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Abstract

A study has been conducted of the performance of pantograph/catenary
systems for electrified, high-speed rail vehicles. In this thesis, a general
pantograph model is developed and augmented with specific elbow and
suspension models which represent characteristics of a particular high-speed,
intercity pantograph. The model is verified through dynamic tests conducted
on the actual device, instrumented in the laboratory. A comparison confirms
that the nonlinear model, with the proper choice of parameters, can accurately
predict pantograph dynamics for frequencies past the pantograph’s second
modelled resonance. The model is to be used in computer simulations of
pantograph/catenary interactions to study overall system performance under

various conditions.
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Chapter 1

Introduction

1.1 Background

Electrification of rail transport provides increased efficiency of power
conversion over conventional fossil-fuel-based rail propulsion. Some diesel
locomotives, for example, use internal combustion engines to generate power for
the electric motors which turn the wheels. It is better, however, to generate
electricity from petroleum on a much larger scale. Modern electric trains,
therefore, use power generated at large plants and thus are more efficient and
more reliable than their predecessors. = The problem is then to pass the

electricity to the train as it travels.

Usually, the power is transferred to the moving train by one of two
simple means. The first lays a conducting member directly onto the rail bed,
parallel to the two main rails. Current flows through this “third rail” and is
collected by a pick-up roller on the train. This very reliable method is used
for the shorter, intracity systems where access to the underground rail area is

strictly limited.

The longer, intercity routes must use a more complex scheme, the
pantograph/catenary system. The catenary is a structure of overhead current-
carrying wires, suspended by supporting towers. A mechanical arm, known as
a pantograph, is mounted atop the train and contacts the wire, passing the

current to the train below. This scheme is favored for the longer installations
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where safe access to the rail bed must be guaranteed.

1.2 Pantograph/Catenary Systems

Major sections of track have been electrified in both Europe and Japan,
and more extensive conversions are planned. Pantograph/catenary systems are
currently being used by the Japanese Shinkansen and Tokiado systems, the
TGV and SNCF lines in France, and of course, in the United States along
most of Amtrak’s Northeast Corridor (Boston/New York/Washington). These
rail systems have been extremely expensive to comstruct. Over half of their
high capital cost can be charged to the construction of the overhead catenary
system. Great interest has been expressed in understanding how to build less-
expensive, better-performing systems and how to cheaply alter our present

systems to more closely resemble the state-of-the-art.

Catenary Styles

The catenary is a compliant structure of wires which sags under its own
weight and displaces upward with the contact force from the pantograph. The
support towers are quite stiff and constrain the catenary displacement at the
beginning and end of each span. Some typical catenary configurations are

shown in Figure 1-1.

The simplest catenary, a single tensioned cable suspended between towers,
is known as a trolley wire. The trolley wire, Figure 1-1a, is typically found in

low-speed systems such as Boston’s MBTA green-line.

The simple catenary, Figure 1-1b, provides more uniform compliance
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Figure 1-1: Common Catenary Configurations
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along the length of a span. It consists of two tensioned wires. The upper, or
messenger wire, is suspended between the towers and supports a number of
droppers from which the contact wire hangs. In this configuration the
catenary stiffness is still many times greater at the towers than elsewhere

along the span.

The stitched catenary, Figure 1-l¢, employs auxiliary wires which bypass
the towers to gain more uniform stiffness. An even more complex design, the
compound catenary, shown in Figure 1-1d, uses three tensioned wires with
droppers to achieve the desired stiffness. All of the catenaries, however, have
one common deficiency: they lack uniform compliance, so the pantograph

cannot maintain a constant contact force as it travels along.

Pantograph Styles

There are many different pantograph designs. Figure 1-2 displays two
common types. A simple pantograph might consist of a four-bar linkage
designed to move the contacting shoe up and down in a nearly-straight line.
Some sort of suspension, usually a spring or pneumatic cylinder, provides an
uplift force. This single-stage pantograph is sketched in Figure 1-2a. The
mass of the large frame necessary to span a broad range of operating heights
can make‘ the pantograph clumsy and unable to respond quickly to the

changing catenary shape.

A dual-stage pantograph generally includes a large frame linkage similar
to the single-stage pani;ograph and a relatively light and stiff head link
designed to respond to the higher-frequency components of the catenary shape.

Again, a suspension of some kind provides the uplift force. This pantograph
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configuration is commonly found on long-distance, high-speed trains, while the
simpler version typifies the slower, urban trolley systems. Figure 1-2b
represents a dual-stage pantograph, the August-Stemman. It is of the
symmetrical type, a five-bar linkage which requires a kinematic constraint to
insure straight-line (vertical) motion. A light head with a stiff suspension are

mounted above the symmetrical frame.

Figure 1-2c represents an asymmetrical dual-stage pantograph, such as the
Faively or Brecknell-Willis models. The lower and upper frame arms can be

considered four-bar linkages, and a head link supports the contacting shoe.

Dynamic Interaction

It is not the pantograph motion per se which gives rise to dynamic
problems, but rather the interaction between the pantograph and catenary.

Figure 1-3 shows a pantograph moving beneath a catenary.

The catenary displaces upward due to the contact force from the
pantograph. In the center of a span, the catenary is “soft” and displaces a
great deal. However, when the pantograph reaches a stiff tower, it is forced
downward quite rapidly and tends to overshoot (downward) and may even lose
contact. At this point, an electrical arc occurs as power to the train is
interrupted. Some of the expensive catenary may be eroded away along with
a bit of the pantograph’s contacting shoe. Arcing can damage the engine’s.
 electric motors as well. Loss of contact is an important dynamic problem, and

must be considered in pantograph design and analysis.

Ideally the pantograph should be able to:
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« operate at a broad range of speeds and wire heights. (The catenary
height may be low through tunnels and high in open areas.)

o operate with a minimum of contact force (to reduce wear of the
catenary).

e never lose contact with the wire.

Since no pantograph posesses these characteristics, all are limited in operating

speed.

1.3 Pantograph Modelling

In an effort to better understand the dynamic interaction of these
systems, researchers have developed mathematical models which are used to
predict performance. While the catenary models are generally quite complex,

most pantograph models have been simple, lumped-mass representations.

Figure 1-4a shows a typical two-mass pantograph model. The system
includes lumped masses for the pantograph frame and head, as well as
suspensions between the two masses, and from the frame to ground. Simple
nonlinearities, such as coulomb friction and nonlinear springs and dampers, can
be easily added to this type of model However, the lumped-mass
representation does not model geometric nonlinearities of the frame, since the

masses can only move vertically.

The geometrically nonlinear model of Figure 1-4b more closely depicts an
actual pantograph. This type of model can be tailored to describe many
different system configurations, also including coulomb friction, or nonlinear
springs and dampers. A nonlinear model such as this is necessary to predict

some of the special characteristics of the pantograph response.
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Many studies of pantograph/catenary system dynamics have been
conducted using lumped-mass pantograph representations. This research

investigates the use of a nonlinear model to better predict dynamic interaction.

1.4 Scope of Research

This research is part of a broader project, sponsored by the U.S.
Department of Transportation, which aims to ‘‘understand pantograph/catenary
systems in order to determine the design parameters which significantly affect
their performance.” The cost of a pantograph is quite small compared to that
of the catenary system. If a better-performing pantograph could be developed
for use with existing catenary systems in the U.S., an increase in operating
speed could be achieved. In this project, both pantograph and catenary
models have been developed to simulate dynamic interaction and study

performance.

First, a modal catenary simulation was developed which is capable of
predicting catenary response to a time-varying contact force input from a
model pantograph. For the most part, a linear, two-mass pantograph model is

used in simulating the dynamic interaction.

In parallel with the catenary work, a nonlinear pantograph model has
been developed and tested. This model considers the geometric nonlinearities
of the frame linkages, the coupling among the various links, and the nonlinear

suspension characteristics as well.

The pantograph model has been verified by correctly predicting the
dynamics of a Brecknell-Willis pantograph, which has been instrumented and

tested in the laboratory. The nonlinear pantograph model is then used in
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place of the two-mass pantograph model in conjunction with the catenary
model to best predict the response of the coupled system. Finally, these
models are used both separately and together in design parameter studies

aimed at understanding the performance of various systems configurations.

This thesis presents the development and use of the nonlinear pantograph
model and the associated experimental work. The next chapter reviews recent
work in related areas. In Chapter Three, the pantograph model and
simulation are developed. The following chapter discusses the laboratory
testing of a high-speed pantograph. Chapter Five presents the results of the
two studies and their correlation. The final chapter draws some conclusions
from this project and makes recommendations concerning future research in the

area.
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Chapter 2

Literature Survey

In the past twenty-five years, much research has been conducted to
understand and improve pantograph/catenary systems. Some of the more
important pantograph studies are reviewed here, while many of the catenary
works have been discussed by O'Connor [12] and Armbruster [1]. A more
complete survey of the recent literature in these areas is included in the first

annual report of this project [20].

Studies of Pantograph Dynamics

Research has concentrated on improving pantograph dynamics, since-a
better-performing pantograph makes possible the construction of less-expensive
catenaries and allows higher-speed operation under existing catenaries. Many
authors [4, 6, 7, 8, 11] suggest that reducing head mass is a key element in
improving performance. A lighter head, with less inertia, is better able to
track the high-frequency components of the wire shape. Gostling and Hobbs
[11] support this recommendation, but further suggest that the head

suspension be kept soft.

Belyaev, et al.,’ [2] tested two Soviet pantographs and found that the
lighter of them performed better at high speeds; however, the authors were
concerned with its sturdiness. They also added viscous damping to the heads
and found that this change resulted in a more uniform contact force history in

both cases. Boissonnade [4] tested the Faiveley high-speed pantograph on the
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French SNCF line. He advocates both the reduction of head mass and the
increase of head damping on all pantographs. Further he suggests that ‘“‘one-
way”’ damping could decrease loss of contact. This nonlinear damper, resisting

only the downward motion of the head, was not tested.

