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ABSTRACT

Longitudinal electrostatic plasma oscillations in a unil-

038

form external magnetic field are analyzed. Collisions and ion

motion are ignored, and the zeroth order electron distribution

function is assumed Maxwellian, although the treatment 1s not
dependent on the last assumption. The dispersion relation as
_given by Harris for arbitrary direction of propagation with
respect to the external field is transformed to permit a cal-
culation analogous to Landau's. A sixth-order polynomial in
the square of the real part of the frequency 1s obtained, and
the imaginary part, or Landau damping, is calculated 1in terms
of the roots. Numerical values are given for representative
cases. The results are valid for arbitrary direction of
propagation and arbitrary magnetic fleld strength, with the
restrictions that the product of the perpendicular component
of the wave number times the electron gyro radius, and the
ratio of the parallel component of the wave number times the

thermal speed of the electrons to the real part of the fre-

quency must be small. The analysis also fails 1f the real part

of the frequency 1s very near the first or second multiple of
the cyclotron frequency. When the restrictions are not
violated, the real part of the frequency is in good agreement
with the previously known results for limiting cases, and the
imaginary part has exactly the expected behavior in the per-

pendicular and parallel propagation limits.
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CHAPTER 1

INTRODUCTION

The basic features of plasma oscillatlons are easily
visualized by considering a simple electrically neutral
plasma under the influence of no external fields, and com-
posed of equal numbers of ions and electrons. Any distur-
bance in the plasma involving a local separation of charge
creates powerful electrostatic restoring forces, whose end
result is a high frequency oscillation of ﬁhe electrons
against the background of relatively immobile ions. If the
effects of finite electron temperature are considered, these
osclllations 1in the electron density and the attendant local
electric fileld cease belng a mere standing wave and propagate
through the plasma; in fact, the plasma becomes a dispersive
medium. Since the oscillating electric fleld 1s aligned
parallel to the direction of propagation and the induced
magnetic field 1s usually negligible, the phenomenon 1s des-
cribed as longitudinal, electrostatic plasma oscillations. If
the characteristic frequency of these oscillations greatly ex-
ceeds the collision frequency in the plasma, collisions can be
ignored. Thils assumption proves valid in thermonuclear and

many astrophysical applications.
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The elementary behavior of plasma oscillations is most
readily analyzed by what will be referred to in this thesis
as the macroscopic approach; specifically, use of the hydro-
dynamic continuity and momentum equations and Maxwell's
equations. A more sophistieated, microscopic approach, based
on kinetic theory and introduced by Landau® 1in 1946, yields
similar results but includes the possibility of damping of
the oscillations even in the absence of collisions. This
phenomenon, generally called Landau damping, can, under cer-
tain circumstances, represent a growth in the oscillation
amplitude instead of a decay. Although agreement on the
physical mechanism underlying this growth or damping process

2,3,k the existence of Landau damping

is not yet unanimous,
has been experimentally verified,5 and its importance in pre-
dicting the behavior of plasmas in which longitudinal oscil-
lations can occur 1is apparent.

Landau's original calculation was done for a plasma under
the influence of no external fields, In most cases of practi-
cal interest, however, some sort of imposed magnetic field is
present. The physical and mathematical complications arising
from this addition are considerable, even when the magnetic
field is uniform and there is no imposed electric field. Pre-
vious work on this case has ylelded characteristic frequencies
and expressions for the damping in certaln limiting cases,

such as propagation of the disturbance perpendicular and

parallel to the magnetic field, and for arbitrary direction



3
of propagation 1f the magnetic field 1s very weak or the elec-
tron temperature very 1ow.6 A more general understanding of
the behavior of plasma oscillations in a constant magnetic
field 1is clearly desirable. In this thesils, expressions for
the characteristic frequencies and Landau damping for arbitrary
field strength and arbitrary direction of propagation are ob-
tained, interpreted, and compared with the previously known
limiting cases.

The work is developed as follows: Chapter 2 introduces
the plasma dispersion relation in the absence of external
fields, using the macroscopic approach. A description of the
Landau calculation is given, since the thesls treatment of
osclllations in a magnetic field relies heavily on Landau's
approach, Chapter 3 extends the macroscopic treatment to in-
clude an imposed magnetic field and examines previous work on
the microscopic solution for this case. Chapters 4 and 5 use
the Harris dispersion relzition7 for a plasma in a uniform

8 to

magnetlic field and a transformation introduced by McCune
derive general expressions for the characteristic frequencles
and damping. Chapter 6 evaluates the results for cases of

interest.



CHAPTER 2

PLASMA OSCILIATIONS IN THE ABSENCE OF EXTERNAL FIELDS

2.1 The Macroscopic Approach

In considering the high frequency'behavior of a fully
ionized plasma it 1is reasonable to assume that only the elec-
trons move, while the much more massive lons simply form a
neutralizing background of positive charge. The classical
hydrodynamic contihﬁity and momentum equations for the elec-

tron fluid are then:

%‘f‘-& + V- (n) = O (2.

+ ﬁxg) - #nVP

m

UL 3. =g

t (2.

where n(X,t) 1s.the local electron number density, u(X,t) is
the electron bulk vélocity, and p 1s the pressure, assumed

scalar. Assuming that the equilibrium state is the electron
fluid at rest with no fields present, these equations can be
linearized to give the perturbations on that equilibrium re-

sulting from some initial disturbance:

w
2+ VG = 0 (2.

3)
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W = S y
5 520 4, () - 0 o

3t m R

where ( )(1) denotes a perturbation quantity and ( )o an
equilibrium quantity. If the perturbatlion magnetic fleld is
assumed negligible, then the perturbation electric field is

essentially curl free and 1s determined by

P

o
The last assumption 1s called the electrostatic approximation.
With the further assumption that the perturbation quanti-
ties vary as exp[i(KX- u)"t\] , equations (2.3) through (2.5)

become
—on® &+ k" = O (2.6)
. - . =)
~ oW+ (pnWPR + meeET = O (2.7)
No
ﬁ(ﬁ - LC.YL“)R

EokZ (2.8)

where the adiabatic relation p/'po = (n/ho)v has been used in
obtaining (2.7). Substituting (2.8) into (2.7) yields a pair
of homogeneous algebralc equations in the quantities n and u.
The condition for a nontrivial solution is the vanishing of
the determinant of the coefficients, which gives the dis-

persion relation:
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Wt = nee* 4+ pBIK? (2.9)
€M e

If the last term vanishes, either because P, = 0 (no electron
thermal motion) or k = O (disturbance of infinite wavelength),
equation (2.9) describes free oscillations of the electron
number density, bulk velocity, and electric field at the plasma

- frequency

z _ nee®
w = 2.10
P €M : ‘ ( )

If the last term in (2.9) is finite, a nonzero group velocity,
dub/ak, is defined for each k; the waves propagate and under-
go dispersion. It should be noted that thé linearization
procedure which led to equation (2.9) restricts the results

to small amplitude motions.

2.2 The Landau Calculation

The behavior of an unbounded plasma can be completely de-
termined 1f the velocity diﬁtyibut;on functions, f(f,?,t), for
its components are known. Fof the present case, in which the
ions are assumed to comprise a positive 1mmobile background,
only the electron distribution function 1s of interest, and

the plasma 1s described by the Boltzmann equation:

o | T.vf - E-VV{? = (3f (2.11)
ot

St) collisions

where ﬁ'describes the force field acting on the electrons and
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VL is the gradient in velocity space. Since the phenomenon
of interest here proves to have characteristic frequencies
which exceed the collision frequency by 106 or more, the col-
1ision term on the right hand side of (2.11) can be ignored.
Landau solves the resulting collisionless Boltzmann, or

Vlasov, equation as an initiél value problem., That 1s, glven
a small initial perturbation, f(l)(i,V,t=O), on a uniform

equilibrium specified by some distribution, fo(?) (satisfying

the Vlasov equation), he assumes:

£F,94) = £(2) + £(R,5,%) (2.12)

Using this expression in (2.11), subtracting out the equil-
ibrium solutian, and keeping only first-order terms in the
small perturbation, f(l), gives a linearized equation. With

external fields assumed absent, it 1is

W W =W
%\-Et + v.VEP- eE -Vt =0 (2.13)
where ‘ ”
E® = - e ({+dwax (2.14)

Equations (2.13) and (2.14) are now Fourier analyzed in space
and Laplace analyzed in time, and the components of velocity
transverse to E'are integrated out for simplicity. (For de-
tails of these and followling procedures in the calculation,
the reader 1is referred to Landau1 or Montgomery and Tidmang.)

The resulting equations are readily solved for the Fouriler

transforms of the perturbation electric fileld and the distribu-
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tion function along the direction of propagation, R. The
electric field is of more immediate physical Iinterest; its

transform is:

)
)] - Nee Flk,u, ‘0)
B ), e ot (2

where u is the component of V parallel to k, F(l)(k,u,t=0) is
the spatial transform of the initial perturbation distribution
function along E, and D(k,w ) is given by

© SF, (W)

Dkw)= 1- neet U, (2.16)
&Mk “o kUu- W du

The quantity W 1s in general complex, and by the nature of
the transform used in obtaining (2.15) and (2.16), these ex-
pressions are valid only where Im(w) z O.

