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ABSTRACT

FILTER THEORY OF LINEAR OPERATORE WITH SEISMIC APPLICATIONS

by
Markwick Kern Smith, Jr.

Submitted to the Department of Geology and Geophysics on
Janaery 11, 1954, in partisl fulfillment of the requiremente for
the degree of Doctor of Fhllosophy.

The discrete linear operator lg discussed as a linear com-
putational technique parallel to electrical filtering. The dis-
crete notation is developed from the continuous linear operator
and the special cage of the prediction operator is considered.
The concept of linear operator dimensions is introduced and the
generalized or n-dimensional linsar operator is suggested.

The filter characteristics of the linear operator are de-
veloped from several different approaches. Both the transfer
function and the impulse response are considered. The power trans-
fer function and the transfer function for the prediction operator
are also obtained, The concept of two dimensional spectra and
filter characteristics is considered.

The restrictions on the transfer function of the linear
operator are considered. It is found that the real part of the
transfer function is even and the imaginary part is odd. A4lso,
under certain conditions the real part is independent of the ima-
ginary part. The restrictions on the tramsfer function of a
physically realizable, stable metwork are compared with the trans-
fer function of the linear operator. It ig determined that the
linear operator snd the linear electric filter are essentially
equivalent,

Criteria for determining the eptimum linear operator or
filter are developed from asswmptions as to the nature of the
input datea. Seversl illustratione are given in a controlled
seismic experiment.

Thesis Supervisor: Patrick M. Hurley
Titles Professor of Geology
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I. Introduction

The problem of separating desired information from background
interference is of major importance in the field of Geophysics, just
as it is in many other fields. If a selsmogram contained nothing but
distinctly marked reflections, and the desired information consigted
of the arrival times of this reflected energy, then the problem would
be relatively simple. However, not only 1§ the reflection energy at
least partially masked in background interference or noise, but the
requirements on the desired information are becoming inereasingly
complex., For exasmple, in a simple geologic area, where only the sub-
surface structural features are of interest, the arrival times of re-
flected energy might be sufficient desired information. As the type of
area becomes more complex, the desired information may again be the
arrival times of reflected energy, but in this case, only certain re-
flections will aid in the geologic interpretation of the record, while
others will tend to confuge it. In the event one wished to obtain more
detailed information on the subsurface stratigraphy, the deeired infor-
mation might consiet of the fregquency spectrum of certain wavelets in
the record,

A corresponding problem occurs in the interpretation of raw data

obtained by other geophysiecal prospecting methods. The degired informa-

tion, in the case of gravity data, might consist of the residusl effect
of local ore bodles, while the background interference would be regional

and topographic effects plus anomalies due to local density variations.
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Desired magnetic data is similarly masked in regional effects, diurnal
variations, and fluctuations due to the instability of the instrument.

Many methods, in & wide variety of fields have been devised to
separate desired information from background interference. Much work,
of a more genersl nature, has been done on this problem in the fields
of Statistics and Electrical Engineering. Recently, there have been a
number of papers based on the mathematical theory of smoothing and pre-
diction as developed by Hiener‘l/and Kalmcgcroffg/.

There are three common methods of operating on a get of informa—
tion or data in en attempt to select the desired information. Though
these techniques differ mechanically, they sre fundamentally equivalent.

;The first technique consists of direct observation of the set of informa-
tion followed by mentel anslysis. This technique is applicable to infor-
mation presented in either a discrete or continuous form, The second
technique coneiets of operating on contimuocus information by means of
electrical or mechanical circuits. The third technique consiste of
operating on discrete information by means of mathematical operations,
Though the last two techniques require the information to be presented in
a particular form, it ie generally possible to transform diserete informs-
tion into continuous information and vice versa.

