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A Theoretical and Experimental Study of the Slow

Viscously Driven Motion of a Barotropic Fluid in a

Rapidly Rotating Cylinder with Sloping Bottom

by
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in partial fulfillment of the requirement
for the degree of doctor of science

A simple laboratory model for the wind-driven ocean circu-

lation is studied both theoretically and experimentally. A right

cylinder rotating about its vertical axis with angular velocity

ft holds a homogeneous fluid of viscossity 1) between two planes,

formed by non-parallel end plates with an average separation L.

The fluid is driven by the steady rotation of the horizontal

lid about the cylinder axis'with angular velocity (1 + 4 )f1
The sloping bottom intersects the cylinder at an angle oC and is

stationary relative to -the cylindrical side wall. A linear theory

is developed for the interior a-nd side wall boundary layer struc-

rures for the case of bottom slope tanot from 0 to 0(1), where the

results of Pedlosky and Greenspan (1967) are extended to second order

in tan cL to close the vertical mass flux. Interior and boundary

layer velocity measurements are presented for dA-60, 80, and

10*, obtained over the range of Ekman number E =)/AiLO from 1.05

x 10-05 to 6.22 x 10-5, and Rossby number & from -.0015 to -.1591.

These agree well with theory when the parameter 6/E is of order

one or less. The western side wall boundary layer showed down-

stream intensification when &/E"2is increased and topographic

"Rossby" waves appear in the transition region where the western

side wall layer terminates. The motion becomes unstable with the

-critical value 6/E'/is reached independent of tanoC and a large

scale low frequency oscillation is observed. A brief comparison

is made with previous wind-driven ocean circulation model studies.
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1. Introduction
This paper considers the slow viscously-driven motion

of an incompressible homogeneous fluid in a rapidly rotating

right cylinder with sloping bottom. The lower surface is formed

by a plane intersecting the cylinder at an angle oL. The upper

surface is normal to the cylinder axis and rotates steadily with

agngular velocity (1 + e )fl ,while the rest of the fluid con-

tainer rotates with R (see Fig. 1).

This model was recently presented by Pedlosky and Green-

span (1967) to demonstrate how the general theory of Greenspan

(1965) for nearly rigid rotating flows must be modified for a

fluid container like the sliced cylinder which possesses no

closed geostrophic contours. An additional feature of-this model

is the similarity of its solution to the large scale ocean cir-

culation. The physical analogy between vortex stretching by

motion across the bottom contours and the creation of relative

vorticity by the northward increase in horizontal Coriolis

acceleration (the 0 -effect) enables the sliced cylinder to re-

plicate several important features of the wind-driven ocean cir-

culation problem. The analysis of Pedlosky and Greenspan showed

that the symmetric character of the flow obtained when 0= 0

is completely changed by the bottom slope when oC is small but

greater than E , where E is the Ekman number -v / fL L 2. A

finite bottom slope constrains the interior flow to a slow

O(E ) drift across the depth contours which is closed by a strong

0(E) viscous non-axially symmetric boundary layer along the

western side wall.

The purpose of this paper is to re-examine the sliced cylin-

der'model both theoretically and experimentally. A linear theory

is developed in Section 2 for the interior and vertical boundary

layer structure for the intermediate cases from tan O = 0 to

0(1), where the results of Pedlosky and Greenspan are extended

to close the vertical circulation. Section 3 contains a descrip-

tion of the experimental apparatus and techniques . The results

of velocity measurements are presented in Section 4 for OLt 6*,
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80, and 10*, obtained over the range of Ekman number from .0.5XiD~0o
(fl1I6 and Rossby number e from--00f9 to -- 199. A brief compari-
son between the sliced cylinder model and recent wind-driven

ocean circulation model-studies willa:be ptesehted inithe finaL.-

sectid.nn the fina c

2. Theoretical Development

The mathematical analysis of the steady motion in the

sliced cylinder configuration shown in Fig. 1 is formulated

following the approach outlined by Greenspan (1965). The govern-

ing equations are the linearized momentum and continuity equations

for an incompressible fluid of constant densityp and viscossity

}) ,written in a coordinate system rotating with the cylinder

at an angular velocity .f.

'11A' 0

and scaled with respect to the container's mean depth L and the

lid's relative angular velocity eL . The unprimed non-dimen-

sional field variables are

A.' L A. , ' 6A.L iZ , ' DL ,_ =D. -E=/-1 A-

The scaled boundary conditions on the velocity field are then

top: tr(/(2o, I)-- A) )= WA=-0 ( ;)

side: (e, b=o (Z )
bottom: t. &M/ (G -0

Since our primary interest lies in the dependence of the

interior flow and viscous side wall boundary layer structure on

the value of . , we will not solve explicitly for the flow in
either top or bottom Ekman layers but will use instead a general

implicit solution for the Ekman layer suction. Greenspan and

Howard (1963) and Greenspan (1965) have previously shown that the

effect of an Ekman layer developed on a smooth boundary on the

interior flow can be expressed in a compatibility condition on

the interior variables
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where A is the outward unit normal to the container surface and

w9 is the relative velocity of that surface. On the upper

surface of the sliced cylinder, n k and =AID so (7.)becomes

7-A A

while on the sloping bottom, the ou'tward normal is n = sin(

- cosod , causing (2C) to become

W ~ . +- X .~U4- Df c .5)

The tan o term represents the imposed vertical velocity of a

fluid element moving parallel to the bottom incline. Ignoring

the 0(E)44%&.) terms for small c. , the vertical velocity above

the bottom Ekman layer consists of an "orographic" component plus

the Ekman layer flux. We shall see that as oa increases from 0,

-the constraintimposed by the increasing orographic component

essentially determines the character of the complete flow.

Case 1: tan oC, = 0.

While the solution in this case is well known, it is instruc-

tive to reconsider it briefly. Zero slope makes the container

symmetric in shape so an axi-symmetric response is expected. A

vertical axi-symmetric stream function % can then be introduced,
the velocity field being

The &-components of the momentum and vorticity balances form a

coupled set of partial differential equations for and V~,

2%U- C)U~

S + EDK (bb)

where D is the cylindrical differential operator

4 4-~~ + 7.7..-
The boundary conditions on and V' are set by no-slip at the

side wall and the Ekman layer fluxes. The first is given by



U_~~ 0

The vertical flux into the upper Ekman layer is given by the

compatability condition (3)

This expression may be directly integrated to give the total

flux per radian into the top layer

A' 4&fY(AAI)Z i - I(~Lr

The resulting condition on '>is then

'N ~~ F "h.,- -- - EU~ -r

)

where the explicit A. in the right hand side represents the for-

cing transmitted by the upper Ekman layer. f>(A , 0) just above

the lower Ekman layer is found in the same manner to be

Since viscous stresses in the interior are small, 0(E), the inter-

ior dynamics are geostrophic with a balance berween Coriolis

acceleration and the horizontal pressure gradient. The steady

flow by (b ) is independent of z as a consequence of geostrophy

in a barotropic fluid (known as the Proudman-Taylor theorem) so

the top Ekman layer suction must be supplied by an outflux from

the lower Ekman layer. Matching fluxes requires

The interior motion is the well-known solid body rotation with

an angular velocity equal to the arithmetic mean of the rotation

rates of the top and bottom plates.

The side wall flow can be found by boundary layer methods.

The interior flow near the side wall is an 0(1) tangential flow.

The only term in the 0-momentum equation capable of balancing-

the viscous force necessary to bring r to zero at the side wall
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is the Coriolis component 2 u. The existence of closed stream-

lines implies 0(u)AO( '))wE near the side wall. Then O(ELr)AA.)AEk

for a dynamic balance. Since O(tr) ~l, O( -r )' E' , indicating

that a boundary layer with scale thickness E is required to satis-

fy the non-slip condition on the 0(1) azimuthal flow.

The coupled set (6) may also be reduced to the sixth order

partial differential equation,

E DDD + 4 O

A balance here requires 0(E2 ) vl, indicating that a second

boundary layer of thickness E'3 may also be needed .to match the

lateral boundary conditions.

Having determined the possible side wall boundary layer

thicknesses, we now seek consistent perturbation .expansions for%

and tr valid outside the Ekman layers. The ratio of boundary

layer thicknesses E'1 /EY4='El provides an appropriate expansion

parameter so we will assume expansions of the form

Z F"t 4 A(Aj -2)

and seek solutions for the functions ir . The analysis is

simplified by introducing stretched coordinates in the vertical

boundary layers

Substituting these expansions into the basic equations and equating

coefficients of like powers of E4L lead to a sequence of problems

for the unknown functions in each area.

The interior solution is again tro = A.-/2, 'X b -- /4, a

geostrophic gyre with a parabolic pressure field, coupled with a

slow E /2 uniform vertical flux from the lower into the upper

Ekman layer. The return of this flux to close the vertical circu-

lation must be made via the vertical boundary layers on the

side wall.

The problem sequence in the E layer reduces to



U4~ = ..O

with the associated no-slip and flux conditions

(To L0,6 = 0

The Proudman-Taylor effect strongly influences the E layer flow.

