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ABSTRACT

Longitudinal electrostatic plasma oscillations in a uni-

form external magnetic field are analyzed. Collisions and ion

motion are ignored, and the zeroth order electron distribution

function is assumed Maxwellian, although the treatment is not

dependent on the last assumption. The dispersion relation as

given by Harris for arbitrary direction of propagation with

respect to the external field is transformed to permit a cal-

culation analogous to Landau's. A sixth-order polynomial in

the square of the real part of the frequency is obtained, and

the imaginary part, or Landau damping, is calculated in terms

of the roots. Numerical values are given for representative

cases. The results are valid for arbitrary direction of

propagation and arbitrary magnetic field strength, with the

restrictions that the product of the perpendicular component

of the wave number times the electron gyro radius, and the

ratio of the parallel component of the wave number times the

thermal speed of the electrons to the real part of the fre-

quency must be small. The analysis also fails if the real part

of the frequency is very near the first or second multiple of

the cyclotron frequency. When the restrictions are not

violated, the real part of the frequency is in good agreement

with the previously known results for limiting cases, and the

imaginary part has exactly the expected behavior in the per-

pendicular and parallel propagation limits.



A CKNOWLEDGEMENTS

The author wishes to express his apprecia-

tion to the following persons: Professor James

E. McCune for his patient guidance and many in-

sights, Professor Sheila Widnall for her advice

on the use of the computer, and Mrs. Barbara

Marks who typed the manuscript.

This work was done while the author was sup-

ported under a National Science Foundation Co-

operative Graduate Fellowship. The computer

work was done at the M.I.T. Computation Center.



I.

iv

TABLE OF CONTENTS

Chapter No. Pa
geNo

4

6

12

13

17

20

1 Introduction

2 Plasma Oscillations in the Absence of
External Fields

2.1 The Macroscopic Approach

2.2 The Landau Calculation

3 Addition of an External Magnetic Field

3.1 Some Physical Effects

3.2 The Macroscopic Calculation with a
Magnetic Field

3.3 Previous Work on the Microscopic

Approach with a Magnetic Field

4 A New Approach to the Microscopic Dis-
persion Relation

4.1 The McCune Transformation

4.2 Simplification of the Transformed
Dispersion Relation

4.3 Some Limiting Cases of the Simpli-
fied Dispersion Relation

4.4 General Solution of the Simplified
Dispersion Relation

5 The Damping Decrement

5.1 A Complex Variable Approach to
Landau Damping

5.2 Application to the Damping in a
Magnetic Field

32

36

38



V

TABLE OF CONTENTS (Continued)

Chapter No.

6 Numerical Results and Conclusions

6.1 Computer Results and Interpretation
for the Real Part of the Frequency

6.2 Some Numerical Values for the Damping

6.3 Conclusions and Suggestions for Further
Work

Appendix

Tables

Figures

Computer Program for Real Part of the Fre-
quency: OMEGA

References

Page No.

53

56

58

59

67

70



vi

LIST OF SYMBOLS

Def in ition Page Introduced

a

E,B

e

f

i

In (x)

Il. ..1I

J (x)

Ji ,J2

k,k

K

LD

m

n

n

p

t

T

U

u

u

x

Symbol

dummy variable

magnetic field

electron charge

electric field

electron distribution function

(-1)1/2

modified Bessel function

integrals

Bessel function

integrals

wave vector, wave number

Boltzmann 's constant

Debye length

electron mass

electron number density

summation index

electron pressure

perpendicular component of wave no. times
electron gyro radius

time

temperature

electron bulk velocity

velocity component along B

transformation variable

electron particle velocity

position vector

22

4

4

4

6

5

22

26

17

43

5

10

36

4

4

17

5

24

4

10

4

8

20

6

4



ri ~

vii

LIST OF SYMBOLS (Continued)

Symbol Definition Page Introduced

x dummy variable

x,y,z Cartesian coordinate system with z along B 13

X,Y numerator, denominator of Wx expression 40

<X most probable electron thermal speed 10

ratio of specific heats for electrons 5

9 gradient in position space 4

9q gradient in velocity space 6

permittivity of free space 5

dummy variable 22

e propagation angle with respect to E 13

characteristic frequency of oscillation 5

real part of characteristic frequency 10

imaginary part of characteristic frequency 10

us, plasma frequency 6

Wc electron cyclotron frequency 12

U ....scomputer solutions for frequency 48

() equilibrium quantity 5

( perturbation quantity 5

component parallel to B 17

(. \ component perpendicular to B 17



CHAPTER 1

INTRODUCTION

The basic features of plasma oscillations are easily

visualized by considering a simple electrically neutral

plasma under the influence of no external fields, and com-

posed of equal numbers of ions and electrons. Any distur-

bance in the plasma involving a local separation of charge

creates powerful electrostatic restoring forces, whose end

result is a high frequency oscillation of the electrons

against the background of relatively immobile ions. If the

effects of finite electron temperature are considered, these

oscillations in the electron density and the attendant local

electric field cease being a mere standing wave and propagate

through the plasma; in fact, the plasma becomes a dispersive

medium. Since the oscillating electric field is aligned

parallel to the direction of propagation and the induced

magnetic field is usually negligible, the phenomenon is des-

cribed as longitudinal, electrostatic plasma oscillations. If

the characteristic frequency of these oscillations greatly ex-

ceeds the collision frequency in the plasma, collisions can be

ignored. This assumption proves valid in thermonuclear and

many astrophysical applications.
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The elementary behavior of plasma oscillations is most

readily analyzed by what will be referred to in this thesis

as the macroscopic approach; specifically, use of the hydro-

dynamic continuity and momentum equations and Maxwell's

equations. A more sophisticated, microscopic approach, based

on kinetic theory and introduced by Landau in 1946, yields

similar results but includes the possibility of damping of

the oscillations even in the absence of collisions. This

phenomenon, generally called Landau damping, can,under cer-

tain circumstances, represent a growth in the oscillation

amplitude instead of a decay. Although agreement on the

physical mechanism underlying this growth or damping process

is not yet unanimous,Ov4 the existence of Landau damping

5has been experimentally verified, and its importance in pre-

dicting the behavior of plasmas in which longitudinal oscil-

lations can occur is apparent.

Landau's original calculation was done for a plasma under

the influence of no external fields. In most cases of practi-

cal interest, however, some sort of imposed magnetic field is

present. The physical and mathematical complications arising

from this addition are considerable, even when the magnetic

field is uniform and there is no imposed electric field. Pre-

vious work on this case has yielded characteristic frequencies

and expressions for the damping in certain limiting cases,

such as propagation of the disturbance perpendicular and

parallel to the magnetic field, and for arbitrary direction
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of propagation if the magnetic field is very weak or the elec-

tron temperature very low.6 A more general understanding of

the behavior of plasma oscillations in a constant magnetic

field is clearly desirable. In this thesis, expressions for

the characteristic frequencies and Landau damping for arbitrary

field strength and arbitrary direction of propagation are ob-

tained, interpreted, and compared with the previously known

limiting cases.

The work is developed as follows: Chapter 2 introduces

the plasma dispersion relation in the absence of external

fields, using the macroscopic approach. A description of the

Landau calculation is given, since the thesis treatment of

oscillations in a magnetic field relies heavily on Landau's

approach. Chapter 3 extends the macroscopic treatment to in-

clude an imposed magnetic field and examines previous work on

the microscopic solution for this case. Chapters 4 and 5 use

the Harris dispersion relation7 for a plasma in a uniform

magnetic field and a transformation introduced by McCune to

derive general expressions for the' characteristic frequencies

and damping. Chapter 6 evaluates the results for cases of

interest.



CHAPTER 2

PLASMA OSCILLATIONS IN THE ABSENCE OF EXTERNAL FIELDS

2.1 The Macroscopic Approach

In considering the high frequency behavior of a fully

ionized plasma it is reasonable to assume that only the elec-

trons move, while the much more massive ions simply form a

neutralizing background of positive charge. The classical

hydrodynamic continuity and momentum equations for the elec-

tron fluid are then:

+V(rii) (2.1)

v~1' (2.2)

where n(Z,t) is .the local electron number density, U(2,t) is

the electron bulk velocity, and p is the pressure, assumed

scalar. Assuming that the equilibrium state is the electron

fluid at rest with no fields present, these equations can be

linearized to give the perturbations on that equilibrium re-

sulting from some initial disturbance:

+ o (2.3)
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k

5

M- - 0) ~r~'~
(2.4)

where ( ) denotes a perturbation quantity and ( ) an
0

equilibrium quantity. If the perturbation magnetic field is

assumed negligible, then the perturbation electric field is

essentially curl free and is determined by

VsAE 0 E = (&en 8- (25)

The last assumption is called the electrostatic approximation.