The time behavior of the kth spatial component of the
electric fleld follows from the Laplace inversion formula:

£ 25 eplint) Bl du (2.17)

LT - 0O
where the contour of integration in the complex W plane is
a line parallel to the Re(w) axis and above all the singulari-
ties of the integrand. Although equation (2.17) is the formal
solution to the original initial value problem, it cannot be
evaluated for distribution functions of practical interest due

to the intractability of the integrals involved.

Landau therefore resorts to examining the behavior of the
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electric field in the t—o 1limit. By deforming the contour

of integration downward into the Im(w)<O half plane, (2.17)

can be rewritten:

. -l + o :
) -t i .
3 .
- -
where the R1 are the residues of the singularities of the inte-

grand located at the points w and encircled by the deformed
contour (see Figure 1), and the function E(l)(k,uo) must now
be analytically continued into the lower half plane. The last
procedure requires that F(l)(k,u,t=0) and Fo(u) be analytic
functions of u everywhere.

Since it can be shown that the only singularities which
exlst for lwl <® are poles where the denominator, D(k,w ),
vanishes, and since the integral term in (2.18) will always
be strongly damped compared to the uppermost pole terms 1n
the sum, it is clear that the long-time behavior of the field
will be dominated by these poles. Thus in the t— oo 1limit,

the equation D(k,w ) = O becomes a dispersion relation:

™ '
3 Fo)/ du -
{— XP S - Wwp F u;) -
> o du kzzm O(E = O (2.19)

-~

where D(k,w ) has been analytically continued so that (2.19) 1s
valid for Im(w ) ¢ 0. The real parts of the roots of
the dispersion relation give the characteristic frequenciles

of osclllation of the field's spatlal components, and
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the imaginary parts give their exponentlal growth or damping
rates. It can be shown, however, that if the initial electron
velocity distribution is Maxwellian, then (2.19) has no roots
in the Im(w ) > O half plane, so that all roots are damped, or
stable.

‘ Remémbering that this entire treatment has been for the
t—» o limit, it is apparent that the most 1lnteresting pole
is the one nearest the real w axis, since its contribution is
leasé strongly damped. Landau's approach is to expand the
denominator in the integral of (2.19) in a power series, as-
suming k small, and obtain W(k) by successive approximations.
The successive approximation technique is also used to obtain
the correction due to the analytic continuation term. This
gorrection proves to be the small imaginary part of the fre-
quency, or Landau damping decrement, which vanishes when k

goes to zero. Landau's result, to second order in k, is

Wk = Wwf IS (2.20)
) 3 2
Ly = ~1‘(/pr(%) pr(“w?/kzqz) (2.21)

where Wwg 1is the real part of the frequency, 3 is the
g
imaginary part, < E(‘ZKT/M) is the most probable thermal
speed for the electrons, and wp 1s the plasma frequency.
Jackson}b has noted that a more accurate result for the
imaginary part has 00: in place of uS; in the exponential.

In the same paper, Jackson analyzes the problem numerically.
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He finds that the expression (2.21) for the damping decrement,
with the correction just noted, is in essentilally perfect
agreement with numerical results for kzo\z/wé < 125
and is within about 10 per cent up until k‘o\"/wp?' > .25,
Above this value, the small k approximation upon which (2.21)
depends 1s apparently no longer satisfied. This result will
be of some use in estimating the range of valldity of the thesis
result for the damping in a magnetic field. '

Two further points should be noted before leaving the
Landau calculation. First, if the state equation, Po-:noKT'
and the value of y approprlate to one translational degree of
freedom are substituted into the macroscopic result for the
frequency, (2.9), the microscopic result for the real part of
the frequency, (2.21), is recovered. Thus the two approaches
agree to order k2, except, of course, that the damping decre-
ment 1s inaccessible to the macroscopic approach. This result
suggests that it will be worthwhile to treat the problem in a
magnetic field macroscopically, too, as a means of checkling
the new microscopic results to first order.

Finally, it should be remembered that collisions were
neglected entirely in the derivation of (2.20) and (2.21). If
an evaluation of (2.21) for a given component of the field were
to indicate that the dmmping time is of the order of or longer
than the mean collision time (which, for very small k, is not
unlikely), then 1t should be apparent on physical grounds that
this component would be collisionally damped before Landau damp-

ing became important at all.
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CHAPTER 3

ADDITION OF AN EXTERNAL MAGNETIC FIELD

3.1 Some Physical Effects

The physical complications arising from the addition of a
uniform external magnetic field are readily imagined by con-
sidering the motion of a single electron. The interaction of
its thermal velocity with the magnetic field yields a hellcal
motion; the motion along the fleld direction is unchanged while
in the plane perpendicular to the fleld the electron travels a
circular path with frequency a% = eB/m. The oscillating elec-
tric field of the plasma oscillations complicates this situation
as follows: thé electron sees the component of oséillating
electric fleld parallel to the magnetic field just as if the
magnetic fleld were not present at all, and responds according-
ly. But the interaction of the magnetic field with the per-
pendicular component of the electric fileld produces two addi-
tional electron motions. The first is a drift in the direction
perpendicular to both the electric and magnetic fields, due to
the instantaneous value of E. The second 1s a drift along the
direction of E, due to i1ts time rate of change, bE}Bt. As
will become apparent, the complexity of the mathematics des-
cribing plasma osclllations increases appropriately with these

physical complications.
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3.2 The Macroscopic Calculation with a Magnetic Field

The linearized hydrodynamic equations of motion describ-
ing the exponentially varying electron number density, bulk
velocity and electric fileld in a plasma with a uniform mag-
netic field imposed differ from (2.6) and (2.7) only by a

ﬁ(l) x'ﬁo force térm in the momentum equation. As in
Chapter.z, the oscillating perturbation magnetic field 1is

neglected, glving the electrostatic approximation. The equa-

tions are:
~on® 4 nT® = O (3.1)
~imnewd® + B 'polR + nee EY1"%8)=0 (3.2)
. . . ) ‘
with

=20 _ ien®
E” = =L K (3.3)

Combining (3.3) and (3.2) gives one scalar and one vector, or
equivalently, four scalar homogeneous algebraic equations in
n(l) and the three components of u(l).

For their evaluation, a Carteslan coordinate system is
chosen in which ﬁ; lies along the z axis, K lies in the x-z
plane, and © is the polar angle between ﬁé and E'(see Figure
2). In this coordinate frame, the determinant of the co-

efficients of n(l) and the components of n(l) is:
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-Ww Nok sin® O nokcos®
ik s‘s’ne( % N aﬁ) —imnow NoeBe o)
o) ~NeeBe -lmn w 0]
tkcos e( %8 nge‘) ) ) MNa W
L F\tlo + _&_O_Ez @ O [

The dispersion relation resulting from setting the determinant

equal to zero as the condition for a nontrivial solution re-

duces to:
ot L (muol® = (eBoF]
+ L(mwT - (eRowos®Y] (Eo:lé - m:‘) =0 (3.4)

&o

Using the state equation and the definitions of cdb and o

as in Chapter 2, and noting that eBo/m is the cyclotron fre-

quency, w,, equation (3.4) becomes:

W (W -wE) + (L-wicos? o) wi +-3zkzo\2\= O (3.5)

The dispersion relation (3.5) is quadratic in 002 and is

easily solved by the formula:
2Lt = W+ W + 2 k22
PTHeTZ (3.6)

1
* [(w‘f,«- wE + % Zo®) - Hw2ws? k%k’o(z +w§)]

Several limiting cases are readily recovered from this relation.
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For BO and hence W, equal to zero, the familiar result of
the no-field analysis in Chapter 2 is recovered (together with

a trivial root at W = 0):

- L 2
Wt = W - B ke . (3.7)

For propagation parallel to a finite magnetic field
(k W B, cos ©=1) the root (3.7) is again obtained.
This result 1s not surprising since velocity components along

the magnetic field are unaffected by it. The second root ob-

2
c

of the magnetic fleld on velocity components perpendicular to

tailned in this case is 002 = W_°, accounting for the effect
it (when a magnetic field 1s present, the bulk velocity vector
3(1) is no longer aligned, in general, with fhe propagation
vector k). A closer look at the equations of motion, (3.1)
through (3.3), shows that the cyclotron motion in the plane
perpendicular to 5;, described by the cnz = (»02 root, is not
coupled with the oscillating electric field at all for the
case of purely parallel propagation. That is, in this case
the component equations relating E(lz n(l) and w, can be com-
pletely uncoupled from those relating u,, wy,
the bulk electron motion in the x-y plane can neither excite

and Bo’ so that

nor be excited by an electric fileld. As soon as the propaga-

tion vector K is even slightly out of line with ﬁé, however,

the cyclotron motion and the electric field are coupled.
Finally, for propggation perpendicular to the magnetic

field, a hybrid root is obtained (along with the trivial

W = 0 solution):
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W = W + Wwe + iz\t‘d" o (3.8)

For arbitrary direction of pfppagation, a clearer picture
of the roots than is provided by (3.6) as it stands can be

obtained by expanding the square root term in that expression

for Lo;' >7 W or vice versa. For wp »7 W<,
expanding the square root in powers of wcz/w;z, and
keeping terms up to wc/wg and k‘b("/wp" in the ex-

pansion yields for the positive'root:

W = Wi + W=t + 2k’

. (3.9)
+ wg (WE/ W) sinZBcos? o
and for the negative root:
w2 = WZcos?O - W (WE/WE) sintO cos2 B (3.10)
For uo}‘77(0§ the equivalent expansion gives for the posi-
tive root:
wZ = wé + wﬁs{wze + %k’zokzsiuze
S (wp /wE) sinz 2
+ we (Wp/WE) =20 OB
* (Zwh+ 2% ) (20/E ) 2int © o ® (5.11)

and for the negative root:
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wl

)

WE O + _?-'i k2% cog2 B
- wg (WE/w?) £ e cos?®
z .
- (R + 2 k2o W2t/ ug) sin2@ sz (3.12)
Note that these results have the previously discussed values

in the parallel (sin 6 = 0) and perpendicular (cos 6 = O)

propagation limits.

