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ABSTRACT

An approximate analytic small amplitude analysis is applied to a mixed
layer transition zone model with simple velocity shear and density gradient in
order to assess the likelihood of the development of a centrifugal instability due
to the streamline curvature induced by a long internal gravity wave supported
by the density difference across the transition layer. It is determined that
this instability may occur only for Richardson numbers well within the range
of the Kelvin-Helmholz instability, and it is argued that the latter instability
will be dominant.
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1. Introduction

The depth of the surface mixed layer in both the atmosphere and the

ocean depends upon sea surface conditions and the stability of the upper

boundary in the atmospheric case, and the lower boundary in the oceanic

case. In this paper I will use the spatial orientation of the oceanic surface

layer and consider the possible effect of long internal waves on the stability

of a finite pycnocline in the presence of mean shear. In particular, a three-

layer model is considered as shown in Figure 1, with the middle layer thick-

ness assumed to be substantially smaller than the depth of the upper layer.

An interfacial gravity wave is postulated to travel along the shear layer with

a sufficiently large horizontal scale that its dynamics may be approximated by

the two-layer model corresponding to shrinking the shear layer thickness to

zero. In the neighborhood of the shear layer the initially parallel flow is now

curved to follow the wave-associated undulations, and it is suggested that

this flow is similar to the boundary layer flow along a curved wall (Figure 2)

with the exceptions that there are no truly rigid walls, that the shear layer

is stratified, and that viscosity (turbulent or otherwise) is assumed to have

little effect upon the perturbation dynamics.

It was in 1940 that H. GOrtler showed that a viscous boundary layer flow

along a curved wall was destabilized by centrifugal effects with the perturba-

tions describing longitudinal vortices (Grtler 1940) . His explanation of the

instability is reflected in the following particle analysis found in Betchov and

Criminale (1967) . They consider a two-dimensional laminar flow t4o along

a concave wall of constant curvature with a boundary layer of thickness J_.

Within the boundary layer the shear of the mean flow is taken to be approxi-

mately equal to lo/C . Since the centrifugal forces act to press the fluid

against the wall, a pressure gradient is established such that the pressure

gradient balances the centrifugal force t42/ , where R is the radius of

curvature. If a fluid particle is perturbed from a position 1 vertically to a

position 2 without any dissipative loss of energy, then by Bernoulli's

equation:

X ;L 2 .(1)
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Three-Layer Model of the Mean Flow

FIGURE 1

Corresponding Shear Layer and Wall Layer Flows

FIGURE 2
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If UA- 1X and Al ITX- A , then with the neglect of the term quadratic in 6

A P U + 6 '1 = 0 (1.2)

where I have set =1 for convenience. Recognizing that

A P - and . A(1.3)

then

L Lk (~ ~Ah(1.4)

This shows that the velocity change experienced by the particle (AU) will be

smaller than the velocity change of the ambient flow (411) since the radius of

curvature is assumed to be significantly larger than the boundary layer thick-

ness. Therefore the displaced particle velocity will be less than the local mean

velocity which implies that the centrifugal force developed at the particle will

be less than the local mean, so the local pressure gradient force will overcome

the particle centrifugal force, accelerating the particle further away from its

initial position. Hence, the flow is unstable. If the wall had been convex,

then the effect is reversed and the particle is returned toward its initial

position.

Later, A.M.O. Smith (1955) solved the Gbrtler problem with fewer

simplifying assumptions and obtained a more refined stability diagram.

Witting (1958) however, extended the domain of occurence of this instability

by demonstrating its appearance as a secondary instability on the Tollmein-

Schlicting waves in a boundary layer over a flat plate. As reported by

Betchov and Criminale (1967) , they found the disturbance above the critical

level in regions of curvature of one sign, and in regions of curvature of

opposite sign the disturbance was below the critical level. The direction of

flow relative to the Tollmein-Schlicting wave changes sign across this level.

In the geophysical context, Scorer and Wilson (1963) have invoked the

Taylor-Gdrtler mechanism as a possible explanation for the appearance of

patches of clear air turbulence in the lee waves of mountains. The argument

is general and demonstrates that curvature induced forces can overcome the

restoring forces of a stably stratified atmosphere under circumstances where
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streamline curvature and velocity shear effects are large enough to balance the

component of the gravity forces perpendicular to the streamlines. This means

that a disturbance can only be amplified while it passes through one of these

generating regions. The saving grace is that this is an inviscid instability, so

between amplifying regions the disturbance does not decay, but just "rattles"

along being advected by the mean flow, so if it passes through enough such

regions, its amplitude can be expected to become finite, hence overturning

and turbulence may occur. With this background, it seems attractive to con-

sider the role of the Taylor-Gdrtler instability in the transition layer at the

boundary of a mixed layer.