With the further assumption that the perturbation quanti-

ties vary as e , equations (2.3) through (2.5)

become

-+ o = 0 (2.6)

-L"AIOOYL - LpnYIt -i te. 27)
no

- a ka (2.8)

where the adiabatic relation p/pO = (n/n0)Y has been used in

obtaining (2.7). Substituting (2.8) into (2.7) yields a pair

of homogeneous algebraic equations in the quantities n and u.

The condition for a nontrivial solution is the vanishing of

the determinant of the coefficients, which gives the dis-

persion relation:
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+ kr_ (2.9)

If the last term vanishes, either because p0 = 0 (no electron

thermal motion) or k = 0 (disturbance of infinite wavelength),

equation (2.9) describes free oscillations of the electron

number density, bulk velocity, and electric field at the plasma

frequency

- e(2.10)

If the last term in (2.9) is finite, a nonzero group velocity,

dco/dk, is defined for each k; the waves propagate and under-

go dispersion. It should be noted that the linearization

procedure which led to equation (2.9) restricts the results

to small amplitude motions.

2.2 The Landau Calculation

The behavior of an unbounded plasma can be completely de-

termined if the velocity distribution functions, f(5,v,t), for

its components are known. For the present case, in which the

ions are assumed to comprise a positive immobile background,

only the electron distribution function is of interest, and

the plasma is described by the Boltzmann equation:

+. -9 - -V (2.11)
<lyt4t /c-oilisions

where F describes the force field acting on the electrons and
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YV is the gradient in velocity space. Since the phenomenon

of interest here proves to have characteristic frequencies

which exceed the collision frequency by 106 or more, the col-

lision term on the right hand side of (2.11) can be ignored.

Landau solves the resulting collisionless Boltzmann, or

Vlasov, equation as an initial value problem. That is, given

a small initial perturbation, f(l)(c,,t=O), on a uniform

equilibrium specified by some distribution, f0(Y) (satisfying

the Vlasov equation), he assumes:

= (2.12)

Using this expression in (2.11), subtracting out the equil-

ibrium solution, and keeping only first-order terms in the

small perturbation, f(l), gives a linearized equation. With

external fields assumed absent, it is

F_ *V- 0 (2.13)vy

where

EL vc (2.14)

Equations (2.13) and (2.14) are now Fourier analyzed in space

and Laplace analyzed in time, and the components of velocity

transverse to k are integrated out for simplicity. (For de-

tails of these and following procedures in the calculation,
19

the reader is referred to Landau or Montgomery and Tidman9 .)

The resulting equations are readily solved for the Fourier

transforms of the perturbation electric field and the distribu-



tion function along the direction of propagation, k. The

electric field is of more immediate physical interest; its

transform is:

E( (kw = du-- (2.15)
kD(kpl. ku.- La-

where u is the component of V parallel to lk, F(l)(k,u.,t=O) is

the spatial transform of the initial perturbation distribution

function along k, and D(k, ) is given by

The quantity W is in general complex, and by the nature of

the transform used in obtaining (2.15) and (2.16), these ex-

pressions are valid only where Im(w) 2z 0.

The time behavior of the kth spatial component of the

electric field follows from the Laplace inversion formula:

Lr 4- o

E.)(kt=) exp(-i.At) E")(kp)d (2.17)
icr- co

where the contour of integration in the complex W plane is

a line parallel to the Re(c ) axis and above all the singulari-

ties of the integrand. Although equation (2.17) is the formal

solution to the original initial value problem, it cannot be

evaluated for distribution functions of practical interest due

to the intractability of the integrals involved.

Landau therefore resorts to examining the behavior of the



electric field in the t--vco limit. By deforming the contour

of integration downward into the Imv()<O half plane, (2.17)

can be rewritten:

-~~~ L t ~ 0 1 ( < U ) d

=ZR. C ET (2.18)

where the Ri are the residues of the singularities of the inte-

grand located at the points W and encircled by the deformed

contour (see Figure 1), and the function E(l)(k,w ) must now

be analytically continued into the lower half plane. The last

procedure requires that F(l)(k,u,t=O) and F (u) be analytic

functions of u everywhere.

Since it can be shown that the only singularities which

exist for Ioi <CD are poles where the denominator, D(k,u ),

vanishes, and since the integral term in (2.18) will always

be strongly damped compared to the uppermost pole terms in

the sum, it is clear that the long-time behavior of the field

will be dominated by these poles. Thus in the t---+ ow limit,

the equation D(k,cw) 0 becomes a dispersion relation:

zo
1 --- 2T-o- L (2.19)

k ku- Wg kz.k

where D(k,w ) has been analytically continued so that (2.19) is

valid for Im( W) 4 0. The real parts of the roots of

the dispersion relation give the characteristic frequencies

of oscillation of the field's spatial components, and



the imaginary parts give their exponential growth or damping

rates. It can be shown, however, that if the initial electron

velocity distribution is Maxwellian, then (2.19) has no roots

in the Im(to ) '7. 0 half plane, so that all roots are damped, or

stable.

Remembering that this entire treatment has been for the

t-+ cO limit, it is apparent that the most interesting pole

is the one nearest the real CO axis, since its contribution is

least strongly damped. Landau's approach is to expand the

denominator in the integral of (2.19) in a power series, as-

suming k small, and obtain W(k) by successive approximations.

The successive approximation technique Is also used to obtain

the correction due to the analytic continuation term. This

correction proves to be the small imaginary part of the fre-

quency, or Landau damping decrement, which vanishes when k

goes to zero. Landau's result, to second order in k, is

=. ujs 7 -6 z~ (2.20)

where cg is the real part of the frequency, W- is the

imaginary part, c( s (2KT/M) is the most probable thermal

speed for the electrons, and Wg is the plasma frequency.

Jackson has noted that a more accurate result for the

imaginary part has La in place of Wig in the exponential.

In the same paper, Jackson analyzes the problem numerically.



He finds that the expression (2.21) for the damping decrement,

with the correction just noted, is in essentially perfect

agreement with numerical results for k'C :

and is within about 10 per cent up until ke(/w' '

Above this value, the small k approximation upon which (2.21)

depends is apparently no longer satisfied. This result will

be of some use in estimating the range of validity of the thesis

result for the damping in a magnetic field.

Two further points should be noted before leaving the

Landau calculation. First, if the state equation, 0= noKT

and the value of y appropriate to one translational degree of

freedom are substituted into the macroscopic result for the

frequency, (2.9), the microscopic result for the real part of

the frequency, (2.21), is recovered. Thus the two approaches

agree to order k2 , except, of course, that the damping decre-

ment is inaccessible to the macroscopic approach. This result

suggests that it will be worthwhile to treat the problem in a

magnetic field macroscopically, too, as a means of checking

the new microscopic results to first order.

Finally, it should be remembered that collisions were

neglected entirely in the derivation of (2.20) and (2.21). If

an evaluation of (2.21) for a given component of the field were

to indicate that the damping time is of the order of or longer

than the mean collision time (which, for very small k, is not

unlikely), then it should be apparent on physical grounds that

this component would be collisionally damped before Landau damp-

ing became important at all.



CHAPTER 3

ADDITION OF AN EXTERNAL MAGNETIC FIELD

3.1 Some Physical Effects

The physical complications arising from the addition of a

uniform external magnetic field are readily imagined by con-

sidering the motion of a single electron. The interaction of

its thermal velocity with the magnetic field yields a helical

motion; the motion along the field directi6n is unchanged while

in the plane perpendicular to the field the electron travels a

circular path with frequency LOc = eB/m. The oscillating elec-

tric field of the plasma oscillations complicates this situation

as follows: the electron sees the component of oscillating

electric field parallel to the magnetic field just as if the

magnetic field were not present at all, and responds according-

ly. But the interaction of the magnetic field with the per-

pendicular component of the electric field produces two addi-

tional electron motions. The first is a drift in the direction

perpendicular to both the electric and magnetic fields, due to

the instantaneous value of E. The second is a drift along the

direction of E, due to its time rate of change, E/ht. As

will become apparent, the complexity of the mathematics des-

cribing plasma oscillations increases appropriately with these

physical complications.



