)g(y), dy

Vq(-c -+ y1)
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= 0, 01 E [0, 7]



Let us use the partial wave expansion for the plane waves (Mei et al. (2005), chapter

4, appendix 4.A):

C-ikxi -- ikr1 cos(01) = p Cos(p0i) (-i) p(kri)

p=0po

e~"qX1 = eiivqri cos(Oi) = >3p cos(p01)iJp(ivqri)
p=0

(5.1.16a)

(5.1.16b)

Let us also expand V in series of functions of local polar coordinates. We first consider

q even. We have

V2q(-C + yi) = cos( (-c + yi)

rq CO Y

= (-1)cos y) rSi

Abramowitz and Stegun (1964), formula 9.1.42 gives the following identity

'o

cos(t sin 0) = E rJ 2r (t)cos(2'r0)
r=0

Applying this identity to (5.1.17) we finally obtain

(5.1.17)

(5.1.18)

V2(-C + Y1) = (- )q

00

E Cr J2r
r-0

Let us now consider q odd.

V2q+1(-C + Y1) = sin

==

r=0

(--q7F 
-

2q r1 cos(2rOt)

(2q + 1)7r

+ 2c'A f

r1 sin 01)

Er J2r (2 c + 1) r1 cos(2r01 )
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(5.1.19)

(5.1.20)-CS (2q+1I
2c



Equations (5.1.19) and (5.1.20) can be summarized into the following way:

OC.

V(-c" ± Yi) =crq E3 (rJ 2r (2 qT I') COs(2'r0j) (5.1.21)

with o- = -1 when q = 2 [4] and og, 1 otherwise. Substituting expressions (5.1.16)

and (5.1.21) into (5.1.15), we obtain an expression for the potential as a sum of

trigonometric functions and Bessel functions in the local polar coordinate system of

cylinder 1:

C =e P cos(p1)(-i)PJp(kr1)
p=0

(j cOS(PO1 )ipJ,(ivqr1) (7Uq ErJ 2r ( 1,Lri) cos(2rO1))

(5.1.22)

which can be rewritten as follows:

S= e- ci E-p cos(p1)(-ifJ,(kri)
0=

aq epero-qiPe -(rac cos(p61) cos(2r01 ) Jp(iverI)J2r ( ri)
C

The no flux condition given by (5.1.13) can now be applied, and leads to

0 =e- kr(l Ecos(pO1)(-1)PkJ(kai)
p=0

+ ( ( (3 aEperCq C VqXc cos(pO1 ) cos(2rOi)-
(=0 p=0 r=0

(5.1.23)

(5.1.24)

+± Jp(i qalr).J2,. a)]
C

This expression is valid for 01 E [0, 7]. We will use the following orthogonality prop-

(5.1.25)
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+q= p
q=0 p=0 r=0

erty:

cos(pO)cos(AB)dO = 7F0 (,

i q gial) J2r- 1T a



Let us use the following notations for simplicity 2:

CC1 (p, 2r, Al) =J 7cos(pO) cos(2rO) cos(A[O)dO

Ji(p, q, r) ivq J' (i1v qal),J2r (Fqai) +

We multiply (5.1.24) by cos(AIOI) and integrate for 01 E [0, 7.

previous relations we get for any A:

Making use of the

qEpEJrq vCxci i(p, q, r)CC1 (p, 2r, Al)
(5.1.28)q=O p=O r=O

which can be rewritten as

aqA( )(MnI) - (-i)^'ke-ikel Ji(kai)
oc-

q=0

Eper oqic~"q"el.1(p, q, r)CC1 (p, 2r, Al)
p=O r=O

Boundary condition on cylinder

0r2I r2=a2

2 Equation (5.1.7c) imposes that

= 0, 02 E [-7r/2, 0]

2 An explicit result of this integral is given by Gradshteyn and Ryzhik (1965), formula 2.533:

~~sin(a+b + c)x
cos ax cos bxi cos cxdx 4 (l+b+C +

+sin(a - b + c)x
a - b + c

sin(a + b - c)x +
a + b - c

sin(b + c - a)x
b+c-a '
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and

(5.1.26)

(5.1.27)

with

A(')(A) =

(5.1.29)

(5.1.30)

(5.1.31)

,CJp (1"vq a I) J2 ( 1 Ca

-r-i)^A'ke-ikxel J', (kai)



where (r2 ,02) is the local polar coordinate system of cylinder2.

express the potential with (r2 , 02). Using the following relation between the global

cartesian system and the local polar coordinate system of cylinder 2,

' = x2 = r2 cos(0 2)

y = c + y 2 = c + r 2 sin(02)

we get

rj(x 2 , y2 ) = e- 2 Z -vac x2Vq(c + y2)
q=0

As before we write

poe kx2 =(

p=0

oc

p=0

q=
T-O

cos(pO2)iPJ(ivgqr2)

Er J2r ( r2 )cos(2r02 )
C

Substituting (5.1.34a),(5.1.34b) and (5.1.34c) into (5.1.33) we obtain the free surface

elevation in the local polar coordinates of cylinder 2:

1/ = E Cos(p02) (-i) Jp (kr 2)
p=0

+( ((313 aepEr(-1)qicos p0 2) cos(2r02 )Jp(Tqr2 )J 2r (,'r 2
q=O p=O r=0

(5.1.35)

For simplicity let us denote:

J2 (p, q,'r) = iveqJ '(ivqa2)J2r ( a2) + Jp(ivqa2 ) J  a 2)C(

Note that if the cylinders have the same radius (ai = a2), Ji(p, q, r) = j 2(p, q, r).

Replacing the potential given by (5.1.35) into (5.1.31) and using the previous notation

112

(5.1.32)

(5.1.33)

Vq(c + Y2) =

(5.1.34a)

(5.1.34b)

(5.1.34c)

(5.1.36)

We now have to

P COS (P02) (- i)v J(kr2)



lead to

00

0 =Ep cos(p1)(-i)PkJ'(kai)

+ a3 q Epjr0qi COs(p02) cos(2r2)J 2(p, q, r)
q=O p=0 r=0

(5.1.37)

Let us denote3 :

C(p, A) = cos (P02) cos (6102) d62 (5.1.38)

Multiplying (5.1.37) by cos(M0 2 ) and integrating for 02 E [-7r/2, 0], we obtain for all

n,A

aq Epqr Jy?2(, q, r)CC2(p, 2r, Al)
q=0 p=O r=0

-k E cp(-i)PC(p, AI)J'(ka2)
p=0

(5.1.39)

which can be rewritten as

aqAf)(A) = -k Ep(-i)PC(p, Al)J (ka 2)
q=O p=0

0C 0C

A(2 )(Al) - EpErUqiJ2(p, q, r)CC2(p, 2r, Al)
p=0 r=0

with

(5.1.40)

(5.1.41)

Linear system for the coefficients Let us summarize the result we have obtained

so far. The unknown coefficients aq are solution of the linear system of equation given

by (5.1.12), (5.1.29) and (5.1.40) and rewritten below. For all Al, A' and A":

00

(5.1.42)Saqvgq(Vq, VAI)-c,c-a2 -ik(1, V )-c,c-a2
q=0

3An explicit result of this integral is given by Gradshteyn and Ryzhik (1965), formula 2.532:

csin(a + b)x sin(a - b)xScos ax cosb a-b
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OC

aqA')(Il') -7r -(i)AI'ke -iks IJ 1 ,(kai)
q=0

q=O
qA (

(5.1.43)

(5.1.44)
O

- -k E (- i)IC(p, AI) J'(ka2)
p=0

and Aq( 0 are defined by equations (5.1.41) and (5.1.41). This is an infinite system of

equations for the coefficients aq. It will be further truncated after the Nth term and

solved numerically.