3,3 Previous Work on the Microscopic Approach with a Magnetic

Field
Although the mathematlcs is more difficult, the general

approach to the solutioh of the linearized Vlasov equation as

an initial value problem 1s of course still appropriate when

a uniform magnetic fleld 1s present. A dispersion relation

analogous to (2.19) can be obtained, whose roots are the charac-

teristic frequencies of oscillation of the plasma in the t —®

limit. This dispersion relation has been published in several

equivalent forms; for representative derivations the reader

9 or Bernatein6

may consult Montgomery and Tidman
The version treated here is that published by Harris7 for

the electrostatic limit. With ion motion assumed negligible,

it is .
o © o
| 2
= — 2y, d 32 (kv /w
<2 i; § Vi \l;é;qfoP VL c)
Eﬁg oF: ‘) nuoc(‘é )1
X[ K -3—\‘:% T ks éjvg;_ Iml)70

KzVa | nuwe - W
W< ) K (3.13)
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In this equation ( 3;_ and C \E denote quantities perpen-
dicular and parallel to the magnetic field, respectively, fo
is the equilibkium electron distribution function, and CIQQO
is a Bessel function of the first kind with real argument. It
is not difficult to show that equation (3.13) is equivalent to
the dispersion relation of Bernstein in the electrostatic limit.
It has been solved 1in certaln limiting cases by Bernsteln and
others; thus these special results provide a useful comparison
for the solutions presented here.

- It 1s well known @hat in the limiting case of propagation
parallel to the magnetic field the fémiliar Landau result is
recovered, both for the real part of the frequency and for the
damping decrement. It is also known that for propagation ex-
actly perpendicular to the magnétic field the damping must
vanish completely.6

In the case of perpendicular propagation, Bernstein's dis-

persion relation can be simplified in the limit kzoz/w& << 1\

to yield (except for a presumed misprint):

2wz = SWE + Wp

\
z (3.14)
- [ (2002 - g) + Lokto@w?l
which for wg 77 W is approximately:
T = z _ a2 z (3.15)
wz = Hwc = k¥
and for W& 77 W :
W= wE + wp - -‘z..kzd.z (Wi we) (3.16)

Bernstein has also solved his dispersion relation for
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arbitrary direction of propagation in the special cases of
weak magnetic fleld and low temperature ( wW*v7 wE, kZo? )
and strong magnetic field and low temperature ( w& >~ sz,
WZAZ ), In the weak field case he obtains for the real part
of the frequency:

rd

= 2 T a2 ) =2 202
Wg W + We SintO .+ _zk =X (3.17)

and for the 1imaginary part, or damping:

J <D wrwos

Wy = - LU\)R(UOR/ko'»\? { + RWe -€xXp\ " (3.18)
3 L3 Ns kzo(z

Bernstein points out that the expression (3.18) reduces to

Landau's result in the limit w¢= O . He fails to mention

that (3.18) does not vanish for perpendicular propagation, as

would seem to be required if wWe#* O . For the strong field

case Bernstein gets for the real part of the frequency:

-

<

WE = WpcotO + Z k2o cos? 6 ‘_‘:A)E(co§e)wzp (3.19)

-4
4
and for the imaginary part:

wr = ~'z wg(wp./ko\\ cosB exp (~ \cz“z) (3.20)

The damping deceement (3,20) has the required behavior in both
the parallel and perpendicular propagation limits.
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CHAPTER 4

A NEW APPROACH TO THE MICROSCOPIC DISPERSION RELATION

4.1 The McCune Transformation

From the rather formidable appearance of equation (3.13),
it is not difficult to imagine why this dispersion relation and
its relatives have resisted more geﬁeral treatment. In the
form in which (3.13) is written, the infinite sum of Bessel
functions and the attendant infinite sequence of singular de-
nominations make Landau's denominator expansion and successive
approximation technique appear hopeless, to say nothing of the
question of analytic continuation into the -WwWy half-plane.

The key to reducing these difficulties to the pointiof
tractability is a transformation introduced by McCune8, in the
context of estéblishing a general criterion for electrostatic

plasma instabilities in a magnetic field. For each n he lets:

kt\/z + V\\:)c. = W (4.1)
and
- k
'FQ(V!,V_L\ - 40[?2 (U.“ !‘-‘% S V_L] (4.2)

so that the dispersion relation (3.13) can be rewritten in the

form
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00
1 =X P du Im(w)> O
k2 - w/k (4.3)

where

o [+ ¢)
Pluykg, k) =§ 2mvidv 2 w} 32 kavy /o)
] .

§£° (Vz;V.;)

X
avz

VE=E¥M’Q§%

e g&[ﬁm—n@,vﬁ} s (k)

kzVi dwi
(4.%)

The transformation is not without physical content: kw is a
Doppler-shifted cyclotron frequency or one of its harmonics,
and P(u) 1s a sort of generalized projection of the deriva-
tives of ¥, . McCune notes that when kz=O or k,= 0O
(propagation'perpendicular or‘parallel to the magnetic field),
(4.3) and (4f4) reduce to the usual forms for those limiting
cases. The particular relevance of this transformation to the
present problem, of course, is that the dispersion relation
(4.3) has exacfl&uthe familiar, one-dimensional form treated
by Landau.

To determine how much real advantage has been gained by
these manipulations, 1t 1s necessary to look closely at the
properties of the function P(u). For the calculations in this
thesis, the egwuilibrium electron distribution function is

chosen to be Maxwellian; there 1s no reason why the work cannot
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be carried out for other reasonably well behaved distributions.

With
\ >z 2 2
folve) =) exp - (v yee] (.5)

1 .
where O\:(ZKT/WI\'Z , equation (4.4) for P(u) becomes:

co

2/
Pluskka) = ~H(A5e) B wh 2 exe [ (2]

x S vi Sr (kou/use) exp (= V2 /) dv,
o]

(4.6)

This expression simplifies with the use of a well known

formula relating J,, and the modified Bessel function of the
10

first kind, In

o

VoTilapefdy = 4<% Lala/a) (4.7)
o
Thus with () =V /A and a = k_p(/wc s, there re-
sults:

o
Y va 2 (e /o) axp (-2/6) vy
)
(4.8)
= —-i- _QXP( \<_L°\z/2wz) -.[n kkfdz/sz,)
and noting that k = k=ind , kz = kcos® , P(u) be-

comes:
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Plw,k,®) = - Zuweg 2xp (— kzo@siwze)
Nz a2 | cosOl Z.WZ

o©
x> I, M) exp[—' (ku_—- Vlw:f]

Nz -m W kotcos©

(4.9)

This expression for P(u) 1s not difficult to interpret:
for fixed k and © the terms of the sum are exponential pulses,
each centered at u = v@o;lk s havihg equal characteristic
spread =Xcos© | and weighted by the modified Bessel func-
tions, In . Since the Bessel functions are symmetric in n
[I-n) = f[th)}' , so is the weighting. It 1s apparent

from the series definition of the modified Bessel functions,

I(.\‘i (Xf‘(’”’“ \ !
nix) = el z /e.(em). (4.10)

that for small argument, x, the Bessel functions of higher
order, n, rapidly approach zero. Thus if the argument

kZaz <inZQ /2035 in the expression (4.9) is small, only
the several terms in the sum ﬁear n = 0 will be important 1n
determining P(u). The only variable outside the sum in (4.8)
is -u, which dominates the behavior of P(u) near u = O, but 1s
dominated by‘the vanishing of the weighted éxponentials for
large u (see’Figure 3). Thus the behavior of P(u), at least
for kZot®minZ® /zwé < 1\ , 1s quite.like that of the de-

G F

rivative of a distribution function, in particular approaching
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zero from below at w= +o and from above at Wu=-® ., This
property of P(u) can be froven from expression (4.%) in gene-
ral; 1.e., without choosing any special form for the initial
¢ 8

distribution, o

4,2 Simplification of the Transformed Dispersion Relation

It is notationally convenient to define the relation

F'lw) = PlW/ wE C(B.11)
so that the dispersion relation (4.3) becomes:
g F(u\du 1\'\4(\))\7 O (4.12)
-0 - U)/k

with

F'w) = - Zu.e"sz Z T.(<?) cxP‘_ (k‘*“"w‘ ] (4.13)

<z = kzoF=n?B/2wé (4.14)

2 is proportional to the square of the

so that the parameter s
product of Ky Ywith the electron gyro radius. If the real
part of the integral in (4.12)‘ia,interp;etqd in the Cauchyy
principle value sense in the limit wWr—0 where W= We+ LWL ,

1.e., \

'Re( F(u\du) - F'w) dw

-0

lim
w—> e+ D

We/k - § 0
= \im i( g + & \) E'(w) dl‘l\
S (4.15)