Peters [13] performed tests on both the single- and dual-stage Faiveley
pantographs. He used loss-of-contact duration as the performance ecriterion.
Peters reports that short separations, less than 5 ms, result in small, low-
temperature, electric arcs that cause no damage to the pantograph head or
contact wire. Separations of medium duration, 5 to 20 ms, are the most
damaging to the catenary and contact shoe. For durations of greater than 20
ms, the forward motion of the train extinguishes the arc. This causes loss of
power to the train, but no additional damage. Peters reports that significant
improvements were observeci by increasing the uplift force and reducing the

head mass.

Recently, British rail’s Research and Development Division and Brecknell-
Willis & Co., Ltd. completed the development of the “BR-BW Highspeed
Pantograph”.  Coxen et al., [8] report that this simple, high-performance
pantograph allows train speeds to be increased significantly for given standards
of contact loss. This asymmetrical pantograph features a light head link with
a torsional spring suspension. Flow to a pneumatic cylinder, which provides
the uplift force, passes through a small orifice, adding both stiffness and
damping to the frame at high frequencies. Airfoils are used to overcome

aerodynamic asymmetries.

At M.LT., Vesely [17] developed a nonlinear dynamic pantograph model,
describing the August-Stemman (symmetrical) pantograph. He performed

frequency response tests in the laboratory to confirm that the model
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predictions correlated well with the experimental data up to a 13 Hz excitation
frequency, above which unmodelled structural effects became important. Vesely
suggests that the two-mass model may be a suitable representation of the

actual system for displacements less than 20 cm.

Several researchers have studied the use of active elements to improve
pantograph performance. Wann [19] compared passive and several classically-
controlled active designs. He showed that active elements have the potential
to significantly improve pantograph performance. Sikorsky Aircraft [14]
mounted hydraulic actuators to the frame of an August-Stemman pantograph.
A suitable control system was not found. Belyaev, et al.,, [2] considered using
an active pneumatic cylinder on a TS-IM pantograph to stabilize the contact
force against the catenary. Vinayagalingam [18] simulated two active
pantograph designs, a frame-actuated controller and his own ‘“panhead inertia
compensated”’ controller. Neither design showed any significant reduction in

contact force variation.

Most of the pantograph models used are geometrically linear, lumped-
mass models, such as the two-mass model shown in Figure 1-4. Both Coxen
(8] and Vesely (17] developed nonlinear pantograph models which showed good
agreement with the physical systems. The evolution of a more accurate,
generic pantograph model should aid in the further development of

pantograph/catenary systems.

This thesis presents the development of a general nonlinear pantograph
model, which is augmented with specific elbow and cylinder models to describe
the Brecknell-Willis pantograph. The model is verified through comparison

with results from laboratory testing of the actual device.
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Chapter 3
Analytical Models

Several dynamic models are developed in order to study pantograph
performance. A nonlinear model, while fairly complex, is best able to predict
the pantograph behavior. First the general pantograph model is discussed, and
then the necessary elbow and cylinder models are developed to form a

nonlinear model which describes the Brecknell-Willis pantograph.

The Brecknell-Willis pantograph is of the asymmetrical type described in
Chapter 1. It consists of two frame arms which raise a head link to support
the contacting shoe. This pantograph, designed for high-speed, intercity use, is
sketched in Figure 3-1. The lower arm of the frame is actually a linkage
designed to raise the upper arm with the lower. The upper arm, a simple
four-bar linkage, provides a ‘“datum’ angle with respect to which the head link
rotates. A pneumatic cylinder gives an uplift force to the frame. As air
rushes in and out of the_ cylinder, it passes through a small orifice to add
damping to the system. A sketch of the Brecknell-Willis pantograph

configuration is shown in Figure 3-2.

3.1 General Pantograph Model

While the general pantograph model developed, with the proper choice of
parameters, can represent many pantograph configurations, it is presented here

to describe an asymmetrical pantograph such as the Brecknell-Willis. The
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Figure 3-1: Brecknell-Willis Pantograph
Sketch Courtesy of the Ringsdorff Corporation
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general pantograph model includes three degrees of freedom: lower frame link
rotation, upper frame link rotation, and head link rotation. An elbow model is
added to constrain the upper arm to raise with the lower. In addition, a
frame suspension must provide an uplift force to the pantograph. Two

suspension cylinder models are discussed.

Model Description

Figure 3-3 is a sketch of the nonlinear pantograph model developed. The
three degrees of freedom are described by the generalized coordinates 6, 0,,
and ¢, for the rotations of the lower arm, upper arm, and head link
respectively. All three angles are measured with respect to the horizontal and
signed as shown. For this derivation, the frame linkages are considered to be

rigid bodies.

The lower arm then has a length /,, a lumped mass m;, and a moment
of intertia /; about the center of mass which lies at a distance d; from the
base pivot. The upper arm has similar dimensions I/, and d,, and mass
properties m, and I,, The head link is described by the parameters I, d,,

m,, and [}, as shown.

The head spring constant, k,, represents the stiffness of the torsional
spring between the head link and the datum bar. The datum bar, for the
derivation, is assumed to maintain a constant angle. One end of the head
spring is therefore tied to ground as shown in Figure 3-3. The shoe stiffness
parameter k  describes the flexure of the contacting carbons and their

supporting structure.

At each of the joints, both viscous damping and coulomb friction are
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included. These parameters are assigned the values b, b, b,, ¢;, ¢, and ¢,

and are applied as shown in the sketch.

A displacement input y,  models the time-varying catenary height. The
input force, F', from the pneumatic cylinder suspension is applied at a fixed
angle a from the lower link and through a moment arm of length [/, as shown
in the sketch. This input force, which may also vary with time, not only
must overcome the weight of the links due to gravity but also must provide

an uplift force against the wire.

The elbow and suspension models are discussed below in sections 3.2 and

3.3 respectively.

Equation Derivation

The governing equations for the nonlinear model described above are
~derived using Lagrange’s (energy-based) method, discussed in [9]. While only a
summary of the equation derivation is presented here, the details are given in

Appendix A.

First the kinetic coenergy T is written as a sum of simple terms which

account for the motions of the three links.

T = YoL+m &) + LL62 + Imy(E2+7) + 31,02 + im(£+37) (3.1)

The potential energy V is then written to include the effects of gravity and

the two springs.

V = %khﬂﬁ + élcg(yw—g,;d)2 + mygy; + magy, + mygy, (3.2)
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The two energy terms must then be expressed as functions of only the state

variables 6,, 0,, and 6,. So we have

T" = yh+m 8167 + 35,07 + 31,6}
+ imy[Bsin0 62 + dZsin’0,02 — 21, d,sindsind,0,0,
+ I%coszoléf + dgcoszazég + 2lld2coselc0502élé2]
+ %mh[l%sin%léf + fésinzﬁzég + ﬁsinzohéi
— 2l Lsind;sinf,0,0, + 21 d,sind;sinf, 0,6,
— 2l,dsind,sind 0,0,
+ 121’0052019'% + lgcos%zég + dicos%,ﬁ%
+ 2(11200501003029192 + 211dhc0501cosﬂhéléh

+ 2l,d,cosb,cosd hé2é A (3:3)
and

V= lk6?
+ %ke[yﬁ) + lfsin@f + ffsin@% + Iisinﬂ%
— 2y, lisind, — 2y lsind, — 2y, !sinf,
+ 2lllzsinﬂlsin02 + 2lllhsin018in0h + QIzlhsinﬂzsith]
+ mygd;sind; + myg(l;sind; + dysind,)

+ myg(l;sind, + lsind, + d,sind,). (3.4)

The work done by all of the non-conservative forces is summed to account for

the viscous damping, coulomb friction, and input force. Then

2 F,6r,, = 2 EB, for i =1, 2, and A (3.5)
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and we find the three external torques to be

(m
|

F lsin(a—0;) — b6, — by(6,+0))

| =
- clsgp(él) - czsgn(él+92) ' (3.6)
g, = __62(0.14-0'2)‘- bh(é2+éh) - c2sgn(él+92) - chsgn(92+éh) (3.7)
g, = —bh(é2+éh) - chsgn(é2+éh). (3.8)
Now we form the Lagrangian L = T® — V and use Lagrange’s equation
d /oL oL
——=] - \—) =& for t =1, 2, and A (3.9)
dt \aé, 09,

to write the three governing equations.

These equations, which are taken from Appendix A, are coupled and

must be solved simultaneously. For ¢ = 1, the first governing equation is:

6,1 + mydh + myff + myf]
+ By[(myly dytmyl, L) cos(6;+6,)]
+ 8,[m,l d,cos(6,—0,)]
= 6%(myl, dy+myl, L)sin(d;+6,)
+ 6%(myl,d,) sin(6,—0,)
+ cosﬂl(ksywll—mlgdl—ngll—mhgll)
- sin@lcosﬂl(kslf) — cosf,sind,(k,11,) — cosf,sind, (k1)
+ Flgsin(a—8;) — b — by6,+6,)

- clsgn(él) - c2sgn(é1+92). (3.10)
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For 1 = 2, the second governing equation is:

0,[(myl, doyt-md, I,)cos(8,+06,)]
+ 52[12+m2d§+mh1§]
+ O,[mlyd,cos(0,+6,)]
= §X(myl dy+mll,)sin(6,+0,)
+ é%(mhlzdh)sin(€2+0h)
+ cosy(k,y, lo—mygdy—m,gl,)
— sinf,cos0,(k2) — sind cosfy(k ll,) — cosf,sing(k.l,l,)

— by(f,+0,) — by(0,+8,) — csgn(0,+6,) — c,sgn(f,+6,). (3.11)

For ¢ = h, the third governing equation is:

0,(ml d,cos(8,—0,)]
+ 52[mh12dhcos(02+0h)]
+ 5h[Ih+mhd?']
= 02(m,, d,)sin(6, —0,)
+ 63(ml,d,)sin(0,+6,)

+ cosf,(k

Yyl mugd,) — sinohcosﬂh(kfh)
— sinf,cosf,(k 1 l}) — sinfycosd,(k i,l,)

— O,k — by(0,+8,) — c,sen(f,+6,). (3.12)
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3.2 Elbow Model

In order to provide that the upper arm generally rises with the lower,
the actual linkage sketched in Figure 3-4a must be considered. The lower arm
mechanism consists of two long links pinned a fixed distance apart at their
base ends. At the elbow ends of these links are a rack and pinion. (This
arrangement more closely resembles a sprocket and chain.) The upper arm is

attached to the pinion.

