A THEORETICAT, AND EXPERIMENTAL STUDY OF THE SLOW

VISCOUSLY DRIVEN MOTION OF A BAROTROPIC FLUID IN A
RAPIDLY ROTATING CYLINDER WITH SLOPING BOTTOM

by
ROBERT CRUCE BEARDSLEY

B.S., Massachusetts Institute of
Technology

Submitted in partial fulfillment
of the rcqu1reu ents for the
degree of doctor of
science
at the

Massachusetts Institute of Technology

January, 1968

Signature Of Auth()‘r ...... o s 0 0’F e 00 o0 ® o & o
Department of Geolo y and
N Geoyhy51cs, {fnuary 8, 1968
Certificed by.veeeatmiigoeciennnaad:

N
¢ 8 0 8 038 00 ¢ 0

./ INesis Supervxsor

Accepted by.... .. .
Cha11man, Departmental
Committee on Graduate
Students

Lindgren




— Room 14-0551
- —~ 77 Massachusetts Avenue

. . Cambridge, MA 02139
MlTl_|brar|eS Ph: 617.253.5668 Fax: 617.253.1690
Document Services Email: docs@mit.edu

http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Due to the poor quality of the original document, there is
some spotting or background shading in this document.

Two pages numbered 73 no page numbered 77.



ii
A Theoretical and Experimental Study of the Slow
Viscously Driven Motion of a Barotropic Fluid in a

__Rapidly Rotating Cylinder with Sloping Bottom

by
Robert C. Beardsley

Submitted to the Department of Geology and Geophysics
. on January 8, 1968
in partial fulfillment of the requirement
for the degree of doctor of science

A simple laboratory model for the wind-driven ocean circu-
lation is studied both theoretically and experimentally. A right
cylinder rotating about its vertical axis with angular velocity

II. holds a homogeneous fluid of viscomsity 1) between two planes,
formed by non-parallel end plates with an average separation L.

The fluid is driven by the steady rotation of the horizontal

1lid about the cylinder axis with angular velocity (1 + & L.

The sloping bottom intersects the cylinder at an ‘angle ol and is

" stationary relative to-the cylindrical side wall. A linear theory
i1s developed for the interior and side wall boundary layer struc-
rures for the case of bottom slope taned £from O to 0(l), where the
results of Pedlosky and Greenspan (1967) are extended to second order
in tan oL to close the vertical mass flux. Interior and boundary

- layer velocity measurements are presented fOI’CiA/6°, 8°, and
10° obtained over the range of Ekman number E = 1)/0J} from 1.05
x 107 -3 to 6.22 x 10 5, and Rossby number & from -.0015 to -.1591.
These agree well with theory when the parameter ‘5/Eh'1s of order
one or less. The western side wall boundary layer showed down-
stream 1nten51f1cat10n when ér/E‘lls increased and topographic
"Rossby'' waves appear in the transition region where the western
side wall layer terminates. The motion becomes unstable with the
-eritical value é/El‘ls reached independent of tane and a large
scale low frequency oscillation is observed. A brief comparison
is made with previous wind-driven ocean circulation model studies.

Thesis Supervisor: Raymond Hide
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1. Introduction

This paper considers the slow viscously-driven motion
of an imcompressible homogeneous fluid in a rapidly rotating
right cylinder with sloping bottom. The lower surface is formed
by a plane intersecting the cylinder at an angle &. The upper
surface is normal to the cylinder axis and rotates steadily with
an#ngular velocity (1 + € )fl , while the rest of the fluid con-
tainer rotates with {1l (see Flg. 1). :

This model was recently presented by Pedlosky and Green-
span (1967) to demonstrate how the general theory of Greenspan
(1965) for nearly rigid rotating flows must be modified for a
fluid container like the sliced cylinder which possesses no
closed geostrophic contours. An additional feature of this model
is the similarity of its solution to the large scale ocean cir-
culation. The physical analogy between vortex stretching by
motion across the bottom contours and the creation of relative
"vorticity by the northward increase in horizontal Coriolis
acceleration (the @,-effect) enables the sliced cylinder to re-
plicate several important features of the wind-driven ocean cir-
culation problem. The analysis of Pedlosky and Greenspan showed
that the symmetric character of the flow obtained when &= 0
"is completely changed by the bottom slope when o is small but
greater than E?, where E is the Ekman number v/ Nz a
finite bottom slope constrains the interior flow to a slow
O(E%) drift across the depth contours which is closed by a strong
O(Eyz) viscous non-axially symmetric boundary layer along the
western side wall. '

The purpose of this paper is to re-examine the sliced cylin-
der model both theoretically and experimentally. A linear theory
is developed in Section 2 for the interior and vertical boundary
layer structure for the intermediate cases from tan & = 0 to
0(1), where the results of Pedlosky and Greenspan are extended
to close the vertical circulation. Section 3 contains a descrip-
tion of the experimental apparatus and techniques . The results
of velocity measurements are presented in Section 4 for & 6°,



FIGURE 1. Schematic diagram of basin
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8°, and 10°, obtained over the range of Ekman number from [.0SxI075 to
612x 165 and Rossby number ¢ from~-00l§ to —.1S9, A brief compari-
son between the sliced cylinder model and recent wind-driven
ocean circulation model-studies willube :ptesehted in:the finalc:-
sectidnin the final sestion,

2, Theoretical Development ’ .

The mathematical analysis of the steady motion in the
sliced cylinder configuration shown in Fig. 1 is formulated
following the approach outlined by Greenspan (1965). The govern-
ing equations are the linearized momentum and continuity equations
for an incompressibie fluid of constant density p and viscowsity
2 ,written in a coordinate system rotating with the cylinder
at an angular velocity.(l s \

2@xa=_vp+ Egtu (1)
V- =0
. and scaled with respect to the container's mean depth L and the

1id's relative angular velocity efl. . The unprimed non-dimen-
sional field variables are '

Rialn , &'= eAL @, p'=pe(ad*b ,t=ent’,E=v/ar>

The scaled boundary conditions on the velocity field are then

top: U‘(n,e,l)f-/i,u:o,w—:.o (20)
side: U({a,8,2)=0 (2b)
bottom: it (nr, e, ifma,cs) = O _ (2e)

Since our primary interest lies in the dependence of the
interior flow and viscous side wall boundary layer structure on
the value of & , we will not solve explicitly for the flow in
either top or bottom Ekman layers but will use instead a general
implicit solution for the Ekman layer suction. Greenspan and
Howard (1963) and Greenspan (1965) have previously shown that the
effect of an Ekman layer developed on a smooth boundary on the
interior flow can be expressed in a compatibility condition on
. the interior variables '
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A, . . ..
"where W is the outward unit normal to the container surface and
-

W¥ is the relative velocity of that surface. On the upper

surface of the sliced cylinder, % ="k and W= h.9 so (2a)becomes
w = *EZ’_'{ QoVX-lz-—ZS at z2=1 (4)
2

while on the sloping bottom, the outward normal is ﬁ = sind.?
- cosd12 , causing (2¢) to become

W=ttt Ju + E% { le.-Txu 4+ o(few‘ob)z] (8

The tan gl term represénts the imposed vertical velocity of a
fluid element moving parallel to the bottom incline. Ignoring
the O(Ezhuﬂz) terms for small o , the vertical velocity above
the bottom Ekman layer consists of an "orographic' component plus
the Ekman layer flux. We shall see that as o/ increases from O,
- the constraintimposed by the increasing orographic component
'essentlally determines the character of the complete flow.
Case 1: tangl = O.

While the solution in this case is well known, it is instruc-

tive to reconsider it briefly. Zero slope makes the container
symmetric in shape so an axi-symmetric response is expected. A
vertical axi-symmetric stream function ?ﬁ can then be introduced,
the velocity field being

-2 n IAY

e —ox {A(n2)8 + v(n,2) 8%
The é;-components of the momentum and vorticity balances form a
-coupled set of partial differential equatlons for 'Xr and VvV,

2%; - EDU =0 (60.) |
720z + EDD%——O , ' (6b)

where D is the cylindrical differential operator

'Dq} ¢71h. 4) 4) +- q)ZZ.

The boundary conditions on 1L»and v~ are set by no-slip at the
side wall and the Ekman layer fluxes. The first is given by
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u.(a.)%)= IM'% =
W(.o-l%):' "Zik‘%z 6]

The Verpical flux into the upper Ekman layer is given by the

compatability condition (3)
wlnt) = -—- (n%), = (/‘L(/)_-—U'))

This expression may be dlrectly 1ntegrated to give the total
flux per radian into the top layer

fw(n' Natdn = — aX (A1) = /lg"(/zdr)
The resultlng condition on 1515 then :

L) = - ER(r-v)

where the explicit N in the right hand side represents the for-
cing transmitted by the upper Ekman layer. X (Nn, 0) just above
. the lower Ekman layer is found in the same manner to be
l

Un,0)= E5¥
Since v1scoﬁ;f§i;e§ses in the interior are small, O(E), the inter-
ior dynamics are geostrophic with a balance berween Coriolis
acceleration and the horizontal pressure gradient. The steady
flow by () is independent of z as a consequence of geostrophy
in a barotropic fluid (known as the Proudman-Taylor theorem) so
the top Ekman layer suction must be supplied by an outflux from
the lower Ekman layer. Matching fluxes requires

2n, D) =4 (r,0)
w(n)= n/y
The interior motion is the well-known solid body rotation with
an angular velocity equal to the arithmetic mean of the rotation
rates of the top and bottom plates. ‘
 The side wall flow can be found by boundary layer methods.
The interior flow near the side wall is an 0(1l) tangential flow.

N
The only term in the O -momentum equation capable of balancing
the viscous force necessary to bring V to zero at the side wall
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is the Coriolis component 2 u. The existence of closed stream-
lines implies 0(u)r0 (Y )~E? near the side wall. Then O(thnh)uE%
for a dynamic balance. Since 0(U’)~1, 0(;& )A'E'%, indicating
that a boundary layer with scale thickness E™ is required to satis=-
. fy the non-slip condition on the 0(1) azimuthal flow.