The horizontal motion remains two-dimensional, allowing the O-

momentum equation ('At) to be vertically integrated and ifevalu-

-ated at z = 1,0. This yields the ordinary differential equation

U', -- 106 . -.

Its solution subject to no-slip is

With the corresponding streamfunction

4
the vertical flux is

The horizontal shear is great enough in the E layer to cause
k

both Ekman layers to extract fluid from the E layer.

The E1'3 layer flow is' both ageostrophic and three-dimension-

al. The lower order flow must be found by matching the already

determined Ek layer solutions -to the E"3 layer solutions yet to

be determined.- This is accomplished formally by expanding- the E

layer solutions in terms of the EV3 layer coordinate and then

matching coefficients with the E13 layer solutions for equal powers

of E A . This procedure identifies

The governing equation for the next order flow is

The boundary ondition's are the lowest order Ekman flux conditions
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~~ 0

which are equivalent to setting w = E'w 2 = 0 since the Ekman flux-

out of the E layer is of 0(E ). The no-slip condition at

the side wall is

A 7 (lb'- O

where the second term in ( Ia,) is the E layer radial flux. A

sine series solution for can be found directly, giving the

complete streamfunction and azimuthal velocity in the E layer

to order O(E4 )

U- (V' -- TLI QO.2 .. L

~~-~ + F3 TVA

where Tv (2mTr) , the magnitude of the eigenvalues of (M).

These solutions for the lowest order flow in both layers

account for the basic -viscous mechanism of bringing the 0(1)
azimuthal flow to rest and closing the vertical mass flux.

Large horizontal shear in the E layer makes it a region of high

negative vertical vorticity with the consequence that both top

and bottom Ekman layers extract fluid. While the lower flux

feeds the inward radial flow in the bottom Ekman layer, the

upper Ek layer flux adds to the outward flux of the upper Ekman

layer which must "turn" the corner where the boundary velocity

discontinuity occurs and flow down the side wall.. A detailed

analysis by Bisshop (1966) shows that this singular Ekx EYL

corner region acts as the flux source for the EU layer which

then carries the flux down the wall and feeds it uniformally into

the E41ayer.

Case 2: tan L< E:

The interior dynamics remain geostrophic when the bottom

slope is increased from 0. Since the Proudman-Taylor theorem
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holds to 0(E) and a vertical fluid column retains its form and

moves without stretching or contraction, the interior vertical

velocities (7) and (' ) outside the two Ekman layers must again

match.

Equating terms forms a steady vorticity equation,

E 1.
which can be rewritten, using the pressure field, as

V7 2 + "t _ (14)

The boundary condition on the inviscid interior flow is no-normal

flux at A= a, so

(the choice of the constant of integration C=. 0 will be ex-

plained later). We now note that the parameter tanoeC/EIwill

determine the symmetry of the pressure field. For sufficiently

small slopes that tano.< E11, the pressure field will be almost

parabolic, while for larger slopes a'quite asymmetrical pressure

field should result.

When tanO.4 E, the interior pressure field can be found

using a regular perturbation expansion

The problem sequence for the unknown functions becomes

where is the parabolic field found in case 1 for a 0.

The resulting perturbed pressure field is

with velocity components

Akthough u(a,a ) vanishes, the interior tangential flow just

outside the side wall boundary layer is clearly dependent on E.
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We need to examine the side boundary layer flow to see if this

dependency changes the basic Ey, Eboundary layer structure.

We shall assume that tano, = t I4where 0(A )vl, and

look at the E41ayer structure dependence. on . The correction

velocity and pressure fields in the -E4 layer can be expanded

LFLrD Lt 4- fV4u +~.

where each variable is further decomposed

The boundary layer thickness is also perturbed in Poincare's

method

Substituting these expansions into the basic equations and

equating coeffieients of like powers of E' yield the following

balances
A

0.,'

JoeOO

**1A3 2s-'h .Ugo&e ~J'~
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The pertinent boundary conditions at the Ekman layers are

and on the side wall,

- 1- (0 a U i!+ Iia

L -o ) + or n o-

Since from (6~)

the side wall condition becomes

Solving the vertically integrated continuity equation to O(E4) in

terms of U'o yields a governing equation for L.r

Since both Lrov, and therefore its correction field ro are

independent of 0 , and ? must be periodic in e , A, must be
a constant

The governing equation for the next order L7t is found in

the same manner to be

Vi'SS 4- U_1 3. Lr t X3's 0~-0

The solution for (ri will contain secular terms of the form

'S unless A *" - and ' 0 , so

The radial thickness of the E'4 layer is then to second order inde-

pendent of the small bottom slope.

The lowest order E -momentum balance is dependent on A ,

though, for

For A 4 1, the basic balance is ageostrophic between the Coriolis
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force and shearing stress, similar to case 1.. But for larger

slopes, t > 1, the basic balance becomes geostrophic, with

1/ C
Thus, the 0( -E ) pressure field in dynamic balance with the

0(& EA) asymmetric azimuthal flow drives a geostrophic radial

flow of O( AE) and form

This flow must be fed by either the interior or Elayer.

To determine the flux source, suppose that the total radial

velocity u- is decomposed into the interior and the two boundary

layer correction components,
-Aa

'Ik UAWt -4 1At 4  +SO

where by the no-normal flux boundary condition

2 .TT o1 
l y r s n tSince the interior is always geostrophic and the E layer is not,

(M =0 , 4t'> o

For 64 1', the basic e -momentum balance in the E layer is

ageostrophic so that the basic balance

occurs. But when 6- 1, that balance in the E 4 layer becomes

geostrophic with the result that to lowest order, Z /4%4'? = 0.

Since this implies 4'0(/i = 0 to 0(/.E ), the 0(6E2) radial

flow in the Ey layer cannot be supplied from the E3layer but

must feed the geostrophic interior. This means that the

0( tan. ) interior asymmetric flow is modified by the E"4 layer
with Ea0( tan ) radial flow, while both the E layer scale

thickness and tle E 3 layer flow and dynamics are not modified

to lowest order.

Case 3: E Vtan PC 4 E:
The previous perturbation scheme breaks down for larger

slopes. However, a general analytic solution for the pressure
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field exists and may be found directl . After the particular

solution to (14) is found with , the homogeneous

problem can be reduced to a Helmholtz equation

by the substitution

Adding homogeneous and particular solutions gives for the general

pressure solution

X I + e

where i and x' and iv are normalizedby the non-

dimensional radius a. The appropriate boundary condition is

still ) (a, 0) = C to O(E4) so that the unknown fourier coeffi-

cients may be found in the usual way by series evaluation on the

boundary

The particular choice C = 0 simplifies the computation, giving

for the interior geostrophic pressure field

This series converges for all finite r and has been evaluated

numerically by computer for several values of ' . The stream-

lines are shown in Fig. 2. (Discussion of the numerical solution

method is given in Appendix A ).
The pressure field is an even function of & but not of x.

Fig. 3 is a plot of /(r,G ) along the x-axis, showing a shift

of the circulation center where = 0 from the origin westward

to x -.25 for r = 1. This shift is more pronounced for larger

values of C . The degree of asymmetry of the pressure field or

streamlines clearly depends on the value of r . For the stream-

lines of two different basins to be geometrically similar the -
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value of r must be identical. Since I is proportional to

the ratio of total depth variation to the Ekman layer thickness,

twice the bottom slope is needed for a basin with half the origi-

nal diameter.

For P 7/ 3, the intense crowding of streamlines along the
3'fl/2.4 G- 47T/2 boundary slow the development of a geostrophic

boundary layer. In analogy to the ( -plane wind-driven ocean

circulation models, we will call this layer the western boundary

layer.

The structure of this geostrophic layer may be easily found

using the regular perturbation expansion

with the tilde indicating a boundary layer correction field and

, and appropriate stretched coordinate defined by

The vorticity equation expressed in cylindrical coordinates shows

that basic dynamic balances are

which is again the Sverdrup 'balance in the interior and

in the boundary layer. Its solution

A(e) + (.E)eC 'eSI
decays properly into the interior when cos 9 0, i.e., along

the western side only. The boundary condition on the interior

solution along the eastern boundary is then no-normal flux.

This specifies the component of flow parallel to the basin depth

contours in terms of the cross-contour component given by the

Sverdrup balance, thus determining the unknown function f(y) in

the interior solution to (Is)



- 18-

to be -

This is identical to Pedlosky and Greenspan's interior results.

The interior streamlines are circular arcs, closing in the western

boundary layer. There, the pressure field is found by matching

radial fluxes to be

y = 4 o em ( - e *' 9)

These solutions indicate a new interior scale of motion. For tano('?1

E- ,the bottom slope constrains the interior flow to be O
while in the western boundary current 0 (V)" flux/thickness - 1.

As tanao increases toward E , the geostrophic boundary layer thick-

ness decreases toward the E layer scale and the interior flow

decreases toward 0(EA), the magnitude of the forced radial motion

from the lowest order geostrophic balance in the E 4 layer. We

will see next that the E"4boundary layer structure undergoes a

change when tandt-- E.