This elbow, however, is not infinitely stiff. While 0, increases with 6,
for the slow motion of the pantograph, at higher excitation frequencies, the
angular velocities él and éz may be of opposite sign. An elbow model must

be included to establish static and dynamic properties of 6,.

An elbow link, with angle 6, measured with respect to the horizontal as
shown, represents the part of the elbow which moves with the lower arm. A
torsional spring and damper are placed between this elbow link and an
extension of the upper arm. The elbow is modelled as shown in Figure 3-4b.
The parameters k, and b, are chosen to represent the torsional stiffness and
viscous damping of the transmission at the elbow. The kinematic relation
between 6, and 0, is derived for the true configuration of Figure 3-4a instead

of the four-bar linkage sketched.

To incorporate this elbow model into the general pantograph model, we

must add the potential energy term

AV = 1k (0, — 0,)° (3.13)

€

and the non-conservative work term
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Figure 3-4: Brecknell-Willis Elbow Model
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T F sor, = —b(0, — 0,)(60, — 66,). (3.14)

€

.. . .
Of course, we do not change the kinetic coenergy term 7T since no mass or

inertia has been added.

Now 4, and 0 must be expressed as functions of the state variables 6,

60
and 0 We will also need -—5 as a function of 6. These kinematic relations
are derived in Appendix B, :hthough not in closed form. For the governing

69,
equations, we will continue to use the symbols, 4, 06, and — as necessary.

o0
_ 1
Using Lagrange's equation, Equation (3.9), we simply add the two torque
60

. . 60
terms ke(08—02)2:9-5 and —-be(()e—-ﬂz)-‘-s-;-e to the left- and right-hand sides of
Equation (3.10) relspectively. Also wé add the terms k(0,—0,) and —b e(é 8—92)
to the left- and right-hand sides of Equation (3.11).

3.3 Cylinder Models

Two different models for the pneumatic suspension were developed. The
nonlinear cylinder model Figure 3-5, considers the air to be an ideal gas which
compresses reversibly. The flow is resisted as it passes through the small
orifice to or from the constant supply pressure. The linear cylinder model,
Figure 3-6, treats the compressible fluid as a simple spring and the orifice as a

viscous damper in series.

Either cylinder model adds a new state variable, P, to the list of
generalized coordinates used in the pantograph model. Therefore, for each
case, we must derive a differential equation for the new state of the form
P=7 (9, 91, P) and then couple the two systems by defining the input force
F,= [(6), P)

¢
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Figure 3-5: Nonlinear Cylinder Model
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Figure 3-6: Linear Cylinder Model



Nonlinear Cylinder Model Development

In this model, the new state variable, P, is simply the pressure of the air

inside the pneumatic cylinder.

We assume the air in the cylinder to be an ideal gas. The mass of that

air is then given by the perfect gas law,

PV

o (3.15)

m ==

where P, V, and T are the cylinder pressure, volume, and temperature
respectively, and R is the universal gas constant. We assume that the process
is sufficiently slow to maintain a constant gas temperature. Then
differentiating equation (3.15) with respect to time in order to find the mass

flow rate with T constant, we have

dm P dV V dP

F—=. (3.16)
dt RT dt RT dt

The flow rate through the small orifice is a function of the upstream and
downstream pressures. This relation for compressible flow through an orifice is

given by reference [3] as follows:

- AN O

u

for 528 < =2 < 1.0
Pu
where ¢, = discharge coefficient of the orifice

A y = orifice area
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4 = ratio of specific heats for the gas
P, = upstream pressure
; = downstream pressure.

Equating the mass flow rates through the orifice and into the cylinder,

we eliminate m and have the differential equation for the pressure.

dP  RTec [ 2y P, (P PNXl P 4V
—= o — (—i)”‘ \/1 — (—‘l') T— - — (3.18)
dt V. . YR-1) VT \P, P, vV dt

where P; = P and P, = P for P < P,

and Pd = Ps and Pu = P for P > Ps.

To implement this cylinder model, the differential equation for the
pi'essure is integrated along with the governing equations for the pantograph.
To couple the differential equations, we solve for the. cylinder volume as a
function of the lower frame link position, 6,, and substitute into Equation

(3.18)

V=14+ Aplbcos(a—-0l) (3.19)
and

dV .

" = Apﬁlsm(a—ﬂl) (3.20)

where V° is the cylinder volume when (“‘5,1)'—‘%7" and Ap is the piston surface

area. Now we have

LN BN N o
V°+Aplbcos(a—-91) R(y—1) VT \P, P




-35-

B PA pélsin(a— 6;)
V°+Apl yeos(a—9,)

(3.21)

Finally, to couple the cylinder force to the pantograph, we substitute into

the first pantograph differential equation

F,= (P — P)a, (3.22)

c

where P, is the atmospheric pressure. Note that under static conditions,
91=0 and for P to be zero, P/=~=P, so the pressure, P, must equal the

absolute supply pressure, P. So

F

slatic

= (P,—P)A, (3.23)

Linear Cylinder Model Development

In the linear model, the new state is the displacement P of the point

between the spring and damper, as shown in Figure 3-6.

The differential equation governing the motion of P can be obtained by

summing the two forces which act on the point.
k[P — lcos(a—8))] + b P = 0. (3.24)
Now, solving for P

P = %[lbcos(a—-ﬁl) — P (3.25)

¢
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The force applied to the lower link is found by adding the spring tension to

the external force
F, = PgAp + k[P — licos(a—0,)] (3.26)

where Pg is the supply gage pressure, Pg=P8—Pa.

To implement this linear cylinder model, the differential equation for the
motion of the point P, Equation (3.25), is integrated along with the governing
equations of the pantograph. To couple the cylinder model to the pantograph,
we substitute the inimt force given by Equation (3.26) into the first
pantograph equation. Note that under static conditions, the force applied to

the lower link is

Fotatic = PgAp (3.27)

as in the nonlinear case.

3.4 Solution Technique

The governing equations for the general pantograph model are a set of
three coupled, second-order differential equations.  Before integrating, the

second derivative terms are decoupled by their simultaneous solution.

We first write Equations (3.10), (3.11), and (3.12) in a convenient form.
Ab, + Bo, + €8, = D
E9, + Fb, + G0, = H (3.28)

B, + Jo, + Kb, = L
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where

A=Il+m1d%+m21f+mhl%

B = (myl, dy+myl, l,)cos(0,+0,)

C = myl, d,cos(0,—9,)

D = 6%(myl, dyt-m1,1,)sin(0,+9,)
+ 6%(m,l d,) sin(0,—0,)
+ cosf,(ky,l,—m, gd,—mygl, —m,gl)
- sinﬁlcosgl(ksff) — cosf;sinby(k L) — cosf,sind, (k1 1)
+ Flsin(a—0,) — b6, — by(0,+0,)
- clsgn(él) - czsgn(él+92)

E = (myl,dy+myl l))cos(8,+06,)

F = Limydi+mf]

G = myl,d,cos(0,+0,)

H = 6%(myl, dy+m,l, L,)sin(6,+06,)
+ 63(myl,d,)sin(0,+6,)
+ cosby(k.y, lo—mygd,—m,gl,)
- sin02coso2(kslg) — sinfcosby(kl L) — cosbysind,(k1,l)
- 62(é1+92) — bh(éz-}-éh) - c2sgn(él+é2) - chsgn(é2+9h)

1 = myl d,cos(6,—0,)

J = mlyd,cos(0,+6,)

K = Litm,d;

L = 63(ml d,)sin(6,—06,)

+ 03(mydyd,)sin(0,+6,)
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+ cosf(ky, b -mu9d;) — sinﬁhcos0h(ksl%)

— sind,cosf(k 1 1,) — sinfycosd(k L,l,)
— Ok, — bh(92+éh) - chsgn(92+9h). (3.29)
Using any suitable means (Cramer’s rule, matrix inversion, or Gaussian

elimination and back-substitution [16]), we can find decoupled expressions for

the three accelerations.

; DFK + BGL + CHJ — LFC — HBK — DJG
1™ AFK + BGI + CEJ — IFC — EBK — AJG

AHK + DGI + CEL — IHC — EDK — ALG
" AFK + BGI + CEJ — IFC — EBK — AJG

0, (3.30)

) AFL + BHI + DEJ — IFD — EBL — AJH
h™ AFK + BGI + CEJ — IFC — EBK — AJG

A numerical integration routine, based on the fourth-order Runge-Kutta
method [15], is used to solve the differential equations for the time response.
This integrator only works with first-order equations, so to the three
acceleration equations, we add three (trivial) equations defining the velocity
states. Finally, we choose one of the two cylinder equations and have seven
first-order  equations to  determine the solution for the states

01, 01, 09y 09y 85, 04 and P.

The equations of motion are coded into a FORTRAN subroutine, EQSIM,
included in Appendix C The software package DYSYS, used at M.L.LT.’s Joint
Computer Facility, provides the Runge-Kutta integrator and the necessary

plotting routines.
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3.5 Choice of Parameters

The many parameters for the nonlinear pantograph model, Figure 3-3, are
listed in Table 3-I along with the values chosen to describe the Brecknell-Willis

pantograph tested.

The physical dimensions !, l,, and I, representing the three link lengths
were taken from the pantograph set up in the laboratory, and then verified
with dimensions extracted from a set of assembly drawings, supplied by The

Ringsdorff Corporation.