3.2 The Macroscopic Calculation with a Magnetic Field

The linearized hydrodynamic equations of motion describ-

ing the exponentially varying electron number density, bulk

velocity and electric field in a plasma with a uniform mag-

netic field imposed differ from (2.6) and (2.7) only by a

u x B 0 force term in the momentum equation. As in

Chapter 2, the oscillating perturbation magnetic field is

neglected, giving the electrostatic approximation. The equa-

tions are:

+I 0 (3.1)

* nnow 0 (3.2)

with

Combining (3.3) and (3.2) gives one scalar and one vector, or

equivalently, four scalar homogeneous algebraic equations in

n and the three components of V

For their evaluation, a Cartesian coordinate system is

chosen in which B lies along the z axis, k lies in the x-z

plane, and 0 is the polar angle between Bo and k (see Figure

2). In this coordinate frame, the determinant of the co-

efficients of n(1) and the components of (l) is:



no sin 9

- Lmnow

-'1cBo

Lkcos(-no + me b"

o0 l0 cosq

roeBe

-E Qp 0

mnou.)

The dispersion relation resulting from setting the determinant

equal to zero as the condition for a nontrivial solution re-

duces to:

r~w- (ef

+ (ea- eaocosqj Jr . 0 (3.4)

Using the state equation and the definitions of Op and 0(

as in Chapter 2, and noting that eB/m is the cyclotron fre-

quency, wc, equation (3.4) becomes:

( +WeCs )(2+.AkZk)= 0 (3.5)

The dispersion relation (3.5) is quadratic in (A2 and is

easily solved by the formula:

A 4L44-. CJS GC_ Z

(3.6)

Several limiting cases are readily recovered from this relation.

l 4.
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For B and hence Lo equal to zero, the familiar result of

the no-field analysis in Chapter 2 is recovered (together with

2
a trivial root at O = 0):

For propagation parallel to a finite magnetic field

(k BO, cos @ = 1) the root (3.7) is again obtained.

This result is not surprising since velocity components along

the magnetic field are unaffected by it. The second root ob-

tained in this case is W 2 = we 2, accounting for the effect

of the magnetic field on velocity components perpendicular to

it (when a magnetic field is present, the bulk velocity vector

(1) is no longer aligned, in general, with the propagation

vector k). A closer look at the equations of motion, (3.1)

through (3.3), shows that the cyclotron motion in the plane

perpendicular to Bo, described by the c 2 root, is not

coupled with the oscillating electric field at all for the

case of purely parallel propagation. That is, in this case

the component equations relating E(l) n(l) and uz can be com-

pletely uncoupled from those relating ux, Vy, and Bo, so that

the bulk electron motion in the x-y plane can neither excite

nor be excited by an electric field. As soon as the propaga-

tion vector k is even slightly out of line with BO, however,

the cyclotron motion and the electric field are coupled.

Finally, for propagation perpendicular to the magnetic

field, a hybrid root is obtained (along with the trivial

W2 = 0 solution):
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(A? 2-~ (3.8)

For arbitrary direction of propagation, a clearer picture

of the roots than is provided by (3.6) as it stands can be

obtained by expanding the square root term in that expression

for LO 7 oW or vice versa. For p 7 LoC -,

expanding the square root in powers of o//W) and

keeping terms up to Wc/ and kb p Win the ex-

pansion yields for the positive root:

(3.9)

+ W 7-( sC?/t4) cSioVIZ COS:e

and for the negative root:

C (3.10)

For LA.4 ? 7 L the equivalent expansion gives for the posi-

tive root:

+ o Io / ,i

+ (C4loe+ ('4 ) (?kZ') z/wzw IV,~ i

and for the negative root:
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=. A~C~dZ a kzo(? CS e

!2-,oZ(~k/t)-iKZ6CS (3.12)

Note that these results have the previously discussed values

in the parallel (sin 9 = 0) and perpendicular (cos 9 = 0)

propagation limits.

3.3 Previous Work on the Microscopic Approach with a Magnetic

Field

Although the mathematics is more difficult, the general

approach to the solution of the linearized Vlasov equation as

an initial value problem is of course still appropriate when

a uniform magnetic field is present. A dispersion relation

analogous to (2.19) can be obtained, whose roots are the charac-

teristic frequencies of oscillation of the plasma in the t- e o

limit. This dispersion relation has been published in several

equivalent forms; for representative derivations the reader

9 6
may consult Montgomery and Tidman9 or Bernatein

The version treated here is that published by Harris for

the electrostatic limit. With ion motion assumed negligible,

it is

4% (kW(3.13)

k k 1'(3.13)



In this equation ( ' and ( N denote quantities perpen-

dicular and parallel to the magnetic field, respectively, f0

is the equilibtium electron distribution function, and JV0)
is a Bessel function of the first kind with real argument. It

is not difficult to show that equation (3.13) is equivalent to

the dispersion relation of Bernstein in the electrostatic limit.

It has been solved in certain limiting cases by Bernstein and

others; thus these special results provide a useful comparison

for the solutions presented here.

It is well known thast in the limiting case of propagation

parallel to the magnetic field the familiar Landau result is

recovered, both for the real part of the frequency and for the

damping decrement. It is also known that for propagation ex-

actly perpendicular to the magnetic field the damping must

vanish completely. 6

In the case of perpendicular propagation, Bernstein's dis-

persion relation can be simplified in the limit L.zeg/Wt"C-

to yield (except for a presumed misprint):

7- li.(4-4
II W ( Lao+ (D W'(*Z b)

which for p 7 L44 is approximately:

7- S zc (z(3.15)
Z.

and for a fl Wj

B s n so h r(3.16)

Bernstein has also solved his dispersion relation for

18
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arbitrary direction of propagation in the special cases of

weak magnetic field and low temperature ( -r w.- , kzo )

and strong magnetic field and low temperature ( -7 Op7,

k?-~z ). In the weak field case he obtains for the real part

of the frequency:

LAp -~ ieA-3Zo (3.17)

and for the imaginary part, or damping:

W-L= -TrIt~ L' it(W/O( L.z 9 1UC _eXP R (3.18)

Bernstein points out that the expression (3.18) reduces to

Landau's result in the limit oc.= 0 . He fails to mention

that (3.18) does not vanish for perpendicular propagation, as

would seem to be required if w. 0 . For the strong field

case Bernstein gets for the real part of the frequency:

.)+ ,~o c~ z l-0~L (3.19)

and for the imaginary part:

f Iz W (WP / g:A)Cos(3.20)

The damping decrement (3.20) has the required behavior in both

the parallel and perpendicular propagation limits.
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CHAPTER 4

A NEW APPROACH TO THE MICROSCOPIC DISPERSION RELATION

4.1 The McCune Transformation

From the rather formidable appearance of equation (3.13),

it is not difficult to imagine why this dispersion relation and

its relatives have resisted more general treatment. In the

form in which (3.13) is written, the infinite sum of Bessel

functions and the attendant infinite sequence of singular de-

nominations make Landau's denominator expansion and successive

approximation technique appear hopeless, to say nothing of the

question of analytic continuation into the -0Z half-plane.

The key to reducing these difficulties to the poibt'of

tractability is a transformation introduced by McCune , in the

context of establishing a general criterion for electrostatic

plasma instabilities in a magnetic field. For each n he lets:

+ LA (41)

and

o(vv4V u.- v-As - (4.2)

so that the dispersion relation (3.13) can be rewritten in the

form
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1 - 1 PLub' d. 3Im(un.~' 0 (0:P~ LA k U.3)

where

S ?v~ 84.4 ()

+ l' & LIE [(LA.-v~

The transformation is not without physical content: u is a

Doppler-shifted cyclotron frequency or one of its harmonics,

and P(u) is a sort of generalized projection of the deriva-

tives of {e . McCune notes that when kag. 0 or k.1.= 0
(propagation perpendicular or parallel to the magnetic field),

(4.3) and (4.4) reduce to the usual forms for those limiting

cases. The particular relevance of this transformation to the

present problem, of course, is that the dispersion relation

(4.3) has exactly the familiar, one-dimensional form treated

by Landau.

To determine how much real advantage has been gained by

these manipulations, it is necessary to look closely at the

properties of the function P(u). For the calculations in this

thesis, the equilibrium electron distribution function is

chosen to be Maxwellian; there is no reason why the work cannot
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be carried out for other reasonably well behaved distributions.