There has been a great deal of work done on the stability of stratified

shear layers, and an excellent review of this material is the Drazin and

Howard (1967) paper. Two important points which I have siezed upon to

divorce the realm of the Kelvin-Helmholz and Holmboe instabilities from that

of the Taylor-G6rtler instability are: (1) the Kelvin-Helmholz instability can

occur only for Richardson numbers less than some critical value, so a base

flow can be constructed which is stable with respect to this form of instability;

and (2) although the Holmboe instability can occur for all Richardson numbers

(Holmboe, 1962) it is dependent upon there being a sharper density transition

than velocity transition (in terms of the thickness of the transition layers) , so

if the base flow contains no such density "steps", then again, the flow is con-

sidered stable. Therefore, the question arises as to whether or not a long

interfacial gravity wave is able to alter the initial flow through the mechanism

of the Taylor-Gartler instability under circumstances where the flow is other-

wise stable. If this is so, then the mechanism must be included in any

geophysical problems concerned with the stability of transition regions. In

fact, the process might be viewed as an intermediate stage between the initial

state and a Holmboe instability driven breakdown and mixing of the flow.

Consider the initial postulated three-layer flow of Richardson number

greater than (I) , with density and velocity transition layers of the same

thickness. A growing Gbrtler-type disturbance will eventually reach large

enough amplitude to cause overturning within the shear layer. The ensuing

mixing will create a new distribution of both density and velocity, possibly

leading to new transition layers that satisfy the requirements of the Holmboe
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instability, thereby promoting further turbulent mixing in the vicinity of the

of the transition zone. Furthermore, if the layer above is a mixed layer near

equilibrium, the possibility of the Gortler instability provides a mechanism for

the further deepening of the layer in the presence of internal waves. Under

such a development, the critical Richardson number criteria derived on the

basis of the Kelvin-Helmholz instability would have to be revised upward to

account for this newly proposed mechanism for the production of turbulence.

2. Development of the Equations

Since the underlying flow to be perturbed has periodic curvature, the

most convenient coordinate system for following the development of the pertur-

bations is the wavy system shown in Figure 3 after Smith (1955) . Let the center

of the shear layer (3=o) be described by:

Z = CL' eX(2.1)

where C( is the amplitude of the underlying wave, and A is its wave number.

The scale factors for the transformation from cartesian coordinates (x,y,E') to

curvilinear coordinates (X,5, T) are:

k .=I _3 =I k 1 (2.2)

where K is the curvature and is taken as positive for the case shown in

Figure 4. With this convention, the system of equations is:

w the -r U C)I e3Xc i - x )j inX =0 (2.3)

+ 'JAY 0(2.6)
t I -K.3~

where Ir~~.(2.8)
La'5' ;
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Curvilinear Coordinate System

FIGURE 3

K >O

K<0

Definition of Curvature

FIGURE 4
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In making this transformation it is assumed that the surface 3 0

does not vary in time with respect to the (X, ) K) frame of reference. There-

fore, the physical implication is that the original frame is moving with the

wave phase speed relative to the fluid body, so the velocities indicated in the

equations of motion are those measured from the wave's reference frame.

The hydrostatic assumption is made and the Boussinesq approximation

follows with -+d0 ,so that:

+ sin 1 e + sin te (2.9)
(' -K3 )f I -K3 DR

and +- c - .6-CO _S-(2.10)
( b3 * 3f

Furthermore, it is assumed that the variables may be broken down into their

"underlying" and "perturbation" parts as follows, where 6&i:

with the i-dependency of the underlying part coming from the underlying

wave-induced velocity and pressure. Therefore after substituting the above

changes and expansions into equations (2.3 - 2.7), and equating all the

terms of order 6 , the system of perturbation equations is written:

__ ~ 2L.a . W ~k ~~r~-~u)(2.12)

+ 4) (2114)

bt I-(2.15)

y- - 2.C1

at R ( x1lJ ~- ~ =(2.13)

P -19 4 - Z B AFI- LV ' ,Y2 K+ ,,Iun.' (2 .1 4 )

4- _q C us C)
+ (2.15)

'17 +(2.16)
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Most of the terms in the system above need no comment, but it is worth

noting that u'+Lr') is analogous to the coriolis force in a rotating sys-

tem, and the term 22 %, represents the centrifugal force. The factor I- K

that occurs in denominators just represents the divergence of the coordinate

system, and the term (I-KS in the continuity equation also derives from this

source. Although it was not pointed out earlier, the coordinate system chosen

for this problem breaks down if 3 is allowed to be of the order of IKI-I;
this need not cause any concern, since the suppositions that follow in setting

up the underlying flow will disallow a large amplitude wave, and the analysis

shall be restricted to the "inner" domain of the region surrounding the shear

layer.

3. The Underlying Flow

As stated earlier, the supposition entertained here is that the scale of

the underlying wave is much greater than the thickness of the shear layer,

and so I approximate the three layer system with two layers of constant

velocity and constant density with a common interface across which these two

quantities are discontinuous. Also, of considerable influence is the depth of

the upper layer since I will consider the wave to be "long" with respect to this'

layer (see Figure 5) .