The masses m,, m,, and m;, the moments of inertia I}, I,, and I, and
the distances to link centers of mass d., d2, and d;, were estimated from

known link properties.

The input spring constant, k, corresponds to the stiffness of the
contacting shoe and its supporting structure. Its value was determined by
removing the head, supporting it rigidly at the points where the apex frame
attaches, and measuring both applied force and deflection of the carbons in a

series of tests.

The head spring rate, k, is a nonlinear function of the angle, 8,. The
spring includes the effects of the stop which limits the head rotation. The
torques necessary to deflect the head link in both directions were recorded,

along with the induced rotations.

The stop was found to be less than five times as stiff as the torsional
spring designed to provide the stiffness k,. Furthermore, the torsion bar is
preloaded in such a way that for the small deflections of 6, encountered in the

laboratory testing, the head spring is always in the region governed by the



Table 3-1:

variable value

|/
=3

wﬁ.

;_9..

> = >

N

S O
[ Y

1.95
1.95
0.40
31.5
25.2
13.5
11.7
8.10
0.432
1.10
0.80
0.35
180000
2250.0
44640.0
36.0
157.5
10.8
0.9
0.45
0.45
0.120
0.170

-40-

Parameters for the Nonlinear Pantograph Model

units

kg—m2

m

m

N/m
N-m/rad
N-m/rad
N-m-sec/rad
N-m-sec/rad

N-m-sec/rad

description

lower link length

upper link length

head link length

lower link mass

upper link mass

head mass

lower link moment of inertia
upper link moment of inertia
head moment of inertia
distance to lower link mass center
distance to upper link mass center
distance to head mass center
input (catenary) spring constant
head spring constant

elbow stiffness

base viscous damping

knuckle viscous damping

head viscous damping

base coulomb friction

knuckle coulomb friction

head coulomb friction
x-coordinate of the base link

y-coordinate of the base link
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0.082
-0.164
0.235
1.82
0.0123
0.00000314
0.000996
710185.0
287.0
1.40

0.60
101000.0
293.0
162000.0
90000.0
9.80665
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Table 3-I, continued

m length of the elbow link (pinion radius)
rad initial value of 6, (for 9,=0)

m moment arm length for cylinder

rad angle between lower link and moment arm
m? piston surface area

m? orifice area

m?> cylinder volume when (a—-ﬁl)_—.%r

N/m? supply gage pressure

m?/sec®-K universal gas constant

(dimensionless) specific heat ratio

(dimensionless) discharge coefficient

N/m2 atmospheric pressure
K cylinder temperature
N/m | simple cylinder spring
N-sec/m simple cylinder damper

m/sec? gravitational acceleration
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stop stiffness.  Therefore, the constant chosen for k,, given in the table,

represents only the stiffness of the stop.

The elbow stiffness, k,, was found by measuring force and deflection at
the top of the upper arm with the lower arm fixed. The relation was
observed to be linear within the accuracy of the measurements made, and the

calculated value for k, appears in the table.

The viscous damping constants, b;, b, and b,, for the three joints were
estimated by matching the peak amplitudes predicted by the simulation output
at the resonant frequencies with those observed in the experimental data at

the same frequencies.

The coulomb friction observed in the pantograph was very low so the
values ¢, ¢y, and ¢, were set to small values in the absence of a suitable

model for the stiction which may have a greater effect.

The dimensions % Y l, and 9‘; which affect the elbow linkage
kinematics were measured on the pantograph. The dimensions [, and @,
describing the short arm through which input torque is applied, were also

measured in the laboratory and confirmed by the assembly drawings.

The piston area Ap and orifice area A  were measured by removing the
necessary parts from the cylinder. The cylinder initial volume V° was
calculated from the known cylinder dimensions. The supply gage pressure, P .

was found from the regulator setpoint.

The values for the gas properties B and ~ were found in tables. The
discharge coefficient ¢; describes a sharp orifice. The ambient pressure and
temperature were used for P, and T. For the simple cylinder model, the

stiffness k, describes the compression of the gas that would be trapped in the
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cylinder if the orifice were blocked. A value for k, was chosen by linearizing
the compression of the ideal gas about the static pressure operating point.
The value for the cylinder damping, b, was chosen by matching the linear

cylinder pressure output to the experimental pressure data.

The usual value for the gravitational acceleration, g, was used.
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Chapter 4
Experimental Model

An experiment was performed in the laboratory to verify that the
nonlinear model is an accurate representation of a real pantograph. A
Brecknell-Willis pantograph was instrumented, and its dynamic response to a
range of displacement input recorded for analysis. This chapter discusses the -
dynamic testing conducted at the U.S. Department of Transportation’s

Transportation System Center (TSC) in Cambridge, Massachusetts.

4.1 Laboratory Setup

A Brecknell-Willis ‘“‘high-speed”” pantograph was obtained from Amtrak
and set up in the TSC laboratory. The pantograph was fixed to a steel base
plate, and a structure of steel beams erected to support a hydraulic input ram
and instrumentation. A supply of compressed gas (mitrogen) was provided to
operate the pneumatic system which raises the pantograph. Figure 4-1 depicts
this laboratory setup.

The servo-controlled hydraulic ram simulated a sinusoidal catenary over a
range of frequency. The ram, mounted above the pantograph, excited the
system with a displacement input at the contacting carbons. A function
generator provided the time-varying input signal to the servo controller. An

LVDT measured the ram’s position output for feedback and for reference.

In some tests, the ram was rigidly attached to the center of the carbons.
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Figure 4-1: Experimental Pantograph Setup
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This configuration corresponds to the simulated test case in which the catenary
spring, k, can both push down and pull up on the head. Further tests were
run in which the ram was not attached, and could only push down, which is

case is more representative of the pantograph operating under a catenary.

Three position displacement transducers, by Celesco Transducers
Products, measured the response of the three rotational state variables. These
transducers, called stringpots, simply consist of precision conductive-plastic,
rotary potentiometers that have cable wrapped around their input shafts with

light return springs.

One stringpot, attached at the pantograph ‘“elbow”, measured the lower
link position. The second stringpot, attached to a point at the top of the
pantograph frame, recorded the overall motion. The remaining one measured
the height of the end of the head link. The difference between the first two
stringpot signals gave the upper frame link motion, while the difference
between the second and third signals gave the head link motion.  The
potentiometers allowed the use of a simple voltage divider circuit to output a
voltage proportional to linear displacement.  The input voltage to each

transducer was ‘‘tuned” to attain zero output at the static operating point.

A differential pressure transducer, by Validyne Engineering Corporation,
measured the pneumatic cylinder pressure. One side of the diaphragm was
maintained at the supply pressure, while the other side contained the cylinder
pressure. In this configuration, the transducer output represents the pressure
drop across the small orifice at the cylinder input. The transducer was of the
variable-reluctance type, so it required an AC carrier signal and a demodulator
to produce the desired DC output. A Tektronix differential amplifier was used

to subtract the DC offset from the pressure siénal.



-47-
A Racal FM data recorder was used to store the transducer outputs on

magnetic tape for later analysis. Five channels of data were recorded:

1. ram LVDT output

2. elbow stringpot output

3. top-of-frame stringpot output
4. head stringpot output

5. pressure transducer output

The first signal records the time-varying input height, while the
remaining four channels represent the response of the pantograph’s four degrees

of freedom, 4,, 0,, 6;, and P.

4.2 Experimental Procedure

A summary of the experimental procedure follows.

After the pantograph and instrumentation were set up as described,
pressure was applied to the pneumatic cylinder. To avoid the transient
associated with filling the system to operating pressure, supply pressure was
temporarily routed to both sides of the differential pressure transducer. This

prevented damage to the diaphragm before the operating point was reached.

Next, the hydraulic pump and cooling system were started. With a low-

frequency, zero-amplitude input signal, the servo controller was turned on.

The input voltage was applied to the stringpots, and the carrier signal to
the pressure transducer. All five circuits, including the ram setpoint, were

then tuned to achieve zero output at the static operating point. To maximize
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the dynamic range of data stored on the tape recorder.

Then, with the desired frequency and amplitude set, the five channels of

data were recorded onto the tape.

Data were taken at 0.5 Hz intervals from 1.0 to 15.0 Hz. Data were
obtained for the cases with the head both rigidly attached to, and detached
from the ram. Many input amplitudes were applied, and frequency was swept

both up and down to observe various nonlinear effects.

The five (analog) channels of experimental data were digitized wtih an
analog-to-digital (A/D) converter. The data were then processed digitally to

obtain the desired output states.

4.3 Data Processing

The analog data were transported on magnetic tape to the Machine
Dynamics Laboratory at M.LT. The five channels were played back
simultaneously with the Racal tape recorder into a Datel A/D converter on the
Digital PDP 11/44 minicomputer in the laboratory. Each channel was sampled
every 2 ms (500 Hz) for two seconds. The digital data were ouput to files for

processing.

The raw data files were transferred on disk to M.LT.’s Joint Computer
Facility, where the processing was to be completed. The data arrays were
scaled, first by the recording levels to obtain the recorder input voltage
amplitudes, and then by the instrumentation sensitivities to find the actual
pressure and displacement information. Next, the elbow column was

subtracted from the top-of-frame column to obtain the displacements of the
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upper link with respect to the lower link. The top-of-frame column was then
subtracted from the head column to yield the head displacements with respect
to the top of the frame. Finally, the five columns of data were slightly offset

for plotting.

- Of the 20 seconds of data recorded at each frequency of excitation, only

1.6 seconds were digitized, and only one second of data actually plotted.
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Chapter 5
Results

A comparison is made of the two pantograph representations discussed in
the previous chapters. The simulation output is compared with the processed
experimental data to verify that the analytical model can be wused to

accurately predict the actual pantograph dynamics.

5.1 Simulation Output

The general pantograph model developed in Chapter Three was
augmented with the linear cylinder and elbow models in order to describe the

Brecknell-Willis pantograph tested.