With

where o=dZKT/vy , equation (4.4) for P(u) becomes:

4 1-TLL( I /. 00
CL4Z Wet

x vL

(4.6)

This expression simplifies with the use of a well known

formula relating J and the modified Bessel function of

first kind, in o:

i~cL~Iz)~e3v~

Thus with .V/ and CL. - .LcK / c , there re-

sults:

= exp (-V kj>.) IV,( kz / z ) (4.8)

and noting that k.= k-inG ,9 k = k cOsG , P(u) be-

comes:

(4.5)

the

- +VZ

(k4-VJW<)- V L4 /C;(?-
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(4.9)

This expression for P(u) is not difficult to interpret:

for fixed k and 9 the terms of the sum are exponential pulses,

each centered at u = ,tzl k having equal characteristic

spread CKCOs a , and weighted by the modified Bessel func-

tions, In . Since the Bessel functions are symmetric in n1

L .-nX = I./,so is the weighting. It is apparent

from the series definition of the modified Bessel functions,

that for small argument, x, the Bessel functions of higher

order, n, rapidly approach zero. Thus if the argument

ks'r-V1m e) / tZ in the expression (4.9) is small, only

the several terms in the sum near n = 0 will be important in

determining P(u). The only variable outside the sum in (4.8)

is -u, which dominates the behavior of P(u) near u = 0, but is

dominated by the vanishing of the weighted exponentials for

large u (see Figure 3). Thus the behavior of P(u), at least

for kzokPti;Ee /'Z(e 4 1 , is quite-like that of the de-

rivative of a distribution function, in particular approaching



zero from below at ut +-oo and from above at u-= - 0. This

property of P(u) can be proven from expression (4.4) in gene-

ral; i.e., without choosing any special form for the initial

distribution, f 8

4.2 Simplification of the Transformed Dispersion Relation

It is notationally convenient to define the relation

F'(u.)=Pu. o (4.11)

so that the dispersion relation (4.3) becomes:

F'(u)dck. W) 0 (4.12)
_C L- W/k

with

-______ Z.xd I (Z )f-x L-Qik (4-13)

oEm (4.14)

so that the parameter s2 is proportional to the square of the

product of K.' with the electron gyro radius. If the real

part of the integral in (4.12) is interpreted in the Cauchyy

principle value sense in the limit W-r.--O where L a wi.+ 4 L,,

i.e.,

~ LL-i-t L-- u WJ/c

=4(.1

toD ol/r .4 gu.- o/(415)
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then the roots are the real parts of the desired characteristic

frequencies of oscillation. In the Landau calculation, the

real part, W.. , was determined in this way from the expres-

sion analogous to (4.12), ,and the additional term resulting

from the analytic continuation of that expression into the

W-r< 0 half-plane was then used to obtain the small imaginary

part, W% , by successive approximations. Although a somewhat

less cumbersome technique will be used to obtain (XA. here, the

requirement that Wk be obtained first is the same. This sec-,

tion is devoted to solving equation (4.12) for we , assuming

k and WX small.

To reduce F'(u) to a more manageable form, all functions

of s2 are expanded in power series:

e- =1 - /O) (4.16)

and from (4.10):

-- 1 + .*/'+ + 0 *) (.4-17)

L1(, = L~1ds = ~ - Ow'sI) (4.18)

12(sI= I...,.(2 = M/B +- O(.s*) (4.19)

0 (21.20)

Because of the k2 term in the denominator of equation (4.12),

it is necessary initially to keep terms to order s4 in the ex-

pansions in order to solve (4.12) to order k2. Five terms in
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the infinite sum of Bessel functions must therefore be re-

tained, namely n = -2 , -1, 0, 1, 2. Thus with expressions

(4.16) through (4.19) the dispersion relation becomes, to

order s 4

- N u--)C + Gx-IL-Lf ucos6Kkoos 0

-Cb ( k -c~cS<

(4.21)

Let the three integrals in equation (4.21) be I ., I2, and

I .0 The first is treated by expanding the denominator in powers

of -.Ca aas in Landau's treatment. Thus

7 D

\kcOCOR./)

-to

___+ ___ dLZ&z1+ZXc

(4.22)

It should be recognized that the number of terms which must be

kept to make the expansion in (4.22) a reasonable approximation

increases with u, and that for u large enough, the expansion
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will not converge at all. This difficulty is not serious if

the exponential vanishes rapidly enough with increasing u to

insure that the dominant contribution to the integral occurs

where u is small. Such an assumption is equivalent to requir-

ing that, near the denominator's singularity at uX=. <</k

the term exp is sufficiently constant and near zero

that the contribution of the singularity in the Cauchy prin-

ciple value integral is negligible. Putting u.L og/k in the ex-

ponential makes this condition approximately

g/kzco -7. (4.23)

The required size of this parameter can be determined more

exactly by considering the results of Jackson's numerical treat-

ment of the Landau calculation without magnetic field. In

the Landau treatment, a condition exactly equivalent to (4.23)

arises, namely:-

ok / W G y 1(4.24)

Jackson's results show that the approximate solution for the

real part of the frequency is in good agreement with the

numerical results if this parameter is greater than 2 (the

corresponding number for the validity of the imaginary part

is 4). The condition from the evaluation of the integral II

in the present analysis, for the real part of the frequency in

a magnetic field, is therefore

C- (4.25)

Now rettrning to the evaluation of Ii and noting that
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LO 4e -O(ocoSI is an odd function of u whenever n is

odd, it is clear that the integrals over even powers of k in

equation (4.22) all vanish. Thus of the first four terms in

the expatision, only kaJ/(d and cAl/W contribute,

and there results:

-; - O (4.26)

Using the well known values of these definite integrals gives:

If -. fJ7c c k Z co____ (4.27)

The treatment of the integral 12 is somewhat more in-

volved.- It is apparent that the integrand of

-le - (C;PdOt (4.28)-at. u--Wa/ ccos..e P cc

consists, for small k, of two rather widely separated exponen-

tial pulses, centered at U = (c.k , and weighted by the

term A (L.-W.4/k.) . These components of the integrand are

plotted schematically as Figure 4. The pulses differ substan-

tially from zero only over a distance of the order of occosG

from their centers, so that the major contributions to the

integral occur in the vicinities where the term L/(.L-og/k

is reasonably approximated by Taylor series expansions about

k= t 00c./k .If ot is much different from Wc , the denomina-

tor 's singularity at A.=W.alk occurs where the numerator has
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gone exponentially to zero; since the integral is taken in the

Cauchy principle value sense, the effect of the singularity is

negligible in this case. The restriction on the size of

I W-.c. appears more explicitly when the actual expansions

are written down. Near u.= 4 CW/k , the Taylor series is

Wit *_ - *.*4' (4~.29)
UL- WcC* (Lww.- WOZ (Wst-ocA.''

As cA. approaches e , the number of terms in the series

which must be retained to represent LL/(U.-u.x/k) accurately

in the region of interent increases, correctly reflecting the

fact that this factor is varying increasingly rapidly with u

there. For ov very close to oc , (4.29) becomes a series

representation of infinity-the singularity has moved into the

region described by the expansion. For u near -mek , the

Taylor expansion is

and the arguments given above hold for LO, approaching -...

The integral I2 ,is now conveniently written as two inte-

grals with the appropriate expansion introduced in each. From

(4.28), (4.29) and (4.30):
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SZW 1 z C -4 (k___ Lt WC) ___

x cio.co

+C ( -((.w Wc ..)C( tCo. s

-0o

(4..31)

Now making the substitutions it = I<u-wc. and - = kL+ Wc. in

the first and second integrals, respectively, and retaining

the first four terms in each series, gives:

rL d ~.; [QAz 
M

\I (-o 4-

(4- .32)

since the integrals involving odd powers of z all vanish.

Using the known values of the definite integrals in (4.30),

rearranging the coefficients, and replacing s2 by its defini-

tion (4.14) gives finally:

L1 Z z X
=( lcosI smI S Ze + (A 1

Z. 4-0IcV, L4- W it itu+ -- < )c 4cZCy

(4.33)

(M+U f \tF _i izcoz At
(L4P.- -Oo)kzz O'
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Retaining more terms in the Taylor expansions would result in

higher order k terms in this result. It is difficult to fix exactly

the value of wV-wcA above which (4.33) can be expected to

be valid. It is apparent, however, that since the effective

width of the exponential pulses goes to zero for either k = 0

or cos= 0 , the dispersion relation resulting from using

12 in the form given by (4.33) should at least be valid in

those two limits. For any but these special cases it must

suffice at this point to note that roots which give w. near

c must be regarded with suspicion. A more detailed discus-

sion of this difficulty is included in Chapter 6.

The integral, I , is treated in the same way as 12. In

this case the exponential pulses are centered at u.= ±Zw/k ,

and the necessary restriction on the result is that wR not be

too near Zw. . The fact that I contains the multiplier

k where 12 has <J/kz means that only the first term

in the Taylor series need be retained in this case to obtain

the result to order k2 . It is

T r 1/ Z Iz _W Z c -o s E NI u -s M 4 e 4 C + ZWc .- 4

or:

The results for I, 12 and 1 can now be substituted back

into the dispersion relation (4.21) to yield, discarding terms
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of order ,kz, 04 and higher:

Z. . z.

+ WP -51 V1 k?-004szO VIZ ~~~

(4.36)

The neglect of terms of order s4 requires that

= (4.37)

The exact number to be placed on this condition Is somewhat

arbitrary, depending on the accuracy required in the result.