Case 4: & tano( 4E
We will now look at the E layer along the western boundary.

Let tancx, =A, E with A again assumed to be 0(1). The complete

velocity and pressure field equations in the E"4 layer are

L)-'= (' +- E4 L

and 5 is again the stretched boundary layer coordinate. The domi-
nant boundary layer balances are

A'

IL-, + LrJ$S

(At5-j -Ia

'1 S '0 0.
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The Ekman layer fluxes are

Wr- UbLo 4- ACMoe8U-0O VA O L1,1
'2

With tan o( approaching E', the bottom slope is sufficiently

large that the orographic component becomes comparable to the

tkman layer suction. This modifies the governing equation for

U , found in the same manner as before, to

ZU-03 -20Z&C0 -

where the lateral diffusion of vorticity from the side boundary

is now balanced by Ekman layer and orogr phic vortex stretching.

For eigenfunctions of the form A (6) e , the eigenvalue

equation reduces to the cubic

4. ,A ce 0

Since our scaling is valid only along the western boundary,

A cosO can be replaced by - 13 where 13 = 1 cos .. The

eigenvalues for are

X 2i/ Cn (4'/3 zrr/3)

with tan ('2_______ 3 --

When 641 , approaches ~[~2 and these roots may be expanded to

Ale

The usable roots must have a negative real value for exponential
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decay into the interior so A is excluded. XA.corresponds to a

thickening of the standard E Ylayer towards G=7r while k corres-

ponds to the interior geostrophic boundary layer. The azimuthal

flow in the E 4 layer is then

, (Jo =- e( -

The pressure field is found by integrating the geostrophic balance

0 AA
Since the lowest order momentum balance in the westeX n EAlayer

is geostrrophic, the appropriate boundary condition on ,is

again ,D(O, 0) = 0. Since the eastern boundary is a streamline

with j1 = 0, the western boundary must be a streamline with

(0,6 ) = 0, so the integration constant j1= 0. We can now

match Vwith the interior pressure field on the western boundary

to determine A2:

For Il41, ) a -A.. so the basic balance is

which illustrates the basic role of the interior geostrophic

boundary layer in, closing the north-south horizontal .circulation

when tan oc(4 E With A'6.A9CwO(, A2 -2a cos 2 e and the

azimuthal flow in the EV4ayer is

L 1 =E0 oo 0e _Im.9
As tan ( increases toward E the interior and Eoundary layers

tend to merge until = A at T = r for tan oc = (2./02 E'

For greater slopes, the two roots become complex conjugates

o4- r e

4a cr)

41CM1905
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with a = -- \C -- ,7/

b = (r4C +3'-L-3 -

along an arc centered about E = -M . The transition point be-

tween , real and complex is &cI. where cos 2 Ge 8 E 2/27 tan o.

For tan O.7 E9 the endpoints of the arc rapidly approach f1/2

and 37T/2, while a-'O, b--{rTl . Along this arc, A2 is given

by the new balance

A? 4

with L L fTdo' ±oc )

The resulting western E boundary layer flow is

where ^ 3

As tancK increases from E', the modified western E layer (mE

becomes thinner and sweeps toward the side wall. The result

of Pedlosky and Greenspan (1967) is re-obtained when (7.0 ) is

rewritten in terms of tano. and E,

with (40AA

Even though the analysis by Pedlosky and Greenspan of the

western boundary layer as a E3 layer is valid in a strict sense

only for tan oC > El, the solution also illustrates the fundamen-

tal nature of thv western boundary layer for the larger range of

tan (. > Et/I The dynamics for this are now clearer. The horizon-

tal momentum balances in the mE layer are essentially geostrophic

in both fir- and G--components while the pressure field is indepen-
dent of z to lowest order. As tanot increases from O(EW), the

mE/4layer -- normally two-dimensional and now geostrophic --
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shrinks in thickness to become the modified E layer that was

found by Pedlosky and Greenspan. The key to the boundary layer

thinning lies, of course, in the E11 layer vertical vorticity

balance. For tan o( , the lateral viscous diffusion of nega-

tive vorticity from the side wall is balanced primarily by posi-

tive vortex stretching by both Ekman layers. Increasing the

bottom slope increases the orographic component of this stretching

until it dominates the Ekman suction component. Any further in-

crease in the orographic component by increasing the bottom

slope must be balanced by an increased lateral viscous vorticity

flux, hence a higher velocity shear and a smaller boundary -layer

thickness.

Case 5 : E tangi 41:
At this point, the.role of the E 3layer should be recon-

sidered. For tanc( 4 Eawe have seen that the Ey layer carries

the radial outflux from the top Ekman layer down the side wall

and feeds it uniformally into the EV4layer, which redistributes

this radial flux back into both Ekman layers. A moderate slope,

however, constrains the vertical outflux from the bottom Ekman

layer to be of O(Etand ) so the bottom Ekman layer can not

close the O(EVL) vertical secondary circulation. Instead, the

EI/layer outflux must feed the interior and western boundary

layer directly.

To illustrate this transition, we will now assume that E/644

tanv 4 1 and prQeed with Pedlosky and Greenspan's analysis.

The basic non-dimensional boundary layer equations for the correc-

tion fields are in component form

-2 -r -?q

CIL,

where the variables have been scaled according to
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VW

The momentum equations can be eliminated to yield a single,
governing equation for the pressure function,

with the appropriate boundary conditions being

and on the side wall

'P 0

At this point, Pedlosky and Greenspan set (Aequal to the 0(E .(
interior radial flux to obtain ,the first order pressure solution.

We will find the pressure field to second order in tanot by

setting VAkequal to the combined D(E A&and and O(E*-) radial flux
from the interior and the thinner normal E layer.

('2.) may be solved with eigenfunctions of the form

provided Xt satisfies

Pedlosky and Greenspan have shown that the eigenroots compose

two sets, one of three complex roots of O(tandV )associated with

the western modified E -layer and the countable set of 0(1)

complex roots associated with the normal EV3 layer.

Expansion of the eigenvalue equation in powers of tano(.

shows that the two smaller roots which give exponential decay

into the interior from the western boundary are to second order
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The general pressure function satisfying the no-slip sidewall

conditions (22a.)b) is then

P~ AeFhe' le)
2

where the 0(tan V) z-dependence is ignored. The amplitude A

is found directly by matching the mE.3radial flux with , the

combined interior and nE#' layer fluxes.

Since the vertical flux into the upper Ekman layer is to

lowest order independent of ( , the radial outflux from this

layer is axisymmetric. The net radial velocity of the nE3 3layer

is then, by continuity, u = -AE /1. Since the mE V layer exists

on the western side only, the interior radial velocity must match

the nE1 ilayer flux along the eastern boundary. When evaluated

in terms of the interior pressure function

This radial matching requires

#I A.w, 4- (MOMGY + 1"tC

The unknown functions t ,T associated with the interior flow

parallel to the depth contours are found by equating powers of

tanot and solving, giving - for the complete interior pressure

Matching the interior and nEI layer radial fluxes along the

western boundary to the mE"3 layer flux now reduces (12.) to an

ordinary differential equation for the unknown. amplitude A,

The solution is found by expanding A in the series

kI et A =-A* 4k A' +-

and solving the resulting perturbation equations
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Sinced the horizontal and vertical secondary flows are now matched

to O(E ) by radial boundary layer fluxes, continuity requires

that nd additional fluid e.nter or leave -the mE layer by a tan-

gential flux where the layer terminates at 0 = 12, 3 X /2. This

implies that the pressure function must vanish at e= U/2 and

0 =3 7U/2, indicating that the unknown constants of integration
are both zero.

With the mE layer pressure function found, the complete

azimuthal boundary layer velocity may be given to O(E' ) by adding

the nE1 .layer solution found in Section 1

6' az E" MWVr&. +

* i... ~a2 /weA rte - (7-J3)
j3

where the eigenroots are again

The vertical mass flux extracted from the interior by the upper

Ekman layer is returned to the interior via the thinner axi-

symmetric nE Slayer. The radial outflux from this layer along

the eastern side is carried parallel to the geostrophic contours

from east to west into the ageostrophic western mE3 layer where -

it combines with the inner nEq layer outflux along the western

boundary to produce a net convergence. Because of this convergence,

the mass flux lost by the fluid column as it was carried through

the interior region from deep to shallow end is restored as it

returns to the deep end via the mES Slayer.

The net convergence, coupled with the second order influ-

ence of the finite bottom slope on the mEA boundary layer thick-

ness, distorts the first order north-south symmetry. According

to ('3), the position of the azimuthal velocity maximum is moved

-M25-

4 C
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through the angle sin~ (61/9cstan o ) from the east-

west axis toward the shallow end. (t3) is valid to 0(E0). The

O(E) contribution due to the inclusion of Ekman layers above

and below the mE layer has not been determined, so the possible

discrepancy between (23) and the complete perturbati6n solution

is of O(EA). The experiments were conducted over a range of E

such that.147-4 E 4.198, so the discrepancy might be appreciable,

especially when tanok( E . On the other hand, this theoretical analysis

suggests that the western mJ3 layer thickness dependence on E

is valid over a wider range of tanol from tan g 7 Et

3. Experimental Apparatus and Methods

3.1 Apparatus

The fluid container consisted of a lucite cylinder

with a 12.700t-005 cm inner radius, capped at both ends by lucite

plates (see Fig. 4). The sliced cylinder geometry was formed by

inserting a false top and bottom into the cylinder. The geometry

shown in Fig. 4 has been inverted simply to ease construction.