Although these three techniguss are basically equivalent, they
differ in precision, flexibility, speed, ease of design, and stabllity.
For most problems a combination of the first technique and one of the
others, proves to be the most efficient system, In certain cases & single

technique or a combination of all three will be best, Because the precision,
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stability, and even the speed are usually greater in the mathenatical

and eleetrical or mechanical operations, it is often desirable to put

as much of the burden as possible on these techniques. However, flexi-
bility and design restrictions usually necessitate the final stage being
direct observation and mentsl analysie. Further, since the theory of linear
systems 1s more fully developed than nonlinear theory, the ease of deeign
restriction often limits the electrical or neehanicnl‘tschniquss to linear
operations. This is also true in the case of the mathematical technique
when applied to time series problems. However, this does not imply that
nonlinear operations are any the lees desirable in general,

In a recent paper Wadsworth et. al;z/ presented & linear mathema~
tical technique with applications to the detection of reflections on
seismic records. Knowledge of this method,which employs the concept of
the digerete linear operator, will be assumed for the remainder of the
present paper.

The purpose of the present paper is to treat the discrete linear
operator as a general linear mat@ematical technique, and to demonstrate
t@e relationship between this mathematical operation and the corresponding
linear electrical operation, The‘possibility of extending the current
linear mathematical or electrical operations to assume a greater share of
the work in the imterpretation of seismic records will be indicated.
Farther, methods of determining the linear operator from the input infor-
mation and from other information and assumptions will be discussed in
relation to seismic records. Application of certein of these methods will

be demonstrated in a controlled experiment.
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The properties of the discrete llinear operator will be developed
from the definition, but wherever appropriate, the relationship between
the continmuous and discrete cases will be demonstrated, Terminology
and notation will, in general, be explained where it firsi occurs,

Coertain ptandard notations and definitions will be used without explana-
tion in the context, but will usually be found in Appendix I. The term
Tgignal® will be used throughout to mean desired information., The term
"noise" will mean background disturbance, The "noise" will in general
consist of a predictable element referred to as "interference®, and a
random element referred to as "random noige"., The terms "trace," "input,®
"data,® "perturbed signal®, and "information" will refer, in general, to

a combination of the gignal and noise, It will be assumed throughout most

of this paper that the combination of signel and noige is linear,
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II. Ihe Geperalized Linear Operator

The problem to be consildersd may be formulated as follows.
Given a perturbed signal x(t), which is the sum of a true signal
e(t) eand & perturbing noiese n{t), we wish to opsrate on =x(t) in
such a manner as to obtain the best approximation e(t) to the signal
s(t). That is
x(t) = s(t) + n(t) 2.1
and

e(t) = L{x(t)] 2,2

where e{t) 1s the best approximation to 8(t), or more generally
s{t+at), and L represents an operation. At this point the criterion
of best spproximation and the form of the operation are unspecified.
For the case considered in this paper, the first restriection put on L
is that it nust be a linear operation on the available information.
Thus if =x(t) 1s known from - ® to + o we mey write

ot) = [ x(t-7) A(T) ar 2.3
w0

where A(T ) 4ie a weighting function,
If, on the other hand, we know x(t) only from - wmto 0, e(t)

may be written

ot) = [ x(t-T) A(T) ar 2.4
%)
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It A(T) 4s independent of time, then equations (2.3) and (2.4) repre-
gent a large group of linear operations on the available information
that is invariant under a translation in time.

If, as in the cese of a geigmogram, x(t) 1s known only between
finite limits, but e(t) mey be determined from x(t) at times greater
then t as well as less than ¢, then we must use the special case of
equation {2.3) N

olt) = fn x(+-T) A(T) aT , 2.5

by

where ﬁu and tn are pogsitive. It may be argued, in the case of a
seismogram, that we actuelly know x(t) back to t = -0 and x(t) could
be recorded to t = + ga However, later discussion of the application of
linear operators will indicate that this information would add very little
to the solution of the problem. kurther, from a computational point of
view we must restrict ourselves to the finlte case.