The coupled set (6 ) may also be reduced to the sixth order
partial differential equation,

{E"'DDD +.4?J;5_}6[ﬁ] o (7)

A balance here requires O(E2 33‘ Y~ 1, indicating that a second
boundary layer of thickness E3may also be needed .to match the
lateral boundary conditions. ~

' Having determined the possible side wall boundary layer
thicknesses, we now seek consistent perturbation expansions for?é
and VU valid outsid? the Ekma? layers. The ratio of boundary
layer thicknesses g3 JEV= E{z
. pafameter so we will assume expansions of the form

U= “2:_ EnAz‘rv\("‘)%)

A=z ERY (n,2)

w6
and seek solutions for the functions Vi, )1ﬁn .. The analysis is
simplified by introducing stretched coordinates in the vertical
. boundary layers ' ’

0-n= E®n=E"Y. - (8)

Substituting these expansions into the basic equations and equating

provideé an appropriate expansion

coefficients of like powers of Eyh'lead to a sequence of problems
for the unknown functions in each area. o

The interior solution is again Ue = A/2, '){)b = —n/t, a
geostrophic gyre with a parabolic préssure field, coupled with a
slow E2/2 uniform vertical flux from the lower into the upper
Ekman layer. The return of this flux to close the vertical circu-
lation must be made via the vertical boundary layers on the
side wall. |

%

The problem sequence in the E™ layer reduces to



\fbss-—'ZJsz =0 ‘ - (faad

Upe= O | (9b) ’
with the aséociated no-slip and flux conditions

Ve (0,2) = | ’

146(75 I) = o—'

%(0(530)— "%9

The Proudman-Taylor effect strongly influences the E% layer flow.
The horizontal motion remains two-dimensional, allowing the 8-

momentum equation (da) to be vertically integrated and “boevalu-
ated at z = 1,0. This yields the ordinary differential equation

U'o's's— Vs = —0- A o R
Its solution subject to no-iélp is
—VZSs
- = a(1-e )
' With the corresponding streamfunctlon
L, = -%(l—(l&-l)e-rs)
the vertical flux is
| S
LW = E/4 G_Zﬁ’-_(?,%—-l)e‘ﬂ
The horizontal shear is great enough in the E% layer to cause
both Ekman‘léyers to extract fluid from the E” layer.
The E]3 layer flow is’ both ageostrophic and three-dimension-
al. The lower order flow must be found by matching the already
[
determined E® layer solutions to the E/3 layer solutions yet to
-be determined. - Th1s is accompllshed formally by expanding the E
layer solutions 'in terms of the E’5 layer coordinate and then

‘matchlng coefficients with the E‘@ layer solutions for equal powers
of EA . This procedure identifies

U'o':‘-o
U‘,:.g'.-V"
The governlng equation for the next order flow is

(R4 5§ (5] - e

The boundaryqbonditlons are the lowest order Ekman flux conditions



’Xzb(m“): - %
Yo (q,0)= © . .

[
which are equ1va1ent to settmg w = E/('w2 = 0 since the Ekman flux

out of the E 'y layer is of O(E 'h ). The no-slip condition at
the side wall is "

e Leolo,2) - @_?: = 0 . '(“O,)

Luqyn = 0 - ito)
/Ié;}‘-o (lie)

where the second term in (lla) is the % layer radial flux. A

sine Séries solution for 'Zb can be found directly, giving the

complete streamfunction and azimuthal veloc1ty in the E/3 layer
to order O(E Ye ),

V\ | ‘/ -’(mﬂ
oy, ®) = E" +ECl-an T '3&(—\3'“rme-—z-mrvmmm}(:zoD

N
A
e *
A

m=i

=Eg%S-az T 0,-—1"“"'l & R T?X £T0) Do VTS
’lL(vl,%) ‘ { +an£. o —z"‘ (B ) (0)
“where 7&ﬁ= (Zm‘t't’)'-‘s R the magnitude of the eigenvalues of ((0).

These solutions for the lowest order flow in both layers
account for the basic viscous mechanism of bringing the 0(1)
azimuthal flow to rest and closing the veftical mass flux.

Large horizontal shear in the E® layer makes it a region of high
negative vertical vorticity with the consequence that both top
and bottom Ekman layers extract fluid. While the lower flux
feeds the inward radial flow in the bottom Ekman layer, the
upper E% layer flux adds to the outward flux of the upper Ekman
layer which must '"turn' the corner where the boundary velocity
discontinuity occurs and flow down the side wall.. A detailed
-analysis by Bisshop (1966) shows that this singular E% x EVL
corner region acts as the flux source for the Elhlayer which
then carries the flux down the wall and feeds it uniformally into
the E%*1ayer. Y

Case 2: tan AL E:

The interior dynamics remain geostrophic when the bottom
slope is increased from 0. Since the Proudman-Taylor theorem




-9-
holds to O(E) and a vertical fluid column retaims its form and
moves without stretching or contraction, the interior vertical
velocities (7) and (€ ) outside the two Ekman layers must again
match. A - '

L

Equating terms forms a steady vorticity equation,

(RN A
XU+ T J.w =1 : ()
E%2
which can be rewrltten, using the pressure field, as
sz‘:) + éox— 2 (14)

The boundary condltlon on the inviscid interior flow is no-normal
flux at A= a, so

)P(m 9):46" O -

(the choice of the constant of 1ntegrat10n C= 0 will be ex-
plained later). We now note that the parameter tanoL/Eh- will
determine the symmetry of the pressure field. For sufficiently
small slopes that tan¢l < E/"- the pressure field will be almost
parabolic, while for larger slopes a quite asymmetrical pressure
field should result. o

When tan X E 7‘ the interior pressure field can be found
using a regular perturbatlon expansion

P _77 ) F%n(}l o)
The problem sequence for the unknown functions T:k%(] becomes

m=0 Vipp=1 ipo(a.'e)_o
Mm% 0 th[’m;-bh\-u( JP"""»(aié):O

where bo is the parabolic field found in case 1 for o = 0.
The resulting perturbed pressure field is

= N'—ar {'Omd»(o.’* -
_ 5 + e, hé e + ...

with velocity components

| W = 4%‘* (a.‘—m)me ... (xS‘a.)
v= Ay * (0«1 3/:}),“:9 + (ls‘b)

Akthough u(a,® ) vanishes, the 1nter10r tangentlal flow just

outside the sxde wall boundary layer is clearly dependent on 3.



«-10-

We need to examine the side boundary layer flow to see if thlS
dependency changes the basic E%' E3boundary layer structure.

We shall assume that tand = A }?/4 where 0( A )~1, and
look at the Elayer structure dependence.on A .

The correction
velocity and pressure fields in the-E% layer can be expanded

"= ey, + ..
v U, + E%uU o+ .
Ekﬂm +

P'= E}A*bl +

where each variable is further decomposed

$o= Juo * Af,

The boundary layer thickness is also perturbed in Poincare's

me thod | 3 : .
Ya i

A = | + Ey4(,ku,*‘ ASXIA + -

Substituting these expansions into the ba31c equations and
" equating coeffieients of like powers of Ek yield the following
balances

A == P o (1t)
== ks Apis - -

"‘“QU';_: 38 + /\ +A
8. o0-= b J)LS ZP‘K

Tues ~L bro =+ Ubss
u _i -3 + U +2 Uoss — Ubs
3 = bgg \0’1.9 155 A, Uoss "a'C

(012 = lf’z.a— O

C.O'M‘m er 0

"U?,s -+ U'e + Wz=0

—Uzg — )\ms +* Uz + G0 + 8
o at
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The pertinent boundary conditions at the Ekman layers are

wl(g) 2= 2)" +%3
wy (3,4+4) = t(u:g+ ), Vos
2 2
and on the side wall,
V(0,6 2)+ Uoin =
Uilo ,8,2) + Ujin =

G o

Since from (I5b)

‘ X
_ o E“Aa}cme +
_Vtm“ 7 3
the side wall condition becomes
U'o(_o e'%): "'%':
Uy (C’ e ’b) LSOJ' e O
3

Solving the vertlcally 1ntegrated contlnu1ty equation to O(E%O in
terms of Uo yields a governing equation for V%

- U — —— 9 x
liZSS + Ubos % %@
Since both Usww and therefore its correction field”UB are
independent of © , and d. must be periodic in & E A, must be
a constant A*
The governing equation for the next order Ui is found in

. the same manner .to be

— ¥ (- '

L_’:‘_E}_E- 4+ Uis = ) {3\"03!.'5 ~Uoz3 —\fo'ss
A

The solution for U] will contaln secular terms of the form

¥ :
Ye o~ V23 unless 110 A.\/' and ’A =0, so
U'u: _é_Q\' Uﬂee“ﬁs Uio=0 -

' The radial thickness of the Eyhlayer is then to second order inde-
pendent of the small bottom slope. '

' The lowest order 6 -momentum balance is dependent on A ,
though, for

2 (WMo + ﬁuzn) = "'11 A’Pue* Ubss

For /\{ 1, the basic balance is ageostrophic between the Coriolis
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force and shearing stress, similar to case 1.  But for larger
slopes, A> 1, the basic balance becomes geostrophic, with

’luu = -1 ’(Jue + O(i)

Thus, the O(AE 9 pressure field in dynamic balance with the
O(ANED a.,ymmetrlc azimuthal flow drives a geostrophic radial
flow of 0( AE'II) and form.

Uy = & AmB e
‘T aw
This flow must be fed by either the interior or E ’ layer.

To determine the flux source, suppose that the total radial
velocity u- is decomposed into the interior and the two boundary

-Vz3

layer correction components,

. ~> ~o
U= N + Nirg + 'M.(/5

where by the no-normal flux boundary condition
A =N~

{ur = i"ﬁf a 210V 40 = Luwd> + Ly +LWig?=0

Since the interior is always geostrophlc and the E{31ayer is not,

{Um» =0 3 <Mlé>¥0

_ A 1
For A<1, the basic O -momentum balance in the E“layer is
ageostrophic so that the basic balance

occurs. But when A% 1, that balance in the E%‘Iayer becomes
geostrophic with the result that to lowest order, 4'\7‘47 = 0.
Since this implies 41/“/55 0 to O(AEy"') the O(AEVZ) radial
flow in the E'A layer cannot be supplied from the E'élayer but
must feed the geostrophic interior. This means that the
0( 53251—) interior asymmetric flow is modified by the E'qlayer
with- E anO( tan« ——=—) radial flow, while both the E%layer scale
thickness and tﬁ Evz layer flow and dynamics are not modified
to lowest order. |
Case 3: E%-( tan £ 4 E*

The previous perturbation scheme breaks down for larger

4

slopes. However, a general analytic solution for the pressure



field exists and may be found directh. After the particular

solution to (i4) is found with bp=2£;xi , the homogeneous

_problem can be reduced to a Helmholtz equation .
tome \2 S

V?_’L'F "‘_( ) -?:o .