Matching the two regions across the interface by linearized boundary

conditions yields this relation (see, for example, Lamb 1932):

f= (cifuI)cotk (kk) + )' (3.1)

where C is the wave phase speed in the -K4 direction. The perturbations

have been assumed to take the form exp ik(x*+ct) . Approximating the cof (kh)
term for k(i < , I find:

This may be simplified considerably by defining a quantity

then Lk 4

(3.2)

(3.3)

(3.4)
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Two-Layer Wave Model

FIGURE 5

-O.Sin kX=o

Relationship Between (,Z) and (3,5) Labels

FIGURE 6
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Thus it is evident that Ac is the Richardson number for a wave on the

interface between shearing fluids, and A4 I. indicates that the wave

grows and is therefore unstable. Furthermore, if A - £ , then equation

(3.2) has the approximate form:

Lk /~In (3.5)

which indicates that the wave behaves like a shallow water wave and propa-

gates at a phase speed of t /7W' with respect to the upper layer, where

/ is the reduced gravity. This has an added attraction for the problem

being dealt with here, since the phase speed does not depend upon the wave

number provided all of the waves are long enough. Therefore several waves

may be combined without violating the steadiness restriction imposed during

the transformation of coordinates. In fact, so long as one is careful not to

create regions of extreme curvature that would be difficult to handle with the

chosen coordinate system, the underlying flow could be composed of several

waves to produce regions of higher curvature and greater wave slope where

the instability would be more likely to occur.

Using equation (3.4) the velocity field associated with the wave as seen

from the frame of the mean velocity (as in Figure 5) is written:

t Qe-.i-'- ( Y11C t (3.6)

- - ((3.8)

where the subscripts refer to the appropriate layer. Translate the measuring

frame along at the phase speed of - C, then the complete velocity field as

seen from this frame can be written:
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-. a Qd..(3. 11)

1 .Ti=!K- 9 e i.kx X(3.12)

CL~H~ eke e6 kx (3.13)

where X is the same cartesian coordinate used in section 2, so that now these

velocities must be transformed from (x,LJ)) space to ( -, 7,3) space.

Figure 6 indicates the geometric relationship between the (X.j) and the

, 3) labels of a given point in space with respect to the surface Z- cesin kx
From this I have determined that X is related to X1 by means of an elliptic

integral of the second kind, but for small slope it can be approximated by:

X = )( X + Sikx,3X,+ inkk)x(3.14)

Furthermore, the relations between X,,X and are:

Z- asi5 kg,)vrl+ ck)' 2 k (3.15)

X )(I +&k) Z Sir k X) (~cuk os kxY, (3.16)
k

In order to proceed, it seems reasonable to transform the velocities with errors

of order (ak)X , and so it is straightforward to show that:

+ (for a. (3.17)

and . (ak)2 . (3.18)

However, the exchange =E in the expression cannot be justified by

these arguments. Instead I make this identification by recognizing that the

perturbations vill have virtually no effect far from the shear layer since there

exists no mechanism for propagation, so the velocity field pertinent to the

stability problem will be a localized "small Z " field where the significance of
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the neglected term is thought to be small.

The unit vector interrelationship is

for the transformation:

the final piece of information needed

k ,(3.19)

where LtI. ) are the unit vectors of the (X)E) axes, and (.&,, C) are the unit

vectors of the ( T,5") axes. Therefore, if the overbar denotes the velocity as

measured in the (7,7) coordinates, then:

(T LA + T a kC-os k + 4 ) (3.20)

'Yr "T -rocsrk*b + (3.21)

and so the complete velocity field fully transformed in the curvilinear co-

ordinate system is:

L~j747j~~- - it+ .WU#ilek) sin kX

A - CO & Sink
T~~~ L 4-

- a k Cos 5

(3.22)

(3.23)

(3.24)

(3.25)

I will use the above expressions for the velocity in layers one and three

of the shear layer model, and postulate a linear transition zone for layer two

such that the entire velocity profile is piecewise continuous. The shear across

this layer is:

S = ll.{ A <2 1~l-l (326St khSnkg (3.26)
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and it is found that locally cartesian continuity can be satisfied in constructing

a Wr field within the layer which is matched to the field outside without alter-

ing -j2 in either layer one or three.

The immediate use of this carefully considered underlying flow approxi-

mation is to evaluate the size of the various terms in the equations of motion,

but first it is necessary to introduce the scaling assumptions.

4. Scaling and Simplification

I pick the following scales for non-dimensionalization:

velocity: A; ; (,q ) - : / - ; g5 (4.1)

where O= -1 the mean flow velocity difference across the layer, excluding

the long wave flow field.

= the shear layer thickness.

= the total density change across the shear layer.

Upon substituting (4.1) into (2.12 - 2.16) and rearranging, it becomes advan-

tageous to define some non-dimensional combinations of the scale factors. Let:

_ . A - = Z_ _.(4. 2)

Furthermore, let \F be constant, since all of the shear was taken to lie along

and let:

then the system of equations in non-dimensional form is:

+ + V L -~~ty

A- VI +(4.5)

-F - y)t1 x 1K (4.6)

V D~a.tt -COT 3 (4.7

+~

L ' + ±DSit! + K (4.8)
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There are three immediate approximations to the system that are of

great help. First, I totally neglect the variation of the scale factor ( Ek )
and set it equal to one since the curvature K is of order cd thereby

indicating the error to be of order LcSkz . Second, I assume that a local

analysis in X is valid since I consider perturbations that change over a

scale d , while the flow changes over a scale of A71 . Therefore the per-

turbation quantities (named "pert") take the assumed form:

pert {3,C), t) =pert e(4.9)

where all quantities are dimensionless. And third, I assume that sino( in

(4. 4) may be neglected under the small slope assumption used throughout this

analysis. Therefore, the system of equations now becomes:

) t U00 (4.13)

~ ~ I -(4.14)

As one attempts to combine these equations into one equation in one of

the unknowns, it becomes apparent that the complexity of the underlying

velocity field thwarts all attempts at obtaining a manageable equation, and so

it is desirable to find some justification for simplifying it. Therefore I return

to the underlying flow for magnitude estimates of its various components.