~ The input height, y , was a sinusoidal displacement of peak-to-peak

w’

amplitude 3.7 mm added to the static operaﬁing height of 1.58 m. Input
frequency ranged from 1.0 to 30.0 Hz.

In these simulations, the top spring, k, was able to apply forces both up
and down to the head, modelling the case in which the ram was attached

rigidly to the contacting carbons.

For the modelled system, which acts somewhat like a three-mass, four-
spring system, we expect to observe three second-order resonances, and one
first-order lag. In fact, we do see just that. The system resonances are at
roughly 4.25 Hz, 875 Hz, and 19.5 Hz. The first-order cylinder state, P,

always follows the lower frame link state 6,, as expected. The time constant
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5
kc
The time histories output from the simulation each show four curves,

describing the cylinder response is 7 =

which are labelled as follows:

o IN - input displacement height, y

o HD ---head relative displacement, [;sinf,

o F2 --- upper frame link relative displacement, l,sinf,
e F1 --- lower frame link displacement, [ sinf,

Figures 5-1 through 5-6 plot simulation output for six representative
frequencies. =~ The 2.0 Hz response, Figure 5-1, typifies the low-frequency
vibrations. The two frame states are in phase with the input, and each frame
link accounts for roughly half of the gross motion. There is very little

rotation of the head link.

As the frequency is increased toward the first system resonance, however,
the frame motions increase dramatically.  Figure 5-2 shows the 3.5 Hz
response. With more force now across the head, the head deflections also

increase, but are out of phase with the input and frame motions.

The 4.5 Hz response shown in Fi'gure 5-3 18 very near the first system
resonance. The output states have reached peak amplitudes, and they have
shifted in phase. The frame states are about 90 degrees out of phase, while

the head lags behind the input by nearly 270 degrees.

Well above the first resonance, Figure 5-4 shows the 6.5 Hz response,
typical of the vibrations at frequencies between the first two resonances. The

frame states have settled down considerably. The head, which is now in phase
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with the input displacement, dominates the response. The two frame states
have split in phase. The upper frame link is again in phase with the input,

while the lower link is now almost 180 degrees out of phase.

The 8.5 Hz response, Figure 5-5, is very near the second system
resonance. The states have again shifted by 90 degrees and reached peak

amplitudes.

Figure 5-6 shows the 10.0 Hz response which typifies the system response
to input frequencies above the second resonance. The head rotation is again
in phase with the input displacement. However, with its amplitude greater
than that of the input, the head motion causes the frame to be out of phase

(the opposite of the situation just below the first resonance).

Since only a few frequencies are plotted here for brevity, while many
more cases were simulated, a graphic aid is used to visualize the system's total
frequency response. If the system were linear, we could make a Bode plot to
show the frequency response. For the nonlinear pantograph model simulated,
at low amplitudes of excitation and small levels of coulomb friction, the
vibrations about an operating point would be nearly linear. For comparison
with the experimental results only, we can make a frequency response plot in
the style of a Bode plot. The plot is valid only for the specific operating
height and input amplitude for which it is drawn. Figure 5-7 shows this

frequency repsonse plot for the simulation output discussed.

The actual simulated response, of course, is nonlinear. Each point on the
amplitude plot was then determined by considering only the component at the
forcing frequency, and evaluating the output amplitude and phase with respect

to the input.
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5.2 Experimental Data

The test pantograph was set up in the laboratory, instrumented, and
tested as described in Chapter Four. The experimental data were processed

and are presented here for comparison with the simulation output.

The static operating height of 1.58 m and the sinusoidal input
displacement amplitude of 3.7 mm peak-to-peak compare to those used in the
model implementation.  However, unlike the digital simulation’s constant-
amplitude input displacement, the servo-controlled hydraulic ram cannot
maintain the desired response for all situations. @ The experimental input

displacement is therefore neither purely sinusoidal, nor of constant amplitude.

Again, while many tests were conducted, only a few sample results are
reproduced here for comparison. Input frequencies ranged from 1.0 Hz to 15.0
Hz. In the cases presented below, the contacting shoe was rigidly attached to

the ram.

Insight gained from the modelling has led us to expect to observe three
system resonances and to find the pressure state responding only to the lower
frame link motions. The first two resonances appear near 4.0 Hz and 8.25 Hz.
The third resonance falls at a frequency above the test range. The cylinder
pressure response was as expected and, for clarity, is not included in the plots

below.

The time histories obtained from the experimental data are each
presented as four curves. The states represent the same ones output from the

simulation, and are labelled as follows:

e IN --- input displacement
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o HD ---head displacement with respect to top of frame
e F2 --- upper frame link displacement with respect to elbow
e F1 --- lower frame link displacement

Figures 5-8 through 5-13 contain experimental data plotted for six

representative frequencies.

Figure 5-8 shows the 2.0 Hz response. The two frame states dominate
the response, each taking roughly half the input amplitude. The amount of

head rotation is small at low frequency and out of phase, as expected.

The system response at 3.5 Hz, shown in Figure 5-9, shows the frame
states increasing in amplitude as the first resonance is approached. The
greater frame response induces large head motions 180 degrees out of phase

with the input.

Figure 5-10 shows the 4.0 Hz response, very near the first system
resonance. All three of the states now lag almost 90 degrees from their low-
frequency phase relations. The large-amplitude motions display oile of the
nonlinear effects not shown in the smaller vibrations. The model does not

predict this harmonic response at double the input frequency.

Past the first resonance, the 6.0 Hz response plotted in Figure
5-11 shows the head with an amplitude greater than that of the input
displacement, and in phase. The two frame states have split phase as
predicted, with the upper link back in phase with the input, and the lower

link 180 degrees out of phase.

Figure 5-12 shows the system response at 8.0 Hz, very near the second

resonance. All the states are approaching peak amplitudes and are again
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shifting in' phase.

Above the second resonance, Figure 5-13 shows the 10.0 Hz response.
The head is now in phase with the input and dominates the response. The
two frame states are out of phase with the input and have a lower amplitude,

as expected.

As with the simulation output, we will again attempt to summarize the
frequency response graphically as if the system were linear. Taking only the
peak amplitude of the response at each input frequency, we can make a
frequency response plot which approximates the system performance only at
the specific operating point and input amplitude tested. Figure 5-14 shows

this plot for the experimental data discussed.

5.3 Model Verification

The frequency response plots for the simulated and actual pantographs
are sketched in Figures 5-7 and 5-14, respectively. The two systems share
many common traits yet there are some distinct differences. For comparison,
these two plots which represent the system responses under similar conditions

are discussed.

At low frequency, the model correctly predicts both the amplitude and
phase of the head state.. The model shows the lower frame link taking less
than half the input amplitude, and the upper link having correspondingly more.
This is the effect of the kinematic elbow relation, which must be slightly off.
The experimental data plotted suggest that % is near 1.0, while the model
shows that — is much higher, perhaps 1.4, %ince the upper link moves more

60
than the lower link in the quasi-static case.
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The frequency of and peak amplitudes at the first resonance are well
shown by the model (considering the resolution along the frequency axis). The
phase shifts and splitting of the frame states are also remarkably well

predicted.

At 6.5 Hz, the experimental data displays a definite jump in head
amplitude and a temporary shift in the upper link phase. The model shows
no such changes. These phenomena suggest another resonance, perhaps

structural, which is not modelled in the simulation.

The frequency of the second resonance is slightly off; however, the
relative amplitudes of the states are fairly well predicted by the model. There

is some discrepancy in the phase shifts at this resonance.

Above 10 Hz, the model correctly predicts the amplitudes of the states,
including the rise before the next resonance. Frame phase relationships, on
the other hand, are wrong above the second resonance; however, with the very
low amplitudes of frame motion at these frequencies, the consequence of this
divergence may be small. Failure of the model to accurately represent this
phase information may be attributable to inaccuracies caused by the limitations

of the simple, linear cylinder model.

In conclusion, the nonlinear model describing the Brecknell-Willis
pantograph accurately predicts the fundamental response amplitudes through 15

Hz, and phases through the second resonance, near 9 Hz.

The model developed can now be used to study many new configurations
of high-speed pantographs. @ The model can be used in conjunction with
catenary simulations developed in order to study the pantograph/catenary

interaction.



Chapter 6

Conclusions and Recommendations

8.1 Dynamic Model Development

A nonlinear model was developed to predict the response of a
pantograph. The model was used to describe a Brecknell-Willis Pantograph.
The actual device was instrumented and tested in the laboratory. The
experimental data were compared with the simulation output in order to

confirm the validity of the model.

The results, presented in the previous chapter, show that the simuiation
is able to produce the system response for input frequencies through the
second modelled resonance. The pantograph’s resonant frequencies near 4.25
and 8.25 Hz were closely predicted by the model. The proper amplitudes and
phase shifts are shown by the simulation results both before and after the first
resonance. However, at 6.5 Hz there is an unmodelled resonance, one which
shows up in the experimental data and not in the simulation output causing a
discrepancy only in the response amplitudes very near 6.5 Hz. At the higher
frequencies, above 9 Hz, the model predicts the amplitudes of motions

correctly, but not the phase.

In general, the model developed has proven to be quite robust. The
nonlinear model well predicted the dynamics of the physical system, including
some features of the response which could not have been matched by a linear

model.
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The model assumes all of the links to be rigid; however, in the physical
system these members can flex, so there are many more resonances than
actually modelled. If the system response must be predicted with more
accuracy or at higher frequencies, adequate models of structural effects would

have to be included.

Elbow modelling has a great effect on system performance. One cannot
assume the knuckle of an asymmetrical pantograph to be infinitely stiff.
O'Connor [12] showed that frame motions are a very important factor in
dynamic performance, and the results presented here show that the two frame

links do not always move together, so an accurate elbow model is essential.

The cylinder model may also significantly influence overall performance.
Its effect should be studied in more depth. In addition, the kinematics of the
upper arm could be included in the model to provide a more accurate ‘‘datum

angle” to reference the head link’s torsional spring.