Three lucite sloping bottoms were constructed from 0.92

cm thick plate stock for nQminal angles of L- 6* (tan c4 = .171-.oo)

8*(tanvL=.144-o3), and ,10* (tan = .178 *.003 ). The actual

bottom slope was measured with a cathotometer while the false

bottoms were in place and the fluid container filled. The top

driving disk was a 0.61 cm thick glass plate of radius 12.675 cm.

Its plane of rotation was determined by the vertical positions of

three supporting miniature ball bearings since the glass disk was

optically flat and its surfaces parallel. The average separation

between the side wall and the false bottom, and the side wall and

the glass disk, was 0.025 cm, typically about 45% of the Ekman

layer scale thickness LE .

The glass disk was driven by a synchronous clock motor

using a shaft and gear train arrangement to help ensure a constant

relative.angular velocity and thus a constant Rossby number. A

stable audio oscillator-amplifier system drove the motor so that

the relative angular velocity of the glass disk could be varied
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by adjusting either the oscillator frequency or the gear reduction

ratio. The apparatus was mounted on a rotating turntable driven

by a synchronous motor through a direct drive Graham variable

speed transmission. The relative angular velocity of the glass

disk was quite constant, depending on the stability of the oscil-

lator frequency. The angular velocity of the turntable was an

order of magnitude less constant, being limited mainly by the

stability of line frequency. Typical fractional- standard devi-

ations of f osc and the turntable's rotation period were42 x 10-5
osc-4

(100 cycles) and 42.10~ (20 periods).

Flow photographs were taken on Tri-)e film with a Nikon 35mm

camera mounted above the cylinder. A 22-'watt flourescent circle

lamp with parabolic reflector was fixed beneath the cylinder to

provide back lighting. An adjustable sequence timer triggered

the camera mechanism and dye production. The fractional variabil-

ity of the switching pulses was estimated at <$ 1 x 10.

3.2 Flow Visualization Methods

Velocity measurements were made in the interior and

western boundary layer over a wide range of Rossby and Ekman num-

bers, using sequence photography. The pH indicator Thymol Blue

technique outlined by Baker (1966) was used in the linear flow

regime where relative velocities were smaller than 0.1 cm/sec.

Two identical grids (shown in Fig. 5) of fine .001" platinum-

irridium wire were stretched horizontally across the cylinder at

depths of 5.53 cm and 10.53 cm. The cylinder was filled with a

0.1 N solution of Thymol Blue titrated to its basic endpoint.

Applying a small d.c. potential across the two grids changed the

local pH around each wire, causing the fluid around the negative

electrode to become more basic and turn a deep blue. A sequence

of these dye lines was photographed as they were swept off the

electrode (see Plate 1). Since. the time interval for the dye to

be formed and carried out of the boundary layer around the wire

was not accurately known, the horizontal distance between succes-

sive dye segments was measured and divided by the sequence inter-

val to compute the average observed velocity. .

The electrodes were aligned along the east-west axis for
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the interior velocity measurements, so the distance between suc-

cessive dye segments was measured perpendicular to the electrode

to determine the geostrophic cross-contour flow component. Mea-

surement of the western boundary layer.velocity was complicated

by two factors, curvature of the boundary and the dependence of

the azimuthal velocity. The first was partially solved by digit-

izing the dye photograph and measuring the distance numerically

along an arc of constant radius (see Appendix%). The second

complication was circumvented by measuring the azimuthal velo-

city in the region O-=XT where the least variation of W' with

G occurred.

The non-linear flow regime was characterized by velocities

of at least .01 cm/sec so two other flow visualization techniques

were used. The horizontal structure was studied with streak

photography using a water suspension of large aluminum flakes

illuminated from the side by a light beam 1.39 cm -thick. The

beam was normally placed at a depth of 7.90 cm but was also placed

at 3.28 cm (slit width = 1 cm) and 9.24 cm (slit width = 1 cm) to

test the two-dimensionality of the flow.

The stability study was conducted using a sequential dye

method. The cylinder was filled with a saturated starch-iodine

solution and a fine stainless steel electrode (.025 cm outside

diameter, 5.5 cm long) placed in the western boundary layer at

o =7T. A periodic potential was applied to the electrode,

causing a long sequence of dye pulses to be formed in the western

boundary layer. The pulses were carried through the western bound-

ary layer to the transition region where they were photographed

periodically. The stable mode was characterized by excellent

repeatability while the unstable mode exhibited a periodic temporal

variation of the dye pattern.

Separate experiments conducted to check the electrode's influ-

ence on the onset-of instability indicated that the stability

results were unchanged by either (a) a shift in the azimuthal

position of the electrode in the western boundary layer to 0=

2UT/6 at two different rotation rates or (b) substitution of a

second, 20% thicker electrode at 07T . Also, the local
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Reynold's number based on the diameter of the electrode never

exceeded 8 at the critical Rossby number, so any distortion due

to the electrode size and position was considered negligible.

The number of fluid solutions used and the variability of

room temperature necessitated an accurate determination of the

kinematic visco*sity for each experimental run. The viscoosity

of each stock solution was measured over a 200 - 2.5O.temperature

interval using a calibrated Fiske-Canon viscousimeter and a cali-

brated copper-constantin thermocouple. A second matched thermo-

couple was attached to the fluid container in the eastern boundary

layer. The induced emf was measured though sliprings during each

experiment, indicating that the fluid temperature remained constant

tot0.03 *C over the duration of each experimental run.

The experimental procedure for these studies was similar.

After transmission warm up, the table speed was set and a spin

up period of 8 IT /2EUl (about 16 minutes for aL= 3 rad/sec)

was allowed for the stability study and 4 1C /2E .CL for the other

studies. Then the glass disk was set in motion and after a simi-

lar spin up period, the flow observations were made and experi-

mental parameters measured.

3.3 Experimental Error

The principal uncertainties in the velocity mea-

surements arose in the data reduction process. The precise loca-

tion of the leading edge of the dye line was difficult to locate

on some of the enlarged photographs. Small random variations in

the turntable's angular velocity also caused noticeable velocity

deviations among the photographs, so a sequence of 8 photographs

was interpreted and the mean and standard deviation values pre-

sented. Except for an estimated 1.8 to 2.9% uncertainty in tanoC

the experimental parameters attributed less than a 1% uncertainty

to the velocity calculations.

Measurements of the western boundary layer vortex positions

and topographic half wavelengths on the enlarged streak photo-

graphs were complicated by the lack of a reference length and the

difficulty of locating the cylinder axis in the photograph. A
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sequence of 4 photographs was read to reduce the random errors

involved, and the mean and estimated standard deviations presented.

The distinction between stable and unstable flow was occa-

sionally clouded by the presence of aperiodic motion attributed

to small variations in the turntable's angular velocity A1.

These runs were repeated under similar experimental conditions

and the flow state- then decided. A major experimental uncertainty

arose in determining the formation period T of the unstable mode

from the sequence photographs. A visual interpolation had to be

made between photographs since T was rarely a harmonic of the

sequence interval between successive photographs. This, coupled

with the limited number of cycles photographed, caused typically

an experimental uncertainty of /v 8% in the period measurements.

4. Experimental Results and Discussion

The first set of experiments to be described was designed

to test the linear theoretical predictions presented in Section

2. Measurements were made of the cross-contour flow component

in the interior and the azimuthal velocity profile in the western

boundary layer. The second set of experiments described here

was intended to indicate how the flow is modified by an increased

driving stress. This set included a visual study of the horizontal

velocity structure and determination of the critical parameter

values for the onset of instability.