5.2 Antisymmetric problem

Let us now consider a pair of incident waves, where the first arrives from x = +oo

with amplitude A0 and the second arrives from x = -oc with amplitude -A 0 . The

problem defined by (5.1.1) remains unchanged except the boundary condition (5.1.7d)

which is replaced by

p = 0, x = 0,,y E [-c, c - a2] (5.2.1)

The free surface elevation can again be written in the form given by (5.1.8). Since the

boundary conditions on the two cylinders are unchanged, aq are solution of (5.1.42)

and (5.1.43).

1 + aqV (Y) = 0
q=0

(5.2.2)

Multiplying by V1(y) and integrating for y E [-c. c - a2] give finally

oo

(1, Vn)_ ct + a[q (V, V1)_,C_,
q=0

(5.2.3)

For a given n, aqq = 0, 1, 2, ... are the solutions of the linear system defined by (5.2.3),

(5.1.42) and (5.1.43) and rewritten below:

(1, VMf)-cc-a 2
+ aq (Vg, VA) _c,c a

q=0

114

(5.2.4)



( aqAf )( M') = -,r(-i)^'kc-ikxc1 J',(k a,)
q=O

aqA)(")= -k EC(-)IC (p, I")J (ka 2)
q=O p=o

(5.2.5)

(5.2.6)

This infinite system for the coefficients aq will be truncated and solved numerically.

5.3 Energy conservation

For later checking the accuracy of numerical computations, let us consider a vertical

surface at x ~ c. Green's formula gives

s
7)* d s 1151 - 2*v1) dS (5.3.1)

where OS = S, 1 U S U Sc U Soo U SO.

(5.1.7a) implies that the right-hand-side of (5.3.1) is equal to zero. The boundary

conditions (5.1.7b)-(5.1.7(1) implies that

/,sci U Sc2 U Sc U So
On

* 0 dS = 0

And thus (5.3.1) leads finally to

/ 71 * i* dl = 0

which can also be written as

With (5.1.8) we have

2im (J 7vdx= 0

ikx + Z
q=0

(- *< e-"'XVq*(y)
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(5.3.2)

(5.3.3)

(5.3.4)

=l
(5.3.5)



Thus

1 "'dz -ik+ e

q=0

r=O

"oCV()}
Vq V( )

-"*'K7,y)}

(5.3.6)

=ik - e - 1: eV, "* .(y) + ike (age-"oV(y)
r= o

- ( ( aca~,.*e-VqX '-* Vr(y)Vj(y)
q=O r=O

Performing analytical integration we have:

q=0

jVq(y) V2r(y)dy = -a
-c Eq

V2 q+(Y)V)r+1(y)dY = 2cq,r

JVq (Y)%r+1(Y)dY = 0

c 0, if

- c Vyd 2c if

(5.3.7a)

(5.3.7b)

(5.3.7c)

(5.3.7d)
q $ 0

q = 0

(5.3. 7e)

Integrating with respect to y (5.3.6) and making use of the two previous properties

leads to

ydz =i2kc - 2ceIc ce-c
-X**voe-"( + 2cike Ceo

- * y*q --V2qX - viq x

q= 02q q=O
a2q+1a2qIVq+1 V2_+1X V0q+ 1 X

=i2kc - 2ce- aL*vo*e~"*x + 2cikeca 0 e~""O - ( Xaqv e e

q=0 Eq

(5.3.8)

Equation (5.1.10) gives

v0 - -ik (5.3.9)
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As a result,

Jrj dz
0x

=i2kc + i2ck (e'ikJa -- e- 2 ikx)

2c 12 * -q

q-O 
6q

=i2kc -- 4Akm (e2ikx ao)

- c |g2 v*e- *'-"*C-VqX C V

C IV q C qq

q=O q

We can now substitute this expression into (5.3.4) and obtain

2kc - Im ( aq 2 
1

*-I q

According to (5.1.8), let us define qo such that

q0 = max
2ck

q < -
7r

As a result qo has the following property:

q < q0 -v =

q > q -- v =

-i k2 -F

2 k2

Thus we have

q < qo -e" = e~vqx

q > g0 - q - - 0, kox >> 1

i1/*v

(5.3.10)

(5.3.11)

(5.3.12)

(5.3.13a)

(5.3.13b)

(5.3.13c)

(5.3.14a)

(5.3.14b)

(5.3.14c)
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With this two previous properties, equation (5.3.11) can be rewritten as

qO qE-10 a|lv(,| = k
q-0 (q

(5.3.15)

5.4 Numerical computation difficulties

All the numerical computation presented below have used the following inputs: a/h=5/30,

c/h=30/30.

5.4.1 Condition number of the matrix of the system

As explained previously, equations (5.1.42), (5.1.43) and (5.1.44) define a linear infi-

nite system of equations that determine the value of the unknown coefficients aq. All

the series must be truncated again after their N/h term, where i stand for the indexes

of sonnation: p, r or q. We obtain then the matrix of the system:

ai l

A = a21

aNql

a12

aNq 2

''' alNq

... aNq

' N qN j

(5.4.1)

where the terms ai can easily be deduced from equations (5.1.42) to (5.1.44). This

matrix is then inverted to find the solution. In order to find numerically an accurate

solution, the system must be well-conditionned. A measure of this property is given

by the condition number of the matrix A. Let us briefly describe the condition

number by doing perturbation analysis. Suppose that A is perturbed by an amount

6A, for example because of numerical roundoffs. We want to quantify the error on

the solution. We have

(A + 6A) (x + 6x) = Ax + 6Ax + A6x + 6A6x = b
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where b is the unperturbed right hand side. Since Ax - b = 0 we have

Aox = -6A(x -+ 6x) -> 6x = -A-'6A(x + 6x) (5.4.3)

Taking norms

|6x|| < ||A- 1 ||A|| ||6 A|x +A6x|| (5.4.4)

and thus we find for the relative error that

I16X I < A-1  IAl 1AI (5.4.5)
||x+6x|| - ||A||

The quantity ||A- 111 |All is called the condition number of the matrix A and gives

an estimation of the error of the solution. For example, suppose that the matrix has

has a precision of 16 digits (HA = 10-16) and assumme that the condition number
16x11

is equal to 100, then < < 10-14 wich means that 14 digits are accurate in the

solution. Now if the condition number is equal to 1013 we have 1 < 10-3 = 0.1%.
IIX±6XIl -

Only 3 digits are accurate in the solution. Finally if the condition number is equal

to 1020 we have 1 < 104 = 106%. The solution cannot be trusted at all. We see
IIX+6X11 -

here that a big condition number leads to big error in the solution computed. Figure

5-4 presents a semilog plot of the condition number of A as the number of points Nq

increases. As we have three type of equations, Nq is a multiple of 3. We see that

1 0 ---

. 1 010[

101

100,
0 5 10 15 20 25 30

Nq

Figure 5-4: Condition number of A function of Nq

the condition number of A increases extremely fast with Nq and reaches the machine

precision for q larger than 15. Thus the linear system cannot be solved at that point.

119



In order to investigate this problem, we have used collocation method, as described

in the following section. Indeed this method requires less numerical operations and

thus minimizes the risk of numerical roundoff errors. We now try a different method.