6.2 Recommendations for Use

The successful nonlinear pantograph model development warrants its
implementation into a complete pantograph/catenary dynamic simulation. The
pantograph model is ready for use with any catenary model that can interface

through a contact spring.

The catenary model developed as part of this research [1], [12], and [20],
accepts contact force from the pantograph in each timestep and returns the
new wire height to the pantograph [21], while the two systems are integrated

simultaneously.
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Finally, both the complete pantograph/catenary simulation and the
nonlinear pantograph model itself will be very useful in parameter studies
aimed at determining the parameters which seriously affect- overall system

performance.
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Appendix A

Derivation of Governing Equations

The equations of motion for the nonlinear pantograph model shown in
Figure A-1 are derived using Lagrange’s energy-based method. The three
generalize.d coordinates are 6,, f,, and §,. Each of the three links has a mass
m, an inertia I, a length I, and a distance to its center of mass d. The
height, Y, is the displacement input from the catenary, and F, is the external
force applied by the suspension (pneumatic cylinder). The force F_ is applied
through a moment arm of length [, at a fixed angle o with respect to the
lower link. Viscous damping and coulomb friction act at each joint. These

dissipative terms have the parameters b, b,, b,, ¢;, ¢,, and ¢,.

The kinetic co-energy is first written as a sum of simple energy terms

which include the motion of the three links.

T = HL+m )6} + 3065 + Jmy(B+7) + 3,07 + ymy(G+57) (A.1)

where the x- and y-coordinates are used to describe the positions of the masses

with respect to the axes drawn.

z, = llcos01 - 2cosl92 (A.2)

y, = Lsing, + d,sind, (A.3)

z, = lcosf, — l,cos6, + dycosd, (A.4)
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Figure A-1: General Pantograph Model
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y, = lsinf; + l,sind, + d;sind, (A.5)

and differentiating to obtain the velocities,

iy = — lfsind, + dyf;sind, (A.6)
Yy = lle'lcosﬂ1 + d2¢§2c0502 (A7)
i = — Lfsind) + Lfsind, — d;f,sind, (A.8)
U = Iltﬁ.?lcoso1 + 12é2cosﬁ2 + dhéhcosoh (A.9)

The potential energy is written by summing the energy stored in the springs

and the potential from gravity.

V= gk + .%"s(!lw" v)? + mygy + myguy + mygy, (A-10)
where

y; = lsind, + Lsind, + lsind, (A-11)

y = dsinf, (A1)

Yo = hsinf, + d,sind, (A.13)

y, = Lsind; + lsind, + dysinf, (A.14)

The non-conservative work is written by summing all the work done onto the

system by the external force, viscous damping, and coulomb friction.

Y Fér,, = Flsin(a—0,)é0,
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— b,0,60, — by(0,+0,)(60,+60,) — by(0,+0,)(60,+68,)
- clsg;n(ﬁil)éa1 - c2sgn(91+92)(601+602)

— c,sgn(0,+0,)(60,+86,) (A.15)

Now substituting to solve for the energies in terms of the generalized

coordinates only,

*

T" = YL+m &6 + 1062 + 1,62
+ my[Bsin?0,62 + dZsin0,02 — 2l d,sinfsind,9,0,

+ I%coszﬁléf + dgc05202é§ + 2lld2c0501c0502élégj
+ %mh[lfsin%léf + lgsin2029§ + d%sin%hé%

— 2l Lsind;sinf,0,0, + 21 dsind;sind, 4,9,

— 2l,d,sind,sinf, 0,0,

+ Ifcos%léf + fécos%zﬂ'g + d%coszahég

+ 2lll2cosﬂlcosozélé2 + ZIldhcosﬂlcosehéléb

+ 2l,d;cosb,cosd hézé A (A.16)
and

V= 1k6
+ %ka[y?” + l%sinO% + l%sinog + I%sinﬂ%
— 2y,l,sinb, — 2y, lsind, — 2y lsinf,
+ 2l l,sinf,sinb, + 21, l;sind sind, + 2l1,sind,sind;]
+ mygd;sind;, + myg(l;sind, + d,sind,)

+ myg(l;sind, + Lsind, + d;sind,). (A.17)
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Combining terms,

T = E(L+m P + jmyf + jmyl]
0L, + jmydl + gyl
+ UL + Ym )
+ 0 92[(m21 dy+myl, 1,)(cosf, cost, —sind,sind,)]
+ 010h[mhlldh(sinHlsin0h+cosolcos()h)]

+ 929 plmylody(cosfycosd j—sind,sind, )] (A.18)

and

<
[

21
Bilzks)
sin®4, (3k,5)
sinzoz(ékslg)
sin%0,(3k,5)
sind,sinf,(k 1, lp)
sin;sind, (k! 1)
sin02sin0h(kslzlh)
sind, (—k,y,0, + m,gd; + mygl, + m,gl,)

sinfo(—k,y, 0 + mygd, + mygl,)

+ + + + + + + + +

sind,(—ky, by + m, gd,)

+

vl
Loyl
S

(A.19)

svu

The external torques are found from the non-conservative work by using the

relation
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Y F br,, = 2 ESb; for i =1, 2, and h.

The external torques are found to be

(m
|

F lsin(a—0,) — bd, — 52(é1+é2)

- clsgn(él) - czsgn(é1+é2)
B, = —62(é1+92) - bh(92+9h) - cQSgn(él+é2) — chsgn(é2+éh)

—by(6,+0;) — c,3gn(0y+6;)-

-
i

Now we form the Lagrangian,

L=T -V

and use Lagrange’s equation to write the governing equations:

d /oL oL
——=) -{=) =5 for i = 1, 2, and h
dt\aé 90,

For { = 1, we find the first governing equation by differentiating.

d(aL) (61.)
at\ab/ — \eo/

6,1 + m & + m,

8¢]

1

e

+ mh[%]
+ 52[( myl, do+m ) 12)(c0501cost92—sinﬁlsin02)]
+ éh[mhll dy(sind,sinf+cosd, cost, )]

- 92( 91+é2)(sin01c0502+cos 0,sind,)(mol; dy+mylyly)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)
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- éh(él—9h)(sinﬂlcosﬂh—cos@lsinoh)mhlldh

= — é1(52(m2lld2+mhll12)(cosﬂlsin02+sin01c0362)

+ éléh(mhlldh)(cosolsineh—sinﬂlcosﬂh)

~ [cosf (—k,y, 1, +m, g9d,+mygl, +mgl,)

+ sind,cosf, (k) + cosd sinfy(k L) + cosd sind, (k1 1)]
+ F lsin(a—0,) — blél - 62(é1+é2)

- clsgn(él) - c2sgn(9l+é2) (A.27)

Combining terms,

0yl + md} + myli + myf]
+ Gy[(myl dy+m 1, L)cos(8,+6,)]

+ éh[mhlldhcos(ol—ﬂh)]

= 02(myl, dy+m,l, L)sin(d,+6,)

+ 63(m,l,d;) sin(d,—0,)

+ cosb,(k.y, bl —m, gd, —mygl, —m,gl )

- sinolcosﬂl(keff) — cosf,sindy(k 1 l,) — cosfsind, (k1 1)
+ Flsin(a—0)) — b8, — by(6,+6,)

- clsgn(él) - czsgn(91+é2). (A.28)

For s = 2, we find the second governing equation by differentiating.

d(aL) (BL) ] oo
dat\ag,)  \ag,/  ? (A-29)

0, L+m,d2+m,B]
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+ 6 ([(mgl; dy+myl, 1y)(cost, cosf, —sind, sind,)]

+ Oh[mhl d,(cosfycosy, —sinb,sind, )]

— 8 (0 +6 o)(myl; dy+myl L)(sind, cosd,+cosb, sind,)

- 0h(0h+02)mhl2d2(cos%sinﬁ,ﬁsinﬁzcosoh)

= — élé2(m211d2+mhll12)(sin01c0802+cos015in02)

- ézéh(mhl2dh)(cosezsin0h+sin02cosoh)

— [cosy(—ky, lo+mygdy+m,gly)

+ sin02c0802(kslg) + sinf cosby(k ,1,) + cosf,sind,(k 1,1,)]

— by(f;+0,) — by(0,4+0;) — cosgn(8,+6,) — c;sgn(f,+6)) (A.30)

Combining terms,

8, [(myl, dytmyly Lp)cos(8,+0,)]
+ O[L+mydi+m, B
+ 6,[m,l,d,cos(f,+0,)]
= 0%(myl, dy+m,] L)sin(0,+0,)
+ 63(mylyd,)sin(0,+9,)
+ cosfy(k,y, lh—mygdy—m 190)
— sinfcosf,(k ) — sind coshy(k L) — cosdysind, (kL)

— by(0,+0,) — by(0,48,) — c,sgn(d,+6,) — c;sgn(d,+6,). (A.31)

For ¢ = h, we find the third governing equation by differentiating.

16+

1
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Oyltyrmydi)
+ 51[mhlldh(sinolsineh-{—cos01cosoh)]
+ 52[mh12dh(cos02cosﬂh—-sin023in0h)]
- él(él—éh)mhlldh(sinﬂlcosoh—-cos0lsin0h)
— Gy(B,+6;)m, 1, dy(sind,co0,+cosbysing,)
= éléh(mhlldh)(sinolcosﬁh-—cosﬁlsinﬂh)
- ézéh(mh12dh)(sin02cos0h+c0502sin0h)
— [0,k + cosf,(—ky,l,+m,gd,)
+ sinf,cosd,(k 2) + sinf cost,(k i l,) + sind,cosd,(k 1,)]

— by(0,+6,) — c;sgn(b,+6)) (A.33)

Combining terms,

0,[myl, d,cos(8,—0,)]
+ az[mhlzdhcos(02+0h)]
+ 'G'h[1h+mhrf,zl]
= 0%(m,l,d,)sin(6,—0,)
+ 64(myl,d,)sin(0,+6,)
+ cosb,(k.y, li-m,g9d,) — sinohcosﬂh(ksl'zh)

— sinf cosf,(k 1, [}) — sinf,cos0,(k b1}

— O,k — by(6,+0,) — c,sgn(f,+6,). (A.34)
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Appendix B
Lower Arm Kinematics

The kinematic equations governing the lower arm of the Brecknell-Willis
pantograph are derived from its linkage geometry. The elbow link angle, 6.,

and its time derivative, 6, are derived as functions of the lower arm position

and velocity, 6, and él.