1t

by the substitutior‘n‘Md{
. t’h: e 'Z.E'Iz gtﬁlg)

Adding homogeneous and particular solutions gives for the general

pressure solution
l -nx'

%T =X + e {Z Ton (r'r-)(c‘(m)mme +Cy(m) cova)}
P mrn wo
- o & ' ' ! . ¥
where T “E%?EWT and x' and /' are normalized by the non-
dimensional radius a. Thf appropriate boundary condition is
still }f(a, @) =C to O(EA) so that the unknown fourier coeffi-
cients may be found in the usual way by series evaluation on the
boundary
: - ' om0 0
'z IMC(‘){&LWQW + Cz(M\\Cbi W\G}: tobde + CCF 3
M=0 P

The particular choice C = 0 simplifies the computation, giving
for the interior geostrophic pressure field

A
' v'end D
by~ & w00 e {%‘}‘)wm Lol e ol
: . m=1 (17)

This series converges for all finite [* and has been evaluated
numerically by computer for several values of lﬂ . The stream-
lines are shown in Fig. 2. (Discussion of the numerical solution
method is given in Appendix A ).

The pressure field is an even function of @ but not of x.
Fig. 3 is a plot of t),&(r,e) along the x-axis, showing a shift
of the circulation center where 4%g= 0 from the origin westward
to x -.25 for [ = 1. This shift is more pronounced for larger
values of ('. The degree of asymmetry of the pressure field or
streamlines clearly depends on the value of . For the stream-

lines of two different basins to be geometrically similar the
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value of T must be identical. Since M is proportional to
the ratio of total depth variation to the Ekman layer thickness,
twice the bottom slope is needed for a basin with half the origi- .
nal diameter. )
For [' 7% 3, the intense crowding of streamlines along the
3T/2 <« & £7T/2 boundary slow the development of a geostrophic
boundary layer. In analogy to the @-plane wind=-driven ocean
circulation models, we will call this layer the western boundary
layer. _ ' ,
The structure of this geostrophic layer may be easily found
using the regular perturbation expansion

b= Z (;ﬁw)m [bmr6) + Punls,0))

with the tilde indicating a boundary layer correction field and
? , and appropriat? stretched coordinate defined by
@-2)= EZ o |
T
The vorticity equation expressed in cylindrical coordinates shows
that basic dynamic balances are

ba=2 (19)

which is again the Sverdrup "balance in the interior and
NS

bl?f - Cos 6 th = 0

in the boundary layer. Its solution

,F‘ = A(8) + B(0)e®s°®Y

decays properly into the interior when cos e< 0, i.e., along
the western side only. The boundary condition on the interior
solution along the eastern boundary is then no-normal flux.

This specifies the component of flow parallel to the basin depth
contours in terms of the cross-cowtour component given by the
Sverdrup balance, thus determining the unknown function f(y) in
the interior solution to (I8)

pi= 2.(x +%(?D
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",(&j) = - Ya*- ye | (19)

This is identical to Pedlosky and Greenspan's interior results.
The interior streamlines are circular arcs, closing in the western
bdundary layer. There, the pressure field is found by matching
radial fluxes to be

h= 4o w6 (1— "%

These solutions indicate a new interior scale of motion. For t.ano( 4
"" the bottom slope constrains the interior flow to be O(E z/m"q
while in the western boundary current 0 (V) ~ flux/thickness »~ 1,

to be

As tan o increases toward E4 the geostrophic boundary layer thicke-
ness decreases toward the Eﬂilayer scale and the interior flow
decreases toward O(Eﬁ), the magnitude of the forced radial motion
from the lowest order geostrophic balance in the Eélayer We
will see next that the E’aboundary layer structure undergoes a
change when tan&— E/"
‘Case 4: B4 tand £ Eh:
We will now look at the E layer along the western boundary.

Let tanpe = A E%with D again assumed to be 0(1). The complete
velocity and pressure field equations in the E%?layer are

U= Uo + E(MU] ‘

U = YEQ4IA| + E%2u, ..

w = E‘/4 W + ..

p l;-_-. \)O + E‘[‘l-b‘ + ...

and S is again the stretched boundary layer coordinate. The domi-
nant boundary layer balances are

A: 2w= —Fts

A Wy = "‘b?.&'

0: U = "121_

A QU= -E_B - S_E__e + Uoszs
o : ‘72* &’n O

kaw.wh" - WUes +U‘ae

Use
U ypg + u:+0;?+— 00‘5 + Wiz =




The Ekman layer fluxes are
2
w,'-:.—{f?_g.(—AQmeU‘"o ok 2= Wdanme'
2
% .
With tan & approaching E™, the bottom slope is sufficiently
large that the orographic component becomes comparable to the

Ekman layer suction. This modifies the governing equation for
Uo , found in the same manner as before, to

0‘0555 - ?_U"o; 4+ 206 Uy =0

where the lateral diffusion of vorticity from the side boundary
is now balanced by Ekman layer and orogri phic vortex stretching.

For eigenfunctions of the form Ai (@) e ©ls , the eigenvalue

equation reduces to the cubic
3 _
A2~ 2), + LAme =

Since our scaling is valid only along the western boundary,
D cos® can be replaced by - D where M =1 Dcos® L. The
eigenvalues for Aé(a)'l " are

M= 1\2Z3 w[¢/3)
M= 202h wo( s + 213)
A= 273 w (94 — 2W3)

-

with tandb = \/('A/g)3 — Dlessto = \’@/3)3— n*
| A o0 | a
When AL 1, (l) approaches /2 and these roots may be expanded to
A\ = V2 + -g- + .-
A, = — 2 + D+

1 2
- B3 +. -.

Ay

The usable roots must have a negative real value for exponential
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decay into the interior so )\. is excluded. }\,_corresponds to a
thickening of the standard E%‘\'layer towards O =7T while k3 corres-
ponds to the anterior geostrophic boundary layer. ?he azimuthal
flow in the E%layer is then

A
D= A (M- )

The pressure field is found by integrating. the geostrophic balance

- S
b= o + [ ~20ds" = o - 24, 4 ML el

Since the lowest order omomentum balance in the wesZe’fn Ey4 layesr
is geosﬁzxophic, the appropriate boundary condition on P,is
again 't)le(O, ©) = 0. Since the eastern boundary is a streamline
with b = 0, the western boundary must be a streamline with

(0,6) =0, so the integration constant {7‘°= 0. We can now
match b‘with the interior pressure field on the western boundary
_to determine AZ: : :

Lin b, = ZAaleYL - L) = L b = 4aeno
3 -m 00 j—z Aa n=>o D

For D«1, )\3 £ )‘2‘ so the basic balance is

T D

which illustrates the basic role of the interior geostrophic
boundary layer in ¢losing the north-south horizontal .circulation
when tan® < E™ With lgw-Almel, Ay = -2a cos?6 and the
azimithal flow in the E ®layer is

: _(5 - blemol

Gy = Lo (e 0O e (2. TH

As tand increases toward Ey4; the interior and E%boundary layers

tend to merge untilQ, = A% at & = T for tant = (2/3)2 EVe
For greater slopes, the two roots become complex conjugates

‘ QLW

-2
3

7\3:—--— o + e



21

(p- VO - (#ap)?

]

with a

b= (m+ {m@*- A "

along an arc centered about © = TU . The trans:.tlon point be-
tween ﬁ'l.")‘ real and complex is & where cos? 6, =8 E2 /27 tanol.
For tan 0477 EV“’ the endp01nts of the arc rapidly approach 7772

and 37T/2, while a>0, b-'-?\!‘_‘ Along this arc, A, is given

by the new balance

] g} - e

with —..L i I \f_ (ZD) /’,’ +- O(/D)
DY,

The resulting western E/“boundary layer flow is

3 .
U = 4T alewo ¥ "7_[:" '
0 4_‘1_%' 9'__,/3_1.{.?_—- e =3 M \EB’;_ XS (20)

where 3 A
 2wlen 6]
’ )
As tan®& increases from EA, the modified western E% layer (mEA)

becomes thinner and sweeps toward the side wall. The result
of Pedlosky and Greenspan (1967) is re-obtained when (20 ) is
rewritten in terms of tan« and E,

' = 4VZ glmol¥s E% ¢ KZ(E o s \Fb’(a-n)?) (z1)
with V3 (fomn)?3 2 Eh
= VZ1lod Tes6l

Even though the analysis by Pedlosky and Greenspan of the

western boundary layer as a E/3 layer is valid in a strict sense
only for tan ol > Elé,. the solution also illustrates the fundamen-
tal nature of th western boundary layer for the larger range of
tan K » E/4 The dynamics for this are now clearer. The horizon-
tal momentum balances in the mE4 layer are essentlally geostrophic
in both /v-' and 9-components while the pressure field is indepen-
dent of z to lowest order. As tana increases from O(E¥, the
mEV‘*layer -- normally two-dimensional and now geostrophic --
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shrinks in thickness to become the modified Eyslayer that was
found by Pedlosky and Greenspan. The key to the boundary layer
thinning lies, of course, in the Eﬁ+1ayer vertical vorticity
balance. For tanx<£ E 4 the lateral viscous diffusion of nega-
tive vorticity from the side wall is balanced primarily by posi-
tive vortex stretching by both Ekman layers. Increasing the
bottom slope increases the orographic component of this stretching
until it dominates the Ekman suction component. Any further in-
crease in the orographic component by increasing the bottom
slope must be balanced by an increased lateral viscous vortiéity
flux, hence a higher velocity shear and a smaller boundary layer
thickness.
Case 5 : EV‘°< tan o 41:

