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ABSTRACT

PILTER THEORY OF LINEAR OPERATORS WITH SEISMIC APPLICATIONS

by

Markwick Kena Smith, Jr.

Submitted to the Department of Geology and Geophysics on
January 11, 1954, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

The discrete linear operator is discussed as a linear com-
putational technique parallel to electrical filtering. The dis-
crete notation is developed from the continuous linear operator
and the special case of the prediction operator is considered.
The concept of linear operator dimensions is introduced and the
generalised or n-dimensional linear operator iv suggested.

The filter characteristics of the linear operator are de-
veloped from several different approaches. Both the transfer
function and the impulse response are considered. The power trans-
for function and the transfer function for the prediction operator
are also obtained. The concept of two dimensional spectra and
filter characteristics is considered.

The restrictions on the transfer function of the linear
operator are considered. It is found that the real part of the
transfer function is even and the imaginary part is odd. Also,
under certain conditions the real part is independent of the ima-
ginary part. The restrictions on the transfer function of a
physically realizable, stable network are compared with the trans-
fer function of the linear operator. It is determined that the
linear operator and the linear electric filter are essentially
equivalent.

Criteria for determining the optimum linear operator or
filter are developed from assumptions as to the nature of the
input data. Several illustrations are given in a controlled
seismic experiment.

Thesis Supervisors Patrick . Rur3.ey
Titles Professor of Geology
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I. InrUction

The problem of separating desired information from background

interference is of major importance in the field of Geophysics, just

as it is in many other fields. If a seismogram contained nothing but

distinctly marked reflections, and the desired information consisted

of the arrival times of this reflected energy, then the problem would

be relatively simple. However, not only is the reflection energy at

least partially masked in background interference or noise, but the

requirements on the desired information are becoming inereasingly

complex. For example, in a simple geologic area, where only the sub-

surface structural features are of interest, the arrival times of re-

flected energy might be sufficient desired information. As the type of

area becomes more complex, the desired information may again be the

arrival times of reflected energy, but in this case, only certain re-

flections will aid in the geologic interpretation of the record, while

others will tend to confuse it. In the event one wished to obtain more

detailed information on the subsurface stratigraphy, the desired infor-

mation might consist of the frequency spectrum of certain wavelets in

the record.

A corresponding problem occurs in the interpretation of raw data

obtained by other geophysical prospecting methods. The desired informa-

tion, in the case of gravity data, might consist of the residual effect

of local ore bodies, while the background interference would be regional

and topographic effects plus anomalies due to local density variations.
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Desired magnetic data is similarly masked in regional effects, diurnal

variations, and fluctuations due to the instability of the instrument.

Many methods, in a wide variety of fields have been devised to

separate desired information from background interference. Much work,

of a more general nature, has been done on this problem in the fields

of Statistics and Electrical Engineering. Recently, there have been a

number of papers based on the mathematical theory of smoothing and pre-

diction as developed by Wiener -'and zolmogoroftY.

There are three common methods of operating on a set of informa-

tion or data in an attempt to select the desired information. Though

these techniques differ mechanically, they are fundamentally equivalent.

The first technique consists of direct observation of the set of informa-

tion followed by mental analysis. This technique is applicable to infor-

mation presented in either a discrete or continuous form. The second

technique consists of operating on continuous information by means of

electrical or mechanical circuits. The third technique consists of

operating on discrete information by means of mathematical operations.

Though the last two techniques require the information to be presented in

a particular form, it is generally possible to transform discrete informa-

tion into continuous information and vice versa.

Although these three techniques are basically equivalent, they

differ in precision, flexibility, speed, ease of design, and stability.

For most problems a combination of the first technique and one of the

others, proves to be the most efficient system. In certain cases a single

technique or a combination of all three will be best. Because the precision,
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stability, and even the speed are usually greater in the mathematical

and electrical or mechanical operations, it is often desirable to put

as much of the burden as possible on these techniques. However, flexi-

bility and design restrictions usually necessitate the final stage being

direct observation and mental analysis. Further) since the theory of linear

systems is more fully developed than nonlinear theory, the ease of design

restriction often limits the electrical or mechanical techniques to linear

operations. This is also true in the case of the mathematical technique

when applied to time series problems. However, this does not imply that

nonlinear operations are any the less desirable in general.

In a recent paper Wadrworth et. ali presented a linear mathema-

tical technique with applications to the detection of reflections on

seismic records. Knowledge of this methodwhica employs the concept of

the discrete linear operator, will be assumed for the remainder of the

present paper.

The purpose of the present paper is to treat the discrete linear

operator as a general linear mathematical technique, and to demonstrate

the relationship between this mathematical operation and the corresponding

linear electrical operation, The possibility of extending the current

linear mathematical or electrical operations to assume a greater share of

the work in the 1fterpretation of seismic records will be indicated.

ifurther, methods of determining the linear operator from the input infor-

mation and from other information and assumptions will be discussed in

relation to seismic records. Application of certain of these methods will

be demonstrated in a controlled experiment.
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The properties of the discrete linear operator will be developed

from the definition, but wherever appropriate, the relationship between

the continuous and discrete cases will be demonstrated. Terminology

and notation will, in general, be erplained where it first occura,

Certain standard notations and definitions will be used without explana-

tion in the context, but will usually be found in Appendix I. The term

*signal" will be used throughout to mean desired information. The term

"noise" will mean background disturbance. The "noise" will in general

consist of a predictable element referred to as "interference", and a

random element referred to as "random noise". The terms "trace," "input,

"data," "perturbed signal", and "information" will refer, in general, to

a combination of the signal and noise. It will be assumed throughout most

of this paper that the combination of signal and noise is linear.
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LI. The Generalized Linear Operator

2.1 Review of; Infgrmtion Theory and Linear Onerator Conceuts

The problem to be considered may be formulated as follows.

Given a perturbed signal x(t), which is the sum of a true signal

e(t) and a perturbing noise n(t), we wish to operate on x(t) in

such a manner as to obtain the best approximation e(t) to the signal

s(t). That is

x(t) = S(t) + n(t) 2.1

and

e(t) = L~x(t)] 2.2

where e(t) is the best approximation to s(t), or more generally

s(t+a()., and L represents an operation. At this point the criterion

of best approximation and the form of the operation are unspecified,

For the case considered in this paper, the first restriction put on L

is that it mast be a linear operation on the available information.

Thus if x(t) is known from - w to + w we may write

CO)

e(t) f x(t-t) A(T) dT' 2.3
-OD

where A(r) is a weighting function.

If, on the other hand, we know x(t) only from - oto 0, e(t)

may be written

e(t) f x(t-T) A( ) dT 2.4
0
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If A(T ) is independent of time, then equations (2.3) and (2.4) repre-

sent a large group of linear operations on the available information

that is invariant under a translation in time.

If, as in the ease of a seismogram, x(t) is known only between

finite limits, but e(t) may be determined from x(t) at times greater

than t as well as less than t, then we must use the special case of

equation (2.3) t

e(t) = x(t-T) A(r) T IT , 2.5

AtM

where t and t are positive. It may be argued, in the case of a

seismogram, that we actually know x(t) back to t = -co and x(t) could

be recorded to t = + a However, later discussion of the application of

linear operators will indicate that this information would add very little

to the solution of the problem. Further, from a computational point of

view we must restrict ourselves to the finite case.

For purposes of computation it is convenient to approximate

equation (2.5) by the discrete formula derived in the following manner.

Let us approximate the function x(t) by a series of positive and nega-

tive rectangular pulses of width h such that the mid point of the top of

each pulse lies on the curve x(t). See figure 1. Let the amplitude of

each pulse be designated by x where i takes on integral values and ih

represents discrete values of t at the center of each pulse. Therefore

X1h = x(t) at t = ih. Equation (2.5) may then be approximated by

II-2



(r) (a+ )h

e~) X+a / ( g-)dr +,q.+j 3 A(rT)dr+...+z~ A( Mr)ar
(~R%)h (a$)h

2

2.6

where -Mh is the closest integral multiple of h to t. + I h and

nb is the closest integral multiple of h to t - ±k. If n then

define

f A(r)dr 2.7
S(,J) h

equation 2.6 may be written

O(t) as-
i'--S. 2.8

As a final step in passing to the discrete case, let us define the right

hand side of the approximation (2.8) equal to e , Therefore e I e(t)

at Ih = t, where

o ~ as,.. 2*9a

Equation (2.94) is completely equivalent to
m

*i+t 4 a' x
0=0 2,9b

where k -M, a = a , and m = n+M. For the rest of this paper,
a 0-A

except where otherwise noted, the term linear operator will refer to the

diserete case as defined by equations (2.9). The form (2.9b) will pre-

dominate.
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2.2 The Qne ]DMensional kiner Quierator

The one dimensional linear operator will be defined by

equation (2.9b), a

ei+k = a, 7 2.9b

r=o

where the a, are known as the operator coefficients, a is the in-

formation or data, and *iek is the output or the approximation to the

signal. It is often convenient for computational purposes to adjust the

mean value of a + by the addition of a constant term. Thus a more

general form of (2.9b) is

e if a + a as*Mi* 2,10O

smo

For convenience in the following discussion the constant term will be

neglected. This corresponds to requiring the mean of all data to be zero.

In Part 2.1 of this section we onsidered the linear operator as

applied to a single seismic trace and we saw that since we must deal

with a4. finite amount of information, our problem is somewhat specialized.