5.4.2 Collocation method

In this method we discretize the surface of the two cylinders and the surface So into

a finite number of points (xi, yi) as represented of figure 5-5. Then we require that

the q satisfies the boundary conditions at these points, which leads to a finite linear

sytem of equations that is solved numerically (see Hairer et al. (1993) or Iserles (1996)

for more details on this method). The boundary conditions we have to imposed are

0 1 2

Figure 5-5: Discretization for the collocation method

defined by equations (5.1.7d) and (5.1.7c). The first one imposes (for the symmetric

case):

(5.4.6)L oaquqV((Y) =-
q=O

For the two cylinders

= TI - 711 = no -
On 82 r
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where n is the normal to the surface of the cylinder. For cylinder 1 we have:

(5.4.7)

(x - x1 )2 + (y + c)2 a (5.4.8)



and the normal is thus

(x - xci, y + c) (x, y) E cylinder 1 (5.4.9)

For cylinder 2 we have

x2 + (y - C)2 = (5.4.10)

and the normal is thus

,i2 = (x, y - c) (x, y) c cylinder 2 (5.4.11)

With these definition, the boundary condition for cylinder 1 becomes:

Saq (i(X, - XCI)Tqe'qxi cos ( -yi- (yi + sin = ik(xi-xc1)e-ixi
q=0

(5.4.12)

and for cylinder 2

coaq ix_ COS Yi - (yi - c) eVqX sin (=yi ikxc-ikx (5.4.13)
q=O

We truncate the infinite series in (5.4.6), (5.4.12) and (5.4.13) and build the matrix

B of the sytem. Figure 5-6a presents the condition number CB = 1 JIB as a

function of the number of points of collocations. This number is also equal to the

number of terms in the series. As in the previous section the condition number reaches

high values very fast. Figure 5-6b presents the condition number when we only take

into account equations (5.4.6) and (5.4.13), i.e when we only consider cylinder 2 in

the channel. The evolution of the condition number is similar. In order to investigate

more the computation difficulties, we have consider the case with only cylinder 2 as

represented on figure 5-7.
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10

105

10 

5 10 N's

*0 ~

1010

10

10

100 L
20 25 30 0

(a) With cylinder 1 and 2

5 Nq 10 15 20

(b) Only cylinder 2

Figure 5-6: Condition number of B function of Nq

1 __

0.

(xi , yi)

--- -- -- -- -- -- -- -- ---

-0.5
0 0.5 1

Figure 5-7: Collocation with only cylinder 2
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5.4.3 Numerical and physical understanding of the compu-

tation difficulties

The matrix A of the system is composed of two block A1 and A2:

. . A 1 ---
AA (5.4.14)

... A2 - -

where A1 corresponds to the system of equations given by applying boundary condi-

tion on the wall at x = 0 and A 2 corresponds to the system for the boundary condition

on the cylinder. A quick estimation of equation (5.4.6) shows that the terms of the

matrix A1 are of order unity.

Let us now look at the terms of A2. As x is larger than zero the evanescent mode

e-VqX in expression (5.1.8) decreases exponentially and are, with the exception of the

first modes, almost equal to zero for x larger than zero. This is in particular true

when we apply the boundary condition on the surface of the cylinder, near x = a2 .

Let us look now turn to the physical situation. We expect the potential to be of order

one on the free surface of the cylinder. As seen previously the evanescent mode are

almost zero on this surface except for the first terms. As a consequence, we expect

the coefficients aq to be very large so that aqe-"rVq(y) = 0(1) on the cylinder. This

intuition is verified numerically. We present below the matrix of the coefficient aq for
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Nq= 14 and NVq= 22. For brevity we only display the first 10 coefficients.

0.60 1.39

0.90 2.91

5.33 5.10

120 0.46

452 1076
a{Nq=14} = a{Nq=22} (5.4.15)

849 8644

879 35444

354 94970

306 182403

564 262057

The numerical results confirm the physical intuition. In order to solve this problem

one could try to renormalize the system. A potential renormalization is the following:

-ikx + >00 (aq VC1 2) =__ -ikx + y /-Vq(-a)Vy 54.6

q-O c )O - Vq( (Y )Vf y (5. .16
q=0 q=0

However this approach would fail too: it would indeed lead for aq to a system where

the coefficients are of order 1 on the part of the cylinder that is closed to x - a2

but would be very large on the rest of the quarter of cylinder and on the wall x = 0.

Thus, in order to keep the solution of order 1 on the wall, the coefficients aq would

have to be extremely small.

More generally any renormalization would just shift the problem to another place

but would not solve it. Indeed normalization would be efficient on the two configu-

rations presented on figure 5-8: either a boundary with x constant and a potential

expressed in cartesian coordinates or a boundary with r constant and a potential

defined in polar coordinates. For the present case, with the expression chosen for the

potential, normalization cannot be used to solve the problem as the value of x varies

as we apply the boundary condition along the surface of the cylinder.

From a numerical point of view, the serieE aee V 4 q(y) needs an infinite number
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g(r,O) g(r,E)/g(a,E)

Figure 5-8: Two successfull case for normalization

of term to converge, which makes it numerically inefficient. As a consequence a new

form of the potential has to be founded in order to deal with this problem.
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Chapter 6

Circular array of buoys

Let us now consider the case of an array of buoys which are similarly aligned as the

array of cylinders studied in chapter 5. The buoys are small cylinders of height H.

Only normal incidence will be studied in this theory. Again the problem is equivalent

of a half buoy in a channel as sketched in figure 5-1b of the previous chapter. The

problem of the interaction of a wave with a floating body can be decomposed into a

scattering and a radiation problem (see e.g. Mei et al. (2005)). We first consider the

scattering problem.

Figure 6-1: Pattern of a buoy

6.1 Scattering problem

The buoy is considered to be fixed and an incident wave is arriving from infinity.

Similarly to the case of cylinder extending to the bottom, the scattering problem
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can be decomposed into a symmetric and an antisymmetric problem and thus the

problem is reduced to study hal of the channel as presented in the previosu chapter

on figure 5-3. We decompose the fluid domain into three sub-domains:

" Domain 1: This domain comprised the water domain under the half buoy 1

and is defined in the polar coordinates of cylinder 1 by: r1 < a1, 0 < 01 < 7.

" Domain 2: This domain comprised the water domain under the quarter of buoy

2 and is defined in the polar coordinates of cylinder 2 by: r2 < a2 , -7r/2 < 02 <

0.

* Outer domain: This domain is defined by the fluid domain in the channel

bereft of domains 1 and 2.

6.1.1 Symmetric problem

Equations Let us consider a plane incident wave arriving from x = +0. We denote

by SBj and SLj the bottom and the lateral surface of the buoys j. Let us use the

dimensionless parameters defined in the previous chapter in equation (5.1.3). With

these parameters, the governing equations for the fluid are:

x G Qf

- 2 =0,

= 0,Oz

00 
= 0,

dn

Ox

at Sf

z =-1

oil Sc

On SBj U SL,

on So

(6.1.1a)

(6.1.1b)

(6.1.1c)

(6.1.1d)

(6.1.1e)

(6.1.1f)

and the incident wave is given by

1 fo(z)
iW fo (0)
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The potential solution to the problem is the sum of the incident wave potential and

the scattered wave potential: #= #i + #.