~eo wr)g + § 1 U~ we/k
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then the roots are the real parts of the desired characteristic
frequencies of oscillation. In the Landau calculation, the
real part, W , was determined in this way from the expres-
sion analogous to (4.12), .and the additional term resulting
from the analytic continuation of that expression into the
wy < O half-plane waé then used to obtaln the small imaglnary
part, Wy , by successive approximations. Although a somewhat
less cumbersome technique will be~used to obtaln Wy here, the
requirement that Wg be obtained first is the same. This sec-
tion is devoted to solving equation (4.12) for Wg , assuming
k and Wy small. ‘

To reduce F'(u) to a)mdre manageable form, all functions

2

of 8 are expanded in power seriles:

e = 1- <2 & /2 ~ Olge) (4.16)

and from (410):

To(ex)= 1+ /4 + 0O(<®) (4.17)

11 (sZ\: I_i(sz\ = Asz/z 4~ O(sb) (4.18)
1. =I,(s2) = =4/8 + Ols?) (%.19)
I,(<2) = I.(s?) = O(s) (4.20)

Because of the k° term in the denominator of equation (4.12),
it 1s necessary initially to keep terms to order su in the ex-

pansions in order to solve (4.12) to order k°. Five terms in
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the infinite sum of Bessel functlons must therefore be re-
tained, namely n = -2 , -1, 0, 1, 2. Thus with expressions
(4.16) through (4.19) the dispersion relation becomes, to
b,

order s

_g(\ <Z4 sﬂ/ZY 1+ s“ w %u‘wRIKQX\Di (.oxcose} g

™zx2 lcosd | \

o

<200% ku—we [ ew+uoe
‘%_%‘: ‘%u—-wafk% £x P‘, (ko\cosB” +2x1>}. K_\?:c?é‘e\} K du
e ] el

BkZ ) - We/K kacosd A OS>

.(4.21)

Let the three integrals in equation (4.21) be Il’ 12, and
13. The first is treated by expanding the denominator in powers
of kw/wg ;.as in Landau's treatment. Thus

I, = _":’\;12? Fg; v zx\ﬂ_— (;“gg@f} du

o0

o Sl 1+ o

w R.z le,z

(4.22)

It should be recognized that the number of terms which must be
kept to make the expansion in (4.22) a reasonable approximation

increases with u, and that for u large enough, the expansion
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will not converge at all. This difficulty 1is not serious if

the exponential vanishes rapidly enough with increasing u to
insure that the dominant contribution to the integral occurs
where u is small. Such an assumption 1s equivalent to requir-
ing that, near the denominator's singularity at w= ws/k ,
the term exp{—(gﬁggi] is sufficiently constant and near zero
that the contribution of the singularity in the Cauchy prin-
ciple value integral is negligible. Putting u=we/k 1n the eX—

ponential makes this condition approximately

w:ka/kzdxzcoste‘7f«1 o o (4.23)0 .

The required size of this parameter can be determined more
exactly by considering the results of Jackson's numerical treat-
ment of the Landau calculatlon without magnetic field.ﬂc In
the Landau treatment, a condition exactly equivalent to (4.23)

arises, namely:

we / k2o > (4.24)
Jackson's results show that the approximate solutlion for the
real paythgf the frequency is in good agreement with the
numerical results if this parameter is greater than 2 (the
corresponding number for the validity of the imaginary part
is 4). The condition from the evaluation of the integral I,

in the present analysis, for the real part of the frequency in

a magnetic field, is therefore

we/ kZoRco2d z 2 (4.25)

Now returning to the evaluation of I, and noting that
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tﬂ‘exp&-(uﬁucuse\zl is an odd function of u whenever n 1is
odd, it 1is clear that the integrals over even powers of k in
equation (4.22) all vanish. Thus of the first four terms }n
the expansion, only kuw/wg and 3uW®/wg contribute,

and there results:

Iy = ';‘E:-Ez -:u,z Pi ( CDSB\ﬂm
U::f S u.“mq:[ ( \ ]du.

Using the well known values of these definite integralsll gives:

(4.26)

ﬁE JTr® Icosb‘(,;%ze +3 kzo\zcos“e) (4.27)
W 2 2 we®

The treatment of the integral 12 is somewhat more in-

volved. It is apparent that the integrand of

Iz=$:_‘£i u.-wzl& F{_ iﬁg\)] exp[~(t;‘§sdgﬂgw (4.28)

consists, for small k, of two rather wideiy separated exponen-

tial pulses, centered at W= Twc/K , and weighted by the
term u/(u-wn/lc\ . These components of" the integrand are
plotted schematically as Figure 4. The pulses differ substan-
tially from zero only over a distance of the order of o«cos 8
from their centers, so that the major contributions to the
integral occur in the vicinities where the term LL/(LL—uog/k\
is reasonably approximated by Taylor series expansions about
=W/ . If Wy 1s much different from we , the denomlna-

tor's singularity at u=wglk occurs where the numerator has
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gone exponentially to zero; since the integral is taken in the
Cauchy principle value sense, the effect of the singularity is
negligible in this case. The restriction on the size of
|we-wel appears more explicltly when the actual expansions

are written down. Near w= +W./K , the Taylor series is

U We (kLL—Wg\ - (kLL" wc_\z
= - - Wg -~ —————"Wg — -
w - wr/k Wa-We  (We- W) ® (We-we\? ® (%.29)

As ww approaches W, , the number of terms in the series
which must be retained‘to represent tx/(LL—tnt/k5 accurately
in the region of interest increases, correctly reflecting the
fact that this factor is varying increasingly rapidly with u
there. For ws very close to wc¢ , (4.29) becomes a series
representation of infinity—the singularity has moved into the
region described by the expansion., For u near -w./k , the

Taylor expansion is

2
U-~Wr/k  Wr+we (Wr+w)? (Wrtw)®

and the arguments given above hold for Wy approaching —w. .
The integral 12,18 now conveniently written as two inte-
grals with the appropriate expansion introduced in each. From

(4.28), (4.29) and (4.30):
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o
S [—wg Ceu-we) o _ (k- we.\ ]
e wk-—UOc (Wr-we )z (.wwwu)c)a

% exP[-(%itsfggY]chu

\-—4
]
"’Le

We (ku-&-u)c.‘ (eus WQ\ W4+ Welk Z
- w ST W - - =T e
+§w[wz*wc (nrwe P~ Coma ™ ]e"F[ ( Acos B ) }du

(4.31)
Now making the substitutions == ku-w¢ and == kw+we 1in
the first and second integrals, respectively, and retaining

the first four terms in each series, gives:

2
I, = <fwp [ We We <
- -2
2.k2 (wg-p We wr- wj SQXP ( kzoczcos?-e\) "—f

o0

—(_ wr (] z - =2 ok
—— A~ s <
((wn-wd* waoc\%)g z AXP( k2aA200s20) &

-0

(%.32)

since the integrals 1nvolving odd powers of z all vanish,
Using the known values of the definite integrals in (4.30),
rearranging the coefficients, and replacing 32 by i1ts defini-
tion (4.14) gives finally:

1,= —n'lzo w3 lcossl smte[Zusc, 4 WE (W' + 2uwd) K2x2cos2Q
H-voc, WR~-WE (W2 - we2)3

(4.33)
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Retalning more terms 1in the Taylor expansions would result in
higher order k terms in this result. It is difficult to fixexaéthr
the value of lweg-w.|l above which (%4.33) can be expected to
be valid. It 1is apparent, however, that since the effective
width of the exponential pﬁlses goes to zero for either k = O
or cs® =0 , the dispersion relation resulting from using

I, in the form given by (4.33) should at least be valid in

2
those two limits. For any but these special cases it must

suffice at this polnt to note that roots which give wr near
we must be regarded with suspicion. A more detailed discus-
sion of this difficulty is included in Chapter 6.

The integral, 13, is treated 1in the same way as 12. In
this case the exponential pulses are centered at u=*2w./k ,
and the necessary restriction on the result 1s that we not be

too near 2w . The fact that I, contains the multiplier

3

s%/kZ  where I, has <?*/kZ means that only the first term

2
in the Taylor series need be retained in this case to obtain

the result to order k°. It is

15___17'/2‘80&500\%lcose\f:\w“e(zwﬁ 4 BEwe ) (4.3%)
K] ZWct W ZW- LR '
or.:
1 =:_Tth<kx5¢0%\CDSGSlﬁﬁnqéb
u (4.35)

W (we2— Yw)

The results for Il’ Ie‘and I3 can now be substituted back
into the dispersion relation (%4.21) to yield, discarding terms
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of order «2k%, =M, and higher:

‘ 3
1=-w-fcosze(\—5‘£\_z_‘§mf_@) 2cost
We ol 2:3£i‘<§x cos'0

+ u> 14" 1 — \:zd?suM269 + L WE k222
20 2 We (w2 -nwe)

k4
L QP) wWa (WE+2wWE) | , o -
+ 2 2
Z( (oo - oY ko2 <sivEB cos?O
(4.36)
The neglect of terms of order s4 requires that
el = k“o(“s'm”‘e << i (4037)

K&

The exact number to be placed on this conditlion is somewhat
arbiteary, depending on the accuracy required in the result.
Equation (4.36) represents an enormous simplification of
the dispersion relation over 1its original form., This simpli-
fication has been achieved, of course, only at the expense of
restrictions on the parameters k2a2cos?@/wg , kZoZzin 0 [zwé s

| e — wel and t wr — ch_‘

4.3 Some Limiting Cases of the Simplified Dispersion Relation

The dispersion relation (4.36) 1is readily evaluated in
several limiting cases for comparison with the previously known
resiults. For k = 0, 1t becomes:

2 .42
co=ZO + ‘.*?.P.S’Lez (4.38)
W' "U)Q

1 =

Iz,
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and clearing the denominators and rearranging gilves:
W — Wa W+ wd) + Wpwiws?d = O (4.39)

Equation (4.39) is exactly the result of the macroscopic
analysis with k = 0, as can be recognized by setting k = O
in equation (3.5). The roots are thus the macroscopic roots
given for wg 77 wE and vice versa by equations (3.9)
through (3.12) with k set equal to zero.