4.1 Interior Flow
The cross-contour velocity VCC was measured at

an interior point (r' =0.566, Ge= 0, z = .826) as a function

of ot and G . A second measurement was made at the lower point

(r' 0.566, 1e= 0, z = .434) to check the predicted z-dependence.
The results presented in Fig. 6 and Table 1 indicate that the

theoretical Sverdrup balance (1 s) accurately determines the
two-dimensional cross-contour velocity component over the wide

range of 6 studied. While experimental uncertainties excluded

actual measurement of the secondary interior flow parallel to the

depth contours, the predicted sign and order of magnitude of this

flow was observed to be correct.
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z1 : 39.0*.8
(38.Otl.)

z 19.6t.4
1 (19.3+.6)

z 9. 8t.2
(9. 3t. 3)

-. 0416

-. 0208

-. 0104

-. 0052

Experimental Conditions

A = 3.03 rad/sec
V = 1.87 x 105
L = 12.75d.04 cm

Qe = 0
7- =0.566
-1= 0.826

= 0.434

( ) indicates theoreti-
cal value computed
from (I1)

velocity unit = 1 x 10~ cm/sec

z : 2.45*.05
(2.531.08) z : 3.02+.06 z : 3.89t.08

z 2: 2.43*.05 (3.20t.2 ) (3.8 .1 )
(2.582.12)

0.178 0.144 0.111

tanoC

TABLE i . Comparison of Interior Cross-Contour
Velocity V with Theory for Different Bottom
Slope, Rosg y Number, and Vertical Position.

zy: 4 91.1
(4.7%.2)

-. 0026
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4.2 Western Boundary Layer Flow

The azimuthal velocity profile V(r) was measured

in the eastern boundary layer region near (e= T , z = .826)

with the "'100 sloping bottom for twelve different values of the

main rotation rate. . A typical dye photograph is shown in

Plate 1 and the measured profile in Fig. 7. The radial position

of the velocity maximum was then measured and a logarithmic plot

made as a function of E, in Fig. 8. A least squares fit to the

data gives the equation

(oA C ( 150 i- .0) 4 (.34- ±.02.) ).4 IO S

which is in good agreement with the theoretical value

S(o Ard = (I.54t .oi) +

found from (2.1) for 0 = 7 . A similar least squares analysis

for the amplitude of the velocity maximum indicates that

v G vm /ar.= i . 74* o -o2) + t.o .g os E.
in comparison to the predicted dependence

based on (13 ). The discrepancy is probably attributable to the

neglect of the higher order perturbation terms in the theoretical

analysis.

The tangential velocity was also measured at four other

azimuthal positions in. the western boundary layer to check the

predicted 0 -dependence. Fig. 9 shows a comparison between the

observed velocity maximum and the theoretical maximum calculated'

from (23 ). While the observed points correlate well with the

theoretical envelope, the observed values nearer Gaf were from

AP6 to ~1l4% smaller than predicted. The horizontal width of

the experimental uncertainty bracket in Fig. 9 indicates the

angular separation of the two sucesssive dye lines during the

experiments.

The azimuthal velocity was also measured at the lower posi-

tion ( Oe = i , z = 0.434) to test the predicted two-dimensional-

ity of the western boundary layer. The profiles shown in Fig. 10



PLATE 1 : Azimuthal velocity in western boundary
layer for -10* sloping bottom. Experimental
conditions correspond to figure 7; ( e=7'
z = 0.826). Interval between dye pulses is
25 seconds. Radial distance along electrode
between side wall and cross wire provides
reference length in photograph.
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indicate a 27% variation in amplitude at the two vertical posi-

tions while the profiles are similar in form. The cause for this

is unknown.

The azimuthal velocity profiles measured at ( e = T ,
z = .826) for the two smaller bottom slopes are shown in Fig. 11.

The sizable discrepancy between observed and (2.1) probably

lies in the approximate and limited perturbation treatment of the

linear theory.
4.3 Horizontal Structure in Non-Linear Regime

The non-linear flow regime in the sliced cylinder

was marked by a more noticeable north-south asymmetry of the

western boundary layer structure. As the driving stress was

increased, a fluid particle in the western boundary layer ac-

quired more inertia until it tended to overshoot its essentially

interior equilibrium position. The partidle then reversed its

direction of flow and lost its excess inertia and vorticity through

dissipation and stretching before returning to the interior.

This north-south distortion (illustrated in Plate 2) first
became apparent for the vl0" sloping bottom when 161. was in-

creased past E/Z. When 1I1 3E u, part of the western boundary

layer flow had closed upon itself to form a vortex in the north-

west quadrant and when 16(ov 6EA., this vortex had shifted to A.

1300. A larger stress increased the boundary layer transport and

the radial distance from the center of the vortex to the side

wall but did not substantially affect the vortex's azimuthal posi-

tion. Fig. 12 shows the movement of the vortex's center as

was increased through different values. As the stress was in-

creased, the azimuthal angle passed through a maximum value

which was approximately the same for the three different bottom

slopes. Additional measurements made at other depths are presented

in Table 2 which indicate that the vertical axis of the vortex

was aligned with the main rotation axis to within an estimated

experimental uncertainty of L2.10.

A fluid particle entering the interior from the western

boundary layer went through a transition region where -the

inertia and extra vorticity acquired by non-linear processes in

the western boundary layer were lost. The size of this region



-010

-0-09

-0-08

-0-07 'AA !A^ AA ' \/0 ! "

-0-06

-0-05-O-04

-0-03.

-0-0 0 A

-0-02.2

-O-01j

O -2 -4 -6 -8 1-0 1-2 1-4 1-6 1-8

radial separation Ar (cm)

FIGURE I .Wester
profile

boundary layer
as a function of

azimuthal velocity
bottom slope. Theoretical

profiles (second order), for e= -0-0026,=3-03,
E=1.89x10-5,(e= 7r, z=0-826).



(a) C = -. 0190;Ie/E= 4.21

PLATE 2: Horizontal velocity structure in
northern half of basin for 10 sloping
bottom. Experimental conditions: tan =
.178,A)l = 3.03 rad/sec, E = 2.03 x 10~,
(z = 0.62), exposure time was (a) 4.88
sec, (b) 3.25 sec, (c) 3.25 sec.



(b) 6= - 0380; 1I/"2= 8.43

(c) G = - .0596; 161/e'-= 13.21

PLATE 2 (continued)
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-. 0637 z :(7.5t.1,129.4t.3*) z2 :(8.23t.05,128.1 0 .4*) z 2 :(8.82±.08,127.8*t.3*)
2 z

z :(8.99*.05,129.0'±.9)

-. 0596 z2 : (7. 6-.1,129. l.2*) z2: (8.31..06, 127.(ft.4*) z2 : (8.971..08,128.00*.4*)
z3 : (8. 97t.05,129.0 .1-*)

z1: (9.4 t . 1 ,126. l'±.7')
-. 0475 z2 :(8.l.1,127.2*t.4*) z2 :(8.69±.09,126. 0*.3*) z2 : (9.42t.08,125.9'i.5*)

z3 : (9.32t.08,126.0**1.* )

-.0381 z2 :(8.5t.l,127.7*±.5*) z 2 :(9.07±.06,124.e* .2*) z2 :(9.7 i .1,124.9*t.5*

-.0238 z2 :(9. 21.1,130.4q.7) z2 : (9.70t.06,130.5*.4) z2 : (10.2 .1,131.7.9)

.111 .178.144

tan .

Experimental Conditions:

- 3.03 rad/sec

=2.04 x 10-5

= 12.75 L.04 cm

.725 (slit width =

z3 :

.079)
.620 (slit width - .109)

.256 (slit width = .079)

( r, 0 ) = (radial position (cm), azimuthal angle (degrees))

TABLE 2. . Position of Vortex in Western Boundary Layer for Different
Values of Bottom Slope, Rossby Number, and Vertical Position.



-47--

grew as the stress grew until topographic Rossby waves appeared

(see Plate 2 b,c).

The topographic wave mechanism may be understood by consider-

ing the tendency of a fluid column to preserve its absolute

angular momentum (potential vorticity) as it leaves the western

boundary layer. When 6 is negative (to correspond to the experi-

ments), a fluid column leaves the viscously dominated inner re-

gion of the western boundary layer next to the side wall with

positive relative vorticity. As the column is advected south-

ward through the transition region, the motion across the depth

contours causes a stretching of the fluid column and a positive

increase in its vorticity. If the vorticity gain is larger than

loss by lateral diffusion and Ekman layer suction, the column

acquires cyclonic curvature and the streamline curves back toward

the shallow end. The column is now compressed and gains nega-

tive relative vorticity until its path becomes anticyclonic and

curves again toward the deep end. Net vorticity loss keeps the

column from returning to its original depth contour.

The gross structure of these topographic waves can be ob-

tained from a simple two-dimensional model where the rate of

relative -vorticity change is balanced by the stretching or shrink-

ing of the fluid column. The potential vorticity equation yields

for an east-west plane wave solution the familiar dispersion rela-

tionship

d~~~- QXAAtI

The wave fronts travel westward with a phase speed 0p --
while the energy propagates eastward with a group speed Cg -Cp.

Superimposing these dispersive waves on a uniform eastward

current U (along the depth contours) results in a stationary

streamline pattern provided the relative wave speed vanishes,

i.e., U + Cp = 0. This selects a single wave number which

chooses. the wave length of the stationary topographic wave

While the observed flow was far more complex, the model

appeared to approximate the flow best in the transition region

near the boundary layer vortex where variation in the y-direc-tion
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appeared to be a minimum. The distance along the depth contour

through the boundary layer vortex between the two successive
"'6 

A
points where (A 0 was identified as the observed half wave-

length. With i' estimated to be 6C "zL./E64 d., the predicted

half wavelength becomes

7 WL P4 (2-4)

The half. wavelength was measured at several depths for the three

sloping bottoms; the results are compared with (1A) in Table 3

and in Fig. 13. While the model is clearly inadequate, the \I

dependency was observed as was a general increase in half wave-'

length with decrease in bottom slope.