Equation (4.36) represents an enormous simplification of

the dispersion relation over its original form. This simpli-

fication has been achieved, of course, only at the expense of

restrictions on the parameters kzozC0osg/g, kW sze/Zwer

IL(A.-Utc i and O ( - Z.cJ

4.3 Some Limiting Cases of the Simplified Dispersion Relation

The dispersion relation (4.36) is readily evaluated in

several limiting cases for comparison with the previously known

results. For k = 0, it becomes:
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and clearing the denominators and rearranging gives:

o - n + o co 0- (4.39)

Equation (4.39) is exactly the result of the macroscopic

analysis with k = 0, as can be recognized by setting k = 0

in equation (3.5). The roots are thus the macroscopic roots

given for wp LOW and vice versa by equations (3.9)

through (3.12) with k set equal to zero.

Particular care must be taken in examining the limits of

sin 9 or cos 9 exactly zero. To take such a limit without

introducing extraneous roots, the sines or cosines must be

set to zero before clearing the denominators in equation (4.36)

or (4.38). Thus in the case of k 0, sin 9 = 0, equation

(4.38) becomes simply Lo= . The root w = ,

obtained by setting sin 9 = 0, cos 9 = 1 in (4.39) is an

actual root of (3.5) but an extraneous one of (4.38), since

in the latter equation the term giving rise to the root

vanishes in the sin 9 = 0 limit. The physical explanation for

this difference is not hard to find: it will be remembered

from Chapter 3 that the macroscopic root, Lc- =A) , for

perfectly parallel propagation, described a particle motion

completely uncoupled from the electric field. Since the

microscopic calculation carried out here is concerned only

with the dispersion relation for the electric field, the root

OR - W0C logically does not appear in the parallel propaga-

tion limit.

For finite k, taking the sin 9 = 0 limit correctly in the
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dispersion relation (4.36) gives:

1- (4.40)
-!? + -AQt kzoe

or:

o -Z. 0 (4.41)W W?(A)VtL- 'k'C~ 44)z

Solving (4.40) for wt with the usual quadratic formula and

expanding the square root term in powers of koA/c4 gives,

selecting the positive sqifare root:

aP = .p + z -4 C) ( An/(A) (4.42)

The negative square root gives:

= - k o Oco(. /pa) (4.43)

Equation (4.43) clearly cannot represent a physically meaning-

ful root of the dispersion relation, since the on satisfying

(4.43) is pure imaginary instead of pure real. Equation

(4.42), however, is just the Landau result (2.20), as expected

for propagation parallel to the magnetic field.

Taking the cos 9 = 0 limit of equation (4.36) for finite

k gives:

wiz (4r44)

which reduces to:

4 4k S Z ' O IWZ~LO It- W ~ W P(4.45)

W 4AC,
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Solving equation (4.41) by the quadratic formula gives:

SW4C 'w+ W>4- ± & -U. 'a? - 0Ica 4 Z (4t.46)

which is exactly Bernstein's result for the same limit (see

equations (3.14)), except that Bernstein has not mentioned the

positive square root possibility. The approximate roots of

(4.46) for op-1 W ZL are Bernstein's:

W (15.15)

and that for the positive square root:

which is the cos 9 = 0 limit of Bernstein's arbitrary direc-

tion of propagation result, (3.17). For oWj -77- , the

negative square root gives Bernstein's

and the positive square root gives:

The cases above exhaust the possibilities for which the

dispersion relation (4.36) can be solved in simple form. It

is most encouraging that these microscopic results agree per-

fectly with the macroscopic and previous microscopic work in

these cases of parallel and perpendicular propagation, and for

k equal to zero. These results are summarized in Table 1.

It should also be noted that the usual Landau result for

no imposed magnetic field cannot be recovered by' setting



..-- 0 in (4.36), since the restriction that

be small cannot possibly then be satisfied.

4.4 General Solution of the Simplified Dispersion Relation

In the general case, that is, k, sin 9 and cos 9 all non-

zero, clearing all the denominators in equation (4.36) yields

a sixth-order polynomial in OR 2. Such an equation cannot be

solved by formula, and attempts made at approximate solution

by successive approximations were discouraged by the impos-

sibility of deciding in general which terms are small.

The only recourse is solution by computer. A simple pro-

gram has been devised in the MAD language to compute the co-

efficients of the polynomial and call in a routine for its

numerical solution. The routine is based on a method due to

Muller12 and is available as IBM SHARE listing 1124. The com-

putations are done in the complex mode and the routine gives

both real and imaginary parts for all roots. Since the dis-

persion relation (4.36) is an equation for the real part of

the frequency, it should be expected that the imaginary parts

6be on the order of 10 or more smaller than the real parts,

representing cumulative machine error. The inputs to the

program are the desired values of 9, the plasma and cyclotron

frequencies W P and LOc, and the wave number times the Debye

length:

/iz.
tLo = k 4 I=ka/ZI/ZWene /(4.49)

Cases have been run for representative values of these parameters,
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and the results are presented and analyzed in Chapter 6.

The program itself, named OMEGA, is included as the Appendix.
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CHAPTER 5

THE DAMPING DECREMENT

5.1 A Complex Variable Approach to Landau Damping

Given a value for the real part of the frequency, LR ,

and assuming that the imaginary part, W4 , is very small,

can be obtained relatively easily using a complex vari-

able technique. The quantity e(w ) is defined

EGA5) jZ' L4)P Zrr(tPP'dn~ (5.1)k- LL-LAW/k

so that e vanishing gives the familiar form of the analyti-

cally continued dispersion relation, (2.19). Defining the

quantity D(o) = k2 (1 - E), in general complex, and using

(5.1) gives

Now consider the conformal mapping of the line W =(A

[the Re(w ) axis from the complex w plane into the complex

D plane. The result is a closed contour in the D plane, en-

closing the conformal map of the complete WT-? 0 half plane,

as shown in Figure 5. Now setting e = 0 gives the point in

the D plane corresponding to the solution of the dispersion
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relation: D(W ) = , and k2 is real and positive. The

merit of the conformal mapping in the present context is

simply to suggest from the form of the contour in Figure 5,

that D( )= D( Wit + 10 ) =2 becomes arbitrarily close

to D( c&. ) as k approaches zero. This point, together with

the fact that D is an analytic function of w so that its

derivatives are finite and continuous everywhere, motivates

a Taylor series expansion of D about La- Wp.

7.

Now with wx small, the expansion converges rapidly, and it

is sufficient to retain only the first two terms. Separating

the resulting expression into real and imaginary parts gives:

+ = kz(5.4)

I[D.api) + )I LD(.a.I 0 (5.5)

The second of these equations is the more tractable. In the

limit of x 0-4 , D( w.) is given by:

D(o?) = oz SU+ (5.6)

Equation (5.6) has ITL in the last term instead of Z fL. as in

(5.1) as a consequence of the Plemelj formulas
9 which apply in

this limit. From (5.6):

= (5-7)
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D a=o .(5.8)

and using equation (5.5) gives for w,

.. cF(a)daL (5.9)

cw ... u.- WR/kj

As a check on this means of obtaining O , it will first

be used to recover the familiar result for the Landau damping

with no imposed magnetic field. In that case, with F(u)

Maxwellian:

Ru = exp( u/a)r Ilo (5.10)

t-c(5.11)

where c = (2KT/m)1/2. The denominator of equation (5.9),

labelled Y for notational convenienceis given by:

WR/C -eO

y C, 'I +L" dt- (5.12)
C- ) dd (A)-- ogt/I

LoktIci

which, using the well known formula for differentiation under

an integral, gives

Y -O- k ( 5.13

c(5-13)
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Equation (5.13) can be shown to be equivalent to:

WZCiA (5.14)

Expanding the denominator and using (5.11) gives:

x + + M + - -(5-15)

For small k, and if u <4 WI/k (the range where the signifi-

cant contribution to the integral occurs), the term

(Wa/ k) exp (- WP / k O(z ) is negligible compared to

u exp (-u2/c 2 ). Then noting that the integrals over odd

powers of u vanish, discarding terms of order higher than

k2 in the expansion, and using the value of the one resulting

nonzero definite integral gives

Y = - kz/c (5.16)

The numerator of expression (5.9) is

X ~Z e---9 x - WR/kzcz (5.17)

and the imaginary part of the frequency, Wut , is then given

by:

) T -ex ?(- /kZO04) (5.18)
Y 

i



Writing down the form obtained by Landau, for comparison

WA~ m "If >P z (2.21)

it is apparent that the complex variable approach automatical-

ly yields the correction proposed by Jackson , i.e., the re-

placing of ( by wi (A +(kz in the exponential, as

well as the same, less important replacement in the coefficient.