For purposes of computation 1t is convenient to approximate
equation {2.5) by the discrete formula derived in the following manner,
Let ug spproximate the function x(t) by & geries of positive and nega~
tive rectangular pulses of width h esuch that the mid point of the top of
each pulse lies on the curve xf{t). See figure 1. Let the amplitude of

each pulse be designated by x, where i takeg on integral values and 1ih

i
represents discrete values of t at the center of each pulse, Therefore

Xy = x(t) at t = ih. Equation (2,5) may then be approximated by
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(-usd) n ¥ (a+b)n

. 2
e(t) = xi:@m ( &) &(’r )d‘l’ +a. 0t xﬁ. j A(T)d"’ “'cﬁt’*’xi‘-n f L(T)df
~HB-21h
3 - (n-2)n
2
2.6

where -Mh 1s the closest integral multiple of h to -ty +% b and
nh 18 the closest integral multiple of h to t n ~% he If we then

define
(#42) B
a, = S AT)T 2.7
(s43) b
equation 2,6 may be written
, B
e(t) = é“aﬁ»c. "y

As a final step in passing to the discrete case, let us define the right
*
hand side of the spproximation {2.8) egual to g, Therefore € = o(t)

at ih = t, where
n

Equation (2.99) 1s completely equivalent to

m
e = :E; a' x
W e P LS 2.9b

vhere k=i, al =a _ , and m=ntd. For the rest of this paper,

g-m
except where otherwise noted, the term linear operator will refer to the
discrete case as defined by eguations (2.9). The form (2.9b) will pre-

dominate.
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The one dimensional linear operator will be defined by

squation (2.9b),

m
T 2 8, %y g 2.9b
870

where the &, are known a8 the operator cocefficients, L iz the in-

formation or date, and e is the ocutput or the approximstion to the

itk
signal. It is often convenient for computational purposes to adjust the
mean value of e 14k by the addition of e constant term. Thus a more

general form of (2.9b) is
)

°1+k = 8 4+ 2 nsxi-s‘ 2.10
850

For convenience in the following discussion the constant term will be
neglected., Thie corresponds to requiring the mean of all data to be zero.
In Part 2,1 of this section we considered the linear operator &g
applied to a eingle seismic trsce and we saw that since we must deal
with a‘finite smount of information, our problem is somewhat specislized,
Further, the discrete case with which we are now concerned adds special
problems of its own. As an example, let the signal that we wish to find
be a seriss of transients representing reflections, and let the nolse be
the background interference. The signal plus moise, x(t) or x, 1s
then the trace, Since the signel must lie within the time limits of the

trace data, the e series must necessarily contain m+l less points

i+k

than the X, geries if -~ m€k€o, and wm+tl+k less pointe than the

xi series if k>0 or k<&-m. Kurther, if the number of data points on
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the x1

Yrom the x

trace is M and we wish to determine the coefficients L
, data, then 2m+l)€ B for the first case above and
2(mtl)+k €M for the second case. Thus the maximum value of m is
limited by the amount of data M available, In practice it usually
turns out that the meximum value of m must be further limited by
computational restrictions.

A similer problem may be stated ag follows. Although the

a@proximation to the signal e... tends to improve, by certain cri-

itk
terion, ae m increases, in some cases the arbitrariness of the phase
relation between the gignal and the approximation to the signal also
tende to incresse, Thus from the point of view of digecrimination of
reflections with respect to time, we do not want m to be too great.