Solution in the outer domain The form of the potential used in the previous

section ( equation (5.1.8)) can be easily extended in 3D with:

# $= A3e3V(y) fn(Z)
n=O q=O

(6.1.3)

where Tq is defined by

Tq k2 + (L),for

TOq ={ k2 - 2

-Y_ k) 2

n > 1

if q < ck/T

otherwise

Functions V are defined by

V2q(Y) = cos
S2q
2c

V2q± (Y) = sin ((2y+)w )2c

and f,, are the vertical eigenfunctions defined by

foz) = 2cosh(k(z + 1))

(1 + sinh 2 (k)/w2)

v 2 cos(k,,(z + 1))

(1 - sin2 (kn)/w 2 )

co cosh(k(z + 1)),

cn cos(k,(z + 1)),

ktanh(k) = w2

kt tan(kn) = -W2

Coefficients Anq are yet unknown.

(6.1.1c) and (6.1.1d).

With this form, # satisfies (6.1.1a), (6.1.1b),
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(6.1.4a)

(6.1.4b)

(6.1.4c)

(6.1.5a)

(6.1.5b)

(6.1.6a)

(6.1.6b)

(6.1.6c)



Boundary condition on the wall x = 0 for the outer potential By taking

the derivative of the outer potential and using the scalar product in z and y, the

calculation to satisfy the boundary condition (6.1.1f) leads to:

Vn, M, A angrnq(Vq, VAI)_c,ca2 = fA 0) 6' V(1 cc a2 (6.1.7)
q=O

Solution in the inner domains The solution of the fluid domain under a buoy

is given by Garnaud (2009) with the following result, that satisfies (6.1.1a), (6.1.1c)

and (6.1.le) on SBj:

- P + cos(mO5) # + BmF,(z)@nm('ri) j 1, 2 (6.1.8)
mt=0 n=o

#P = - fo mz),ji' Jm11(krj) (6.1.9)
fo (0)

where the eigenfunctions in this domain are given by:

1
Fo(z) = (6.1.10a)

V/1 - H1

F,,(z) = 2cos(K,(Z + 1)) = (6.1.10b)
1-H 1-Hf

o',m('r) = r"(6.1.1Oc)

Wn1j.m(r) = Im(Kar) (6. 1. 10d)

Matching domain 1 and outer domain The normal velocity and the pressure

must be continuous across the interface between the domain 1 and the outer domain.

Thus we need to match the value of the potential (pressure) and the value of its normal

derivative across this surface. For this, let us express the incident wave potential and

the outer potential in the local polar coordinate of cylinder 1. This has been done in

the previous chapter with the following result:

I 1 fo(z) e-ikx m Cos(m01)(- i)PJ(kri) (6.1.11)
10 fo(0) m=O
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n=O q=O p=O r=O

orq
cos(pO1) cos(2r61).J,(rgrir) J2r --7 r 1

Continuity of the normal velocity

Orri

We know that we must have at r 1 = a1

- z < 0
(6.1.13)

Let us introduce the normal velocity U,, UPl and (" respectively equal to

oc

um Brim F, (z) 'In (aj) (6.1.14a)
n=0

U j (6.1.14b)

U'V, 1 E, (- i) kJ,,(kal) fo(Z) c ikxcl (6.1.14c)
10 (0)

so that

o cos(nO3 ) (UK' + U,,)

1r 7n=0

t us aU' cos(m01)

Let us also introduce the following notation

(6.1.15a)

(6.1.15b)

,'" (0P1)_=ieqr (-1)qipe"c rn,J(r,,aI) J2r ai,)

so that the normal derivative for (6.1.12) is given by:

I~cic 0 0(
Or,

+ 7fL J,(Tnpa i) J', 7 a1)
C( .

(6.1.16)

(6.1.17)A,,qg 1, (a1) cos(pO1) cos(2r01)fn,(z)

(6.1.12)

n=0 q=0 p=0 r=0



Combining (6.1.15) and (6.1.17), equation (6.1.13) can be written as

Anqg,"q (a,) cos(pO1) cos(2rO1)f,(z) -

"V' cos (mn01) -H < z < 0

n=0 q=O p=0 r=0

0U

r11=z (UI + Ul',) C(os (mO1) -1 < z < -H

Let us use the orthogonality of {ff}, by taking the dot product of (6.1.18) with fa.
We get

Z Z Anq9 g q (ai) cos(pO1) cos(2rO1)
q=0 p=O r=0

(6.1.19)

H,0 Cos (m01) + Z + UT' f )_ cos (mO1)

We multiply by cos(AIO) and integrate for 0 E [0, 7]. This lead to'

q=0 p=0 r=-0

Aqg,% (a,) CC, (p, 2r, Al) =

(6.1.21)

7 + (Ul, + U' 1 , fn)
H,0 EAr

',

We multiply now (6.1.14a) by f1 and integrate for z E [-1, -11 to obtain

p=0

"We keep the notation defined in chapter 5:

CC, (p, 2r, A) = j cos(pO) cos(2r0) (os(AIO)dO
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(6.1.18)

(U 2,Ti )
n=0

(6.1.22)

(6.1.20)

1,11EMI



We can now substitute this expression into (6.1.21) to give,

0O 00 O 0

q=0 p=0 r=0

(ai) CC1 (p,

00

2r, Al) - B',', (ai) (Fp, fs)
p=0

S1 fn)- + Um ,fn)1-H
(6.1.23)

Continuity of the potential The continuity of the potential at the interface im-

poses that at r1 = a1

Let us introduce the notation:

D(ai) = Eper (- )jpiTnc1 J(rnqai) J2r a1)l

Thus we equate (6.1.12) and (6.1.8) and take the dot product with F,.

orthogonality of Fn's property we have:

COS (m7i) (('n, FN) -H + Buv N,ma1

m=0
000 0~ 10 00D

AngD,,(ai) cos(p81) cos(2r01 ) (f., FN) -1 -H
n=0 q=0 p=0 r=O

We multiply by cos(AIO) and integrate for 0 E [0, 7r]:

o 00 00 00

n=O q=0 p=O r=0

(p, 2r, Al) (0,fn, FN)-1,-H ) - B1N,.AI'N.AI(at)

OA FN
(6.1.27)

Matching outer domain and domain 2 Continuity of the radial flux and the

potential at the interface between the outer domain and the domain 2 must be assured.

In the polar coordinate of cylinder 2 this interface is defined by r 2 = a2 and 02 E
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1,-H

(6.1.24)

(6.1.25)

Using the

(6.1.26)



[-7/2, 0] and the outer potential is given:

10C

n= 0

00 00) Cc

n() Anqp6(r ~1)qip cos(p02) cos(2'0 2) Jp (Tnq 2)J 21
q=0 p=O r=0

'r2

(6.1.28)

(6.1.29)
1 f0 (z)-
-Wf 0 rrt= ECOS (m/t102) (- i) PJI,(kr2)

In particular

(a2) = E S E AnqStE (a2) cos(p0 2) cos(2rO2)f,(z)
n=0 q=0 p=O r=0

(6.1.30)

with

,() np Tnpa2 2 r (W7a 2 ) pTp (-a 2 )) (6.1.31)

Let us denote

Ut,72 = En(-i)m"kJ,',(ka2 ) fA(Z)
fC (0)

Continuity of the normal velocity We must have:

O2 06o

-H < z < 0

-1 <z K -H

Using (6.1.30), (6.1.14a) and (6.1.14b), the previous condition imposes:

(3 ( ( (3 An1 E1  (a2 ) cos(p0 2) cos(2rO2) fn(z)
n=0 q=0 p=O r=0{ _0 UrTW,2 COS (m02)