The lower arm linkage is sketched in Figure B-1. The mechanism
position is described by the angles 01, 9, and ¢,- The link geometry is fixed
by the link length, I, the radius, I, the dimensions % and Yp and the initial

condition 0‘:

The equation of the line describing the link with angle ¢, is

(tang))z — y — (y, + ztang,) = 0. (B.1)

The distance from the pinion center to the line is then found from [10] and

equated with /,.

[(tang,l,cosf; — I;sinf;, — (yf + :t]tal,nqSl)]2

=
¢ tan2¢1 +1

(B.2)

Combining terms, we have a quadratic equation in tang, which can be written

as

Ata,nthS1 + Btang, + C = 0,

where A = (I cosf; — :r:f)2 - Ii
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Figure B-1: Brecknell-Willis Lower Arm Linkage
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and C = (I;sinf; + yf)2 - B (B.3)

[

The solution to this equation is found from the quadratic formula where the

negative root is taken.

_B_\/B’T_‘IIE)
2A

¢, = arctan( (B.4)

Now the length of the “fourth bar” is written in terms of the angles #, and

;-

Ifb = \/(Ilcos()1 + lsing, — f)2 + (Isinf;, — lcosd, + yf)2 (B.5)

Finally, the rotation of the pinion is found to be

g 1
b
0e=02—lib+{——01 (B.6)
e e

where the initial conditions ff’b and 67 are the values of lp and @, respectively

when 01=0.
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Appendix C
Simulation Program

The following is the FORTRAN code of the simulation subroutine
EQSIM, used in conjunction with the software package DYSYS.

SIMULATION OF BRECKNELL-WILLIS PANTOGRAPH DYNAMICS

By Steven D. Eppinger June 1983 through May 1984

SUBROUTINE EQSIM
COMMON T,DT,Y (30) ,EY (30),STIME,ETIME,NEWDT, NEWRUN,N

& IPR, ICD, ICN, TEREAK, PNEXT, TBACK, CONSTANT (30)
REAL L1,L2,LH,M1,M2,MH,I1,12,IH,KS,KH, NIA,LMARM,NA,

& IK1,JK1,KK1,LK1,LK2,LK3,LK4,LKS5,LK6,LK7,LY3,

& 1,J,K,L,KE,JAIB,KAIC,LAID,LE, LC1IMXF, LS1PYF ,KCYL

Equate state and auxilliary variables to array elements.

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(Y (1), TH1)
(Y(2) . TH1D)
(Y (3) , TH2)
(Y (4) , TH2D)
(Y (5) , THH)
(Y (6) . THHD)
(¥(7) .P)

(Y (8) ,HDHT)
(Y (9) ,YW)

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(Y (10) , ECONT)
(Y (11) ,FINPUT)
(Y (12) ,EKIN)

(Y (13) ,EPOT)

(Y (14) . ENERGY)
(Y (15) ,F10UT)
(Y (16) ,E20UT)
(Y (17) ,HDOUT)
(Y (18) ,RINOUT)
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KXXAXKRRRXRRARRRARRRRRRRRRAKRRRNRRRRRARRRARRRARRRARRRARRRA KRR AR

FIRST TIMESTEP ONLY ****xx

C State Varlables and Their Time Derivatives:

(lower link rotation)
(upper link rotation)
(head rotation)

derivative of cylinder pressure

(elbow link position)

elbow torque from spring and damper
height of the end of the head link (apex frame)

total system energy

downstream pressure

a function of upstream and downstream pressures

applied air cylinder force
height of frame at the datum bar

!lower link length (m)

tupper link length (m)

thead frame length (m)

!distance to lower 1link c-of-m (m)
!distance to upper link c-of-m (m)
!distance to head c-of-m (m)

IF (NEWDT) 100,300, 200
c ARRRRRR
100 @ CONTINUE
C
C
! TH1 theta_1l
! TH2 theta_2
! THH theta_H
! P cylinder presssure
! TH1D theta_1l-dot
! TH2D theta_2-dot
! THHD theta_H-dot
! PD
! THI1DD  theta_l-double-dot
! TH2DD  theta_2-double-dot
! THHDD  theta_H-double-dot
c
C Auxiliary variables:
ot
! THE theta_E
! THED theta_E_dot
! TE
! HDHT
! YW wire height
! FCONT contact force
! EKIN kinetic energy
! EPOT potential energy
! ENERGY
! PDOWN
! PUP upstream pressure
! FPDPU
! FINPUT
! YFRAME
o!
C Input parameters:
ot
110 FORMAT (F20.0)
"130 'FORMAT (12) '
! dimensions
READ (8,110) L1
READ (8,110) L2
READ (8,110) LH
READ (8,110) D1
READ (8,110) D2
READ (8,110) DH
! masses
READ (8,110) M1

!lower link mass (kg)



READ
READ

! moments

READ
READ
READ

! springs

READ
READ

! coulomb

READ
READ
READ

! viscous

READ
READ
READ

READ
READ
READ
READ
READ

PI=3.
TRMA= (L1-XF) **2-LE**2
TRMB=-2.0* (L1-XF) *YF

(8.110)
(8.110)

M2
MH

of inertia

(8,110)
(8,110)
(8,110)

(8,110)
(8,110)

I1
I2
IH

KS
KH

frictlons

(8.110)
(8,110)
(8,110)
damping
(8,110)
(8,110)
(8.110)

! elbow linkage

(8,110)
(8,110)
(8,110)
(8.110)
(8,110)
14159

BC1
BC2
BCH

BV1
BV2
BVH

KE
XE
YFE
LE
THEO

TRMC=YF **2-LE**2
PH1=ATAN2 (-TRMB-SQRT (TRMB* *2-4 .0 *TRMA*TRMC) , 2.0*TRMA)

XG=L1+LE*COS (PH1-P1/2.0)
YG=LE*SIN (PH1-P1/2.0)
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tupper link mass (kg)
thead mass (kg)

tlower link moment of inertia (kg-m"2)
tupper link moment of inertia (kg-m”2)
thead moment of inertia (kg-m~2)

!input (catenary) spring rate (N/m)
thead spring rate (N-m/rad)

tbase coulomb friction (N-m)
tknuckle coulomb friction (N-m)
thead coulomb friction (N-m)

tbase viscous. damping (N-sec)
tknuckle viscous damping (N-sec)
'head viscous damping (N-sec)

telbow stiffness (N/m)

tx-coordinate of the base link (m)
!y-coordinate of the base link (m)
!length of the elbow link (m)

tinitial value of THE (at TH1=0) (rad)

DEGO=SQRT ( (XG-XE) **2+ (YG+YF) **2)

alr cylinder data

READ
READ
READ
READ
READ
READ
READ

(8,110)
(8,110)
(8,110)
(8.110)
(8,110)
(8,110)
(8.110)

RGAS
TEMP
GRAV
cD
GAMMA
PATM
PSUPPG

PSUPP=PSUPPG+PATM

. alr cylinder dimensions

READ (8,110) AREA
READ (8,110) A0

READ (8,110) CYLVOLO

READ (8,110) LMARM
READ (8,110) ALFA
linear suspension parameters
READ (8,110) KCYL
READ (8,110) BVCYL
READ (8,130) NCYL

tcalculated initial 4th bar length (m)

funiversal gas constant (m"2/sec”2-K)
!cylinder temperature (K)
tgravitational acceleratlion (m/sec”2)
tdischarge coefficient (dimensionless)
!specific heat ratio (dimensionless)
tatmospheric pressure (N/m"2) '
!supply gauge pressure (N/m"2)

!supply absolute pressure (N/m"2)

!piston surface area (m"2)

torifice area (m"2)

!volume when (ALFA-TH1)=PI/2 (m"3)
!moment arm length for cylinder (m)
tangle, lower 1link to moment arm (rad)

!simple cylinder spring (N/m)
!simple cylinder damper (N-sec/m)
!choice of cylinder models (O=linear)
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! catenary parameters:

READ (5,110) CYCLES !sinusoidal input frequency (Hz)
READ (5,110) AMPL !sinusoidal input amplitude (m)
READ (8,110) OPHT !operating wire height (m)
FREQ=CYCLES*2.0*PI1 !input frequency (rad/sec)

! plotting offsets
READ (8,110) COFF1 !ram input curve offset
READ (8,110) OFFE2 thead link curve offset
READ (8,110) OFF3 lupper 1link curve offset
READ (8,110) OFF4 !lower link curve offset

Initial Conditlons:

READ (8,110) TH1 !TH1 initial condition
READ (8,110) TH2 !1TH2 initial condition
READ (8,110) THH !THH initial condition

SINTH= (OPHT+AMPL) / (2.0*L1)
TH1=ASIN (SINTH)

TH2=TH1

THH=0.0

YW=OPHT

IF (NCYL.EQ.0) THEN
P=LMARM*COS (ALFA-TH1)
ELSE

P=PSUPP

ENDIF

Define some useful constants:
GASCNS=CD*AO*SQRT (2 .0*GAMMA*RGAS*TEMP/ (CAMMA-1.0) )

AK1=T1+M1*D1**2+M24L1**2+MHAL1#**2
BK1=M2*L1*D2+MH*L1*L2
CK1=MH*L1*DH
DK1=M2*L1*D2+MH*L1*L2
DK2=MH*L1*DH

DK3=KS*L1
DK4=M1*GRAV*D1+M2*GRAV*L1+MH*GRAV*L1
DKS=KS*L1#**2

DK6=KS*L1*L2

DK7=KS*L1*LH
EK1=M2*L1*D2+MH*L1*L2 -
FK1=I12+M2*D2**2+MHAL2**2
GK1=MH*L2*DH
HK1=M2*L1*D2+MH*L1*L2
HK2=MH*L2*DH

HK3=KS*L2 |
HK4=M2*GRAV*D2+MH*GRAV*L2
HKS=KS*L2**2

HK6=KS*L1*L2
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HK7=KS*L2*LH
IK1=MH*L1*DH
JK1=MH*L2*DH
KK1=TH+MH*DH* *2
LK1=MH*L1*DH
LK2=MH*L2*DH
LK3=KS*LH
LK4=MH*GRAV*DH
LKS=KS*LH**2
LK6=KS*L1*LH

- LK7=KS*L2*LH

RRAXARKRRRRARRRRRRKRRARARRRRRRRARRRRRRRRRAARRARRRRRRARRNARRRR R AR

Q
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eNeKe!