He therefore have the dilemma that an increase in the value of m will
in general improve the frequency and relative phase characteristics of
the approximate signal, but will ineresse the arbitrariness of the abso-
lute time relationship. We will see lster how this situstion may be
improved with the introduction of another dimension in the operator,

Let ﬁé now return to the one dimensional operator form, equation
(2.9b), and again apply it to a selsmogram, but from a different point
of view., Assume that the selsmogram contains M traces where M 15 a
reagonsbly large number. If we now select one reading from esach trace,
say on & line perpendicular to the time axis, we may consider this set
of data ap a series x, where the index i now refers to the ensemble

i

of traces, To what the approximstion e might now refer will be

itk
left unconsidered.
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While still on the subject of one dimensional linear operators,
we may introduce an additionsl concept for those who think in terms
of correlations. If we think of the series of coefficients as a

tranasient, then

n
LS JEE 2490
B0

in nothing more than an approximstion to the cross—correlation function
ot the seriss as and x’s or the convolution of the seriss ‘s and

X his last conecept will enter into the discussion of filter charsc-

teristics,.

We have now considered applying the one dimensional linear opera-
tor along the time axisg and perpendicular tc the time axis. Let us com-
bine these two approaches and form the two dimensional linear operator

1,4k, ) 14k, = :% :? a x
17 a2 8,50 8,70 818 178y 1,78,
2,10
The notation is similar to that of the one dimensionsl linear operator
except that the indices with the subseript 1 refer to the time axis
and the indices with ths spubseript 2 refer to the ensemble axis. By
this technique we have introduced more informstion into the linear opera-

tor with the probability of decreasing or removing some of the limitatlons

or drawbacks encountered in the one dimengional ecase. From another point
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of view, the statistical sample, from which we determine the operator,
hag been incremsed and we might thus expect greater stability in the
regulting mechanism. All the above improvements of course depend upon

the assumption that the traces are physically related or correlated,

(

The Generalized Linear Operator or n~dimensional linesar operator
ie nothing more than a generalization of the previous concepis to n
dimensional space. That is, instead of attempting to determine the
gignal from one record, we might introduce & third dimension by adding
s set of records from the same area to our linear operator. A fourth
dimension might consist of a group of sets from areas of the same type,
and so0 on, Although the practical manipulation of an n-~dimensionsl
operator would probably be too unwieldly, the concept of combining all
pertinent information in e msthematicsl operation to determine the

signal 15 intriguing.

The prediction linear operator for two traces ae defined in

+

Reference 3 is

]

2 = ] H
Tt 70 igio (8'y Xy gt * D' 1Ty g0 211

where Xy is the trace to be predicted and yi is the second trace.

in this case, §i+k' represents an approximation to the xi trace &t a
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vhese lead k'. However, the approximation to the signal which we

wish to find is given by the error series

VAl
ikt = Fiaxt T Fpaxe 212
) o % M
Piagt T Tt T T S % et Ti-gt f,% PratTier 2,13

Now the two dimensional linear operator with & constant term added 1g
By

| 1
®1 4, 14k, + & 55 s

5F0 8 % 8 8, 1)-8), 1,8,

2 2,14
which, 1t we are considering only two traces, may be written as
g 2
e =8+ Y x + a x
1yt ip¥k, PR L e e R e e U
2:15

Further, if we plan to use this operator to predict only the first

trace , then we can simplify the notation by letting x = x
11"61'12 . O

representing the first +trace, x = Vyg " representing the

il‘"ﬂl » i 2‘1

second trace, and % 4x » Bince the index i, is

L
14 14k

’ 1 2

)

constant and k, = 0, Algc, we can let aal,o =8, and aﬁl’l =

Therefore squation (2.15) simplifies to
n

m
) =a+ 3 ax + ;E' b
# - -
i+ S, s T S VP s, 2,16
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If we require

k=o
8 T =0
a8 =1
o
&, = -a",*x, for s2 k'
a, = o0 for s< k!
bﬁ = o for s<k!
= b '
b, LU for 82k
m= M+ k!
s o= 3! - ki.

then equation (2,16) may be written ss

'} )

e, =x, ~¢c~3F a' ,x tv"ib'ny,.t..;

i 1 gl=g & i-st-k' S5, # Ti-st-k
2.17

which is equivalent to equation (2.13)
M M

Oyt t“"‘z“'sx.,i“ib't? '