C_0 (U+U,'2) cos (m02)

- H <z < 0

-1 <z < -H

As in the matching of the domain 1 with the outer domain, we multiply both side

of the equality by fa, integrate between -1 and 0 and make use of the orthogonality

property of the {f }. Then we multiply by cos(A0 2) and integrate for 02 E [-7r/2, 0].
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(6.1.32)

(6.1.33)

(6.1.34)

S,,P(a2) = EpE



Unfortunatly orthogonality property is no longer available for this intergation. These

steps lead to the result:

EEEA
q0 p=O r=0

,rn=0

,tq& 'E,; (a2) CC 2 (p, 2r, Al)

H, C(m, Al) + (Un + U' 2, f0)
m=0

(6.1.35)

1.-H C(m, Al)

The scalar product can be replaced by the expression given in (6.1.22), where we only

need to change the superscript 1 to 2. This gives

AnqS,% (a2 ) CC 2 (p, 2r, M)
q=0 p=0 r=0

- B Tm'p(ai) (Fp,fn)
m1=0 p=0

1,H C(m, Al)

=1 (Kul + US2, f0) C(n, Al)
n=0

Continuity of the potential

(6.1.36)

At r2 = a 2 we must impose

(6.1.37)

Let us introduce the notation

( =EpEr( ~1 p(Tqa2) J2r (a 2

The previous condition becomes

AnqF'q(a2) cos(p0 2)cos(2rO2 )fn(z) =
n=0 q=0 p=O r=0

COS (T00 2)
m-0O

P,2ncc

+ S: B", q i~(a 2)Fn.)
ni
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(6.1.38)

(6.1.39)

# -=o2, E[-, H]



As we did for cylinder 1, we multiply both side of the previsous equation by F and

make use of their orthogonality property. Then we multiply by cos(A[0) and integrate

for 02 E [-7r/2 0]. We get

1,-I -HEEEYAn,.F,,lP(a2) CC2 (p, 2r, M ) {fFN)

n=0 q=0 p=0 r=0

1C(m, M)
m=0

( ,FN-1,-H + XBin,mn(a2 ))
n

Summary of the equations Let us summarize the results we have obtain so far.

The unknown coefficients Anq, Bi, are solution of the following linear infinite system

of equations given by (6.1.7), (6.1.23), (6.1.27), (6.1.36) and (6.1.40)

Vn, Al E (nqTrq(V, VA)_c,c1 =2
q=0

oftAnqg'rp (ai) CC1 (p, 2r, Al)

,'1 If

fo
r=0

CC1 (p, 2r, Al) (f, FN) 1 I,-I

(6.1.42)

- B", 4N,A I(al) =

Op1 1 , FN

(6.1.43)

c,c-a2 (6.1.41)k o ,0 (1, VA))
f0)

00 00 00

Znq A q (a2) CCs (p, 2r, Al)
q=0 p=U r=0

m= S' (p=,)
rn-U p=-U

(Fp, fi) C(In Al)

=S (U ' + U 2I H,0 l
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(6.1.40)

Fo o
q=0 p= r=0

oo

- 1B i) (Fp, fn)_
p=0

n=0 q=0 p=0

(6.1.44)

AnqD" (a1)



t : ( ( Anq.Fj (a2)CC2 (p, 2r, Al) (f, FN) 1-H
n=O q=O p=O r=O

(mn, M) (2, FN)M0

00

1,--H + nm B 2, ,a2)/
n1 

/IM

6.1.2 Antisymmetric problem

Let us now consider a pair of incident waves, where the first arrives from x = +oo

with amplitude A0 and the second from x = -oc with amplitude -A 0 . The problem

defined earlier by (6.1.1) remains unchanged except the boundary condition (6.1.1f)

which is replaced by

d = 0, x = 0, y E [-c, c - a2] (6.1.46)

We look again for solution of the form 6.1.8 inside and of the form 6.1.3 outside. The

boundary condition 6.1.46 and the scalar product in z and y give

ftAnq (Vq, VAI) _ = 0 (6.1.47)
q=O

The calculation to match the potential and the normal velocity at the interfaces

between the domains are identical to those of the previous section. Thus the unknown

coefficients Anq and B m are solution of the infinite linear system defined by (6.1.42),

(6.1.43), (6.1.44) and (6.1.45) and (6.1.47).

6.2 Radiation problem

Let us now solve the radiation problem. The flow induced by the heaving movement

of the buoy, is proportionnal to the velocity of the buoy ( : We shall use

the following dimensioneless variable for the potential:

(6.2.1)

137

(6.1.45)



6.2.1 Symmetric problem

With dimensioneless variables the equations for the flow are:

- -# = 0,

= 0,

8#
=0,

Dy
86_

=z 1,

x E Qf

at Sf

z = -1

onSc
Oil SB3

On So,

on SL

on SO

- = 0,dr
048= 

0,

# outgoing at

We divide again the fluid domain into three subdoinains identical to those defined for

the scattering problem. For the outer domain we look for a solution of the form:

(6.2.3)0 r =aneeq Vq(y) f", (z)
n=0 q=0

where V, rnq and f, defined as previously. For the domains under the buoys, we

follow Garnaud (2009) and look for a solution of the form:

(6.2.4)#pi + iFn(z) n,o(rj)

n=o

where #8 j is a particular solution of (6.2.2) defined by

Pj I 2(zH
O) 2(1 - H) (

(6.2.5)

We shall now apply the boundary condition (6.2.2g) and match the potential and the

radial flux at the interfaces between the domains.
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(6.2.2a)

(6.2.2b)

(6.2.2c)

(6.2.2d)

(6.2.2e)

(6.2.2f)

(6.2.2g)

(6.2.2h)

2



We plug (6.2.3) into (6.2.2g), use the orthogonality

property of the vertical eigenfunctions and then the scalar product in y. We get:

oo

agrnqTnq ( 1 VyV)__ = 0
q=0

V Ml (6.2.6)

Matching domain 1 and outer domain. As for the scattering problem, we ex-

press the outer potential in the local polar coordinate of cylinder 1:

n=0 q=0 p=O r=0

cos(pO1) cos(2rO1) Jp(T qrl1)J 2r, (fir1

Equaling the radial flux and taking the scalar product in z gives

(6.2.7)

anqg,,q (a1)
q=0 p=0 r=0

cos(p01) cos(2r61) =

\ o j r (ai ) ,
1r,

00

j? 8,7 , -0 O aj

(6.2.8)

( Fh fn, H

where 94 is defined by (6.1.16). We multiply by cos(AM1) and integrate between 0

and 7r. We get finally:

Znqnq 1(a) Kp 2r , A1r)0
q=0 p=O r=0

A07 K9P1, n -1,
H n-0

(6.2.9)

Let us now equate the potentials given by (6.2.4) and (6.2.7) and take the dot product

with F,. Using the orthogonality property of {F} we have:

anqDV"(ai) cos(p61) cos(2r01 ) (f,, FN) 1,-H-

#p"(ai) + 0*V4@N,O(a1)
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n=0 q=0 p=O r=0 (6.2.10)

Boundary condition on So.

fn

,0 (a1) (Fe, f,,)



where DP is defined by (6.1.25). We next multiply by cos(AO) and integrate between

0 and 7. We get finally:

anqD"q(ai)CC1 (p, 2r, Al) (f, FA) 1 1 H
n=O q=O p=O r=O

6.A1W {{#eA(ai), FN) 1

Matching domain 2 and the outer domain.

the outer potential is given by

#r = E fi ('z) E E ( ang per ( 1)"i

n1=0 q=0 p=0 r=0

+ f3JIN)N,0 (al)

(6.2.11)

In the polar system of cylinder 2,

cos(p0 2) cos(2r02) Jp(Tnqr2) J2r ( 'r2

(6.2.12)

Following the same method as before, we equate the radial flux, take the scalar

product in z and make use of the orthogonality property of {fJ,}. Then we multiply

by cos(A10 2 ) and integrate for 02 E [-7r/2, 0]. These steps lead to the result:

Z anZCn~q(a 2) CC 2 (p, 2r, A)
q=O p=O r=O

((12),{ K 2r 1, Hfn cos (MO) dO

(6.2.13)

where ErPq ((t2) has been defined in (6.1.31).