Farther, the discrete case with which we are now concerned adds special

problems of its own. As an example, let the signal that we wish to find

be a series of transients representing reflections, and let the noise be

the background interference. The signal plus noise, x(t) or x., is

then the traee. Since the signal must lie within the time limits of the

trace data, the ei+k series must necessarily contain m+l less points

than the x series if - m4 kt o, and m+l+k lees points than the

I Iseries if k> o or k<-,* Yurther, if the number of data points on
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the x, trace is M and we wish to determine the coefficients a

from the x1 data, then 2(a+l)4 V for the first case above and

2(m+l)+k4 for the second case. Thus the maximum value of m is

limited by the amount of data V available. In practice it usually

turns out that the maximum value of m must be further limited by

computational restrictions.

A similar problem may be stated as follows. Although the

approximation to the signal e tends to improve, by certain cri-

terion, as m increases, in some cases the arbitrariness of the phase

relation between the signal and the approximation to the signal also

tends to increase, Thus from the point of view of discrimination of

reflections with respect to time, we do not want m to be too great.

We therefore have the dilemma that an increase in the value of a will

in general improve the frequency and relative phase characteristics of

the approximate signal, but will increase the arbitrariness of the abso-

late time relationship. We will see later how this situation may be

improved with the introduction of another dimension in the operator.

Let us now return to the one dimensional operator form, equation

(2.9b), and again apply it to a seismogram, but from a different point

of view. Assume that the seismogram contains U traces where M is a

reasonably large number. If we now select one reading from each trace,

say on a line perpendicular to the time axis, we may consider this set

of data as a series xi where the index i now refers to the ensemble

of traces. To what the approximation e ik might now refer will be

left unconsidered.
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While still on the subject of one dimensional linear operators,

we may introduce an additional concept for those who think in terms

of correlations. If we think of the series of coefficients as a

transient, then

e C a x 2.9b

*i0

in nothing more then an approximation to the cross-correlation function

of the series a and x or the convolution of the series a and

x0 . 'his last concept will enter into the discussion of filter charae-

teristies,

2.3 The Two Piaensiona Linear Osrator

We have now considered applying the one dimensional linear opera-

tor along the time axis and perpendicular to the time axis, bet ue com-

bine these two approaches and form the two dimensional linear operator

a m20m1 M2
i+ i+k= ( a1 2 2

2.10

The notation is similar to that of the one dimensional linear operator

except that the indices with the subscript 1 refer to the time axis

and the indices with the subscript 2 refer to the ensemble axis. By

this technique we have introduced more information into the linear opera-

tor with the probability of decreasing or removing some of the limitations

or drawbacks encountered in the one dimensional case. From another point
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or view, the statistical sample, from which we determine the operator,

has been increased and we might thus expect greater stability in the

resulting mechanism. All the above improvements of course depend upon

the .assumption that the traces are physically related or correlated.

2,4 The Generalied "lner Onerator

The -Generalized Linear Operator or n-dimensional linear operator

is nothing more than a generalization of the previous concepts to n

dimensional space. That is, instead of attempting to determine the

signal from one record, wt might introduce a third dimension by adding

a set of recordg from the same area to our linear operator. A fourth

dimension might consist of a group of sets from areas of the same type,

and so on. Although the practical manipulation of an n-dimensional

operator would probably be too unwieldly, the concept of combining all

pertinent information in a mathematical operation to determine the

signal is intriguing.

2.5 The Relationthip Betwen the Two Dimensional Lnear Operator and

the Prediction Operator Ujsin& More than One Trace

The prediction linear operator for two traces as defined in

Reference 3 is

Ac + E (at x + b'8 y 0 ) 2.11
0V20

where x is the trace to be predicted and y is the second trace.

In this case, ' 'i, represents an approximation to the x trace at a

II-s



phase lead k'* However, the approximation to the signal which we

wish to find is given by the error series

A

i~k Itit ik

or V

a i+kt *C+k ~ -~ 0

at z

Now the two dimensional linear operator with a constant term added is

e m+
1 1 , i2+k2

al

s o
1 o

M2
:E a 6a 0x

S2, 1 s2 1 Olt 2" 2

which, if we are considering only two traces, may be written as

1Y+lt i2+k2
=a + a $,o Xig 1 i 2 5 =0

a 11 l'a-Ol'i 2 -

turther, if we plan to use this operator to predict only the first

trace , then we can simplify the notation by letting x lC11 2 1

representing the first trace, x ~ l2 y i. # representing the

second trace, and a kl' 2+k2 = ei+k , since the index 12 is

constant and k2 = 0. Also, we can let a a aa and a 1 b .

Therefore equation (2.15) simplifies to

aa
i+k a+ I

eso0

M
asxi-s + g' b1y 0-,$00

II-9
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If we require

k o

at Z -0

a *=1
0

a = -asI-k for a A k'

a, o for s<k'

b o for m<t'

b a -b#sk, for s4k'

a M + k'

* 0 1t - kf

then equation (2.16) may be written as

± I = - c - sa',Xi-s-k, - $ b 8, $yi-st~ki

2.17

which is equivalent to equation (2.13)
V N

1+k' ' Ci+k, ~ - f_ t, o I y

2,13

We therefore see that the equation for the error series using the pre-

diction operator is equivalent to the two dimensional linear operator

plus a set of restrictions. It is, thus, a special case of the two

dimensional operator. We might therefore expect that the two dimensional

operator would be more flexible and would, in general, provide a better

approximation to the signal.

Examining equation (2.13) it can be seen that wince the output is
A

ei+k rather than Xi+k the concept of prediction does not really enter the

problem, and that if we had applied another set of restrictions to equation

(2.16) we might have obtained the error series equation corresponding to

the so-called interpolation operator.
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III. tilter Characteristitc

3.1 FAOrier TrAnsfora Concets

Consider the Fourier integral representation of the function

x(t)

x(t) / 1(O) * do 3.la

and the Fourier transform of x(t)

1&o2) f X(t) e~ t dt 3.lb
-00

The variable t is regarded as the independent variable in a certain

region designated as the time domain, whereas the variable o repre-

sents an independent variable in a oorresponding region known as the

frequency domain. The function x(t) represents a specification of

some desired function in the time domain, and the corresponding function

X(o) is regarded as the specification of that same function in the fre-

quency domain. In other words, the function X() is in every respect

just as complete and specific a representation of the desired function as

is x(t).

Though the above statement is true, certain functions are more

readily interpretable in one domain than in the other. The possibility

that this might be the case with the linear operator motivates the fol-

lowing development. Further, since x(t) in equation (2.1) represents

a physical phenomenon, it conforms to the requirements of representation

by a Fourier integral.
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3,2 Filter Chara teristics of the Continuous Liner Oerator

Let us consider the continuous linear operator corresponding

to equation (2.9b)

e(t+t) f x(t-T) A(T) dr. 3.2

We then write

x(t) e ~ )eado$ 3.3a

1(O) * J (t) ed'Jdt 3. 3b

-0*(t) = 5E(e) * d., :34
-oo

and

2(e) * e(t) e4tdt 3,4b

or for the particular operations that we wish to perform,

1(e0) Le0 -T)edi35sad 0

and A Od 
.5E) f *(t+t,)

-4

Multiplying both sides of equation (3.2) by eot+t) we obtain

e(t+t0 ) e-ct+t0 ) f x(t.r) ,~ t ) A(T ) -e +to dr

3.6
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and if we integrate both sides of (3.6) with respect to t from

t = -o to t - +a, we obtain, by equations (3.5),

0

EWs) = X) / A(r ) eM'r +to) d' 3.7
0

How E(m) represents the amplitude and phase spectra of the -e(t+t )

series and X(o) represents the amplitude and phase spectra of the

x(t) series. Thus if x(t) is regarded as the input, and e(t+t0) is

regarded as the output, then

H(f) fA(V) eA (7  t) d'T 3,8
0

represents the amplitude and phase transfer function or filter

characteristic, An entirely similar derivation may be made using

the concept of the unit impulse response.

3.3 Ilter Chxarateristic of 1 e One tiaenional Linear Operator

Now let us consider a parallel development of the above expres-

sion for the filter characteristics in the case of the one dimensional

linear operator a

i+k 2 $ aei-. 2.9b

Let the spectrum of the x series in the interval A to B be repre-

sented by

1(:) x eJa~i 3,9
i=A

1X1-3



and let the spectrum of the e series in the same interval be de-

fined as B

E() = f e e~ 3.10
i=A

or in more convenient form

B+s

1(0) = U

icA+s

B-k

E(c) c .1
i=A-k

X e

e .e)

Multiplying both sides of equation (2.9b) by

3.1a

3.11b

ea ( , we obtain

0 jh (i+) = i , -S -jo(S+k)
i+e 00 1i-S, a

Ir we now sum both sides over i from i = A to i = B, wget

B2a(i+k) = -h+k)
i,=A alto

h(-B
C-x

3.12

If the spectra of e and x are constant with respect to time or if

the spectra vary slowly and 1B-A> I ,+k, if k>o or IB-A1 > a,
if -mE $k o, then we may neglect the e and k dependence of the

limits and, using equatione (3.11), obtain

m
E(=) x(e) a e ' 3.13

8=0

III-4
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or 1) 2

where

a
1=Q -Jatis . 3,15

8=0

A more direct method consists of the following. Let the input

information xi be data from a sine wave of angular frequency %.

Since the system is linear the output will be a single frequency sine

wave of the same frequency but, in general, different phase and am-

plitude. The complex notation for a sine wave, x(t) = e or in this

case x I =el'1 , is convenient. Using equations (2.9) we see that if

the input is x , then the output ei will be given by

a

e L%7 a 0ejooh(i-s-k)e1  a

and the output over the input, by

a 4,-atas+k)
1(t) 3 3.16

i r

This equation is identical with (3.15).