1+ itk gl=g 8' 1-8 glzo 8 “1-8
2,13

We therefore see that the equation for the error series using the pre-
diction operator is squivalent to the two dimensional linear operstor
plue a set of restrictions, It is, thus, a special case of the two
dimensional operator. We might therefore expect that the two dimensional
operator would be more flexible and would, in general, provide a better
approximation to the asignal,

Examining equation (2.13) it can be seen that wince the output is
8 ik rather than £1+k the concept of prediction does not really enter the
problem, and that if we had applied another set of restrictions to equation
{(2.16) we might have obtained the error series equation corresponding to

the so-called interpolation operator.
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Consider the Fourier integral representation of the function

x(t)

x(t) = /m X(w) ajmdm 3.1a
-0

and the Fourier transform of x(t)

(o) = & £ x(t) oIty 3.1b
X

The variable t 1s regerded as the independent variable in a certain
region designated as the time domain, whereas the variable ® repre-
gents an independent variable in a ecorresponding region known ag the
frequency domain. The function =x{(t) represents a specification of
some desired function in the time domain, and the corresponding function
X(w) is regarded as the specification of that same function in the fre-
quency domain. In other words, the function X(w) 1is in every respect
juet as complete and epecific a representation of the desgired function as
is x(t).

Though the above statement is true, certain functions are more
readily interprstable in one domain than in the other, The possibility
that this might be the case with the linear operator motivates the fol-
lowing development. Further, eince x(t) in equation (2,1) represents
a physical phenomenon, it conforms to the requirementz of repregentation

by a Fouriler integral.
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Let us consider the continuous linear operator corresponding
to equation (2.9b) %

m
o(trt ) = J x(+-T) a(r) ar. 3.2
o .

We then write

X(t) = fm X(ﬁ} QM&”’ 3.3
~0
X{w) ﬁ% W}n x(t) T , 3.3b
w
o(t) = IECw) RPN ’ LAY
00
and
o) = & }Q Co(t) o™t 344b
-0

or for the particular operations that we wish to perform,

X(w) = 3'2;; ? z(t~7) e“jw(t”?)dt 3.58
-0
and
Bo) = 2 f o) oIty 3.5b
-0

#ultiplying both sides of equation (3.2) by e"‘m‘ “to) , we obtain
@ ,
e(t+t ) e'jm(t*tc) = [ x(t-T) c"jw(t"'f) A(T) 0"“’(7*%)&1“

]
3.6
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and if we integrate both sides of (3.6) with respect to t from

t = -0 to t=+w, we obtain, by equations (3.5),

o
B@) = Xa) J a(T) o3HTH) g 2,7
o

Now E(m) represents the amplitude and phase spectra of the -e(t+to)
series and X(w) represents the amplitude and phase spectra of the
x(t) serles. Thus if x(t) 1is regarded as the input, and e(t*tc} is

regarded =s the output, then

@®
Bw) = f a(r) 36T ) 4 3.8
[#]

represents the amplitude and phase transfer function or filter
characteristic, An entirely similar derivation may be made using

the concept of the unit impulse response,

3.3

Now let us coneider a parallel development of the above sxpres—
eion for the filter characteristics in the cese of the one dimensional

linear operator

m
o = 2 ax 2.9b
i+k g=o0 ° s
Let the spectrum of the x, seriee in the interval A to B be repre~
sented by B
o) = 2 xomdobd 39
i=h
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and let the gpectrum of the e, series in the same interval be de-

i
fined as

B
Bao) = & aiu":mm 3,10
i=4

or in more convenient form
B+e
o) = £

1=hAp

xi“s;im(i-—a) 3.11a

end Bk

o) = £
=ik

8, ﬂe"‘iw(”k) 3.11b

~Joh{1i+k)

Hultiglying both sides of equation {2,9b) by e , We obtain

m
~joh{itk) _ £
ey 4x® * sm0 Fi-s

o~ Joon(1~8) %e*éwh(m) .