4.4 Onset of Instability

As the applied stress was increased, a criti-

cal value of 4 was reached for which the steady flow was unsta-

ble. The velocity field was characterized by a small oscillation

of the western boundary layer vortex and the periodic formation

and decay of a second vortex or eddy in the transition region.

A sequence of 4 photographs in Plate 3 shows this formation and

the subsequent movement 'and decay of the second eddy over approxi-

mately one period for the ~-10* sloping bottom. Measurements

made at two depths (z =.~2-5'.7-6 )indicated that the curve

swept out by the center .of this second vortex was independent

of z. Both the western boundary layer vortex and .the second vor-

tex were two-dimensional.

Bryan(1963) showed in his 3 -plane analysis of the wind-
driven ocean circulation that Reynolds numbers based on the

western boundary layer current and interior flow are equivalent

since the western boundary layer and interior horizontal trans-

ports are equal by continuity. The equivalent interior Reynolds

number for the sliced cylinder model is
I~
= c. L

.Two sets of stability tests were made to determine the dependence

of ReC, the critical value at initial onset of instability, on

the bottom slope and Ekman number. In the first set the Rossby
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.111 .144 .178

tanc|

Experimental Conditions

.. = 3.03 rad/sec
E = 2 04 x 10-5

L. = 12.75±t.04 cm

zy = .725 (slit width = .079)

z = .620 (slit width = .109)

.z = .256 (slit width = .079)

( ) =theoretical value computed from (L4-)

TABLE 3 . Comparison of Observed Topographic Half
Wavelength, with Theory for Different Values
of Bottom Slope, Rossby Number, and Vertical
Position.

-. 0637

-. 0596

-. 0475

-. 0381

z2 :3.07±-.05 z2 :2.79±.03 z :2.41+.1
(4.32) 2 (3.34) 2 (2.71)

z :2.314.05
(2.61)-

z2 :2.92+.03 z 2 :2.77+.05 z 2:2.36t.08
(4.18) (3.23) (2.61)

z 3:2.34±-.05
(2.61)

z I:2.llt..05
(2.33)

z2 :2.7*.1 z 2 :2.49-.05 z :2.21.08
(3.73) (2.88) (2.33)

. 3:2.14±.03
(2.33)

z 2 :2.36-1.08 z2 :2.3f.1 z2 :1.93.08
(3.33)~ (2.81) (2.09)



-0.04 -0-05 -0-06

Rossby number

a) ?/2 versus e-

FIGURE 13.Topographic half wavelength as a function
of Rossby number and bottom slope.
0=3-03 rad/sec.,E= 2-05 x10-5 ,( z=0-62).

slope=0-5

00

ixO60 o A

oc~10O

-0-07



0-10

b) -A/2

FIGURE

0.12

versus

0.14 0-16 0.18

tano6

tan c

( con't ).

slope=- 1-0
-O-064 0
-0-060 o
-0-048 Q

A 
0

-0-039 A A

A

13



(a) t = 0

(b) t 6.43 days
(13.33 sec)

PLATE 3: Horizontal velocity structure for
unstable mode in northern half of basin
for /14OO sloping bottom. Experimental
conditions: tan o4 = .178, CL = 3.03 rad/
sec, E = 2.04 x 10-5, (z = 0.62), exposure
time = 3.25 sec. Approximate formation
period of second vortex is 23.5 days.



(c) t = 12.86 days (26.67 sec)

(d) t = 19.29 days (40.00 sec)

PLATE 3 (continued)



-54-

number and .f. were varied for the ,100* sloping bottom. The

results are shown in a stability diagram of Re versus E (Fig. 14)

and indicate that

C. 1 K Al 3 'T+7.17 X tog

The dependence of ReC on tan o. was determined in the neighbor-

hood of E , '2.x 10-5 on the second set' of experiments. These

results presented in Fig. 15 show that

.~~2 1ae(E=.4 X 10~S ) -e 14-0S
-foAA o

The critical parameter determining the onset of instability

over the ranges of 6 )klo*OL, E studied then appears to be

l6I/EY. with the stability curve being

0.LVLA ,= I~ CS,/ F_"2- '--1.3 ± I - IY

Measurements of the unstable mode period T, 'i.e., the time

interval between sucessive formations of a second vortex, indi-

cate that T was also independent of tan cx. . The results shown

in Fig. 16 fit the approximate equation

Periods of the natural topographic Rossby modes for the sliced

cylinder container found by Pedlosky and Greenspan (1967)

r4-od
are similar in magnitude to the observed values but should be

approximately independent of viscous effects and thus independent

of E. This suggests that the instability mechanism may be associa-

ted with either the EI or E3layers and not with a breakdown in

the steady topographic wave mechanism.

Several ideas lendfurther plausibility to this hypothesis.

Since rotation constrains the.flow outside the viscous boundary

layers to be quasi-two-dimensional, a disturbance caused by a fluid

instability in a viscous boundary layer will probably be carried

into the interior as a two-dimensional disturbance regardless of

the initial position of the instability, if it is a low frequency

mechanism. Therefore, even though the horizontal velocity structure
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in the unstable mode is observed to be independent of z in the

boundary layer transition region and interior, the origin of the

instability is still undetermined. Second, the observed instabil-'

ityappears to depend primarily on the parameter II/rV and not on

tan C . The interior flow is clearly dependent. on the bottom

slope, but the flux into the top gkman layer and down the normal

E layer is to lowest order independent of I44. The Reynolds

number based on this flux is

ML -gp2/

i.e., the observed critical parameter. Since the Ekman layer in-

stability discussed by Lilly(19%4) occurs at values of Re ' 50

and is of relative high frequency (typical periods are less than

one day), and the velocity field is apparently only disturbed

in the northern half of the basin, it seems that the observed

instability originates in either the E x E/ corner region or

the E3boundary layer along the western boudnary.

In conclusion, the experiments carried out suggest that the'

linear analysis presented in Section 2 is valid when 6 is small

enough that the inertial effects do not significantly

affect the boundary layer vorticity balance. As 6 is increased

past E"i, the western boundary layer assumes an inner viscous,

outer inertial boundary layer character, while the interior north-

south flow continues to be given quite accurately by the Sverdrup

balance. The western boundary layer first shows downstream in--

tensification and then develops stationary topographic waves.

Finally, as the critical value.of Re or tan ot -Reinterior is

reached, a low frequency fluid instabilit is observed,.probably

attributable to a breakdown of the EIX E7 corner region or the

E boundary layer structure.

. Comparison with Previous (-Plane Models

Pedlosky and Greenspan (1967) have pointed out

the striking similarity of the theoretical linearized flow in the

sliced cylinder model to early P -plane solutions for the wind-

driven ocean circulation problem. In particular are the linear

solutions of Munk (1950) and Munk and Carrier (1950) who found



that the interior Sverdrup transport was closed by a strong

viscous western boundary current of width /3& . Matching

their solutions to observed values of Gulf Stream transport and

width required such small values for the eddy viscousity para-

meter -v4 that the more recent studies have tended to concen-

trate on the non-linear dynamics that affect the western boundary

layer vorticity balance. The purely linear theories maintain

a balance in the western boundary layer between the negative

vorticity induced by the 9-effect (or by vortex shrinking by

the bottom slope) and a horizontal viscous diffusion of positive

vorticity across the lateral boundary. In the purely inviscid

boundary layer theories, diffusion of vorticity is not present

so the fluid column itself must acquire negative vorticity as it

is carried northward in the western boundary current. This is

shown in the approximate vorticity balance 1A.(& ± f (r7 0O

where existence of an inertial western boundary layer requires

the inertial term 'I&'t_ to be negative to balance the positive

()r term. Since the boundary current Lr increases toward the

lateral boundary , J(7'0 and VDZO , indicating the interior

normal flux must be into the western boundary layer. This exis-

tence condition was illustrated in the inertial ( -plane studies

of Fofonoff (1954), Morgan (1956), Charney (1955), and Carrier and

Robinson (1962) before a formal, more general derivation was given

by Greenspan (1962). This criterion applies to the sliced cylin-

der model, and indeed, accounts for the marked north-south

asymmetry of the western boundary layer in the non-linear flow

regime. As 6 was increased and the inertial terms became more

important in the boundary layer vorticity balance, the interior

fed the boundary layer over a larger and larger arc until the

closed vortex formed in the northwest quadrant.

While the inertial boundary layer theories looked realis-

tic in the southern formation region of the western boundary

- layer, they could not be used realistically in the northern

- region.to close the boundary layer flux to the interior. Ilyin

and Kamenkovich (1963) and Moore (1963) suggested that this circu-

lation may be closed in the northern half of the basin by imposing



damped, stationary Rossby waves on the eastward zonal outflux

from the boundary layer. The more exact numerical studies by

Bryan (1963) and Holland(1966) illustrate this mechanism.

In the sliced cylinder experiments, the horizontal circula-

tion is closed by an analogous stationary topographic wave.

The observation that the flow is steady suggests that these vor-

ticity waves exert a stabilizing influence on- the western boundary

layer, for they allow a larger flux of vorticity to leave the

boundary layer region via the wave mechanism than can be simply

convected.