At this point, the role of the Elslayer should be recon-
sidered. For tand £ E‘/Qwe have seen that the EV5 layer carries
the radial outflux from the top Ekman layer down the side wall
and feeds it uniformally into the Ey+layer, which redistributes
this radial flux back into both Ekman layers. A moderate slope,
however, constrains the vertical outflux from the bottom Ekman
"~ layer to be of O(E?taﬁd-) so the bottom Ekman layer can not
close the O(E%) vertical secondary circulation. Instead, the
E'Qlayer outflux must feed the interior and western boundary

layer dlrectly

To illustrate this transition, we will now assume that g 24
tanA < 1 and prodeed with Pedlosky and Greenspan's analysis.
The basic non-dimensional boundary layer equations for the correc-
tion fields are in component form '

- 2V= P.?
'L\l- "‘P@ -+ VVU/L

0= —Pz- + Wy
“Uv\"\' _.9 ~Wz=0 : .
o5 | i

where the variables have been scaled according to

.
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Vb: EE%,Vr ) EL.:. "’LT EL
=AW, v B oM

The momentum equations can be eliminated to yield a single
governing equation for the pressure function,

P+ 4% =0 (2)

with the appropriate boundary conditions being

Ya=0 o 2=l .
'Pz = - -,!;)- -‘:Mcl. & B P'VM. ok 2= i-wkdg»MQ

and on the side wall
Pyl: Pymgly‘-‘- 0 . l : (22&.)
X
5% + % %P Poq = W (21b)

At this point, Pedlosky and Greenspan set U?equal to the O(Euyﬁugix)
interior radial flux to obtain .the first order pressure solution.
We will find the pressure field to second order in tand . by
setting Llequal to the combined D(E'/hwo and O(EGD radial flux
from the interior and the thinner normal E layer.

(U) may be solved with eigenfunctions of the form

P= 2 Ane ™ e [£33(1-2)]

provided X,‘satlsfles
bom 303 (1— o fomiamd) = toma 0@

Pedlosky and Greenspan have shown that the eigenroots compose
two sets, one of thre?lcomplex roots of O(tane >)associated with
the western modified E Jlayer and the countable set of 0(1)
complex roots associated with the normal E% layer.

Expansion of the eigenvalue equation in powers of tangL
shows that the two smaller roots which give exponential decay
into the interior from the western boundary are to second order
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(Az,43) = I'Z{mo\am@\ﬂl*- &deeg(ﬁm

The general pressure function satisfying the no-slip sidewall
conditions (22&.,(0) is then

SRl e )

where the O(tan K ) z-dependence is 1gnored " The amplitude A
is found directly by matchlng the mE3radial flux with ux , the
combined interior and nE® layer fluxes.

...ﬂ:g)‘

Since the vertical flux into the upper Ekman layer is to
lowest order independent of € , the radial outflux from this
layer is axisymmetric. The net radial velocity of the nE'@layer
is then, by continuity, u = -aE%. Since the mE 51ayer exists
on the western side only, the interior radial velocity must match
the_nE‘/z layer flux along the eastern boundary. When evaluated

in terms of the interior pressure function :

ID.; 7_5."‘ Cx_')("(%‘) ~ Wd")&l(‘j))

This radial matchlng requ1res

AU = E'I{me + (we)% + mame%d q._iaf"
Réyo

The unknown functlonS‘xﬁ 1! .associated with the interior flow
parallel to the depth contours are found by equating powers of
tanol{ and solving, giving . for the complete interior pressure

b= fog (- Vomg + bnda s (3))

Matching the interior and nE% layer rad1a1 fluxes along the
western boundary to the mE 3layer flux now reduces (2?) to an
ordinary differential equation for the unknown. amplitude A,

g 4 - 6
V%.{M- o ton o e (lka&me‘)}A 2@494.4

The solution is found by expanding A in the series

fam ot A = A° 4 ot A+

and solving the resulting perturbation equations



-25-

_ . 0= . . 0-. -Mwe ‘c 0‘

L4 . . - o . ‘
B+ Bl cobA’=0 As g2 fam29-2¢5m vef
T W T 3 |

Since the horizontal and vertical secondary flows are now matched
to O(EKQ by radial boundary layer fluxes, continuity requires
that no’ddditional fluid enter or leave -the mEuslayer by a tan-
gential flux where the layer terminates at @ =M/2, 3 U /2. This
implies that the pressure function must vanish at €= IT/2 and

0 =3 TC/2, indicating that the unknown constants of integration
are both zero.

With the mE’blayer pressure function found, the complete

- azimuthal boundary layer velocity may be given to O(Ek) by adding
" the nE blayer solution found in Sectlon 1

U= AQLEW{Z‘?’?‘MMe z \J'a’vm s wre T

T e e (91"’ '%%2 - V@’.g /mw}/m "'U’rlc ﬁ }} (23)

where the eigenroots are agaln
Y=  (1mar

LY = I’LWmel/B{l-l-}muame}

The vertical mass flux extracted from the 1nter10r by the upper
Ekman layer is returned to the interior via the thinner axi-
symmetric nE‘glayer The radial outflux from this layer ‘along
the eastern side is carried parallel to the geostrophic contours

from east to west into the ageostrophic western mE 3 layer where

it combines with the inner nE"Slayer outflux along the westerﬁ
boundary to produee a net conver8ence. Because of this convergence,
the mass flux lost by the fluid column as it was carried through
the interior region from deep to shallow end is restored as it
returns to the deep end via the mE 'S layer.

The net convergence, coupled with the second order influ-
~ence of the finite bottom slope on the mE% boundary layer thick-
ness, distorts the first order north-south symmetry. According
to (), the position of the azimuthal velocity maximum is~ﬁoved
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through the angle AB = sin” (5/9&-tan & ) from the east-
west axis toward the shallow end. (23) is valid to O(Ené The
0(E|I3) contribution due to the inclusion of Ekman layers above .
and below the mEu layer has not been determined, so the possible
discrepancy between (23) and the complete perturbation solution
is of O(E%O The experiments were conducted over a range of E
such that.1474 EW% £,198, so the discrepancy might be appreciable,
especially when tan &{ Ewﬂ On the other hand, this theoretical analysis
suggests that the western mﬂﬁ layer thlckness dependence on E
is valid over a wider range. of tan& from tan 0(7 ¥

3. Experimental Apparatus and Methods
3.1 Apparatus
The fluid container consisted of a lucite cylinder
with a 12.700%.005 cm inner radius, éapped at both ends by lucite
plates (see Fig. 4). The sliced cylinder geometry was formed by
inserting a false top and bottom into the cylinder. The geometry
shown in Fig. 4 has been inverted simply to ease construction.
Three lucite sloping bottoms were constructed from 0.92

cm thick plate stock for nominal angles of o~ 6°(tan ol = .171-1:.603),

8° (tanet=,144 ¢.003), and ,10° (tan ® = ,1782003 ). The actual
bottom slope was measured with a cathotometer while the false
.bottoms were in place and the fluid container filled. The ‘top
" driving disk was a 0.61 cm thick glass plate of radius 12.675 cm,
Its plane of rotation was determined by the vertical positions of
three supporting miniature ball bearings since the glass disk was
optically flat and its surfaces parallel. The average separation'
between the side wall and the false bottom, and the side wall and
the glass disk, was 0.025 cm, typically about 45% of the Ekman
layer scale thickness LE'%

The glass disk was driven by a synchronous clock motor

using a shaft and gear train arraﬁgement to help ensure a constant
relative angular velocity and thus a constant Rossby number. A
stable audio oscillator-amplifier system drave the motor so that
the relative angular velocity of the glass disk could be varied
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by adjuéting either the oscillator frequency or the gear reduction
ratio. The apparatus was mounted on a rotating turntable driven
by a synchronous motor through a direct drive Graham variable
speed transmission. The relative angular velocity of the glass
disk was quite constant, depending on the stability of the oscil-
lator frequency. The anguiar velocity of the turntable was an
order of magnitude less constant, being limited mainly by the
stability of line frequency. Typical fractional - standard devi-
ations of £ _ and the Ezrntable's rotation period were 42 x 10”2
(100 cycles) and <€2.10 ~ (20 periods).

Flow photographs were taken on Tri-¥ film with a Nikon 35mm
camera mounted above the cylinder. A 22-watt flourescent circle
lamp with parabolic reflector was fixed beneath the cylinder to
provide back lighting. An adjustable sequence timer triggered
the camera mechanism and dye production. The fractional variabil-
ity of the switching pulses was estimated at <'1 x 1073,

3.2 Flow Visualization Methods

Velocity measurements were made in the interior and
western boundary layer over a wide range of Rossby and Ekman num-
bers, using sequence photography. The pH indicator Thymol Blue
technique outlined by Baker (1966) was used in the linear flow
regime where relative velocities were smaller than 0.1 cm/sec.
Two identical grids (shown in Fig. 5) of fine .001" platinum-
irridium wire were stretched horizontally across the cylinder at
depths of 5.53 cm and 10.53 em. The cylinder was filled with a
0.1 N solution of Thymol Blue titrated to its basic endpoint.
Applying a small d.c. potential across the two grids changed the
local pH around each wire, causing the fluid around the negative
electrode to become more basic and turn a deep blue. A sequence
of these dye lines was photographed as they were swept off the
electrode (see Plate 1). Since the time interval for the dye to
be formed and carried out of the boundary layer around the wire
was not accurately known, the horizontal distance between succes-
sive dye segments was measured and divided by the sequence inter-
val to compute the average observed velocity.