‘Particular care must be taken in examining the limits of
sin © or cos © exactly zero. To take such a limit without
introducing extraneous roots, the sines or cosines must be
set to zero before clearing the denominators in equation (4.36)
or (4.38). Thus in the case of k = O, sin © = 0, equatilon
(%.38) becomes simply wg = wé . The root wg = W& ,
obtained by setting sin © = 0, cos © = 1 in (4.39) is an
actual root of (3.5) but an extraneous one of (4.38), since
in the latter equation the term giving rise to the root
vanishes in the sin 6 = O 1limit. The physlical explanation for
this difference is not hard to find: it will be remembered
from Chapter 3 that the macroscopic root, w#* = Ww¢ , for
perfectly parallel propagation, described a particle motion
completely uncoupled from the electric field. Since the
microscopic calculation carried out here 1s concerned only
with the dispersion relation for the electric fileld, the root
00§-=Lo§ logically does not appear in the parallel propaga-
tion limit.

For finite k, taking the sin 6 = O 1imit correctly in the
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dispersion relation (4.36) gives:

2
1= WP 4, B WP keaZ (4.%0)
wk z U)Ru
or:
Wr ~ WBWR — %w?skzo\z = 0O (4.41)

Solving (4.40) for w%i with the usual quadratic formula and
expanding the square root term in powers of kKZ(%/wg gives,

selecting the positive square root:
wa = Wp + %kzo(‘ + D(k“d“/u)g) (4.42)

The negative square root gives:
wg = - 2kro@ + Olkuo/weF) ‘ (4.43)

Equation (4.43) clearly cannot represent a physically meaning-
ful root of»the disperslon relation, since the wg satlsafying
(4.43) is pure imaginary instead of pure real. Equation
(4.42), however, is Jjust the Landau result (2.20), as expected
for propagation parallel to the magnetilic field.

Taking the cos © = 0 1limit of equation (4.36) for finite

k gives:
1= _we - \<2<xz> + L wikZa®
WE- W& 2We 2 WE (WE-Hw?) (4.44)
which reduces to:
N 2*( 2 2 . N2
wWe WR EW(_-‘-WP + chP (4.45)

+ L\'chl" —%Z-wgkzdz = O
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Solving equation (4.41) by the quadratic formula gives:

i
2w} = Swi+wp = | (203-wd) + keorwg]™ (4.46)

which is exactly Bernstein's result for the same limit (see
equations (3.14%)), except that Bernstein has not mentioned the
positive square root possibility. The approximate‘roots of

(%.46) for w§ -1 wé are Bernstein's:

wa = HwE - 2 ko2 (3.15)
and that for the positive square root:

W = wp + W + %kzaz (4%.47)
which is the cos 6 = O 1limit of Bernstein's arbitrary direc-

tion of propagation result, (3.17). For LOE~77(0; s, the

negative square root gives Bernstein's
2 2 W
we = WS + wp “‘ikz“zwfz (3.16)
and the positive square root gives:

w = HWE + —‘ikzo("%% (4.48)

The cases above exhaust the possibilities for which the
dispersion relation (4.3%6) can be solved in simple form. It
is most encouraging that these microscopic results agree per-
fectly with the macroscopic and previous microscopic work in
these cases of parallel and perpendicular propagation, and for
k equal to zero. These results are summarized in Table 1.

It should also be noted that the usual Landau result for

no imposed magnetic field cannot be recovered by setting
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We= O in (4.36), since the restriction that kzor<nz@ /20Z

be small cannot possibly then be satisfied.

4.4 General Solution of the Simplified Dispersion Relation

In the general case, that is, k, sin © and cos 6 all non-
zero, clearing all the denominators in equation (4.36) yields
a sixth-erder polynomial in LDRQ. Such an equation cannot be
solved by formula, and attempts made at approximate solution
by successive approximations were discouraged by the impos-
sibility of deciding in general which terms are small.

The only recourse is solution by computer. A simple pro-
gram has been devised in the MAD language to compute the co-
efficients of the polynomial and call 1in a routine for its
numerical solution. The routine is based on a method due to
Muller'? and is available as IBM SHARE listing 1124. The com-
putations are done in the complex mode and the routine gives
both real and imaginary parts for all roots. Since the dis-
persion relation (4.36) is an equation for the real part .of
the frequency, it should be expected that the imaginary parts
6

be on the order of 10~ or more smaller than the real parts,
representing cumulative machine error. The inputs to the
program are the desired values of ©, the plasma and cyclotron
frequencies cop and w, and the wave number times the Debye
length:

klo = k(&ET )‘/z= ot/ 20

eZVe (4.49)

Cases have been run for representative values of these parameters,
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and the results are presented and analyzed in Chapter 6.

The program itself, named OMEGA, 1s included as the Appendix.
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CHAPTER 5

THE DAMPING DECREMENT

5.1 A Complex Varlable Approach to Landau Damping

Given a value for the real part of the frequency, wg ,
and assuming that the imaginary part, Wy , 1s very small,
Wy can be obtained relatively easily using a complex vari-

able technique. The quantity e(w ) 1is defined

2 1 2
¢ _wp (FlWdu _ 5. Wp 1(w
E(w= 1 ?2: —= ZﬁL-—sz F (——| ) (5.1)

so that € vanishing gives the famillar form of the analyti-
cally continued dispersion relation, (2.19). Defining the
quantity D(w) = G (1 - €), in general complex, and using

(5.1) gives

o
_ F'lwd T =
S wp T v 2t FR) o

Now consider the conformél mapping of the line w= Wg
[the Re(w ) axi% from the complex w plane into the complex
D plane. The result is a closed contour 1n the D plane, en-
closing the conformal map of the complete wg > O half plane,
as shown in Filgure 5. Now setting € = O gives the point in
the D plane corresponding to the solution of the dispersion
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2, and k2

relation: D(w ) =k is real and positive. The
merit of the conformal mapping in the present context 1s
simply to suggest from the form of the contour in Figure 5,

that D(w ) = D( Wr + 1Wg ) = k°

becomes arbitrarily close
to D( wr ) as k approaches zero. This point, together with
the fact that D 1s_an analytic function of w 8o that its

derivatives are finite and continuous everywhere, motivates

a Taylor series expansion of D about W= Wr
WE
Dlw) = Dlwa) + twz D'we) ~ ZF D" (we) + (5.3)

Now with wi small, the expansion converges rapidly, and it
is sufficient to retain only the first two terms. Separating

the resulting expression into real and imaginary parts gives:

Re[Dlw)] + wiRe[iD'twa)] = k2 (5.4)

]

]

Im[Dlwn)] + wrImliDwa)l = 0 (5.5)

The second of these equations is the more tractable. In the

1imit of wr—>0 , D(we ) 1s given by:

Dlwg) = w? %_E.L&léu + TTiw C(WR) (5.6)

- ww/

Equation (5.6) has ™YL in the last term instead of 2ML as in
(5.1) as a consequence of the Plemel] formula59 which apply in
this limit. From (5.6):

Im[Dwe) = nwhF' (L) (5.7)
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: 2 ® Pl duw
Im[LD(_wa\] = w’ﬁﬁ- wi ;—_—;‘:;,kl (5.8)

and using equation (5.5) gives for wq

- (8

d [&Ewdu < (5.9)
dwg Z U~ Wwrik

wr =

As a check on this means of obtaining Wy , it will first
be used to recover thg’famiiiar pesult for the Landau damping

with no imposed magnetic field. In that case, with F(u)

Maxwellian:
FW = exp (- uz/o@)/n'l'zo( (5.10)
F'lw = - 2u ex\:(— w2 /x?)/ e e® (5.11)

where & = (2KT/m)1/2. The denominator of equation (5.9),

labelled Y for notational convenience,is given by:

weie ~§ 8o
Vv = lim 4 S + % F'(wdu (5.12)
§—=o dweg U- wr/K
-0 We/k+ S

which, using the well known formula for differentiation under

an integral, gives

Y = lim ‘ Fllonk -8k Fllwe/c+ §)k |
$=0 -$ S (5.13)

o
+ ‘%L F'(w du
~m\< (- Wik )
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Equation (5.13) can be shown to be equivalent to:

Y = k L F'(w) - F'(we/k)] du (5.14)

WE ) T (1 - kw/we)E

Expanding the denominator and using (5.11) gives:

[0 8]
_ -2k /e - W 2
e B o s oot e
2kw 202 o ...
“[‘ teR t Sof Y 1 (5.15)

For small k, and if u << We/k (the range where the signifi-
cant contribution to the integral occurs), the term

( wp/k) exp (- wa /ZA?) 15 negligible compared to

u exp (-ug/hxz). Then noting that the integrals over odd
powers of u vanish, discarding terms of order higher than

2

k® in the expansion, and using the value of the one resulting

nonzero definite integral gives

Y = - 2kz/w (5.16)

The numerator of expression (5.9) is

X = —wF'(%)= BTUE oxp(- Wi/ o) (5.17)

and the imaginary part of the frequency, wt , 1s then given

by:

| H
) L TR, exp(-wd/ K2ar?) (5.18)

Wt = %—
kA3
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Writing down the form obtained by Landau, for comparison

2 ~:
wy = —k%—_f axp (—wp/k?o(z) (2.21):

it 1s apparent that the complex variable approach automatical-

ly yields the correction proposed by Jacksonu,

i.e., the re-
placing of w‘g by We = wTS -&-%kzokz in the exponential, as
well as the same, less important replacement in the coefficient.