The characteristics of a filter may also be expressed in terms

of its unit impulse response. If K(t) represents the unit impulse

response of some filter system, then the output e(t) may be expressed

in terms of the input x(t), and the impulse response K(t) in the

following manner. Let the input x(t) be represented by a series of

rectangular pulses of width h as was done in Section II, figure 1.

111-5



t

t-. wa=h
x(T) hK(t--r).

3.17

This expression corresponds to the convolution integral. Let sh = t- r,

then

e~t) = ur
n+t/h

x(t-sh) hK(sh)

3.18

If K(sh) is zero outside the interval xmo to sa, then (3.18) may

be written

e(t) * x ,hK(sh)
0=0

But (3.19) is equivalent to equation (2.8) of Section II.

n

e(t)* < a xi-8
8= -l

Therefore hK(sh) = a5  in the special form of the linear operator with

M = 0, and the a series thus represent h times the impulse response

of this linear operator. The transfer function of this linear operator

may now be obtained by the formula

100

3.20) K(t) edt

and by its approximation

a o

M
bK(sh) a 1 a e

S=O

3.21

111-6
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The reason that (3.19) corresponds to the restricted linear operator

with M = 0, will be discussed later. It turns out that a more general

definition of K(t) admits linear operators with V 0.

We therefore have two approaches to the consideration of the

transfer properties of the linear operator. As might have been sus-

pected, one approach is the Fourier Transform of the other. Another

function which will be useful in our later work is the power transfer

characteristic

i~) a() L Pa(T) :E (o) + 2 a (T) co h
tna~. Tl (1)0l t

3.21

where a () a j a~a+y (see Appendix II).
5=0

3.4 kiLter Characteristics of the Predi 4ion Operator

Although, as we have seen, the error series expression for the

prediction operator is a special case of the two dimensional linear

operator, it is convenient for some purposes to develop the expression

for the transfer function in the notation of the prediction operator.

Equation (2.13) gives the error series, in the case of a two trace pre-

diction operator, as

i+k = i+k- o -a Xi-s b 7i-ss=0 02.

2.13
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Then BE = U (1A) (1-A) + 2Re [Ci(1-A)] + IIL

The extension to more than two traces is obvious.

3.5 Significance of and estrictions on te One DiUensional linear

Operator ilter Characteristics

The physical significance of a(w) in equations (3.14) and (3.15)

is the same as that of the transfer function of an electric wave filter.

That is, for a given amplitude and phase spectrum, i(O), of the input,

the output amplitude and phase spectrum, E(o), will be given by

E(M) = H(a) xWO).

Because of the compatational procedure, all functions of o will have a

period of w . Whether or not H(w), as given by equation (3.15)

f.a a a 0- a ,3415

is realizable in terms of real, linear, electric cireuit components,

excluding the peculiarity of periodioity, is a problem which will be

discussed later.

In general H(Qo) will be a complex function of frequency. Since

the coefficients a must be real, we can write

a M
H(a) = Re[H()) + jIm[H(a)] 1V acos ah(k+s) - 14 as sin th(k+s)

s=0 0=0

3.31

Thus the real part of H(o) must be an even function of w and the

imaginary part must be an odd function of w. If we write H(o) in
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polar form

H(to) = |H(0) ( e~3.32

then, since we may factor out e9w from the sua in (3.15), we may

write

(C)| e a ;E a 0-e 3*33a
8=0

or

5=0

where IH(w)I 2 II(0 ) H(w) of equation (3.21),

and tan e a $in at$ t 3.35

aeois cobs
suo

If equation (3,31) is examined, it can be seen that the imaginary part of

l(i), In((0)), may be made equal to zero for all frequencies only if all

the coefficients a, are equal to zero (the trivial case) or if m is

an even integer, k - and the coefficients are symmetric about a.
22

2

If this is the case, then Q() = ar where nao, ± 1, +2, .... Similarly,

ir a is an even integer, k --a and the coefficients a are anti-2' s

syumetric about a , then the real part of H(o), Re[H()), is equal to

2

sero and ( where = 0, + 1, + 2,

If we consider a to be an even integer, we can analyse the co-

efficient series a into its symadtdc and antiaynietric components about
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a Let A3  represent the sytmetzic component and B reprsent the

2

antisynmnetric comuponent. Then

As -1 ( as ]tA $[ a

B 4-
A 0, ,t1 .

S= O, ± 1+ ...

and a, = A + BS.

If we substitute (3.38) into (3.31), where k :- we obtain

3.36

3.37

3.38

a
~ j t A8

SO

-a0co O((s A)

sin Wh(a ) +

B0 sin wh(s )

We can therefore consider H(o) in (3.39) as the sum of two filter

charaeteristices

S=A
A coe (e- )$ 2

am0=0 A sin wh (0e!~)

3.40

B sin dh(s- )
* 2

e- + - e-~s Se 2

A co oh(e )
$

r

Ht 48=0

600
3.39

and

HBI
0=0

B cos "(- - j

where

and

3.41

3.43

III-il1
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This means that only the symnetric part of the operator coefficients

a contributes to the real part of H(), and only the antianaetrie

part contributes to the imaginary part when k - and m is an2

even integer. This result may also be demonstrated in the following

manner,

m
H(,I) =R [FO (0)) + JIm[H(a)3 1 a os ch(s- ) 1 a, sin oh(A )

5=0 5=02

Therefore -l

Re[H (0)) a + E (a +a-) coo ab(s- (), 3.45

2

which is a Fourier cosine series with terms. Similarly
2

2

in (345) are given by

(a, + a-) = f R[((g)] coost (s- ) do 3.47
-tr

and the coefficients in (3.46) are given by

(a,- a-) f I4[H(/)) co sin oh(4 ) d 3,48
-r

It is seen that these coefficients are the definitions of twice the symmettic
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and entisymetric components as given in equations (3.36) and (3.37).

Thus it is possible to derive an operator using equations (3.47) and

(3.48) if we are given any filter characteristics whose real part is

representable by a Fourier cosine series, and whose imaginary part is

representable by a Fourier sine series of one less term and of the

same period. The resulting operator will have a value of k = - 2

and if the Fourier cosine series contained M terms, then the operator

will have m = 2(M-1).

Now let us attempt to examine the physical significance of this

result. Again we return to equation (3.15)

Jia) e a -jh(s+k) 3.15
8*0

If we let p Jc where p = pg jp1 is a complex number representing

the complex frequency plane (Fig. 2), we then have

a -pt(afk) -jpjh(s+k) 3.49
a(p)= ae

0=0

It is seen that this function is analytic except at p + co* If

k0 there is a pole at + ew. Therefore Re[H(p)] H1 and IMIN(p))R

are conjugate harmonic functions in the finite plane and they satisfy

Laplacets equation

+ 2 0, 3,50

We therefore know that if, for instance* H is known for all values of p,
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then I may be determined by the equation

e(- dpR + a dp) + c
I PR0#0

3.51

To determine the arbitrary constant c, let us evaluate the integral.

Now M

0=0

-Pah(o+k) Oos p1 (S+k)h

Therefore

aS (+k) he P

-ph(s+k)he

sin pyh(s+k)

coo pih(s+k)

If we break the line integral in equation (3.51) into two parts

pt4,0

a~f
00

we obtain

pR, P1
+R' h4-o

sin plh(stk) OR -

a,(+k) hep coo Ph(s+k) dp1 + e a

sin pih(s+k) + c

Thus e must equal sero.

11-14

S-
ap1

3*52

5=0

and

H

353

a,(&+k)
S=O

3.54

+ C

Pa'0

0 = f

3*55

i
0=0

0=0

p&'PI

R'OI

a -pb(+k)

10=0
3.56

a a ( S+k) he



As we have already stated, H and H, satisfy Laplaets

equation. In order to uniquely determine a function which satisfies

Laplace's equation it is necessary to know either the value of the

function or its slope on a closed boundary.' However, when we say

that we prescribe the real part of the filter characteristics, we

are in reality only prescribing values of the function Ha on the p1

or real frequency axis. Nevertheless, since we know the form of R.,

a ~poh(#+k)
i= R a (e k cos p1 h(s+k), 3.57

sa:o

under certain conditions, i.e., ranges of k, knowledge of Hg along

the p1 axis is sufficient to determine H over half of the complex

plane. Suppose, for instance, that we know lim Ha = o as pR-+oo

Thus, there are no singularities in the right half plane. Now we

know, from the theory of complex variables, that every harmonic

function of p and p1  transforms into a harmonic function of a and

v under the change of variables

U + jv a f(p + jPt) 3.58

where f is an analytic function. Now the particular transformation

which we wish to consider is

u + jV = p jp +1

Since we only consider the right half of the p plane where pg, o,

then f is analytic in this region. This transformation maps the right
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half of the p plane into the interior of the unit circle in the

u + jv plane and the p, axis is mapped into the closed boundary of

the unit eirele (ig. 3). Therefore, if HR is a harmonic function

in the entire right half of the p plane, it will transform into a

harmonic function in the u + jv plane and, thus, must satisfy

Laplace's equation within the unit circle and on the boundary. But

we have prescribed the value of R on the p1 axis. Therefore, we

have prescribed the value of the transform of H on a closed boundary

in the u + jv plane and hence, we have prescribed the value of the

transform of HR throughout the unit circle, or throughout the right

half of the p plane.

