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ABSTRACT

Progress
coupling of
substrates,

toward the total synthesis of amphidinolide B1 is described. The reductive
1,3-eynes and ketones was explored. It was found to work well with simple
but failed to yield intermediates toward amphidinolide B1.
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The coupling of 1,3-enyne and aldehyde fragments toward the synthesis of
amphidinolides G3 and H4 is also described. The entire carbon skeleton of these natural
products has been prepared from this coupling and a subsequent installation of a
methyl group using an indium based reagent.
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Tf trifluoromethanesulfonyl

TMS trimethylsilyl

TMSE trimethylsilylethyl

THF tetrahydrofuran

TPAP tetrapropyl ammonium perruthenate

Ts p-toluenesulfonyl
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Chapter 1

Ni-Catalyzed Reductive Coupling of 1,3-Enynes and Ketones, and
Studies Directed Toward the Synthesis of Amphidinolide B,
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Introduction

A. Amphidinolide Natural Products

The amphidinolide natural products are secondary metabolites isolated from different

strains of dinoflagellates, Amphidinium sp., that reside within tissue of the marine

flatworm Amphiscolopes sp. or other strains as free-swimming organisms off the coast

of the US Virgin Islands.' Professor Jun'ichi Kobayshi isolated the first members of this

class of natural products in 1986. Since that time many intriguing and biologically

significant compounds (forty-one to date) from this class have been isolated (Figure 1).

Figure 1. Representative Amphidinolide Natural Products
OOSMHO Me H O

Me 10H

Me *OHe H OH HO*# OMe

Me N OH H Me MeH 0 HH Oe 
Me

00
OH *Me 0 O O

amphidinolide C1  amphidinolide B1

0H I Me

,Me O Me

1 0 Me N 0e 0
Me 0 H Me Me Me Me

H 0 amphidinolide P 0 / Me
0

amphidinolide T1  amphidinolide K

B. Structure and Biological activity

The amphidinolide natural products share many characteristic functional groups.

These features include multiple chiral centers, oxygen heterocycles including epoxides,

1 (a) For reviews of the amphidinolides, see: Kobayashi J. J. of Antibio. 2008, 61, 271. (b)
Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77. (c) Chakraborty, T. K.; Das, S. Curr.
Med. Chem.: Anti-Cancer Agents 2001, 1, 131. (d) Kobayashi J.; Ishibashi M. in
"Comprehensive Natural Products Chemistry", Vol. 8, pp. 619-649, K. Mori, Ed., Elsevier, New
York, 1999. (e) For a current website see: http://www2.onu.edu/-b-
myers/amp/amphidinolides.html.
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tetrahydrofurans, and tetrahydropyrans, as well as at least one exo-methylene group in

all cases. In many, but not in all cases, the exo-methylene group is found to be part of a

characteristic 1,3-diene system which makes the amphidinolides unique compared to

other polyketide natural products. In addition, many of the amphidinolides have odd-

numbered macrolactone rings and irregular oxygenation patterns, a feature that is

uncommon in other polyketide natural products.

The amphidinolides have also been shown to possess in vitro antineoplastic activity

against murine lymphoma L1210 and human epidermoid carcinoma KB cell lines (Table

1). Amphidinolides B1, B4, B5, C1, H1, and N exhibit the greatest efficacy, with IC50

values as low as 50 pg/mL.

Table 1. Amphidinolide CytotoXicity.a

cytotoxicity cytotoxicity (IC50 cytotoxicity
amphidinolide (C50 mg/mL) amphidinolide mg/mL) amphidinolide (1C50 mg/mL)

L1210 KB L1210 KB L1210 KB
A 2.0 5.7 G2 0.3 0.8 Q 6.4 >10
B1  0.00014 0.0042 G3 0.72 1.3 R 1.4 0.67
B3  -- -- H1  0.00048 0.00052 S 4 6.5
B4  0.00012 0.001 H2  0.06 0.06 T1 18 35
B5  0.0014 0.004 H3  0.002 0.022 T2 10 11.5
B6  -- -- H4  0.18 0.23 T3 7.0 10
B7  -- -- H5  0.2 0.6 T4 11 18
C1 0.0058 0.0046 J 2.7 3.9 T5  15 20
C2 0.8 3 L 0.092 0.1 U 12 20

D (B2) 0.019 0.08 M 1.1 0.44 V 3.2 7
E 2.0 10 N 0.00005 0.00006 W 3.9 --
F 1.5 3.2 0 1.7 3.6 X 0.6 7.5

G1 0.0054 0.0046 P 1.6 5.8 Y 0.8 8.0
a Data compiled and reported in ref le.

The unique structure paired with the striking biological activity; make the

amphidinolides attractive targets for chemical synthesis. Much effort has been put
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toward this end and has resulted in the total synthesis of eighteen members of this class

of natural products.2

C. The B-Type Amphidinolides

There are sixteen members of the amphidinolide class of natural products that are

collectively termed the "B-type" amphidinolides. They are so-called due to their

closeness in structure to Amphidinolide B1 (the first compound of this subclass to be

isolated). The B subclass of the amphidinolide natural products comprise those

amphidinolides from the B-series, G-series, and H-series (Figure 2).

2 Proposed structure of amphidinolide A: (a) Lam, H. W.; Pattenden, G. Angew. Chem., Int. Ed.
2002, 41, 508. (b) Maleczka, R. E., Jr.; Terrell, L. R.; Geng, F.; Ward, J. S., Ill.; Org. Lett. 2002,
4, 2841. (c) Trost, B. M.; Chisholm, J. D.; Wrobleski, S. T.; Jung, M. J. Am. Chem. Soc. 2002,
124, 12420. Structural revision and total synthesis of amphidinolide A: (d) Trost, B. M.;
Harrington, P. E.; Chisholm, J. D.; Wrobleski, S. T. J. Am. Chem. Soc. 2005, 127, 13598.
Amphidinolide B1 and the proposed structure of amphidinolide B2/D: (e) Lu, L.; Zhang, W.;
Carter, R. G. J. Am. Chem. Soc. 2008, 130, 7253. Amphidinolide E: (f) Va, P.; Roush, W. R.
J. Am. Chem. Soc. 2006, 128,15960. (g) Kim, C. H.; An, A. H.; Shin, W. K.; Yu, W.; Woo, S. K.;
Jung, S. K.; Lee, E. Angew. Chem., Int. Ed. 2006, 45, 8019. Amphidinolide H1 and G1: (h)
Furstner, A.; Bouchez, L. C.; Funel, J.; Liepins, V.; Porr6e, F.; Gilmour, R.; Beaufils, F.; Laurich,
D.; Tamiya, M. Angew. Chem., /nt. Ed. 2007, 46, 9265. Amphidinolide J: (i) Williams, D. R.;
Kissel, W. S.; J. Am. Chem. Soc. 1998, 120, 11198. Amphidinolide K: (j) Williams, D. R.; Meyer,
K. G. J. Am. Chem. Soc. 2001, 123, 765. Amphidinolide P: (k) Williams, D. R.; Myers, B. J.; Mi,
L. Org. Lett. 2000, 2, 945. (1) Trost, B. M.; Papillon, J. P. N. J. Am. Chem. Soc. 2004, 126,
13618. (m) Trost, B. M.; Papillon, J. P. N.; Nussbaumer, T. J. Am. Chem. Soc. 2005, 127,
17921. Amphidinolide Q: (n) Hangyou, M.; Ishiyama, H.; Takahashi, Y.; Kobayashi, J. Org.
Lett. 2009, 11, 5046. Amphidinolide R: (o) Kissel W. S. in "The Asymmetric Total Synthesis of
Amphidinolides J and R", Ph. D. Thesis, Indiana University, 1998. Amphidinolide T1: (p) Gosh,
A. K.; Liu, C. J. J. Am. Chem. Soc. 2003, 125, 2374. (q) Colby, E. A.; O'Brian, K. C.; Jamison, T.
F. J. Am. Chem. Soc. 2004, 126, 998. Amphidinolide T4 : (r) Furstner, A.; Aissa, C.; Riveiros, R.;
Ragot, J. Angew. Chem., /nt. Ed. 2002, 41, 4763. (s) Colby, E. A.; O'Brian, K. C.; Jamison, T. F.
J. Am. Chem. Soc. 2005, 127, 4297. Amphidinolides T1, T3, T4, and T5: (t) Aissa, C.; Riveiros,
R.; Ragot, J.; Furstner, A. J. Am. Chem. Soc. 2003, 125, 15512. Proposed structure of
amphidinolide V: (u) Furstner, A.; Larionov, 0.; Flugge, S. Angew. Chem., /nt. Ed. 2007, 46,
5545. Amphidinolide W: (v) Gosh, A. K.; Gong, G. J. Am. Chem. Soc. 2004, 126, 3704. (w)
Gosh, A. K.; Gong, G. J. Org. Chem. 2006, 71, 1085. Amphidinolide X: (x) Lepage, 0.; Kattnig,
E.; Furstner, A. J. Am. Chem. Soc. 2004, 126, 15970. Amphidinolides X and Y: (y) Furstner, A.;
Kattnig, E.; Lepage, 0. J. Am. Chem. Soc. 2006, 128, 9194.
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Figure 2. Examples of B-Type Amphidinolides.
HO MeOH 0 Me OH 0

Me OOH Me OOH

HO Me HO , 'Me

Me% Me Me Me% Me OH

0 0

0o 0 0
amphidinolide B1  amphidinolide H1

Me OH O Me OH O
Me #OH Me OOH

HO#HO*e
HO% ,MeOH HO, ,Me

Me% Me Me% Me OH

0 0

amphidinolide G1  amphidinolide H4

All members of the G-series form 27-membered macrolactones instead of the usually

encountered 26-membered ring scaffold, but other than that correspond closely to the

H-series. In fact, it could be shown that by treatment with potassium carbonate in

ethanol amphidinolide G1 or H1 can be converted to a 1:1 mixture of the two compounds

underscoring the relationship of these two series (Figure 3).3

The structures of the B-type amphidinolides were elucidated by extensive 1 D- and 2D-

NMR experiments in course of their isolation. The relative stereochemistry of

amphidinolide B1 and H1 could be derived from X-ray crystallography and the absolute

configuration was assigned on the basis of degradation studies combined with chiral

HPLC-analyses. 3 4 5 Biosynthetic studies on amphidinolide B1 with 13C-labeled

3 Kobayashi, J.; Shimbo, K.; Kubota, T.; Tsuda, M. Pure Appl. Chem. 2003, 75, 337.

4 Isolation of B1 and B3: (a) Ishibashi, M.; Ohizumi, Y.; Hanashima, M.; Nakamura, H.; Hirata, Y.;
Sasaki, T. ; Kobayashi, J. J. Chem. Soc., Chem. Commun. 1987, 1127. (b) Ishibashi, M.;
Ishiyama, H.; Kobayashi, J. Tetrahedron Lett. 1994, 35, 8241. Isolation of B4 and B5: (c)
Tsuda, M.; Kariya, Y.; Iwamoto, R.; Fukushi, E.; Kawabata, J.; Kobayashi, J.; Marine Drugs
2005, 3, 1. Isolation of D: (d) Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y.;
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acetates revealed that this macrolide is most likely generated through non-successive

mixed polyketides.6

Figure 3. Relation between Amphidinolide H-Series and G-Series.
Me OH 0 Me OH 0

Me OOH Me OOH

MHO Me K2C 3, EtOH HO* * Me

Me OH Me

00
0 0 0

amphidinolide H1  amphidinolide G1

A few of the challenges posed by the B-type amphidinolides include, but are not

limited to: (i) nine stereogenic centers (three of which are contiguous); (ii) an a-hydroxy

ketone; (iii) a 1,3-diene with adjacent stereocenter; (iv) and, in most cases, a labile

alkenyl epoxide; (v) which are all contained within a 26-membered (or 27-membered)

macrocyclic lactone ring. These highlighted challenges along with the biological activity

have made the B-type amphidinolides the focus of much synthetic work, and many

fragments have been prepared.7 However, despite these numerous attempts it was not

Yamasu, T.; Hirata, Y.; Sasaki, T.; Otha, T.; Nozoe, S. J. J. Nat. Prod. 1989, 52, 1036.
Isolation of G1 and H1: (e) Kobayashi, J.; Shigemori, H.; Ishibashi, M.; Yamasu, T.; Hirota, H.;
Sasaki, T. J. Org. Chem. 1991, 56, 5221. Isolation of G2, G3 and H2-H5 : (f) Kobayashi, J.;
Shimbo, K.; Sato, M.; Tsuda, M. J. Org. Chem. 2002, 67, 6585. Isolation of L: (g) Tsuda, M.;
Sasaki, T.; Kobayashi, J. J. Org. Chem. 1994, 59, 3734.

5 X-ray crystallography: (a) Bauer, I.; Maranda, L.; Shimizu, Y.; Peterson, R. W.; Cornell, L.;
Steiner, J. R.; Clardy, J. J. Am. Chem. Soc. 1994, 116, 2657. (b) Kobayashi, J.; Shimbo, K.;
Sato, M.; Shiro, M.; Tsuda, M. Org. Lett. 2000, 2, 2805-2807.

6 Tsuda, M.; Kubota, T.; Sakuma, Y.; Kobayshi, J. Chem. Pharm. Bull. 2001, 49, 1366.

7 Fragment syntheses of B-type amphidinolides: (a) Eshelby, J. J.; Parsons, P. J.; Sillars, N. C.;
Crowley, P. J. Chem. Commun. 1995, 1497. (b) Lee, D.-H.; Lee, S.-W. Tetrahedron Lett. 1997,
38, 7909. (c) Chakraborty, T. K.; Suresh, V. R. Chem. Lett. 1997, 565. (d) Chakraborty, T. K.;
Thippeswamy, D.; Suresh, V. R.; Jayaprakash, S. Chem. Lett. 1997, 563. (e) Ohi, K.; Shima,
K.; Hamada, K.; Saito, Y.; Yamada, N.; Ohba, S.; Nishiyama, S. Bull. Chem. Soc. Jpn. 1998,
71, 2433. (f) Lee, D.-H.; Rho, M.-D. Bull. Kor. Chem. Soc. 1998, 19, 386. (g) Cid, B. M.;
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until recently that the first total synthesis of any of the B-type amphidinolides was

realized. Forstner reported the first total synthesis of amphidinolide H1 and its acid

catalyzed conversion to amphidinolide G1 in 2 0 0 7 .2h The total synthesis of

amphidinolide B1 and of the proposed structure of amphidinolide B2 (now referred to as

amphidinolide D) was then reported by Carter shortly after. 2e The key disconnections

for Furstner's synthesis of amphidinolide H1 are shown in Figure 4. The ester was

prepared from carboxylic acid and alcohol fragments through a Yamaguchi coupling.

Another key step toward amphidinolide H1 was a selective aldol reaction where the

PMB ether group exerted strong 1,4-anti induction. The 1,3-diene was formed via a

difficult Stille coupling which required 0.70 equivalents of Pd(PPh 3)4. This was quite an

accomplishment as previously cross-couplings were shown to be problematic. 70 The

ring was then closed by making use of ring closing metathesis, and the silyl groups

were removed using TASF to give amphidinolide H1.

Pattenden, G. Synlett 1998, 540. (h) Ohi, K.; Nishiyama, S. Synlett 1999, 571. (i) Ishiyama, H.;
Takemura, T.; Tsuda, M.; Kobayashi, J. Tetrahedron 1999, 55, 4583. (j) Ishiyama, H.;
Takemura, T.; Tsuda, M.; Kobayashi, J. J. Chem. Soc. Perkin Trans. / 1999, 1163. (k) Eng, H.
M.; Myles, D. C. Tetrahedron Lett. 1999, 40, 2279. (1) Eng, H. M.; Myles, D. C. Tetrahedron
Lett. 1999, 40, 2275. (m) Chakraborty, T. K.; Thippeswamy, D. Synlett 1999, 150. (n) Lee, D.-
H.; Rho, M.-D. Tetrahedron Lett. 2000, 41, 2573. (o) Cid, M. B.; Pattenden, G. Tetrahedron
Lett. 2000, 41, 7373. (p) Zhang, W.; Carter, R. G.; Yokochi, A. F. T. J. Org. Chem. 2004, 69,
2569. (q) Mandal, A. K.; Schneekloth, J. S.; Crews, C. M. Org. Lett. 2005, 7, 3645. (r) Zhang,
W.; Carter, R. G. Org. Lett. 2005, 7, 4209. (s) Gopalarathnam, A.; Nelson, S. G. Org. Lett.
2006, 8, 7. Amphidinolides G1 and H1: (t) Chakraborty, T. K.; Suresh, V. R. Tetrahedron Lett.
1998, 39, 9109. (u) Chakraborty, T. K.; Suresh, V. R. Tetrahedron Lett. 1998, 39, 7775.
Amphidinolide L: (v) Tsuda, M.; Hatakeyama, A.; Kobayashi, J. J. Chem. Soc. Perkin Trans. /
1998, 149. (w) Kobayashi, J.; Hatakeyama, A.; Tsuda, M. Tetrahedron 1998, 54, 697.
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Figure 4. The Key Disconnections in Furstner's Synthesis of
Amphidinolide H1.
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The key disconnections for Carter's synthesis are presented in Figure 5. The 1,3-

diene was prepared via a Ti-promoted allyl silane and ketone coupling followed by

elimination. Carter also used an aldol reaction as a key step; however, due to the lack

ot the PMVB ether, it was not stereoselective. The synthesis also employed a

Yamaguchi coupling, and in this case it was performed with the 1,3-diene unit present.

The ring was closed with the Horner-Wadsworth-Emmons (HWE) olefination. The

product of the HWE was then further elaborated to give the alkenyl epoxide and the silyl

groups were deprotected using TASF to give the first total synthesis of amphidinolide

B1.

Figure 5. The Key Disconnections in Carter's Synthesis of
Amphidinolide B1.

nonselective aldol

MeH Me MH M EOM
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Assembly of the sensitive 1,3-diene has been the biggest challenge for chemists and

has prevented more synthesis of these natural products. In addition, if the diene could

be assembled, the chemist was often limited by the types of transformations that could

take place in the presence of the diene. The 1,3-diene has been shown to be

incompatible to basic and acid conditions because of the exo-methylene unit which

isomerizes to the more stable internal olefin.2h Our laboratory recently described the Ni-

catalyzed reductive coupling reactions of 1,3-enynes with aldehydes and ketones that

generate dienyl alcohols.8 ' 9 These reactions give us access to the difficult to prepare

1,3-dienes with the same arrangement found in the B-type amphidinolides. Although,

when we embarked on developing this unified strategy to the 1,3-dienes contained

within the B-type amphidinolides, the only known reductive coupling between 1,3-

enynes and ketones were described for 1,3-enynes and aryl ketones (Figure 6).9

However, we envisioned access to the amphidinolides in the B-series via reductive

coupling of a 1,3-enyne and methyl ketone. In addition, we could access the

amphidinolides in the G-series and H-series via reductive coupling of a 1,3-enyne and

aldehyde, followed by displacement of the newly formed alcohol with a methyl

nucleophile.

8 (a) Ni-catalyzed reductive coupling of 1,3-enynes and aldehydes: Miller, K. M.;
Luanphaisarnnont, T.; Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 4130. For a
mechanistic discussion see: (b) McCarren, P. R. Liu, P.; Cheong, P. H.-Y.; Jamison, T. F.;
Houk, K. N. J. Am. Chem. Soc. 2009, 131, 6654. (c) Liu, P.; McCarren, P. R.; Cheong, P.H-Y.;
Jamison, T. F.; Houk, K. N. J. Am. Chem. Soc. 2010, ASAP Article, DOI: 10.1021/ja909562y.

9 Ni-catalyzed reductive coupling of 1,3-enynes and ketones: Miller, K. M.; Jamison, T. F. Org.
Lett. 2005, 7, 3077. For a review see: Moslin, R. M.; Moslin, K. M.; Jamison, T. F. Chem.
Commun. 2007, 4441.
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Figure 6. Ni-Catalyzed Reductive Coupling of 1,3-Enynes and
Ketones.

HO R 
3
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The mechanism for the Nickel-catalyzed reductive coupling of 1,3-enynes and

ketones is believed to proceed via a nickel matallacycle (Figure 7 ).8b, 8c In this case the

alkene acts as a directing group, and we believe there is a bonding interaction between

Nickel and the olefin which imparts high levels of regioselectivity. From there p-hydride

elimination followed by reductive elimination gives the desired coupled product.

Figure 7. Proposed Mechanism for Ni-Catalyzed Reductive Coupling
of 1,3-Enynes and Ketones.
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Synthetic Strategy Towards Amphidinolide B1

Our strategy toward amphidinolide B1 involves a convergent Ni-catalyzed reductive

coupling of 1,3-enyne 3 and methyl ketone 4 to generate the tertiary alcohol 2 (Figure

8). The alcohol 2 can in turn be transformed into amphidinolide B1 (1) with the thought

that the ring can be formed via Mitsunobu cyclization.10 The key coupling reaction for

this sequence would require us to first investigate the viability of methyl ketones as

10 a) Mitsunobu, 0.; Yamada, Y. Bull. Chem. Soc. Japan 1967, 40, 2380. b) Review of the
Mitsunobu Reaction: Hughes, D. L. Org. React. 1992, 42, 335.
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coupling partners with 1,3-enynes. Another key requirement for this strategy would be

for the reductive coupling to proceed with a high degree of diastereoselectivity. We

anticipated that a chiral phosphine ligand would be necessary to influence the

stereoselectivity during the fragment coupling step. After investigating the fragment

coupling step we would prepare the 1,3-enyne 3 and the ketone 4.

Figure 8. Retrosynthetic Analysis of Amphidinolide B1.
HO Me OH 0 HO Me OTBS O

Me OOH Me .OTBS

HO# ,Me TBSO ,Me

Me, Me Me Me, Me
I
0 / OTBS OTES

0
0

amphidinolide B1 (1) 2

Me OTBSO

Me 
OTBS

Me+ TBSO Me

O-' 0TBS Me

OTES
3 4

Results and Discussion

A. 1,3-Enyne and Ketone Reductive Coupling

The key step for the proposed synthesis of amphidinolide B1 involves an enyne and

ketone reductive coupling. To date the only catalytic intermolecular reductive coupling

of ketones and enynes reported uses chiral monodentate ferrocenyl phosphines to

achieve the coupling of 1,3-enynes and aromatic ketones.9 The proposed synthesis of

amphidinolide B1 would require a di-alkylketone to be coupled with an enyne.

To achieve this we set out to find conditions that would give the desired coupling. We

envisioned using Ni(cod) 2, Et3B as a stoichiometric reducing agent, and a tertiary
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phosphine ligand. Initially, several ligands were investigated for the coupling of 1,3-

enyne 5 and ketone 6 (Table 2). Many ligands were screened that gave little to no

product including i-Pr3P, Ph3P, (o-anisyl) 3P, (2,4,6-trimethoxy-phenyl)3P, and (t-

Bu3)2 MeP (Table 2, entries 2-6). The best result was observed when Cyp3P was used

as the ligand at 35 0C, and 22% of the desired alcohol 7 was obtained (entry 1). Adding

a solvent such as toluene decreased the yield significantly when Cyp3P was used as the

ligand, and further investigations using solvents during the ligand screening were not

performed. Using t-Bu 3P also gave product, but the reaction produced many

uncharacterized products that were difficult to separate from the desired alcohol 7 (entry

7). With the exception of using t-Bu3P as the ligand, all other reactions gave varying

amounts of starting materials 5 and 6, the desired alcohol 7 as a 1:1 mixture of

diastereomers, and another compound believed to be the reductive self-coupling (5') of

enyne 5.
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Table 2. 1,3-Enyne and Ketone Reductive Coupling Ligand Screening.
HO Me Me Me

MeMe Me Me Me
Ni(cod)2Me 0 BEt3

Me MeKl LMe 3 Me, +

Me 6 lMe Me Me
Me Me

5 Me 7 Me 5'

entrya Ligand yield (%)b

1 Cyp 3P 22

2 i-Pr3P <5

3 Ph3P <5

4 (o-anisyl) 3P 0

5 (2,4,6-trimethoxy-phenyl)3P 0

6 (t-Bu)2MeP <5

7 t-Bu3P 21c

a All reactions were performed on 0.131 mmol scale at 35 *C with 250
mol% of ketone 6 and 100 mol% of enyne 5 added at once to a catalyst
mixture containing 250 mol% BEt 3, 10 mol% Ni(cod)2, and 20 mol% ligand.
b All yields are isolated yields. cThe product could not be seperated from
decomposition products that were not seen in previous cases.

Further investigations showed that the yield could be further optimized while using

Cyp3P as the ligand (Table 3). Increasing the catalyst loading or amount of Et3B did not

increase the yield in a significant manner (entries 2 and 3). However, increasing both

the catalyst loading and the amount of Et3B in conjunction with prolonging the addition

time of the enyne did serve to increase the yield to 36%; a full 63% increase compared

to 22% seen previously (entries 1, 4).
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Table 3. Further Enyne and Ketone Coupling Investigations.
HO Me Me

Me Ni(cod)2

Me4, Me0 Me Et3B 3 Me4
Me A Me Cyp 3P

Me 6 Me
35 *C

5 Me 7 Me
1:1 d.r.

entrya Ni(cod)2 :Cyp 3 P (mol%) Et3 B (mol%) 5 addition time (min) yield (%)b

1 10:20 250 1 22

2 20:40 250 1 26

3 10:20 1000 1 26

4 20:40 500 105 36

a All reactions were performed on 0.131 mmol scale at 35 *C with 250 mol% of ketone 6
added to a catalyst mixture containing Et3B, Ni(cod) 2, and Cyp3P. Then 100 mol% of enyne 5
was added while stirring, and the reaction was stirred for an additional 2 hours. b All yields
are isolated yields.

We found that we could further improve the yield for the 1,3-enyne and ketone

coupling by increasing the temperature and using a 2:1 ratio of enyne 8 to ketone 9, 20

mol% Ni(cod) 2, 40 mol% Cyp3P, and 500 mol% Et3B (Table 4). The yield increased as

the reaction temperature increased, and the best yield (80%) was observed when the

reaction was performed at 60 0C (entries 1-5). Increasing the temperature of the

reaction beyond 60 'C gave a decrease in yield for alcohol 10 compared to when the

reaction was performed at 60 *C (entry 6). In all cases the remaining ketone 9, which

did not couple with the enyne 8, was reisolated nearly quantitatively even at 65 *C. The

enyne that did not couple with the ketone underwent a reaction to give cyclotrimer

product. We also extended the reaction time and the enyne addition time; however, no

noticeable increase in yield was observed.
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Table 4. Enyne and Ketone Coupling Temperature Optimization.
Ni(cod)2 20 mol% Me O.

Me 0 Cyp 3P 40 mol% Me
+ 1 1kC9Hj 9Me Me C9H19  Et3B 500 mo l% Me 1

8 9 10

entry' temperature (*C) yield (%)b recovered 9 (%)b

1 35 35 65

2 45 56 43

3 50 67 22

4 55 73 27
5 60 80 15

6 65 68 32

a AII reactions were performed on 0.350 mmol scale with 100 mol% of
ketone 9 added to a catalyst mixture containing Et3B, Ni(cod)2, and
Cyp3P. Then 200 mol% of enyne 8 was added over 3 hours while
stirring, and the reaction was stirred for an additional 2 hours. b All
yields are isolated yields.

Further optimization was done to investigate what effect the enyne and ketone ratio

had on the reaction (Table 5). It was found that a 2.5:1 ratio of enyne:ketone gave the

best result with a yield of 77% for the desired alcohol 10 and 20% yield of recovered

ketone 9 (entry 2). In addition, the yield did not substantially decrease for 1.5:1 and 1:1

ratios respectively (entries 3 and 4). However, one troubling result was that a significant

decrease in yield was seen when the coupling was performed on a smaller scale (entry

5). When the 1,3-enyne and ketone coupling was performed on a 0.131 mmol scale, a

yield of 36% was observed compared to 51 % yield under identical conditions on a 0.350

mmol scale. It is hypothesized that the decrease in yield is seen because on small

scale, in the absence of a solvent, the Et3B evaporates off when the reaction is

performed at 55 0C.
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Table 5. Reductive Coupling Optimization for Enyne Equivalents.
Ni(cod)2 20 mol% Me OH

Me O Cyp3P 40 mol%

+ Me C9H19 Et3B 500 mol% Me C9H19

8 95 10

entry' 8 (mol%) yield (%)b recovered 9 (%)b

1 300 74 25
2 250 77 20
3 150 66 32
4 100 51 43

5c 100 36 64

a Unless otherwise noted all reactions were performed on 0.350
mmol scale with 100 mol% of ketone 9 added to a catalyst mixture
containing Et3B, Ni(cod)2, and Cyp3P. Then the enyne 8 was
added over 3 hours while stirring, and the reaction was stirred for
an additional 2 hours. bAll yields are isolated yields. c Reaction
performed on 0. 131 mmol scale.

We believed that use of a solvent would address this problem, and to that end the

reductive coupling of enyne 8 and ketone 9 was performed in the presence of solvents.

However, a decrease in yield was seen when compared to the neat conditions for a

reaction performed on a 0.350 mmol scale (Table 6, entry 1). In this case the yield was

50% for the desired alcohol 10 compared to 77% when performed in the absence of

solvent. This loss in yield was offset slightly when the amount of Et3B was reduced from

500 mol% to 200 mol% (entry 2). Toluene proved to be a better solvent for the coupling

when compared to EtOAc (entry 3). When the enyne was dissolved in toluene and

added over three hours the yield was increased from 60% to 70%, and both conditions

allowed for complete recovery of the ketone (entries 2, 6). Reducing the amount of Et3B

below 200 mol% decreased the yield of the reaction (entry 5). The advantage of using

the solvent was realized when the coupling reaction was able to be performed in good

yields for scales of 0.131 and 0.066 mmol respectively. We now had conditions that

worked well on a variety of scales, and we could add a solvent to achieve reliable

results on particularly small scales.
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Table 6. Reductive Coupling Optimization with use of Solvent.
Ni(cod)2 20 mol% Me OH

Me O Cyp3P 40 mol% Me
L~ e+ C9Hj 9

Me C9 H19  Et3B Me C H1
60 *C 108 95h 1

entrya solvent Et3B (mol%) yield (%)f recovered 9 (%)f

1b toluene 500 50 46

2b toluene 200 60 34

3 b EtOAc 200 51 48
4c toluene 500 61 39

5c toluene 150 60 39
6c toluene 200 71 29
7c, d toluene 200 66 33

8c, * toluene 200 51 48

a Unless otherwise noted reactions were performed using 0.350 mmol 9. 250 mol% of
Enyne 8 was added over 3 hours and the reaction was carried out for an additional 2
h. b Ketone 9 added as 2 M solution in solvent. c Enyne 8 added as 6 M solution in
toluene. d The scale for this reaction was 0.131 mmol. * The scale for this reaction
was 0.066 mmol. ' All yields are isolated yields.

B. Synthesis of the 1,3-Enyne Fragment"

The synthesis of the 1,3-enyne 3 commenced by forming the trans allylic ether region.