We now equate the potentials given by (6.2.12) and (6.2.4). Again the scalar prod-

uct with Fi is taken and the orthogonality property is used. Then we multiply by

cos(A0 2 ) and integrate for 02 E [-7/2, 0]. We obtain for any M

>j nqi ,qP;(a2)CC2 (p, 2,r, Al)
n=0 q=O p=O r=O

(n, FN)L-1H

(#,2(a2), FN- 1 H ± Q rN,(a2)}
-i7r/2

cos (MO) dO
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(6.2.14)

+ 
9

A V) / it, fit)il'o a2) 'F
71=0



where Frep has been defined in (6.1.38)

Summary of the equations. The unkonwn coefficients anq and 3 are solution of

an infinite linear system of equation defined by (6.2.6), (6.2.9), (6.2.11), (6.2.13) and

(6.2.14). This system must be truncated to be solve numerically. However we expect

also computation difficulties, similar to the one we encountered for the cylinders

extending to the bottom. Completion of the numerical task is left for the futur.
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Chapter 7

Conclusions

In the forst part we have developed a general linear theory for an ocillating water col-

umn at the tip of a wedge-like coast of arbitrary apex angle. Numerical computations

have been performed for two coastlines shaped as right-angle corners: one convex and

one concave.

It has been found that the angle of incidence has some strong influence on the

total vertical flux across the chamber surface and thus on the capture length, more so

on the convex corner than on the concave corner. The influence of other parameters

on the performance of the system has also been examined.

Our numerical simulations have been compared to the known situation of a thin

breakwater and a straight coastline. It has been found that the most efficient config-

uration for energy extraction is the the concave corner, where all the incident wave

energy is channeled to focus at the OWC.

Two strategies to optimize the energy extraction rate have been examined. We

first assume a controllable multiple-turbine system which can be optimized over a

wide range of frequencies. However in practice it may be difficult to adapt the turbine

system for many frequencies. We have thus developed a simpler way of optimization,

where the turbine parameter takes only two different values. Our comparison shows

that the simpler scheme can achieve almost as high an efficiency as the idealized

niany-frequency optimization.

In the second part, we have formulated the problem of one or two cylinders or
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buoys in a channel. Computational difficulties are discussed and firther investigation

is needed to complete the numerical task.
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Appendix A

Diffraction by a solid circular

cylinder at the tip of a wedge

The theory of diffraction by a solid circular cylinder at the tip of a wedge in three

dimension has been done by Martin-Rivas and Mei (2008), by extending the method

of Stoker (1958) for the two-dimensional diffraction by a semi infinite screen. For

convenience we describe here a circular cylinder of radius a, centered at the tip of

a wedge of angle v. The solid part of the wedge is comprised between 0 = v7r and

0 = 27r, for r > a and the water occupies the region between 6 = 0 and 0 = v7r as

represented on figure A-1. The depth is assumed constant and equal to h. Let us

VTr

Sea

(r,e)

Coast

6-vnr

Figure A-1: Cylinder at the tip of a wedge

consider an incident plane wave, arriving from infinity with an angle a with respect
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to the x axis (0 = 0). The problem is the following:

=0

o2
S=0

Op
Dz

__ 
= 0

00

Or = 0
Or

at z -It

at z- = 0

for 0 = 27r, V

for r =a, 0

We also imposed that the scattered potential is outgoing at infinity

- iky -+ 0 as kr -+ oc (A.0.2)

The velocity potential can be written as

0,z) - ig i 0A cosh k(z + h)
W cosh(kh)

(A.0.3)

where the normalized free-surface displacement 'q satisfies the Helmotz equation

V2, + k21 = 0 (A.0.4)

We expand ij in Fourier serie

21W71(r, 0) = -flo (r)
V7

2 no (10
+ -~ (r) Cosv7r (V

where i7,(r) is the Fourier expansion coefficient of i defined by

(r, v) = rq(r, 0) cos n) dO
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and ,r > a

(A.0.1a)

(A.0.1b)

(A.0.1c)

(A.0. 1d)

(A.0. le)

(A.0.1f)

< < v7r

(A.0.5)

(A.0.6)

rA 0(
( r



All the coefficient of the sinus are equal to zero because i] must satisfy the no-flux

boundary condition at 0 = 0 and 0 = vr:

2
inrr 1

sin for 0=0 and =iv7r

From (A.0.4) it follows that Fourier coefficients of i must satisfy the Bessel differential

equation

r2d2 , d+r- + k22
dr 2 dr

v2

Since the potential must satisfied the boundary condition on the cylinder given by

(A.0.le), each Fourier coefficient must satisfy it too. Thus the solution of the previous

equation must be of the form

i 1 (r) = a, ( J,/,(kr) -
J (ka)

Y/ (ka)
Y , /A(kr) ) (A.0.9)

where a, are unknown coefficients.

The total potential o is the sum of the incident potential PI and the scattered po-

tential ps, thus in term of Fourier coefficient we can write:

s = . - gI =9 - f 7(r, 0) cos (+ dO

Each Fourier coefficient of the scattered potential must satisfy the radiation condition

(A.0.2):

- iki) - 0 as kr -+ oo (A.0.11)

With the two previous equations we have, for large kr

- iki - ik, ) (A.0. 12)

Let us now evaluate each side of this equality. Using the asymptotic expression of
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(A.0.7)

r > a (A.0.8)

(A.0. 10)

0 S
N r_ ( f/77

Or

0_1

V/-- ~ 
-



Bessel functions, it follows from (A.0.9) that for large kr

- ik, ) 7
-i(kr-nr/2v) ( _ i7r/4 _ _(ka)

Y /( ka)
(A.o.13)

For a plane incident wave from angle a with respect to the x axis, /I = e ikrcos(O-a)

From the method of stationnary phase we obtain

J V k'"rcos(O-a) cos 110 dO 2 wk cos(rIa/V)e-i(kr+7r/4)
(A.0.14)

Equating the two previous asymptotic expression leads to

a, e-i(kr ar/2v) ( U/4
iir/4 J=(k2 2 cos(a/v)e -i(kr+-r/4)

(A.0.15)

It follows that

2w7 cos(na/nu)e 2iv Y'/ (ka)

Y'pIka) - e 7/ 2 J /(ka)

where Hq/ = I.. Finally the exact solution is

2ircos(na/nu)e '7 Y /v(ka)

V7 H/ (ka)
J/ (kr) - , /(ka)

Y ', (ka()
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v r - ik i)

21, cos(na/nu)e 2v Y' 1/ (ka)

H,',/(ka)
(A.0. 16)

Y,(kr) cos(n0v)

(A.0.17)

O'ln

Or

= fr~ - ikBrT O )

a, =



Appendix B

Numerical simulation

The linear infinite system of equations given by equations (2.2.45) and (2.3.22) must

be solved with numerical computations. Two programs have been built to solve the

diffraction and the radiation problems. The systems are solved by truncating the

infinite series. Thus an important feature is the rate of convergence of each quantity

(physical variables as damping coefficient, but also coefficients as An,, Ba1...). This

study aims at finding the number of terms required to approximate the infinite series

with a satisfying accuracy in a reasonnable time of computation. Afterwards our pro-

grams have been tested with limiting cases and known identities (energy conservation

and reciprocal relation). Each test is presented in the second section. The study of

the convergence, as well as the tests have been done for the case of a wedge making

a right angle, that, is vi = 3/2.