Now let us see under what conditions Hg is a harmonic function

in the entire right half of the p plane. We see from equation (3.57)

that this will be so if (s+k) E for all values of a where e is a

small positive quantity. Thus we must have k > a + e for all s. Now

s has a minimum value of 0. Therefore k > e . A similar treatment

may be carried through in thl left half of the p plane, and, in this

case, we find that Hs is only completely specified by its Dirichlet

conditions if s+k4 -CE where e- is a small positive number. Since in

this case the maximum value of a is snm, k1c -(m+ C ).

We therefore see that HR ie completely specified by its boundary

conditions on the p1 axis only if k>, C or k(i-(m+er). This treat-

ment does not, however, determine the degree of specification when

-(m+e ) C k K E or when E = 0. In conclusion, we can say that in view
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or equation (3.51), the imaginary component of' the filter characteristies

vill be completely determined by the real frecuency characteristics of

the real component of H(w) if k > 6 or ki -(m+e ), and that if

-(m+e ) < k < E then Im(Eo)) is at least partly independent of

Me[Hw)). Only when k = is Im[H(4) completely independent2

of Re[{()]. Nevertheless, in all the above situations, RefftQ)]

must be an even function of w and Im[H(w)) must be an odd function,

3.6 Physical Eelizaaility of the One Dimennional 1inear Onerator Flter

The requirements that a transfer function H(ca) be realizable

in terms of a physical, stable network, whether active or passive, may

be stated as follows.

1. The zeros and poles of H(p) in the p plane must be real,

or they must occur in conjugate complex pairs4,

2. The real and imaginary components of H(o) must be, respec-

tively, even and odd functions of p on the tmaginary p axis (the real

frequency axis).

3. Poles on tae imaginary p axis muit be simple.

4. None of the poles of H(w). can be found in the right half

of the p plane.

Now let us examine equation (3.49),

M -Pah(+k) .-Jpyh(s+k)
H(p) = : a e e , 3.49

0=0
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with respect to these requirements. Requirement (1) is fulfilled with

respect to poles, for only infinite values of pR can make H(p) = a.

Zeros can only occur when Re(fH(p)] = 0. Therefore if p1 1 is a sero,

then -p11 must also be a zero. Thus the zero; must be real or occur

in conjugate complex pairs. We have already :ieen that Re[H(w)] is

even and Im[1(0)] is odd, so that requirement (2) is also satisfie.

Requirement (3) is certainly satisfied since no poles exist on the

imaginary p axis. Requirement (4), however, will be violated unless

k - 0. Nevertheless, this limitation on the realizability of H(a)

is only apparent since k must be finite. If, for example, k <0, we

can introduce a delay k such that Y(o) is realisable, where

Y(W) H (w) 0 = A ~' 3*59
0=0

This situation may perhaps be visualized more clearly in terms of the

discrete impulse response K where K is given by the inverse

Fourier transform of H(o)

COm e d 3.6o

or

h K ai f ,r j a i~sd0Jb(si4 ~J(Xti dw
-2r/h io

3.61

KI is interpreted as the output obtained from a filter in response to

a unit impulse impressed upon its input at time i = o. To make

physical sense, the output can only be non zero for i > o and for
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stability, it must drop to zero again as i becomes large. Therefore,

K must be zero for i < 0 and K must again become zero for i > M

where M is some large finite number. The secoad condition is auto-

matically fulfilled, for k and m are both finite. The first con-

dition, however, will not be fulfilled if k]<0, for then K a

K , etc. That is, the response to the unit impulse will.

occur before the unit impulse is impressed upon the filter. However,

since k is finite, we can introduce a delay of lkt into the filter

such that the response is zero before the impulse is impressed.l

One further problem exists in the comparison of the one dimencional

linear operator filter with a real network, for as we have seen, the fil-

ter characteristics of the linear operator are periodic. This phenomenon

is a result of the fact that the linear operator is discrete. However,

we have seen that the computed spectra are also periodic of the same

period, and therefore the whole spectrum of our discrete data lies be-

tween

o. or 0 4h hh

where i is the spacing of the discrete data. The spectrum of the

discrete data does not, in general, represent the spectrum of the con-

tinuous trace because the discrete computational procedure can not dis-

tinguish frequencies differing by A or values of w differing by 2, where

n is an integer. It is therefore necessary to choose h sufficiently small

1
such that the power at frequencies Jfl> is negligible. If this is the case,

h

then the spectrum of interest in the continuous case lies between hi
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and the filter caaracteriLvics of the continuous case correspond to the

filter characteristios of the discrete case.

To summarize the above results, we can say that a one dimensional

linear operator filter may be represented by an equivalent active, stable,

physical network, Further, it may be aigroximated to any degree of

accuracy by a passive lumped element network, together with a single

2Iamplifier, On the other hand, can a finite linear operator ;ossess

filter enaracteristies equivalent to those of any active, stable, physical

network? The answer to this Question is probably no. We have seen that

the transfer function of a linear operator which represents a physical

network, can have only one pole at - co The transfer function

of a physical network, however, may have poles throughout the left half

of the p plane and on the p, axis. But poles on the p, axis corres-

pond to infinities on the real frequency axis, and since H(0) is essen-

tially a Fourier series representation of some transfer function f(lQ),

we have a Fourier series approximation problem. Thus we can only approx-

imate the infinities as maxima, and in general we must require an infinite

number of operator coefficients for a good approximation.

We can, therefore, say that the one dimensional linear operator

filter is a special case of all possible activa, physical, stable filters.

However, if we use a sufficient number of terms in the operator we can

probably approximate any physical filter characteristics to a satisfactory

degree of accuracy.
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3.7 ilter Characteristies of the Two Dimensional Linear Operator

The filter characteristics of a two dimwensional operator may be

derived in a manner analagous to that used in the derivation of the one

dimensional linear operator filter.M Suppyose we consider the input

10'2 J(' ph1 + c2h2 2

then the output will be

a o a
2

$aj1 ( i' 1-k-s) jo2h2 2(' 2 2)e e

3.62

and the output over the input, H(0,2), will be

-e 1 2
H('01y 2 ) x 'B(4,i2i 2 S120 B 0

2

-jh 1 ( 8+k? -j 2h2 (0 2+k2)
a e exl' l2

3.63
Also, the two dimensional input spectrum may be defined as

B1
X((0iG1 2

B2

2 =A
22

and the output spectrum as

B B

1 2

i=112*2

z 11)42

a011 '2

S-j(ahi+ 2h2A 2)

-(chy1i 1+02h2i2)
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Again, for the relation

E(O ,0'2) *=3 X(O(2 *Wd166

to hold, the spectra must not vary too rapidly with respect to i or

12 in the intervals of length m1+ k1  and s2+ k2 '
We can visualise the two dimensional spectrum as follows. If

the subscript I again refers to the time axis of a seismogram and the

subscript 2 refers to the ensemble axis, we man construct a three

dimensional diagram where one axis is the 11 axis, another is the 12
axis and the third represents the amplitude of the trace. Thus the

two dimensional amplitude is essentially a surface. If we now take the

tourier transform of the surface along the i axis, we obtain a surface

representing the spectrum of a single trace along one axial direction,

say the 'Il axis, while moving in the 12 axial direction we pass from

the spectrum of one trace to the spectrum of another. If we now take

the tourier transform of this surface along the 12 axis, we obtain a

new surface, with coordinates w, and o)2, which represents the two dimen-

siomal spectrum. This second transformation is essentially a spectrum

analysis, in the 12 direction, of the trace spectra at various values

or .

To clarify the situation, let us consider an example. Suppose we

have a seismogram with M traces and we wish to operate on it with the

two dimensional linear operator

e l'2 = (a x li 2 + a0xi1 $1 2)+(a xl' 2 . + a 11 1 iQ2

3.67
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That is, we wish to use an operator with four coefficients, two on each

of two neighboring traces. We can compute the spectrum Xi () of the

12 trace and the spectrum i of the L trace. We can also

compute the filter characteristics, H (o) for the 1 1 trace.

rurther, we can write the spectrum of the output as E (co) for this

case of the operator applied to the 12 and 121 traces. Thus

Z ( 2Q 2 (Mj s2(a) + X1 (0) H1 1  Q).

3.68

We see that E (2 ) is the result of the filtering of X1 (o ) by

H 2() plus the vector addition of X 0(1) filtered by H ( 0).

Equation (3.68) corresponds to taking the Four:ier Transform of (3.67)

in the i1 direction only. But we wish to know the output spectrum of

each set of traces to which the operator is applied. We could there-

fore compute E for all values of 12  and compare this set of spectra.

A corresponding form of this information can be obtained by taking the

tourier transform of (3.68) with respect to i1 . We then obtain

E 2  = I 2 ) H (o' ,2). 3.66

Since we know that a one dimensional linear operator corresponds to

filtering, we can see from (3,67) and (3,68) that a two dimensional linear

operator corresponds to filtering and mixing, cr from (3.66), filtering in

two dimensions. Since, however, the data is nct continuous across the

traces, the two dimensional filter is not realizable in terms of networks

and we must be satisfied with a filtering and mixing device. To put it

another way, electronic filtering in the ensemble direction must be carried

out by using discrete data, just as is done in the linear operator.
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IV Methods of Determining the- Optimum iear Operator or tilter

4.1 The Influence f he Statcal ?rpet&ee of the Datan thie

DeterMinatin of the binear Operator

In the two preceding sections, the characteristics of the linear

operator have been developed, independent of assumptions as to the sta-

tistical nature of the input data. However, in order to evaluate the

usefulness of the linear operator, (and therefore the linear filter),

it is necessary to consider the characteristics of the signal and noise

to which the linear operator will be applied. Also, these characteris-

tics of the signal and noise will in large part determine the criterion

by which the linear operator should be optimized.