First of all, identify the velocity scale Yo with the mean flow velocity

Sso that:

0 4 IJ VU + 4.6s =O(4.15)
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then in terms of magnitudes only with k-~ 'L , I find:

Top Layer:

NO
kL.

Middle Layer:

Bottom Layer:

Taking each of the layers

I+e

'tJ~~~
0-

I
)~

(4.16)

(4.17)

Ix

CLE 4 a . a~

(4.18)

separately, the following pattern emerges:

* AJ

I -~

0% gL (4.19)'

where .= or depending upon what layer is under discussion. I

will discuss the balance of terms in the system (4.10 - 4.14) using equation

(4.10) since it is representative of the others. Noting that K- =- ,

I insert the appropriate magnitude in front of the terms to obtain:

b~i[ .+ +~af+ + i e U-Q~-+3Pp' (4.20)

If I allow that ~ ~ - <<I for the purpose of this argument, then the termsL k L
underlined above are of the same order of magnitude, and they are character-

istically small when compared with the other terms of the equation. However,

it is essential that the last underlined term be retained since it is a manifesta-

tion of the effect of the curved flow which is the topic of this paper. Therefore

I cannot systematically neglect the other small terms while retaining this one.

.w

LU

A.

bw
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It is on this point that I must drop all pretense of upholding the quanti-

tative integrity of the problem and instead settle for a qualitatively valid

understanding of the process. So I proceed to neglect the W terms altogether,

and retain only that part of tA which corresponds to the mean shear. In effect,

the velocity field present in the three-layer idealization before the underlying

wave was introduced is assumed to have been diverted such that it now follows

the undulatory profile. The system of equations is then:

i + L+ i ' + 1S' - K( /'=(4.21)

+ +S] V- . =)0(4.22)

5 + + '+ + coso O (4.23)

SL +L(Pi+V). +C(4.24)

't + eV'+--'=. (4.25)

Finally, V 0 since a steady drift of the reference frame in the 9 -direction

adds nothing revealing to the problem. Now, the system is reduced to one

equation in -' and its first and second derivatives.

'tY j S(a 7L*( -~(S+J__ (4.26)

If &K=0 , this equation is seen to reduce to the usual stability equation for

the finite shear layer Kelvin-Helmholz instability. But the addition of curva-

ture to the problem changes it in a very fundamental way. With it

represents more than just the convergence or divergence of the coordinate

system, and attempts to derive general criteria for stability from this equation

proved fruitless.

5. Stability Analysis

In looking for the precursors of longitudinal rolls, the expectation is

that the perturbation will exhibit most of its structure in the cross-stream
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direction and therefore any rapid changes along the flow are quite unlikely.

Since this is a local analysis in x , the strong restriction that $ is zero

poses no problems. Physically, I imagine a sequence of local analyses where

it is probable that the 5-- structure varies along the flow, and hence, the

dependence of the perturbations upon g develops in this manner. With

setting f=(0 , it is no longer necessary to think in terms of an advective

time scale for the local problem, therefore the Strouhal number can be set to

unity, and the equation becomes:

- ( 1%Y t 1riR~os Q< P +QE4*1LIkU1 D (5.1)

I will proceed to establish a stability criterion through the use of integral

techniques. It is assumed that 4J'and (Z may be complex, and that w' , Uri
and their complex conjugates vanish far from the shear layer. In terms of

the scaled vertical coordinate, this occurs at 1*9 1 -a a. Furthermore, let

Ri coS or f C + 2.6kL-( g - ) G(k) , and take f * (.) i -.After

integration by parts and use of the boundary conditions:

-1"J fhDW2ST1Q2 + o (5. 2)

The complex conjugate operation yields:

Subtraction of these two equations gives:

anadiio g(5.4)

and addition gives:

+Ov 4,00



- 23 -

These equations may now be combined to cancel the f ... term by

multiplying equations (5.4) by it~) , and equation (5.5) by K

then subtracting to leave:

X ) t +(1 )2.' ) (liC ~O (5. 6)

This relation is not very helpful since the sign of G(3) depends upon the

sign of Re (C))Z . What is needed is a side condition that would produce an

equation in which Re (f is replaced by a definite quantity of either sign

without undue restriction on the validity of the problem. In particular, if

the expression above could be reduced to the special case where t. cannot

be complex, then G(~) would possess a critical value where b3 changes

from real to imaginary, thus indicating the regions of stability and instability.