B.1 Convergence

We will use for (3.2.1):

i Nt Ni -(k1 r) (0 37")1 ip
(Pc = E E Dr cos [ n - ZI(z) (B.1.1)

n=0 1=0 ~
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or for (3.2.5)

U(O, z) = Nv( Np (B.1.2)U(O Z)= -- ampVrn ()UpZ

Table B.1 presents the convergence of some coefficients in a test case when the number

NI of terms in the sun over eigenfunct ions increases and table B.2 presents the relative

error in percent. We see that a large number of terms is needed to get a satisfying

NI |A00| |BOl1 |C20|
200 0.321255 0.039874 0.033741
400 0.320445 0.039894 0.033782
600 0.320177 0.0399 0.033796
800 0.320043 0.039903 0.033803

1000 0.319963 0.039905 0.033807
1200 0.319909 0.039907 0.033809
1400 0.319871 0.039908 0.033811
1600 0.319842 0.039908 0.033813

Convergence of different coefficients as
ka = 1.09, N, = 3, N, = 5 and N = 5

ij/A0 | T|
0.626502 3.108079
0.625236 3.101798
0.624816 3.099715
0.624607 3.098676
0.624481 3.098053
0.624397 3.097638
0.624338 3.097341
0.624293 3.097119

Nl increases. a = 0.17r, h/a = 2,

accuracy. This is due to the fact that the flux has a discontinuity at r = a and

z = -d whereas the eigenfunctions are continuous. However this is not restrictive

since the computation time is not very long even for a very large number N. Table

NI A00| |BO1 |C20| i/Ao| | 1|
400 8.1E-04 2.OE-05 4.1E-05 1.3E-03 6.3E-03
600 2.7E-04 6.OE-06 1.4E-05 4.2E-04 2.1E-03
800 1.3E-04 3.OE-06 7.OE-06 2.1E-04 1.OE-03

1000 8.OE-05 2.OE-06 4.OE-06 1.3E-04 6.2E-04
1200 5.4E-05 2.OE-06 2.OE-06 8.4E-05 4.2E-04
1400 3.8E-05 1.OE-06 2.OE-06 5.9E-05 3.OE-04
1600 2.9E-05 0.OE+00 2.OE-06 4.5E-05 2.2E-04

Table B.2: Absolute error of different coefficients as N increases. a = 0.17r, h/a = 2,
d/a = 0.4, ka = 1.09, N, = 3, Nm, = 5 and Nt = 5

B.3 gives now the convergence of the same coefficients when the number N, of terms

up(z) in the expansion for U increases. Table B.4 presents the absolute error between

two consecutive terms. We can see that we only need a few term to get a excellent

accuracy. In addition, the computation time is very fast as N, increases. We took
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N, = 5 in our simulations. Now table B.5 gives now the convergence of the same

|A00|
0.319401
0.319856
0.319858
0.319858

|BO1|
0.039408
0.039908
0.039909
0.039909

|C20|
0.033907
0.033812
0.033813
0.033813

0.624976
0.624314
0.624322
0.624322

|T|
3.100506
3.097223
3.097262
3.097263

Table B.3: Convergence of different coefficients as Np increases. a = 0.17r, h/a = 2,
d/a = 0.4, ka = 1.09, N = 1500, Nm, = 5 and Nt = 5

1A001
4.55E-04
2.00E-06

0.00

BOll
OOE-04
OOE-06

0.00

IC20|
.50E-05
.OOE-06

0.00

|u/Aol
.62E-04
.00E-06

0.00

|T|
3.28E-03
3.90E-05
1.00E-06

Table B.4: Absolute error of different coefficients
h/a = 2, d/a = 0.4, ka = 1.09, NI = 1500, Nm = 5

as N, increases of 1.
and Nt = 5

coefficients when the number Nm of terms vm(z) in the expansion for U increases and

table B.6 gives the absolute error between two consecutive terms. As in the case for

the index p, the convergence is excellent and extremely fast. We only need 4 terms.

Nmn, |A00|
2 0.611658
3 0.622723
4 0.622723

IB01|
0.10657

0.110924
0.110924

|C20|
0.458743
0.467042
0.467042

|71/Ao|
0.079927
0.083193
0.083193

|E|
0.372522
0.205379
0.204925

Table B.5: Convergence of different coefficients as N, increases. a= 0.17, h/a = 2,
d/a = 0.4, ka = 1.09, N = 1500, N, = 3 and Nt = 5

And finally table B.7 presents now the convergence of the same coefficients when the

number Nt of terms cos(nO) and sin(nO) in the expression of the potentials increases

and table B.8 presents the absolute error between two consecutive terms. We can see

that we need around 40 terms to get a satisfying accuracy.
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N? |A00|
3 1.11E-02
4 0.00

|B01|
4.35E-03

0.00

|C20|
8.30E-03

0.00

|,/Ao I
3.27E-03

0.00

|A'
1.67E-01
4.54E-04

Table B.6: Absolute error of different coefficients as Nm. increases of 1. a= 0.17r,
h/a = 2, d/a = 0.4, ka = 1.09, NI = 1500, NI, = 3 and Nt, = 5

|A00|
0.314349
0.312912
0.312706
0.312645
0.312613
0.312594

|BOll
0.052736
0.052636
0.052624
0.052621

0.05262
0.052619

C20|
0.235762
0.234684

0.23453
0.234484

0.23446
0.234445

|q/A0|
0.039552
0.039477
0.039468
0.039466
0.039465
0.039464

|T|
0.033232
0.033201
0.033232
0.033234
0.033238
0.033242

Convergence of
ka = 1.09, NI =1

|A00
0.001437
0.000206

6.1E-05
3.2E-05
1.9E-05

different coefficients as Nt increases. a= 0.17, h/a = 2,
1500, N, = 3 and Nm,= 4

|B01|
1E-04

1.2E-05
3E-06
1E-06
1E-06

IC201
0.001078
0.000154
4.6E-05
2.4E-05
1.5E-05

7.5E-05
9E-06
2E-06
1E-06
1E-06

|TPI
3.1E-05
3.1E-05

2E-06
4E-06
4E-06

Table B.8: Absolute error of different coefficients as Nm increases of 1.
h/a = 2, d/a = 0.4, ka = 1.09, N = 1500, Np = 3 and N, = 5

a = 0.17,
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B.2 Tests of the accuracy

B.2.1 Energy conservation

First of all diffraction problem and radiation must satisfy the law of energy conser-

vation.