We have seen that the operator coefficients are independent of

time, and that therefore the filter characteristics must also be inde-

pendent of time. Thus, if we design an optimum phase and amplitude fil-

ter for the signal and noise in one interval of time, and we wish this

filter to be equally as satisfactory in another interval of time, then

we mast require the phase and amplitude spectra of the signal and noise

to be essentially constant with respect to tine. If we had only op-

timized the power characteristics of the filter, then we could reduce the

restriction on the spectra to the requirement that the power spectra of

the noise and signal be approximately constant with time. If, for instance,

the noise power spectrum is approximately constant with time, but the

signal power spectrum is not, then the criterion of optimization should

be to design a filter with power characteristics which minimize the

power in the noise spectrum,

IV-1



Another criterion for designing the linear operator is the transient

response or the impulse response. If, for example, the signal consisted of

a series of similar transients, then we might wish to contract these tran-

sients in such a way that they would appear in the output as distinguishable

pulses.

It is apparent from the above discussion that the criterion of

optimization depends upon the nature of the input information and also upon

the desired output. There are thus two alternative approaches to deter-

mining the best criterion. The first approach, and perhaps the more direct,

is to thoroughly analyze the data, drawing on all available knowledge of

its probable characteristics. The second approach is to apply the criteria

o1 optimization in succession, beginning with the criterion which imposes

the weakest requirements on the date. The optimum criterion in this case

should be that which gives the best signal from noise separation.

As will be seen, the exact fitting of an m+l term linear operator

to m+2 points corresponds to optimization of the phase and amplitude

filter characteristics in that interval. The least squares method of

ritting an m+l term linear operator to M points, where M >> m+l, coP-

responds to the optimization of the power filter characteristics in the

ritting interval.

In a previous section it was mentioned that seismic data might be

considered as existing from -oo to oo. However, it is obvious that the

statistieal properties of this data differ radically before the shot and

just after it. Similarly, the statistics of the trace juet after the

shot must differ from the statistics as t-*c. Thus, the best we can
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hope for ie that in the interval of the recorded trace, the charac-

teristics of the signal or noise are approximately constant with time.

4+.2 The Method of Least Sqares Fitting of the inear Operator to the

This method requires that we know the signal in some interval of

the data. We then write

where s is the value of the signal at i, e is the output of the

linear operator at i, and g is the difference between s and e1 at

i. We then sum the (g1 )2 over some interval A to B and determine the

coefficients of the linear operator such that

I g2  4.2
i--A

is a minimum*

Let as consider the case of the two dimensional linear operator.

e = k a 8 x
1 l'2 2 og amo 2 1 2 11' 2 2 '

If we know the signal si+k 1,2+k2 over the interval A to B on each

trace, we can sum the squared difference over AI to B1 on traces A2 to B2

First, however, let us assume that we wish to determine the operator

only for trace 12+k2 = k2. We can then simplify the notation of equation

(4.3) to



m

i +k a o

*2

a o 1 2 b , 0' 2 *1 4.4- 0 .

Equation (4.4) can be written

*ii+k 0Q X + a1 0 x 1 ,0 +...+ a 01x +,

4.5

The right hand side of this equation has the form of the product of

a row matrix and a column matrix. Let us therefore write

+k 

-114*** i ,-1 i -

4.6

where

4.7

A = a a 0 ... ad

Therefore,

a U ...03. 4.8

4.9g = 0 - 61 ~te O

For each value of i 2 , we obtain a relationshtp of the form (4.9).

Therefore, if we define a column matrix

4.10( * fgA gA+1 *0*** 1 ... g 

we can write

where . = A 6A+1**** a j+k** *'' B )

and I * t1Ak A-ki+1 **** Aik **** -k
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or x is a rectangular matrix with rows x as defined in equation (4.7).

From (4.10) we see that

1= 7 2 T
g +k 414

i1 +kgA 1 1

But g T [a - a) T - - ( T

Therefore I K L = - (A a)T

T T T T T T
A A A & - A I A * a A At 4*15

But A T La ( x g)T is a scalar and the transpose of a scalar is

the scalar itself. Therefore, a . A and equation (4.15)

becomes

I T 2 &T T T T 416

Minimizing (4,16) we get

I=2 fa )1 VI + T[TA A] A 0 4.17

But j[2 Vjp- ( ) T + V5 418

Again, since i(A) 1 a T AT A La a scalar equation, the

transpose of the right hand side is the right hand side itself, and

from the resulting equality we see that (4.17) may be written

I = -2 -( 2 V11 + 2 () a3 a = 0 4.19

The resulting minimizing condition can then be written

IV-5
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(.LTa) T T) T 4.20

If we premultiply both sides of equation (4.20) by 6 (a) and denote

c( a ) bi, (4.20) becomes

T T21

It is seen that the determinant of the square natrix Q is the GramiaezY

of J(a3 ). Therefore, if the C (a )s are iadependent, IGI t o

and thus Q possesses an inverse. If we then premultiply both sides of

(4.21) by Q, we obtain the simplified minimLsing condition

T T
The matrix IA is square, symetric, and in geaeral A z AI f o. we

may tarerore compute the inverse of A ;,, and preultiply both sides

of (4.22) by ( Therefore

& fi[T4 Ta 4.23

The requirement that the 4(a j) P be independent is the requirement

that a a be independent variables. If, however, some of the

a, "IIs are restricted to be constants, then the corresponding S(a ) s

will be zero and the matrix equation (4.20) may be partitioned' such

that a new Q' is found which has a determinant J'J $ 0. Then a

similar simplification may be carried out with the result

= CrTrf~zTn'.4*24
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in the special case when come of the a as are dependent variables,

the situation is more complex, but if the de~pendence is linear, then a

set of linear simultaneous equatione again results.

It will be remembered that the preceding developmsnt was carried

through for the determination of the least squares linear operator from

the signal contained in one trace only, Let as now determine the best

least squares linear operator using the signal information contained in

traces A2 through B2* We see that equation (4.14) will then be

modified to

B2 1 2 2 T
91 %+ki k

12+k2=A2  1+kIA 1  1 1 2 2 12+1 2 A2 2 2 2 2

4.25

or

6212A 2k 2 2k 2i 2 k 2
22 2

Ir we let427

+k A !

B2

x5±+ A +k , 4,28

B2  T

and R ; 2ii
2k2A2 2 2
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Then we may write (4.26) as

T T,
I R . 2 Ra +a 40X j 4.29

This equation has the same form as (4.16) and thus the resulting

minimizing condition, or normal equation mat:rix is

A k= Is 1' 4.30

Thus, the coefficients as determined by equaltion (430) constitute the

operator coefficients of the best least squares two dimensional linear

operator. One could also determine a two dinensional linear operator by

finding the least squares operator for each signal, as given by equa-

tion (4.13), and averaging the resulting coefficients. However, it can

be shown that the resulting two dimensional linear operator is not the

"best" in the least squares sense.

The application of this technique to seismograms is somewhat

specialized since the signal a is usually not considered as a continuous

function of time. That is, we think of each reflection as a separate

unit. However, if we know the signal to be zero in some interval, then

we can use this interval of a o to determine the operator.2 The

resulting operator will then be the best least squares approximation to

S=- o in the fitting interval and, if the statistical properties of

the traces are near constant with respect to time, the operator should

continue to give a good approximation to zerc as it moves along the

time axis. If, however, the presence of a reflection modifies the pro-

perties of the trace in some region of time, we would expect the

IV4



approximation e1 to differ from zero in the reflection interval. This

does not imply, however, that the output e in this interval will

resemble the signal 61 in form, for we included no information about

the form of reflections when we designed the operator in the interval

a a o. The best we can therefore expect 1 that the amplitude of e

will be greater in a reflection interval than in a non-reflection inter-

val, and since this is our only criterion by the least squares method,

2the output may best be displayed as e.

As an alternative procedure in applying the least squares method

of determining the linear operator, we might fit e to a reflection

interval. In this case, we would expect e to be small when in any

reflection interval, if we astsuxe the characteristics of all the re-

flections to be similar, and we would expect e to have a greater am-

plitude when in a non-reflection interval. The above problems will be

considered again, later in this section.

It should be noted that if we assume s= o in the fitting inter-

val, then the right side of equation (f.22) will be sero, and the solu-

tion of this equaticn will be the trivial solution a 5 a o. We must

therefore require that one of the coefficienma, say a , be equal to a

constant. As we have seen, we must then go back and partition the

matrix in (A.20) and obtain a modified form of (4.22). This procedure

corresponds to throwing away one of the homogeneous equations of the

set T

Tand thus reducing the rank of the matrix 2 , s uch that it is one less

IV-9



than the number of unknown coefficients as * . The solutions we

then obtain will be multiples of an arbitrary constant which we can

specify for convenience. This case corresponds to the prediction

operator wnere the first coefficient, multiplying the predicted trace,

is required to be equal to 1.

4.3 The Least auares aiLear Operator Filter Characteristics

Equation (4,14) is the expression for the sum of squared dif-

rerences between the signal and the operator output along one trace.