Such a side condition is the requirement that the vertical structure of the

perturbation be modal.

This assumption means that I will be considering perturbations that

possess no time dependent phase relationship in the vertical, and therefore I

exclude the possibility of propagating vertical waves in favor of standing

waves. Mathematically, I say the only complex quantity in the perturbation

equation (5. 1) is &.)= = -+ i ; , so I may separate the real and imaginary

parts of this equation and integrate as before:

S '~ s)~ ~A, 4' 1,.Y)2'(+ _Ell = C 0 (5.7)

Similarly,

100

Assuming that neither 4, or A are zero, I cancel them out of

their respective equations, and add the two to obtain:

tof

1



- 24 -

For . greater than zero (ie, .C ? ai) , this demands that the perturbation

vanishes everywhere. Therefore, for a non-trivial result, 0 must be

either real, or imaginary, but not both. Consider the equation for 6i not

equal to zero:

4 jz(1,'r) 2- 2 - R cas oi ApIIIas+-Z A± (5. 10)

Since |2< L) for stable stratification, it is evident that the only term avail-

able for driving the second integral negative is the shear-curvature term,

2 SK o -L Ci)43 . A necessary condition for instability is:

Q K(A6 3>'Ai 2- RCS ofP3 + 2(SK"i)2 >:0(5.11)

over a portion of the domain. Furthermore, the last inequality may be con-

sidered the weakest necessary condition for the problem. It implies that the

curvature and the velocity field must be of the same sign if the shear is posi-

tive, and of opposite sign if the shear is negative (Figure 7) .

The second curvature term may be considered to be the pseudo-inertial

frequency as seen from the underlying wave frame of reference. This term

acts in the same direction as the buoyancy frequency term in much the same

way as does the inertial frequency term in large scale flows on a rotating

planet, except here the vorticity vector is perpendicular to gravity. The net

result is that the destabilizing force developed through the interaction of

shear and curvature must become greater than the stabilizing forces of gravity

and "rotation" before the perturbation can grow locally. More will be said

later about the pseudo-inertial frequency, but now I return to the perturbation

equation (5. 1) for an approximate solution.

I will consider a piecewise continuous profile of density and velocity for

the underlying flow of the following form:

Top Layer: =0

Middle Layer: . .. / (5.12)

Bottom Layer:
Ps
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Stability

Instability

Stability-Instability Region for Positive Shear

FIGURE 7
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These particular numerical values arise from the choice of the nondimension-

alization scales used in the analysis, and I depends upon the phase speed

of the underlying wave. Inserting the values of (5.12) into (5.1) , the equation

for the middle layer becomes:

togi1 -~Jj M ( ' -' - jRi caso +'- 2 K(-q-K ) S- k(-Q-1 O (5.13)

The method of solution of this kind of equation requires an infinite power

series in 3 and therefore is not well suited to the purpose of this analysis.

Furthermore, the WKB approximate solution would require the 5 -dependent

terms to be small compared to the Richardson number terms or the most

differentiated 0- term, which seems difficult to imagine unless 0 were

much larger than one to maintain the importance of the curvature terms.

Therefore I must again seek qualitative insight and consider only the mean

structure in the layer.

The mean shear-curvature term is the exact shear in the layer

(a constant = 1) times the average velocity times the curvature, and the mean

pseudo-inertial term involves only the square .Qf the average velocity.

Therefore if I model equation (5.13) by an equation with constant coefficients,

I find:

I - - I ~{- Ur 2 R( i ~ cw;CV,- 2g~ ,)-4 q)2~ (5.14)

Having proposed such an equation, the solution will be of the form:

e c(5.15)
where Y is complex. Substitution of (5.15) into (5.14) gives

2- #2 ) =-; _2.L K6, P+') -. (CP+l)j(5.16)

Assuming that C0+ A.+i A; and = , the real and the

imaginary parts of (5.16) are respectively

Ar .2j - . 2 ) + (,4-2~ !(~) -Q
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The imaginary part demonstrates the link between the complex behavior of

4 and Y . If A; A,= 0 , then either bj 0 or r =SK , and of course,

the reverse logic holds as well. So again, the justifiable modal assumption

may be used to good advantage in isolating this special case.

Let = e COS , where is just a constant, then

.2 + (- S)(7(- tun(54& ) f - '(5.19)

Recall that (.Z A4- A +;U A, 4; ; so the real and imaginary parts of

(5.19) may be separated to give:

(2e-SK)(i (5.21)

Clearly a function of 3 in a relation between constants is unacceptable;

even though the constants were derived by a non-rigorous approximation,

the presence of TMr~&+O)5 still represents an internal inconsistency.

Removal demands that:

(5.22)

or rather, that the only non "trigonometric" behavior of the solution be that

which is needed to remove the rIT term in equation (5.14) . The term

"trigonometric" is understood to include whatever power series is necessary

to satisfy the original equation with variable coefficients. And so, recogniz-

ing that 2Y- SK= 0 , equation (5.21) gives:

4 A =0 (5.23)

in agreement with the modal integral result following equation (5.9) . If I take
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A;2. ___ E 2K(P4-) 4; (cs+i) j(5.24)

and again, instability depends upon the shear-curvature term being of the

right sign and of sufficient magnitude. Furthermore, this result shows that

the disturbances which have the highest growth rates, also have the lowest

vertical wave number. To be more precise about this the solutions in the

three regions must be matched, so I return to the solution in the other two

layers.