The electrodes were aligned along the east-west axis for
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- the interior velocity measurements, so the distance between suc-
cessive dye segments was measured perpendicular to the electrode
to determine the geostrophic cross-contour flow component. Mea~
surement of the western boundary layer velocity was complicated
by two factors, curvature of the boundary and the dependence of
the azimuthal velocity. The first was partially solved by digit-
izing the dye photograph and measuring the distance numerically
along an arc of constant radius (see AppendixB). The second
complication was circumvented by measuring the azimuthal velo-
city in the region @= AT where the least variation of U with
0 occurred. ‘

The non-linear flow regime was characterized by velocities
of at least .0l cm/sec so two other flow visualization techniques
were used. The horizontal structure was studied with streak
photography using a water suspénsion of large aluminum flakes
illuminated from the side by a light beam 1.39 cm thick. The
beam was normally placed at a depth of 7.90 cm but was also placed
at 3.28 cm (slit width = 1 cm) and 9.24 cm (slit width = 1 ecm) to
test the two-dimensionality of the flow.

The stability study was conducted usihg a sequential dye
method. The cylinder was filled with a saturated starch~iodine
solution and a fine stainless steel electrode (.025 cm outside
diameter, 5.5 cm long) placed in the western boundary layer at

e=7T. A periodic potential was applied to the electrode,
causing a long sequence of dye pulses to be formed in the western
boundary layer. The pulses were carried through the western bound-
ary layer to the transition region where they were photographed
periodically. The stable mode was characterized by excellent
repeatability while the unstable mode exhibited a periodic temporal’
variation of the dye pattern. ‘

Separate experiments conducted to check the electrode's influ-
ence on the onset of instability indicated that the stability
results were unchanged by either (a) a shift in the azimuthal
position of the electrode in the western boundary layer to 6=

1AT/6 at two different rotation rates or (b) substitution of a
second, 20% thicker electrode at 8=7C ., Also, the local
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Reynold's number based on the diameter of the electrode never

exceeded 8 at the critical Rossby number, so any distortion due

to the electrode size and position was considered negligible.
The number of fluid solutions used and the variability of

' yoom temperature necessitated an accurate determination of the
kinematic viscoesity for each experimental run. The viscowsity
of each stock solution was measured over a 20° - 25°C temperature
interval using a calibrated Fiske-Canon viscowsimeter and a cali-
brated copper-constantin thermocouple. A second matched thermo-
couple was attached to the fluid container in the eastern boundary
layer. The induced emf was measured though sliprings during each
experiment, indicating that the fluid temperature remained constant
tot0.03 ©°C over the duration of each experimental run.

The experimental procedure for these studies was similar.
After transmission warm up, the table speed was set and a spin
up period of 8 /T /ZE%Hl. (about 16 minutes for (L = 3 rad/sec)
was allowed for the stability study and & 7T /2E%Q for the other
studies. Then the glass disk was set in motion and after a simi-
lar spin up period, the flow observations were made and experi-
mental parameters measured.

3.3 Experimental Error
' The principal uncertainties in the velocity mea-

surements arose in the data reduction process. The precise loca-
tion of the leading edge of the dye line was difficult to locate
on some of the enlarged photographs. Small random variations in
the turntable's angular velocity also caused noticeable Velocity
deviations among the photographs, so a sequence.of 8 photographs
was interpreted and the mean and standard deviation values pre-
sented. Except for an estimated 1.8 to 2.9% uncertainty in tanel
the experimental parameters attributed less than a 1% uncertainty
to the velocity calculations.

Measurements of the western boundary layer vortex positions
and topographic half wavelengths on the enlarged streak photo-
graphs were complicated by the lack of a reference length and the
difficulty of locating the cylinder axis in the photograph. A
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sequence of 4 photographs was read to reduce the random errors
involved, and the mean and estimated standard deviations presented.

The distinction between stable and unstable flow was écca- .
sionally clouded by the presence of aperiodic motion attributed
to small variations in the turntable's angular velocity [ .
These runs were repeated under similar experimental conditions
and the flow state:- then decided. A major experimental uncertainty
arose in determining the formation period T of the unstable mode
from the sequence photographs. A visual interpolation had to be
made between photographs since T was rarely a harmonic of the
sequence interval between successive photograbhs. This, coupled
with the limited number of cycles photographed, éaused typically
an experimental uncertainty of /v 87 in the period measurements.

4. Experimental Results and Discussion .

The first set of experiments to be described was designed
to test the linear theoretical predictions presented in Section
2. Measurements were made of the cross-contour flow compoﬁent
in the interior and the azimuthal velocity profile in the western
boundary layer. The second set of experiments described here
was intended to indicate how the flow is modified by an increased
driving stress. This set included a visual study of the horizontal
velocity structure and determination of the critical parameter
values for the onset of instability.

4.1 Interior Flow ' ‘

The cross-contour velocity Vg, was measured at
an interior point (r' ='0.566, ©.= 0, z = .826) as a function
of ® and ¢ . A second measurement was made at the 1ower'point.
(x' = 0.566, Q= 0, z = .434) to check the predicted z-dependence.
The results presented in Fig. 6 and Table 1 indicate that the
- theoretical Sverdrup balance (18 ) accurately determines the
two-dimensional cross-contour velocity component over the wide
range of 6gstudied. While experimental uncertainties excluded
actual measurement of the secondary interior flow parallel to the
depth contours, the predicted sign and order of magnitude of this
flow was observed to be correct.
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. Experimental Conditions

N = 3,03 rad/sec
E =1.87 x 10°°
9.8%.2 L =12.75¢.04 cm
z,: 9.08%, =
1%(9.3¢.3) :? <g e
t = U,
% = 0.826
Zy= 0.434
) indicates theoreti-
2, 4.9¢.1 cal value computed
(4.7%.2) : from (I8)
velocity unit = 1 x 107~ cm/sec
"2yt 2.45%.05 ' .
(2.532.08) KK 3.02%.06 zq4 3.89%.08
2, 2.43+.05 (3.20%.2 ) (3.8 .1)
(2.582.12)
1 0.178 - 0.144 0.111
tanol

Velocity V
Slope, Ros

" TABLE 1 . Comparison of Interior Cross-Contour

with Theory for Different Bottom

y Number, and Vertical Position.
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4.2 Western Boundary Layer Flow

The azimuthal velocity profile V(r) was measured
in the eastern boundary layer region near (Be=T , z = .826)
with the ~10° sloping bottom for twelve different values of the
main rotation rate{)l . A typical dye photograph is shown in
Plate 1 and the measured profile in Fig. 7. The radial position
of the velocity maximum was then measured and a logarithmic plot

L}

made as a function of E, in Fig. 8. A least squares fit to the
data glves the equation

D (108 G V=(150 1) & (3 £.00) b 105 E

which is in good agreement with the theoretical value

b (10 A gpay) = (1.54~1: o) + (.33) 4 105E

found from (13) for & =TU . A similar least squares analysis
for the amplitude of the velocity maximum indicates that

I (0 Vimax /606 )= (179 £ 0.02)+ (L9 & .ol)l«wlosE

in comparison to the predicted dependence

I (10 Viwss /€)= (1.86 + .0V) + (0,166 ) lm 10

based on (123 ). The discrepancy is probably attributable to the
neglect of the higher order perturbation terms in the theoretical
analysis. ’

The tangential velocity was also measured at four other
azimuthal positions in the western boundary layer to check the -
predicted O -dependence. Fig. 9 shows a comparison between the

" observed velocity maximum and the theoretical maximum calculated’
from (23 ). While the observed points correlate well with the
theoretical envelope, the observed values nearer O=F were from

~6 to ~14% smaller than predicted. The horizontal width of
the experimental uncertainty bracket in Fig. 9 indicates the
angular separation of the two sucesssive dye lines during the

_experiments.

The azimuthal velocity was also measured at the lower posi-
tion ( Be= Tl , z = 0.434) to test the predicted two-dimensional-
ity of the western boundary layer. The profiles shown in Fig. 10



PLATE 1 : Azimuthal velocity in western boundary
layer for ~10° sloping bottom. Experimentai -
conditions correspond to figure 7: ( .= 7T ,
z = 0.826). Interval between dye pulses is
25 seconds. Radial distance along electrode
between side wall and cross wire provides
reference length in photograph.
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Radial separation to western boundary layer azimuthal
velocity maximum as a function of Ekman number E.
Experimental points O,least squares linear fit ,experi-
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rad/sec,eQ=-00078 rad/sec,(8g=7,2=0.826).
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indicate a 27% variation in amplitude at the two vertical posi-

tions while the profiles are similar in form. The cause for this
is unknown.

The azimuthal velocity profiles measured at ( B¢ =TT ,

z = ,826) for the two smaller bottom slopes are shown in Fig. 11,
The sizable discrepancy between observed and (2% ) probably
lies in the approximate and limited perturbation treatment of the
linear theory.
4.3 Horizontal Structure in Non-Linear Regime

The non-linear flow regime in the sliced cylinder
was marked by a more noticeable north-south asymmetry of the
western boundary layer structure. As the driving stress was
+ increased, a fluid particle in the western boundary layer ac-
quired more inertia until - it tended to overshoot its essentially
interior equilibrium position. The particle then reversed its
direction of flow and lost its excess inertia and vorticity through
dissipation and stretching before returning to the interior.

This north-south distortion (illustrated in Plate 2) first
became apparent for the ~10° sloping bottom when |€[. was in-
creased past E/2. when lela BEVL, part of the western boundary
layer flow had closed upon itself to form a vortex in the north-
west quadrant and when |e|~ 6E%, this vortex had shifted to A
130°. A larger stress increased the boundary layer transport and
the radial distance from the center of the vortex to the side
wall but did not substantially affect the vortex's azimuthal posi-
tion. Fig. 12 shows the movement of the vortex's center as
was increased through different values. As the stressAwas_in-
creased, the azimuthal angle passed through a maximum value
which was approximately the same for the three different bottom
slopes. Additional measurements made at other depths are presented
in Table 2 which indicate that the vertical axis of the vortex
was aligned with the main rotation axis to within an estimated
experimental uncertainty of t2.1°

A fluid particle entering the interior from the western
boundary layer went through a transition region where ‘the
inertia and extra vorticity acquired by non-linear processes in
the western boundary layer were lost. The size of this region
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(a) €= -.0190;lel/ph=4.21

PLATE 2: Horizontal velocity structure in
northern half of basin for 10 sloping
bottom. Experimental conditions: tan =
.178, 1L = 3.03 rad/sec, E = 2.03 x 1072,
(z = 0.62), exposure time was (a) 4.88

sec, (b) 3.25 sec, (c) 3.25 sec.