00

xxxxtx BETWEEN TIMESTEPS *##x##
CONTINUE |

Recalculate abbreviations.

For

S1=SIN (TH1)
C1=COS (TH1)

S2=SIN (TH2)
C2=COS (TH2)

SH=SIN (THH)
CH=COS (THH)

energy check, recalculate THE.

LCIMXF=L1*C1-XF
LS1PYF=L1*S1+YF

TRMA=LC1MXF **2-LE**2

TRMB=-2 .0*LC1MXE *L.S1PYF
TRMC=LS1PYF **2-LE**2

SRD=SQRT (TRMB* * 2—4 . G *TRMA * TRMC)
PH1=ATAN2 (-TRMB-SRD, 2.0*TRMA)
XG=L1*C1+LE*SIN (PH1)
YG=L1*S1-LE*COS (PH1)

DFG=SQRT ( (XG-XE) **2+ (YG+YF) **2)

~ THE=THEO+ (DFG-DFGO) /LE-TH1

Calculate (old) auxiliary varlables for output.

HDHT=L1*S1+L2*S2+LH*SH
FCONT=KS* (HDHT-YW)
YFRAME=L1*S1+L2*S2

Energy calculation:

X2D=-L1*TH1D*S1+D2*TH2D*S2
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Y2D=L1*TH1D*C1+D2*TH2D*C2
XHD=-L1*TH1D*S1+L2*TH2D*S2-DH* THHD* SH
YHD=L1*TH1D*C1+L2*TH2D*C2+DH*THHD*CH
EKIN=.5*% ((I1+M1*D1**2) *THID**2
1 +I2*TH2D* *2+M2* (X2D**2+Y2D**2)
2 +TH*THHD* * 2+MH* (XHD* * 2+YHD* *2) )
YS=HDHT -
Y1=D1*S1
Y2=L1*S1+D2*S2
YH=L1*S1+L2*S2+DH*SH
EPOT=.5* (KHATHH* * 2+KS* (YW-YS) **2)
1 +GRAV* (M1*Y1+M2*Y2+MH*YH)
2 +.5*KE* (TH2-THE) **2

For energy to balance, set damping and lnputs to zero.
ENERGY=EKIN+EPOT

Output data-like states.

aaa aaan

F10UT=L1*S1-OPHT/2.0+0OFF4
F20UT=L2*S2-OPHT/2.0+0FF3
HDOUT=LH*SH+OFF 2
RINOUT=YW-OPHT+OEFF1

At each timestep, output the plotted states to a flle.

OO0

IF (T.GT.2.0) THEN

WRITE (9,677)RINOUT,HDOUT,F20UT,F10UT
677 FORMAT (4(3X,F10.7)) |

ELSE

CONTINUE

ENDIF

Calculate the height of the (sinusoidal) catenary.
This defines the new contact force.

YW=OPHT+AMPL* (1.0-COS (FREQ*T))

Define some useful quantlitles.

a0 000N

DY3=YW*DK3
HY3=YW*HK3
LY3=YW*LK3

' 2223222222223 3222232232823 2222222222 R 2 82t 2 22 222 2

o! xxaxas  DURING TIMESTEPS **k*#2
300 CONTINUE

IF (NCYL.EQ.0) GOTO 310
c
C Determine up-stream and down-stream pressures.
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IF (P.GT.PSUPP) THEN
PUP=P
PDOWN=PSUPP

ELSE
PUP=PSUPP
PDOWN=P

ENDIF

CYLVOL=CYLVOLO+AREA*LMARM*COS (ALFA-TH1)
CYLVOLD=AREA*TH1D*SIN (ALFA-TH1)

PDPU=PDOWN/PUP
PD=CASCNS/CYLVOL*PUP* (PDPU) ** (1.0/GAMMA)
& *SQRT (1.0-PDPU** (GAMMA-1.0/GAMMA) )
& -P*CYLVOLD/CYLVOL
FINPUT= (P-PATM) *AREA
GOTO 320

Simple (linear) cylinder equations.

wOnNOn

10 XCYL=LMARM*COS (ALFA-TH1) -P
PD=KCYL*XCYL/BVCYL
FINPUT=PSUPPG*AREA-KCYL*XCYL

320 CONTINUE

C

C Abbreviations:

C

S1=SIN(TH1)

C1=COS (TH1)

S2=SIN (TH2)
C2=COS (TH2)

SH=SIN (THH)
CH=COS (THH)

S12=SIN (TH1+TH2)
C12=COS (TH1+TH2)

S2H=SIN (TH2+THH)
C2H=COS (TH2+THH)

S1H=SIN (TH1-THH)
C1H=COS (TH1-THH)

SH1=SIN (THH-TH1)
C
C Calculate the elbow link position and the elbow torque.
C

LCIMXF=L1*Cl-XF
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LS1PYF=L1*S1+YF
TRMA=LC1MXE **2-LE**2
TRMB=-2 .0 *LC1MXE *LS1PYF
TRMC=LS1PYF**2-LE**2

SRD=SQRT (TRMB* *2~4 . 0*TRMA*TRMC)
PH1=ATAN2 (-TRMB-SRD, 2.0*TRMA)
XG=L1*C1+LE*SIN (PH1)
YG=L1#*S1-LE*COS (PH1)

DEG=SQRT ( (XG-XE) **2+ (YG+YE) **2)
THE=THEO+ (DEG-DEGO) /LE-TH1

Calculate DTHEDTH1.

bW

DCDTH1=2.0*LS1PYF*L1*Cl
DBDTH1=-2.0* (LCIMXE *L1*C1-LS1PYF*L1*S1)
DADTH1=-2.0*LCIMXE *L1*S1
DPH1DTH1= (~TRMA**2/ (2,0*TRMA* * 2+TRMB* *2-
2.0*TRMA*TRMC+TRMB*SRD) ) *
(DBDTH1/TRMA-TRMB*DADTH1 /TRMA* * 2+
(TRMB*DBDTH1-2.0* (TRMA*DCDTH1+
TRMC*DADTH]1) ) / (TRMA*SRD) -
SRD*DADTH1/TRMA* * 2)
DYGDTH1=L1*C1+LE*SIN (PH1) *DPH1DTH1
DXGDTH1=-L1*S1+LE*COS (PH1) *DPH1DTH1
DEGDTH1= ( (XG-XF) *DXGDTHL1 + (YG+YF) *DYGDTH1)
/SQRT ( (XG-XE) **2+ (YG+YF) **2)
DTHEDTH1=DFGDTH1/LE-1.0

The equations of motion are as follows:

A*TH1DD + B*TH2DD + C*THHDD = D
E*TH1DD + F*TH2DD + G*THHDD = H
I*TH1DD + J*TH2DD + K*THHDD = L

where A,B,C,D,E,F,G,H,I,J,.K.L are functions of the three
rotational state variables, their first time derivatives,
the state variable P, the input YW, and the system parameters.

andwNH

A=AK1

B=BK1*C12

C=CK1*C1H

D=TH2D**2*S12*DK1
+THHD* * 2* SH1 *DK2
+C1* (DY3-DK4) -
-S1*C1*DK5-C1*S2*DK6~C1*SH*DK7
+FINPUT*LMARM#*SIN (ALFA-TH1) —-KE* (THE-TH2) *DTHEDTH1
-SIGN (BC1, TH1D) -SIGN (BC2, TH1D+TH2D)
~BV1*TH1D-BV2* (TH1D+TH2D)

E=EK1*Cl12

F=FK1

G=CK1*C2H
H=TH1D**2*HK1*S12
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+THHD* * 2*HK2*S2H

+C2* (HY3-HK4)
-S2*C2*HK5-51*C2*HK6-C2*SH*HK7

-KE* (TH2-THE)

~SIGN (BC2, TH1D+TH2D) —~SIGN (BCH, TH2D+THHD)
~BV2* (TH1D+TH2D) —BVH* (TH2D+THHD)

o wNE

I=IK1*C1H

J=JK1*C2H

K=KK1

L=TH1D**2*LK1*S1H
+TH2D* *2*LK2*S2H
+CH* (LY3-LK4)
~SH*CH*LK5-S1*CH*LK6-S2*CH*LK7
~THH*KH-SIGN (BCH, TH2D+THHD)
~BVH* (TH2D+THHD)

b wH

Define some abbreviations.

FAEB=F*A-E*B
GAEC=G*A-E*C
HAED=H*A-E*D
JAIB=J*A-I*B
KAIC=K*A-I*C
LAID=L*A-I*D

Equations to be lintegrated:

THHDD= (FAEB*LAID-JAIB*HAED) / (FAEB*KAIC-JAIB*GAEC)
TH2DD= (HAED-GAEC*THHDD) /FAEB
TH1DD= (D-B*TH2DD-C*THHDD) /A

Derivitives of state varlables:

FY (1) =TH1D

FY (2) =TH1DD

FY (3)=TH2D

FY (4) =TH2DD

FY (5) =THHD

FY (6) =THHDD
" FY(7)=PD

RETURN
END