5.2 Application to the Damping in a Magnetic Field

The analysis of the previous section 1is unchanged, except

that now

o <)
- - ku- chz
F'lw) = *-‘/zo\;\cose‘zn- " T QXP[ (————-——kuwse) I (4.13)

2 .2

The functions of 32 = kT A sinae/ LACQ are expanded Just as

in Chapter 4. It is now permissible to discard the terms of
4

order s’ which were retained previously, however, since the
coefficient of the integral in which F'(u) appears 1s now

proportional to k instead of 1/k. Expression (5.14) becomes:

Y = -2k (1-<7) ( iuexP (Nose\] WE oxp|- (k«cose R o

kA
™z o3 W lose | =Y, wﬂz

z U -We + W ex [ k“"'“)g l
* ; %uup ko«tose\)] v )

N e]? _du
. We _(wr—we |~ WE pyp |- [ WetWe ]
' T:exP[ (ko«cose ] KQXP[ (kowoses (1 —kwhor)

(5.19)
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For convenience, let the two integrals in equation (5.19) be
Jl and J2. Jl, with Acos © replaced by oA, is the same
integral treated in obtaining the Landau damping decrement

in the last section. The corresponding result here is
T; = Wz karco28\conel /g (5.20)

The terms in J2 having the coefficientl»g/k are negligible
only if 'We-Wcl ¥7 kxcos® , essentially the same assump-
tion required in obtaining the dispersion relation for the
real part of the frequency in Chapter 4. Assuming that, con-
sistent with Chapter 4, this restrictipn 1s met, J, becomes:

(1- chhdéXz Xcos6

3, = glwc,/k 00 .e_xp [_. UL- wc_/k) .kdu

R ﬁxm\zg axp[ - (L) [ ou
(5.21)

where the term u/(1 - ku/bog)z has been replaced by the first
term of its Taylor series expansion about u = X W¢/k. Since
the definite integrals are both equal to Tr/Zcilcos®l ,
(5.21) becomes:

wé :
3, = Zfl'"z:lcoselsz[ e l (5.22)
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Then with (5.19), (5.20) and (5.22), and discarding terms

2

of order higher than k, the denominator of the expression

for wWr is:

Y = "Zk (cosze s 22O )

2.

(1= wa/wa) (5.23)

Now using the expression for F'(u), (4.13), to obtain the

numerator in the expression for wy :

Ko () + 2ot e aup(zE )
(K >*coss| K P kzqzcosle (5.2%)

where only the lowest order term in F'(u) has been kept. Then

Wy 1s approximately

k4
= X =2 "'__._ﬂ”z__B.__w y ZXP(—-EMB'{——I \)
X k22 \cos O | xfcostd

Ccosze + Wp =in2D
(w Z\Z
(5.25)

Although 1t would not be difficult to calculate the next order
of k terms in expressions (5.23) and (5.24), this will not be
done here. Since the imaginary part of the frequency 1is al-
ready very small compared to (dg , calculating 1t to a great
many significant figures does not appear warranted. It should

be pointed out, however, that were such accuracy desired,
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several additional terms in k could be kept before it became
necessary to use more than two terms in the series (5.3),
since (5.25) shows wg to be transcendentally small in k.

The approximate result for w; given by equation (5.25)
has the expected behavlior in the easily examined limits,
sin © or cos © = O, For sin © = O, or propagation parallel
to the magnetic field, cos © 1s one and the Landau result
for no imposed field, (5.18), is-Pecovered. For cos 0 = O,
or perpendicular propagation, the term exp (-w;/\czo(zcosze )
vanishes much more rapidly than the cos © term in the denomi-
nator, and the damping is ze¥o, as expected for that case.

It should be pointed out that expression (5.25) is not
in general agreement with Bernstein's limiting case results
for the damping decrement [equations (3.18) and (3.20ﬂ , the
most significant difference being the cos?6 term in the ex-
ponential of the present result. It will be remembered, how-
ever, that Bernstein's (3.18) does not have the seemingly re-
quired property of vanishing for perpendicular propagation,
and should probably be regarded with some suspicion.

The general behavior of the present expression for
damping, (5.25), is examined in detail in the next chapter,
where numerical values corresponding to the real parts of the
characteristic frequencies for representative cases are com-

puted.
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CHAPTER 6

NUMERICAL RESULTS AND CONCULSIONS

6.1 Computer Results and Interpretation for the Real Part of

the Frequency

As pointed out in Section 4.4, the IBM 7094 computer was
used to solve the siith order polynomial in uoi resulting
from clearing the denominators in the simplified dispersion
relation, (4.36). It will be remembered from Section 4.3 that
in the limits of parallel and perpendicular propagation with
respect to the applied magnetic field, the dispersion relation
reduces to a quadratic in uo§ and can be solved analytically.
Clearly, there are only two actual roots in these limits—the
other four obtained by the computer there are extraneous and
result from clearing the denominators of termswith zero co-
efficients.

For values of the propagation angle between zero and
ninety degrees, some roots of the sixth order polynomlal may
8till not be even approximate roots of the exact dispersion
relation (4.12). Such extraneous roots have at least two
sources: the truncation of the Infinite series as it appears
in (4.13) could produce a spurious root, and certainly when

the approximations of Section 4.2 on jwe-w\ or lwr-2wc|



47
are violated, the polynomial which results from (4.36) cannot
be considered a valid approximation of the dispersion relation.

As is well known, a sixth order polynomial with real co-
efficients may have one, two, three or no pairs of complex
conjugate roots. Since the dispersion relation which the
present polynomial attempts to approximate is an equation for
the real part of the frequency, any complex conjugate pairs
of roots of the polynomial cannot be actual roots of the dis-
persion relation. When such complex roots occur, then, they
can be discarded as extraneous. It is not immediately apparent
from which possible source these roots come, nor is it certain
that all spurious roots will give themselves away, so to speak,
by appearing as complex roots.

Tables 2 through 8 summarize the computer results for
representative values of the parameters we, Wc¢, and klpo
The spurlous negative root obtained in the sin 6 = O limit
[see equation (4.43)} appears 1in the computer output as one
of the six roots throughout the theta range in almost every
case—it has not been tabulated here. At the © = O and 90-
degree limits, only the computer roots corresponding to the
known actual roots there are given. Where complex conjugate
pairs occur, the approximate value of the real part is in-
cluded beside the notation COMPLEX. The value of K2Z? cor-
respénding to kLo and wp for each case has been given as an
ald to estimating the validity of the approximations on

ko g1n? e/2 we® and k2ot ? coseO/ Wg?. The notation used

12

in the tables is such that, for example, 3.0 x 10 is written
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3.0(12). Tabulated roots recognizable as previously known

forms are so labelled. Frequencies are in sec'l.

12

The values of wp = 6 x 1072 and We= 3 x 10%1 used to

obtain Table 2 correspond to a thermonuclear plasma. The

value of k2cx2 is sufficlently small that kacx2

kot @ cosQO/ We are always << 1. Since wp 7 wE ,

C and

s1n26/2 we
Bernstein's expression for that limit can be used for compari-

son:
we = Wp + WEsN2O + E sy (3.17)

The values of oo§ given by equation (3.17) are in agreement
2
with the computer root we, to six significant figures through-

out the theta range. The root
W = Hed - ke (3.15)

predicted by Bernstein for perpendicular propagation is given
exactly by LO§z (the k°x 2 terms do not appear until the

tenth significant figure in this case). The root uo§;='WUQ§
appears constant over the theta range, but as has already been
pointed out it cannot be an actual root for 6 exactly zero.

In fact, since it appears to violate the restriction that
lwe - 2w, be large, it must be viewed with suspicion
everywhere except at 6 = 90 degrees (see Section 4.,3). The
root c»éé‘ agrees with the root obtained from the macroscopic

analysis in the w7 WS  limit,

WE = WEDZO - WE WE =inzO oz (3.10)
R sz '

to five significant figures throughout its real range. Between
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10 and 5 degrees, as cos 6 —= 1, co§3 becomes complex and
must be considered a spurious root. The roots 00§q and t»;%
comprise a complex conjugate pair (whose real part is near
We?% ) throughout the theta range, énd are therefore spurious.

Table 3 is based on the same values of Wp and we as
Table 2, but with klp increased to 1.58 x 1072 (correspond-
ing to decreasing the wavelength of the oscillation component
being investigated compared to the Depye length). Assuming

2

that the smallest root is approximately Ochos 8, the maxi-

mum value of k°o¢Z 00329/ (A)ge is then about 1/5, so that the
approximate restrictiom given by equation (4.25) is still met.
However, the kzcxe contributions to the roots are certainly
no longer negligible. The root ooé‘ from Table 3 agrees

with the values given by Bernstein's expression, (3.17), to
five or more significant figures throughout the theta range.
The root cu§; agrees to four significant figures with
Bernstein's (3.15) in the perpendicular propagation limit,

and the agreement can be extended to six places if one more
term in the expansion leading to (3.15) is kept. This root

is approximated very well over the entire theta range by

wr = ‘*wz’—%kzo@sfm“e , but once again this root is sus-
picious in view of the restriction on \UOg--'ch.\ . The root
wés still has basically an wd&ws2® variation, but with
relatively large deviations due to the now important k25A2
terms. The form of these terms is inaccessible to the macro-

scopic approach and to direct calculation from the present

microscopic expressions; they might be obtained by curve
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fitting to the computer data,but this has not yet been done.
Finally, the roots cééq and uoés are agaln a complex conjugate
pailr with real part near w& throughout the theta range.