5.2 Application to the Damping in a Magnetic Field

The analysis of the previous section is unchanged, except

that now

i sz. on1P~~'L.. un6 e.f.xp - (4 .13 )

The functions of s2 = k2 2 sin2/ c 2 are expanded just as

in Chapter 4. It is now permissible to discard the terms of

order s which were retained previously, however, since the

coefficient of the integral in which F'(u) appears is now

proportional to k instead of 1/k. Expression (5.14) becomes:

Y=
1_0--Z (3 -O 77. 1/ Wal6

OD

kccoseo)xcs
Lc( .WF i y

(5.19)



For convenience, let the two integrals in equation (5.19) be

J and J2 ' J1 , with Ckcos 9 replaced by cA , is the same

integral treated in obtaining the Landau damping decrement

in the last section. The corresponding result here is

J =oCO3sI3C058/wz (5.20)

The terms in J2 having the coefficient W,./k are negligible

only if I ow-0c Y" kCO'6 , essentially the same assump-

tion required in obtaining the dispersion relation for the

real part of the frequency in Chapter 4. Assuming that, con-

sistent with Chapter 4, this restrictipn is met, J2 becomes:

(5.21)

where the term u/(1 - ku/wL )2 has been replaced by the first

term of its Taylor series expansion about u = L WC/k. Since

the definite integrals are both equal to 1T cA('% COs&(

(5.21) becomes:

occ[Ac



Then with (5.19), (5.20) and (5.22), and discarding terms

of order higher than k2 , the denominator of the expression

for (ZA is:

Y, ~ COSF e 4--(.~

Now using the expression for F'(u), (4.13)., to obtain the

numerator in the expression for w%

WX P ~ -)* (5.24)
o'icoSal k kMzCos't&

where only the lowest order term in F'(u) has been kept. Then

(Ab is approximately

1 -- * kecosta

(5.25)

Although it would not be difficult to calculate the next order

of k terms in expressions (5.23) and (5.24), this will not be

done here. Since the imaginary part of the frequency is al-

ready very small compared to CZ , calculating it to a great

many significant figures does not appear warranted. It should

be pointed out, however, that were such accuracy desired,
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several additional terms in k could be kept before it became

necessary to use more than two terms in the series (5.3),

since (5.25) shows caz to be transcendentally small in k.

The approximate result for car given by equation (5.25)

has the expected behavior in the easily examined limits,

sin 9 or cos 9 = 0. For sin 9 = 0, or propagation parallel

to the magnetic field, cos 9 is one and the Landau result

for no imposed field, (5.18), is=Pecovered. For cos 9 = 0,

or perpendicular propagation, the term exp (-W2/k:M&icozE )

vanishes much more rapidly than the cos 9 term in the denomi-

nator, and the damping is zeiio, as expected for that case.

It should be pointed out that expression (5.25) is not

in general agreement with Bernstein's limiting case results

for the damping decrement [equations (3.18) and (3.20)] , the

most significant difference being the cos4@ term in the ex-

ponential of the present result. It will be remembered, how-

ever, that Bernstein's (3.18) does not have the seemingly re-

quired property of vanishing for perpendicular propagation,

and should probably be regarded with some suspicion.

The general behavior of the present expression for

damping, (5.25), is examined in detail in the next chapter,

where numerical values corresponding to the real parts of the

characteristic frequencies for representative cases are com-

puted.
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CHAPTER 6

NUMERICAL RESULTS AND CONCULSIONS

6.1 Computer Results and Interpretation for the Real Part of

the Frequency

As pointed out in Section 4.4, the IBM 7094 computer was

used to solve the sixth order polynomial in wo resulting

from clearing the denominators in the simplified dispersion

relation, (4.36). It will be remembered from Section 4.3 that

in the limits of parallel and perpendicular propagation with

respect to the applied magnetic field, the dispersion relation

reduces to a quadratic in o and can be solved analytically.

Clearly, there are only two actual roots in these limits-the

other four obtained by the computer there are extraneous and

result from clearing the denominators of termswith zero co-

efficients.

- For values of the propagation angle between zero and

ninety degrees, some roots of the sixth order polynomial riay

still not be ezen approximate roots of the exact dispersion

relation (4.12). Such extraneous roots have at least two

sources: the truncation of the infinite series as it appears

in (4.13) could produce a spurious root, and certainly when

the approximations of Section 4.2 on wop:-W\ or \ .p-Zwc\



are violated, the polynomial which results from (4.36) cannot

be considered a valid approximation of the dispersion relation.

As is well known, a sixth order polynomial with real co-

efficients may have one, two, three or no pairs of complex

conjugate roots. Since the dispersion relation which the

present polynomial attempts to approximate is an equation for

the real part of the frequency, any complex conjugate pairs

of roots of the polynomial cannot be actual roots of the dis-

persion relation. When such complex roots occur, then, they

can be discarded as extraneous. It is not immediately apparent

from which possible source these roots come, nor is it certain

that all spurious roots will give themselves away, so to speak,

by appearing as complex roots.

Tables 2 through 8 summarize the computer results for

representative values of the parameters w.a, W., and kL .

The spurious negative root obtained in the sin 9 = 0 limit

[see equation (4.43)] appears in the computer output as one

of the six roots throughout the theta range in almost every

case-it has not been tabulated here. At the 9 = 0 and 90-

degree limits, only the computer roots corresponding to the

known actual roots there are given. Where complex conjugate

pairs occur, the approximate value of the real part is in-

cluded beside the notation COMPLEX. The value of k~dz cor-

responding to kLt and Wp for each case has been given as an

aid to estimating the validity of the approximations on

k2o0 2 sin2 9/2 WC_ and k2 o 2 cos2/ A 2 . The notation used

in the tables is such that, for example, 3.0 x 1012 is written



3.0(12). Tabulated roots recognizable as previously known

forms are so labelled. Frequencies are in sec~ .

The values of toy = 6 x 1012 and Wt = 3 x 1011 used to

obtain Table 2 correspond to a thermonuclear plasma. The

value of k2 C2 is sufficiently small that k2o' 2sin%29/2 c2 and

k2 o 2 cos2  2 are always << 1. Since w '77 LAC ,

Bernstein's expression for that limit can be used for compari-

son:

wip + -v6+ e (3.17)

The values of 4n, given by equation (3.17) are in agreement
2.

with the computer root Wit, to six significant figures through-

out the theta range. The root

WRA -, (3.15)

predicted by Bernstein for perpendicular propagation is given

exactly by W . (the k2 4 2 terms do not appear until the

tenth significant figure in this case). The root 4= c

appears constant over the theta range, but as has already been

pointed out it cannot be an actual root for 9 exactly zero.

In fact, since it appears to violate the restriction that

I ̂4 -L tA cI be large, it must be viewed with suspicion

everywhere except at 9 = 90 degrees (see Section 4.3). The

root w, agrees with the root obtained from the macroscopic

analysis in the w P -77 AC limit,

to f i c i th rou gho (3.10)

to five significant figures throughout its real range. Between
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10 and 5 degrees, as cos 9 --- 1, 1 becomes complex and

must be considered a spurious root. The roots w, and wo

comprise a complex conjugate pair (whose real part is near

wc ) throughout the theta range, and are therefore spurious.

Table 3 is based on the same values of cp and W. as

Table 2, but with kLp increased to 1.58 x 10-2 (correspond-

ing to decreasing the wavelength of the oscillation component

being investigated compared to the Depye length). Assuming

that the smallest root is approximately (32cos2 9, the maxi-

mum value of k2 o 2 cos29/ Wk 2 is then about 1/5, so that the

approximate restriction given by equation (4.25) is still met.

However, the k2cX2 contributions to the roots are certainly

no longer negligible. The root coz from Table 3 agrees

with the values given by Bernstein's expression, (3.17), to

five or more significant figures throughout the theta range.

The root Wz agrees to four significant figures with

Bernstein's (3.15) in the perpendicular propagation limit,

and the agreement can be extended to six places if one more

term in the expansion leading to (3.15) is kept. This root

is approximated very well over the entire theta range by

4 = t-kZx9.v1SA W , but once again this root is sus-

picious in view of the restriction on lu)g-2o)i . The root

still has basically an-, crscb variation, but with

relatively large deviations due to the now important k2 2

terms. The form of these terms is inaccessible to the macro-

scopic approach and to direct calculation from the present

microscopic expressions; they might be obtained by curve
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fitting to the computer data,but this has not yet been done.