To that end the allylic iodide 12 could be prepared efficiently by the ring opening of

2,5-dihydrofuran (11) in the presence of TBSCI, DMAP, and Nal at reflux for 48

hours.12  We found that the long reaction time could be averted by heating in a

microwave at 150 0C for 20 min (Scheme 1). This method could be used to prepare 50

g of the allylic iodide in short order and with great cost efficiency.

Scheme 1
0 Nal, TBSCI,

. I , OTBS

DMAP 12
AW

57%

0 The author collaborated closely with Dr. Chudi Ndubaku during this stage of work and
portions have been reported in: . Ndubaku, C. 0. "Diastereoselective Nickel-Catalyzed
Reductive Coupling of Alkynes and Aldehydes and Application Toward the B-Type
Amphidinolides", Ph. D. Thesis, Massachusetts Institute of Technology, 2005.

12 Sun, M.; Deng, Y.; Batyreva, E.; Sha, W.; Salomon, R. G. J. Org. Chem. 2002, 67, 3575.
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Asymmetric alkylation of the Evans N-acyl oxazolidinone auxiliary 13,13 with allylic

iodide 12, proceeded with excellent selectivity and yield (Scheme 2). The auxiliary was

then cleaved reductively with LiAIH 4 in excellent yield to give the alcohol 14. The

alcohol was then in turn converted to the iodide 15 in 95% yield.

Scheme 2
0 O 1) LHMDS

A N Me OTBS OH 12, Ph3P Me
\__ 12 Me% imidazole %

--Me 2) LiAIH 4, Et20 / OTBS Et20/MeCN OTBS
Me 13 14 15

90% 95%
> 95:5 d.r.

We had initially envisioned reaction with a lithiated dithiane 16 to give compound 17

(Scheme 3). Subsequent deprotection of the dithiane 17 provided the desired methyl

ketone 18. 14

Scheme 3
ISMe 0 Me

S S

Me., Me'Li 16 Me S Phl(O 2CCF3)2  Me%

.- OTBS THF / HMPA OTBS pH 7 buffer L" OTBS

15 65% 17 90% yield 18

Although the route to the methyl ketone was adequate, we found a more direct and cost

effective route by metal-halogen exchange with iodide 15. This was followed by

addition of Weinreb amide 19 (Table 7). However, the lithium-iodide exchange was met

with difficulty. Generally lithium-iodide exchange takes place within minutes at -78 0C

13 Original report: (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104,
1737. For an excellent review, see: (b) Ager, D. J.; Prakash, I.; Schaad, D. R. Aldrichim. Acta
1997, 30, 3.

14 (a) Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 287. (b) Nicolaou, K. C.; Li, Y.; Sugita, K.;
Monenschein, H.; Guntupalli, P.; Mitchell, H. J.; Fylaktakidou, K. C.; Vourloumis, D.;
Giannakakou, P.; O'Brate, A. J. Am. Chem. Soc. 2003, 125,15443.
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and then the reaction is warmed to room temperature for two hours, in order to convert

the tertiary iodide that is formed to an alkene via elimination. However, when performed

under these conditions, various decomposition pathways prevailed, and none of the

ketone 18 was isolated (entry 1). Instead of warming to r.t. the reaction was warmed to

0 0C for two hours, but once again only decomposition resulted (entry 2). Shorter

amounts of time at 0 0C also resulted in the same decomposition products (entry 3). If

the reaction was warmed to -40 0C for one hour, decomposition resulted once again, but

30% of the desired ketone 18 was also observed along with 15' resulting from reaction

with H* (entry 4). Finally, keeping the reaction at -78 0C for 2 hours allowed for the

ketone 18 to be isolated in 65% yield along with 15' (entry 5). In an attempt to prevent

the undesired product one equivalent of CeCl3 was added; however the yield was not

further improved and 15' was still obtained.

Table 7. Lithium-Iodide Exchange.
0M

Me, 1) t-BuLi (200 mol%) Me4

- OTBS 2) 0 ,OMg

15 MeAN 1918
Me

entry temperaturea yield (%) 18

1 -78 OC - rt 2 h - -78 *C 0
2 -78 OC -0 C 2 h -+ -78 OC 0
3 -78 *C 0 C 0.5 h+ -78 *C 0
4 -78 C - -40 C 1 h -78 *C 30 de

5 -78 C 2 h 65 ke

a Temperature of reaction after addition of t-BuLi but before Weinreb amide addition.

OTBS

Me Me

- OTBS

15'

comment

decomposition
decomposition
decomposition

composition was also observed

tone 18 and 15' were observed

Making use of Comins's reagent (20) allowed for the clean conversion of the methyl

ketone 18 to the corresponding kinetic enol triflate, and without the use of HMPA
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(Scheme 4).15 With the triflate in hand, Sonogashira cross-coupling with propyne

provided the desired 1,3-enyne fragment 3. 16 Overall the enyne fragment was prepared

in 48% yield over five steps from the Evans N-acyl oxazolidinone auxiliary 13. The

synthesis is very scalable and has been used to make 4 g of the enyne 3 at once.

Scheme 4
Me 1) LHMDS 20 Me

Me% CI\1 _NTf2  Me,

OTBS 2) Pd(PPh3)4, Cul - OTBS
18 propyne, i-Pr 2NH 3

86%

C. Ni-Catalyzed 1,3-Enyne and Model Ketone Fragment Coupling

Before setting out to prepare the ketone fragment, we investigated the reductive

coupling between the 1,3-enyne fragment 3 and 2-undecanone (9). Initially, we

attempted the coupling using the conditions we had previously found to be successful

for our model compounds (Scheme 5). However, despite numerous attempts and

variations, we observed an inseparable mixture of the desired alcohol 21 and alcohol 22

(which resulted from the reduction of the TBS ether).

Scheme 5
HO Me HO Me

Me Me CH Me CH1
Me N(cod)2 20 mol% M CH 9  M

+ M"' CP3 4 mol%+
MgMe., C9H1 Et3B 200 mol% Me%, Me,

-OTBS 9 toluene OTB o Ks M
55 T, 5 h Me

3 21 22
43%

15 Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299.

16 (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467. (b)
Sonogashira, K. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J.,
Eds.; Wiley-VCH: Weinheim, 1998; Ch. 5.
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At room temperature the reduction of the TBS ether did not occur, but the coupling also

did not take place.

D. Synthesis of Modified 1,3-Enyne Fragment

Due to the difficulties associated with having the allylic TBS ether present during the

reductive coupling, we decided a modification to our approach was necessary. The

change we decided to implement was installing the epoxide functional group before the

coupling instead of after. Enyne 3 was TBS deprotected using TBAF to give allylic

alcohol 23, which was converted to the epoxide using the Sharpless method for

asymmetric epoxidation (Scheme 6). 7 The epoxide was then protected once again to

give the TBS ether 24 in good yield.

Scheme 6
Me Me Me

F1) Ti(Oi-Pr)4 , L-(+)-DET,
TBAF t-BuOOH, CH2CI2

Me Me~ Meg
Me,, THF 2) TBSCI, imidazole,

..- OTBS 89% r' OH DMF OTBS

3 23 73%, 90:10 d.r. 0 24

E. Ni-Catalyzed Reductive Coupling with new 1,3-Enyne and Model Ketone

Gratifyingly, with use of the newly synthesized 1,3-enyne 24, the Ni-catalyzed

reductive coupling was successful to give the alcohol 25 as 1:1 mixture of

diastereomers (Scheme 7). The preparation of alcohol 25 resulted from exclusive cis

addition across the alkyne. Noteworthy is that no TBS ether reduction was observed for

the reaction to give the desired alcohol 25 in 87% yield; which was a higher yield than

any observed in our previous 1,3-enyne and ketone reductive coupling investigations.

17 (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974-5976. (b) Hanson, R. M.;
Sharpless, K. B. J. Org. Chem. 1986, 51, 1922.
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We were also happy to see that internal epoxides were tolerated under the reaction

conditions.

Scheme 7
HO Me

Me Me C

0 Ni(cod)2 20 mnol%

Me Me C9H19  CyP3 40 mol%
Me Ce~e 3Me.g

OTBS Et3B 200 nmol%OTS 9 toluene 'OTBS
0 24 55 C, 5 h 0 25

87%
1:1 d.r.

F. Synthetic Strategies for the Ketone Fragment

There are several strategies that could be employed to tackle the ketone fragment.

Before setting out to synthesize ketone 4 we developed two such strategies. The first

strategy involves Horner-Wadsworth-Emmons (HWE) olefination between advanced

intermediates, ketophosphonate 28 and aldehyde 29, to give the E-a,f-unsaturated

ketone 27 (Figure 9).18 Subsequently we anticipated a selective ozonolysis would give

diketone 26, which in turn could be used to give the desired ketone fragment 4 after

Sharpless asymmetric dihydroxylation.19, 20 This strategy would allow for the installation

of all five stereogenic centers in ketone 4 with control of relative and absolute

stereochemistry.

18 Reviews: (a) Wadsworth, W. S., Jr. Org. React. 1977, 25, 73-253. (b) Kelly, S. E. In
Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 1, pp 729. (c) Walker, B. J. In Organophosphorus Reagents in Organic Synthesis;
Cadogan, J. 1. G., Ed.; Academic Press: New York, 1979; pp 155.

19 Review of the Sharpless Asymmetric Dihydroxylation (AD): Johnson, R. A.; Sharpless, K. B.
In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH: New York, 2000; 2nd ed.; pp
357.

20 An asymmetric dihydroxylation strategy has been used previously on a substrate related to
compound related to 27: (a) Lee, D.-H.; Rho, M.-D. Tetrahedron Lett. 2000, 41, 2573. (b) Eng,
H. M.; Myles, D. C. Tetrahedron Lett. 1999, 40, 2279.

-34-



Figure 9. Retrosynthetic Analysis of Ketone Fragment.
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Me
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Me Me

Me

27 OTES

An alternative strategy involves HWE olefination with ketophosphonate 32 and

aldehyde 29 to once again give the E-ap-unsaturated ketone (Figure 10). However,

this strategy would call for asymmetric dihydroxylation at this stage, followed by alkyne

hydration to give the desired ketone 4 and the five stereocenters contained within. We

were confident that one or both of these strategies would suffice to give ketone 4.

Figure 10. Alternative Retrosynthetic
0 OTBS O

Me " 0OTBS

TBSO0 *Me

Me

OTES
4

Analysis of Ketone Fragment.
alkyne TMS OTBS 0

hydration 4OH

HO, ,Me

Me

30 OTES

AD

TMS OTBSO 0

> I (OMe)2 +

32

0

H Me

Me

29 OTES

HWE
TMS OTBSO

00Me

Me

OTES
31
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G. Selective Ozonolysis / Asymmetric Dihydroxylation Approach

In our first strategic approach we anticipated installing the #-hydroxy ketone moiety by

making use of the novel Ni-catalyzed reductive coupling of alkynes and

mono-substituted epoxides developed in our lab.2 1 And indeed this strategy had been

successfully employed in our earlier studies toward amphidinolide H1 .22 In order to

implement this strategy we first prepared the enantiomerically enriched epoxide 34

according to the literature precedent.23 Reacting trans-crotonyl chloride (33) in the

presence of triethylamine and benzyl alcohol gave the alkene transposed benzyl ester,

via a ketene intermediate, in quantitative yield (Scheme 8). The ester then underwent

epoxidation and Jacobsen hydrolytic kinetic resolution to give the desired epoxide 3424

Scheme 8
1) NEt3 , BnOH, benzene

0 2) m-CPBA, CHC13 0

Me A A CI 3) [(RR)-salen]CoOAc, O On
33 H20 34

30%
> 99% ee

With the desired enantiomerically enriched epoxide 34 in hand we explored the use of

the Ni-catalyzed reductive coupling described earlier with 2-butyne (35). We were

21 (a) Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076. For an application in
total synthesis, see: (b) Colby, E. A.; O'Brien, K. C.; Jamison, T. F. J. Am. Chem. Soc. 2004,
126, 998.

22 Ndubaku, C. 0. "Diastereoselective Nickel-Catalyzed Reductive Coupling of Alkynes and
Aldehydes and Application Toward the B-Type Amphidinolides", Ph. D. Thesis, Massachusetts
Institute of Technology, 2005.

23 Liu, P; Panek, J. S. "Total Synthesis of (-)-Mycalolide." J. Am. Chem. Soc. 2000, 122, 1235.

24 (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936. (b)
Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.;
Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124,1307.
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pleased to see that under standard conditions the coupling worked in moderate yield to

give the desired homoallylic alcohol (Scheme 9).21a However, we were able to increase

the yield slightly by performing the reaction at 0 C. Carrying out the reaction at this

colder temperature helped with the volatility of the 2-butyne without negatively effecting

the reactivity of the catalyst system. The newly formed homoallylic alcohol was then

protected to deliver the TBS ether 36. Addition of the lithiated dimethyl

methylphosphonate gave the desired ketophosphonate fragment 28 for the HWE

olefination.

Scheme 9
0

1) Ni(cod)2 10 MOM% 1 37
BU3P 20 mol% Me Me?OMe Me

+Me Et3B 400 mo% Now 1 OTBSO Me) I TB
O OBn Me 2) TBSOTf, 2,6-lutidine Me OBn M BuLi Me (OMe) 2

34 35 CH2CI2  36 28
75%

59%

The aldehyde fragment for the HWE coupling was prepared according to literature

precedent (Scheme 10).7p Myers auxiliary 38 was alkylated with (R)-propylene oxide

(39) to give the diol 40.5 The diol was subsequently TES protected and reduced with

lithium amidotrihydridoborate to deliver alcohol 41. Ley oxidation then gave the desired

aldehyde 29.26

25 Myers, A. G.; McKinstry, L. J. Org. Chem. 1996, 61, 2428.

26 a) Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun.
1987, 1625. b) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.
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Scheme 10
Me O Me O

Ph '-')N.UJkMe 1) LDA, LiCI Ph .JkN Me 1) TESC NEt3

OH Me 2) OH Me Me OH 2) Li(NH2)BH3

38 O 39 40 53

46%
94:6 d.r.

0

H Me

HO Me TPAP 1 mol% Me

Me OTES NMO OTES

4179% 29

With the ketophosphonate 28 and aldehyde 29 prepared, the HWE olefination was

performed under the conditions reported by Masamune and Roush (Scheme 11).27 The

conditions provided the desired E-ap-unsaturated ketone 27 in a non optimized yield of

43%, but with high E/Z selectivity.

Scheme 11

Me', TBSO0

Me k P(OMe)2  +

28

0 LiCI, i-Pr2NEt

Me MeCN

OTES 43%
29 OES 95:5 E:Z

Me OTBS 0

Me IMe

Me

27 OTES

Subjection of E-ap-unsaturated ketone 27 to ozonolysis under a variety of conditions

did not lead to selective ozonolysis of the desired trisubstituted olefin (Scheme 12).

Scheme 12
Me". QTBS O

Me 
Me

Me

27 OTES

03, DMS
______________- Do

O OTBS O

Me

,Me

Me

OTES
26

27 Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.;
Sakai, T.; Tetrahedron Lett. 1984, 25, 2183.
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H. Asymmetric Dihydroxylation / Alkyne Hydration Approach

Due to the problems with the ozonolysis approach, we turned to alkyne hydration as

an alternative approach to the ketone fragment 4. To install the alkyne moiety, lithiated

TMS-acetylene was added into the epoxide 34, followed by TBS protection to deliver

the ester 42 efficiently (Scheme 13). Once again, addition of the lithiated dimethyl

methylphosphonate gave the desired ketophosphonate fragment 32 for the HWE

olefination.

Scheme 13
0
I1 37

0__ TMS OTBSO0 M-' OMe TMS oTBSO 00
1)TMS .__ Li, Et2AICI MeO T(

Bn 1 o~Bn n 32~ (OMe) 2
34 2) TBSOTf, 2,6-lutidine 42 32

87% 86%

Another change that was made to our strategy was to use the known TBS protected

aldehyde 43, because the TBS group would be more stable to a wider variety of

reaction conditions. The aldehyde 43 could be prepared using the same strategy as

used to prepare aldehyde 29 .7P The HWE reaction went efficiently and with high

selectivity to give the E-a,jp-unsaturated ketone 44 (Scheme 14). The introduction of

the syn-1,2-diol moiety was achieved by using the asymmetric dihydroxylation method

reported by Sharpless in adequate yield and excellent diastereoselectivity. 19 , 2 8 The diol

was then protected as the bis-TBS ether 45.

28 Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem.
Soc. 1988, 110, 1968.
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Scheme 14

TMS OTBSO 0

(OMe)2
32

LiCI, i-Pr2NEt
MeCN

0

H ,Me

43 Me

OTBS

96%
95:5 E:Z

1) (DHQ) 2PHAL,
K20sO2(OH)4 ,

TMS OTBS0 K3Fe(CN)6, TMS OTBS 0
CH3SO2NH2, B TNNaHCO 3 OTB

t-BuOH : H20 (1:1) Me
44 Me 5 *C, 2 days 45 TBSO, #Me

Me 2) TBSOTf, Me
2 6-lutidine 

OTBSOTBS CH2CI2  OB

61%
>95:5 d.r.

Only two transformations were needed to access the desired ketone 46. We

anticipated that the TMS group could be deprotected and the alkyne hydrated in a

single step by using HgSO 4 to give the ketone fragment. And indeed such a

transformation was possible; however, the process was inconsistent, sluggish, and low

yielding (Scheme 15). The best yield was obtained at 28% after 24 h of reaction time.

Scheme 15
TMS OTBS O 0 OTBS O

OOTBS HgSO4  Me OOTBS

TBO ~Me Me
45 THFIH20 46 TBSO, Me

Me Me
28%

OTBS OTBS

We believed that removing the TMS protecting group before the alkyne hydration

would improve the yield (Scheme 16). The initial conditions of excess K2CO3 in a

solvent system of THF / H20 / MeOH failed to remove the TMS group. However, after

using 20 equivalents K2C03 in MeOH / THF the deprotection proceeded in 91% yield to

give alkyne 47.

Scheme 16
TMS OTBSO

KOTBS
TBSO %e K2C03, MeOH / THF

TBSO 
1Me

45 Me 91%

OTBS

H OTBS O

,OOTBS

Me
TBSO' %M

47 Me

OTBS
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The conversion of alkyne 47 to ketone 46 was met with great difficulty (Table 8). No

hydration of alkyne 47 was seen when [Ph 3PAu]Cl was used as the catalyst (entry 1).

Use of mercury salts did lead to the desired ketone 46 as well as the undesired ketone

48 (with removal of the least hindered TBS group). Use of Hg(COOCF 3)2 for the

hydration was sluggish and gave inconsistent yields, so further investigations were done

using HgSO 4 (entry 2). Using HgSO4 as the reagent for hydration also proved to give

inconsistent results particularly on larger scale (entries 3- 7). Performing the hydration

with 20 mol% HgSO 4 allowed the reaction to proceed much faster compared to 10

mol% HgSO 4, but a significant amount of ketone 48 was isolated along with the desired

ketone 46.

Table 8. Alkyne Hydration Investigation.
H OTBS O 0 OTBS O 0 OTBS O

OOTBS H20 Me O0TBS Me **OTBS

47 TBSO, ,Me 46 TBSO, 1,Me 48 TBSO/
Me Me Me

OTBS OTBS OH

entry 47 (mol%) reagent time result

1a 0.28 5 mol% [Ph3PAu]CI 48 h No reaction

2 0.48 20 mol% Hg(COOCF 3)2  24 h 12% 46; 55% 47; <5% 48
3 0.28 20 mol% HgSO4  12 h 78% 46; 10% 48

0 0.48 20 mol% HgSO 4  12 h 36% 46; 37% 47; <5% 48

5 0.56 10 mol% HgSO 4  12 h <5% 46; 73% 47; <5% 48
6 0.56 10 mol% HgSO4  24 h 29% 46; 29% 47; <5% 48

7 0.112 20 mol% HgSO4  12 h 39% 46; 24% 48

a An additive of AgOTf was used. b Average of 5 trials with results that were inconsistent.

After investigating the hydration as well as looking into other methods to synthesize

the ketone 46, we found that using 2% [Ph 3PAu]CI with 2% AgOTf at 35 0C in MeOH /

THF / H20 gave a mixture of the desired ketone 46 and undesired ketone 48. However,

the reaction was otherwise fairly clean and the crude material could be subjected to

TBS protection conditions to give the ketone 46 in 64% yield (Scheme 17).
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Scheme 17
TMS OTBSO 1) Ph3PAuCI 2 mol%, o OTBS O

IAgOTf 2mroI%
#OTBS THF / H20 / MeOH Me ~ OTBS

45 TBSOC 3
Me 2) TBSCI, imidazole - 4 TSO, *Me
Me CH2CI2  Me

OTBS 64 % OTBS

In summary we prepared the ketone fragment, and the five stereogenic centers

contained within, in 23% yield over seven steps from the known enantiomerically

enriched epoxide 34. This was accomplished by making use of the HWE olefination,

followed by Sharpless asymmetric dihydroxylation, and alkyne hydration.

1. Investigation of the Ni-Catalyzed 1,3-Enyne and Ketone Coupling

The Ni-catalyzed coupling between 1,3-enyne fragment 24 and ketone 46 was initially

performed on a small scale of 0.054 mmol, so the use of toluene as a solvent was

needed (Scheme 18). We also decided to use 200 mol% of the 1,3-enyne 24, which

was added over three hours as a 6 M solution in toluene. However, despite the fact that

these conditions had worked well for 1,3-enyne 24 and 2-undecanone, we observed

none of the desired dienol 49 when the conditions were applied to the coupling of enyne

24 and ketone 46. We also investigated several small modifications to no avail. In all

cases the enyne could not be recovered and gave primarily the reductive dimerization

product. The ketone could be recovered; although, it often contained impurities which

were difficult to separate.

Scheme 18
HO Me OTBS 0

Me 0 OTBS 0 Me OOTBS

Me ~ #OTBS Ni(cod)2 20 mol% TBS Me
Me% + 46 TBSO# #Me CyP3P 40 ol- Me TBSO Me

OTBS Me Et3B 200 mol%
toluene OTBS OTBS0 24 OTBS 55 *C, 5 h 0 49
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J. Synthesis of Model Ketone

We hypothesized that the problem with the coupling of 1,3-enyne 24 and ketone 46

may be due to steric hindrance from the p-TBS ether. Previously this enyne and ketone

coupling had been optimized using the sterically unencumbered 2-undecanone. In

order to test the viability of the coupling reaction on more hindered substrates we set

out to synthesize racemic ketone 50 which would provide a model for ketone 46. The

enantiomerically enriched Benzyl ester 42 is an intermediate toward the ketone 46

(Scheme 13). We prepared the (±)-42 in the same manner, and addition of n-BuLi after

preparation of the Weinreb amide gave the ketone product. The diketone 50 was

prepared via subsequent alkyne hydration, and the TMS and TBS groups were

deprotected during this process as well (Scheme 19). The crude alcohol was then

protected as the TBS ether once again under standard conditions.

Scheme 19
1) HN(OMe)(Me) -HCI, Me3AI

TMS OTBS 0 2) n-BuLi 0 OTBS 0
3) PhPAuCl, 2 mol% Me Me

On AgOTf, 2 mol% p e l M

(±)-42 4) TBSCI, imidazole 50

45%

K. Investigation of the Model 1,3-Enyne and Ketone Coupling

Under our previously optimized conditions the coupling of model ketone 50 and enyne

8 went in modest yield to give the dienol 51, (as a mixture of all four possible

diastereomers) when the enyne was added over one, three, and five hours with Cyp3P

as the ligand (Table 9, entries 1-3). Other ligands were investigated as well but failed to

give product (entries 4 and 5). While the yield was modest at best for the coupling of

1,3-enyne 8 and ketone 50, we were pleased to see that the coupling was at least
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viable for the model ketone. Also, we did not observe coupling between enyne 8 and

the butyl ketone moiety. Further attempts at optimization were met with difficulty, and

indeed a yield of 35% was the best yield obtained for the coupling.

Enyne and Ketone Coupling Investigations.
Ni(cod)2 20 mol% Me OH OTBS O

e + Me ligand 40 mol% Me

8 50 Et3B 200 mol% Me 51
8 toluene

60*C Me

entry' ligand enyne addition time (h)b yield (%)C

1 Cyp 3P 3 35 Fc Ph
2 Cyp 3P 1 35

3 Cyp 3P 5 30

4 Bu3P 3 0

5 A 3 0

a Reactions were performed using 0.131 mmol of 50 with 250 mol% of Enyne 8
added. b Enyne 8 added as a 6M solution in toluene, and the reactions were
performed for an additional 2 hours after the enyne was completely added. C

Yields are approximate, as 51 was not isolated cleanly.

Doubling the catalyst loading gave better overall conversion for the coupling of enyne 8

and ketone 50, but the yield of product 51 was approximately the same (Table 10, entry

2). On smaller scale; however, the reaction did not work very well at all. Even doubling

the catalyst loading and amount of Et3B gave less than 5% yield (entry 5).

Table 10. Further Enyne and Hindered Ketone Coupling Optimization.
Ni(cod) 2  Me OI OTBS 0

Mep 3  MeTS ,
e + M e e to M M e

8 50 EtB Me 51// - M elk." toluene 5

entrya 50 (mmol) Ni(cod) 2:Cyp 3P:Et3B (mol%) temperature (*C) yield (%)b

1 0.131 20:40:200 65 35

2 0.131 40:80:200 65 35

3 0.066 2040:200 65 0

4 0.066 20:40:200 55 <5

5 0.066 40:80:400 55 <5

a Reactions were performed using 250 mol% of Enyne 8 added as a 6M solution in toluene, and the reactions were
performed for an additional 2 hours. b Yields are approximate, as 51 was not isolated cleanly.
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Given that the coupling between enyne 8 and ketone 50 did not work on 0.066 mmol

scale, but did work on 0.131 mmol scale, gave us reason to believe that the coupling

between enyne 24 and ketone 46 failed because it was carried out on a 0.064 mmol

scale or smaller (Scheme 18). To test this hypothesis the coupling of 1,3-enyne

fragment 24 and ketone 50 was investigated (Scheme 20). To our delight when the

reaction was performed on a scale of 0.131 mmol the reaction did work in adequate

yield to give the dienol 52 as a mixture of diastereomers.

Scheme 20
Me OH OTBS 0

Me Me

Me Ni(cod) 2 20 mol%
Cyp 3P 40 mol%

M0e OTBS 0 Et3B 200 mol% N Me.

OTBS Me ~ l Me 60 *C toluene OTBS

O 24 50 ~45% 0 52

With these results in hand, the coupling of 1,3-enyne 24 and methyl ketone 46 was

once again investigated, but this time on scales of 0.131 or larger (Scheme 18).

However, to our dismay the coupling reaction still failed to give the desired product. We

investigated several modifications of the reaction conditions, but found the coupling was

not viable. The ketone 46 appeared to be particularly hindered toward the Ni-catalyzed

coupling reaction, and the ketone also would not undergo coupling with enyne 8

(Scheme 21).

Scheme 21
0 OTBSO 

HO Me TBS O

Me OTBS Ni(cod)2 20 mol% Et OTBS

Me ligand 40 mol% Me T O Me

8 + 46 TBSO** Et3B 200 mol% 53 Me
Me toluene

60 *C, 5h OTBS
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L. Synthesis of New Ketone Fragment

Due to the fact that ketone 46 was particularly unreactive to our ketone coupling

conditions, we set out to prepare a less sterically hindered ketone. This would be

realized by preparing ketone 54 which would have the cis-diol protected as the

acetonide instead of bis-TBS protected diol. The diol 36 was protected as the acetonide

and subsequent alkyne hydration and TBS protection gave the desired ketone 54

(Scheme 22). The acetonide group held up well to the alkyne hydration; however,

either one or both of the TBS groups were cleaved and hence the crude product was

subjected to standard TBS protection conditions.

Scheme 22
MoO OMe Me MTMS TBSO OH 1) PPTS, Me O BS O Me

3Me 2) Ph 3PAuCI, AgOTf Me36 HO MeOH/H 20 54 #* Me
HO 40 T, 8h M

Me 3) TBSCI, imidazole Me

OTBS 48% OTBS

Attempts at coupling the newly prepared ketone 54 and enyne 24 were once again

largely unsuccessful. If the reaction was heated to 80 0C we did observe a reductive

coupling product which has tentatively been assigned as the desired 55 (Scheme 23).

However, the compound was not isolated cleanly and could not be fully characterized.

Scheme 23
Me Me

Me Me HO Me OTBS 0

Me OTBS 0 Ni(cod)2 20 mol% Me

+ Me - 0 Cyp 3P 40 mol% | O 'Me

Me. O Me Et3B 200 mol% Me, Me
toluene

OTBS Me 80 *C, 5h OTBS OTBS
0 24 OTBS < 0 55
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M. Ni-Catalyzed Cyclization Strategy Toward Amphidinolide B,

Due to the difficulties associated with the intermolecular Ni-catalyzed coupling of the

enyne 24 and ketone 54 we decided that a different approach was needed to complete

the synthesis of amphidinolide B1. We decided to keep the same basic strategy toward

the natural product. Our new strategy would entail a Mitsunobu coupling to join the

fragments and Ni-catalyzed reductive cyclization to close the ring (Figure 11). This

would be the opposite of the previous strategy, which would have joined the fragments

via Ni-catalyzed reductive coupling and followed by cyclization through Mitsunobu

reaction. Our new strategy also has several advantages over our previous strategy.

First it would require fewer steps. The ketone 56 can be formed from the enyne 57,

ester 58, and ketone 48 through a Kocienski-modified Julia olefination29 , 30 and

Mitsunobu coupling.1 0 The enyne 57, and ketone 48 could be easily accessed in one

step from intermediates from our previous strategy. In addition, the ester 58 is a known

compound that can be easily prepared.70 Another technical advantage of the Ni-

catalyzed cyclization strategy is that the enyne would not need to be added dropwise,

and thus the reaction could in principle be performed on small scale more easily.

Lastly, the highly unstable diene that is formed during the coupling would not have to

survive many transformations, with removal of the three TBS protecting groups as the

only remaining step.

29 For original report see: Julia, M.; Paris, J.-M. Tetrahedron Lett. 1973, 14, 4833.

30 For Kocienski modified version see: Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley,
A. Synlett 1998, 26.
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Figure 11. Modified Retrosynthetic Analysis of Amphidinolide B1.
MeHO $ Me OH 0 0,OHSNi-catalyzed reductive 0OaTBSO

Me 001-1 cyclization M OTBS

MeO.Me TBS% .Me

Me,, MeC Me Me Me Me
Me Me M

0 Me 
a5 0 Mitsunobu

amhdnld ,() 56 coupling

Julia olefination

N'N Me +

N 0,SO TMS
0N0 58 0

O OTBSO

Me * OTBS

TBSO# OMe
Me

48 OH

N. Second Generation Ketone Fragment Synthesis

Previously when attempting to synthesize ketone 46, we had inadvertently prepared

ketone 48. However, the synthesis had not yet been optimized for yield, and to optimize

the yield of the synthesis of ketone 48 from alkyne 45, a few reactions were performed.