Tables 4, 5, and 6 present the results of computer runs
done for wp = We =1 x 10". These frequencles are appropri-
ate for a hot plasma in a laboratory magnetic field. The com-
puter roots are tabﬁlated only from 5 to 85 degrees. The cor-
rect roots at © = O and © = 90 degrees are obtained from equa-
tions (4.42) and (4.46) more easily than they are sorted out
of the spurious computer roots in those limits. The three
tables are for klp = ,001, .1, and .3, respectively, correspond-
ing to increasing importance of thermal effects. The computer
roots for wp= W, and theta not O or 90 degrees are of par-
ticular interest because this is exactly the case which is in-
accessible to previous approximate microscopic treatments,
notably Bernstein's. The k = O 1limit of the macroscopic dis-
persion relation (3.15) may be of use in identifying one of
the roots in Table 4, but with that exception there are no
analytical expressions with which to compare the values 1in
Tables 4, 5, and 6. The assumption that at least some of
the roots are éorrect is based on the fact that the expression
which yields them gives the correct results for all the known
limiting cases in which its restrictions are not violated.

The general form of the roots is not hard to obtain
from the Tables: wé varies between w? and 2w? (where
W2 = w§ = wf_‘ ) and when thermal effects are unimportant, as

in Table 4, the varlation is given almost exactly by
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ooé, - (1 + sin ©), which is, in fact, just the result
obtained 1f one sets Wp=W, and k = O 1n the macroscopic
dispersion relation (3.5). The second root 1is the by now
famillar co:z = quﬁ with thermal corrections taking on con-
siderable importance in Tables 5 and 6. The root 0523 de-
creases rapidly from w? with increasing theta, but does not

29 even when thermal corrections

quite flt w'cos 6 or wcos
are unimportant. The point that any of these roots are sus-
picious when near we. or 2w, need hardly be belabored further lere.
Tables 7 and 8, when used with Table 6, show the varia-
tion of the roots as we 1s varied from slightly less than
through slightly greater than wsp, which 1s held fixed at
10". kLpe 1s fixed at 0.3, where thermal effects are rela-
tively important. It appears from these results that (A)Rz‘
varies essentially from the larger of wp and We to the
sum of the two as theta increases from O to 90 degrees, with
a thermal varlation which increases the frequency at small
theta and decreases 1t as perpendicular propagation 1s ap-
proached. The root ‘”éz is a constant Hwe plus thermal
variations with theta regardless of the relative size of uﬁ;,
and cuég seems to be proportional to the smaller of uo% and
we  times a decreasing function of 6. Additional runs not
tabulated here reinforce these conclusions. The approximate
behavior of the roots for wp near We 1is indicated schemati-
cally in Figure 6.

2 z
Runs were also carried out for ¢ 77 Wp . In these
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cases a pecullarity of the polynomial solving computer routine

resulted in meaningless data. The difficulty is not, in
principle, a serious one,but sufficient time was not avail-
able for this work to resolve it by using another routine.

The basic conclusion to be drawn on the basis of the com-
puter results summarized here is that the present, simplified
dispersion relation, (4.36), provides accurate values for
in the range between parallel and perpendicular propagation,
including the case, W, near wyp (which 1s not accessible
to simple expansion of the microscopic dispersion relation),
provided the restriction that |weg-wcl and |wp-2w| not be
too small is met. It is surmised from the evidence in the
tables that the complex behavior of some roots results from
the violation of the lwe-we\ restriction, although it 1is
not at all clear that a root becomes complex as soon as the
root violates that restriction. The roots near “wZ do
not, in general, exhibit the same complex behavilior, although
they appear to make |Wm-2wWe|l small.

Some further comments on the difficulty for wg very
near We Or 2W, are appropriate. The successive contribu-
ting terms in the Taylor series expansions (4.29) and (4.30)
are in the ratio (ku¥ Wc.\z/(wz’-(-uk)z for Wg very near
We . Since the half width of the exponential pulse centered
at u = +wW./k 1s on the order of olcos 6, the condition that
the series converge rapidly over the nonzero region of the
pulse can be written, approximately

kZo2cos?® . ¢ (6.1)
(Wp— W2
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Now, .for example, with w?® =~ wé and w§ differing
from wE only by, say, wgsin2® +.?E\<zo@smze as in the
macroscopic root (3.11), it is not hard to see that the
restriction (6.1) is violated for almost any © # 90 degrees.
A mofe interesting case 1n the light of the present computer

results 1s the equivalent restriction arising when We is very

pear Zwe

SESE (6.2)
(Wr - 2WN*
The computer solution gives a root at Lhﬂg' plus some theta-
varying thermal terms, which corresponds to Bernsteiln's root
for perpendicular propagation, (3.15), at sin 6 = 1. If one
writes this computer root in the general form, wg = HuwR + k2ot ()

where f(©) is nonzero except at © = 0, (6.2) becomes, approxi-

mately:
e Z 2
o =X [He™ 7 =26 (6.3)

The restriction (6.3) seems certain to be violated for any ©
more than a few degrees from perpendlcular, since from the

form of the computer root £(©) is something like 3’23\'\/\“6 -
and K2RAE is restricted by (4.25) to be smaller than 1/2.
Thus the computer root near “wW& must be spurious for all

but the immediate region around perpendicular propagation.

6.2 Some Numerical Values for the Damping

It 1s a simple matter, given any value for the real part

of the characteristic frequency of oscillation, W , to
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calculate the imaginary part or damping decrement from the

formula

- 2wr exp(-win/k2oRen2e) (5.25)

Wy = . =
2> |08 [

cost® +'_Eﬁ§___ <im0

(WE-WEY

It is apparent that the damping is, in general, dominated by
the exponential, and that it can only become appreciable when
the ratio W& /k2a2cos2® 1is not too large. As pointed out
in Section 4.2, however, there 1s a lower 1limit of about 4 on
this ratio, below which equation (5.25) cannot be considered
valid. If the different real roots corresponding to a given
gset of plasma parameters are widely separated in magnitude, as
they are if uu&”r7uoé' or vice versa, the above restric-
tion means that appreciable damping canibe calculated wilthin
the limitations of the present analysils only for the smallest

roots.

For example, using the results from Table 3, where

2, and

wep =6x 10° , we=3x 10, and klp= 1,58 x 10~
calculating the damping for the largest root,co§1xw0§, gives,
at 6 = 0 degrees:  wr~ 107 x exp(£2000), an infinitesimal
number indeed. The damping is virtually zero even for
parallel propagation, and decreases still further as cos ©
decreases from 1, For the same plasma parameters the root

wézz Hw& , if in fact it exists for other than perpen-

dicular propagation, is only very slightly damped when © # 90
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degrees, At © = 10 degrees, for example,conzfrom Table 3 1s
6 x 101! and (5.25) gives Wz = -1.1 x 10°, which 1is less
damping than could be expected from collisions. The smallest
characteristic frequency, Wr,x WE®® 1is, however, very

heavily damped. For this root, Table 3 and (5.22) give:

e Wry -Wz

5° 2.81(11) .58(11)
30° 2.39(11) .28(11)
80° 5.76(10) .14(10)

It is apparent that at the wavelength corresponding to the
present value of klp , the characteristic frequency near
Wcos® 1s almost completely damped out after on the order
of ten oscillations for small propagation angles. As expec-
ted, the damping decreases as perpendicular propagation is
approached, although relatively slowly because of the cos ©
dependence of the real part of this root.

When the cyclotron and plasma frequencies do not differ
greatly, all the roots may have'appreciably nonzero damping.
For example, the results of Table 7, where Wwp = 1l x 1011,
We =8 x 1070, klp= 0.3, give, with (5.25):
e wr, -Wr, We, ~-Wry, WRa, ~W1,y
5°  1.11(11) 3.2(9) 1.60(11) 9.3(6)  7.35(10) 2.5(10)
30° 1.23(11) 4.3(7)  1.61(11) 7.5(%)  6.08(10) 1.9(10)
60° 1.25(11) 4.8(-3) 1.64(11) 1.7(-13) 3.75(10) 1.3(10)

The root WR, is significantly Landau damped near parallel
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propagation, but for propagation angles greater than about 30
degrees this damping becomes negligible compared to that
which would be caused by collisions. For the We, = 2We.
root, Landau damping is probably less important than colli-
sional damping even well away from perpendicular propagation
(1f the root exists there). The third and smallest root,
Wry » 1s very heavily Landau damped over most of the theta
range, so that it effectively ceases to exist after only a
few oscillations. The damping of this root very nearly rep-
resents the maximum damping, Wz/wa , which can be calcula-
ted within the limits of the present analysis, since
w§3/k2¢2mszex R 1is already stretching the restriction

on that ratio established in Section 4.2.