I we now sum both sides over 1 from 1 = A to 1 =B, we get
B . n , B
£ o () o 5 Sea(etk) £ o ~Jab(i-e)
1=p HK gm0 ° j=p 18

3.12

It the spectra of e and x, are constant with respect to time or 1if
the spectra vary slowly and |[B-A}>> wtk, if kd>o or |B-4I> a,
it -n € k€ o, then we may neglect the & and k dependence of the
limits and, ueing equations (3.11), obtain

Bo) = X(@) 3 a¢mion(ote) 3,13
m -

III-4



or H(w) = E{Q}I @ 3,14

where

H(w) = 2 as’.—-jmh(a*'k)‘ 3.15
8=0

A more direct method comsiste of the following. Let the input
information xg be dats from a sine wave of angular frequency .
8ince the system is linear the cutput will be & esingle freguency sine
wave of the same frequency but, in general, different phase ani am-
plitude, The complex notation for a sine wave, x{t) = 33m¢ or in this
mejm, is convenient. Using equations (2.9) we pee that if

cage X
i

the input is Xy then the output e will be given by

Joh(i~s-k)

m
e E o

and the output over the input, by

o .
A g g olon(e) 3.16
= »
H(w) X, =m0 B

This equation is identical with (3.15).

The characteristics of a filter may aiso be expressed in terms
of its unit impulse response. If K(t} represents the unit impulse
response of some filter system, then the cutput e(t) may be expressed
in terms of the input x(t), and the impulse response K(t) 4n the
following manner. Let the input =x{t) be represented by a series of

rectangular pulses of width h as was done in Section II, figure 1.
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Then o(t) = Hm = x(T) nK(t-T).

3.7

This expression corresponds to the convolution integral. Let sh = t-7,

then
lim n+t/h
e(t) = heso ;Ef x(t~sh) hK(sh)
50 3,18

If K(sh) is zero outside the interval x=o to s=m, then (3.18) may

be written
lim -
e(t‘) = bvo 2 xi_’shx(sh) 3.19
B=0

But (3.19) is equivalent to equation (2,8) of Section II.

n
e(t) * EE ax 2.8

Therefore hK(sh) = &, in the special form of the linear operator with
M = 0, and the 8, series thus rspresent h times the impulse response
of this linear operator. The transfer function of this lineer operator

mey now be obtained by the formula

(s o} .
H{e) = / K(t) e 9%%¢ 3,20
[+]

and by its spproximation

n ®
H{w) = 2 hK(sh) o~ Johs, 2 a o Juhe
8 =0 s=0 °©

3.21
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The reason that (3.19) corresponds to the restricted linear operator
with ¥ = 0, will be discussed later. It turns out that a more general
detinition of K(%t) admite linear operators with M # O.

#e therefore have two approaches to the consideration of the
transfer properties of the linear operator., As might have been sus-
pected, one approach is the Fourier Transform of the other. Another
function which will be useful in our later work is the power transfer

characteristic
T ho) = 2 (1) I%Tg (o) 42 2§, 1) cos mr

3.21

m
where l{) s () = f 8.8 1o (see Appendix II).
5=0 :

Although, as we have seen, the error series expression for the
prediction operator is a special casge of the two dimensional linear
operator, it is convenlent for some purposes to develop the expression
for the transfer function in the notation of the prediction operator.
Equation (2,13) gives the error series, in the case of & two trace pre-

diction operator, as

M B
Cippt ZXqut ~°~Z alx, o« Z by,
1+k i+k gmg B 1-8 gmg B 1~

2,13
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Then FE = XX (1-A) (1-4) + 2Re [XYB(1-A)] + YY BB 3.31