(c) € =-.059; lelfh=13.21

PLATE 2 (continued)
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FIGURE 12.Western boundary layer vortex position as a
function of Rossgy number_and bottom slope.
0=3.03 rad/sec,E=2.04x1072(2=0.62 ).
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Experimental Conditions:

L = 3.03 rad/sec zyt .725 (slit width = ,079)
E =2.04 x 1072 zy: .620 (slit width = .109)
L =12.75+.04 cm z4: .256 (slit width = .079)

(r,®) = (radial position (em), azimuthal angle (degrees))

TABLE 2 . Position of Vortex in Western Boundary Layer for Different
Values of Bottom Slope, Rossby Number, and Vertical Position.
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grew as the stress grew until topographic Rossby waves appeared
(see Plate 2 b,c).

The topographic wave mechanism may be understood by consider-:
ing the tendency of a fluid column to preserve its absolute
angular momentum (potential vorticity) as it leaves the western
boundary layer. When € is negative (to correspond to the experi-
ments), a fluid column leaves the viscously dominated inner re-
gion of the western boundary layer next to the side wall with
positive relative vorticity. As the column is advected south~-
ward through the transition region, the motion across the depth
contours causes a stretching of the fluid column and a positive
increase in its vorticity. If the vorticity gain is larger than
loss by lateral diffusion and Ekman layer suction, the column
acquires cyclonic curvature and the streamline curves back toward
the shallow end. The column is now compressed and gains nega-
tive relative vorticity until its path becomes anticyclonic and
curves again toward the deep end. Net vorticity loss keeps the
column from returning to its original depth contour.

The gross structure of these topographic waves can be ob-
tained from a simple two-dimensional model where the rate of
relative vorticity change is balanced by the stretching or shrink-
ing of the fluid column. The potential vorticity equation yields
for an east-west plane wave solution the familiar dispersion rela-
tionship .

o = - (_Z_:(_.Z_ down ‘lE’
The wave fronts travel wel;tward with a phase speed Cp‘= ",L—ét‘-‘et“""‘*
while the energy propagates eastward with a group speed Cg = -Cp.
Superimposing these dispersive waves on a uniform eastward
current U (along the depth contours) results in a stationary
streamline pattern provided the relative wave speed vanishes,
i.e., U+ Cp = 0. This selects a single wave number which
chooses: the wave length of the stationary topographic wave

de . 1w |9 |

While the observed flow w;g“?ﬁ} more complex, the model

appeared to approximate the flow best in the transition region
near the boundary layer vortex where variation in the y-direc'tion
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appeared to be a minimum. The distance along the depth contour
through the boundary layer vortex between the two successive
points where (A g 0 was identified as the observed half wave-
length. With U estimated to be éllL-Elﬂlhhﬁd. the predicted
half - wavelength becomes

A= wL ghie (24)
Vi i

The half- wavelength was measured at several depths for the three
sloping bottoms; the results are compared with (24) in Table 3
and in Fig. 13. While the model is clearly inadequate, the JZ
dependency was observed as was a general increase in half wave-’
length with decrease in bottom slope.

4.4 Onset of Instability

‘ As the applied stress was increased, a criti-
cal value of £ was reached for which the steady flow was unsta-
ble. The velocity field was characterized by a small oscillation
of the western boundary layer vortex and the periodic formation
and decay of a second vortex or eddy in the transition region.
A sequence of 4 photographs in Plate 3 shows this formation and
the subsequent movement and decay of the second eddy over approxi-
mately one period for the ~10° sloping bottom. Measurements
made at two depths (z =-'72-5_)296 )Yindicated that the curve
swept out by the center of this second vortex was independent
of z. Both the westérn boundary layer vortex and the second vor-
tex were two-dimensional. ‘

Bryan(1963) showed in his @ -plane analysis of the wind-
driven ocean circulation that Reynolds numbers based on the
western boundary layer current and interior flow are equivaient
since the western boundary layer and interior horizontal trans=-
ports are equal by continuity. The equivalent interior Reynolds
-number for the sliced cylinder model is

L] = &L
( - tamd E72
Two sets of stability tests were made to determine the depenéence
of Re., the critical value at initial onset of iﬁstability, on
the bottom slope and Ekman number. In the first set the Rossby
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theoretical value computed from (4)

% . Comparison of Observed Topographic Half
Wavelength, with Theory for Different Values

of Bottom Slope, Rossby Number, and Vertical

Position.
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FIGURE 13.Topographic half wavelength as a function
of Rossby number and bottom slope.
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(a) t =0

b) t = 6.43 days
(b) t 36443 day

PLATE 3: Horizontal velocity structure for
unstablie mode in northern half of basin
for ~10° sloping bottom. Experimental
conditions: tan ot =_.178, £L = 3.03 rad/
sec, E = 2.04 x 10=3, (z = 0.62), exposure
time = 3.25 sec. Approximate formation
period of second vortex is 23.5 days.



(d) t = 19.29 days (40.00 sec)

PLATE 3 (continued)



«54-
number and {} were varied for the 410 ° sloping bottom. The
results are shown in a stability diagram of Re versus E (Fig. 14)
and indicate that

Ro (Yomn d=.(18) & 635+ 7.17 X 05 E

The dependence of Re, on tan o was deFérmined in the neighbor-
hood of E~2x 10™° ¢n the second set of experiments. These
results presented in Fig. 15 show that

Ro, (E=2.14%10°%) & (405

foma
The critical parameter determining the onset of instability

over the ranges of €& ,lomo,E studied then appears to be
l¢l /EY% with the stability curve being

lna @oo = lel/E% = 13 + 127x 105

Measurements of the unstable mode period T, 'i.e., the time
interval between sucessive formations of a second vortex, indi-
cate that T was also indebendent of tana . The results shown
in Fig. 16 fit the approximate equation

'l"(dw-;s)'—‘-’ 32( | - ,QM(lo‘SE)‘s)
Periods of the natural topographic Rossby modés for the sliced
cylinder container found by Pedlosky and Greenspan (1967)
T (doys) = Lkme  whwe Tulkmn)=0
( p tomd

are similar in magnitude to the observed values but should be
approximately independent of viscous effects and thus independent
of E. This suggests that the instability mechanism may be associa-
ted with either the E/ior E"3 layers and not with a breakdown in

the steady topographic wave mechanism.

Several ideas lend, further plausibility to this hypothesis.'
Since rotation constrains the flow outside the viscous boundary
layers to be quasi-two-dimensional, a disturbance caused by a fluid
instability in a viscous boundary layer will probably be carried
into the interior as a two-dimensional disturbance regardless of
the initial position of the instability, if it is a low frequency
mechanism. Therefore, even though the horizontal velocity structure
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in the unstable mode is observed to be independent of z in the
boundary layer transition region and interior, the origin of the
instability is still undetermined. Second, the observed instabil-.
ityappears to depend primarily on the parameter \ébﬁgh.and not on
tan . The interior flow is clearly dependent . on the bottom
slope, but the flux into the top Ekman layer and down the normal
Eyé layer is to lowest order independent of tomd,. The Reynolds
number based on this flux is - '

léaL-L‘E‘/z, . lel

Vv’ EY2

i.e., the observed critical parameter. Since the Ekman layer in-
stability discussed by Lilly(19kb) occurs at values of Re 7 50
and is of relative high frequency (typical periods are less than
. one day), and the velocity field is apparently only disturbed
in the northern half of the basin, it ﬁeems that the observed
instablllty originates in either the E
the EISboundary layer along the western boudnary.

In conclusion, the experiments carried out suggest that the’
linear analysis presented in Section 2 is valid when € is small
enough (A'E%J that the inertial effects do not significantly
affect the boundary layer vorticity balance. As € is increased
past E‘a the western boundary layer assumes an inner viscous,

p 4 E/"- corner region or

outer inertial boundary layer character, while the interior north-
south flow continues to be given quite accurately by the Sverdrup
balance. The western boundary layer first shows downstream ine
tensification and then develops stationary topographic waves.
Finally, as the critical value of Réx or tan & - *Re; terior is
reached, a low frequency fluid instability is observed, probably
attributable to a breakdown of the EV‘LX E/2 corner region or the
"Ef boundary layer structure.

5. . Comparison with Previous (5—P1ane Models
Pedlosky and Greenspan (1967) have pointed out
the striking similarity of the theoretical linearized flow in the
sliced cylinder model to early ﬂ -plane solutions for the wind-
driven ocean circulation problem. In particular are the linear

solutions of Munk (1950) and Munk and Carrier (1950) who found
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that the interior Sverdrup transport was closed by a strong
viscous western boundary current of width N@]e m@) 3 Matching
their solutions to observed values of Gulf Stream transport and
width required such small values for the eddy viscousity para-
metexr ‘Jc that the more recent studies have tended to concen-
trate on the non-linear dynamics that affect the western boundary
layer vorticity balance. The purely linear theories maintain
a balance in the western boundary layer between the negative
vorticity induced by the ﬁ-effect (or by vortex shrinking by
the bottom slope) and a horizontal viscous diffusion of positive
vorticity across the lateral boundary. In the purely inviscid
toundary layer theories, diffusion of vorticity is not present
so the fluid column itself must acquire negative vorticity as it
is carried northward in the western boundary current. This is
shown in the approximate vorticity balance ’M.U',Zx + (50‘@ o
where existence of an inertial western boundary layer requires
the inertial term WUy, to be negative to balance the positive
ﬂﬂf term. Since the boundary current U~ increases toward the
lateral boundary.’ Uxgy 70 and wLo , :lnd:Lcat:\.m‘J the interior
normal flux must be into the western boundary layer. This exis=-
tence condition was illustrated in the inertial @ -plane studies
of Fofonoff (1954), Morgan (1956), Charney (1955), and Carrier and
Robinson (1962) before a formal, more general derivation was given
by Greenspan (1962). This criterion applies to the sliced cylin-
der model, and indeed, accounts for the marked north-south
asymmetry of the western boundary layer in the non-linear flow
regime. As € was increased and the inertial terms became more
important in the boundary layer vorticity balance, the interior
fed the boundary layer over a larger and larger arc until the
closed vortex formed in the northwest quadrant.