Use of either MeCN or MeOH as solvent gave ketone 48 as the major product after five

hours at 35 0C; however, with MeCN, a significant amount other products were formed.

In THF the reaction proceeded very slowly. In MeOH / THF at 40 *C the reaction was

complete within four hours and gave ketone 48 in 63% yield (Scheme 24).

Scheme 24
TMS OTBS O

.OTBS

45 TBSO# *Me
Me

OTBS

Ph 3PAuCI 2 mol%
AgOTf 2 mol%

MeOH/THF/H
20

40 T

63%
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0. Second Generation 1,3-Eyne Fragment Synthesis

The 1,3-enyne 57 was prepared in one step from the 1,3-enyne 23, an intermediate

from our previous strategy, via Ley oxidation of the alcohol to the corresponding

aldehyde (Scheme 25).26

Scheme 25
Me Me

Me% TPAPo. Me,

OH NMOCH2CI2

23 73% 57H

P. Synthesis of Ester Fragment

The previously reported ester 58 was prepared according to the literature (Scheme

26).70 The 1-phenyl-1H-tetrazole-5-thiol (59) was first alkylated with bromide 60 to give

sulfide 61, which in turn was oxidized to sulfone 62 with m-CPBA. Reduction of the

nitrile group to the aldehyde 63, followed by a Horner-Wadsworth-Emmons olefination

with phosphonate 64,27 gave the ester fragment 58 in 31% yield over 4 steps. The

trimethylethylsilyl (TMSE) ester was chosen because the group could be cleaved using

TBAF instead of harsh basic conditions that would have been problematic for the labile

alkenyl epoxide.

Scheme 26

K2C03 0 ,
N SH + Br.-. CN DMF S CN m-CPBA 3 PT'S CN DIBAL-H

N-N 80 *C 94% 59%

59 60 61 62
97%

0 0 0 0

PT H + (EtO)2- ' OTMSE LiCI, i-Pr 2NEt PT OTMSE
Me 57% Me

63 64 E:Z 95:5 58
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Q. Synthesis of Ni-Catalyzed Cyclization Precursor

The Kocienski-modified Julia olefination worked well in 56% yield to give the 1,3-enyne

65 (Scheme 27). The fragment coupling was highly selective for the desired alkenyl

epoxide, and gave a 94:6 E:Z ratio of isomers.

Scheme 27
Me Me

Me, O KHMDS Me. Me

PTO OTMSE DME O / OTMSE

0 0 ME0
Me 56% 0

57 58 94:6 E:Z 65

The trimethylethylsilyl group could be deprotected with TBAF (Scheme 28). After

deprotection acidification of the corresponding carboxylate salt was met with difficulties

due to the labile alkenyl epoxide moiety present. Dilute HCI caused decomposition

under all conditions investigated. When AcOH was used the acid was slow to form and

decomposition eventually resulted. Finally quenching with NH4 CI, diluting with THF,

and treating with a pH 2 phosphate buffer solution, produced the desired 1,3-enyne

fragment 67, which was now set up for Mitsunobu coupling.

Scheme 28
Me Me Me

Me. Me 1) TBAF 3 MeN Me pH 2 phosphate Me Me
OTMSE 2) NH 4CI / / ONH4  buffer / / OH

65 O 66 0 067 0

Unfortunately, the Mitsunobu reaction did not work with acid 67 and alcohol 48 under

various reaction conditions (Scheme 29). Both DEAD and DIAD as well as PPh3 and

PBu 3 were used as reagents for the coupling, but to no avail. The reaction was also
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performed at several different temperatures, but in all cases the desired ester 56 was

not formed.

Scheme 29
o QTBS O 0 QTBS O

Me Me OTBS Me - OTBS

Me PBu3, DEAD Me
+ TBSO ** -------------mso TBSO#

Me% Me 48 Me e Me Me

OH OH 0

me"
67 0 56 0

R. Yamaguchi Coupling Approach

Given that the investigations into the Mitsunobu coupling were not met with success

we decided to investigate a Yamaguchi coupling approach.31 Since the Mitsunobu

reaction proceeds with inversion of stereochemistry and the Yamaguchi reaction does

not, we needed to invert the stereocenter of the alcohol moiety of ketone 48. To

accomplish this we decided to synthesize the known aldehyde 68 in a similar manner to

that shown in Scheme 10. Then as before HWE olefination with ketophosphonate 32

gave the enone 69 in good yield and selectivity (Scheme 30).27 The Sharpless

asymmetric dihydroxylation'9, 28 gave 70, which was followed by bis-TBS protection to

give alkyne 71. Once again the alcohol 72 could be prepared using catalytic Ph3AuCl

and AgOTf.

31 (a) A Yamaguchi coupling has since been shown to be successful toward the synthesis of B-
type amphidinolide natural products. See ref: 2a. (b) Inanaga, J. ; Hirata, K.; Saeki, H. ; Katsuki,
T. ; Yamaguchi, M. A. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
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Scheme 30
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We were pleased to see that the Yamaguchi coupling between carboxylate salt 66

and alcohol 72 gave the desired ketone 56 in 83% yield (Scheme 31). It is also

noteworthy that 56 contains all of the carbon atoms found in amphidinolide B1. With 56

in hand, all that remained for the synthesis of amphidinolide B1 was Ni-catalyzed

cyclization and removal of the three TBS protecting groups.

Scheme 31
O OTBSO

Me #OTBS

z TB O OTBS
.. TBSO,' "MMe 2,4,6-trichlorobenzoyl chloride, NEt3 , 8 h;

Me
M O OH then 72, DMAP, 40 *C, 8 h

72 83% Me

S. Investigations of the Ni-Catalyzed Cyclization

Multiple attempts at reductive cyclization of 56 have as of yet not afforded the desired

compound 73 (Scheme 32). For example the reaction was carried out using 30 mol%

Ni(cod)2, 60 mol% Cyp3P, and 200 mol% Et3B at 45 OC as a 0.08 M solution in toluene.

While it is not clear what products had formed; the alkenyl epoxide was not present in

any of the products isolated. The cyclization reaction was also carried out at lower and

- 52 -



higher temperatures; though unfortunately, these attempts as well as many others with

minor modifications were not successful. It is noteworthy that the a,p-unsaturated ester

moiety was present in the uncharacterized compounds that were isolated. Previously

these functional groups were shown to undergo coupling under similar conditions.32

Scheme 32
0 OTBS O HO Me OTBS O

Me = # OTBS
Me ' OTBS Ni(cod)2 30 mol% Me OTBS

TBS ",,Me Cyp3P 60 mol% 
Me

TBS#...............................TBSO#

Me Me Et3B 200 rnol% Me O M Me
Me toluene Me

// A45C T 0.
Me 5 5h

56 0 73 0

T. Second Generation Ni-Catalyzed Cyclization Approach

Due to the failed attempts at reductive cyclization of enyne 56, our strategy was

modified to target enyne 74 (Figure 12). It was our aim that enyne 74 would more

readily cyclize under the Ni-catalyzed conditions, and be of greater stability because it

lacked the labile alkenyl epoxide present in enyne 56. The cyclization product could

then be converted to amphidinolide B1 after deprotection, and use of the Sharpless

method for conversion of 1,2-diols into epoxides.33

Figure 12. New Reductive Cyclization Substrate.
0 OTBS O

Me OOTBS

TBSO# *M

Me MMe
OTBS 74 0

32 For a review see: Montgomery, J. Angew. Chem. /nt. Ed. 2004, 43, 3890.

33 Kolb H. C.; Sharpless K. B. Tetrahedron, 1992, 48, 10515.
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U. Synthesis of a Protected Diol for Ni-Catalyzed Cyclization

Synthesis of the Ni-catalyzed cyclization precursor 74 commences with selective

Sharpless asymmetric dihydroxylation of allylic TBS ether 3 (Scheme 33).2 When the

reaction was carried out at 0 *C, it was near completion after 24 hours and gave diol 75

in 49% yield, with 29% of recovered enyne 3. Warming the reaction to 8 0C gave a yield

of 54% for diol 75 with a d.r. of 95:5. Protection of the diol using TBSOTf and 2,6-

lutidine yielded enyne 76. Selective deprotection of the primary TBS ether was

accomplished using CSA in MeOH to give the alcohol 77 in good yield, even though

secondary TBS ethers were cleaved to some degree. Nevertheless, these byproducts

could be subsequently protected again to give enyne 76, and resubjected to the CSA in

MeOH reaction conditions.

Scheme 33
Me Me Me Me

AD-mix a TBSOTf CSA
MeMeS2NH2 N Me, OH 2,6-lutidine 3 Me4 OTBS MeOH Me. OTBS

X OTBS t-BuOH/H20 OTBS CH2CI2  OTBS 0 C OH
3 8*C OH 75 97% OTBS 76 74% OTBS 7

54%
95:5 d.r.

The alcohol 77 was transformed to the aldehyde 78 via Ley oxidation in excellent yield

(Scheme 34).26 The ester 79 was prepared using the same strategy as previously

described in Scheme 26. However, for this strategy the ethyl ester was desired instead

of the trimethylethylsilyl ester because we required the carboxylate salt, and because

removal of the TMSE group would be difficult in the presence of the TBS groups. The

Kocienski-modified Julia olefination went with excellent selectivity and yield to give the

desired enyne 80.
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Scheme 34
Me Me Me

Me TPAP Me + O KHMDS 3 me
OTBSM OTBS PE M OTBS MeMe TS NMO PT OEt DME

OH MeR/ / OEt

OB 77OTBS 78 79 88%
OTBS 95:5 E:Z OTBS 80 0

The successful saponification of ethyl ester 80 was realized when using excess LiOH in

a solvent mixture of THF, MeOH, and H20 (Scheme 35). The carboxylate salt 81

subsequently underwent Yamaguchi coupling with alcohol 72 to give the reductive

cyclization precursor 74.

Scheme 35
Me

Me, OTBS Me LiOH

Ot THF/MeOH/H
20

OTBS 80 0

Me - 0 OTBS O

2,4,6-trchlorobenzoyl chloride, NEt3, 8 h; Me OTBS

Me,,, OTBS Me DMAP, 40 *C, 8 h TBSO Me

O 0e e eTBS e M Me

I Me#OTB // OTBS Me
Lm e * M e m e /"

L 1TB SO O M4TBS 74 0
Me

72 OH

84%

V. Investigations of the Second Generation Ni-Catalyzed Cyclization

Our investigations into the Ni-catalyzed cyclization of 74 to dienol 82 proved to be

unsuccessful (Scheme 36). When carried out under dilute conditions (<0.02 M) and

using 40 mol% Ni(cod) 2 and 80 mol% Cyp3P most of the enyne 74 was recovered.

When performing the cyclization reaction under more concentrated conditions in the

presence of excess Et3B, the enyne 74 underwent decomposition to what appeared to
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be a single product. When the reaction was carried out under even more concentrated

conditions the decomposition product was once again primarily isolated. The primary

decomposition product isolated in all cases is believed to be diketone 833, shown as

the product in Table 11, which resulted from a surprising fragmentation process.

Scheme 36
0 OTBS O HO Me TBS O

Me OTBS Ni(cod)2  Me - OTBS
MeLA cyp3P

TBSO Me _____ 3 _B---- TBSO# M

Me Me toluene Me O Me// OTBS Me M OTBS Me

MeZ
OTBS 74 0 OTBS 82 0

It should be noted that the production of diketone 83 seemed to be dependent on the

ligand used for the Ni-catalyzed reaction (Table 11). If Cyp 3P was chosen as the ligand

none of the enyne 74 was recovered; however, the fragmentation product 83 was

isolated in 54% yield (entry 2). When NMDPP, (o-anisyl)3P, or Me2PPh were used as

the ligand some of the diketone 83 was isolated while a portion of the enyne 74 was

recovered (entries 4-6). Surprisingly, if FcPPh 2 or Bu3P were chosen for the ligand

none of the diketone 83 was isolated, and the enyne 74 was isolated almost

quantitatively even at 65 0C (entries 1 and 3). While there does not seem to be any

obvious correlation between ligands and product, it is likely not a coincidence that

Cyp3P (which is generally the best ligand for Ni-catalyzed reductive couplings of enynes

and carbonyl compounds) gives the diketone product in the highest yield. The pathway

for the synthesis of 83 is currently unknown.

3 Diketone 83 has been characterized by 1H NMR and HRMS.
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Table 11. Effect of Ligand on Ni-Catalyzed Coupling Product.
OOTBSO ~ O TBSO ~

OTBS Ni(cod)2 30 mol% 00*TBS
mM Ligand 60 mol% Me Me

04# ~Me Et3B 200 mol% ",,, ~Me
TBS0OT Me * 6 o TBSM

M Me Me toluene Me TMe Me

entry ligand recovered 74 (%) 83 (%)

1 FcPPh2  80 0

2 Cyp 3P 0 54

3 Bu3P 90 0

4 NMDPP 30 35

5 (o-anisyl)3P 39 37

6 Me2PPh 30 30

Conclusion

We had envisioned preparing amphidinolide B1 via a convergent fragment coupling of

a ketone and enyne, and thus developed a method for Ni-catalyzed reductive coupling

of enynes and dialkyl ketones. However, application of this method to the synthesis of

amphidinolide B1 proved unsuccessful under a variety of conditions. We also looked

into different ketone coupling partners to no avail.

We investigated an alternative Ni-catalyzed cyclization approach to amphidinolide B1

that would have allowed for a more convergent and simpler synthesis. While we were

able to prepare the cyclization substrate, which would have required only two synthetic

steps thereafter to prepare amphidinolide B1, the Ni-catalyzed cyclization suffered from

undesired side reactions.

Nevertheless, during the course of these studies we learned a great deal about Ni-

catalyzed enyne and ketone reductive couplings. We also found that internal epoxides

were tolerated under the enyne and ketone reductive coupling conditions. Also, we

found that the a,p-unsaturated ester moiety present in the B-type amphidinolides could
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be tolerated under the reductive coupling conditions. What we learned from our studies

toward amphidinolide B1 will subsequently put to use in our work toward assembling

amphidinolides from the G-series and H-series.

Experimental Section

General Information. All non-aqueous reactions were performed under an inert

atmosphere of dry nitrogen in flame-dried glassware, sealed with a rubber septum.

Argon was passed over Dririte* (CaSO 4) and supplied through a glass manifold.

Dichloromethane, diethyl ether, THF, toluene, and triethylamine were purified by

distillation and dried by passage over activated alumina under an argon atmosphere

(H20 content < 30 ppm, Karl-Fischer titration).35 Ethyl acetate was pre-dried over

anhydrous MgSO 4, distilled from CaH 2, degassed by the freeze-pump-thaw procedure

and stored over activated 4 A molecular sieve. Diisopropylamine was distilled from

CaH2 and stored over KOH. Ti(Oi-Pr)4 was distilled from CaH 2. Magnesium bromide

was dried under high vacuum at 150 *C for 2 days. Ozonolysis was performed using a

CLEARWATER TECHNOLOGIES CD1500 Ozone Generator supported by a

pressurized oxygen gas source. Microwave reactions were performed using a

BIOTAGE Initiator Eight Microwave Synthesizer (400W maximum power). Reactions

were stirred magnetically unless indicated otherwise and monitored by thin layer

chromatography (TLC). Analytical thin layer chromatography was performed using

MERCK Silica Gel F254 glass plates and visualized by ultraviolet light. Additionally, TLC

3 Pangborn, A. B.; Giradello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J.
Organometallics 1996, 15, 1518.
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plates were stained with ethanolic phosphomolybdic acid (PMA), aqueous potassium

permanganate (KMnO 4) or cerium molybdate (CAM). Chromatographic purification was

performed as flash chromatography on SILICYCLE SiliaFlash* F60 (230-400 mesh)

silica gel using a forced flow of eluant at 0.3 - 0.5 bar over-pressure. Concentration

under reduced pressure was performed by rotator evaporation at 40 0C at the

appropriate pressure. Purified compounds were dried further under high vacuum (0.01

to 0.25 Torr). Yields refer to the isolated compound unless stated otherwise. ' H and 13C

NMR spectra were recorded in deuterochloroform (CDCI 3), unless otherwise noted, on a

Bruker Avance 400 MHz, a Varian Inova 500 MHz or a Bruker Avance 600 MHz

spectrometer. Chemical shifts in 'H NMR spectra are reported in parts per million (ppm)

on the 5 scale from an internal standard of residual chloroform (7.27 ppm). Data are

reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q =

quartet, m = multiplet, app = apparent and br = broad), coupling constant in hertz (Hz),

and integration. Chemical shifts of 13C NMR spectra are reported in ppm from the

central peak of CDCl 3 (77.2 ppm) on the 5 scale. Infrared (IR) spectra were recorded

on a Perkin-Elmer 2000 FT-IR. High Resolution mass spectra (HRMS) were obtained

on a Bruker Daltonics APEXII 3 Tesla Fourier Transform Mass Spectrometer by Dr. Li Li

of the Massachusetts Institute of Technology Department of Chemistry Instrumentation

Facility. Optical rotations were measured on a Perkin-Elmer 241 polarimeter at 589 nm.

Data are reported as follows: [a],'"", concentration (c g/100 mL), and solvent. All

chemicals were purchased from ACROS, ALDRICH, FLUKA, MERCK, STREM or

LANCASTER and were used as supplied by the commercial manufacturer without any

further purification unless specifically noted. Deuterated solvents were purchased from
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CAMBRIDGE ISOTOPE LABORATORIES, Inc., Andover MA, USA and stored in a

sealed secondary containment over Drierite* (CaSO 4) under absence of light. The

Dess-Martin periodinane was prepeared according to the reported procedures in

literature and the reports cited therein.36

Me OH
Me

Me 
C H1,

10

(E)-4-ethyl-2,5-dimethyltetradeca-1,3-dien-5-oI (10): Ni(cod)2 (0.07 mmol, 19.3 mg)

and Cyp3P (0.14 mmol, 39.2 pL) were placed in a 8 mL vial inside a glove box. After

the flask was removed from the glove box and placed under an argon atmosphere,

triethylborane (1.75 mmol, 253 pL) was added at ambient temperature. The mixture

was then stirred for 5 min. before the addition of ketone 9 (0.350 mmol, 72 pL) followed

by placing in a 60 0C oil bath. After 1 min, dropwise addition of the enyne 8 (0.700

mmol, 88 pL) was begun and continued for 3 h at 60 0C. After all of the enyne was

added the resultant reaction mixture was stirred at 60 OC for 2 h. After that time the

mixture was diluted with EtOAc and the septum seal was removed, and the reaction

allowed to air-oxidize for 1 h. The solution was concentrated in vacuo and purified the

residue by flash column chromatography (5% EtOAc/hexane) to give the title compound

36 For the synthesis of IBX see: Frigerio, M.; Santagostino, M.; Sputore, S.; J. Org. Chem.
1999, 64, 4537. For the acetylation of IBX to DMP see: Ireland, R. E.; Liu, L. J. Org. Chem.
1993, 58, 2899.
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(10, >95:5 regio, >95:5 ZIE) as a clear oil (93 mg, 80% yield). 1H NMR (600 MHz,

CDCl3) 6 5.99 (s, 1H); 4.98 (s, 1H), 4.90 (s, IH), 2.34-2.18 (m, 2H), 1.89 (s, 3H), 1.65-

1.57 (m, 2H), 1.40 (s, 1H), 1.28 (s, 3H), 1.27-1.21 (m, 14H), 1.09 (t, J = 6.5 Hz, 3H),

0.90 (t, J = 7.2, 3H); 13C NMR (150 MHz, CDCl3) 5 148.2, 142.6, 125.8, 113.7, 76.5,

41.5, 32.1, 30.2, 29.8, 29.5, 28.7, 28.6, 24.1, 24.0, 22.9, 21.3, 15.7, 14.3; IR (film) 3447,

2927, 2854, 1684, 1576, 1457, 1374, 892, 668 cm-1; HRMS ESI (m/z): [M+H]' calcd for

C18H340, 267.2682; found 267.2695.

OH
Me,

- OTBS

14

(2S,4E)-6-(tert-Butyldimethylsilanyloxy)-2-methylhex-4-en-1 -ol (14). The

oxazolidinone 13 (142 mmol, 26.4 g) was dissolved in THF (441 mL) and cooled to -78

C. To the stirring solution was added LHMDS (1.0 M in THF, 150 mmol, 150 mL)

dropwise slowly. The reaction was subsequently stirred for 30 min. at -78 *C. A

solution of iodide 12 (190 mmol, 60 g) in THF (87 mL) was added dropwise and stirred

for 30 min. at -78 OC for 30 min., 0 0C for 15 min., and r.t. for 15 min. The solution was

then quenched with saturated aq. NH4CI soln (140 mL). The solution was diluted with

Et20 (300 mL) and H20 (185 mL), partitioned the phases and then extracted the

aqueous layer with Et20 (2 x 200 mL). The organic layers were combined and dried with

MgSO4, filtered and concentrated in vacuo. The crude residue was purified by FCC
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(20% EtOAc/hexanes) to give the oxazolidinone as a yellow oil (48.8 g, 93%). [a]D -18.3

(c = 6.0, CHC 3); 1H NMR (500 MHz, CDCl3 ) 6 5.63-5.58 (m, 2H); 4.46 (ddd, J = 8.5,

3.0, 1.0 Hz, 1H), 4.27 (t, J = 9.0 Hz, 2H), 4.20 (dd, J = 9.0, 3.0 Hz, 1H), 4.11 (br d, J =

3.0 Hz, 2H), 3.85 (app. sextet, J = 7.0 Hz, 1H), 2.53-2.46 (m, 1H), 2.36-2.27 (m, 1H),

2.23-2.15 (m, 1H), 1.14 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 5.5 Hz, 3H), 0.90 (s, 9H), 0.87

(d, J= 7.0), 0.06 (s, 6H); 13C NMR (125 MHz, CDCl3) 6 171.2, 154.4, 132.8, 127.8, 64.3,

63.8, 59.1, 38.2, 37.3, 29.1, 26.7, 18.7, 16.9, 15.4, -4.5; IR (film) 2959, 2931, 2857,

1783, 1702, 1463, 1387, 1301, 1238, 1205, 1120, 1056, 967, 837, 776 cm1 ; HRMS ESI

(m/z): [M+Na]* calcd for C19H35NO4SiNa, 392.2228; found 392.2226. The alkylated

oxazolidinone (139 mmol, 51.5 g) was dissolved in Et20 (518 mL) and cooled to 0 C.

LiAIH 4 (418 mmol, 15.5 g) was added slowly in portions. The solution was stirred at

cold temperature for 1 h and quenched by pouring the reaction mixture into H20 (750

mL). The solution was diluted with Et20 (1 L) and saturated aq. Rochelle's salt soln (750

mL) and stirred very vigorously for 12 h. The phases were separated and extracted the

aqueous layer with EtOAc (2 x 500 mL). Dried over MgSO 4, filtered and concentrated in

vacuo. The crude residue was purified by flash column chromatography (20%

EtOAc/hexanes) to give the 1* alcohol 14 as a colorless oil (33.1 g, 97% yield). 1H

NMR (500 MHz, CDCl3 ) 6 5.70-5.55 (m, 2H), 4.13 (d, J = 7.0 Hz, 2H), 3.56-3.42 (m, 2

H), 2.15 (dt, J = 14.7, 7.5 Hz, 1H), 1.93 (dt, J = 14.0, 6.5 Hz, 1H), 1.73 (sextet, J = 6.0

Hz, 1 H), 1.36 (t, J = 5.3 Hz, 1 H), 0.93 (d, J = 7.3 Hz, 3H), 0.91 (s, 9H), 0.08 (s, 6H); 13C

NMR (125 MHz, CDCl3) 6 131.2, 129.3, 68.2, 64.1, 36.4, 36.1, 26.2, 18.7, 16.7, -4.9; IR

(film) 3356, 2956, 2930, 2858, 1472, 1378, 1255, 1100, 1053, 971, 837, 776 cm-1;

HRMS ESI (m/z): [M+Na]* calcd for C13H2 80 2SiNa, 267.1751; found 267.1747. [a]D
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+2.27 (c 8.8, CHCl 3).

S Me

Me%

/ OTBS

17

(2S,4E)-6-(tert-Butyldimethylsilanyloxy)-2-methyl-1 -(2-methyl-[1,3]dithian-2-yl)hex-

4-ene (17). Alcohol 14 (110 mmol, 27 g) was taken up in Et20:MeCN (3:1, 644 mL) and

to the stirring solution at r.t. were added imidazole (248 mmol, 16.8 g),

triphenylphosphine (165 mmol, 43 g), and iodine (165 mmol, 42 g) sequentially. The

resulting yellow reaction mixture was stirred 1.5 h and quenched with H20 (200 mL). At

that point, the solution went clear. The aqueous layer was extracted with Et20 (3 x 150

mL). Dried over MgSO 4, filtered and concentrated. The crude residue was purified by

flash column chromatography (2% EtOAc/hexanes) to give the iodide 15 as a clear oil

(37 g, 95%). 2-Methyl-1,3-dithiane (16) (0.86 mmol, 103 pL) was dissolved in THF (4

mL) and cooled to -78 0C and n-butyl lithium (2.5 M in hexanes, 0.86 mmol, 0.34 mL)

was added. The solution was warmed to 0 0C and stirred for 30 min then re-cooled to -

78 0C and added the iodide (0.77 mmol, 275 mg) in a solution of THF (1 mL). The

solution was allowed to gradually warm to r.t. while stirring 12 h. The solution was

37 Adapted from . Ndubaku, C. 0. "Diastereoselective Nickel-Catalyzed Reductive Coupling of
Alkynes and Aldehydes and Application Toward the B-Type Amphidinolides", Ph. D. Thesis,
Massachusetts Institute of Technology, 2005.
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quenched with saturated aq. NH4 CI soln (5 mL) and diluted with Et20 (20 mL) and H20

(15 mL). The phases were separated and the aqueous layer was extracted with Et2O (2

x 15 mL) and dried over MgSO 4, filtered, and concentrated in vacuo. The crude residue

was purified by gradient silica gel chromatography (1% to 3% EtOAc/hexanes) to give

the title compound 17 as a colorless oil (181 mg, 65% yield). 1H NMR (500 MHz, CDCl3)

6 5.67-5.53 (m, 2H), 4.13 (d, J = 4.0 Hz, 2H), 2.87-2.81 (m, 4H), 2.17-2.09 (m, 1H),

2.06-1.92 (m, 4H), 1.88-1.80 (m, 1H), 1.72 (dd, J = 14.5, 6.0 Hz, 1H), 1.65 (s, 3H), 1.03

(d, J = 6.5 Hz, 3H), 0.91 (s, 9H), 0.07 (s, 6H); 13C NMR (125 MHz, CDCl3) 6 131.5,

129.5, 64.2, 49.8, 48.0, 41.8, 31.0, 30.1, 28.6, 26.9, 26.9, 26.2, 25.5, 22.5, 18.7, -4.9;

IR (film) 2954, 2929, 2856, 1472, 1462, 1423, 1255, 1132, 1097, 1054, 1006, 972, 908,

837, 776 cm-1; HRMS ESI (m/z): [M+Na]* calcd for C18H3 6OS 2SiNa, 383.1869; found

383.1865. [a]D +4.2 (c 4.8, CHC13).37

o Me

Me,,

/ OTBS

18

(4S,6E)-8-(tert-Butyldimethylsilanyloxy)-4-methyloct-6-en-2-one (18). The iodide 15

(22.1 mmol, 7.82 g) was dissolved in Et20 (87 mL) and cooled to -78 *C. To the

stirring solution was added t-BuLi (1.7 M in pentanes, 48.6 mmol, 28.6 mL) dropwise.

The solution was stirred for 1.5 h at -78 0C and N-methoxy-N-methyl-acetamide (66.3
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mmol, 9.4 mL) was added. The solution was then warmed to r.t. and stirred for 3 h.

The solution was quenched with H20 (70 mL) and diluted with Et2O (100 mL). An

extraction with Et20 (2 x 150 mL) was performed and then dried over MgSO 4, filtered,

and concentrated in vacuo. The crude residue was purified by flash column

chromatography (5% EtOAc/hexanes) to give 18 as a colorless oil (3.88 g, 65% yield).

1H NMR (500 MHz, CDCl3) 6 5.63-5.49 (m, 2H), 4.12 (d, J = 4.5 Hz, 2H), 2.44 (dd, J =

16.0, 5.5 Hz, 1H), 2.20 (dd, J= 16.0, 8.0 Hz, 1H), 2.14-2.05 (m, 1H), 2.12 (s, 3H), 2.03-

1.91 (m, 2H), 0.93-0.88 (m, 15H,), 0.06 (s, 6H); 13C NMR (125 MHz, CDCl3) 6 209.1,

131.7, 128.9, 64.0, 50.6, 39.7, 30.7, 29.5, 26.2, 24.5, 20.0, 18.7, -4.9; IR (film) 2956,

2930, 2857, 1717, 1463, 1362, 1255, 1099, 1054, 972, 837, 776 cm-1 ; HRMS ESI (m/z):

[M+Na]* calcd for C15H30O2SiNa, 293.1907; found 293.1926. [a]D -6.0 (c 11.6, CHCl 3).37

Me

Me,

/ OTBS

3

(6S,8E)-10-(tert-Butyldimethylsilanyloxy)-6-methyl-4-methylene-8-decen-2-yne (3).

A solution of the ketone 18 (24.4 mmol, 6.59 g) in THF (79 mL) was cooled to -78 C.

To the stirring solution was added LHMDS (1.0 M in THF, 31.8 mmol, 31.8 mL)

dropwise. The solution was stirred at -78 0C for 1 h and N-(5-chloro-2-pyridyl) triflimide

(27.3 mmol, 10.73 g) was added dissolved in THF (24 mL). The resultant reaction
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mixture was stirred for 0.5 h at -78 0C and warmed to 0 0C and continued stirring for

another 0.5 h. The mixture was partitioned between Et20 (100 mL) and saturated aq.