Inserting the values of (5.12) into (5.1) , the equations for the top and

bottom layers become respectively:

2 fA 4 T2j o(5.25)

- 2 f ~ ~(5.26)

Let + be the perturbation velocity in the top layer, and _11[2
be that for the bottom layer, then:

~ (5.27)

If 0 is imaginary, then 5 and 2 are real; if 0 is real, then ( and

r may be complex if O (k1<.) 2  Therefore, if the perturbation frequency

is small enough to fall into the pseudo-inertial range, then waves are possible

in the upper and lower layers. But recall that the model of the underlying flow

was inviscid with no vorticity in the upper and lower layers, so how can inertia

waves exist in a flow that possesses no absolute vorticity? They cannot, so this

pseudo-inertial term may be thought to arise from the various approximation-

involved in setting up the system equations and in defining the underlying flow.

Clearly, the approximate system loses its validity away from the near vicinity
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of the shear layer, so it is reasonable to treat the inertial term as being

spurious in the top and bottom layers so that:

S2 (5.29)

K = W+ + At '(5.30)

where the appropriate sign has been chosen to insure that the perturbation

decays away from the shear layer. Now I must match the three solutions

together.

The requirement that the interface displacement be continuous across

the interfaces located at = ± I leads to the continuity of -' across these

interfaces as one of the linearized matching conditions. The other condition,

namely that w be continuous is found by integrating equation (5.1) over

a vanishing region C about each interface. Then after working through the

application of these conditions at both S= 1 , I find:

12 (5.31)

This result may now be included in equation (5.24) to yield:

Ai_ eZCS:,'j- COIS U- 01Id(5.32)

or, if the approximation is made that 2. z , then A f'$*2/

by (5.31), so that (5.32) becomes:

i S1 sin - 2K(+) -2 K (+O) (5.33)

which shows that the fastest growing disturbances have vertical wavelengths

near a multiples of the half shear layer depth E' . Therefore, since

'2 can be no larger than P" , the dominant instability mode is presumed to

have both a vertical and a cross-stream wavelength of approximately twice the

shear layer thickness so far as this crude estimate is able to determine. Also,
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since the trigonometric part of iY' goes like COs T' , then it is even in

3 , and since the lowest mode 41=0 is assumed to be the most unstable,

then -t' does not change sign in the interval as shown in Figure 8. This is

precisely the mode that one would expect to see overturn in counter-rotating

longitudinal cells with height and width on the order of the shear layer

thickness.

6. Skewed Underlying Wave

The analysis up to this point has been concerned with the special case

where the underlying wave propagates along the direction of the shearing

plane. This section seeks to discover what changes are involved when the

more general case is encountered. Figure 9 shows the geometry under con-

sideration.

The frame of reference takes A to lie along the X -axis, where again,

the underlying wave is stationary. W/ (7 as defined in the figure is in

cartesian space from a frame in which W(o)= 0 . This frame is translated (- a.)
and then transformed so that in the new curvilinear system:

~ +tLI~)VL3)(6.1)

From the figure it is evident that:

(6.2)

For longitudinal roll behavior, the disturbance should be characterized

by an extremely small wave number in the direction of the absolute shear. Let

9 be the unit vector in this direction, and let ( f + A , where the

perturbations have the form pert (S) exp( ifR -+ ig iiut) ; then

(6.3)
so cos 0 + iP-sin 0 0(6.4)

With the assumption of a local analysis in X , the arguments displayed earlier
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Most Unstable Mode

FIGURE 8

Skewed Underlying Wave Model

FIGURE 9
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in this paper lead to the following perturbation equations:

t + + +

AF

{ C ( + $ + +1V

+ P '= 0=

)rp / I ()

-

Combining equations (6.2) and (6. 4) gives:

13G i= -

which can be used to good advantage in simplifying the equations.

some algebra, I find the system reduces to:

+ L___ __

+ e- U3$ ttu

co, P
- z~i~ ~s&{Wd~(J) 2z

a m 'etG -+ a3) I (6.11)

Based on the special case treated earlier, I make the modal assumption from

the start, and let /-4 (3L.o 4,. + JV; . Then performing the integration

process on the imaginary part of the equation, I find:

L
Co's + a-2.:o(6.12)

and indeed this compares favorably with equation (5. 10) . The same operation

on the real part of the equation yields little helpful information.