B 1  2
jV g i, +k4 1 4

But 2
But k is the computed autocorrelation of g

i1 +k 1  1

at zero lag. That is

''A

(o) = g +k *432
iI +kA 1  1

Parseval's Theorem for a periodic spectrum tells us that

v/h

(o) = 2rh G(a) G(w) d 4,33

where G(m) is the spectrum of gi .k Therefore
1 1

I 2h Ir/)h ~ e d 4.34
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Ir/h

/ [ZX - SX + 2 5R RIdo =O 4.38

and
v/h

f" -S + 3S5 + 2f-HJx E x n da) 0 4,39

Since HR is a finite Fourier cosine series and H1 is a finite Fourier

sine series, in general 4H and SH1 are not arbitrary functions in the

interval 0 $ a ' 1/h and we must be content with equations (4.38) and

(4.39). The integration of equations (4.38) and (4.39) yields a pair of

matrix equations equivalent to the matrix relation (4.19), and if the

coefficients in the HR and H1 series are independent, then the matrix

equation (4.23) results.

If, however, as the number of terms in the tourier series and

H is increased, it happens that the functions c R and d~HI become

sufficiently arbitrary such that we can choose two functions 6 R and

(H I which make the integrands in (4.38) and (4.39) positive whenever

they are not zero, then we must require that

-41 - S + 2Ha = 0 4,40

and

jSX + JX + 2M1  =0 4.41

Therefore, the minimizing condition may be written in terms of filter

characteristics and spectra as

IV-12



R
271 4,42

In Section It the input information N wa-is def ined

x =3 +fn 4.44

where sk represents the signal and n represents the background inter-

ference. It was stated that, in general, nj consistE of a predictable

component p and a random component rj. Therefore, if the corresponding

spectra of x , s , n, p,, and r, are X(), S(), N(o), P(), and R(o)

respectively, whore R(o) is undefined, then

X(o) = S(O) + P(mo) + R(4) 4,45

II = SS + PP + RR + ST + PS + sR + REW + PR + RP, 4.46

SI = SS + S + &R, 4,47

and SI = S + SP + SR 4.48

But eince r, is a random component, the cross power spectra of r and any

other component will be zero if the mean of ri is zero.1 Only the power

spectrum of rI will be non zero. Therefore (4.46) reduces to

IX = SS + PP + RR + SP + P& 4.49

and (4.47) and (4.48) become

SX = SS + & 450

and 5j- SS + SP 4.51
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Thus equations (4.42) and (4.43) may be written as

H :? + Re[rPw 4.52
R 6 + PP + RR + 2Rets)

and
S-IarflPHz 1 4.53

SS + PP + RR + 2Re(S)?

and the best least squares linear operator transfer function is therefore

H~~~~a)~4 =.. ... ... 454
SS + PP + RR + 2Re42P)

Lot us consider some special cases of equation (4.54). If the

random component of the noise r is equal to Zero, then RR = 0.

Equation (454) then reduces to

H( 4.55
SS + 2Re( P) + PP

But 2Re[SP) SF + 5?. Therefore

H(o) + 4*56
(S+P) (S+P)

Equation (4.56) tells us that in the absence of a random component, the

best least squares linear operator is the one which transforms the signal

plus noise exactly into the signal. This corresponds to perfect fitting

in the fitting interval. For a finite interval, it is possible to des-

cribe the noise as a function of time. Therefore, for this finite

interval there is no random component.
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As another special case, let us suppose that the predictable

component of the noise is zero, but the random component is not. Then

by equations (4.52) and (4.53)

a .,4.56
S 15 + RR

and H 0 457

Therefore H(s) . 4.58
$$ + RR

Since SS and RR must be positive, then not only is H(o) in (4.58) real,

bat it must also be positive. Therefore, the phase angle of H(o) is

zero or some multiple of 27. In this case it is seen that the best

least squares transfer function is determined solely from the power

spectra of the signal and noise.

Another special case, which has been treated in Part 4.2 of this

section, is the ease in which we wish to determine the operator in an

interval of zero signal. It is evident from equation (4,54) that the

trivial solution H(o) = 0 will be the optimum solution in this inter-

val. In order to prevent this solution from occurring, it is necessary

to restrict f(co) in such a manner that it can not be identically zero

for all values of o. A restriction we have already considered is that,

one of the operator coefficients be equal to & constant c. This res-

triction may be written as

i(a) e &w ) ad WS ' C 0EA4m 4.59
_.f/h
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/h ir/h

a R 3 3 o08(h (+k)d+4 f

n/h v/h

H* co a (J+k) &o f -

-r/h -/

Ht sin h(4 +k) do +

I sin h(+4 k) &4 M c,

4.60

However, since H. is even and H, is odd, the second and third inte-

grals in (4.60) must be zero. FUrther, since the integrands in the

first and fourth integrals are even functions, the constrain equation

(4.59) may be written as

r/h

4k h ( tH ooe h(A +k) - H Isin h(I +k)]) 4 wD w = D a

0 4.61

We therefore wish to minimize

I = 4h f ldH &o0 4.62
0

subject to the constraint (4.61). If we writa I11 = H + 2I we can

set

r Kn4 + HI + HR coo Wh(A +k) X H, sin ( A+k)

4.63

and minimize
It/h

4t J y do

0

subjeoct to no constraints.
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The resulting equation is

v/h

/ [2x + X co eh (A +k) &R+ ['T- A sin oa (.4 +k) ] 1 j doF 0
0

4.64

Again, as the number of terms in the operator goes to infinity, we may

obtain the equations

-00 h (-k+A
4.65

and

4,66

Then
-jahfr+. )

H(0) = A t4.67

where is to be determined such that equaticn (4.61) is satisfied.

Equation (4,67) may be written in the alternative form

-jth(k+ A )
4.68

2 PP + 2 RU

since S) = 0.

A formula somewhat similar to (4,68) may be obtained using

equation (4.54). 1, instead of assuming the signal to be zero in the

fitting interval and non aero in some other interval, we assume that

the signal is a random function with a constant power spectrum N , we

can obtain from equation (4.54)

a) 4,69
N + PP + RR
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An extension of this development to the case of the two dimen-

sional linear operator will not be considered,, Only a brief mention

will be made of the case involving the prediction operator using more

than one trace, Lot as consider the two trace prediction operator of

equation (2.13), where the spectrum of the error series was given by

equation (3.22)

E(Q) = 1(0) [1-A(o)] - Y(m) B(o) 3*22

Therefore the sum of squared errors is given by1rA r/h
I = 4fth IEE dw = 41rh f [X- A [Y X-IA-YB) do =

-.4/h -rn/h

r/h

A 4h [ (1-A)(1-I) - (I A) B-Xl (L-A) I + UB] dr~

-g/h 4.70

The minimizing condition is then, that II in (4.70) equal zero. The

first and last teras in the integrand in (4.70) are positive. The

middle two terms may be negative for some o. If the cross spectrum

XY is approximately zero, as it would be if the* x and y traces were

uncorrelated, then the minimization of (4.70) consists essentially of

minimizing the integrals

r/h

I = / 11(1-A)(1-) do 4.71
-7r/h

I / - ...YY BB dw 4.72

-r/h
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Equation (4.72) will be minimized by B = 0. Thererore we would expect

the bl coefficients in the linear operator to be zero.

If XY is not approximately zero, then we must essentially mini-

mize (4.71) and (4.72) while maximizing

7/h
I *2 f EefY(ili)B] do 4.73

-v/h

The various expressions for the optimum transfer functions in

this section have been derived with no upper limit on the number of

terms in the linear operator. Therefore, if the linear operator is

restricted to m+1 terms, it will usually be necessary to approximate

the optimum transfer function. Bat the optimui transfer function must

be a complex Fourier series with M terms where M may approach co.

Therefore the best approximation to the optimum transfer function HI(0),

in the least squares sense, will be a complex Fourier series with m+1

terms where the m+l coefficients are the same as the corresponding

set of w+1 coefficients of the series with M terms.

Unfortunately this simple approximation procedure does not, in

general, conform to the requirements that the cum of squared errors, 1,

be a minimum. This may be seen from the following discussion. Let

R'(o) represent the optimum least squares transfer function, where H'(o)

may contain an infinite number of terms. The most general representation

of HI() is given by equations (4.42) and (4.43) or in a slightly dif-

ferent form

474
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The equation for the sum of squared error is given by (4.36)

r/h
I =4 h (58 -$SXH -BAH+flHH de 4.36

0

substituting (4.74) into (4.36) we obtain

Wr/h

I = 4thSS + 11 -H'a 11H + Ws) d

0

v/h

4Vh J s . Ii' + n (a' - H)( de 4.75

Since SS and XXHH' are constants, the minimization of I results

in the equation

v/h

sf n[(-H)(f'-)] do = 0 4,76
0

Thus a is a weighted least squares approxiaation to H1 where the

weighting factor is tne input power spectrum.

4.4 The tio of Souares ethod

Let us again consider the problem of detecting the reflections

on a single seismogram trace. In this case we will assume that we know

a particular interval, A to B, in which the signal is zero, and that we

know another interval, C to D, in which the signal is non zero. We

can therefore introduce the following criterion for the determination of

the linear operator. We wish to minimize the output e in the interval
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L to B, and we wish to maximize the output

Therefore, if we write

i=A

and

D
12~

i=C

then we wish to minimise ) , where

2

477

4.7$

4*79

But SA = I I 2
2
12

We therefore want

Using the notation of the first part of Section IV, we then have

c61= L S T A 

and

& I2 (A a A

Where1 A represents the matrix of the data from the interval A to B

and 4 represents the matrix of the data from the interval C to D.