NaHCO 3 solution (100 mL) and extracted with Et20 (3 x 50 mL). The combined organic

layers were dried over MgSO 4, filtered, and concentrated in vacuo. The crude product

was then taken up in diisopropylamine (77 mL) and palladium

tetrakistriphenylphosphine (2.64 mmol, 3 g) and copper iodide (2.64 mmol, 696 mg)

were added. Propyne was subsequently bubbled through the reaction mixture at -78

0C until an amount determined to be in excess was added. The reaction mixture was

then stirred at -78 0C for 15 min and r.t. for 1 h. The residue was filtered through a

short pad of silica and concentrated in vacuo. The crude residue was purified by flash

column chromatography (2% EtOAc/hexanes) to give the enyne 3 as a yellow oil (6.14

g, 86% yield from 18). 1H NMR (500 MHz, CDCl3) 6 5.68-5.51 (m, 2H), 5.26 (s, 1H),

5.11 (s, 1H), 4.14 (d, J= 4.5 Hz, 2H), 2.18-2.05 (m, 2H), 1.95 (s, 3H), 1.94-1.81 (m, 3H),

0.92 (s, 9H), 0.88 (d, J= 6.0 Hz, 3H), 0.08 (s, 6H); 13C NMR (125 MHz, CDC13) 6 131.0,

129.7, 121.2, 98.9, 64.3, 45.0, 39.3, 31.8, 26.2, 24.5, 24.5, 19.2, 18.7, 4.5, -4.9; IR

(film) 2955, 2928, 2857, 1611, 1472, 1463, 1437, 1377, 1361, 1297, 1255, 1122, 1097,

1053, 1006, 971, 894, 836, 814, 776 cm-1 ; HRMS ESI (m/z): [M+H]* calcd for

C18H3 3 OSi, 293.2295; found 293.2294. [a]D -10.7 (C = 2.8, CHC13).37

- 66 -



2E-(5S)-5-methyl-7-methylenedec-2-en-8-yn-1-o (23): To a flame-dried 50 mL

round-bottom flask equipped with a magnetic stir bar and set under an argon

atmosphere was added enyne 3 (41 mmol, 12 g) in THF (129 mL). The flask was cooled

to 0 0C and tetrabutylammonium fluoride (1.0 M in THF, 129 mmol, 129 mL) was added

and the resulting solution was stirred 1 h at 0 *C. The solution was quenched by adding

H20 (100 mL), diluting with brine (50 mL) and EtOAc (250 mL). The aqueous layer was

extracted with EtOAc (3 x 250 mL). The combined organic layers were dried over

Na2SO4 , filtered, and concentrated. The crude residue was purified by flash column

chromatography (25% EtOAc/hexane) to give the allylic alcohol (23) as a yellow oil (6.5

g, 89% yield). 1H NMR (500 MHz, CDCl3) 6 5.73-5.65 (m, 2H), 5.26 (s, 1H), 5.13 (s,

1H), 4.10 (d, J = 5.5 Hz, 2H), 2.17-2.11 (m, 2H), 1.94 (s, 3H), 1.93-1.82 (m, 2H), 0.84

(d, J = 7.6 Hz, 3H); 13C NMR (125 MHz, CDCl 3) 6 132.2, 131.7, 131.2, 121.8, 86.2,

80.8, 64.5, 45.4, 39.8, 32.1, 19.7, 4.9; IR (film) 3323, 2955, 2918, 2870, 2229, 1670,

1610, 1456, 1437, 1377, 1297, 1085, 1001, 972, 896, 801 cm- 1; HRMS ESI (mlz):

[M+Na]* calcd for C12H18ONa, 201.1250; found 201.1257. [a]D -9.7 (c 7.2, CHCl 3).
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'0 24

tert-butyldimethyl(((2S,3S)-3-((R)-2-methyl-4-methylenehept-5-yn-1 -yl)oxiran-2-

yl)methoxy)silane (24): To a suspension of flame-dried 4 AMS (660 mg) in CH2CI2 (3.7

mL) at -23 0C was added Ti(O'Pr)4 (83 pL, 0.277 mmol), L-(+)-DET (0.76 mL, 0.442

mmol), and TBHP (221 pL, 1.11 mmol) in that order. Diluted with additional CH2CI2 (3.7

mL) and stirred the resulting mixture for 20 min before added allyl alcohol 23 (98.6 mg,

0.553 mmol) dissolved in CH2Cl2 (5.5 mL). The reaction mixture was stirred at -23 OC for

16 hours before it was quenched with a solution of FeSO 4 (74 mg) and citric acid (22

mg) dissolved in water (1.9 mL). Allowed the quenched reaction mixture to warm to

ambient temperature and filtered through a short pad of silica gel eluting with Et20. The

mixture was concentrated to approximately 100 mL and water (20 mL) was added. The

organic phase was separated and the aqueous phase was extracted with Et2O (3 x 75

mL). The combined organic extracts were dried over anhydrous Na2SO 4, filtered and

concentrated in vacuo. Purified the residue by FCC (30% EtOAc/hexanes) and

concentrated the product containing fractions in vacuo. The residue was re-dissolved in

Et20 (50 mL), washed with water (6 x 10 mL) to remove remaining diethyl tartrate and

concentrated in vacuo to afford the title epoxy alcohol 41 as a clear oil (97 mg, 90%).

The epoxy alcohol (0.741 mmol, 144 mg) was then taken up in anhydrous N,N-

dimethylformamide (750 pL) and to the stirring solution was added imidazole (1.93

mmol, 131 mg) and TBSCI (0.965 mmol, 146 mg). The reaction mixture was allowed to
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stir at r.t. for 16 h. The solution was then quenched with H20 (20 mL) and diluted with

Et20 (100 mL), partitioned the phases and then extracted the aqueous layer with Et2O

(2 x 75 mL). The combined organic extracts were dried over anhydrous MgSO 4, filtered,

and concentrated in vacuo. The crude residue was purified the crude residue by FCC

(2% EtOAc/hexanes) to give compound 7 as a clear oil (185 mg, 81%). 1H NMR (600

MHz, CDCl3) 6 5.28 (s, 1H), 5.14 (s, 1H), 3.80-3.70 (m, 2H), 2.92-2.81 (m, 2H), 2.19

(dd, J = 12.0, 6.0 Hz, 1H), 2.08-1.97 (m, 2H), 1.96 (s, 3H), 1.74-1.68 (m, 1H), 1.34-1.27

(m, 1H), 0.95 (d, J = 7.5 Hz, 3H), 0.90 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H); 13C NMR (150

MHz, CDC 3) 6 131.8, 121.3, 85.9, 80.2, 63.9, 59.3, 55.5 45.5, 38.6, 29.7, 26.2, 19.4,

18.5, 4.4, -5.1, -5.2; IR (film) 3093, 2928, 2857, 2341, 2229, 1653, 1472, 1253, 1108,

1089, 1006, 939, 837, 814 cm 1 ; HRMS ESI (m/z): [M+H]* calcd for C18H32 0 2Si,

309.2244; found 309.2253. [a]D -9.7 (c 1.9, CHCl 3).

HO Me
Me

CIH1

Me,,,,,

OTBS
0 25

(2R,E)-1 -((2S,3S)-3-(((tert-butyldimethylsilyl)oxy)methyl)oxiran-2-yl)-2,6,7-

trimethyl-4-methylenehexadec-5-en-7-ol (25): Ni(cod) 2 (0.026 mmol, 7.2 mg) and

Cyp3P (0.052 mmol, 14 pL) were placed in a 8 mL vial inside a glove box. After the
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flask was removed from the glove box and placed under an argon atmosphere,

triethylborane (0.262 mmol, 38 pL) was added at ambient temperature. The mixture

was then stirred for 5 min. before the addition of ketone 9 (0.131 mmol, 27 pL) followed

by placing in a 55 0C oil bath. After 1 min., dropwise addition of the enyne 24 (0.262

mmol, 88 pL) dissolved in toluene (60 pL) was begun and continued for 3 h at 55 *C.

After all of the enyne was added the resultant reaction mixture was stirred at 60 0C for 2

h. After that time the mixture was diluted with EtOAc and the septum seal was removed

and the reaction allowed to air-oxidize for 1 h. The solution was concentrated in vacuo

and purified the residue by flash column chromatography (5% EtOAc/hexane) to give

the title compound (25, as a mixture of diastereomers) as a yellow oil (55 mg, 87%

yield). 1H NMR (400 MHz, CDCl3) 6 5.91 (s, 1H), 5.05 (s, 1H), 4.84 (s, 1H), 3.80-3.65

(m, 2H), 2.92-2.81 (m, 2H), 2.20-2.18 (m, 1H), 2.1-1.90 (m, 1H), 1.66 (s, 3H), 1.60-1.45

(m, 5H), 1.40 (s, 3H), 1.34-1.20 (m, 16H), 0.95 (d, J = 7.5 Hz, 3H), 0.90 (s, 9H), 0.10 (s,

3H), 0.09 (s, 3H); 13C NMR (100 MHz, CDC13) 6 144.6, 144.6, 143.0, 124.0, 114.6, 76.9,

76.6, 75.8, 75.3, 63.6, 59.1, 59.0, 55.1, 45.9, 40.4, 38.6, 38.4, 31.8, 30.0, 29.7, 29.6,

29.3, 27.9, 27.8, 25.8, 23.8, 22.6, 19.5, 19.4, 18.3, 14.8, 14.1, -5.3, -5.4.

TMS OTBS O

42

(S)-benzyl 3-((tert-butyldimethylsilyl)oxy)-6-(trimethylsilyl)hex-5-ynoate (42): A

solution of TMS-acetylene (20.8 mmol, 2.94 mL) in toluene (20.1 mL) was cooled to -40
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0C. To the solution was added n-BuLi (2.4 M in hexanes, 20.8 mmol, 8.7 mL) and

stirred at -40 0C for 15 min. The solution was then warmed to 0 0C and Et2AICI (1.0 M

in hexanes, 20.8 mmol, 20.8 mL) was added and then stirred for 1 h. The

enantiomerically enriched epoxide 34 (10.4 mmol, 2.0 g) was dissolved in toluene (6

mL) and added. The solution was stirred for 2 h at 0 OC before quenching with sat. aq.

NH4 CI (6 mL and 1 N HCl (8 mL). The mixture was stirred for 30 min at r.t. and then

filtered through celite with EtOAC and washed with brine (50 mL). The organic layer

was dried with MgSO 4, filtered, and concentrated in vacuo. The crude residue was

purified by FCC (20% EtOAc/hexanes) to give the alcohol as a clear oil (2.66 g, 88%).

A portion of the alcohol (8.6 mmol, 2.5 g) was dissolved in CH2CI2 (47.2 mL), and at 0

0C 2,6-lutidine (25.83 mmol, 3.0 mL) was added all at once followed by the dropwise

addition of TBSOTf (12.92 mmol, 3.02 mL) over 5 min. The reaction mixture was stirred

at 0 0C for 30 min and subsequently warmed to ambient temperature and stirred for

30 min. The reaction mixture was quenched with water (50 mL) and diluted with CH2CI2

(100 mL). The organic phase was separated and the aqueous phase was extracted with

CH2CI2 (2 x 100 mL). The combined organic extracts were dried over anhydrous

MgSO 4, filtered, and concentrated in vacuo. The crude residue was purified by FCC

(2% EtOAc/hexanes) to give the title benzyl ester 42 as a clear oil (3.45 g, 99%). 'H

NMR (600 MHz, CDCl 3) 6 7.41-7.35 (m, 5H), 5.17 (q J = 12 Hz, 2H), 4.30 (m, 1H), 2.77

(dd, J = 15.0, 4.2 Hz, 1H), 2.62 (dd, J = 15.1, 7.8 Hz, 1H), 2.49-2.45 (m, 2H), 0.84 (s,

9H), 0.16 (s, 9H), 0.11 (s, 3H), 0.05 (s, 3H); 13C NMR (150 MHz, CDCl3) 5 171.4, 136.1,

128.7, 128.5, 128.4, 103.8, 87.5, 68.2, 66.1, 42.3, 29.1, 26.0, 18.2, 0.3, -4.3, -4.8; IR

(film) 3035, 2912, 2930, 2178, 1732, 1472, 1252, 799 cm-1 ; HRMS ESI (m/z): [M+Na]*
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calcd for C22H3 6O3 Si2 , 405.2276; found 405.2285. [a]D +19.3 (c 8.4, CHC13).

TMS OTBS 0 0

32 N(OMe) 2

(S)-dimethyl (4-((tert-butyldimethylsilyl)oxy)-2-oxo-7-(trimethylsilyl)hept-6-yn-1-

yl)phosphonate (32). Dimethyl methylphosphonate (15.57 mmol, 1.66 mL) was

dissolved in THF (168 mL) and cooled to -78 *C. To the stirring solution was added n-

BuLi (2.3 M in hexanes, 15.57 mmol, 6.77 mL) dropwise. The solution was stirred for

50 min at -78 *C and a solution of benzyl ester 42 (5.19 mmol, 2.1 g) in THF (66 mL)

was added. The solution was then stirred at -78 0C for 1 h. The solution was

quenched cold with sat. aq. NaHCO 3 (60 mL) and diluted with EtOAc (100 mL). The

aqueous layer was extracted with EtOAC (2 x 100 mL). The combined organic extracts

were dried over anhydrous MgSO 4, filtered, and concentrated in vacuo. The crude

residue was purified by flash column chromatography (20% EtOAc/hexanes to EtOAc

gradient) to give 32 as a colorless oil (1.87 mg, 86% yield) 1H NMR (600 MHz, CDCl3) 6

4.19 (quintet, J = 5.9 Hz, 1H), 3.71- 3.68 (m, 6H), 3.07-2.98 (m, 2H), 2.78 (d, J =6.0 Hz,

2H), 2.30 (d, J = 6 Hz, 2H), 0.82 (s, 9H), 0.11 (s, 9H), 0.08 (s, 3H), -0.05 (s, 3H); 13c

NMR (150 MHz, CDCl3) 6 200.1, 103.1, 87.4, 67.2, 53.1, 50.9, 43.5, 42.3, 28.9, 25.9,

18.0, 0.3, -4.4, -4.8; IR (film) 3629, 2959, 2361, 2178, 1717, 1473, 1035, 839 cm- 1;

HRMS ESI (m/z): [M+Na]* calcd for C18H37O5PSi2, 421.1990; found 421.1991. [a]D

+30.5 (c 8.3, CHC13).
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46 TI

OTBS

(4S,7R,8S,9R,1 1R)-4,7,8,1 1 -tetrakis((tert-butyldimethylsilyl)oxy)-9-

methyldodecane-2,6-dione (46). To a vigorously stirred suspension of vacuum-dried

LiCI (2.1 mmol, 90 mg) in MeCN (12 mL) was added the ketophosphonate 32 (1.75

mmol, 735 mg). Diisopropylethylamine (2.1 mmol, 366 pL) was added followed by the

aldehyde 43 (1.65 mmol, 403 mg). The reaction mixture was then stirred 16 h at

ambient temperature. The mixture was quenched with saturated aq. NH4 CI (1.8 mL)

and diluted with Et20 (25 mL) and H20 (25 mL). The phases were partitioned and

extracted the aqueous with Et2O (3 x 20 mL), dried with MgSO 4 , filtered, and

concentrated in vacuo. The crude residue was purified by flash column chromatography

(5% EtOAc/hexanes) to give the enone 44 (95:5 E:Z) as an off-color oil (887 mg, 96%).

A portion of the enone 44 was placed into a flask and cooled. In a separate flask was

placed AD-mix-a (1.4 mmol, 1.9 g), potassium osmate (0.14 mmol, 47 mg),

(DHQ) 2PHAL (0.07 mmol, 55 mg), and NaHCO 3 (4.2 mmol, 353 mg) were combined in

a 20-mL dram vial equipped with a stir bar and dissolved in t-BuOH/H 20 (1:1, 15.4 mL).

The mixture was stirred vigorously until all the solids were dissolved then added

MeSO 2NH2 (133 mg, 1.4 mmol). This solution was then stirred for 10 min and

transferred by a Pasteur pipet into a cooled (5 0C) flask containing the enone 28 (1.4

mmol, 735 mg). The mixture was then stirred 36 h while maintaining the temperature

between 0-5 0C in a refrigerator. The mixture was quenched at cold temperature after
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this time with saturated aq. Na2 SO 3 (1.18 mL) and stirring was continued for 30 min.

Finally, the brown-colored mixture was diluted with EtOAc (15 mL) and H20 (3 mL).

The phases were seperated and extracted the aqueous layer with EtOAc (2 x 10 mL).

The combined organic phases were dried with Na2 SO 4, filtered, and concentrated in

vacuo. The crude residue was purified by flash column chromatography (20%

EtOAc/hexanes) to give the diol (>95:5 d.r.) as a clear oil (479 mg, 61%). A portion of

the diol (0.44 mmol, 248 mg) was dissolved in CH2Cl2 (4.4 mL) and cooled to 0 *C.

Added 2,6-lutidine (3.55 mmol, 412 pL) all at once and TBSOTf (1.78 mmol, 408 pL)

dropwise over 3 min. The solution was stirred 30 min at 0 0C and subsequently warmed

to r.t. and stirred 60 min. The solution was diluted with H20 (10 mL), partitioned the

phases, and extracted the aqueous with Et20 (15 mL). The combined organic extracts

were dried over anhydrous MgSO 4, filtered, and concentrated in vacuo. The crude was

purified by flash column chromatography (2% EtOAc/hexanes) to give the alkyne 45 as

a clear oil (347 mg, 99%). A portion of the alkyne 45 (0.038 mmol, 30 mg) was

dissolved in MeOH (400 pL) and placed in a flask and then added THF (50 pL) and H20

(50 pL). This was followed by the addition of PPh 3AuCI (0.004 mmol, 2 mg) and AgOTf

(0.004, 1 mg). The reaction mixture was heated to 35 0C and stirred for 10 h. The

mixture was diluted with H20 (10 mL) and Et20 (10 mL), partitioned the phases and

extracted the aqueous with Et20 (2 x 15 mL). The combined organic extracts were

dried over anhydrous MgSO4, filtered, and concentrated in vacuo. The crude material

was then dissolved in anhydrous N,N-dimethylformamide (120 pL) and to the stirring

solution was added imidazole (0.618 mmol, 42 mg) and TBSCI (0.309 mmol, 47 mg).

The reaction mixture was allowed to stir at r.t. for 16 h. The solution was then
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quenched with H20 (10 mL), diluted with Et20 (60 mL), partitioned the phases, and then

extracted the aqueous layer with Et20 (2 x 75 mL). The combined organic extracts were

dried over anhydrous MgSO 4, filtered, and concentrated in vacuo. The crude residue

was purified by FCC (2% EtOAc/hexanes) to give compound 7 as a clear oil (18 mg,

64%). 1H NMR (400 MHz, CDC 3) 5 4.58-4.51 (m, 1H), 4.10 (d, J = 4.9 Hz 1H), 3.80-

3.72 (m, 1H), 3.59-3.56 (m, 1H), 2.92-2.87 (m, 1H), 2.78-2.65 (m, 2H), 2.49-2.43 (m,

1H), 2.14 (s, 3H), 1.74-1.68 (m, 1H), 1.48-1.40 (m, 2H), 1.06 (d, J= 6.7 Hz, 3H), 0.92 (s,

9H), 0.90 (s, 9H), 0.85 (s, 9H), 0.83 (s, 9H), 0.72 (d, J = 6.3 Hz, 3H), 0.11 (s, 3H), 0.09

(s, 3H), 0.05 (s, 6H), 0.04 (s, 3H) 0.03 (s, 3H), 0.02 (s, 6H), 0.00 (s, 3H); HRMS ESI

(mlz): [M+Na]* calcd for C37H80O6Si4Na, 755.4998; found 732.4973 [a]D -12.3 (c 8.9,

CHC13).

o OTBSO

Me~ Me

50

4-((tert-butyldimethylsilyl)oxy)decane-2,6-dione (50): N,0-dimethylhydroxylamine

hydrochloride (32.12 mmol, 3.12 g) was dissolved in CH2Cl2 (32.5 mL) and cooled to 0

*C. AIMe 3 (2.0 M in hexane, 32.12 mmol, 16.05 mL) was added slowly and stirred at 0

0C for 10 min. The reaction mixture was then warmed to r.t. and stirred for 20 min

before adding a solution of ester (±)-42 in 19.5 mL CH20 2. The mixture was stirred for

5 h and quenched with H20 (16 mL) and diluted with Et20 (100 mL) and saturated aq.
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Rochelle's salt soln (75 mL). The mixture was stirred very vigorously for 2 h. The

phases were separated and extracted the aqueous with Et20 (2 x 50 mL). The

combined organic extracts were dried over anhydrous MgSO 4 , filtered, and

concentrated in vacuo. The crude residue was purified by flash column chromatography

(20% EtOAc/hexanes) to give the Weinreb amide as a colorless oil (2.16 g, 76% yield).

A portion of the amide (1.10 mmol, 392 mg) was dissolved in Et20 (1.5 mL) and cooled

to 0 *C. n-BuLi (2.4 M in hexane, 1.43 mmol, 594 pL) was added slowly. The reaction

was then warmed to r.t. and stirred for 1.5 h and quenched with a sol. aq. NH4 CI (10

mL). Diluted with Et20 (10 mL). The phases were seperated and extracted the aqueous

with Et20 (2 x 50 mL). The combined organic extracts were dried over anhydrous

MgSO 4 , filtered, and concentrated in vacuo. The crude residue was purified by flash

column chromatography (5% EtOAc/hexanes) to give the ketone as a colorless oil (274

mg, 70% yield). A portion of the ketone (0.677 mmol, 191 mg) was dissolved in MeOH

(1.2 mL) and placed in a flask and then added H20 (120 pL). This was followed by the

addition of PPh3AuCI (0.034 mmol, 16.7 mg) and AgOTf (0.034, 8.7 mg). The reaction

mixture was heated to 35 0C and stirred for 10 h. The mixture was diluted with H20 (10

mL) and Et20 (10 mL), partitioned the phases and extracted the aqueous with Et2O (2 x

15 mL). The combined organic extracts were dried over anhydrous MgSO 4, filtered and

concentrated in vacuo. The crude material was then dissolved in anhydrous N,N-

dimethylformamide (960 pL) and to the stirring solution was added imidazole (4.9 mmol,

336 mg) and TBSCI (2.5 mmol, 376 mg). The reaction mixture was allowed to stir at r.t.

for 16 h. The solution was then quenched with H20 (10 mL), diluted with Et20 (60 mL),

partitioned the phases, and then extracted the aqueous layer with Et20 (2 x 75 mL). The
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combined organic extracts were dried over anhydrous MgSO 4, filtered, and

concentrated in vacuo. The crude residue was purified by FCC (2% EtOAc/hexanes) to

give compound 50 as a clear oil (106 mg, 85%). 1H NMR (600 MHz, CDCl3) 6 4.58

(quintet, J = 6.0 Hz, 1H), 2.66- 2.54 (m, 4H), 2.46-2.36 (m, 2H), 2.15 (s, 3H), 1.53

(dquintet, J = 7.2, 1.8 Hz, 2H), 1.30 (quintet, J = 7.2 Hz, 2H), 0.89 (t, J = 7.8, 3H), 0.85

(s, 9H), 0.11 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR (150 MHz, CDCl3) 6 209.5,

207.5, 65.58, 50.9, 49.8, 44.3, 31.7, 26.0, 25.7, 22.5, 18.1, 14.1, -4.62, -4.65.

Me OR 1eOTBSO
Me

Me 51

(E)-7-((tert-butyldimethylsilyl)oxy)-10-ethyl-9-hydroxy-9,12-dimethyltrideca-10,12-

dien-5-one (51): Ni(cod) 2 (0.027 mmol, 7.3 mg) and Cyp3P (0.54 mmol, 14 pL) were

placed in a 8 mL vial containing ketone 50 (0.133 mmol, 40 mg) inside a glove box.

After the flask was removed from the glove box and placed under an argon atmosphere,

triethylborane (0.266 mmol, 38.5 pL) was added at ambient temperature. The mixture

was then placed in a 60 *C oil bath. After 1 min., dropwise addition of the enyne 8

(0.333 mmol, 41 pL) as a solution in toluene (80 pL) was begun and continued for 3 h at

60 C. After all of the enyne was added the resultant reaction mixture was stirred at 60

C for 2 h. After that time the mixture was diluted with EtOAc and the septum seal was

removed and the reaction allowed to air-oxidize for 1 h. The solution was concentrated
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in vacuo and purified the residue by flash column chromatography (5% EtOAc/hexane)

to give the title compound 51 as a mixture of diastereomers (18 mg, 35% yield). 1H

NMR (400 MHz, CDCl3) 6 6.14 (s, 1H), 6.03 (s, 1H), 4.92-4.89 (m, 2H), 4.88-4.82 (m,

3H), 4.40-4.29 (m, 2H), 4.07 (s, 1H) 3.87 (s, 1H), 2.68 (t, J = 6.4, 3H), 2.61-2.59 (m,

3H), 2.56-2.55 (m, 1H), 2.39-2.33 (m, 8H), 2.13 (s, 1H), 2.04-1.92 (m, 6H), 1.87-1.86

(m, 4 H) 1,84-1.82 (m, 4H), 1.79-1.77 (m, 3H), 1.57 (s, 2H), 1.53-1.43 (m, 8H), 1.33 (s,

4H), 1.32-1.21 (m, 16H), 0.90-0.80 (m, 40H), 0.10 (s, 4H), 0.06 (s, 4H), 0.05 (s, 4H),

0.04 (s, 4H); 13C NMR (100 MHz, CDCl3) 6 210.5, 209.2, 207.5, 148.3, 147.4, 142.7,

126.5, 125.8, 113.9, 113.6, 75.6, 68.4, 68.1, 65.6, 51.5, 50.9, 50.3, 49.8, 46.4, 44.5,

44.3, 44.0, 31.8, 29.6, 29.2, 26.1, 26.0, 25.9, 25.8, 25.7, 24.1, 24.0, 22.5, 21.5, 21.4,

18.0, 15.8, 15.4, 14.3, 14.0, -3.4, -4.1, -4.4, -4.5, -4.6. [M+Na]* calcd for C37H80O6Si4Na,

755.4998; found 732.4973.

Me OH OTBSO0

CMe Me

Me,

OTBS

0 52

(14R,E)-7-((tert-butyldimethylsilyl)oxy)-1 5-((2S,3S)-3-(((tert-

butyldimethylsilyl)oxy)methyl)oxiran-2-y)-9-hydroxy-9,10,14-trimethyl-1 2-

methylenepentadec-10-en-5-one (52): Ni(cod) 2 (0.027 mmol, 7.3 mg) and Cyp3P (0.54
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mmol, 14 pL) were placed in a 8 mL vial containing ketone 50 (0.133 mmol, 40 mg)

inside a glove box. After the flask was removed from the glove box and placed under

an argon atmosphere, triethylborane (0.266 mmol, 38.5 pL) was added at ambient

temperature. The mixture was then placed in a 60 0C oil bath. After 1 min., dropwise

addition of the enyne 24 (0.266 mmol, 82 mg) as a solution in toluene (80 pL) was

begun and continued for 3 h at 60 0C. After all of the enyne was added the resultant

reaction mixture was stirred at 60 *C for 2 h. After that time the mixture was diluted with

EtOAc and the septum seal was removed and the reaction allowed to air-oxidize for 1 h.

The solution was concentrated in vacuo and purified the residue by flash column

chromatography (5% EtOAc/hexane) to give the title compound 51 as a mixture of

diastereomers (37 mg, 45% yield). 1H NMR (400 MHz, C6 D6) 6 6.60 (s, 2H), 6.45 (s,

1H), 6.40 (s, 1H), 5.13 (brs, 4 H), 5.08 (brs, 2H), 5.01 (brs, 3H), 4.62-4.59 (m, 1H), 3.76-

3.56 (m, 13H), 2.91-2.79 (m, 18H), 2.44-2.38 (m, 16H), 2.30-1.90 (m, 22H), 1.86 (s,

8H), 1.87-1.86 (m, 4 H), 1.60-1.45 (m, 19H), 1.42-1.18 (m, 40H), 1.06-0.85 (m, 85H),

0.19-0.11 (m, 60H); 13C NMR (100 MHz, C6 D6 ) 6 209.7, 209.5, 207.4, 205.1, 145.4,

143.5, 143.4, 142.6, 142.5, 125.5, 125.0, 114.9, 114.7, 76.0, 74.7, 74.6, 68.4, 68.3,

68.0, 65.6, 59.1, 59.0, 54.7, 51.4, 50.6, 49.9, 49.8, 49.7, 46.5, 46.4, 45.9, 44.7, 44.6,

43.8, 43.6, 39.3, 38.8, 31.9, 30.9, 30.0, 29.9, 29.3, 26.1, 26.0, 25.8, 25.7, 25.6, 25.0,

23.0, 22.6, 22.5, 19.8, 19.7, 19.6, 19.5, 18.5, 18.1, 18.0, 15.4, 15.3, 14.3, 14.1, 14.0, -

3.7, -4.3, -4.4, -4.6, -4.7, -5.1, -5.2.

- 79 -



Me
0 OTBSO Me

Me ~ 0

54 0e Me
Me

OTBS

(S)-3-((tert-butyldimethylsilyl)oxy)-1 -((4R,5S)-5-((2R,4R)-4-((tert-

butyldimethylsilyl)oxy)pentan-2-y)-2,2-dimethy-1,3-dioxolan-4-yl)hexane-1,5-

dione (54): Alkyne 36 (0.207 mmol, 116 mg) was dissolved in acetone (1.5 mL) and

treated with 2,2-dimethoxypropane (15.53 mmol, 191 mL) and PPTS (0.082 mmol, 21

mg). The reaction was stirred for 12 h and the solvent was evaporated and the crude

product was dissolved in EtOAc ( 50 mL) and washed with a sol. aq. NaHCO 3 (20 mL)

and brine (20 mL). The combined organic extracts were dried over anhydrous MgSO 4,

filtered and concentrated in vacuo. The crude residue was purified by flash column

chromatography (2% EtOAc/hexanes) to give the acetonide as a colorless oil (106 mg,

85% yield). The acetonide (0.177 mmol, 106 mg) was dissolved in MeOH (1 mL) and

placed in a flask and then added H20 (100 pL). This was followed by the addition of

PPh 3AuCI (0.019 mmol, 9.5 mg) and AgOTf (0.019, 4.9 mg). The reaction mixture was

heated to 35 *C and stirred for 10 h. Diluted with H20 (10 mL) and Et20 (10 mL),

partitioned the phases and extracted the aqueous with Et20 (2 x 15 mL). The combined

organic extracts were dried over anhydrous MgSO 4 , filtered, and concentrated in vacuo.

The crude material was then dissolved in anhydrous N,N-dimethylformamide (300 pL)

and to the stirring solution was added imidazole (1.94 mmol, 132 mg) and TBSCI (0.97

mmol, 146.2 mg). The reaction mixture was allowed to stir at r.t. for 16 h. The solution
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was then quenched with H20 (10 mL), and diluted with Et20 (60 mL), partitioned the

phases, and then extracted the aqueous layer with Et20 (2 x 75 mL). The organic layers

were combined and dried with MgSO 4, filtered, and concentrated in vacuo. The crude

residue was purified by FCC (2% EtOAc/hexanes) to give compound 54 as a clear oil

(57 mg, 56%). 1H NMR (400 MHz, C6 D6) 6 4.89 (quintet, J = 6.0 Hz, 1H), 4.35 (dd, J =

7.2, 4 Hz, 1H), 4.21 (d, J = 7.6, 1H), 4.01 (q, J = 6.4, 1H) 3.17 (dd, J = 16.0, 6.4 Hz, 1H),

2.93 (dd, J = 17.2, 6.0 Hz, 1H), 2.46 (dq, J = 16.0, 6.0 Hz, 2H), 2.13-2.04 (m, 1H), 1.77

(s, 3H), 1.68-1.64 (m, 1H), 1.42 (s, 3H), 1.35 (s, 3H), 1.17 (d, J = 6.0 Hz, 3H), 1.12 (d, J

= 6.8 Hz, 3H), 1.07 (s, 9H), 1.01 (s, 9H), 0.23 (s, 3H), 0.19 (brs, 6H), 0.15 (s, 3H);

HRMS ESI (m/z): [M+Na]* calcd for C2 8H56O6Si2 Na, 567.3589; found 567.3548.