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

After

pp

t- C J 2[Vo t [ A' t pg+2Cos W, ()

i .' I -r

I PIA*

4w

0 = f (14yi) I j f t7(
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A better method for obtaining information concerning constraints on

A- when A& D is to perform the '() d operation on the equations
-00

found by taking the sum and the difference of the real and imaginary parts of

equation (6. 11). gives:

d .+ J05(0 UO+iaj -3~ 0 (6.13)
-00

and ' gives:

-cc .4 AA (6.14)

If A; is to be different from zero then equation (6.12) indicates that 5K[ ,+Ci)
must be positive over a significant portion of the domain. This in turn requires

the last bracketed term in (6.14) to be positive (the minus sign is not included),

and equation (6.13) independently demands the same. Therefore, if the shear

is positive, then fK[i,+FA must be positive, so:

>0(6.15)

If the shear is negative, then ,s( is negative ?nd so:

() K(6.16)

Recall that [A was taken to have an average value of zero over the shear layer,

therefore v, may have the dominant force in determining the sign of the

integrated Ct + ". term, which implies that UL must have the same sign as

Ak in (6.15) , and the opposite sign of ArN in (6.16) . This in turn allows

me to limit the possible range of C, - - r/f3 (the phase speed of the per-

turbation in the 5 -direction from the wave coordinate frame) to:

(6.17)

where I use the assumption that Cr should be equally likely to assume either
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sign. I admit that the conclusion (6. 17) is very tenuous, but it is presented

as an imperfect inference of this analysis in lieu of a more definitive statement.

Look again at equation (5. 10) and compare it with equation (6.12) as it

is rewritten below:

...J .J( ................~ t . -K C,6.9oI ta 1 - (6.18)

=0

The factor /coS9 replaces the previous .2factor, but they are really

equivalent. Figure 10 shows that the cross-axis wave number of the dis-

turbance, designated C* , is equal to I/cos^& , and so the spacing of the
"rolls" in section 5 corresponds exactly to the spacing of the "rolls" in this

section. Changes in the curvature terms can also be easily explained, for

now it is the projection along the shear axis of the product of curvature and

that part of the velocity field which flows in the direction of the underlying

wave that is important. As displayed in Figure 11 the projection of dktL+Lt.Lj

along Y is Ncos&LuofaJ, and this quantity multiplies the absolute shear in

the problem to give rise to the "instability" term, while it multiplies itself to

produce the pseudo-inertial frequency term. As a result then it can be said

that for a given value of absolute shear and curvature, the presence of a non-

zero angle between the wave vector and the shear axis will tend to weaken the

instability (and stabilize it altogether if 9 is large enough) since:

1) 14 , the phase speed of the wave along the X -axis relative to

the frame in which the flow is zero at Z= 0 , is reduced,

2) the curvature-shear term is reduced while the stratification term

remains unaltered, and

3) the denominator, * + 2+ appears to be greater since A.2 can

no longer be definitely set equal to zero.

Furthermore, it is believed that the reduction in the pseudo-inertial term, while

promoting instability, does not have the magnitude to offset reason number 2

above.
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longitudinal
"roll" axis

Cross-stream Wave Number of Perturbation

FIGURE 10

underlying
wave crest

Projection of KK ot EZI Along Shear Axis

FIGURE 11
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7. Interpretation ofjAnalysis

In order to understand how this instability of certain regions of the

underlying wave affects the entire flow in the shear layer, a certain amount

of speculation is necessary. From the necessary conditions for instability

derived in section 5, the term which may be said to drive the instability is

SK (+l) . If the underlying wave is a long wave travelling in the direction

of the upper layer, then the wave will be overtaking all parts of the flow and

the velocity field as seen from the wave frame will have no zero point. Placing

an observer in a frame such that he sees the velocity at the center of the shear

layer as zero, he is expected to see a disturbance grow slightly whenever an

unstable portion of the wave propagates past him. For the sake of the argu-

ment, let this region be a small section in the center of the wave crest, then

he sees a ripple strengthen slightly as the crest passes. After this occurence,

the ripples propagate in the cross-stream direction until one period passes and

the next crest intensifies the ripples a little more. In effect, the underlying

wave transports a series of generating lines through the flow which give a

selective "kick" to the disturbances that are present, somewhat like a parade

of inverse steam rollers. With no dissipation, even an extremely weak series

of amplifications will eventually build up under the action of a long train of

waves.

As a side comment on the instability problem, there is also a question as

to how the propagation of these ripples is affected due to the curvature induced

forces in regions where 4; 0 . Setting 4j=0 in equation (5.20) produces:

Ar ; ~C.5 w 2ES+ (7.1)

Therefore the phase speed of the disturbance will change as the wave propa-

gates by, so a certain degree of ray bending is to be expected. But since the

underlying wave field is assumed to be periodic, whatever its shape, there

should be no net focusing of the energy of these disturbances. These remarks

point up what may be considered as the basic effect of the centrifugal forces

in this problem: they alter the restoring force of the stratification. Where they

overcome this force, the disturbance intensifies, and does not propagate;
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otherwise they merely alter the restoring force and thereby change the propa-

gation characteristics of the disturbances. Also, since it is assumed that the

curvature induced forces become comparable to the stratification related

forces at some points to produce the instability, then it is evident that changes

in the propagation characteristics may be substantial, and a properly formulated

global analysis should replace the speculation in which I have indulged here.