The observed sliced cylinder flow may be further compared

with Bryan's (1963) numerical model of the western boundary

current. He solved numerically the initial value problem for a

homogeneous two-dimensional ocean in a rectangular basin with a

Navier-Stokes dissipative term. At time zero, a steady wind stress

is applied to an initially at rest ocean and the governing

vertical vorticity equation integrated in time until a steady

circulation pattern is reached. In the laboratory experiments,

the driving stress was applied after initial-spin up had occurred

and the fluid had dome to rest in the rotating coordinate system.

Since the lowest order horizontal flows in both models obey the

same approximate vertical vorticity equation (derived in Appendix

E), Bryan's results may be compared for equivalert parameter

values. The flow instability found by Bryan at Re'= 100 is

qualitatively similar in description to the instability observed

in the.sliced cylinder experiments. A secondary vortex is per-

iodically . -formed at a low frequency in the western boundary layer

transition region where it is then swept downstream and decays.

The general agreement shown in Fig. 14 may be fortuitous, though,
since we pekL6 e source of the instability observed in the

sliced cylinder model is the three-dimensional rE X.Cer or Es
layer flow.
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APPENDIX A

Numerical Evaluation of Theoretical

Interior Pressure Field

The theoretical interior pressure field (17 ) was evaluated
by the following method on the IBM 7094 digital computer at the

M.I.T. Computation Center. A FORTRAN II-coded function sub-

program called NYU BES61 (SDA #3177) was simplified to compute

the function

im(X) = ex rm(x ) (Al)

for x real and positive non-zero, and m a positive integer. The

computing scheme utilized a recurrence technique when x4 10 and

the asymptotic phase amplitude method when x110, giving an aver-

age accuracy of 6 to 7 significant figures.

Substitution of this function into the interior pressure

equation gave the following series to be evaluated:

AI LO ~W) Lo(N (r tj 4- rL() I 0

The convergence criteria used to pick the terminal value of m

utilizes the monotonic decay of l(x) as m-> oo . Since the

-maximum number of terms in the series is needed in the western

half of the circle (x<Q) where the exponential factor in equation

A-2 becomes large, the series was summed at the westernmost point

(r = 1, 6= Tr )' until the criteria

+ 2 (-) '(F) ( E (A3)

based on the imposed condition that 0 on the boundary was.

satisfied. Since L, (Y)decays monotonically with increasing m,

the remaining terms are not significant if E is suitably chosen.

The series was then summed to M = m. on a 9 x 9 semicircular

grid. If the computed values of /a? on the rest of the western

boundary points exceeded 10-3, the series was resummed to include

n. additional terms. Table A 1 lists the values of r , M,mnt,
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used and the maximum deviation from 0 observed on the boundary.

maximum deviation
Mr m* n* from 0

on boundary

10-63

4

5

7

12

17

105 5

10 6

10-6

10-.3

7 x 10~4

7 x 10~4

< 10~4

TABLE A 1.
Parameter Values and Deviation of Boundary

Values for the Numerical Evaluation of the Interior

Linear Inviscid Pressure Function(J7)

1.0

2.0

3.0

5.0
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APPENDIX B

Calculation of Azimuthal Velocity Profile

The azimuthal velocity profiles were obtained from flow

photographs (similar to Plate 1) by the following method. A

sequence of at least 8 dye pulses was photographed in each wes-

tern boundary layer velocity experiment. An 8x enlargement was

made of each 35mm negative by an Itek reader-printer and the copy

digitized with a Wayne-George X-Y Coordinate digital converter.

The copy was oriented approximately on the digitizer bed as indi-

cated in the figure below. The electrode was stretched along a

diameter of the cylinder, so the line segment P1P2 was used to

locate the cylinder axis P3. After measuring the coordinate

values of P1 and P2, the tracer was advanced from PI along the

leading edge of the two dye pulses (C. and C2) measuring the y

coordinate value for every !x = 0.1" incremental advance. The

card output was checked for punching errors before processing on

the IBM 360 digital computer at the M.I.T. Computation Center.

Y

~-.1
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The program computed P3 from the direction and known magni-

tude of PIP 2. Then the x, y coordinates of points on both curves

were transformed, using algebra, into the polar coordinates

A and f . A linear interpolation scheme was used to determine

values f9 (n) and . - f, (b) for both curves at a number of radial-

positions. The average integrated velocity was then calculated

at the radial positions (/iA) from the equation

This equation will give an unbiassed estimate of the true azi-

muthal velocity provided (a) the ratio of radial to tangential

velocities is negligible and (b) P is constant over the small

arc measured. Since O( '^A/ E C'/ s.v0and </ was approx-

imately stationary near e 7t ,(B-1) provides a good estimate

of the instantaneous azimuthal velocity evaluated at the average

azimuthal position. This estimate was of course more biassed

where r- was changing rapidly with 0 . A better comparison

with the observed values could be made by using the theoretical

velocity field to compute the left hand side of (B-l)..
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APPENDIX C

Experimental Apparatus

C-1. Fluid Container
The fluid container consists of a hollow Plexiglass

cylinder rebored to an inner radius of 12.700±.005 cm and capped

on both ends with circular Plexiglass plates. A false top and

bottom inserted inside the cylinder form the "sliced cylinder"

geometry. However, to simplify the design, the usual geometry

has been inverted with the top sloping and horizontal bottom plate

driven relative to the rest of the basin.

Three sloping bottoms were machined from 0.92 cm thick.

Plexiglass plate stock using a sloping bed rotary milling table.

This procedure gave the correct geometrical shape without marking

either top or bottom surface. The upper surface was flat to with-

in ± .003 cm variation over its area and was left untouched to
ensure maximum transparency. The sloping bottoms bolt to a

stainless steel knob set in a 0-ring bearing in the top plate

aligned along the cylinder's axis. This design allowed the ori-

entation of the sloping bottom relative to the fixed cylinder

and electrode grid to be changed easily. The average separation

between the cylinder wall and sloping bottom is 0.025 cm, approxi-

mately 45% of the Ekman layer thickness LE/.

C-2. Disk and Drive.

The driving top is a 0.61 cm thick glass plate ground

to a radius of 12.675 .cm. The plate is optically flat and its

surfaces parallel. The average wall clearance is again 0.025 cm.

Originally a stock unground Plexiglass plate was used but its

small 0.025 cm surface variations were found to cause a noticeable

flow disturbance.

Three'miniature stainless steel ball bearings support the

glass disk and thus determine its plane of rotation. The height

of each bearing was adjusted to set the plane perpendicular to

the table rotation axis.

A three legged stainless steel yoke is mounted approximately
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on center on the lower surface of the glass disk. The disk is

driven via a simple universal joint, consisting of a slotted

receptacle in the yoke and a pinned shaft. This keeps the disk's

plane of rotation constant despite small shaft misalignment and

runout. An oilite bronze bearing with rubber water seal mounted

on center in the cylinder's bottom plate centers and supports

the vertical stainless steel shaft. It is turned on by a 150-

oz.-in. Hurst synchronous motor through a precision P.I.C. com-

ponent worm and spur gear train mounted on the turntable. Elec-

trical power is supplied through an impedence match by an audio

oscillator and amplifier system (hp 200 CD oscillator, Dynaco

Mark IV amplifier). The relative angular velocity of the glass

disk could be varied by a change in either the gear.reduction

ratio or the oscillator frequency. The overall drive train was

designed to mimimize backlash and the disk's rotational stabil-

ity over 1 period is estimated at &Si 2 x 10-5.

C-3. Turntable and Drive

The fluid container is mounted on three supporting blocks

above the turntable surface, allowing the cylinder axis and table

rotation axis to be aligned to within±.005 cm in the radial direc-

tion and within ±40 seconds of arc in the vertical direction.

The turntable itself consisted of a 30" diameter steel

disk mounted on a 5" outside diameter hollow steel shaft. Its

principal momentum of inertia is 37 x 102 slug inch2 . The bearing

system utilizes an angular thrust bearing to- support the table

weight and a lighter radial bearing mounted about 12 inches

below the other to center the table. The bearing seats bolt to

a massive turntable base which rests on combination wood-foam

rubber damping pads on the laboratory floor.

The turntable is driven by a 4 hp Louis Allis synchronous

3-phase motor through a Graham variable speed transmission and

direct drive coupling. The vertical output shaft from the trans-

mission turns the lower of two universal joints mounted back to

back on a splined shaft, the upper universal attaching to the

turntable shaft. This design allows an angular distortion-free

rotation of transmission and table while isolating the table from

motor and transmiss ion noise.

The Graham unit (model N29W25) was factor fitted with matched
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parts to improve its rotational stability. Its rated peak to

peak variability is 2-Z2 x 10. The table's angular velocity
is determined by measuring an individual rotation period with

an electronic timer. A small collinated d.c. light source mounted

on the table triggers a light-activated silicon-controlled recti-

fier in a variable pulse width "single shot" delay circuit,

sending a large amplitude square wave pulse to a Beckman timer,

model 5230. At the light level used, the circuit turn-on time

isv1O usec which ensures an overall measurement accuracy of

L 1 x 10-5. The measured turntable stability is 5 -- 2 x 10~.