O OTBSO

Me ~ *OTBS

48 TBSO, M

Me

OH

(4S,7R,8S,9R,1 I R)-4,7,8-tris((tert-butyldimethylsilyl)oxy)-1 1 -hydroxy-9-

methyldodecane-2,6-dione (48): The alkyne 45 (0.094 mmol, 74 mg) was dissolved in

MeOH (0.960 mL) and placed in a flask and then added THF (120 pL) and H20 (120

pL). This was followed by the addition of PPh 3AuCI (0.0094 mmol, 4.67 mg) and AgOTf

(0.0094, 2.42 mg). The reaction mixture was heated to 35 0C and stirred for 5 h. The

mixture was diluted with H20 (10 mL) and Et20 (10 mL), partitioned the phases and
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extracted the aqueous layer with Et20 (2 x 15 mL). The combined organic extracts

were dried over anhydrous MgSO 4, filtered, and concentrated in vacuo. The crude

residue was purified by FCC (20% EtOAc/hexanes) to give compound 48 as a clear oil

(33 mg, 63%). 'H NMR (600 MHz, CDCl 3) 6 4.60-4.55 (m, 1H), 4.19 (d, J = 4.8 Hz, 1H),

3.88-3.82 (m, 1H), 3.78 (t, J = 4.2 Hz, 1H), 2.95 (dd, J = 18.6, 4.2 Hz, 1H), 2.78-2.67 (m,

2H), 2.50 (dd, J = 14.4, 5.4 Hz, 1H), 2.17 (s, 3H), 1.86-1.79 (m, 2H), 1.51-1.46 (m, 1H),

1.39-1.32 (m, 1H), 1.15 (d, J= 6.2 Hz, 3H), 0.93 (s, 9H), 0.90 (s, 9H), 0.84 (s, 9H), 0.81

(d, J = 6.8 Hz, 3H), 0.14 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H),

0.01 (s, 3H); [a]D -15.2 (c 9.0, CHCl 3).

Me

OTMSE

65

(2E,6E)-2-(trimethylsilyl)ethyl 2-methyl-7-((2S,3S)-3-((R)-2-methyl-4-

methylenehept-5-yn-1-yl)oxiran-2-yl)hepta-2,6-dienoate (65): The alcohol 23 (0.180

mmol, 35 mg) was dissolved in CH2CI2 (1.8 mL) and placed in a flask containing

activated 4 A ms. This was followed by the addition of NMO (0.27 mmol, 33 mg) and

TPAP (0.0094, 3.2 mg). The reaction was then stirred for 4 h and filtered through celite

(eluting with 30% Et20 in petane) and concentrated in vacuo. The crude aldehyde 57
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was carried forward without further purification. In a separate flask sulfone 58 (0.1

mmol, 32 mg) was dissolved in DME (1 mL) and cooled to -78 C. A solution of KHMDS

(0.12 mmol, 24 mg) in DME (1 mL) was added and the solution was stirred for 30 min.

A solution of the aldehyde 57 (0.1 mmol, 19 mg) in DME (1 mL) was then added and the

solution was warmed to r.t. and stirred for 8 h. The solution was quenched with H20 (10

mL) and diluted with Et20 (100 mL). The aqueous layer was extracted with Et20 (2 x

50 mL). The combined organic extracts were dried over anhydrous MgSO 4, filtered, and

concentrated in vacuo. The crude residue was purified by flash column chromatography

(5% EtOAc/hexanes) to give 65 as a colorless oil (23 mg, 56% yield). 1H NMR (400

MHz, CDCl3) 6 6.68 (t, J = 6.0 Hz, 1H), 5.20 (s, 1H), 5.22-5.16 (m, 2H), 5.07 (s, 1H),

4.19 (t, J = 8.4 Hz, 2H), 3.01 (dd, J= 8, 2.0 Hz, 1H), 2.81 (dt, J= 6.0, 2.0 Hz, 1H), 2.33-

2.25 (m, 5H), 2.04-1.94 (m, 1H), 1.89 (s, 3H), 1.82-1.74 (m, 1H), 1.78 (brs, 3H), 1.68-

1.60 (m, 1 H), 1.29-1.21 (m, 2H), 0.99 (t, 8.4 Hz, 2H), 0.91 (d, J = 6.4 Hz, 3H), 0.01 (s,

9H); 13C NMR (100 MHz, CDCl 3) 6 168.4, 140.9, 135.0, 130.8, 128.7, 128.4, 121.4,

85.9, 80.1, 62.9, 59.3, 59.2, 45.5, 38.8, 31.4, 29.6, 28.3, 26.9, 19.5, 17.5, 12.7, 4.4, -

1.2; IR (film) 2955, 2919, 1709, 1653, 1457, 1379, 1251 1115, 1075, 893, 860, 838,

746, 695 cm- 1; HRMS ESI (mlz): [M+Na]* calcd for C24 H38 0 3SiNa, 425.2482; found

425.2470. [a]D -12.8 (c 3.8, CHCl 3).
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69 ' Me

Me

OTBS

(5S,1 OR,1 2R,E)-2,2,3,3,1 0,12,14,14,15,1 5-decamethyl-5-(3-(trimethylsilyl)prop-2-yn-

1-yl)-4,13-dioxa-3,14-disilahexadec-8-en-7-one (69): To a vigorously stirred

suspension of vacuum-dried LiCI (2.6 mmol, 115 mg) in MeCN (13 mL) was added the

ketophosphonate 32 (2.2 mmol, 924 mg). Diisopropylethylamine (2.1 mmol, 461 pL)

was added followed by the aldehyde 68 (2.01 mmol, 508 mg). The reaction mixture

was then stirred 16 h at ambient temperature. The mixture was quenched with

saturated aq. NH4CI (1.8 mL) and diluted with Et2O (25 mL) and H20 (25 mL). The

phases were partitioned and extracted the aqueous with Et20 (3 x 20 mL), dried with

MgSO 4, filtered, and concentrated in vacuo. The crude residue was purified by flash

column chromatography (5% EtOAc/hexanes) to give the enone 69 (95:5 E:Z) as an off-

color oil (970 mg, 84%). 'H NMR (400 MHz, CDCl 3) 5 6.72 (dd, J = 17.6, 7.2 Hz, 1H),

6.02 (dd, J = 15.6, 0.8 Hz 1H), 4.31-4.28 (m, 1H), 3.81-3.77 (m, 1H), 2.75 (dq, J = 15.2,

7.6 Hz, 2H), 2.45 (quintet, J = 6.8 Hz, 1H), 2.37 (d, J = 6.0 Hz, 2H), 1.60-1.53 (m, 1H),

1.29-1.24 (m, 1 H), 1.09 (d, J = 6.0 Hz, 3H), 1.01 (d, J = 6.8 Hz, 3H), 0.84 (s, 9H), 0.80

(s, 9H), 0.10 (s, 9H), 0.05 (s, 3H), 0.01 (s, 3H), 0.00 (s, 3H) -0.03 (s, 3H); 13C NMR (100

MHz, CDCl3) 6 199.2, 153.6, 129.2, 103.6, 86.9, 68.1, 66.0, 46.7, 45.8, 33.1, 29.2, 25.9,

25.8, 24.1, 18.9, 18.0, 0.1, -4.1, -4.6, -4.8,; IR (film) 2958, 2858, 1697, 1626, 1473,

1361, 1215 1099, 1006, 840, 776, 699, 643, 576 cm- 1; HRMS ESI (mlz): [M+Na]* calcd

for C28H56O3Si3Na, 547.3429; found 547.3523; [aID 19.1 (c 7.6, CHC 3).
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KMe

OTBS

(5S,8R,9S,1 OR,1 2S)-8,9-dihydroxy-2,2,3,3,10,12,14,14,15,15-decamethyl-5-(3-

(trimethylsilyl)prop-2-yn-1 -yI)-4,13-dioxa-3,14-disilahexadecan-7-one (70): The

enone 69 was placed into a flask and cooled. In a separate flask was placed AD-mix-a

(1.4 mmol, 1.9 g), potassium osmate (0.14 mmol, 47 mg), (DHQ) 2PHAL (0.07 mmol, 55

mg), and NaHCO 3 (4.2 mmol, 353 mg) and dissolved in t-BuOH/H 20 (1:1, 15.4 mL).

The mixture stirred vigorously until all the solids were dissolved then added MeSO 2NH2

(133 mg, 1.4 mmol). This solution was then stirred for 10 min and transferred by a

Pasteur pipet into a cooled (5 *C) flask containing the enone 28 (1.4 mmol, 735 mg).

The mixture was then stirred 36 h while maintaining the temperature between 0-5 OC in

a refrigerator. Quenched at cold temperature after this time with saturated aq. Na2SO3

(1.18 mL) and stirring was continued for 30 min. Finally, the brown-colored mixture was

diluted with EtOAc (15 mL) and H20 (3 mL). Separated the phases and extracted the

aqueous layer with EtOAc (2 x 10 mL). The combined organic phases were dried with

Na2SO4, filtered and concentrated in vacuo. The crude residue was purified by flash

column chromatography (20% EtOAc/hexanes) to give the diol 70 (>95:5 d.r.) as a clear

oil (319 mg, 57%). "H NMR (400 MHz, CDCl3) 6 4.34-4.29 (m, 1H), 4.19 (brs, 1H),

3.90-3.84 (m, 1H), 3.62 (brs, 3H), 2.80 (dd, J = 5.6, 1.2 Hz, 2H), 2.39 (dd, J = 5.2, 2.4

Hz, 2H), 2.06-2.04 (m, 1H), 1.99-1.93 (m, 1H), 1.63-1.56 (m, 1H), 1.12 (d, J = 6.0 Hz,

3H), 0.99 (d, J = 6.8 Hz, 3H), 0.84 (s, 9H), 0.83 (s, 9H), 0.10 (s, 9H), 0.07 (s, 3H), 0.03
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(s, 3H), 0.02 (s, 6H); 13C NMR (100 MHz, CDCl3) 6 209.5, 102.8, 87.6, 77.5, 75.1, 67.5,

66.2, 45.0, 43.3, 33.7, 28.9, 25.9, 25.8, 24.8, 18.1, 18.0, 15.4, 0.4, -3.9, -4.7, -4.8,; IR

(film) 3463, 2958, 1718, 1653, 1472, 1374, 1251 1076, 1006, 838, 667, 643, cm-;

HRMS ESI (m/z): [M+Na]* calcd for C28 H58O5 Si3Na, 581.3484; found 581.3467; [a]D

15.3 (c 4.9, CHC 3).

TMS OTBSO
OTBS

71 TBSO# *Me
Me

OTBS

(5S,8R,9S,10R,12R)-8,9-bis((tert-butyldimethylsilyl)oxy)-2,2,3,3,10,12,14,14,15,15-

decamethyl-5-(3-(trimethylsilyl)prop-2-yn-1 -yI)-4,13-dioxa-3,14-disilahexadecan-7-

one (71): The diol 70 (1.209 mmol, 676 mg) was dissolved in CH 2Cl2 (12 mL) and

cooled to 0 C. Then 2,6-lutidine (9.68 mmol, 1.12 mL) was added all at once and

TBSOTf (4.85 mmol, 1.11 mL) dropwise over 3 min. The solution was stirred 30 min at

0 0C and subsequently warmed to r.t. and stirred 60 min. The solution was diluted with

H20 (10 mL), partitioned the phases, and extracted the aqueous with Et20 (15 mL).

The combined organic extracts were dried over anhydrous MgSO 4, filtered, and

concentrated in vacuo. The crude residue was purified by flash column

chromatography (2% EtOAc/hexanes) to give the alkyne 71 as a clear oil (876 mg,

92%). 1H NMR (400 MHz, CDCl3) 6 4.27-4.21 (m, 1H), 4.03 (d, J = 4.8 Hz, 1H), 3.82-
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3.75 (m, 1H), 3.62 (dd, J = 5.2, 3.2 Hz, 1H), 3.03 (dd, J = 18.8, 5.2 Hz, 1H), 2.71 (dd, J

= 19.2, 7.2 Hz, 1H), 2.37 (dq, J = 16.4, 4.8 Hz, 2H), 1.99-1.93 (m, 1H), 1.49-1.43 (m,

1H), 1.22-1.15 (m, 1H), 1.07 (d, J = 6.0 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 0.90 (s, 9H),

0.88 (s, 9H), 0.83 (s, 9H), 0.82 (s, 9H), 0.71 (d, J = 6.8 Hz, 3H), 0.09 (s, 9H), 0.08 (s,

3H), 0.07 (s, 3H), 0.05 (s, 3H), 0.02 (s, 3H), 0.01 (s, 3H), 0.00 (s, 3H) -0.01 (s, 3H), -

0.03 (s, 3H); 13C NMR (100 MHz, CDCl3) 6 208.8, 104.0, 86.3, 80.9, 79.1, 65.9, 47.8

45.3, 30.5, 28.6, 25.7, 24.7, 18.3, 18.2, 18.1, 18.0, 14.1, 0.4, -2.9, -3.8, -4.1, -4.5, -4.7, -

5.0; IR (film) 2957, 2179, 1718, 1653, 1473, 1362, 1252, 1083, 938, 836, 774, 668 cm-1 ;

HRMS ESI (m/z): [M+Na]* calcd for C40H96O5Si5Na, 809.5214; found 809.5226; [a]D -7.2

(c 7.2, CHC13).

0 OTBSO

Me ~ OTBS

72 TBSO, OM

Me

OH

(4S,7R,8S,9R,1 I S)-4,7,8-tris((tert-butyldimethylsilyl)oxy)-1 1-hydroxy-9-

methyldodecane-2,6-dione (72): The alkyne 71 (0.094 mmol, 74 mg) was dissolved in

MeOH (0.960 mL) and placed in a flask and then added THF (120 pL) and H20 (120

pL). This was followed by the addition of PPh 3AuCI (0.0094 mmol, 4.67 mg) and AgOTf

(0.0094, 2.42 mg). The reaction mixture was heated to 35 OC and stirred for 5 h. The

mixture was diluted with H20 (10 mL) and Et20 (10 mL), partitioned the phases, and
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extracted the aqueous with Et20 (2 x 15 mL). The combined organic extracts were

dried over anhydrous MgSO 4, filtered and concentrated in vacuo. The crude residue

was purified by FCC (20% EtOAc/hexanes) to give compound 72 as a clear oil (32 mg,

55%). 1H NMR (600 MHz, CDCl3) 6 4.59-4.55 (m, 1H), 4.20 (d, J = 4.8 Hz, 1H), 3.88-

3.82 (m, 1H), 3.62 (t, J = 4.2 Hz, 1H), 2.98 (dd, J = 18.6, 4.2 Hz, 1H), 2.81-2.72 (m, 2H),

2.54 (dd, J = 14.4, 5.4 Hz, 1H), 2.20 (s, 3H), 1.90-1.80 (m, 1H), 1.79-1.71 (m, 1H), 1.59-

1.57 (m, 1H), 1.20 (d, J = 6.2 Hz, 3H), 1.19-1.15 (m, 1H), 0.96 (s, 9H), 0.94 (s, 9H),

0.86 (s, 12H), 0.18 (s, 3H), 0.14 (s, 3H), 0.09 (s, 6H), 0.04 (s, 3H), 0.03 (s, 3H); 13C

NMR (100 MHz, CDC 3) 6 209.2, 208.2, 104.0, 81.9, 79.1, 65.9, 64.8, 50.8 48.1, 43.9,

32.8, 32.0, 26.3, 26.1, 26.0, 24.7, 18.3, 18.2, 18.1, 18.0, 15.9, -3.8, -4.1, -4.5, -4.7; IR

(film) 3482, 2930, 2340, 1717, 1653, 1473, 1362, 1256, 1079, 939, 836, 776, 668 cm-1;

HRMS ESI (mlz): [M+Na]' calcd for C31H66O6Si 3Na, 641.4059; found 641.4075; [aID -21

(c 2.0, CHCl3).
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(2E,6E)-(2R,4R,5S,6R,9S)-5,6,9-tris((tert-butyldimethylsilyl)oxy)-4-methyl-7,1 1-

dioxododecan-2-yI 2-methyl-7-((2S,3S)-3-((R)-2-methyl-4-methylenehept-5-yn-1 -

yl)oxiran-2-yl)hepta-2,6-dienoate (56): Enyne 65 (0.085 mmol, 34 mg) was dissolved

in THF (1 mL) and cooled to 0 0C. Then TBAF (1.0 M in THF, 0.425 mmol, 0.425 mL)

was added and the resulting solution was stirred 30 min at 0 *C. After that time the

solution was warmed to r.t. and stirred for 4 h before being quenched by adding a sol.

aq. NH4 CI (10 mL) and diluting with brine (5 mL) and EtOAc (25 mL). The aqueous layer

was extracted with EtOAc (3 x 25 mL), dried over Na2 SO 4, filtered, and concentrated. A

portion of the crude carboxylate salt (0.013 mmol, 4 mg) was dissolved in toluene (300

pL). While stirring NEt3 (0.065 mmol, 9 pL) and 2,4,6-trichlorobenzoyl chloride (0.033

mmol, 5 pL) were added. The mixture was stirred for 8 h and then filtered through celite

and evaporated. The resulting residue was dissolved in toluene (300 pL) along with

alcohol 72 (0.013 mmol, 8 mg) and DMAP (0.039 mmol, 4.5 mg). The resulting mixture

was heated to 40 0C for 8 h. After that reaction time the mixture was filtered through

celite and evaporated. The residue was purified by flash column chromatography

(10:90 EtOAc:hexanes) to give the enyne 56 as a colorless oil (9 mg, 82%). 'H NMR

(600 MHz, CDCl3) 6 6.74-6.70 (m, 1H), 5.85-5.80 (m, 1H), 5.23 (s, 1H), 5.22-5.20 (m,

1H), 5.08 (s, 1H), 5.03-4.97 (m, 1H), 4.53-4.48 (m, 1H), 4.12 (d, J = 6.6 Hz, 1H), 3.62-
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3.60 (m, 1H), 3.02 (dd, J = 12.0, 3.0 Hz, 1H), 2.89-2.82 (m, 2H), 2.73-2.62 (m, 2H), 2.45

(dd, J = 22.2, 9.6 Hz, 1H), 2.28-2.15 (m, 4H), 2.13 (s, 3H), 2.04-1.93 (m, 2H), 1.90 (s,

3H), 1.77 (brs, 3H), 1.68-1.61 (m, 1H), 1.31-1.21 (m, 3H), 1.18 (d, J = 9.0 Hz, 3H), 0.92

(d, J = 9.6 Hz, 3H), 0.89 (s, 9H), 0.87 (s, 9H), 0.86 (s, 12H), 0.76 (d, J = 10.2 Hz, 3H),

0.18 (s, 3H), 0.15 (s, 3H), 0.03 (s, 3H), 0.02 (s, 3H), 0.00 (s, 3H), -0.03 (s, 3H); 13c

NMR (100 MHz, CDCl 3) 6 208.4, 207.7, 167.9, 140.8, 135.2, 130.8, 128.8, 128.6, 121.4,

85.9, 81.3, 78.6, 77.2, 76.8, 68.7, 65.3, 59.3, 50.4, 48.1, 45.5, 40.8, 40.6, 38.9, 32.1,

31.8, 31.5, 29.6, 28.4, 26.2, 26.0, 21.1, 19.5, 18.4, 18.1, 15.1, 12.8, 12.7, 4.4, -3.8, -4.3,

-4.4, -4.6, -4.8; IR (film) 2956, 2930, 2857, 1718, 1653, 1472, 1362, 1257, 1081, 939,

837, 777, 668 cm- 1; HRMS ESI (mlz): [M+Na]* calcd for C50 H90O8Si3 Na, 925.5836;

found 925.58325 [a]D -21.9 (c 3.2, CHC13).

Me

Me% OH

OTBS

OH 75

(2S,3S,5R)-1 -((tert-butyldimethylsilyl)oxy)-5-methyl-7-methylenedec-8-yne-2,3-dio

(75): The enyne 3 was placed into a flask and cooled. In a separate flask was placed

AD-mix-a (0.766 mmol, 1.085 g) dissolved in t-BuOH/H 20 (1:1, 7.66 mL). The mixture

was stirred vigorously until all the solids were dissolved then added MeSO 2NH2 (0.766

mmol, 72 mg). This solution was then stirred for 10 min and transferred by a Pasteur
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pipet into a cooled (5 0C) flask containing the enone 28 (1.4 mmol, 735 mg). The

mixture was then stirred 24 h while maintaining the temperature between 0-5 0C in a

refrigerator. The mixture was quenched at cold temperature after this time with

saturated aq. Na2SO3 (0.65 mL) and stirring was continued for 30 min. Finally, the

brown-colored mixture was diluted with EtOAc (15 mL) and H20 (3 mL). The phases

were separated, and the aqueous layer was extracted with EtOAc (2 x 10 mL). The

combined organic phases were dried with Na2 SO 4 , filtered, and concentrated in vacuo.

The crude residue was purified by flash column chromatography (20% EtOAc/hexanes)

to give the diol 75 (95:5 d.r.) as a clear oil (135 mg, 54%). 'H NMR (600 MHz, CDCl 3) 6

5.26 (s, 1H), 5.16 (s, 1H), 3.81-3.70 (m, 2H), 3.69-3.63 (m, 1H), 3.50-3.40 (m, 1H),

2.80-2.69 (brs, 2H), 2.18-2.10 (m, 1H), 2.08-2.02 (m, 1H), 1.95-1.91 (m, 1H), 1.90 (s,

3H), 1.70-1.66 (m, 1H), 1.15-1.11 (m, 1H), 0.94 (d, J = 7.5 Hz, 3H), 0.90 (s, 9H), 0.09 (s,

6H); 13C NMR (150 MHz, CDC 3) 6 131.1, 121.3, 85.9, 80.2, 74.3, 70.1, 65.9, 46.1, 40.6,

28.7, 26.2, 19.4, 18.5, 4.4, -5.1, -5.2; IR (film) 3419, 2931, 2739, 2361, 2046, 1611,

1472, 1256, 1113, 837, 778 cm-1; HRMS ESI (m/z): [M+Na]* calcd for C18H34 0 3SiNa,

349.2169; found 349.2179. [a]D -17.8 (c 7.6, CHCl 3).
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O 76OTBS

(5S,6S)-6-((tert-butyldimethylsilyl)oxy)-2,2,3,3,9,9,1 0,1 0-octamethyl-5-((R)-2-

methyl-4-methylenehept-5-yn-1-yl)-4,8-dioxa-3,9-disilaundecane (76): The diol 75

(0.704 mmol, 230 mg) was dissolved in CH2Cl2 (4.56 mL) and cooled to 0 0C. Then

added 2,6-lutidine (5.66 mmol, 0.65 mL) all at once and TBSOTf (2.84 mmol, 0.65 mL)

dropwise over 3 min. The solution was stirred 30 min at 0 0C and subsequently warmed

to r.t. and stirred 60 min. The solution was diluted with H20 (10 mL), partitioned the

phases, and extracted the aqueous with Et20 (15 mL). The combined organic extracts

were dried over anhydrous over MgSO 4, filtered, and concentrated in vacuo. The crude

was purified by flash column chromatography (2% EtOAc/hexanes) to give the alkyne

76 as a clear oil (379 mg, 97%). 1H NMR (400 MHz, CDCl 3) 6 5.21 (s, 1H), 5.07 (s, 1H),

3.81-3.77 (m, 1H), 3.69-3.63 (m, 2H), 3.43-3.38 (m, 1H), 2.09-2.00 (m, 1H), 1.89-1.87

(m, 4H), 1.66-1.60 (m, 1H), 1.35-1.30 (m, 1H), 1.25-1.19 (m, 1H), 0.87 (s, 9H), 0.86 (s,

9H), 0.85 (s, 9H), 0.78 (d, J = 6 Hz, 3H), 0.05 (s, 3H), 0.04 (s, 9H), 0.01 (s, 6H); 13C

NMR (100 MHz, CDCl3) 6 131.4, 120.9, 85.5, 80.4, 76.9, 72.0, 64.1, 46.7, 37.9, 27.6,

26.2, 26.0, 18.6, 18.3, 18.2, 4.4, -3.9, -4.0, -4.5, -4.7, -5.0, -5.2; IR (film) 3094, 2962,

2739, 2361, 1923, 1613, 1472, 1253, 1107, 842, 668 cm-1 ; HRMS ESI (mlz): [M+Na]*

calcd for C30H6203Si3Na, 577.3899; found 577.3898. [a]D -31.4 (c 9.7, CHC13).
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(2E,6E,8S,9S,1 1 R)-ethyl 8,9-bis((tert-butyldimethylsilyl)oxy)-2,1 1 -dimethyl-1 3-

methylenehexadeca-2,6-dien-14-ynoate (80): The enyne 76 (0.683 mmol, 379 mg)

was dissolved in MeOH (1 mL) and cooled to 0 *C. CSA (0.14 mmol, 32 mg) was

added all at once and stirred 30 min at 0 *C. The mixture is diluted with H20 (10 mL),

partitioned the phases, and extracted the aqueous with Et20 (15 mL). The combined

organic extracts were dried over anhydrous MgSO 4, filtered, and concentrated in vacuo.

The crude was purified by flash column chromatography (10% EtOAc/hexanes) to give

the alcohol 77 as a clear oil (221 mg, 74%). The alcohol 77 (0.502 mmol, 221 mg) was

dissolved in CH2 Cl2 (4.5 mL) and placed in a flask containing activated 4 A ms (276.25

mg). This was followed by the addition of NMO (0.753 mmol, 100 mg) and TPAP

(0.028, 10.3 mg). The reaction was then stirred for 4 h and filtered through celite

(eluting with 30% Et20 in petane) and concentrated in vacuo. The crude aldehyde 78

was carried forward without further purification. In a separate flask sulfone 79 (0.502

mmol, 182 mg) was dissolved in DME (5 mL) and cooled to -78 OC. A solution of

KHMDS (0.602 mmol, 210 mg) in DME (5 mL) was added and the solution was stirred

for 30 min. A solution of the aldehyde 78 in DME (5 mL) was then added and the

solution was warmed to r.t. and stirred for 8 h. The solution was quenched with H20 (10

mL) and diluted with Et20 (100 mL). The aqueous layer was extracted with Et20 (2 x

50 mL). The combined organic extracts were dried over anhydrous MgSO 4, filtered, and
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concentrated in vacuo. The crude residue was purified by flash column chromatography

(5% EtOAc/hexanes) to give 80 as a colorless oil (255 mg, 88% yield). 'H NMR (400

MHz, CDCl3) 6 6.73 (t, J = 5.6 Hz, 1H), 5.58-5.55 (m, 2H), 5.18 (s, 1H), 5.05 (s, 1H),

4.14 (q, J = 7.2 Hz, 2H), 4.08-4.05 (m, 1H), 3.63 (quintet, J = 4.0 Hz, 1H), 2.25-2.19 (m,

5H), 2.04-1.99 (m, 1H), 1.88-1.82 (m, 5H), 1.80 (brs, 3H), 1.25 (t, 7.2 Hz, 3H), 1.24-1.21

(m, 1H), 0.99 (t, 8.4 Hz, 2H), 0.86 (s, 18H), 0.77 (d, J = 6.0 Hz, 3H), 0.04 (s, 6H), 0.00

(s, 3H), -0.02 (s, 3H); 13C NMR (100 MHz, CDCl3) 6 168.2, 141.8, 131.4, 129.8, 129.6,

128.2, 120.7, 85.3, 80.4, 74.7, 73.3, 60.5, 46.8, 38.0, 31.4, 28.9, 27.3, 26.1, 18.5, 18.3,

18.2, 14.5, 12.6, 4.3, -3.9, -4.4, -4.5, -4.7; IR (film) 2930, 2361, 1717, 1653, 1473, 1258,

1102, 836, 668 cm-1 ; HRMS ESI (mlz): [M+Na]* calcd for C33H60O4Si2 Na, 599.3922;

found 599.3943. [a]D -31.3 (c 7.2, CHCl3).

o OTBSO

Me ~ ,OTBS

TBSO* 0Me
Me Me
MeOTBS Me

Me
OTBS 74 0

(2E,6E,8S,9S,1 1 R)-(2S,4R,5S,6R,9S)-5,6,9-tris((tert-butyldimethylsilyl)oxy)-4-

methyl-7,11-dioxododecan-2-yl 8,9-bis((tert-butyldimethylsilyl)oxy)-2,11-dimethyl-

13-methylenehexadeca-2,6-dien-14-ynoate (74): Enyne 80 (0.124 mmol, 72 mg) was

dissolved in THF (3.8 mL), MeOH (1.75 mL), and H20 (1.75 mL) and added LiOH (4.34
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mmol, 104 mg). The resulting solution was stirred at r.t. for 15 h. The solution was

quenched by adding a sol. aq. NH4 CI (20 mL), diluting with brine with Et2O (25 mL). The

aqueous layer was extracted with Et20 (3 x 25 mL), dried over Na2SO4, filtered, and

concentrated. A portion of the crude carboxylate salt 81 (0.043 mmol, 24 mg) was

dissolved in toluene (992 pL). While stirring NEt3 (0.22 mmol, 30 pL) and 2,4,6-

trichlorobenzoyl chloride (0.11 mmol, 17 pL) were added. The mixture was stirred for 8

h and then filtered through celite and evaporated. The resulting residue was dissolved

in toluene (992 pL) along with alcohol 72 (0.043 mmol, 27 mg) and DMAP (0.130 mmol,

15 mg). The resulting mixture was heated to 40 0C for 8 h. After that reaction time the

mixture was filtered through celite and evaporated. The residue was purified by flash

column chromatography (15:95 EtOAc:hexanes) to give the enyne 74 as a colorless oil

(42 mg, 84%). 1H NMR (600 MHz, CDCl 3) 6 6.71-6.68 (m, 1H), 5.58-5.48 (m, 2H), 5.18

(s, 1H), 5.04 (s, 1H), 5.03-4.97 (m, 1H), 4.53-4.48 (m, 1H), 4.12 (d, J = 6.6 Hz, 1H),

4.06-4.05 (m, 1H), 3.65-3.61 (m, 2H), 2.86 (dd, J = 12, 3 Hz, 1H), 2.73-2.62 (m, 2H),

2.45 (dd, J = 22.2, 9.6 Hz, 1H), 2.28-2.13 (m, 5H), 2.12 (s, 3H), 2.11-2.03 (m, 1H), 1.86

(s, 3H), 1.85-1.79 (m, 2H), 1.78 (brs, 3H), 1.37-1.19 (m, 4H), 1.17 (d, J = 9.0 Hz, 3H),

0.92 (d, J = 9.6 Hz, 3H), 0.89 (s, 9H), 0.88 (s, 9H), 0.86 (s, 9H), 0.85 (s, 9H), 0.78 (s,

15H), 0.08 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H), 0.03 (s, 3H), 0.02 (s, 3H), 0.01 (s, 3H),

0.00 (s, 6H), -0.02 (s, 6H); 13C NMR (150 MHz, CDCl3) 6 208.5, 207.7, 167.9, 141.6,

131.5, 130.0, 128.4, 128.1, 120.8, 85.4, 81.3, 80.4, 78.5, 77.5, 77.4, 74.9, 73.3, 68.6,

65.3, 50.4, 48.1, 46.8, 40.8, 38.0, 32.0, 31.8, 31.6, 29.1, 27.3, 26.2, 26.1, 25.9, 21.0,

18.5, 18.4, 18.3, 18.2, 18.1, 15.1, 12.7, 4.4, -3.8, -4.3, -4.4, -4.5, -4.6, -4.7, -4.8; IR (film)

2929, 22361, 1720, 1717, 1715 1653, 1472, 1256, 1081, 835, 777 cm- 1; HRMS ESI
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(m/z): [M+Na]* calcd for C62H12 0O9Si 5Na, 1171.7671; found 1171.7631 [a]D -27.2 (c 5.4,

CHCl 3).
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Chapter 1: Spectra
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Chapter 2

Studies Directed Toward the Synthesis of Amphidinolide G3 and H4
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Introduction

The structures of amphidinolides G3 and H4 provide a number of synthetic challenges

(Figure 1),1 including a 26- or 27-membered macrocyclic lactone ring, nine stereogenic

centers (three of which are consecutive), an a-hydroxy ketone, and 1,3-diene that has

been shown to be very sensitive to various reaction conditions.' 2

Figure 1. Targeted Amphidinolides G3 and H4
Me OH O Me OH O

Me OOH Me OOH

HOM eMeOH HO, ,Me
Me% Me Me% Me OH

0 0
00 0 0

amphidinolide G3  amphidinolide H4

We envisioned tackling the problem of the 1,3-diene via the Ni-catalyzed reductive

coupling of a 1,3-enyne and aldehyde developed in our lab (Figure 2). After the

reductive coupling, displacement of the activated alcohol with a nucleophilic methyl

group would yield the desired 1,3-diene moiety.