This brings me back to the main question of this paper. Can this in-

stability exist for Richardson numbers greater than those which indicate the

Kelvin-Helmholz instability? The reason that I am not so interested in the

possibility of both of these processes occuring simultaneously lies within the

foregoing arguments of this section. The intensification period for the G6rtler

type of instability is a small fraction of the period of the underlying wave,

while the Kelvin-Holmholz mechanism operates over nearly the entire period.

I say nearly because I have not established how that instability is affected in

regions of significant curvature. Therefore, I would expect the G6rtler in-

stability mode to be swiftly overwhelmed in the debris of the Kelvin-Helmholz

initiated breakdown.

So, for the purpose of answering the proposed question I will take

equation (5.24) and set A; = 0 . While it is true that my approximate system

of equations predicts that iy'=o when cO=0 with /$=-V'= o , this is because

the smaller order advective terms were discarded. It is reasonable to go

ahead with 4;~O and use (5.24) as a first test to see if a necessary condition

for instability can be satisfied:

{{ 3+ EK @+) + # Ri ce s oc 0 (7.2)

This may be solved to give:

K --. (7.3)

(q+I) represents the scaled speed of the wave in the original coordinate frame
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X , therefore from equation (3.4)

4'+I± Q/~-j)(7.4)

or cp 2 (t.-i(7.5)

From the definition of PI and P-' I may write:

(7.6)

and when this relation is substituted into equation (7.5) the result is:

21+ (7.7)

where it has been assumed that SR'(a<<. Now, in order to satisfy (7.2) I wish

to use the circumstances which maximize (&K($+1) . Clearly, < >0 is the

most helpful situation and leads to the relation:

C"__ 0_S _(7.8)

I+

Furthermore, if I insert the maximum value of[K( with a minus sign, and

neglect CWSM , then:

asit2.(7.9)
L+J

The numerator must be real, therfore ? in this approximation. So let Ri=1

and solve for the wave amplitude &L with , = =36-,, , W'= 102 , which

are reasonable values for an oceanic transition layer. I find this leads to:

0-L~ 3 X to02 m

which is certainly absurd.

Next consider the case where Pa'R , the value of the maximum

Richardson number for the Kelvin-Helmholz instability. By the usual
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definition:

a ~ ~ . (7.10)

Therefore Ec 0 / corresponds to Ri- Vz , and using this in (7.9) with

the same parometers as before I find a wave amplitude of:

CL , ~0Z m

still an absurd result. It is on this basis then that I find it impossible for the

Gortler instability to exist without the Kelvin-Helmholz instability, and there-

fore, it has no chance of developing in the type of flows inwhich this analysis

applies.

One final observation may be advanced to try to bring this Gt5rtler

instability into its own. In (7.2) the pseudo-inertial term acts with the

stratification term and therefore places a limit on the size of +l in that:

Since this term was considered of dubious validity in section 5 where the outer

layers were considered, might it also be questioned in the middle layer? I

have been unable to generate decisive arguments from this analysis, but since

the question has been posed I have calculated the inferred wave amplitude for

Rc- '/Z after neglecting the squared term in equation (7.2) to find:

(7.12)

o0- to XM

which clearly indicates the non-existence of the instability for Richardson

numbers greater than ifl even when the pseudo-inertial term is dropped.

8. Conclusion

In this paper I have developed a model of a stratified shear layer with

large scale undulations for the purpose of investigating the role of centrifugal

instability of the Taylor-Gbrtler variety in the dynamics of the interaction of
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long internal waves with the transition region at the boundary of a surface

mixed layer. The system equations are valid only for linear long waves with

wave slope much less than one, and the underlying wave velocity field has

been all but neglected in the final form of the model.

A necessary condition for instability was found to be:

(14 > +(1L 2 o(8.1)

over some region of the flow field, and therefore the signs of the curvature,

velocity, and velocity shear must be related in such a way that:

[KLU > 0 (8.2)

Solving the system for a simple linear distribution of density and velocity in

the shear layer, with the further substitution of mean values for 3 -dependent

terms, a relation for the disturbance growth rate was found. The zero growth

rate balance of terms (neutral stability case) demanded that:

2 -'(8.3)

Upon the substitution of reasonable mean flow parameters k , & , and , it

was found that Richardson numbers greater than or equal to the critical value

for Kelvin-Helmholz instability required a long wave amplitude one order of

magnitude greater than the depth of the shallow layer. This result was obtained

from the configuration most favorable to the instability since the wave crests

were aligned perpendicular to the plane of the mean shear, and the propagation

of this wave was chosen such that the velocity as measured from the wave frame

was the maximum, and possessed no zero points. If there had been a zero re-

lative velocity in the shear layer, then the flow would have had to have been

considered in two pieces; that above, and that below the zero level. However,
it is easy to see that each of these layers would have had a smaller mean

velocity than the case considered, and therefore would have been less favor-

able to the instability. Therefore, I conclude that the Taylor-Gt5rtler

instability is simply not competitive with the well known Kelvin-Helmholz

instability in cases where this analysis is applicable.
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A possibility that still remains is that there may exist conducive

regions of high curvature on finite amplitude, non-linear interfacial waves.

However, this situation would require a careful consideration of the finite

amplitude dynamics, and this is clearly beyond the scope of this paper.

I-
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