Therefore,

6I1 -AMI 2 A AkC 484

IV-21

2
4,80

TI - A X 2 = Q 4.81

4.82

4o83

e Iin the interval C to D.

( C 1 - li2 ) = 0



and since the a s are independent, we get

A a, hC3A Q 4.85

The solution of this matrix equation will be the trivial solution un-

less the determinant

14 3EA AC AC a0

Thus we have a characteristic value problem. We must therefore deter-

mine the minimum characteristic number, since we wish to minimize \%

and inserting this value of X min in equatica (4.85) we solve for A.

4.5 Other Methods of DetermininA the O-tim_ Linear Operator or Filter

As was mentioned at the beginning of this section, it may be

desirable that the linear operator have a certain transient response

or impulse response. The impulse response is the easiest criterion

from which to design a linear operator since, as we have seen, the

operator coefficient series constitutes the impulse response. The

transient response criterion may be more difficult to handle, depending

upon the situation. As an example, suppose the signal occurs as a

wavelet f(t), and we wish to design a linear operator which will con-

tract this wavelet into an impulse. We can consider f(t) as the im-

pulse response of some linear operator or filter with a transfer function

H(). If this filter represents a minimum phase networkc7 then it has

a physically realizable inverse with transfer function H 1 (a). There-

fore the linear operator corresponding to H~A(o) should compress f(t)

approximately into an impulse.
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Other criterion may be developed for the two dimensional linear

operator or for the prediction operator using more than one trace. tor

instance, if the signal is in-phase on all the traces, it might be de-

sirable to add the effects of the signal in-phase. This would cor-

respond to in-phase mixing. Many other possible criteria can be

developed.
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V. Arplicaions in a Controlled Exrimn

5.1 Deariptioa of the Controlled Experiment

As a means of illustrating certain of the results of previous

sections, a controlled set of data has been chosen consisting of a

known signal pulse superimposed on a Itnoise" seismogram. See figure 4..

This artificial seismic record appeared in a recent paper by Frank and

Doty where it was referred to as case No. 1. Frank and Doty illus-

trate the relative effects of filtering this record by three different

filters. One filter is peaked at maximum signal, and two are peaked

at maximum signal-to-noise ratio. See figure 5. The authors also

show the effect of several types of mixing procedures. Frank and Doty

conclude that the optimum filter for this record is the one peaked at

maximum signal-to-noise ratio, with the sharper high pass cut off

characteristics. They also find that graded or multiple mixing after

filtering by the optimum filter tends to improve the "pick".

It will be of interest, in view of our previous results, to

determine the optimum amplitude filter response according to several

different criteria, and to compare these results with the Frank and

Doty optimum filter. Unfortunately, their paper gives only the ampli-

tude spectra of the signal and noise, and the amplitude filter responses.

We are therefore necessarily limited in our comparison. FUrther, we will

determine three linear operators by the least squares method of fitting

in a noise interval, and compare these with the optimum filter deter-

mined from the noise spectrum. Finally, we will determine a linear opera-

tor which closely approximates the optimum Frank and Doty amplitude filter

response.
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5.2 eterination f the Optiut Least Lauares AMulitude Filter

esponse from the Amlitude Spectra. of the Sisnal and Noise

It has been shown in fSection IV that for a small interval, if

we are given 5(w) and N() where S(o) is the signal amplitude and phase

spectrum and X(4) is the noise amplitude and phase spectrum, we can

determine an

S() + N(to)

which gives the signal exactly. This situatin, however, is of little

interest in the present case,

Equation (4.54) telle us that H(0) should be given by

it + S

SS + PP + RR + 2Roo [SP)

Howe-er, we know only I and IN P + RR. Therefore, if we

assume that SP = SP= 0, then (4.54) may be written as

2
11(m = --- L 111,4i'.5,1E ~2)25.

981 + INI

If * , where is the signal to noise ratio, then (5.1)

may be written as

2
H~a) 5.2
2 +31

It is apparent that this expression will be a aximum when q is a

maximum. Using the amplitude spectra for the signal and noise as

given by Frank and Doty, we obtain the optimum filter characteristics



for the assumption SP = P = 0 as chown in figure 6.

Using equations (4.52) and (4.53), and letting 8 = ISt e

and P = lII e , ie obtain the expression for the power response

or the filter as

la 2[ 2 + 211PI coo (Q,-a) + iP,2j 3

[is12 + 21S11I coo (Qs~Qp) + Ilp 2+1R2)2

If we assume that all values of Q - P are equally likely, then we

can write the expression for the expected value of HR as

- §1 g IiI. 2+2,Ii .o x + 1 2Av({H) = / 1
0 { ft2s+ 2eSi1 coo X + IPI2 + IRI 2

2 211 + i 2 )(ti 2 +!,2 9 6 2 IP2

[(Is 2+lp 2+1R12)2 -4(1 2 ,, 2) 3/ 2

, 2 .(Isi- I 1 2 2(Ij,+IPE#+IR 2+ 2
= lei I [ I t -PI)2+,R 1 [( islj+jP1)2+jpl

Reference / 5.4

If IR I = 0 then
2

AV tH]U 2for 1,$2 1 p 12

a co ror 1,5 2 jP12

. 1 2 for 1122 IP2

Using the Frank and Doty values of 1I1 and INI IPI, we obtain a

curve Av[iR) for IRI = 0. The square root of this curve is plotted
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in figure 6. If = 1, then tNt 2 = 12 + IR12 a 21P12, and

using equation (5.4) we obtain

Av[IHI 1 t~2

2

t2

(1S 22 IISt 2+ INI2) - 2(1S1 21N 2)

(II2+ 2 O2 2(S2+1 N, 2) 2-2( 116,21112) ]3/2

2+1)( e2+ )2 2

[( 2+1)2 -2 e)3/2 I=

Using the Frank and Doty values of I SI and INt

Av {IH) for IPI a IRI. The square root of this

in figure 6.

, we obtain a curve

curve is also plotted

5.3 Determination of the OntimIm Least Square AMWlitude Filter

R2eeone from the AMalitude Spectrum of 1he Nois

Equation (A.68) gives the optimum least squares transfer function

for minimizing the power in the noise spectrum subject to the restriction

that one of the operator coefficients equal a constant. The amplitude

response of this transfer function is given by

2NNI
N

5.7

Using the Frank and Doty values of IN[, we obtain the curve plotted in

V-4
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figure 7. The value of I X1 haE not been determined from equation

(4.59). A value of INi = 2-10-3 has been assumed.

5.4 An Example of One Pimensional -uinear Operators Determined by

the Least Sauares Method frm the Inout is21

Three one dimensional linear operators have been determined

from the input noise by the least squares method described in part 4,2.

The fitting interval was from .3 to .6 seconde, as shown on the record

in figure 4. Operators No. 1, No. 2, and No. 3 were determined in this

time interval from traces T1, T2, and T3 respectively. All three opera-

tors we determined subject to the restrictions that a = 1.000 and

a, 4000. The coefficients for these operators are given in table 1.

The amplitude filter responsea of these oiers tors are shown in figure 7.

5.5 A One Dimenlinal 4inear Overator with A4plitude Response

Acoroxizating at 30 one. $tex.

We have seen in Section III that the real part of H(w) is in-

dependent of the imaginary part if k = and m is an even integer.2

We can therefore design a linear operator in which Re[H(w)) 4, IH(0)l

and Im[H()) 0, where IH'(w)l is the amplitude response of some

desired filter. For liP(w)I let us choose the 30 opa. step as

shown in figure 8. We have seen that the equation which determines the

operator coefficients is, in this case,

v/h
(a +a ) f H'(to) coo wh (a-. ) do. 5.8

-4r/h
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U -JC% 4i H'(m)|,W

1 m, lo where u = 21 x 30 cps.

Therefore (5.8) becomes

(a+a )

-0

-r/h

Cos uh(s- ) dw +2
r/h

or (a+-sin a0 h( 6- 2)0X (a+ )

2

and
(a + a&) afir-coh for

A a I 0
2 2

Since we also want I()) 0, we m

a be symmetrical about a . ThereforA
2

for a A2 5*10

5.11a =

st require that the coefficients

e, equations (5.10) and (5.11),

and the requirement of symmetry, determine the operator coefficiente.

Operator coefficients are given in the right hand column of table 1 for

m = 20, k l 10, and o 2r x 30 cps. The amlitude response of this

linear operator filter is shown in figure 8.

5.6 Discussiorn of Results

The amplitude responses of the optimum least squares filters,

shown in figure 6, correspond in a general way with the response of the

crank and Doty optimum filter. Apparently, the assumption SP = SP a 0

gives the response most similar to that of Frank and Doty.

V-6
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Operators No. 1, No. 2, and No. 3 shon in figure 7 are quite

similar in the frequency range of the noise epectrum. This is to be

expected since they were determined from the noise alone. The variation

observed between the responses of these operators could easily be accounted

for by variations in the noise spectra of the traces from which these

operators were determined. All three operators have responses similar

in general character to that of the optimum filter determined from N .

As we have seen, H(<a), as determined by the least squares criterion, is

a weighted least squares approximation to HI(s) where the weighting fac-

tor is the spectrum. This is exactly the result shown in figure 7. The

three operator responses best approximate the optimum response in the

region of maximum noise spectrum. From the standpoint of signal ampli-

fication, the three operators would be better than the optimum filter.

This is, of course, because the criterion of optimization is minimization

of the noise spectrum. It is interesting to note that the responses of

these three linear operators are quite similar to the response of the

Frank and Doty optimum filter in the region of significant noise and sig-

nal spectra.