1 (a) For reviews of the amphidinolides, see: Kobayashi J. J. of Antibio. 2008, 61, 271. (b)
Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77. (c) Chakraborty, T. K.; Das, S. Curr.
Med. Chem.: Anti-Cancer Agents 2001, 1, 131. (d) Kobayashi J.; Ishibashi M. in
"Comprehensive Natural Products Chemistry", Vol. 8, pp. 619-649, K. Mori, Ed., Elsevier, New
York, 1999. (e) For a current website see: http://www2.onu.edu/-b-
myers/amp/amphidinolides.html.

2 FUrstner, A.; Bouchez, L. C.; Funel, J.; Liepins, V.; Porree, F.; Gilmour, R.; Beaufils, F.;
Laurich, D.; Tamiya, M. Angew. Chem., /nt. Ed. 2007, 46, 9265.

3 Original report: (a) Miller, K. M.; Luanphaisarnnont, T.; Molinaro, C.; Jamison, T. F. J. Am.
Chem. Soc. 2004, 126, 4130. (b) For a review see: Moslin, R. M.; Moslin, K. M.; Jamison, T. F.
Chem. Commun. 2007, 4441.
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Figure 2. Ni-catalyzed coupling of 1,3-enynes with aldehydes.
O

R3 R4  
R3  

OH

R2 Ni(cod)2/PR 3 (cat.) R
Et3B R R4

R', R2 , R3 = H, alkyl; 90:10 regioselectivity
R4 = aryl, alkyl (1*, 2*, 3*)

Previously Reported Work Toward Amphidinolide H4
4

A. Ni-Catalyzed Reductive Coupling5

In our previous work toward amphidinolide H4 we prepared enyne I and aldehyde 2

and successfully coupled them in excellent yield and diastereoselectivity to give dienol 3

(Scheme 1).4 Even though an achiral ligand was used for the coupling, we nevertheless

observed excellent diastereoselectivity. Our current hypothesis is that this

diastereoselectivity was due to one or more of the stereocenters from the aldehyde

fragment.

Scheme 1
0 OTBSO0

TBSOOH OTBS O

Me H OOTBS Ni(cod)2 20 mol% Me - ,OTBS

TBS Me Cyp 3P 40 mol% I Me

M Et3B 250 mol% TBSO *'M
e, Me EtOAc Me Me

/ OTBS OMe 77% Me0
0 Me >95:5 d.r. /Me

1 2 0 TBSO Me

4 Ndubaku, C. 0. "Diastereoselective Nickel-Catalyzed Reductive Coupling of Alkynes and
Aldehydes and Application Toward the B-Type Amphidinolides", Ph. D. Thesis, Massachusetts
Institute of Technology, 2005.

5 The author collaborated with Dr. Chudi 0. Ndubaku during this stage of work. The work in this
section was performed by Dr. Chudi 0. Ndubaku and is reported in ref. 4.
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B. Installation of the Methyl Substituent6

Initial studies directed toward methyl group installation to displace the activated

alcohol 3 were not met with success. Thus we turned our attention to less complex

model systems that resembled alcohol 3, but would be simpler and more efficient to

synthesize. To that end the model dienols 4 and 5 were prepared to carry out the SN2

displacement studies.4

Figure 3. Model Dienols for the Methyl Group Installation Studies.
OH OH

Me Me
Me Me

Me.

4 Me

5 Me

Table 1 provides a summary of an exhaustive investigation into the ideal conditions

for stereospecific and site-selective installation of the methyl group. We investigated

many groups to activate the hydroxyl group including acetic anhydride, tosyl chloride,

mesyl chloride, isopropylsulfonyl chloride, and n-butylsulfonyl chloride among others.

We found that only mesyl chloride gave the desired activated alcohol followed by

displacement products (Table 1). Other activators either failed to activate the dienol or

gave elimination products, rather than the desired SN2 displacement product. We

started our studies by focusing on the displacement of the mesylate with Me2Cu(CN)Li 2.

However, with Me2Cu(CN)Li 2 as the nucleophile, primarily SN2 and SN2" products were

observed although a trace amount of the SN2 product could be seen in the 'H NMR

spectra of the unpurified reaction mixture (entries 1-4). Use of Me3ln or Me3Ga derived

6 The author collaborated with Dr. Chudi 0. Ndubaku during this stage of work. The work
performed in this section is that of the author and portions are reported in ref. 4.
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from In13, Gal3 , or GaCl 3 and three equivalents of MeLi, respectively, gave what

appeared to be elimination and various rearrangement products that could not be

separated (entries 5-7). A similar result was seen with AIMe 3 as the reagent (entry 8).

We did find limited success with Me3ln (derived from InCl3 and three equivalents of

MeLi) in a solvent system of 1:1 Et20/hexane (entry 9). The regioselectivity for the SN2

product under these conditions appeared to be good; however, it was difficult to tell the

exact amount of the desired product that had formed due to impurities that could not be

separated. We were prompted to investigate these conditions based on a report by

Hirashita on regioselective displacement of primary allylic bromides.7 Performing the

reaction at colder temperatures did not noticeably increase the yield or selectivity for the

desired SN2 product (entries 10 and 11). We also investigated other solvent systems,

but in the absence of hexane as a co-solvent the SN2 ' and SN2" products began to

dominate again (entries 12 and 13).

7 Hirashita, T.; Hayashi, Y.; Mitsui, K.; Araki, S. Tetrahedron Lett. 2004, 45, 3225.
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Summary of Methyl Group Installa
OH MsCI OMs

Me NEta Me conditions

Re ther R- temperature

R2 0.5 h R2

tion Investigations.
Me

Me R

R1
side products

dienol mesylate SN2

entry dienol conditions temperature resultsa

1 4 Me2Cu(CN)Li2, Et2O 0 - rt SN2'and SN2 " major + SN2 minor
2 4 Me 2Cu(CN)Li 2, Et 2O/THF (2:1) 0 0- rt SN2

' and SN
2

" major + SN
2 minor

3 4 Me2Cu(CN)Li2, Et20/THF (1:1) -78 -*0 0C SN2'and SN
2

" major + SN2 minor
4 4 Me 2Cu(CN)Li 2, Et2O/hexane (1:1) 0 -* rt SN2 ' and SN

2
" major + SN

2 minor
5 5 Me3ln * 3Lil, Et20/hexane (1:1) 0 00 -4 rt many unidentified products
6 5 Me3Ga 3Lil, Et20/hexane (1:1) 0 -* rt many unidentified products
7 5 Me3Ga * 3LiCI, Et20/hexane (1:1) 0 -* rt many unidentified products
8 5 AIMe 3, Et20/toluene (1:1) 0 0- rt many unidentified products
9 5 Me3ln o 3LiCI, Et2O/hexane (1:1) 0 0c rt
10 5 Me3In * 3LiCI, Et20/hexane (1:1) -78 00 > 50% SN

2

11 5 Me31n * 3LiCI, Et2O/hexane (1:1) -13000 >50% SN
2

12 5 Me 31n * 3LiCI, Et2O 0 rt 40% SN 2

13 5 Me3In * iC, Et2OOTHF (21) 0 0C -> rt SN2 ' and SN
2

" major + SN
2 minor

-Compounds characterized by crude 'H NMR.

The compounds identified in Table O were not rigorously characterized due to difficulty

with the separation of the compounds. Therefore we prepared a model system that

would be easier to characterize. To that end we carried out the Ni-catalyzed reductive

coupling of enyne 6 and acetaldehyde (7) to give dienol 8. We then subjected the

alcohol to mesylation conditions followed by the addition of the prepared nMe3 reagent,

which gave what has been identified as diene 9, as the major prod pct.8

Scheme 2

Me

Me,

/ OTBS

Ni(cod) 2 10 mol%

+ o Cyp3P 20 mol%

H Me Et3B 200 mol%

7 EtOAc
40%

1:1 d.r.

OH
Me

Me

Me%

/ OTBS

8 The diene 9 could not be separated from other minor products, but could be characterized by
1H NMR because of the characteristic i-Pr group contained within the framework of diene 9.
The i-Pr group would not be present if SN2' and SN2" products were formed. The SN2 product was
estimated to be formed in about 65% yield.
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Table 1.

1) MsCI, NEt 3,
ether

0 OC, 0.5 h

2) Me3 ln * 3LiCI,
Et20/hexane (1:1)

0O*C -> rt



While we were confident that we had indeed formed the SN2 product diene 9, the

reaction received further investigation. In order to determine that SN2 displacement was

favored over SN2' and SN2", we used a 13C-labeled methyl group (after preparing

alcohol 11 as a 1:1 mixture of diastereomers). Experiments using (13CH3)2Cu(CN)Li2

and (13CH 3)31n(LiCI)3 as reagents were thus performed (Scheme 3). When

(13CH 3)2Cu(CN)Li2 was used as the nucleophile, the 13C NMR spectrum showed six

major peaks, as well as a few minor peaks, each corresponding to a methyl group

having been installed on the different products (and their corresponding diastereomers,

Figure 4). When (13CH3)31n(LiCI) 3 was used as the nucleophile, one major product was

obtained (as a mixture of diastereomers) with suppressed formation of the two other

compounds (Figure 5). The major peak (20.2 ppm) in the 13C NMR spectrum for the

(13CH 3)31n(LiCI) 3 case correlated well to the same chemical shift as the corresponding

methyl group in the amphidinolide H4.

Scheme 3
OH Me

Me 1) MsCI, NEt3, Me n-PrMeNi(cod) 2 10 M01% I -P etherI -

0 Ny(c 20 ml% 0 *C, 0.5 h
+33

Me,,,, + HA- Me Et3B 200 mDolMeMe,EtB 200 mol% M 2) (13
CH3)31n . 3LiCI, Me

OTBS 10 E8 % Oc, OTBS Et20/hexane (1:1) / OTBS

6 1:1 d.r. 11 O*C - rt 12
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Figure 4. 13C NMR Spectrum of Reaction with (13CH3)2Cu(CN)Li 2.

Figure 5. 13C NMR Spectrum of Reaction with (13CH3)31n.

-- 3 *

C. Application of the Trimethylindium Method to the Amphidinolide H4
5

We were able to apply our results from the model system to the amphidinolide

system to give the diene 13 in modest yield (Scheme 4).
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Scheme 4

1. MsCI, NEt3 , Et2O Me
Me 3 TBSO ,Me

TBS 2. Me31n - 3LiCI Me Me 
MeM

Me 0 23% 0

O M Me 2BSO Me
3 TBSO 13

Although we able to prepare diene 13, we found that after TBS deprotection, we were

unable to oxidize alcohol 14 to desired carboxylic acid 15. Many oxidation conditions

were investigated, but all resulted in decomposition of the diene (Scheme 5).

Scheme 5
Me OTBS O Me QTBS O Me QTBS O

Me OOTBS Me #OTBS Me O #OTBS

TB O, ,M BA T SO M TB O T MM Me Me e Me
TSOTB TBA TBO olTSO

Me O AcOH Me Me S
M e- T A N o M e- -1 N - ~ M e

Me Me / O Me Me
0 TBSO Me OH Me 0 HO2C Me

13 14 15

Synthetic Strategy Toward Amphidinolides H4

Based on our work toward amphidinolide B1 we reasoned that we could apply an

intramolecular Ni-catalyzed reductive cyclization approach to amphidinolide H4. This

would provide several advantages over our previous intermolecular Ni-catalyzed

reductive coupling approach. First, this strategy would provide a route in which the

ester moiety was in place prior to diene formation. This would be beneficial because

the diene does not tolerate a wide variety of reaction conditions. Secondly, it would

allow us to install the methyl group at a later stage, and only four TBS groups would

need to be removed after the methyl group was installed.
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To this end we envisioned preparing amphidinolide H4 (16) after methyl group

installation and TBS deprotection of alcohol 17 (Figure 6). We intended to prepare

alcohol 17 via Ni-catalyzed reductive cyclization of substrate 18, which can be readily

simplified further by cleavage of the ester C-0 bond to give the two relatively evenly

sized fragments enyne 19 and aldehyde 20, respectively. The two fragments can be

joined together via a Yamaguchi coupling reaction which had previously been

successful for us in studies toward amphidinolide B1.9 Our approach would hinge on the

stability of the a,p-unsaturated ester under the cyclization conditions, and based on our

previous studies toward amphidinolide B1 we did not envision any problems. Also, the

Ni-catalyzed cyclization product would need to be obtained with high

diastereoselectivity. In our previous attempt to amphidinolide H4 we observed high

diastereoselectivity without the use of a chiral phosphine ligand, and we hoped to see

similar results with a similar substrate, the only difference being the intramolecular

cyclization instead of the Ni-catalyzed coupling (Scheme 1).4

9 Inanaga, J. ; Hirata, K.; Saeki, H. ; Katsuki, T. ; Yamaguchi, M. A. Bull. Chem. Soc. Jpn. 1979,
52, 1989.
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Figure 6. Retrosynthetic Analysis of Amphidinolide H4.
OH HTBS

Me OH 0 1THS
Me ,,1 OH Methyl Group meOTB

HO, ,MeInstallation e 
Me'0 

OH OTB O TB

MeHOt GroMe Me TBSOT B
OHMe, Me OTBS

OMe OHO
I0

0

amphidinolide H4 (16) Ni-catalyzed reductive 17
cyclization

0 OTBSO
0ITB Yamaguchi H O OTBS

Me H *OOTBS CopIng ~Me
Me TBSO**

Me% Me OTBS

14 OH OH Me,

ZO 02 00 20

19 18

Results and Discussion

A. Synthesis of the Aldehyde Fragment"*

For the synthesis of the aldehyde fragment 20, we envisioned making use of novel Ni-

catalyzed reductive coupling of alkynes and mono-substituted epoxides.11 Therefore,

implementation of this strategy required the formation of the enantiomerically enriched

epoxide 23. Benzyl protection of 3-buten-1-ol (21) gave benzyl ether 22, and

epoxidation generated the racemic epoxide. Then Jacobsen hydrolytic kinetic

10 The author collaborated with Dr. Chudi 0. Ndubaku during this stage of work. The work in
this section was first performed by Dr. Chudi 0. Ndubaku and is reported in ref. 4. The author
worked on scaling up the process.

11 (a) Molinaro, C.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 8076. For an application in
total synthesis, see: (b) Colby, E. A.; O'Brien, K. C.; Jamison, T. F. J. Am. Chem. Soc. 2004,
126, 998.
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resolution (HKR) was employed to resolve the racemic epoxide to enantiomeric purity

which gave epoxide 23 (Scheme 6).

Scheme 6
NaH,BnBr 1) m-CPBA

21 TBAI 22 2) Jacobsen HKR 23

95% 40%
> 96% ee

The alkyne coupling partner 25, meanwhile, was readily synthesized in two steps by the

conversion of the commercially available 3-phenyl-2-propyn-1-ol (24) into the

corresponding propargyl bromide followed by an Arbuzov reaction to give

alkynylphosphonate 25 in good yield over the two steps (Scheme 7).

Scheme 7
Ph 1) CBr4, PPh3  Ph

2) P(OMe) 3  ( eOH P(0M e) 2
24 82% 25

We also planned to make use of a Horner-Wadsworth-Emmons coupling (HWE) 14 with

aldehyde 29. The aldehyde fragment was derived from the highly diastereoselective

12 (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936. (b)
Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.;
Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124,1307.

13 For an excellent review on the Arbuzov reaction: Bhattacharya, A. K.; Thayagarajan, G.
Chem. Rev. 1981, 81, 415.

14 Reviews: (a) Wadsworth, W. S., Jr. Org. React. 1977, 25, 73. (b) Kelly, S. E. In
Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 1, pp 729. (c) Walker, B. J. In Organophosphorus Reagents in Organic Synthesis;
Cadogan, J. I. G., Ed.; Academic Press: New York, 1979; pp 155.
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alkylation of the Myers pseudoephedrine chiral auxiliary (26)15 with the iodide 27

(Scheme 8). Reduction of the amide 28 with lithium amidotrihydridoborate provided the

corresponding alcohol that was directly subjected to the Swern oxidation conditions16 to

generate the desired aldehyde 29.

Scheme 8
0

Me0Me 0 Me
LDA, LiCI 1) Li(NH2)BH3  H O

Ph.k~i~e Me 0 I%
Me2) (COC) 2, DMSO, 29

OH Me 27 O\Me OH Me Me O Me NEt 3
26 28Me 58% Me'

97%
> 95% d.r.

With these three simple fragments in hand we were prepared to begin to couple them.

We used the previously described Ni-catalyzed reaction to unite the alkyne 25 and

epoxide 23 to give alcohol 30 (Scheme 9). This was followed by TBS protection of the

hydroxyl group under standard conditions to give phosphonate 31. Ozonolysis of the

alkene moiety of phosphonate 31 and subsequent reductive work-up with

dimethylsulfide gave access to phosphonate 32 in good yield. The HWE olefination of

the phosphonate 32 and the aldehyde 29 was accomplished under the Roush-

Masamune conditions to provide the E-a,P-unsaturated ketone 33.17 The olefination

reaction was highly selective and gave the desired ketone in 95:5 E:Z ratio.

15 Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am.
Chem. Soc. 1997, 119, 6496.

16 (a) Tidwell, T. T. Org. React. 1990, 39, 297-572. (b) Tidwell, T. T. Synthesis 1990, 857-870.
(c) Haines, A. H. Methods for the Oxidation of Organic Compounds; Academic: New York,
1988. (d) Mancuso, A. J.; Swern, D. Synthesis 1981, 165. (e) Moffatt, J. G. In Oxidation;
Augustine, R. L., Trecker, D. J., Eds.; Dekker: New York, 1971; Vol. 2, Ch. 1, pp 1-64.

17 Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.;
Sakai, T.; Tetrahedron Lett. 1984, 25, 2183.
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Scheme 9
Ph OH Ph 0OBrPh10

Ni(cod) 2 10 M01% OH 0 OTS
P Bn BU3P 20 mol% BnO P(OMe) 2  TBSCI BnO (OMe)2

25 23 Et3B 400 mol% 30 imidazole 31

60%
68%

LICI, i-Pr2 NEt 2TBS
03; DMS OTBSO 0 MeCN Bn

84% BnOl (OMe)2 0 33 Me

32 H _ Me

29 6
6--Me Me

Me

89%
95:5 E:Z

Introduction of the syn-1,2-diol moiety was achieved by utilizing the Sharpless

Asymmetric Dihydroxylation (SAD) procedure (Scheme 10).18 Due to the electron-

deficient nature of the alkene portion of enone 33 the commercial AD-mix in this

reaction was supplemented with additional potassium osmate and (DHQ) 2PHAL

(sometimes referred to as super AD-mix) in order to proceed more efficiently and

delivered the 1,2-diol 34 in good yield and diastereoselectivity. Bis-protection of the

hydroxyl groups of diol 34 as TBS ethers, followed by hydrogenolysis of the benzyl

ether using Pearlman's catalyst,19 and subsequent Dess-Martin oxidation2 0 of the

resulting alcohol, afforded the desired acetonide 2 in excellent overall yield.

18 Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem.
Soc. 1988, 110, 1968.

19 Pearlman, W. M. Tetrahedron Lett. 1967, 8 (17), 1663.

20 (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156. (b) Dess, D. B.; Martin, J.
C. J. Am. Chem. Soc. 1991, 113, 7277-7287. (c) Ireland, R. E.; Liu, L. J. Org. Chem. 1993,
58, 2899.
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Scheme 10
OTBS O
* || (DHQ) 2 PHAL,

K20sO2(OH)
K3Fe(CN)6

CH3SO2NH2
NaHCO

3
t-BuOH: H20 (1:1)

5 C, 48 h

80%
>95:5 d.r.

B. Completion of the Synthesis of the Aldehyde Fragment

Completion of the synthesis of the aldehyde fragment began with cleavage of

acetonide protecting group (Scheme 11). The optimized conditions for the acetonide

removal were 2:1:1 AcOH:THF:H 20 at 45 0C for two hours. The reaction could also be

performed in a microwave at 90 'C for six minutes and gave a better yield (70% - 80%).

The primary alcohol could then be protected selectively as the silyl ether in moderate

yield to complete the synthesis of the desired aldehyde 20.

Scheme 11

AcOH/THF/H
20

45C

70%

O OTBS O

H OOTBS
35 O TBSCI, imidazole

TBSO O DMF

* H 73%
OH

O OTBS O

H OOTBS
20

TBSO# *M

* TBS
OH

C. Synthesis of the Enyne Fragment21

The synthesis of the enyne fragment commences with intermediate 36 from our

synthesis of amphidinolide B1. The tosylate 37 could be prepared in excellent yield

under standard conditions (Scheme 12).

21 The author collaborated with Dr. Chudi 0. Ndubaku during this stage of work and portions
have been reported in ref. 4.
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Scheme 12
Me Me

TsCI, NEt3
Me%, NMe 3eHCI3s Me%

OH OTs

0 36 99% 0 37

The tosylate (37) was formed in order to employ it in a cuprate mediated displacement22

by an appropriate nucleophile in order to complete the synthesis of the enyne fragment.

The cuprate was constructed from commercially available 1,4-butanediol (38) (Scheme

13). Formation of the mono-THP ether 39 and subsequent Swern oxidation provided

access to the known aldehyde 40.3 This aldehyde was converted to the corresponding

a,p-unsaturated ester 42 by HWE olefination with phosphonate 41 under Roush-

Masamune conditions.17 While the E:Z selectivity was only modest, we were able to

separate the isomers during the purification process. Reduction of the ester 42 followed

by TBS protection provided the TBS ether 43 in excellent yield.

Scheme 13
41 O 0

EtO P(OEt)2

DHP (COD 2  Me

HO OH p-TsOH THPO OH NEt3 THPODMO LICI, DBU

38 39 40 H
72% 91% 78%

86:14 E:Z

Me Me

THPO O ) DIBAL-H - THPO OTBS

42 H 0 2) TBSCI, 43 Himidazole

98%

22 Tsuboi, S.; Yamafuji, N.; Utaka, M. Tetrahedron Asymm. 1997, 8, 375.

23 Uesato, S.; Kobayashi, K.; Inouye, H. Chem. Pharm. Bull. 1982, 30, 927.
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We were able to optimize the formation of alcohol 44, with a process to remove the

THP protecting group in the presence of the TBS protecting group. The use of MgBr 2

gave modest yields of 58 - 60% (Table 1, Entry 1).24 However, on larger scale the yield

was generally decreased even further. Dimethylaluminum chloride, which has been

reported to selectively cleave acetonide protecting groups in the presence of primary

TBS groups, did not perform the desired transformation (Entry 2).25 In order to expand

the scope of possible conditions for this transformation, it was decided to also examine

Bronsted acids. It was found that the rate of solvolysis of TBS ethers is quite solvent-

dependent and therefore useful for the selective cleavage of groups such as THP

ethers.26 It was reported that dilute methanolic HCI in anhydrous THF (<0.5 vol%

MeOH) cleaved THP ethers; whereas, TBS groups remained intact even at elevated

temperatures. However, if the amount of methanol was increased (50 vol% MeOH)

both THP and TBS ethers were efficiently cleaved at 0 0C. These findings were

successfully translated to the present case, and after some optimization, it was possible

to ascertain conditions that allowed for production of 44 in acceptable yield (Entries 3 -

5).

24 Kim, S.; Park, J.-H. Tetrahedron Lett. 1987, 28, 439.

25 Wovkulich, P. M.; Shankaran, K.; Kiegiel, J.; Uskokovic, M. R. J. Org. Chem. 1993, 58, 832.
26 (a) Zimmermann, K. Synth. Commun. 1995, 25, 2959. (b) G6ssinger, E.; Graupe, M.; Kratky,
C.; Zimmermann, K. Tetrahedron 1997, 53, 3083.
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Table 2. THP Deprotection Optimization Investigation.
Me Me

PO OTBS conditionsH OTBS
TH 4 HO 4 H

43 H 44 H

entry Reagent equivalent. concentration (M) solvent (vol%) t (h) T (* C) product (%)
1 MgBr 2 (anhydrous) 3.00 - Et20 16 25 58-60

2 Me2AICI 4.00 - DCM 2 -20 Decomposition

3 HCI (2.0 N in Et20) 1.30 0.052 THF/MeOH (99.6:0.4) 7 67 67

4 HCI (2.0 N in Et20) 0.32 0.013 THF/MeOH (99.6:0.4) 7 67 70

5 HCI (2.0 N in Et20) 0.32 0.013 THF/MeOH (99:1) 20 67 77

6 HCI (2.0 N in Et20) 0.32 0.013 THF/MeOH (95:5) 20 25 Decomposition

The desired iodide could then be prepared from alcohol 44 in good yield (Scheme 14).

Scheme 14
Me 12, PPh3 , Me

HO OTBS imidazole OTBS

44 H 45 H

With the iodide and tosylate in place, formation of the dialkyl cuprate (generated by

metal-halogen exchange27 with 45 and mixing with one-half molar equivalent of Cul at

cold temperatures) and subsequent addition of the tosylate 37 furnished the long-sought

1,3-enyne 46 (Scheme 15).

Scheme 15

Me

-,,,,,OTBS

45

t-BuLi 200 mol%,
Cul 50 mol%

Me

Me., Me

/ OTBS

0 46

50 mol%

37

64%

27 Negishi, E.; Swanson, D. R.; Roussert, C. J. J. Org. Chem. 1990, 55, 5406.
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D. Completion of the Synthesis of the Enyne Fragment and Yamaguchi Coupling

The synthesis of the enyne fragment culminated with TBAF deprotection of the TBS-

ether 46 to giving allylic alcohol 47 (Scheme 16).

Scheme 16
Me Me

TBAF, THF

Me, Me 91% Me
/ OTBS /- OH

0 46 0 47

Ley oxidation28 of alcohol 47, followed by oxidation of the corresponding aldehyde using

NaCIO 2 gave the corresponding carboxylic acid (Scheme 17). Yamaguchi coupling of

the acid with alcohol 20 provided the desired reductive coupling precursor 18. These

results are obtained using 300 mol% DMAP. A higher yield of 79% over the three steps

is obtained when 600 mol% DMAP is used, but a considerable amount of the alkene

portion of the a,p-unsaturated ester is scrambled in that case.

Scheme 17
0 OTBS O

Me H OOTBS*OTBS
Me 1) TPAP, NMO HO Me

Me 2) NaCIO2 , NaH 2PO4, 2-methyl-2-butene Me TBSO
Mee H2 OITHF/t-BuOHMe OB

e OH 3) 2,4,6-trichlorobenzoyl chloride, NEt3 , 8h; Me T

then 20, DMAP, 40 *C, 8h Me

47 53% 18 0

E. Ni-Catalyzed Cyclization Investigation

Our investigations into the Ni-catalyzed cyclization are summarized in Table 2. Thus

far the Ni-catalyzed cyclization of compound 18 has been unsuccessful. Various

conditions have been investigated but to no avail. The reaction goes to completion

28 a) Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun.
1987, 1625. b) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.
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quickly when 30 mol% Ni(cod) 2 is used at 0.05 M in EtOAc (Entries 2 and 4). However,

many products that could not be separated are obtained. Nevertheless, HRMS analysis

of the mixture correlates to the desired alcohol 17. Similar results are seen when 10

mol% Ni(cod) 2 is used (Entry 5). When the reaction is performed at 0 0C very little

conversion of the enyne 18 is observed (entry 6).

Table 3. Ni-Catalyzed Cyclization Investigation.
0 OTBS O OH OTBS O

\S Ni(cod)2  M OTBS
H - OTSCyp 3P M OB

Me Et3B
TBSO#** 110-- EtOAc ---- TBSO*# 4OMe

entry Ni(cod)2 / Cyp 3P / Et3 B (mol%) conditions results

1 20/40/400 0.08 M, 16h, rt many products

2 30/60 /400 0.05 M, 16h, rt many products

3 30/60/400 0.02 M, 16h, rt No reaction

4 30/60/200 0.05 M, 3.5h, rt many products
5 10/20/200 0.05 M, 1Oh, rt many products

6 10/20/200 0.05 M, 6h, 0O*C No reaction
7 100 / 200 / 200 0.01 M, 10h, rt many products

F. Revised Synthetic Strategy Toward Amphidinolides G3 and H4

Because of the difficulties of the Ni-catalyzed cyclization we were prepared to

investigate a new Ni-catalyzed coupling approach. This approach would focus on the

coupling of an advanced enyne fragment with the a,@-unsaturated ester in place. To

that end the enyne 50 can be prepared from enyne 19 via a Yamaguchi coupling with 2-

(trimethylsilyl)ethanol in 77% yield (Scheme 18).

- 165 -



Scheme 18
1) 48

CI 0

Me C I i CI Me

Me% Me NEt3 , Me, Me

/ OH 2) M 4 OTMSE
0 19 O OH 0 50 Y

DMAP

77%

To our delight the coupling of enyne 50 and aldehyde 2 was executed in the presence

of 20 mol% Ni(cod)2, 40 mol% Cyp3P, and 250 mol% Et3B to give the dienol 51

(Scheme 19). Notably, the reaction was tolerant of the a,p-unsaturated ester. In

addition to the good yield, we once again observed excellent diastereoselectivity in

correlation with our previous studies.4 We relied on Mosher ester analysis once again

to determine the carbinol configuration. Based on our studies we found the carbinol to

be of the S configuration. This configuration was assigned because of the observed

upfield shift (6 5.98) of the vinyl proton from the ester derived from S acid, and

conversely, the downfield shift (6 6.04) of the vinyl proton of the ester derived from the

R acid. This was a fortuitous find, as it was required for the carbinol to be of the S

configuration in order to obtain the correct methyl configuration found in the natural

products, after SN2 inversion with a methyl nucleophile. We also obtained 13% of the

hemiketal product 51' along with the desired dienol 51. The prepared dienol was not

stable and began to form the hemiketal 51' after one hour. Thus it was imperative that

we use the dienol once it was formed.
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Scheme 19

Me

Me, Me

/Me OTMSE

0
5o 0

Ni(cod) 2 10 mol%
Re Cyp 3P 20 mol%

BEt3 250 mol%

0 EtOAc

'-Me
Me 85%

>95:5 d.r.