While the inertial boundary layer theories looked realis-
tic in the southern formation region of the western boundary
layer, they could not be used realistically in the northern
. region.to close the boundary layer flux to the interior. Ilyin
and Kamenkovich (1963) and Moore (1963) suggested that this circu-
lation may be closed in the northern half of the basin by imposing
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damped, stationary Rossby waves on the eastward zonal outflux
from the boundary layer. The more exact numerical studies by
Bryan (1963) and Holland(1966) illustrate this mechanism.

In the sliced cylinder experiments, the horizontal circula-
tion is closed by an analogous stationary topographic wave.

Tﬁe observation that the flow is steady suggests that these vor-
ticity waves exert a stabilizing influence on the western boundary
layer, for they allow a larger flux of vorticity to leave the '
boundary layer region-via the wave Mechanism than can be simply
convected. ‘ '

The observed sliced cylinder flow may be further compared
with Bryan's (1963) numerical model of the western boundary
current. He solved numerically the initial value problem for a
homogeneous two-dimensional ocean in a rectangular basin with a
Navier-Stokes dissipatiﬁe term. At time zero, a steady wind stress’
is applied to an initially at rest ocean and the governing
vertical vorticity equation integrated in time until a steady
circulation pattefn is reached. 1In the laboratory experiments,
the Jriving stress was applied after initial 'spin up had occurred.
and the fluid had come to rest in the rotating coordinate system.
Since the lowest order horizontal flows in both models obey the
same approximate vertical vorticity equation (derived in Appéndix
E), Bryan's results.may be compared for eqPivalerg'parameter
values. The flow instability found by Bryan at R& = 100 is
qualitatively similar in descripfion to the instability observed
in the sliced cylinder experiments. A secondary vortex is per=-
iodically .“formed at a low frequency in the western boundary layer
transition region where it is then swept downstream and decays.
"The general agreement shown in Fig. |4 may be fortuitous, though,.
since fhe’prbhxb\e- source of the instability observe?vin the
sliced cylinder model is the three~dimensional ERXE" corner or £
layer flow.
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APPENDIX A

Numerical Evaluation of Theoretical .
Interior Pressure Field

The theoretical interior pressure field ((7 ) was evaluated
by the following method on the IBM 7094 digital computer at the
M.I.T. Computation Center. A FORTRAN II-coded function sub-
program called NYU BES61 (SDA #3177) was simplified to compute
the function

i (x) = X Im(x) (A1)

for x real and positive non-zero, and m a positive integer. The
computing scheme utilized a recurrencé technique when x4 10 and
the asymptotic phase amplitude method when x>10, giving an aver-
age accuracy of 6 to 7 significant figufes.

Substitution of this function into the interior pressure
equation gave the following series to be evaluated:

_E_fr,e\ = nend - e—r‘(ﬂ.cose—l){m L(rn) +_%:Lmu (M)+ima (0§ (P/L)COSMO}
r I to(l) met lwdl) (A2)

The convergence criteria used to pick the terminal value of m
utilizes the monotonic decay of Ilwm(¥) as m— oo . Since the
maximum number of terms in the series is needed in the western
half of the circle (x<Q) where the exponential factor in equation
A-2 becomes 1arge, the series was summed at the westernmost point
(r =1, OB=ar ). until the criteria

My
e i, + 221(—1)“11?(1‘)

based on the imposed condition that F = 0 on the boundary was -
satisfied. Since (,, (¥) decays monotonically with increasing m,

< € (A3)

the remaining terms are not significant if € is suitably chosen.
The series was then summed to M =m, on a 9 x 9 semicircular
grid. If the computed values of P/o} on the rest of the western
boundary points exceeded 10"3, the series was resummed to include
n, additional terms. Table A 1 lists the values of ", M,m,ny,
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used and the maximum deviation from O observed on the boundary.

.2

1.0
2.0
3.0
5.0

maximum deviation

M, m,, n, € from 0
on boundary

3 3 0 1076 107>

4 4 0 107" 10”3

5 5 0 1072 7 x 1074

7. 7 0 107> 7 x 107"

12 9 3 10™° < 107%

17 12 5 10-6 <1074
TABLE A 1.

Parameter Values and Deviation of Boundary
Values for the Numerical Evaluation of the Interior
Linear Inviscid Pressure Function(|7)
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APPENDIX B

Calculation of Azimuthal Velocity Profile

The azimuthal velocity profiles were obtained from flow
photographs (similar to Plate 1) by the following method. A
sequence of at least 8 dye pulses was photographed in each wes-
tern boundary layer velocity experiment. An 8x enlargement was
made of each 35mm negative by an Itek reader-printer and the copy
digitized with a Wayne-George X-Y Coordinate digital converter.
The copy was oriented approximately on the digitizer bed as indi-
cated in the figure below. The electrode was stretched along a
diameter of the cylinder, so the line segment P,P, was used to
locate the cylinder axis P3. After measuringlthe coordinate
values of P1 and Py, the tracer was advanced from Py along the
leading edge of the two dye pulses (C1 and CZ) measuring the y
coordinate value for every Ax = 0.1" incremental advance. The
card output was checked for punching errors before processing on

the IBM 360 digital computer at the M.I.T. Computation Center.
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The’gfogram computed P3 from the direction and known magni-
tude of P1P2. Then the x, y coordinates of points on both curves
were transformed, using algebra, into the polar coordinates
Jtand ¥ . A linear interpolation scheme was used to determine
values 4 (n) and. .4, (n) for both curves at a number of radial-
positions. The average integrated velocity was then calculated
at the radial positions {/1m} from the equation-

+

- (B1)

This equation will give an unbiassed estimate of the true azi-
muthal velocity provided (a) the ratio of radial to tangential
velocities is negligible and (b) v is constant over the small
arc measured. Since O (Wl/Av()a Ekyié?QSand J°  was approx-
imately stationary near © = 7T ,(B-1l) provides a good estimate
of the instantaneous azimuthal velocity evaluated at the average

U(/Ly\)’—“-- (601; Sﬁ'z.)/ln

azimuthal position. This estimate was of course more biassed
where ¢~ was changing rapidly with & . A better comparison
with the observed values could be made by using the theoretical
velocity field to compute the left hand side of (B-1).
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APPENDIX C

Experimental Apparatus

C-1. Fluid Container

The fluid container consists of a hollow Plexiglass
cylinder rebored to an inner radius of 12.700%.005 cm and capped
on both ends with circular Plexiglass plates. A false top and
bottom inserted inside the cylinder form the "'sliced cylinder"
geometry. However, to simplify the design, the usual geometry
has been inverted with the top sloping and horizontal bottom plate
driven relative to the rest of the basin.

Three sloping bottoms were machined from 0.92 cm thick .
Plexiglass plate stock using a sloping bed rotary milling table.
This procedure gave the correct geometrical shape without marking
either top or bottom surface. The upper surface was flat to with-
in X .003 cm variation over its area and was left untouched to
ensure maximum transparency. The sloping bottoms bolt to a
stainless steel knob set in a O-ring bearing in the top plate
aligned along the cylinder's axis. This design allowed the ori-
entation of the sloping bottom relative to the fixed cylinder
and electrode grid to be changed easily. The average separation
between the cylinder wall and sloping bottom is 0.025 cm, approxi=
mately 45% of the Ekman layer thickness LE”,

Tl
L3

C-2. Disk and Drive.

The driving top is a 0.61 cm thick glass plate ground
to a radius of 12.675 .cm. The plate is optically flat and its
surfaces parallel. The average wall clearance is again 0.025 cm.
Originally a stock unground Plexiglass plate was used but its
small 0.025 cm surface variations were found to cause a noticeable
flow disturbance. :

Three miniature stainless steel ball bearings support the
glass disk and thus determine its plane of rotation. The height
of each bearing was adjusted to set the plane perpendicular to
the table rotation axis. ‘

A three legged stainless steel yoke is mounted approximately
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on center on the lower surface of the glass disk. The disk is
driven via a simple universal joint, consisting of a slotted
receptacle in the yoke and a pinned shaft. This keeps the disk's
plane of rotation constant despite small shaft misalignment and
runout. An oilite bronze bearing with rubber water seal mounted
on center in the cylinder's bottom plate centers and supports
the vertical stainless steel shaft. It is turned on by a 150
0z.-in. Hurst synchronous motor through a precision P.I.C. com-
ponent worm and spur gear train mounted on the turntable. Elec-
trical power is supplied thfough an impedence match by an audio
oscillator and amplifier system (hp 200 CD oscillator, Dynaco
Mark IV amplifier). The relative angular velocity of the glass
disk could be varied by a change in either the gear reduction
ratio or the oscillator frequency. The overall drive train was
designed to mimimize backlash and the disk's rotational stabil-
ity over 1 period is estimated at éfé@gz x 1072,

C-3. Turntable and Drive

The fluid container is mounted on three supporting blocks
above the turntable surface, allowing the cylinder axis and table
rotation axis to be aligned to within%,005 cm in the radial direc-
tion and within +40 seconds of arc in the vertical direction.

The turntable itself consisted of a 30" diameter steel
disk mounted on a 5" outside diameter hollow steel shaft. Its
principal momentum of inertia is 37 x 102 slug inchz. The bearing
system utilizes an angular thrust bearing to support the table
weight and a lighter radial bearing mounted about 12 inches
below the other to center the table. The bearing seats bolt to
a massive turntable base which rests on combination wood-foam
rubber damping pads on the laboratory floor.

The turntable is driven by a % hp Louis Allis synchronous
3~-phase motor through a Graham variable speed transmission and
direct drive coupling. The vertical output shaft from the trans-
mission turns the lower of two universal joints mounted back to
back on a splined shaft, the upper universal attaching to the
turntable shaft. Thisvdesign allows an angular distortion-free
yotation of transmission and table while isolating the table from
motor and transmigs ion noise.