Finally, the roots ww and W* are again a complex conjugate

pair with real part near Usz throughout the theta range.

Tables 4, 5, and 6 present the results of computer runs

done for W? = Wc. = 1 x 10". These frequencies are appropri-

ate for a hot plasma in a laboratory magnetic field. The com-

puter roots are tabulated only from 5 to 85 degrees. The cor-

rect roots at 9 = 0 and 9 = 90 degrees are obtained from equa-

tions (4.42) and (4.46) more easily than they are sorted out

of the spurious computer roots in those limits. The three

tables are for kL = .001, .1, and .3, respectively, correspond-

ing to increasing importance of thermal effects. The computer

roots for wp= Wc and theta not 0 or 90 degrees are of par-

ticular interest because this is exactly the case which is in-

accessible to previous approximate microscopic treatments,

notably Bernstein's. The k = 0 limit of the macroscopic dis-

persion relation (3.15) may be of use in identifying one of

the roots in Table 4, but with that exception there are no

analytical expressions with which to compare the values in

Tables 4, 5, and 6. The assumption that at least some of

the roots are correct is based on the fact that the expression

which yields them gives the correct results for all the known

limiting cases in which its restrictions are not violated.

The general form of the roots is not hard to obtain

from the Tables: LAg varies between w- and Z (where

= Z = o4 ) and when thermal effects are unimportant, as

in Table 4., the variation is given almost exactly by



51

a= aL(1 + sin 9), which is, in fact, just the result

obtained if one sets Wp=c and k = 0 in the macroscopic

dispersion relation (3.5). The second root is the by now

familiar z = with thermal corrections taking on con-

siderable importance in Tables 5 and 6. The root csis de-

creases rapidly from uf with increasing theta, but does not

quite fit O(cos 9 or O(cos2 9 even when thermal corrections

are unimportant. The point that any of these roots are sus-

picious when near c, or 2004 need hardly be belabored further 4ere.

Tables 7 and 8, when used with Table 6, show the varia-

tion of the roots as wc is varied from slightly less than

through slightly greater than top, which is held fixed at

10". kLr is fixed at O.3, where thermal effects are rela-

tively important. It appears from these results that A,

varies essentially from the larger of Cw? and wc to the

sum of the two as theta increases from 0 to 90 degrees, with

a thermal variation which increases the frequency at small

theta and decreases it as perpendicular propagation is ap-

7-
proached. The root LO! is a constant g4w[ plus thermal

variations with theta regardless of the relative size of wAp,
7.

and c.. seems to be proportional to the smaller of S and

WC times a decreasing function of 9. Additional runs not

tabulated here reinforce these conclusions. The approximate

behavior of the roots for cap near wc is indicated schemati-

cally in Figure 6.

Runs were also carried out for Cwc 77 LOp . In these
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cases a peculiarity of the polynomial solving computer routine

resulted in meaningless data. The difficulty is not, in

principle, a serious one,but sufficient time was not avail-

able for this work to resolve it by using another routine.

The basic conclusion to be drawn on the basis of the com-

puter results summarized here is that the present, simplified

dispersion relation, (4.36), provides accurate values for

in the range between parallel and perpendicular propagation,

including the case, &.k near W07 (which is not accessible

to simple expansion of the microscopic dispersion relation),

provided the restriction that 1WP-e and IWa-~2uci not be

too small is met. It is surmised from the evidence in the

tables that the complex behavior of some roots results from

the violation of the |oz-toe\ restriction, although it is

not at all clear that a root becomes complex as soon as the

root violates that restriction. The roots near 4o do

not, in general, exhibit the same complex behavior, although

they appear to make IU).-2,0cA small.

Some further comments on the difficulty for wR very

near wc, or ZWE are appropriate. The successive contribu-

ting terms in the Taylor series expansions (4.29) and (4.30)

are in the ratio (ku.:PocN(.tczT-0c.Z for Wo very near

L60c .Since the half width of the exponential pulse centered

at u = +tz/k is on the order of occos 9, the condition that

the series converge rapidly over the nonzero region of the

pulse can be written, approximately

It4( _-67B4 (6.1)
(Wit- UWC_

I
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Now, for example, with of -'' and Wk differing

from taLO only by, say, op'IVZG +.Iiv1ye as in the

macroscopic root (3.11), it is not hard to see that the

restriction (6.1) is violated for almost any & ' 90 degrees.

A more interesting case in the light of the present computer

results is the equivalent restriction arising when Wt is very

pear Zoe :

kZO(2codZb e(6.2)
CW,- z.LCjY)-

The computer solution gives a root at 9LA)c plus some theta-

varying thermal terms, which corresponds to Bernstein's root

for perpendicular propagation, (3.15), at sin 9 1. If one

writes this computer root in the general form, wk 9 + fez )

where f(@) is nonzero except at 9 = 0, (6.2) becomes, approxi-

mately:

[~ .- ;P-7 .~ W (6.3)

The restriction (6.3) seems certain to be violated for any 9

more than a few degrees from perpendicular, since from the

form of the computer root f(9) is something like -tie,
and k N)L is restricted by (4.25) to be smaller than 1/2.

Thus the computer root near 9wez. must be spurious for all

but the immediate region around perpendicular propagation.

6.2 Some Numerical Values for the Damping

It is a simple matter, given any value for the real part

of the characteristic frequency of oscillation, og , to



calculate the imaginary part or damping decrement from the

formula

T__WP.______________ (5.25)

It is apparent that the damping is, in general, dominated by

the exponential, and that it can only become appreciable when

the ratio og/kZokZcc2 is not too large. As pointed out

in Section 4.2, however, there is a lower limit of about 4 on

this ratio, below which equation (5.25) cannot be considered

valid. If the different real roots corresponding to a given

set of plasma parameters are widely separated in magnitude, as

they are if opt -77 OC or vice versa, the.above restric-

tion means that appreciable damping cana.be calculated within

the limitations of the present analysis only for the smallest

roots.

For example, using the results from Table 3, where

op = 6 x l0o' , c. = 3 x 101, and k.L= 1.58 x 102, and

calculating the damping for the largest root, WzeWA-., gives,

at G = 0 degrees: o-r.~ 1017 x exp((-2000), an infinitesimal

number indeed.. The damping is virtually zero even for

parallel propagation, and decreases still further as cos 9

decreases from 1. For the same plasma parameters the root

Uz PtC- ?, if in fact it exists for other than perpen-

dicular propagation, is only very slightly damped when 9 / 90
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degrees. At 9 = 10 degrees, for example, W. from Table 3 is

6 x loll and (5.25) gives W. = -1.1 x 105, which is less

damping than could be expected from collisions. The smallest

characteristic frequency, (.R, W4 ccOS- is, however, very

heavily damped. For this root, Table 3 and (5.22) give:

5 2.81(11) .58(11)

300 2.39(11) .28(11)

800 5.76(10) .14(10)

It is apparent that at the wavelength corresponding to the

present value of kLo , the characteristic frequency near

WccosB is almost completely damped out after on the order

of ten oscillations for small propagation angles. As expec-

ted, the damping decreases as perpendicular propagation is

approached, although relatively slowly because of the cos 9

dependence of the real part of this root.

When the cyclotron and plasma frequencies do not differ

greatly, all the roots may have appreciably nonzero damping.

For example, the results of Table 7, where og = 1 x 10 11,

We. = 8 x 1010, k:.Lb = 0.3, give, with (5.25):

50 1.11(11) 3.2(9) 1.60(11) 9.3(6) 7.35(10) 2.5(10)

30 1.23(11) 4.3(7) 1.61(11) 7.5(4) 6.08(10) 1.9(10)

600 1.25(11) 4.8(-3 ) 1.64(11) 1.7(-13) 3.75(10) 1.3(10)

The root og, is significantly Landau damped near parallel
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propagation, but for propagation angles greater than about 30

degrees this damping becomes negligible compared to that

which would be caused by collisions. For the Wat 2 ZLE

root, Landau damping is probably less important than colli-

sional damping even well away from perpendicular propagation

(if the root exists there). The third and smallest root,

60Z, , is very heavily Landau damped over most of the theta

range, so that it effectively ceases to exist after only a

few oscillations. The damping of this root very nearly rep-

resents the maximum damping, W/l&o) , which can be calcula-

ted within the limits of the present analysis, since

cs/k2cr 8 z is already stretching the restriction

on that ratio established in Section 4.2.