OTBS

OTBS

Me
OH0OHOTBS Me 

Me
Me Me

/ OTMSE

0 0
51'

After a lot of investigation into the displacement we found that use of the indate complex

Li[InMe4] gave the desired diene 52, albeit in low yield (Scheme 20).29

Scheme 20

TBS Me O Me 1)Et3N, MsCI
PMe -

Me 2) Li[InMe 4]
le

OTMSE

O0

Me OTBS 0 OTBS
Me

OTBS Me O
Me MeMe Me

5 / OTMSE

52

We then subjected 52 to conditions we believed would deprotect the acetonide

(Scheme 21). The acetonide was deprotected but during the process a portion of the

diene moiety underwent isomerization to the more stable internal olefin.

29 The yield of approximately 20% has been obtained. The structure of compound 52 has been
tentatively assigned by HRMS and 1H NMR.
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Scheme 21
Me OTBSO OTBS

Me~

OTBS Me 0 Me AcOH /THF /H 20
Me Me Me 0 (Decomposition)

/OTMSE

O
O

52

G. Modified Protecting Group Strategy

Our studies have shown that removal of protecting groups, other than silyl groups, are

very difficult once the diene has been formed, and other groups have reported similar

findings.' ,2 We accordingly adjusted our strategy to have only TBS protecting groups

present after installation of the diene. Therefore, we prepared aldehyde 53 in one pot

by first removing the acetonide portion of aldehyde 2 and subsequent TBS protection of

the crude material (Scheme 22).

Scheme 22
o OTBS O 0 OTBS O

H OOTBS H OOTBS
Me M

TBSOH 1) AcOH / THF / H20 TBSO

O 2) TBSCI, Imidazole O TB S

Me 75%TBS

2 53

We carried out the reductive coupling with the new aldehyde fragment 53 and the enyne

fragment 50. Once again the coupling reaction went with good yield and

diastereoselectivity (Scheme 23).
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Scheme 23

OTBS

53

OH OTBS 0 OTBS
Ni(cod)2 Me
Cyp3P OTBS

BEt3  OTBS Me OTBS

EtOAc MetIn Me
/OTMSE

75%
>95:5 d.r. O 54 0

H. Future Experiments

With a convergent and concise route to dienol 54 the proposed remaining steps

toward amphidinolide H4 and G3 are shown in Scheme 24. We propose using the

indate Li[InMe4] to displace alcohol 54, after mesylation, to give 55. Removal of the

TBS groups along with the TMSE group using TASF 2 would yield acid 56.30 A non-

selective Yamaguchi cyclization would then give rise to amphidinolide H4 (16) and G3

(57).

Scheme 24
OH OTBSO OTBS Me OTBSO OTBS

MMe 
OTBS1) Et3N MsCI I g Me OTBSOTBSMe OTBS ... -OTBSMe OTBS

Me Me 2) Li[InMe4] Me Me

OTMSE /OTMSE

0 0054 0 055

48
Me OTBSO OTBS 1) C 0 Me OH 

Me OI Me e OH Me

#Me
OTBSMe OH Cl 

M
Me 

HO O ,MeMe NEt3, DMAP Me% Me OH Me*

OH 2) TASF / 0

O 56 O OC ,

TAS F
...............-

30 We are aware that the other TBS groups could be removed during this process and
complicate the Yamaguchi cyclization reaction. The plan would be to separate the undesired
Yamaguchi cyclization products from amphidinolide G3 and H4.
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Conclusion

We were able to assemble an advanced intermediate toward amphidinolides G3 and

H4 via a Ni-catalyzed reductive coupling of 1,3-enyne and aldehyde. This coupling

reaction gave rise to the difficult to obtain 1,3-diene moiety common to all B-type

amphidinolides. We also found that Me3ln and Li[InMe4] could be employed to displace

the activated dienol formed during the coupling. Future work is being directed toward

completing the synthesis of amphidinolide G3 and H4 .

Experimental Section

For General Information, see Experimental Section in Ch. 1.

OH
Me

Me

Me,

/ OTBS

8

(3E,7S,9E)-1 I -((tert-butyldimethylsilyl)oxy)-3,7-dimethyl-5-methyleneundeca-3,9-

dien-2-ol (8). In the glovebox, Ni(cod) 2 (0.014 mmol, 3.76 mg) and

tricyclopentylphosphine (0.028 mmol, 8 pL) were combined. Set under an argon

atmosphere and outside the glovebox, Et3B (0.274 mmol, 40 pL) was added and the

mixture was cooled to 0 C. The orange mixture was stirred at that temperature for 10

min before the addition of acetaldehyde (1.37 mmol, 77 pL). Then a solution containing
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the enyne 6 (0.137 mmol, 40 mg) in EtOAc (0.25 mL) was added. The resulting light

yellow reaction mixture was stirred 14 h while warming to r.t. The mixture was diluted

with EtOAc (2 mL) and stirred open to air to allow for aerobic oxidation of the catalyst

evident by the slow conversion of the color to pale green. The mixtudre was filtered

through a short pad of silica gel (eluting with EtOAc), concentrated in vacuo, and

purified by flash column chromatography (5% EtOAc/hexane). This provided the dienol

(8) as a colorless oil (18 mg, 40% yield) as a 1:1 mixture of diastereomers. 1H NMR

(400 MHz, C6 D6 ) 6 5.97-5.65 (m, 6H), 5.21-5.15 (m, 2H), 5.07-5.02 (m, 2H), 4.21-4.05

(m, 6H), 2.50-1.80 (m, 10H), 1.65 (s, 6H), 1.38-1.22 (m, 4H) 1.12 (s, 18H), 1.05-0.96

(m, 6H), 0.18 (s, 12H).

Me
Me

Me

Me,,,,

/- OTBS

9

tert-butyldimethyl(((S,2E,8E)-5,9,1 0-trimethyl-7-methyleneundeca-2,8-dien-1 -

yl)oxy)silane (9). To the dienol (8) (0.05 mmol, 17 mg) in anhydrous Et20 (0.300 mL)

cooled to 0 0C was added Et3N (0.151 mmol, 21 pL) and subsequently treated with

MsCl (0.19 mmol, 12 pL). The resulting reaction mixture was stirred 30 min at 0 *C.

Meanwhile in a different flask, InC13 (0.201 mmol, 44.5 mg) was treated with MeLi (1.4 M
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in Et20, 0.602 mmol, 430 pL) at 0 *C. Warmed to r.t. and stirred 15 min. The flask

containing the trimethylindium reagent was diluted with anhydrous hexane (1.0 mL) and

syringe transferred to the 0 0C flask of the mesylate. The resulting mixture was allowed

to warm to r.t after 5 min and stirred for another 10 min. At this point, the reaction

mixture was observed to change to a bright yellow color. The mixture was filtered

through a plug of silica, concentrated in vacuo, and purified by silica gel

chromatography (10% EtOAc/hexane) to give the displacement compound (9) as a

colorless oil (isolated as a mixture of displacement products with the title compound 9

indentified to be the major compound by 'H NMR). 'H NMR (400 MHz, C6 D6 ) 6 5.69-

5.45 (m, 3H), 4.95 (s, 1H), 4.65 (s, 1H), 4.21-4.05 (m, 2H), 2.15-2.00 (m, 2H), 1.89-1.81

(m, 2H), 1.72 (s, 3H), 1.04 (d, J = 6.8 Hz, 6H), 1.03-0.96 (m, 1H), 0.92 (s, 9H), 0.84 (d, J

= 6.4 Hz, 3H), 0.08 (s, 6H).

OH
Me

n-Pr

Me,

/ OTBS

11

(5E,9S,1 1 E)-1 3-((tert-butyldimethylsilyl)oxy)-5,9-dimethyl-7-methylenetrideca-5,11 -

dien-4-ol (11). In the glovebox, Ni(cod) 2 (0.032 mmol, 8.8 mg) and

tricyclopentylphosphine (0.064 mmol, 19.2 pL) were combined. Set under an argon
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atmosphere and outside the glovebox, Et3B (0.642 mmol, 94 pL) was added. The

orange mixture was stirred at r.t. for 10 min before the addition of a solution containing

the enyne 6 (0.321 mmol, 94 mg) and butyraldehyde (1.12 mmol, 100 pL) in EtOAc

(0.500 mL). The resulting red reaction mixture was stirred 14 h while warming to r.t. The

mixture was then diluted with EtOAc (2 mL), and it was stirred open to air to allow for

aerobic oxidation of the catalyst evident by the slow conversion of the color to pale

green. The mixture was filtered through a short pad of silica gel (eluting with EtOAc),

concentrated in vacuo, and purified by flash column chromatography (5%

EtOAc/hexane). This provided the dienol (11) as a colorless oil (104 mg, 88% yield) as

a 1:1 mixture of diastereomers. 'H NMR (500 MHz, C6 D6) 6 5.77-5.76 (m, 1H), 5.69-

5.63 (m, 2H), 5.01 (s, 1H), 4.93 (s, 1H), 4.07-4.05 (m, 2H), 3.79 (t, J = 6.3 Hz, 1H), 2.13

(dd, J = 13.6, 6.3 Hz, 1H), 2.06-2.01 (m, 1H), 1.87-1.78 (m, 2H), 1.72-1.71 (m, 3H),

1.67-1.60 (m, 1H), 1.49-1.38 (m, 2H), 1.37-1.29 (m, 1H), 1.29-1.08 (m, 1H), 0.96 (s,

9H), 0.87-0.82 (m, 6H), 0.04 (s, 6H); 13C NMR (125 MHz, C6 D6 ) 6 144.9, 141.2, 141.1,

131.7,129.4,126.5, 126.4, 115.3, 77.7, 64.2, 45.7, 39.9, 37.9, 32.3, 26.3, 19.7, 19.6,

18.7, 14.5, 13.7, 13.6, -4.8.
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0

" ,Me

H *Me

Me

(2R)-3-((4R)-2,2-Dimethyl-[1 ,3]dioxolan-4-yl)-2-methyl-propionaldehyde (29). n-BuLi

(2.5 M in hexane, 16.4 mmol, 6.6 mL) was added to a suspension of LiCl (52.1 mmol,

2.2 g) and diisopropylamine (17.6 mmol, 2.5 mL) in THF (12 mL) at -78 *C. The

resulting reaction mixture was warmed to 0 0C and stirred 30 min. The mixture was re-

cooled to -78 0C for the slow addition of the amide (26)33 (8.6 mmol, 1.9 g) in THF (25

mL) over 5 min. The mixture was stirred 1 h at -78 *C, warmed to 0 0C and stirred 30

min and again to r.t. for 5 min. The mixture was re-cooled to 0 0C and added the iodide

(27) all at once. The reaction mixture was stirred while warming to r.t. over a 40 h

period. Then the mixture was quenched with saturated aq. NH4CI (20 mL). The mixtrure

was diluted with H20 (50 mL) and EtOAc (100 mL). The aqueous layer was extracted

with EtOAc, dried over MgSO 4, filtered, and concentrated in vacuo. The residue was

purified by flash column chromatography (100% EtOAc) to furnish the amide (28) as an

off-color viscous oil (1.31 g, 95% yield). Diisopropylamine (12.9 mmol, 1.8 mL) was

dissolved in THF (14 mL) and cooled to -78 0C. Treated with n-BuLi (2.5 M in hexane,

12.0 mmol, 4.8 mL) and then warmed to 0 0C and stirred 30 min. Added bBorane-

ammonia complex (tech 90%, 12.3 mmol, 380 mg) was added and stirred 15 min, and

warmed to r.t. for 15 min. The mixture was then cooled to 0 0C and added a solution of

the amide (28) (3.07 mmol, 1.03 g) in THF (14 mL). The mixture was warmed to r.t. and

stirred for a 16 h period. C, and then cooled to 0 0C and quenched with a 3 M HCI soln
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(2.5 mL) slowly as not to cause a violent reaction. The mixture was diluted immediately

with H20 (50 mL) and EtOAc (50 mL). The aqueous layer was extracted with EtOAc (3 x

15 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude product was

purified by slow gradient chromatography (30% to 60% EtOAc/hexane) to provide a

primary alcohol31 (455 mg, 85% yield). Oxalyl chloride (3.87 mmol, 338 pL) was

dissolved in CH2 Cl2 (8.6 mL) and cooled to -78 *C. Added DMSO (5.18 mmol, 369 pL)

and stirred 15 min. A solution of the alcohol (2.58 mmol, 455 mg) dissolved in CH2CI2

(4.5 mL) was added dropwise and stirred 45 min at -78 0C. Subsequently added Et3N

(7.74 mmol, 1.08 mL). The reaction mixture was stirred 1 h while warming to r.t. before

being quenched with saturated aq. NH4CI soln (5 mL). Diluted and extracted with Et20.

The combined organic extracts were dried with MgSO 4, filtered, and concentrated in

vacuo. The crude residue was purified by flash column chromatography (20%

EtOAc/hexanes) to give the aldehyde 29 (306 mg, 68% yield). Rf = 0.28 (10%

EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) 6 9.66 (d, J = 1.5 Hz, 1H), 4.20-4.14 (m,

1H), 4.08 (dd, J = 8.2, 6.1 Hz, 1H), 3.55 (dd, J = 7.9, 6.7 Hz, 1H), 2.62-2.53 (m, 1H),

2.03 (ddd, J = 15.3, 9.2, 6.1 Hz, 1H), 1.48 (ddd, J = 11.9, 7.9, 4.0 Hz, 1H), 1.40 (s, 3H),

1.34 (s, 3H), 1.15 (d, J = 7.3 Hz, 3H); 13C NMR (125 MHz, CDCl3) 6 204.7, 109.4, 73.8,

69.8, 44.0, 34.9, 27.2, 25.9, 13.8; IR (film) 2986, 2878, 2718, 1726, 1585, 1458, 1380,

1215, 1160, 1059, 932, 879, 827, 788, 746 cm-1; HRMS ESI (m/z): [M+Na]' calcd for

CH 160 3, 195.0992; found 195.0999. [a]D -4.2 (c 4.8, CHCl3).32

31 For previous syntheses of this alcohol (in eight steps), see: (a) Tsuda, M.; Sasaki, T.;
Kobayashi, J. J. Org. Chem. 1994, 59, 3734-3737. (b) Horita, K.; Tanaka, K.; Yonemitsu, 0.
Chem. Pharm. Bull. 1993, 41, 2044-2046 and references cited therein.
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Ph
OH 0

BnO P(OMe) 2

30

[(2Z)-2-((2R)-4-Benzyloxy-2-hydroxy-butyl)-3-phenyl-allyl]phosphonic acid

dimethyl ester (30). Ni(cod) 2 (0.85 mmol, 234 mg) was placed in a 25-mL flask inside

a glove box. After the flask was removed from the glove box and placed under an

argon atmosphere, tributylphosphine (1.7 mmol, 425 pL) and triethylborane (34.0 mmol,

5 mL) were added at ambient temperature. The mixture was then stirred for 5 min

before the addition of epoxide 23 (>96% ee, 17.9 mmol, 3.2 g) followed by the syringe

pump addition of the alkynylphosphonate 25 (8.5 mmol, 1.9 g) dissolved in EtOAc (3.3

mL) over 4 h. The resultant reaction mixture was stirred at r.t. for 12 h, before the

septum seal was removed and the reaction allowed to air-oxidize for 1 h. The solution

was concentrated in vacuo and purified the residue by gradient flash column

chromatography (EtOAc - 5% MeOH/EtOAc) to give the title compound (30, >95:5

regio, >95:5 Z/E) as a yellow oil (2.31 g, 68% yield). 1H NMR (500 MHz, CDCl3) 6 7.72-

7.66 (m, 1H), 7.59-7.46 (m, 1H), 7.39-7.22 (m, 1OH), 6.60 (d, J = 5.2 Hz, 1H), 4.56 (s,

2H), 4.13-4.11 (m, 1H), 3.79-3.66 (m, 2H), 3.69 (d, J = 11.0 Hz, 3H), 3.66 (d, J = 11.0

Hz, 3H), 3.32 (d, J= 3.1 Hz, 1H), 2.98 (dt, J= 22.5, 15.0, Hz, 2H), 2.63 (dt, J= 13.7, 3.1

Hz, 1H), 2.50 (dd, J = 13.4, 8.9 Hz, 1H), 1.84 (app q, J = 6.1, 2H); 13C NMR (125 MHz,

CDCl3) 6 138.8, 132.9, 132.8, 132.6, 132.6, 132.5, 130.5, 129.3, 129.3, 129.3, 129.2,

129.1, 128.4, 128.4, 127.6, 74.0, 69.8, 69.8, 69.4, 53.4, 53.3, 46.7, 46.7, 37.4, 29.5,

32 Adapted from Ndubaku, C. 0. "Diastereoselective Nickel-Catalyzed Reductive Coupling of
Alkynes and Aldehydes and Application Toward the B-Type Amphidinolides", Ph. D. Thesis,
Massachusetts Institute of Technology, 2005.
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28.4; IR (film) 3391, 2950, 2851, 1495, 1453, 1438, 1251, 1182, 1054, 1028, 867, 699

cm-1; HRMS ESI (m/z): [M+Na]* calcd for C22H290 5PNa, 427.1645; found 427.1659. [a]D

-12.5 (c 0.8, CHCl3).32

Ph
OTBS 0O

BnO I P(OMe) 2

31

{(2Z)-2-[(2R)-4-Benzyloxy-2-(tert-butyl-dimethyl-silanyloxy)-butyl]-3-phenyl-allyl}-

phosphonic acid dimethyl ester (31). Alcohol 30 (3.5 mmol, 1.4 g) was dissolved in

anhydrous N,N-dimethylformamide (1.4 mL) and to the stirring solution was added

imidazole (14.0 mmol, 0.95 g) and TBSCI 7.0 mmol, 1.06 g). The reaction mixture was

allowed to stir at r.t. for 16 h. The mixture was then loaded directly onto a silica column

and purified by flash column chromatography (3:2 EtOAc/hexanes) to give the TBS-

ether 31 as a colorless oil (1.1 g, 60% yield). 'H NMR (400 MHz, CDCl3) 6 7.36-7.20

(m, 1OH), 6.52 (d, J = 5.5, 1H), 4.55-4.41 (m, 2H), 4.12-4.04 (m, 1H), 3.67 (d, J = 2.8,

3H), 3.64 (d, J = 2.8, 3H), 3.59 (app. t. J = 6.5, 2H), 2.89 (dt, J = 25.1, 14.6 Hz, 2H),

2.56-2.52 (m, 2H), 1.91-1.76 (m, 3H), 0.89 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H); 13C NMR

(100 MHz, CDCl3) 6 138.7, 137.4, 132.2, 130.0, 128.8, 128.7, 128.6, 127.8, 127.7,

126.9, 73.2, 68.8, 68.8, 67.1, 56.7, 56.7, 52.6, 45.7, 37.4, 29.4, 28.0, 26.1, 18.2, -4.2, -

4.5; IR (film) 2952, 2855, 1495, 1454, 1361, 1255, 1182, 1096, 1057, 1030, 938, 836,

776, 699 cm- 1; HRMS ESI (m/z): [M+Na]* calcd for C28H430 5PSiNa, 541.2510; found
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541.2537. [a]D- 7 .1 (c 2.8, CHCl 3).32

OTBSO 0

BnOllN (OMe)2
32

[(4S)-6-Benzyloxy-4-(tert-butyl-dimethyl-silanyloxy)-2-oxo-hexyl] phosphonic acid

dimethyl ester (32). The olefin 31 (3.45 mmol, 1.79 g) was dissolved in a solvent

composition of CH 2Cl2/MeOH (9:1, 35 mL) and cooled to -78 0C while purging with 02.

An ozone stream was introduced and bubbled through the reaction mixture until the

solution turned blue in color. At this point, ozone treatment was discontinued and the

reaction mixture was re-purged with 02. Methylsulfide (35.0 mmol, 2.5 mL) was added

and the resulting mixture was stirred, warming to r.t. for 6 h. The solution was

concentrated in vacuo and the residue was purified by flash column chromatography

(3:2 EtOAc/hexanes) to give the ketophosphonate 32 as a colorless oil (1.19 g, 78%

yield). 1H NMR (500 MHz, CDCl3) 6 7.35-7.27 (m, 5H), 4.62 (ABq, J = 11.8, 5.8 Hz,

2H), 4.45-3.81 (m, 1H), 3.78 (d, J = 2.1 Hz, 3H), 3.76 (d, J = 2.1 Hz, 3H), 3.56-3.52 (m,

2H), 3.11 (d, J = 1.5 Hz, 1H), 3.07 (d, J = 1.5 Hz, 1H), 2.80 (d, J = 7.0 Hz, 2H), 1.82-

1.77 (m, 2H), 0.86 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); 13C NMR (125 MHz, CDCl3) 6

201.5, 139.1, 130.2, 129.1, 129.1, 128.3, 128.3, 73.6, 67.1, 67.0, 53.7, 53.7, 53.7, 53.6,

52.1, 52.1, 43.7, 42.7, 37.9, 26.5, 18.7, -4.0, -4.1; IR (film) 2955, 2856, 1717, 1471,

1361, 1257, 1184, 1031, 937, 836, 777, 698 cm- 1; HRMS ESI (m/z): [M+Na]* calcd for
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C2 1H37O6PSiNa, 467.1989; found 467.1984. [a]D +2.1 (c 4.8, CHCl3).3

OTBS 0

BnO 33 
#Me

O Me
Me

(2R,3E,7S)-9-Benzyloxy-7-(tert-butyl-dimethyl-silanyloxy)-1 -((4R)-2,2-dimethyl-

[1,3] dioxolan-4-yl)-2-methyl-non-3-en-5-one (33). To a vigorously stirred

suspension of vacuum-dried LiCI (1.4 mmol, 59 mg) in MeCN (8 mL) was added the

ketophosphonate 32 (1.15 mmol, 511 mg). Diisopropylethylamine (1.4 mmol, 240 pL)

was added followed by the aldehyde 29 (1.09 mmol, 187 mg). The reaction mixture

was then stirred 40 h at ambient temperature. The mixture was quenched with

saturated aq. NH4 CI (1.3 mL) and diluted with Et20 (25 mL) and H20 (25 mL).

Partitioned the phases and extracted the aqueous with Et20 (3 x 20 mL), dried with

MgSO 4 , filtered, and concentrated in vacuo. The crude residue was purified by flash

column chromatography (10% EtOAc/hexanes) to give the enone 33 (>9:1 E/Z) as an

off-color oil (475 mg, 89%). 1H NMR (500 MHz, CDCl 3) 6 7.35-7.27 (m, 5H), 6.74 (dd, J

= 15.9, 7.6 Hz), 6.07 (d, J = 15.9), 4.49 (ABq, J = 19.2, 12.2 Hz, 2H), 4.42-4.36 (m, 1H),

4.14-4.08 (m, 1H), 4.04 (dd, J = 7.6, 5.8 Hz, 1H), 3.60-3.52 (m, 2H), 3.50 (dd, J = 7.6,

7.0 Hz, 1H), 2.78 (dd, J = 15.3, 7.0 Hz, 1H), 2.64 (dd, J = 15.3, 7.0 Hz, 1H), 2.49-2.43

(m, 1H), 1.86-1.78 (m, 2H), 1.81-1.74 (m, 1H), 1.50-1.45 (m, 1H), 1.41 (s, 3H), 1.35 (s,
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3H), 1.09 (d, J = 7.0 Hz, 3H), 0.85 (s, 9H), 0.05 (s, 3H), 0.01 (s, 3H); 13C NMR (125

MHz, CDCl3) 6 200.0, 152.7, 139.2, 130.1, 129.1, 128.3, 128.2, 128.2, 109.6, 74.4,

73.6, 70.3, 67.7, 67.3, 48.6, 40.5, 38.3, 34.4, 27.8, 26.6, 26.5, 19.8, 18.7, -3.9, -4.0;

HRMS ESI (m/z): [M+Na]' calcd for C2 8H4 60 5SiNa, 513.3007; found 513.2997. [a]D -5.9

(c 6.8, CHCl3).32

OTBS 0

BnO ~ OH
34

HO# ,Me

me MeMe

(2R,3S,4R,7S)-9-Benzyloxy-7-(tert-butyl-dimethyl-silanyloxy)-1 -((4R)-2,2-dimethyl-

[1,3]dioxolan-4-yl)-3,4-dihydroxy-2-methyl-nonan-5-one (34). AD-mix a (2.94 g,

2.10 mmol), K20sO2(OH) 4 (67 mg, 0.182 mmol), (DHQ) 2PHAL (67 mg, 0.086 mmol) and

NaHCO 3 (529 mg, 6.30 mmol) were combined in a 25 mL Erlenmeyer flask equipped

with a stir bar and dissolved in tBuOH/water (1:1, 23.2 mL). The mixture was stirred

vigorously until all the solids were dissolved before adding MeSO 2NH2 (232 mg, 2.44

mmol). The mixture was stirred for an additional 10 min before the solution was

transferred via Pasteur pipette into a cooled round bottom flask containing enone 33

(1.03 g, 2.10 mmol) at 0 *C. The resulting reaction mixture was stirred at 0 *C - 5 *C for

40 hours in a refrigerator. The mixture was quenched at 0 0C with saturated aqueous
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Na2SO3 (1.8 mL) and stirred for another 30 min before the mixture was diluted with

water (5 mL) and EtOAc (50 mL). The organic phase was separated and the aqueous

phase was extracted with EtOAc (2 x 50 mL). The combined organic extracts were

washed with saturated aqueous NaCl (1 x 80 mL), dried over anhydrous Na2SO 4,

filtered, and concentrated in vacuo. Purification was performed by column

chromatography (EtOAc/hexanes 30:70) afforded the title diol 34 as a clear oil (0.908 g,

86%).; 'H NMR (500 MHz, CDCl3) 6 7.36-7.26 (m, 5H), 4.45 (ABq, J = 20.5, 12.0, 2H),

4.43-4.39 (m, 1H), 4.19-4.14 (m, 1H), 4.12 (dd, J = 4.0, 1.5 Hz, 1H), 4.05 (dd, J = 8.0,

6.0 Hz, 1H), 3.74 (d, J = 4.0, 1H), 3.73-3.70 (m, 1H), 3.60-3.56 (m, 1H), 3.52-3.48 (m,

1H), 2.78 (dt, J = 16.0, 7.0 Hz, 2H), 2.25 (d, J = 9.5 Hz, 1H), 1.99-1.94 (m, 1H), 1.84-

1.75 (m, 3H), 1.41 (s, 3H), 1.35 (s, 3H), 1.34-1.29 (m, 1 H), 1.03 (d, J = 6.5 Hz, 3H), 0.86

(s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR (125 MHz, CDCl3) 6 210.4, 138.9, 129.1,

128.4, 128.3, 109.6, 78.4, 75.4, 75.1, 73.7, 70.6, 67.3, 67.0, 46.4, 37.7, 37.6, 35.6, 27.7,

26.5, 18.7, 16.4, -4.0, -4.1; IR (film) 3454, 2954, 2931, 2858, 1715, 1455, 1371, 1253,

1217, 1080, 837, 777, 698 cm-1; HRMS ESI (m/z): [M+Na]* calcd for C2 8H4 80 7SiNa,

547.3061; found 547.3079. [a]D -10.2 (c 6.4, CHCl3).32
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MeMeMe

(3S,6R,7S)-3,6,7-Tris-(tert-butyl-dimethyl-silanyloxy)-9-((4R)-2,2-dimethyl-

[1,3]dioxo-lan-4-yl)-8-methyl-5-oxo-nonanal (2). The diol 34 (0.78 mmol, 408 mg)

was dissolved in CH2Cl2 (8 mL) and cooled to 0 0C. Added 2,6-lutidine (4.7 mmol, 0.54

mL) all at once and TBSOTf (2.3 mmol, 0.54 mL) dropwise over 3 min. Stirred 30 min

at 0 0C and subsequently warmed to r.t. and stirred 30 min. The solution was diluted

with H20 (10 mL), partitioned the phases, and extracted the aqueous with Et20 (15 mL).

The combined organic extracts were dried over MgSO 4, filtered, and concentrated in

vacuo. The crude product was purified by flash column chromatography (5%

EtOAc/hexanes) to give the benzyl ether as a clear oil (577 mg, 92%). A portion of this

benzyl ether (0.14 mmol, 108 mg) was dissolved in EtOH (10 mL) and Pd(OH) 2/C (14

mg) was added. The reaction flask was evacuated and re-cycled with H2 from a balloon

source. This process was repeated two more times. The suspension was then allowed

to stir 6 h at r.t. The mixture was filtered through a short pad of silica gel eluting with

Et20. The filtrate was concentrated in vacuo. This compound was then dissolved in

anhydrous CH2Cl2 (50 mL), and at r.t. treated with the Dess-Martin periodinane (0.21

mmol, 89 mg). The mixture was stirred 1 h and concentrated in vacuo. The crude

residue was purified by flash column chromatography (5% EtOAc/hexanes) to give the

title compound 2 as a clear oil (92 mg, 98%). 1H NMR (500 MHz, CDCl3) 6 9.81 (q, J =
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1.8 Hz, 1H), 4.71-4.65 (m, 1H), 4.13-4.08 (m, 1H), 4.04 (t, J = 6.1 Hz, 1H), 3.74 (t, J =

4.3 Hz, 1H), 3.45 (t, J = 7.6 Hz, 1H), 3.11 (dd, J = 18.9, 4.0 Hz, 1H), 2.76 (dd, J = 18.9,

8.5 Hz, 1H), 2.70 (ddd, J = 15.6, 4.3, 1.6 Hz, 1H), 2.45 (ddd, J = 15.6, 6.7, 3.7 Hz, 1H),

2.02-1.93 (m, 1H), 1.80-1.75 (m, 1H), 1.39 (s, 3H), 1.34 (s, 3H), 1.32-1.27 (m, 1H), 0.95

(s, 9H), 0.92 (s, 9H), 0.85 (s, 9H), 0.83 (d, J = 6.7, 3H), 0.14 (s, 3H), 0.12 (s, 3H), 0.08

(s, 3H), 0.07 (s, 3H), 0.06 (s, 3H), 0.03 (s, 3H); 13C NMR (125 MHz, CDCl3) 6 209.2,

202.6, 109.5, 81.8, 78.9, 74.9, 70.7, 64.7, 51.5, 49.3, 39.1, 33.0, 27.7, 26.7, 26.7, 26.6,

26.5, 26.5, 26.4, 26.4, 18.9, 18.5, 16.0, -3.3, -3.9, -3.9, -4.2, -4.3; IR (film) 2955,

2931, 2858, 1723, 1473, 1369, 1254, 1068, 1005, 836, 776 cm-1; HRMS ESI (m/z):

[M+Na]* calcd for C33H6 8O7Si3Na, 683.4165; found 683.4182. [a]D -12.4 (c 6.8,

CHCI 3)Y.