The Graham unit (model N29W25) was factor fitted with matched
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parts to improve its rotational stability. Its rated peak to

peak variability is %%éZ pd 10°4. The table's angular velocity

is determined by measuring an individual rotation period with

an electronic timer. A small collinated d.c. light source mounted .
on the table triggers a light-activated silicon-controlled recti-
fier in a variable pulse width '"single shot" delay circuit,

sending a large amplitude square wave pulse to a Beckman timer,
model 5230, At the light level used, the circuit turn-on time

is~ 10 usec which ensures an overall measurement accuracy of

€t <1x 10™>. The measured turntable stability is %i’ L 2x 1074,
Additional information on the turntable design and construction

is contained in a laboratory report (Beardsley, 1967).

C~4. Support Equipment

Flow observations were obtained using sequence or lapsed
time photography. A 22 watt flourescent circle lamp with para-
bolic reflector is mounted on the turntable beneath the fluid
container to provide back lighting. The camera, a .Nikon 35mm
with £/1.9 lens and motorized back, is attached to a rectangular
frame built with channel pipe around the fluid container and
bolted to the table. A battery power pack drives the camera
mechanism through a set of microswitches activated by a Cramer
timer (model 540). The fractional variability of the switching
pulses is~1 x 10'3. Both battery pack and timer are mounted on
the table. '

The fluid temperature is measured with a copper-constantin -
thermocouple attached to the side wall in the fluid container.
The reference jﬁnction and icebath are also mounted on the table
to reduce stray emf pick-up across the copper slip rings. These

have also been electrically and thermally shielded. The accur=~
acies of the temperature and viscousity measuréments are +.02° C
(~1 uV) and £0.006 centistokes respectively. A schematic of the
support equipment is shown in Fig, C 1.
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7=-2
7-3
8-1
8-2
9-1
9-2
10-1
10-2
11-1
11-2
12-1
12-2
19-1
19-2
22-2
26-1
26-2
27-1
27-2
29-2
30-1
31-2
31'-1
33-2
33'-1
35-2
36-1
36'-2
37-1
38-1
38-2
39-1
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APPENDIX D

Tabulation of Results for the Stability Study

E
2.110
2.105
2.100
2.097
2.092
2.087
2.085
2.080
2.083
2.080
2.076
2.072
1.956
1.956
1.949
2.048
2.045
2.087
2.085
2.063
6.220
6.188
6.167
6.082
6.135
6.104
6.099
6.214
6.189
3.777
3.772
3.767

Re
80.28
93.82
53.64
64 .41

. 75.23
86.09
43.07
29.81
74.47
86.93
74,60
87.02
79.90
80.57
73.78
78.73

80.15 .

75.33
76.59
79.83
114.07
91.60
110.68
102.17
110.55
105.58
107.74
108.60
107.68
84.99
87.84
89.35

£
.0650
.0759
.0433
.0520
.0607
.069
0347
.0240
.0599
.0699
.0599
.0699
.0623
.0628
.0574
.0628
.0639
.0607
.0617
.0639
.1586
.1271
-.1533
-.1405
-.1527
-.1454
-.1484
-.1510
-.1494
-.0924
-.0954
-.0970

tang State
.178%.003 UsS
.178+%,003 us®
.178+,003 S
.178+.003 S
.178%.003 S
.178%,003 US
.178+,003 S
.178%.003 S
.178%.003 S
.178 £.003 US
.1781.003 S
.178+%,003 Us
.178+£.003 Us
.178%.003 UsS
.178+.003 S
.1784.003 Us
.178+.003 Us
.178%,003 S
.178%.003 S
.178%.003 Us
.178+.003 Us
.178%.003 s
.178+.003 Us
.178%.003 S
.178+.003  US
.178+.003 S
.178+£.003 Us
.178%.003 Us
.178+.003 Us
.178%.003 'S
.178%.003 S
.178%.003 S

I
25.63.2
25.6%3.2

22,8%1.1

23.4%1.3

22.4t0.7
24.5¢1.4
25.2%1.6

24,5x0.7
25.2x1.1
26.0%0.7

12.2%1.6

12.2%1.6

12.2%1.6
12.2%2.6
12.9%2.6



Run #
39-2
40-1
40-2
41-1
412
42-1
422
42-3
43-1
4:3-2
441
44-2
45-1
45-2
46-1
4,6-2
47-1
47-2
48-1
48-2
49-1
49-2
50-1
50-2
51-1
51-2
52-1
52-2
53-1
53-2
54-1
54-2

E
3.717

. 3.704

3.69%

3.696

3.695
3.870
3.868
3.865
1.275
1.274
1.282
1.281
1.256
1.256
1.255
1.259
1.253
1.252
2.127
2.129
2.160
2.160
2.150
2.149
2.131
2.129
2.118

2.124

2.134
2.133
2.147
2.148

Re
89. 64
94.38
98.25
97.19
97.89
92.16
94.16
96.12
63.10
64 .07
73.28
68 .80
76.23
74.85
74.03
72.93
72 00
71.00
79.50
87.51

105.12

100.47

103.08
97.52
98.52
99.56

134.28

126. 64

131.73

130.27

121 54

133.92

€
.0967
.1016
.1056
.1045
.1053
.1014
.1036
.1057
.0399
.0405
L0464
.0436
.0478
.0469
0464
.0457
.0451
L0449
.0527
.0580
.0702
0671
.0687
.0650
.0654
.0660
.0686
.0648
.0675
.0667
.0625
.0689
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tanck State
.178%,003 S
.178%.003 Us
.178%.003 Us
.178%*.003 Us
.178*.003 Us
.178+.003 UsS
.178%.003 US
.178%,003 UsS
.178%.003 S
.178%,003 S
.178+.003 Us
.178%.,003 S
.178¢.003 Us
.178%.003 UsS
.178%,003 S
.178%,003 US
.178 +.003 S
.178%,003 S
.144%,003 S
.144%.003 S
.144 +.003 Us
.144%.003 Us
.144%,003 US
.144%,003 S
.1444% .003 S
.144 %,003 S
.111%.003 Us
.111%.003 S
.111%.003 Us
.111$,003 S
.1114,003 S
.111 +,003 US

I

16.2%2.0
16.2£1.0
16.2%0.7
16.2%0.5
16.2%2.0
16.2£2.0

28.241.0
28.2+1.0
28.2+1.0

30.2%1.0
30.520.8

23,1%0.9
24.5¢0.9
23.8t1.2

21.6%0.9

23.8+1.2

22.5%1.5
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APPENDIX E

Derivation of an Equivalent Two-Dimensional
Problem for the Sliced-Cylinder
Geometry

We may easily derive an approximate two-dimensional vortic-
ity equation for the sliced cylinder model on the assumptions
that (a) the horizontal flow is independent of z in the interior
and western boundary layer and (b) the vertical Ekman layer flux
on both top and bottom disks is correctly given by the compati-
bility condition ( 3 ). The momentum and continuity equations,
scaled in the usual manner,

—

U= U p= p¥ = _§i_ﬂ~ = 1o
€L [ F pla)® 5t T T oF

QoL

simplify to
ny + €funy vyl -2v = b, + Ean

ve + efuvy + vv3}+2u = ~py + Edv

The curl of the momentum components yields the vorticity equation
Sg + 6{%5x t VSJj} + (2 + 6S>(ux+v.j) = EAS
where S = v, - Uy

By our assumptions, the integrated horizontal divergence is
|

S (ue+ vy) dz = (u”v‘jm w (tam g )= 07 (1)

%un&g
Since h=1 =~ tan«ﬁ and
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w(tomay) = fomay + E?S 1 O (£% tins)
2

w((): El/z - Eiz:? . M
2

the local horizontal divergence is

(gt vy) = Hmd v+ Efs - e

The vertical vorticity balance is then

§&+ 6(’145,( +v53) -l—(Z__ié__S)({zw\a\/+—E'/?-S"Ev7‘):: ENAS (L:."l)

Introduction of a vertically integrated vorticity function T

S|
Ldz = S<\+ 'l’kMO(j)
Ym0y *

and some computation further simplifies (E-1!) to

” c\ =Y
SH‘ é(MS +v5)+2+amoz us +?_(hmdlr+EZS)“(’2. _E)LZ
h
9 A v .
+E (45 + 24amaSy + zwd%) (e-2)
The secondary vertical circulation driven by the upper Ekman
layer (term e in E-2:) is the vorticity source and as the only
forcing term in (E-2.) corresponds to the 'surface stress' or
"equivalent body force' used in the theoretical wind-driven
ocean circulation modeﬂstudies. The interior balance C = €
determines the velocity and vorticity scales
Ie.
Ve = EZ
toma
; .
(wyv) = E® (uyv') 3)
) — 3 E-
toma ( )
—_ | ! . = _
5~ E%% ‘ (e-4)

so that W', v' , and S' ard0(l) dinmensionalless fiélds in the
interior region. Substitution of (E-~-3') and (E}AF; into the
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vorticity equation (E~2.) and ignoring the smaller terms (b,
d, £, h, and i) finally yield an approximate scaled vorticity
equation

/ 4 ‘ ! e ! " = !
Syt f_a__id%u SK—LV%E +2v' =72+ ENAS

This may be compared directly to the scaled vorticity equation
(2.3) used by Bryan (1963)

LV e[2bd) -2 &ij+-¢==—mmv'4—ev4+
i 55(%7 ) ax(_33 ) X 7P
which was scaled according to the relations

(X,Aj’> = L ()()j) _t___

/
(‘\' = ?L'\L \/s q"
2@L9L

The equivalent Rossby and Ekman numbers for Bryan's results
are then determined from the relations

x
pL

E E s = é
e prplone

Eq
ESQ = ﬁ P(M/QQ (b_.y)laﬂd. )
where Re(%_ 0~¢ corresponds to the interior Reynolds number
Eoe | tanot E% . The equivalent parameter values used in Bryan's
study are tabulated below.

(3_ plahe Study Sliced Cylinder Parameters
. Re Flow State E Re
3.2 x 1074 100 unstable 3.2 x 10~° 10
3.2 x 107% 60 stable 5.43 x 107 ° 60
1.28 x 1073 60 stable 2.14 x 107° 60
1.28 x 1073 40 stable 3.20 x 1072 40
1.28 x 1073 20 stable  6.40 x 1072 20
1.28 x 1073 5 stable  2.56 x 10~% 5

10~
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