6.3 Conclusions and Suggestions for Further Work

The foregoing analysis has reduced the dispersion rela-

tion for plasma oscillations in a uniform external magnetic

field to an algebraic equation in the real part of the fre-

quency and an expression for the imaginary part of the fre-

quency, or damping, in terms of the real part. The essential

restrictions on the analysis are that LO,/ kzoC06Ca ,

u2ke4r49 ,(o-oc>0/kzcoz9 and

(W-Zef/koACede all be large. The results for the real part

of the frequency are correct in the previously known limiting

cases when the restrictions are not violated, and the expres-

sion for the damping has the known correct behavior in the

limits of parallel and perpendicular propagation. An important



57

result of the present work is that the previously inaccess-

ible case of arbitrary direction of propagation when the

plasma frequency is of the same order of magnitude as the

cyclotron frequency can now be handled.

Two important areas for continuation of this work are

immediately apparent. First, the expressions for the real

and imaginary parts of the frequency should be evaluated at

small intervals over a broad range of g/Wc , with par-

ticular attention to the previously unexplored range near

L47/Ac2 1. For detailed information as to the variation of

the frequencies with propagation angle and wave number,

smaller intervals in the range of these parameters should

also be sampled. Such results would be of greatest value

if presented in completely nondimensional, graphical form.

Second, an attempt should be made to circumvent the in-

ability of the present analysis to treat frequencies with

real parts very near WL and Zwo. At the very least, a

more detailed specification of the points where roots near

these values must-be considered spurious would be useful.

Another worthwhile direction for future work is the ex-

tension of the present analysis to non-Maxwellian initial

electron distribution functions. An interesting example

would be the well known anisotropic distribution function8 ,

for which the electron temperatures parallel and perpendicu-

lar to the magnetic field are not the same. In this case

the plasma is no longer necessarily stable with respect to

electrostatic oscillations, and roots may be found with either

positive or negative imaginary parts.



58

Appendix

Computer Program for the Real Part of the Frequency:

OMEGA

OMEGA MAD

DIMENSION THETA(20),C(16),RR(15),RI(15)
INTEGER N
INTEGER X
INTEGER Y
INTEGER Z
C(1)=1.
N=6

REPEAT PRINT COMMENT T$THETA VALUES AND PARAMETERS$
READ DATA
PRINT COMMENT $DISPERSION RELATION ROOTS$
K=2.*KLD.P.2
R=(WP/WC).P.2
H=Ka*R
X=O

SWITCH X=X+1
WHENEVER X.E.Y, TRANSFER TO REPEAT
THET=THETA(X)
THT=.017453293*THETA(X)
COST=COS. (THT)
COST2=COST.P.2
COST4=COST2.P.2
F=-H*(1.-COST2)/2.
C(2 =-7.-RoF-.5*R*H*(1.-COST2)
C(3 =15.+R*F*(6.+COST2)+R*H+(1.5-2.5*COST2-.5COST4)
C(4 --13.-R *F*(9.+6.*COST2)+R*H*(-1.5+9.i*COST2+3.+COST4)
C(5 =4.+R*F*(4.+9.*COST2)+RoeHw(.5-COST2-22.*COST4)
C(6)=-4.'R*F-COST2+19.54R-'H-COST4
C(7)=-6.AR*H*COST4
EXECUTE MULLER.(CN,RRRI)
WC2=WC.P.2
THROUGH A, FOR VALUES OF Z=1,2,3,4,5,6
RR(Z) =WC2*RR(Z)

A RI(Z)=WC24 RI(Z)
PRINT RESULTS THET
PRINT RESULTS RR(1)...RR(6),RI(1)...RI(6)
TRANSFER TO SWITCH
END OF PROGRAM
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TABLE 1

Comparison of the Present Microscopic Expression with the
Macropcopic Results and Bernstein's Results in Certain
Limiting Cases

4., Present Result ,,Bernstein A)Macroscopic

Wp 77
L)

+ mc iz E) + W i. e -+ Lsivt e

Z cosT a

W-4714)

14 '~& z+ eiz1-

W? cose

K4 aw k o )

c4 ~- _ WI>+ AZ 0 47.

( cosO= 0 x7 zG )

4w17 ~- -'&kz@~

7- -7-7 WA')

X ?. w -L
LW (A5~~h~

WJ,+ L)-LLZvkz
A4)

(k=o

z O Z 10 jkcz

w?2cco e 7-p cost8

2 2 :2> 1W r + ko(
7-
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TABLE 2

W& = 3(11) kLo =- 3.54(-6) k2M2 = 9.02(12)

Theta 00

0 36.0000(24)

5 36.0007(24)

10 36.0027(24)

30 36.0225(24)

60 36.0675(24)

80 36.0873(24)

85 36.0893(24)

90 36.0900(24)

36.0000(22) 8.9(22)CoMPLEX*

8.72875(22)

6.74578(22)

2.24579(22)

2.70727(21)

6.81959(20)

,Aot 6 ---.
4...

*The conjugate to this root replaced the usual
root (not tabulated) at this one angle.

spurious negative

= 6(12)

'oX

9.0(22) COMPLEX
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TABLE 3

I4.= 6(12) kL = 1.58(-2) k~x2 = 1.8(22)

Theta 4

0 36.02694(24)

5 36.02763(24) 35.9998(22) 7.91011(22)

10 36.02967(24) 35.9970(22) 7.33861(22)

30 36.04953(24) 35.8086(22)

9.0(22)COMPLEX

i

5.72054(22)

60 36.09463(24) 34.4503(22) 2.57377(22)

80 36.11443(24) 33.4459(22) 3.32675(21)

85 36.11646(24) 33.3265(22) 8.41477(20)

90 36.11714(24) 33.2856(22) --

2 ~
U3 p +Wcz,5:,V%

>.U3 P-

WL = 3(11)
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TABLE 4

L>, = 1(11) A)= 1(11) kL, = 1(-3)

Theta

5 1.08719(22)

10 1.17367(22)

30 1.50001(22)

60 1.86603(22)

80 1.9 8481(22)

85 1.99619(22)

4.00000(22) 9.12827(21)

8.26347(21)

5.00001(21)

1.33975(21)

1.51923(20)

3.80532(19)

1(22)COMPLEX

90

k2,2 = 2(16)

o pLw 7-L L

4wt + ...
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TABLE 5

wc-= 1(11) kLt = 1(-1)

Theta wa

0 --

5 1.16 541(22)

10 1.25636(22)

4.00000(22)

4.00001(22)

30 1.56522(22) 4.00086(22)

60 1.88089(22)

80 1.97369(22)

4.00817(22)

4.01396(22)

8.71206(21)

7.98612(21)

5.08675(21)

1.39979(21)

1.59577(20)

1(22)COMPLEX

85 1.98226(22) 4.01465(22) 3.99887(19)

90

oy = 3(11)

w 7)

2 2

1

= 2(20)

z



64

TABLE 6

COg= 1(11) WCA= 1(11) kL = 3(-1) k2 (2 = 1.8(21)

Theta WA, P.

5 1.34684(22)

10 1.47367(22)

30 1.82902(22)

4.00001(22)

4.00011(22)

4.00793(22)

60 1.96983(22) 4.07259(22)

8.38157(21)

7.63811(21)

5.41673(21)

1.75365(21)

1(22)CoMPLEX

80 1.89293(22) 4.11973(22) 2.05124(20)

85 1.87837(22) 4.12511(22) 5.14998(19)

90

w "
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TABLE 7

Wr= 1(11)

Theta

5 1.24492(22)'

10 1.29854(22)

30 1.52811(22)

60 1.54891(22)

80 1.43093(22)

o,= 8(10)

Z.

2.56001(22)

2.56023(22)

2.57659(22)

2.70323(22)

2.78260(22)

kLm = 3(-1)

-L)

5.44577(21)

4.98440(21)

3.71060(21)

1.40851(21)

1.69189(20)

k2o 2 = 1.8(21)

z
(A)U4

2.zPO%

64(lo20 )CoMPLEX

1.41259(22) 2.79110(22) 4.25395(19)85

90
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TABLE 8

kLb = 3(-1)WP= 1(11)

Theta WOt
z

Wit4

k2a2 = 1.8(21)

2.

5 2.48615(22) 9.00000(22)

10 2.63241(22) 9.00004(22)'

1.20168(22)

1.14910(22)

2.25(22)COMPLEX

30 3.05342(22) 9.00286(22) 7.89515(21)

60 3.28289(22) 9.02610(22) 2.31223(21)

80 3.22429(22) 9.04380(22) 2.67964(20)

85 3.20914(22) 9.04587(22) 6.72487(19)

90

(A= 1.5(11)
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