0 OTBSO

H ~ OTBS

20 TBSO# Me

OTBS
OH

(3S,6R,7S,8R,1 OR)-3,6,7,1 1 -tetrakis(tert-butyldimethylsilyloxy)-1 0-hydroxy-8-

methyl-5-oxoundecanal (20). The acetonide 2 (0.529 mmol, 350 mg) was dissolved in

THF:H 20:AcOH (1:1:2, 64 mL) and stirred vigorously for 2 h at 45 C. Quenched with

saturated aq. NaHCO3 solution (20 mL) and diluted with Et20 (30 mL). The organic
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layer was washed with saturated aq. NaHCO 3 solution (5 x 20 mL). The combined

organic extracts were dried over Na2SO4, filtered, and concentrated. The residue was

purified by flash column chromatography (3:7 EtOAc:hexanes) to give the the diol 35 as

a colorless oil (187 mg, 57%), which was immediately taken up in DMF (1.1 mL) and

added to a 10 mL round bottom flask. While stirring imidazole (0.784 mmol, 53.0mg)

and TBSCI (0.392 mmol, 59.0 mg) were added. The solution was stirred 12h at ambient

temperature and quenched with H20 (10 mL) and extracted with CH2Cl2 (3 x 10 mL).

The combined organic extracts were dried over Na2SO 4 , filtered, and concentrated. The

residue was purified by flash column chromatography (5:95 EtOAc:hexanes) to give the

the alcohol 20 as a colorless oil (161 mg, 73%). 1H NMR (600 MHz, CDCl3) 5 9.71 (bs,

1H), 4.61-4.55 (m, 1H), 4.10 (d, J = 4.5 Hz, 1H), 3.70 (t, J = 6.1 Hz, 1H), 3.68-362 (m,

1H), 3.56 (dd, J = 9.8, 3.8 Hz, 1H), 3.40 (dd, J = 9.8, 7.0 Hz, 1H), 3.14 (dd, J = 19.0, 4.4

Hz, 1 H), 2.76-2.60 (m, 2H), 2.47 (dd, J = 6.4, 3.5 Hz, 1 H), 2.45 (dd, J = 6.7, 3.7 Hz, 1 H),

2.10-2.03 (m, 1H), 1.92-1.87 (m, 1H), 1.66-1.61 (m, 1H), 1.22-1.17 (m, 1H), 0.95 (s,

9H), 0.92 (s, 9H), 0.85 (s, 9H), 0.83 (s, 12H), 0.14 (s, 3H), 0.12 (s, 3H), 0.09 (s, 3H),

0.07 (bs, 9H), 0.05 (s, 3H), 0.03 (s, 3H); 13C NMR (150 MHz, CDCl3 ) 6 208.9, 202.1,

81.8, 78.7, 74.9, 68.9, 64.2, 50.9, 48.8, 37.3, 32.0, 26.2, 26.1, 26.0, 25.8, 18.5, 18.4,

18.3, 15.5, -3.7, -4.3, -4.4, -4.5, -4.7, -4.8, -5.2, -5.3; IR (film) 2930, 2858, 1724, 1473,

1362, 1256, 1005, 939, 836, 776 cm-1; HRMS ESI (m/z): [M+Na]* calcd for

C33H68O7Si4 Na, 757.4717; found 757.4733. [a]D -14.0 (c 3.2, CHCl3).
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Me,,,

((2S,3S)-3-((R)-2-methyl-4-methylenehept-5-ynyl)oxiran-2-yl)methyl 4-

methylbenzene-sulfonate (37): The alcohol 36 (1.5 g, 7.85 mmol) was taken up in

CH2Cl2 (52 mL) and Et3N (23.23 mmol, 3.23 mL) was added and followed by TsCI (13.9

mmol, 2.66 g). Then finally Me3N-HCI (7.85 mmol, 751 mg) was added. The mixture

was stirred for 2 h at 0 0C. The mixture was then quenched with saturated aq. NaHCO 3

soln (40 mL), diluted with H20 (100 mL), and extracted with Et20 (3 x 50 mL). The

combined organic extracts were dried over MgSO 4 , filtered, and concentrated. The

crude residue was purified by silica gel chromatography (10% EtOAc/hexane) to give

the tosylate 37 as a yellow oil (2.7 g, 99% yield).; 1H NMR (500 MHz, CDCl3) 6 7.81 (d,

J= 8.3 Hz, 2H), 7.37 (d, J= 8.3 Hz, 2H), 5.27 (s, 1H), 5.11 (s, 1H), 4.20 (dd, J= 7.3, 3.6

Hz, 1H), 4.02 (dd, J = 7.5, 3.6 Hz, 1H), 2.98-2.94 (m, 1H), 2.86-2.82 (m, 1H), 2.47 (s,

3H), 2.14-2.08 (m, 1H), 2.05-1.96 (m, 2H), 2.00 (s, 3H), 1.65-1.58 (m, 1H), 1.34-1.26

(m, 1H), 0.94 (d, J = 6.4 Hz, 3H); 13C NMR (125 MHz, CDCl3) 6 145.8, 131.4, 130.6,

129.2, 128.7, 122.2, 86.6, 80.5, 70.8, 56.4, 55.7, 45.8, 38.7, 30.1, 22.3, 20.0, 4.9; IR

(film) 2959, 2920, 2227, 1726, 1598, 1454, 1365, 1190, 1178, 1097, 966, 815, 666 cm-

1; HRMS ESI (mlz): [M+Na]* calcd for C19H240SNa, 371.1288; found 371.1271. [aID -

15.1 (c 2.0, CHC13).32
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Me

THPO OTBS

43 H

(E)-tert-butyldimethyl(2-methyl-6-(tetrahydro-2H-pyran-2-yloxy)hex-2-

enyloxy)silane (43): Ester 4233 (9.75 mmol, 2.5 g) was dissolved in CH2Cl2 (95 mL)

and cooled to -78 0C. Then a solution of diisobutylaluminum hydride (1.0 M in hexane,

19.5 mmol, 19.5 mL) was added. The mixture was warmed to r.t. after 15 min and

stirred an additional 45 min. The mixture was poured directly into a biphasic mixture of

saturated aq. Rochelle's salt solution (200 mL) and Et2O (350 mL) and stirred vigorously

until the phases partitioned. They layers were separated and extracted the aqueous

layer with Et20 (3 x 100 mL). The combined organic extracts were dried over MgSO 4,

filtered, and concentrated. The crude residue was dissolved in DMF (9.8 mL) and to the

stirring solution was added imidazole (29.3 mmol, 2 g) and TBSCI (14.6 mmol, 2.2 g).

The solution was stirred 1 h at r.t. and loaded directly onto a silica gel column and

purified by flash column chromatography (20% EtOAc/hexane) to give the title

compound 43 as a clear oil (3.14 g, 98% yield). 1H NMR (500 MHz, CDCl3) 5 5.41 (t, J =

7.2 Hz, 1 H), 4.58 (t, J = 2.8 Hz, 1 H), 3.90 (s, 2H), 3.88 (dt, J = 7.6, 2.9 Hz, 1 H), 3.75 (dt,

J = 9.6, 2.9 Hz, 1H), 3.53-3.48 (m, 1H), 3.39 (dt, J = 13.3, 6.6 Hz, 1H), 2.18-2.06 (m,

2H), 1.89-1.80 (m, 1H), 1.75-1.64 (m, 2H), 1.61 (s, 3H), 0.92 (s, 9H), 0.07 (s, 6H); 13C

NMR (125 MHz, CDCl 3) 6 135.5, 124.7, 99.6, 77.9, 69.3, 67.8, 62.9, 31.5, 30.3, 26.7,

26.4, 26.2, 24.9, 20.4, 14.1, -4.5; IR (film) 2938, 2857, 1713, 1463, 1361, 1253, 1201,

1121, 1076, 1035, 837, 775, 666 cm-1 ; HRMS ESI (mlz): [M+Na]* calcd for

33 Uesato, S.; Kobayashi, K.; Inouye, H. Chem. Pharm. Bull. 1982, 30, 927-940.
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C18H36O3SiNa, 351.2326; found 351.2333.32

Me
OTBS

45 H

(E)-tert-butyl((6-iodo-2-methylhex-2-en-1 -yl)oxy)dimethylsilane (45). To a solution

of THP ether 43 (329 mg, 1.00 mmol) dissolved in THF (24.6 mL) was added MeOH

(0.25 mL, 1 vol%) followed by HCI (2.0 M in Et20, 0.16 mL, 0.32 mmol). The resulting

reaction mixture was heated at reflux (67 OC) for 20 hours. The mixture was then cooled

to ambient temperature, quenched with saturated aqueous NaHCO 3 (30 mL) and diluted

with saturated aqueous NaCl (20 mL). The organic phase was separated and the

aqueous phase was extracted with EtOAc (3 x 50 mL). The combined organic extracts

were dried over anhydrous Na2SO 4, filtered, and concentrated in vacuo. Purification was

done by column chromatography (EtOAc/hexanes 25:75) to afford alcohol 44 as a clear

oil (189 mg, 77%). Due to the occurrence of TBS scrambling this compound should be

taken further to the next step without intermediate storage. The alcohol 44 (4.66 mmol,

1.14 g) was dissolved in MeCN/Et 20 (1:3, 30 mL) and imidazole (10.7 mmol, 750 mg),

triphenylphosphine (7.0 mmol, 1.82 g), and iodine (7.0 mmol, 1.78 g) were added in that

order. Stirred the resulting yellow reaction mixture 1 h at r.t. Diluted with H2 0 (50 mL)

and Et20 (100 mL) and extracted with Et20. The combined organic layers were washed

with saturated Na2S20 3 solution. The combined organic extracts were dried over

-187-



anhydrous MgSO 4, filtered, and concentrated. The crude product was purified by flash

column chromatography (5% EtOAc/hexane) to give the iodide (45) as a clear, colorless

oil (1.47 g, 89% yield). 1H NMR (500 MHz, CDCl3) 6 5.38 (t, J = 5.9 Hz, 1H), 4.02 (s,

2H), 3.21 (t, J = 7.0 Hz, 2H), 2.19-2.13 (m, 2H), 1.95-1.87 (m, 2H), 1.64 (s, 3H), 0.92 (s,

9H), 0.07 (s, 6H); 13C NMR (125 MHz, CDCl3) 6 136.7, 122.7, 69.0, 34.3, 34.1, 29.0,

26.7, 21.9, 19.1, 14.4, 7.5, -4.5; IR (film) 2955, 2929, 2856, 1674, 1472, 1462, 1361,

1252, 1206, 1164, 1111, 1072, 1006, 939, 837, 776, 666 cm- 1; HRMS ESI (mlz):

[M+Na]* calcd for C13H271OSiNa, 377.0768; found 377.0759.

Me

Me Me

/OTBS

O 46

tert-butyldimethyl((E)-2-methyl-7-((2S,3S)-3-((R)-2-methyl-4-methylenehept-5-

ynyl)oxi-ran-2-yI)hept-2-enyloxy)silane (46): The iodide 45 (2.44 mmol, 870 mg) was

dissolved in Et20 (10 mL) and cooled to -78 *C. The solution was treated slowly with t-

BuLi and stirred 1 h while maintaining the same temperature. The solution was

subsequently warmed to r.t. and stirred 30 min. The solution was then syringe

transferred to a flask containing a suspension of Cul (1.22 mmol, 233 mg) in Et20 (5

mL) at -30 0C and stirred 30 min. A solution of the tosylate 37 (0.61 mmol, 211 mg) in

Et20 (6 mL) was added and the resulting dark grey reaction mixture was stirred an
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additional 30 min at -30 0C. The mixture was filtered through a plug of silica (ca. 1 cm),

concentrated in vacuo, and purified by silica gel chromatography (3% EtOAc/hexane) to

give 46 as a light yellow oil (158 mg, 64% yield). 'H NMR (400 MHz, CDCl3) 6 5.40 (t, J

= 5.8 Hz, 1H), 5.29 (s, 1H), 5.13 (s, 1H), 4.03 (s, 2H), 2.73 (dt, J = 6, 2.1 Hz, 1H), 2.68

(dt, J = 5.3, 2.3 Hz, 1H), 2.22-2.13 (m, 1H), 2.09-1.94 (m, 3H), 1.96 (s, 3H), 1.82-1.74

(m, 1H), 1.69-1.58 (m, 2H), 1.61 (s, 3H), 1.60-1.51 (m, 2H), 1.49-1.35 (m, 1H), 1.32-

1.25 (m, 2H), 0.98 (d, J = 5.1 Hz, 3H), 0.93 (s, 9H), 0.08 (s, 6H); 13C NMR (125 MHz,

CDCl3) 6 135.2, 131.4, 125.1, 121.9, 86.4, 80.7, 69.4, 59.9, 58.2, 46.1, 39.6, 32.8, 30.2,

28.1, 27.5, 27.1, 26.7, 26.4, 23.5, 20.0, 19.2, 14.6, 14.1, 4.9, -4.5; IR (film) 2956, 2929,

2857, 1611, 1463, 1361, 1252, 1111, 1069, 1006, 894, 837, 775, 667 cm-1 ; HRMS ESI

(m/z): [M+Na]* calcd for C25H4 4 0 2SiNa, 427.3003; found 427.2983. [a]D -8.3 (c 2.4,

CHCl3).

Me

Me% M

0 47

(E)-2-methyl-7-((2S,3S)-3-((R)-2-methyl-4-methylenehept-5-yn-1 -yl)oxiran-2-

yl)hept-2-en-1-ol (47): To a flame-dried 50 mL round-bottom flask equipped with a

magnetic stir bar and set under an argon atmosphere was added 46 (1 mmol, 405 mg)

in THF (3 mL). The flask was cooled to 0 0C and tetrabutylammonium fluoride (1.0 M in
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THF, 3 mmol, 3 mL) was added and the resulting solution was stirred 2 h at 0 0C. The

solution was quenched by adding H20 (100 mL), diluting with brine (50 mL) and EtOAc

(250 mL). The layer was extracted with EtOAc (3 x 250 mL), dried over Na2 SO 4, filtered,

and concentrated. The crude residue was purified by flash column chromatography

(25% EtOAc/hexane) to give the allylic alcohol (47) as a yellow oil (264 mg, 91% yield).

1H NMR (600 MHz, CDCl3) 6 5.33 (t, J = 5.8 Hz, 1H), 5.18 (s, 1H), 5.04 (s, 1H), 3.90 (s,

2H), 2.65 (dt, J = 6, 2.1 Hz, 1H), 2.60-2.58 (m, 1H), 2.38 (bs, 1H), 2.11-2.08 (m, 1H),

2.00-1.89 (m, 3H), 1.86 (s, 3H), 1.72-1.68 (m, 1H), 1.58 (s, 3H), 1.55-1.30 (m, 5H),

1.24-1.17 (m, 1H), 0.95-0.91 (m, 1H), 0.89 (d, J = 5.1 Hz, 3H); 13C NMR (150 MHz,

CDCl3) 6 135.2, 131.8, 125.8, 122.2, 85.7, 80.1, 68.7, 59.4, 57.7, 46.1, 38.6, 32.2, 29.6,

29.4, 27.5, 26.7, 19.2, 14.1, 4.9,; IR (film) 3421, 2856, 1653, 1457, 1378, 1295, 1012,

1069, 896, 667 cm-1 ; HRMS ESI (mlz): [M+Na]* calcd for C19H300 2Na, 313.2138; found

313.2143. [a]D -13.5 (c 13.7, CHC 3).
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(E)-((6R,8R,9S,1 OR,1 3S)-9,1 0-bis(tert-butyldimethylsilyloxy)-2,2,3,3,8,15,15,16,16-

nonamethyl-1 1 -oxo-1 3-(2-oxoethyl)-4,14-dioxa-3,15-disilaheptadecan-6-yl) 2-

methyl-7-((2S,3S)-3-((R)-2-methyl-4-methylenehept-5-ynyl)oxiran-2-yl)hept-2-

enoate (18). The Allylic alcohol 47 (0.12 mmol, 35 mg) was dissolved in CH2Cl2 (1.07

mL) and added to a 10 mL round bottom flask containing 4 A molecular sieves. The

solution was stirred and NMO (0.18 mmol, 21 mg) and TPAP (0.0012 mmol, 0.43 mg)

were added. The reaction mixture was then stirred 4 h at ambient temperature. The

reaction mixture was filtered through a short pad of silica, eluting with Et20:pentane

(30:70), and concentrated in vacuo. The crude product was then taken up in THF

(0.715 mL) and added to a 10 mL round bottom flask. To the solution was added t-

BuOH (1.43 mL), 2-methyl-2-butene (0.715 mL), H20 (1.43 mL), NaCIO 2 (1.19 mmol,

108 mg), and NaH 2PO4 (0.690 mmol, 108 mg). The reaction mixture was stirred at

ambient temperature for 7 h. The mixture was quenched with saturated aq. NH4CI (5

mL) solution, extracted with ether (10 mL), and concentrated in vacuo. The crude

product was dissolved in EtOAc (10 mL) and washed with H20 (10 x 10 mL). The

combined organic extracts were dried over anhydrous Na2SO4 , filtered, and

concentrated to give the carboxylate salt (39 mg, 100%) as an oil that was

approximately 90% pure and carried on without further purification. A portion of the salt

- 191 -



(0.1 mmol, 32 mg) was dissolved in toluene (1.3 mL). While stirring NEt3 (0.5 mmol, 70

pL) and 2,4,6-trichlorobenzoyl chloride (0.125 mmol, 33 pL) were added. The mixture

was stirred for 8 h and then filtered through celite and evaporated. The resulting

residue was dissolved in toluene along with alcohol 20 (0.05 mmol, 37 mg) and DMAP

(0.15 mmol, 18 mg). The resulting mixture was heated to 45 00 for 8 h. After that

reaction time the mixture was filtered through celite and evaporated. The residue was

purified by flash column chromatography (5:95 EtOAc:hexanes) to give the enyne 18 as

a colorless oil (28 mg, 53%). 1H NMR (600 MHz, CDCl3) 6 9.81 (s, 1H), 6.78-6.75 (m,

1H), 5.28 (bs, 1H), 5.13 (bs, 1H), 5.05-5.01 (m, 1H), 4.66-4.62 (m, 1H), 4.12 (d, J = 6.6

Hz, 1H), 3.68-3.58 (m, 3H), 3.10 (dd, J = 19.2, 4.2 Hz, 1H), 2.75-2.68 (m, 4H), 2.45-2.40

(m, 1H), 2.20-2.17 (m, 3H), 2.05-1.97 (m, 2H), 1.96 (s, 3H), 1.83 (s, 3H), 1.65-1.55 (m,

2H), 1.55-1.45 (m, 4H), 1.32-1.21 (m, 4H), 1.03 (d, J = 3.0 Hz, 1H), 0.98 (d, J = 9.6 Hz,

3H), 0.94 (s, 9H), 0.92 (s, 9H), 0.87 (s, 9H), 0.85 (s, 12H), 0.82 (d, J = 6.6 Hz, 3H), 0.12

(s, 3H), 0.10 (s, 3H), 0.08 (s, 3H), 0.05 (s, 6H), 0.03 (s, 6H), 0.02 (s, 3H); 13C NMR (150

MHz, CDCl3) 6 208.5, 202.1, 167.9, 142.2, 130.8, 128.0, 121.4, 85.9, 81.1, 78.9, 72.1,

65.0, 64.2, 59.3, 57.6, 50.9, 48.8, 45.6, 39.0, 35.8, 32.2, 31.3, 29.7, 28.8, 28.7, 26.2,

26.1, 26.0, 25.9, 25.8, 20.5, 19.5, 18.4, 18.0, 14.8, 12.7, 4.5, -3.8, -4.4, -4.5, -4.8,-5.2;

IR (film) 2929, 1736, 1718, 1653, 1457, 1256, 1111, 837, 777, 668 cm-1 ; HRMS ESI

(m/z): [M+Na]* calcd for C55H1040 9Si4Na, 1043.6650; found 1043.6646 [a]D -9.77 (c 2.4,

CHC 3).
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Me

Me4, Me

/ TMSE

(E)-2-(trimethylsilyl)ethyl 2-methyl-7-((2S,3S)-3-((R)-2-methyl-4-methylenehept-5-

ynyl)oxiran-2-yl)hept-2-enoate (50). The enyne 19 (0.94 mmol, 30 mg) was

dissolved in toluene (1.88 mL). While stirring NEt3 (0.47 mmol, 65 pL) and 2,4,6-

trichlorobenzoyl chloride (0.116 mmol, 31 pL) were added. The mixture was stirred for

3 h and then filtered through celite and evaporated. The resulting residue was

dissolved in toluene along with 2-(trimethylsilyl)ethanol (0.2 mmol, 29 pL) and DMAP

(0.14 mmol, 17 mg). The resulting mixture was stirred for 10 h. After that reaction time

the mixture was filtered through celite and evaporated. The residue was purified by

flash column chromatography (5:95 EtOAc:hexanes) to give the enyne 50 as a colorless

oil (29 mg, 77%). "H NMR (400 MHz, CDCl3) 6 6.66-6.63 (m, J = 1 H), 5.20 (s, 1 H), 5.07

(s, 1H), 4.13 (t, J = 8.4 Hz, 2H), 2.74-2.71 (m, 1H), 2.63-2.59 (m, 1H), 2.33-2.20 (m,

4H), 2.10-2.00 (m, 1H), 1.89 (s, 3H), 1.78 (bs, 3H), 1.68-1.60 (m, 2H), 1.60-1.50 (m,

5H), 1.29-1.21 (m, 1H), 1.01 (t, 8.4 Hz, 2H), 0.98 (d, J = 6.4 Hz, 3H), 0.03 (s, 9H); 13C

NMR (100 MHz, CDCl3 ) 6 168.4, 141.7, 130.8, 128.2, 121.2, 85.8, 80.1, 65.2, 62.7,

59.1, 57.4, 45.5, 38.9, 32.1 29.6, 28.7, 28.6, 25.9, 19.4, 17.4, 12.5, 4.3, -1.4; IR (film)

2954, 2859, 1708, 1651, 1457, 1376, 1269 1119, 1060, 895, 838, 762, 696 cm-1; HRMS

ESI (mlz): [M+H]* calcd for C24H40O3SiNa, 427.2639; found 427.2635. [a]D -9.5 (c 4.0,

CHC13).
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51

(E)-2-(trimethylsilyl)ethyl 2-methyl-7-((2S,3S)-3-((2R,7R,9S,12R,13S,14R,E)-9,12,13-

tris((tert-butyldimethylsilyl)oxy)-1 5-((R)-2,2-dimethyl-1 ,3-dioxolan-4-yI)-7-hydroxy-

2,6,14-trimethyl-4-methylene-11 -oxopentadec-5-en-1 -y)oxiran-2-yI)hept-2-enoate

(51). In the glovebox, Ni(cod) 2 (0.032 mmol, 3.4 mg) and tricyclopentylphosphine

(0.064 mmol, 7.4 pL) were combined. Set under an argon atmosphere and outside the

glovebox, Et3B (0.155 mmol, 22.7 pL) was added. The orange mixture was stirred at r.t.

for 10 min before the addition of a solution containing the enyne 50 (0.062 mmol, 25

mg) and aldehyde 2 (0.062 mmol, 41 mg) in EtOAc (0.900 mL). The resulting red

reaction mixture was stirred 14 h while warming to r.t. The mixture was then diluted with

EtOAc (2 mL), and it was stirred open to air to allow for aerobic oxidation of the catalyst

evident by the slow conversion of the color to pale green. The mixture was filtered

through a short pad of silica gel (eluting with EtOAc), concentrated in vacuo, and

purified by flash column chromatography (10% EtOAc/hexane). This provided the dienol

(51) as a colorless oil (56 mg, 85% yield). 1H NMR (400 MHz, CDCl3) 6 6.70 (t, J = 6.3

Hz, 1H), 5.80 (brs, 1H), 4.94 (s, 1H), 4.83 (s, 1H), 4.40-4.34 (m, 1H), 4.21-4.14 (m, 3H),

4.10 (d, J = 4.4 Hz, 1H), 4.08-4.02 (m, 1H), 4.01-3.97 (m, 1H), 3.69 (t, J = 4.4 Hz, 1H),

3.40 (t, J = 7.5 Hz, 1H), 3.00 (s, 1H), 2.85 (app d, J = 6.4 Hz, 2H), 2.64-2.57 (m, 3H),

2.18-2.08 (m, 4H), 2.00-1.84 (m, 2H), 1.79 (s, 3H), 1.77-1.70 (m, 6H), 1.60-1.50 (m,
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2H), 1.50-1.40 (m, 5H), 1.34 (s, 3H), 1.28 (s, 3H), 1.26-1.22 (m, 2H), 1.01 (t, J = 3.9 Hz,

1H), 0.91 (s, 9H), 0.87 (s, 9H), 0.85 (s, 12H), 0.79 (d, J = 6.6 Hz, 3H), 0.11 (s, 3H), 0.09

(s, 3H), 0.08 (s, 3H), 0.04 (s, 3H), 0.01 (s, 12H), -0.04 (s, 3H); ; HRMS ESI (m/z):

[M+H]' calcd for C42H920 7Si5 , 1089.7276; found 1089.7264.

0 OTBSO

H - #OTBS

TBSO# 0Me

I OTBS
OTBS

53

(3S,6R,7S,8R,10R) - 3,6,7-tris(tert-butyldimethylsilyloxy) -10,11 - dihydroxy - 8 -

methyl - 5 - oxoundecanal (53). Acetonide 2 (169 mg, 0.256 mmol) was dissolved in a

solvent composition of THF/H 20/AcOH (1:1:2, 12 mL) under stirring before it was

heated to 90 0C for 6 min in a microwave oven. Quenched the reaction mixture after

cooling to ambient temperature with saturated aqueous NaHCO 3 (50 mL) and diluted

with Et2O (200 mL). The organic phase was separated and washed with NaHCO3 (2 x

50 mL) and with saturated aqueous NaCl (1 x 50 mL), dried over anhydrous Na2SO4,

filtered, and concentrated in vacuo. The product was immediately dissolved in DMF

(0.40 mL) and imidazole (174 mg, 2.56 mmol) and TBSCI (193 mg, 1.28 mmol) were

added. Stirred at r.t. for 16h. The mixture was loaded directly on to silica gel and
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purified by flash column chromatography (95:5 hexanes:EtOAc) to give the aldehyde 53

as a colorless oil (217 mg ,75%). 'H NMR (600 MHz, CDCl 3) 5 9.61 (bs, 1H), 4.61-4.55

(m, 1H), 4.13 (d, J = 4.5 Hz, 1H), 3.63-358 (m, 2H), 3.57-3.54 (m, 1H), 3.31-3.24 (m,

1H), 3.14 (dd, J = 19.0, 4.4 Hz, 1H), 2.76-2.62 (m, 2H), 2.41-2.35 (m, 1H), 2.10-2.03 (m,

1H), 1.58-1.44 (m, 1H), 1.22-1.17 (m, 1H), 0.90 (s, 9H), 0.86 (s, 9H), 0.85 (s, 9H), 0.83

(s, 9H), 0.80 (s, 9H), 0.69 (d, J = 6.0 Hz, 1H), 0.09 (s, 3H), 0.06 (s, 3H), 0.04 (s, 3H),

0.02 (bs, 9H), 0.01 (bs, 9H), -0.04 (s, 3H); 13C NMR (150 MHz, CDCl3) 6 208.7, 202.1,

81.3, 80.1, 70.9, 68.2, 64.2, 50.9, 48.8, 40.8, 29.9, 29.8, 26.2, 26.1, 25.9, 18.5, 18.4,

18.3, 18.0, 13.7, -3.7, -3.9, -4.3, -4.4, -4.7, -4.8, -5.1, -5.2; IR (film) 3567, 2930, 2858,

1718, 1473, 1362, 1256, 1095, 939, 836, 776 cm-1 ; HRMS ESI (m/z): [M+H]' calcd for

C42H92O7Si5, 849.7562; found 849.7562. [a]D -8.0 (c 4.0, CHC13).
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(E)-2-(trimethylsilyl)ethyl 2-methyl-7-((2S,3S)-3-((2R,7R,9S,1 2R,1 3S,1 4R,1 6R,E)-

9,12,13,16,17-pentakis((tert-butyldimethylsilyl)oxy)-7-hydroxy-2,6,14-trimethyl-4-

methylene-1 1 -oxoheptadec-5-en-1 -yl)oxiran-2-yl)hept-2-enoate (54). In the

glovebox, Ni(cod) 2 (0.032 mmol, 3.4 mg) and tricyclopentylphosphine (0.064 mmol, 7.4

pL) were combined. Set under an argon atmosphere and outside the glovebox, Et3B

(0.155 mmol, 22.7 pL) was added. The orange mixture was stirred at r.t. for 10 min

before the addition of a solution containing the enyne 50 (0.062 mmol, 25 mg) and

aldehyde 53 (0.062 mmol, 52 mg) in EtOAc (0.900 mL). The resulting red reaction

mixture was stirred 14 h while warming to r.t. The mixture was then diluted with EtOAc

(2 mL), and it was stirred open to air to allow for aerobic oxidation of the catalyst evident

by the slow conversion of the color to pale green. The mixture was filtered through a

short pad of silica gel (eluting with EtOAc), concentrated in vacuo, and purified by flash

column chromatography (10% EtOAc/hexane). This provided the dienol (54) as a

colorless oil (58 mg, 75% yield) along with the hemiketal. 1H NMR (400 MHz, CDCl3) 5

6.68 (t, J = 6.8 Hz, 1H), 5.80 (brs, 1H), 4.94 (s, 1H), 4.85 (s, 1H), 4.40-4.34 (m, 1H),

4.21-4.09 (m, 3H), 4.07-4.04 (m, 1H), 3.71-3.53 (m, 2H), 3.51-3.47 (m, 1H), 3.35 (t, J =

7.5 Hz, 1H), 3.10 (s, 1H), 2.82-2.75 (m, 2H), 2.64-2.57 (m, 3H), 2.18-2.08 (m, 4H), 2.00-
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1.84 (m, 2H), 1.79 (s, 3H), 1.77-1.70 (m, 6H), 1.60-1.50 (m, 2H), 1.50-1.40 (m, 5H),

1.26-1.22 (m, 2H), 1.01 (t, J = 4.2 Hz, 1H), 0.91 (s, 9H), 0.87 (s, 18H), 0.85 (s, 21H),

0.79 (d, J = 6.6 Hz, 3H), 0.11 (s, 3H), 0.09 (s, 6H), 0.08 (s, 6H), 0.04 (s, 3H), 0.01 (s,

18H), -0.04 (s, 3H); [a]D-1 3.9 (C 7.0, CHC13).
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Chapter 2: Spectra
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