Diffraction problem In this case, energy conservation is given by

2i . Im is" (OD 0 ) dS = 0

Tables B.9 and B.10 gives the result for different test cases. As we can see, the energy

is well conserved.

kh 4.94 3.17 2.24 1.72

2i -Im f fs 5D dS 3.21 - 10-4 -6.38. 10-7 3.15- 10-3 3.40- 10-3

Table B.9: Energy conservation for radiation problem. For all cases h/a = 2 and

d/a = 0.4 and a = r/3

kh 4.94 3.17 2.24 1.72

2iO mff (#D ) dS 4.02 i0 4 -1.03. 10-5 4.43 i- 3 4.62- 0-3

Table B.10: Energy conservation for radiation problem.

d/a = 0.4 and a= 7r/4

Radiation problem

For all cases h/a = 2 and

Energy conservation is given by equation (2.3.32).

v = 3/2 gives in particular

Re ( - O0 ) rdOdz) = -Re (j3 J aW

Taking

rdrdo
0

(B. 2.2)

which can also be written in the form given in equation (2.3.40):

S =3 /jW E
Eno 2 2

En I oa.K2',(ko a)|
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Table B.11 summarizes the results for the test cases. It shows that the energy is well

conserved.

kh 4.94 3.17 2.21 1.72

B 0.1602 0.9454 4.6855 2.4375

3ngoa "" E,, 1  
2  0.1602 0.9454 4.6855 2.4375

n0 enkoaK',,(koa)

Table B.11: Energy conservation for radiation problem. For all cases a/h 1/2 and
d/a = 0.4

B.2.2 Limiting cases

The diffraction problem can be tested in two limiting cases. First the analytical

expression of the potential for the case of a cylinder extending to the bottom is

known and given in appendix A. Thus the model can be tested for d/h --+ 1.

Figure B-la shows the comparison of the free surface elevation average along the

cylinder outside the chamber for a value of d/h near to 1 with the theoretical solution.

There is a very good agreement.

The program can also be tested as ka -+ 0. Indeed the theoretical solution of a

wedge of -r/2 is also well known and is given by Stoker (1958). Figure B-1b presents

the comparison of the free surface elevation along the cylinder outside the chamber

for a small value of ka with the solution of a wedge with no cylinder. Agreement is

excellent.

B.2.3 Reciprocity identity

As shown by Evans (Reference) for an OWC, the radiation damping coefficient can

be related to the vertical flux inside the chamber due to diffraction by the following

relation. The demonstration can be find in annexe 2.4.

k ,.3/2

B =2 |1)1 da (B.2.4)
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(a) Limiting case of a cylinder extending to (b) Limiting case of a wedge with no cylinder
the bottom

Figure B-1: Polar graph of the free surface elevation along the cylinder (r = a)
outside the chamber. Left: convergence toward the theoretical solution of a cylinder
extending to the bottom (plain) as d/h tends to 1: d/h = 0.99 (marquers), ka = 3.23.
Right: convergence toward the theoretical solution of a wedge with no cylinder (plain)
as ka tends to 0: ka = 0.5 (dots). In all cases a/h = 2 and a = ir/3

wich can be written with dimensionless variables as:

~ kh 2  / f31/2 ~ 2
B - lglh I' (a) da

87rC, fo
(B.2.5)

Table B. 12 shows the results for this relation for different random cases. We can

notice that the relative error is always under 1%.

kh 8.77 6.45 4.94 2.24

B 0.008475 0.1399 1.1283 4.6227

kh2-,/ / h 31/2 2(a) da 0.008464 0.1402 1.1290 4.6554
87rCg

kh gih f 3w/2 v) 2d

B - 100 0.1256 0.224 0.0612 0.706

Table B.12: Reciprocal relation. For all cases h/a = 2 and d/a = 0.4
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Appendix C

General form of the potential in a

channel

We consider a rectangular channel along the axis x. The wall are vertical, and located

at y = ±c. Let us denote by Qf the fluid domain and Sf the free surface. We follow

Malmo and Reitan (1985) and consider an incoming wave arriving from x = +oc. Its

potential can be written in the following form 1:

(C.0.1)Re igAo _ikcosh(k(z+h))
o cosh(kh)

We shall use the following dimensionless variables:

Xi = hx' , ht I' ,
g (C.O.2)

# = Ao Vgh#', kh = k', ai = ha'

With this variables, the incident wave is given by

1 , -ikx cosh(k'(z' + 1))
iw' cosh(k')

(C.0.3)

1In what follows, the symbol Re will be onitted.
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For simplicity we will omit the prime symbol from now on and if nothing is specified,

all the variables are dimensionless. The general equations for the fluid are:

A# = 0, E GXQf

- = 0,

dy

on S

z=-1

y =±c

(C.0.4a)

(C.0.4b)

(C.0.4c)

(C.0.4d)

The solution is the summ of the incident potential and the scattered potential:

# = #i + #,. All the walls being vertical, the problem can be reduced to a 2-D problem

by writing
1 cosh(k'(z' + 1))

= .r(x, y)
iW cosh(k')

(C.0.5)

where rj(x, y) satisfies

(92

2

92
+ y2 + k2 )r/ = 0

y = ±c

(C.0.6a)

(C.0.6b)

In order to find a solution to this problem, we proceed by separation of variables. Let

us look for a solution of the form

r/(x, y) = e~'XV(y)

Equation (C.0.6a) implies thus that V(y) verifies

V"(y) + (V2 + k2)V(y) = 0

which implies

V(y) = A cos (v2 + k2y) + B sin (vi2 + k2y)

158

(C.0.7)

(C.0.8)

(C.0.9)



Pluging this expression into (C.0.4d) imposes

-A sin( V 2 + k2c

A sin( u2+k2c)

+Bcos(vIv2+k2c) 0

±Bcos v2+k2c )= 0

For this system to have a noi trivial solution its determinant must be equal to zero.

- sin (vL2 + k2C)

sin (vFv2 + k2c)

cos( v2+ k2c)
=+0

COS (Qv/2 + k2c)

wich implies succesively

sin ( v2 + k2c)

-sin (2cyv2 +k2) 0

->2c vq 2 k2 = q7r, q E

Thus finally vq ={ q7( 2-i k2 _

(2c)

.. 2kc
if qo< e

otherwise

(C.0.15)

where the sign of the square root has be chosen so that e-", is outgoing for x going to

+oo if vq is real or corresponds to a plane wave progessing in the direction of positive

x if vq is imaginary.

When q is even the system defined by equations (C.0.10) gives then B = 0 and thus

V1K(y) = aq cOs ( q (C.0. 16)

When q is odd, the system imposes A = 0 and thus

V(Y) = aq Sill ( ) (C.0. 17)
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(C.0.11)

cos (v'v2 +k2c) = 0 (C.0. 12)

(C.0. 13)

(C.0. 14)



Expression of the solution Let us recall the result we have obatin so far. With

the previous analysis we have found that the solution of the problem can be expressed

in the following way:

1 cosh(k(z + 1))
s(e- + a ce~"VQ(y) (C.0.18)ico cosh (k) =

where

V2q(y) = cos -y (C.0.19a)
(2c

+1(Y) sin (2 1) y (C.O.19b)
2c

and

-i k 2 __)2 f 1

vq =q2 2c ' 7 (C.O.20)

2 - k otherwise

Let us note that the soinmation contains plane waves progessing in the direction of

positive x. Let us also note that the y dependence of the scattered potential is a sum

of functions either symmetric with respect to 0 for V1(y) or antisymmuetric for Y,,(y).

This is represented on figure C-1.

Cy

-C0
-1 -. 5 V 0 05 1-1 -0.5 yI 0 0.5 1

(a) V2 (plain) and V (dashed) (b) V1 (plain) and V3 (dashed)

Figure C- 1: Function V, for q=1,2,3,4
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