6.3 Conclusions and Suggestions for Further Work

The foregoing analysis has reduced the dispersion rela-
tion for plasma oscillations in a uniform external magnetic
field to an algebraic equation in the real part of the fre-
quency and an expression for the imaginary part of the fre-
quency, or damping, in terms of the real part. The essential
restrictions on the analysis are that Wt/ K22ws2 O |
Zw2/k2atsint® | (w-w)/kKZ2@x®  and
(Lo-2we) 7k2%2ost® all be large. The results for the real part
of the frequency are correct in the previously known limiting
cases when the restrictions are not violated, and the expres-
sion for the damping has the known correct behavior in the

limits of parallel and perpendicular propagation. An impbrtant
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result of the present work is that the previously inaccess-
ible case of arbitrary direction of propagation when the
plasma. frequency is of the same order of magnitude as the
cyclotron frequency can now be handled.

Two important areas for continuation of this work are
immediately apparent. First, the expressions for the real
and imaginary ﬁarts of the frequency should be evaluated at
small intervals over a broad range of Wp/We , with par-
ticular attention to the previously unexplored range near
wWp/we= 1. For detailed information as to the variation of
the frequencies with propagation angle and wave number,
smaller intervals in the range of these parameters should
also be sampled. Such results would bé of greatest value
if presented in completel& nondimensional, graphical form.

Second, an attempt should be made to circumvent the in-
ability of the present analysis to treat frequencies with
real parts very near W¢ and Zwc. At the very least, a
more detailed‘specifiéatioh of the points~where roots near
these values must be considered épurioué would be useful.

Another worthwhile direction for future work 1s the ex-
tension of the present analysis to non-Maxwellian initilal
electron distribution functions. An interesting example
would be the well known anisotropic distribution function8,
for which the electron temperatures parallel and perpendicu-
lar to the magnetic field are not the same. In thils case
the plasma 1s no longer necessarily stable with respect to
electrostatic oscillations, and roots may be found with either

positive or negative imaginary parts.
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Appendix

Computer Program for the Real Part of the Frequency:
OMEGA
OMEGA MAD

DIMENSION THETA(20),C(16),RR(15),RI(15)
INTEGER N
INTEGER X
INTEGER Y
INTEGER Z
c(1)=1.
N=6
REPEAT  PRINT COMMENT ZTHETA VALUES AND PARAMETERSZ
READ DATA
PRINT COMMENT ZDISPERSION RELATION ROOTSgZ
K=2,#KLD.P.2
Rg(WP/WC) 0P02
H=K»R
X=0
SWITEH  X=X+1
WHENEVER X.E.Y, TRANSFER TO REPEAT
THET=THETA(X)
THT=. 017453293 =THETA(X)
COST=COS.(THT)
COST2=COST.P.2
COST4=COST2.P.2
F=-H*(1.-C0OST2)/2.
C(2)==7.-RrF-,5*R%H%(1,.-COST2)
C(3)=15,+R*F*(6,+COST2) +R*H+(1.5=2,5%COST2~,5+COST4 )
C(4)==13,-RuF»(9,+6,#COST2) +R#H*(=1.5+9,#COST2+3 .~ COST4)
€(5) =4 ,+R#F»(4 ,4+9,»C0ST2)+R=H%(.5-C0ST2-22 ,»COST4)
C(6) =4 ,+R#F%COST2+19 . 54R¥H*xCOST4
C(7)==6,xR*H*COST4
®XECUTE MULLER.(C,N,RR,RI)
WC2=WC.P.2
THROUGH A, FOR VALUES OF Z=1,2,3,4,5,6
RR(Z)=WC2%RR(Z)
A RI(Z)=WC2+#RI(Z)
PRINT RESULTS THET
PRINT RESULTS RR(1)...RR(6),RI(1)...RI(6)
TRANSFER TO SWITCH
END OF PROGRAM
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TABLE 1

Comparison of the Present Microscopic Expression with the
Macropcopic Results and Bernstein's Results in Certailn
Limiting Cases

W&, Present Result w:,Bernstein‘ wZ% Macroscopic
(k=0 wp 77 WE)
w? + We sinZ0 We + W <in2d w;' + wlsintd
wl st — wd 0O
( e = O 002'77'US;)
WE + wgs'm" (S) — wi + w;sim‘e
w@ o2 wp 02O w§ ©s2O

(sme = o)

w—‘g + 3’_2. k22 (.o‘.;-f + %kzo@ w%-o- }ikzo(z
(c0s©=0 Wi 77 W)

W +wd +Z k2o W + wl + 2 k? Wi +wé + k2

Hwe - Zka? Hwd - 2 k22 o
(c0s©=0 w&v7 wp)

3 2 2 2 _ w i 2
w{,‘ + UOP - "z“k%ﬂzr(:;_gz We + WP 'ékzﬁz'zo% U\Jc *‘WF '\'%k%(z

2 A 2 Wpt —_— —_—
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TABLE 2

L wp = 6(12) We=3(11) kip=3.54(-6) K€ = 9.02(12)

2 2 2 g
Theta  wg, Wg, Wry W, Wag

0 36.0000(2%) -~ -- - -

5‘ 36.0007(24) 36.0000(22) 8.9(22)COMPLEX* 9.0(22) COMPLEX

10 36.0027(24) " 8.72875(22) "
30  36.0225(24) " 6.74578(22) "
60 36.0675(24) " 2.24579(22) "
80  36.0873(2%) " 2.70727(21) "
85 36.0893(24) " 6.81959(20) "

90 36.0900(24 ) " -- - -
W +WEEIIS Wi - WS B~

Ao

*The conjugate to this root replaced the usual spurious negative
root (not tabulated) at this one angle.



. wp = 6(12)

Theta  WR,

0  36.02694(24)

5 36.02763(24)
10 36.02967(24)
30 36.04953(24)
60  36.09463(24)
80  36.11443(2%4)
85 36.11646(2%)
90  36.11714(24)

WP +wEsive®

L Rl
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TABLE 3

we = 3(11) kLg = 1.58(-2)

2
WR, Wry

35.9998(22) 7.91011(22)
35.9970(22) 7.33861(22)
%5.8086(22) 5.72054(22)
34 .4503(22) 2.57377(22)
33.4459(22) 3.32675(21)
33.%265(22) 8.41477(20)
33%.2856(22) --

NOZ- 2l

"



Theta

10

30

60

80

85

90

1

=

=

1

[}

=

wp = 1(11)

2
Wr,

.08719(22) 4.00000(22)

.17367(22)
.50001(22)
.86603(22)
.o8481(22)

.99619(22)

We = 1(11)

2
sz

n

"

"
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TABLE 4

kLb = 1('3)

kA
WQ;

9.12827(21)
8.26347(21)
5.00001(21)
1.33975(21)
1.51923(20)

3.80532(19)

ke = 2(16)

z T
M)Rq )wts

1(22)COMPLEX

1"
"

n



wyp = 2(11)

Theta wg,

0 -

5 1.16541(22)
10 1.25636(22)
30 1.56522(22)
60  1.88089(22)
80 1.97369(22)
85 1.98226(22)
90 --

TABLE 5
we= 1(11) kKLp = 1(-1)
2
wéz Wry

=~

=

=
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.00000(22) 8.71206(21)
.00001(22) 7.98612(21)
.00086(22) 5.08675(21)
.00817(22) 1.39979(21)
.01396(22) 1.59577(20)

.01465(22) 3.99887(19)

2.2

k% = 2(20)

2
wry Weg

1(22)COMPLEX

)]

11

n



TABLE 6
we = 1(11) we= 1(11) KL = 3(-1)
Theta uoél w%,_ w§3

0 - - _

5 1.34684(22) 4.00001(22) 8.38157(21)
10 A7367(22) 4.00011(22) 7.63811(21)
30 .82902(22) 4.00793(22) 5.41673(21)
60 .96983(22) 4.07259(22) 1.75365(21)
80 .89293(22) 4.11973(22) 2.05124(20)
85 .87837(22) 4.12511(22) 5.14998(19)
90 -- -- --

Huwod .-

64

2.2

k°o© = 1.8(21)
2 2
Wey Weeo
1(22)COMPLEX

n

n
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TABIE 7
Wp= 1(11)  we= 8(10) KLp = 3(-1) kPx® = 1.8(21)
Theta  we, we, Wiy Wey Was
o) - - - - -
5  1.24822(22) 2.56001(22) 5.44577(21) 64(10°°) COMPLEX
10 1.29854(22) 2.56023(22) 4.98440(21) "

30 1.52811(22) 2.57659(22) 3.71060(21) "

60 .54891(22) 2.703%23(22) 1.40851(21) "

]

80 1.430903(22) 2.78260(22) 1.69189(20) "

85 A1259(22) 2.79110(22) 4.25395(19) "

—t

90 -- -- -- -- --

HU0e + ---



Wp= 1(11)
Theta w:‘

0 -

5 48615(22)
10 .63241(22)
30 .05342(22)
60 .28289(22)
80 .22429(22)
85 .20914(22)
90 --

\O

O

\O
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TABLE 8

We= 1.5(11)

2
Wr

.00000(22) 1.
.00004(22) ‘1.
.00285(22) 7.
.02610(22) 2.
.04380(22) 2.

.04s87(22) 6.

KLy = 3(-1) k" = 1.8(21)

2
Wg.s

20168(22)
14910(22)
89515(21)
31223(21)
67964(20)

72487(19)

2 2
WR,‘ Wwe s

2.25(22)COMPLEX

"

n

n
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