Figure 8 shows a 21 term linear operator approximation to a 30 cps

step response. It is interesting that the amplitude response of this

linear operator is almost identical with the 47esponee of the Frank and

Doty optimum filter between 20 and 40 aps. There is no question but that

a linear operator of approximately 20 terms could be determined which

would have an amplitude response identical to that of the Frank and Doty

optimum filter. More important, perhaps, is the fact that the 21 term

linear operator in figure 8 is an approximation to a step response.
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Thus, as the number of terms is increased, the response of the

linear operator will approach a step. tUrthe:c, the transfer function

or this linear operator iE real. Thus, the phase angle must be a mul-

tiple of w. In fact, for frequencies above 20 cps the transfer function

is positive and the phase angle must be a multiple of 2r. This is a

desirable filter property from the standpoint of not distorting the

signal.

Frank and Doty determined that a combination of optimum filtering

and mixing gave the best "pick". This result is perhaps trivial since

the same signal was superimposed on the noise traces with no step out.

Nevertheless, a similar filtering aind mixing may be achieved by use of

the two dimensional linear operator. The operator coefficients for each

trace, in this case, would be proportional to those of the optimum one

dimensional linear operator. The proportionality factor would determine

the type of mixing.
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Operator

k

m

a0

a2

a3
4
5
a
a6

a7

a9
19
'10

ali
a12

13
a14

a15
a16

a17
a1 8

19
20

TABLE 1

No, 

0

17

1-000
*000

-1.640

*390

.870

-. 133

-.480

.280

.266

*048

.457

-. 386

-.522

-350

.533

-'332

-.515

.627

No. 2

0

17

1.000
,000

-2.170

.690

.999

.065

-. 231

-. 163

.000

.076

.102

-. 217

.109

.123

.317

-. 213

-. 540

.443

No. 3
-- 

0

17
1,000

.000

-2.245

1.267

.6%0

-.062

~.277

-. 110

* 202

,197

.092

-. 070

-. 253

-. 037

.237

.012

-. 055

.143

Approximation to
30 92p.Step

10

20

.032

*032

.023

.007

-. 016

-.045

-. 076

-. 105

-. 127

-.150

*850
-.150

-. 127

-- 105

-. 076

-. 045

-. 016

,007
.023

-032

.032
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YXI. CaaliaS And mendatins

In Section III, it has been shown that the linear operator and

the linear electrical filter are fundamentally equivalent. Thus they

may both be used to perform linear operations on data. Each method

has its computational advantages depending upon the form of the in-

put data and the available facilities, euch as a digital computer.

However, the linear operator method possesses a basic advantage which

outweighs computational coneideratione. This advantage may be stated

S follows.

Based on knowledge of or assumptions as to the statistical

nature of the data, criteria may be developed (as shown in Section IV)

which give the best filter characteristics as a ftunction of the data.

Thus, given a criterion for optimizing the filter characteristics, we

may determine the best filter for each set of input data. However,

since the linear operator method is a mathematical method, we may use

the same criterion to design automatically the best linear operator

for each set of data, and having designed the linear operator, proceed

to filter the data in the same operation.

In Seetion II, the concept of the Generalized tinear Operator

indicated how the linear operator might be extended to operate inal-

taneously on a set of seismic records plus a set of geologic informa-

tion. With the determination of the proper criterion for optimizing the

linear operator, this method might provide an automatic technique for

correlating reflections with subsurface structure. Thus, a greater share

TI-1



or the work of separating deeired information from background inter-

ference might be assigned to the linear operator.

In conclasion, it should be re-emphasized that the linear opera-

tor and the linear electrical filter are computational techniques cor-

responding to linear mathematial operations, and that, therefore, the

theory of linear operations applies to both. The fundamental problem

is, thus, to determine the linear operation which best performs the

desired function. More generally, the problem is to determine the

best operation, whether linear or non linear, and, if need be, design

a non linear computational technique. For oases in which the spectra

of the signal and noise vary with time, it may be desirable to design

a mathematical operation which also varies with time. Thus, the best

computational form for use in the analysis of seismic records might

conceivably be a discrete non linear operator with coeffieients which

are rnctions of time. It is therefore recommended, particalarly in

the case of seismograms, that a thorough study be made of the ampli-

tude and phase spectra (and their variation with time) of the signal

and noise in an attempt to determine the operation which will best

separate the desired information from the background interference.
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ApAZ I

General Notation Ised

t the independent variable; usually time.

f(t) = some function of t.

x(t) trace, input, data, perturbed signal, or informa-
tion.

s(t) signal, or desired information.

n(t) noise or background disturbance,

p(t) interference or predictable element of the noise,

r(t) m random noise or random element of the noise.

e(t) approximation to the signal s(t) or s(t + ),

0 the angular frequency.

F() some function of angular frequency w.

X(a) t amplitude and phase spectrum of x(t).

S(0) = amplitude and phase spectrum of a(t).

N(o) = amplitude and phase spectrum of a(t).

P(C) amplitude and phase spectrum of p(t).

) amplitude and phase spectrum of r(t).

E~o) amplitude and phase spectrum of e(t).

= operator coefficients of the
linear operator.

a operator coefficients of the
linear operator.

one dimensional

two dimensional

AI-1
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iergnal Notation

a., b

h

i t/h

K(t)

Complex 9ariable

7

R

1Ad (cont.)

a operator coefficients of the prediction
operator

- spacing between data points

- index corresponding to the independent variable.

- impulse response of a linear system.

a transfer function of a linear system.

* optimum transfer function of a linear system.

Na U

the complex conjugate of F(o).

SFR + j FY

a Re[1t0)) the real part of (c0).

S Im(F())] the imaginary part of F(w).

=PR + J p, a( j= a - 0,

Matrix Notation Used

T
.2

-l

.2 j

- the i, j element of a matrix

the matrix of elements V

= the transpose of the matrix q.

the inverse of the matrix g

S.. . a column matrix.

0 41 ......... = a row matrix.

* the determinant of the matrix a.
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Calculus of Variation8 Notation t1sed

y the variation of F. Solutions of Ft = 0
give stationary values of F. The minimum
value of F is a stationary value.

Generalised Rarmonio Aalys Notation

Periodic Founglos

0 f jpf2(T )
(i1-)

(TI )

T
T

0

f(t) f 2 (t+T ) dt =acrose correlation
of f1 and f2'

fit) fl(t+ T ) dt aauto correlation±y~t rjt+iofd f or r.

Aoeriodio Yunction

lp'f 2
lim

T -, o

lim
T -..p w

T
--T

f£(t) f2.t+ T )

T

2T-T

dt = cross cor-
relation of f 1 and f2*

= auto correlation
of f,.

Computati9ria..1. ~'ormi~ae

N- T

(-r) A k x n-

N-r

= cross correlation of x and y.

= auto correlation of x.
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2petr& and Carrelatin Eelations

f (L) A- 7
1'2 20f

1  (0) ~
1 1

-00

(r ) e~ow dr =
l' 2

S(1$ 4eTd 7 =
l' 1

aros spectrum
of f. and r2*

auto power spec-
trum of f.

7'2 
(0) e t d a

f* 1 *(r)

*c r(1'r

-00

f2 (-t)

2' 2.;i -

I2'f 1

fI . dt 1* f 1
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Given

H .;) a e A2.1

8-o

and
i) J t(4 +k) A2.2j 1 e

Then the product 0 (M) R(M) is given by the double sum

G(W) HQ) s ab e A2.3
suo .1 =o

However, it would be more convenient to express G(o) R(o) as a single

sum

G(W) Ja(4) eA2.,4
T a-i

where the coefficients .97 are real.

Let us therefore determine the coefficients 92,r and the limits M.

Since the single summation expression for G() H(0) is a complex

Fourier series, we may determine the coefficients (3T by taking the

tourier Transform of G()) H(o). That is,

() H(f s ge b e ) T de A2,5

But G(,q,) H(w) is given by equation (A2.3). Therefore
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Therefore, the only terms in th

(9. are those for which a-.

go t a b

PO a
SA-O

-0

SmO

a

a b~ f.t(..& .r

-7i

e double sum which will contribute to

r-tz 0. Therefore

S A2.7a

b8  T < o A2.7b

b ?I> 0 A2.7c
nrr F

It we consider the coefficients a and b, as being equal to zero

for s m and s <o, then we may write

Pt4, &sarbsa9n=!; .O+' for all T

This equation is nothing but the expression for the cross-correlation

function of the transient series a and b and we may therefore write

Oba( r ) A.

Also, the largest value of r for which /9Tr exists is tz a, and simi-

larly the smallest is r -. Therefore the limits M on the summation

in (A2.4) are z and -m for the upper and lower respectively. We can
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therefore write

G(m)a) = t,; O4* Aa~o

for the special case of G(o) H(o) we see that

ii(w) n~) 4 *A-) e-A2.
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Anendix 111

An Alternative Method of' Electrial Eiltering

The previous discussion of the discrete linear operator im-

plies an alternative method of electrical filtering. If the input

data were recorded on magnetic tape, an analog discrete linear opera-

tor could be constructed, consisting of magnetic pick-ups spaced

along the tape at intervals of h. Each pick-up would then be con-

nected through a variable resistor to the output, and the settings

of the variable resistors would correspond to the values of the

operator coefficients. The effective value of the spacing h could

be changed by varying the speed of the tape during the initial re-

cording of data. With the exception of the tape recording equipment,

the components of this filter would be cheap variable resistors as

compared with the more expensive components of an equivalent con-

ventional filter.
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