Additional information on the turntable design and construction

is contained in a laboratory report (Beardsley, 1967).

C-4. Support Equipment

Flow observations were obtained using sequence or lapsed

time photography. A 22 watt flourescent circle lamp with para-

bolic reflector is mounted on the turntable beneath the fluid

container to provide back lighting. The camera, a.Nikon 35mm

with f/1.9 lens and motorized back, is attached to a rectangular

frame built with channel pipe around the fluid container and

bolted to the table. A battery power pack drives the camera

mechanism through a set of microswitches activated by a Cramer

timer (model 540). The fractional variability of the switching
-3

pulses is-1 x 10 . Both battery pack and timer are mounted on

the table.

The fluid temperature is measured with a copper-constantin

thermocouple attached to the side wall in the fluid container.

The reference junction and icebath are also mounted on the table

to reduce stray emf pick-up across the copper slip rings. These

have also been electrically and thermally shielded. The accur-

acies of the temperature and viscousity measurements aret.020 C

(tul V) and±0.006 centistokes respectively. A schematic of the

support equipment is shown in Fig. C 1.
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APPENDIX D

Tabulation of Results for the Stability Study

Run #
7-2
7-3
8-1
8-2
9-1
9-2

10-1
10-2
11-1
11-2
12-1

12-2

19-1
19-2
22-2

26-1
26-2
27-1
27-2
29-2
30-1

31-2
31'-1

33-2
33'-1
35-2
36-1
36'-2
37-1
38-1
38-2
39-1

State _T_
US 25.6:3.2

E
2.110

2.105
2.100

2.097
2.092
2.087
2.085
2.080
2.083
2.080
2.076
2.072
1.956
1.956
1.949
2.048

2.045

2.087

2.085
2.063
6.220
6.188
6.167
6.082
6.135
6.104

6.099
6.214

6.189
3.777
3.772
3. 767

Re

80.28
93.82

53.64
64.41

75.23
86.09
43.07

29.81
74.47
86.93
74.60

87.02

79.90
80.57

73.78
78.73
80.15

75.33
76.59
79.83

114.07

91.60
110.68
102.17
110.55
105.58
107.74
108.60
107.68
84.99

87.84
89.35

6
-. 0650
-. 0759
-. 0433
-. 0520

-. 0607
-. 0694

-. 0347

-. 0240

-. 0599
-. 0699
-. 0599
-. 0699

-. 0623
-. 0628

-. 0574

-. 0628
-. 0639
- .0607

-. 0617
-. 0639
-. 1586
-. 1271
-. 1533

-. 1405

-. 1527
-. 1454

-. 1484

-. 1510
-. 1494

-. 0924

-. 0954

-. 0970

tanom

.178t. 003

.178±.003

.178±.003

.178i.003
.1781.003
.178±.003

178±.003
.178±.003
.178±.003
.178it.003

.178t.003

.178±.003

.178±.003
.1781.003

.178±.003

.178±.003

.178±.003

.1781:.003

.178+.003
.178±.003
.178+.003
.178±.003
.178 ±.003
.178t.003
.178t. 003
.178-+.003
.178L.003
.178-t.003

.178±.003

.178±.003

.1781.003

.178t.003

Us'
S

S

S

US

S

S

S

US

S

Us
US

US

S

US

US

S

S

US

Us
S

US

S

US

S

US

US

US

S

S

S

25.6±3.2

22.8±1.1

23.411.3

22.4t0.7

24.5±1.4

25.21.6

24.510.7
25.2±1.1

26.OtO.7

12.2t1.6

12.2tl.6

12.2*1.6
12.2±2.6

12.9-2.6
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Run #
39-2
40-1
40-2
41-1

41-2

42-1

42-2

42-3

43-1

43-2
44-1

44-2

45-1

45-2

46-1

46-2

47-1

47-2

48-1
48-2

49-1

49-2

50-1

50-2
51-1

51-2
52-1
52-2
53-1
53-2
54-1

54-2

E

3.717
3.704
3.694
3.696
3.695

3.870
3.868
3.865
1.275
1.274
1.282
1.281
1.256
1.256
1.255
1.259
1.253
1.252

2.127
2.129
2.160
2.160
2.150
2.149
2.131
2.129
2.118
2.124
2.134

2.133
2.147

2.148

Re

89.64
94.38
98.25
97.19
97.89
92.16

94.16

96.12
63.10

64.07

73.28
68.80

76.23
74.85
74.03

72.93
72 00
71.00

79.50
87.51

105.12
100.47

103.08
97.52
98.52
99.56

134.28
126.64

131-73
130.27
121 54

133.92

E

-. 0967
-. 1016
-. 1056

-. 1045

-. 1053
-. 1014

-. 1036
-. 1057

-. 0399
-. 0405
-. 0464

-. 0436

-. 0478
-. 0469

-. 0464

-. 0457
-. 0451

-. 0449

-. 0527
-. 0580
-. 0702
-.0671

-. 0687
-. 0650

-. 0654
-. 0660
-. 0686
-. 0648

-. 0675
-. 0667

-. 0625
-. 0689

tan cc

178 .003
.178"t.003

.178±.003

.178±.003

.178-±.003
.178±.003
.178 t.003

.178V.003

.178 .003

.178t.003

.178t.003

.178±.003
.178t.003

.178±.003

.178 ±.003

.178±.003

.178:t.003

.178t 003

.144:.003

.144± .003

.144t.003

.144.003

.144 .003

.144±.003

.144i .003

.144 !.003

.111t.003

.1111.003

.111±.003

.1111.003

.111±.003

.111 +.003

Sta te

S

US

Us

Us

US

US

US

Us

S

S

Us

S
Us

US

US

US

S

S

S

S

US

US

Us

S

S

S
US

S

US

S
S

US

T

16.2±2.0

16.2±1.0
16.2t0.7

16.210.5
16.2±2.0
16. 2 2.0

28.211.0

28.2*1.0
28.2i1.0

30.2± 1.0
30.5± 0.8

23. 1±0.9
24.5*0.9

23.8±1.2

21. 6t0 .9

23.8±1.2

22.5±1.5
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APPENDIX E

Derivation of an Equivalent Two-Dimensional

Problem for the Sliced-Cylinder

Geometry

We may easily derive an approximate two-dimensional vortic-
ity equation for the sliced cylinder model on the assumptions
that (a) the horizontal flow is independent of z inL the interior

and western boundary layer and (b) the vertical Ekman layer flux
on both top and bottom disks is correctly given by the compati-
bility condition (_3 ). The momentum and continuity equations,
scaled in the usual manner,

6flL Li fIG.Lc E )

simplify to

2k+ f46UMe 4- vt j -Zv -x+ E .

rt + 6(avy + vvi +2. = + ENv

1Ax + V wA =

The curl of the momentum components yields the vorticity equation

5j t 6 Yx + v5 + + E3)( v0) E. L

where 3S v-

By our assumptions, the integrated horizontal divergence is

Since h 1 -tano and
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~JUO~c~V

~y~j'~-~~ F"' p2

() f O1 2 1 " L)

2

the local horizontal divergence is

\k + V 4fAo V + E 5- ~

The vertical vorticity balance is then

4- + 5x) +v5 -(Z 2+ 63 4hv- E2-Z ==E /& (E-1
Introduction of a vertically integrated vorticity function -T

and some computation further simplifies (t-i !) to
D? CCL e

4I- + ?i( ± v 2(h laoLr ++ )

The secondary vertical circulation driven by the upper Ekman

layer (term e in E-'2.:) is the vorticity source and as the only

forcing term in (E-2.-) corresponds to the "surface stress" or
"equivalent body force" used in the theoretical wind-driven

ocean circulation modelistudies. The interior balance C = e-

determines the velocity and vorticity scales

Vf&:

F /2 'S

( LIIV

(C-- -)

so that A' , v , and 5' aredOMl) dimensionalless fields in the

interior region. Substitution of (E-^) and (E-4) into the

St + + V
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vorticity equation (E-2.) and ignoring the smaller terms (b,
d, f, h, and i) finally yield an approximate scaled vorticity

equation

This may be compared directly to the scaled vorticity equation

(2.3) used by Bryan (1963)

4- 641-

which was scaled according to the relations

-K

V. ~g r
2LJ~

The equivalent Rossby and Ekman numbers for Bryan's results

are then determined from the relations

F6I/
Sc S

6- 6II&

where Re corresponds to the interior Reynolds number

6C / tano(. E/2-. The equivalent parameter values used in Bryan's

study are tabulated below.

plane Study
. Re

3.2 x 10~4
3.2 x 10~4

1.28 x 10-3

1.28 x 10-3

1.28 x 10-3

1.28 x 10-3

100

60

60

40

20

Sliced Cylinder Parameters

Flow State

unstable 3 2 xc 0-6

stable 5.43 x 10-6

stable 2.14 x 105
stable 3.20 x 10-5

stable 6.40 x 10-5

5 stable 2.56 x 10~4

Re

10

60

60

40

20

L (xJj
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