The extension to more than two tramcee is obvious,

Operator Filter Charscteristics
The physical significance of H(w) 1in equations (3.14) and (3.15)

is the same as that of the transfer function of an electric wave filter.
That is, for a given amplitude and phase spectrum, X(w), of the input,
the output amplitude and phase spectrum, B(w), will be given by

E(a) = H(w) X(w).
Because of the computational procedure, all functions of ® will have a

period of @ = .h% « Whether or not H{w), as given by equetion (3.15)
s 5 o-Jan(stk)
Ho) = & 8o ’ 3.15
8=0

is realizable in terme of real, linear, electric cireuit components,
excluding the peculiarity of periodieity, is a problem which will be
discusged later.

In general H(w) will be a complex function of frequency. E&ince
the coefficients a s must be real, we can write

H(w) = Re[H(w)] + jIn[H(w)] = % a cos oh({k+s) - 32 a sin wh(kc+a)
870 =0

3.31
Thus the real part of H(w®) must be an even function of ® and the

imaginary part must be an odd function of w. If we write H{w) in
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polar form

A(o) = JE(o) o30(@ 3.32
then, since we may factor out o 3K £ron the sum in (3.15), we nay
write

)

{8 ()l o~30M0) a"jmﬁ a e dobiE 3.33
< s
8=0

or

o

| B {w)| e (0(w)-ahk] _ S a o Johs 3.34
oo °B

where [(H(w)| 2 = H(w) H(w) of equation (3.21),

end tan [9 () -whk] = g% aéain whs . 3.35

n

£ acos whs

80
If equation {3.31) is examined, it can be seen that the imaginary part of
H(w), Im{H(®)], may be made equal to zero for all frequencies only if all
the coefficients a  are equal to zero (the trivial case) or if n» 1is
an even integer, k = w% and the coefficients are gymmetric sbout ag N

2

If this is the case, then ©(w) = uw where n=o, + 1, #2, +... BSimilarly,

it m 1is an even integer, k = - %,’ and the coefficients a_ are snti-

symetric about 8y then the rsal part of H(w), Re[H(w)], is equal to
2
sero and 9(0’) “nﬂ'*'% Wh@mﬂﬂxe;_tl’t:-’-p verns »

If we consider m to be an even inkeger, we can analyse the co-

efticient series a into its symmdtric and antisymtetrie components about
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: & Lat As represent the symmetric component and B8 represent the

—

3
antlisymetric component. Then

A& 2 (Rs+ﬁm~sl S O, + 1 nenee 2
B et e ~a 1] 8=0, ¢+1 2
8 2“5 m-8 P h SAerr o

; = +
and &, Aa Bs'

If we substitute (3.38) into (3.31), where k = =~ %, we obtain

m n
Hi@) = & A cosan(sB) -3 Z A sinan(s) +
8=0 850 &

n @
+ & B cos wh(e-3) - § E B sin wh(s-3)
£%0 B=0

3.36

337

3.38

3.39

We can therefore consider H(w) in (3.39) as the sum of two filter

characteristics

n n
HA(&) = & A cos wh(s- %) -3 = A sin oh{ s~ %)

g=o0 il
and . .
Hg(w) = aéo B cos eh(s- ‘%) -4 50 B, sin h(s~ -%)
where , i}
K, (w) = |4, ()l T . £y o—dan(s)
s=o °
and

By@) = [yl o3G0 o 2 p (e

5=

III-11
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This means that only the symetric part of the operator coefficiente
a, contributes to the reel part of H(w), and only the antigmuetriec
part contributes to the imaginary part when k = -% and m 1is an
even integer. Thie result masy also be demonstrated in the following

ranner,

H(w) = Re [H(®)] + jIm[H(w)] = 2 a_ cos qh{e~ %) -3 Zm a, #in mh(s-«g)

8

8=Q &30
EV A
Therefore -% -1
Re[H{»)] = s + g (s +a_ ) coe an(s-2), 3.45
) 8 m-8 2
2 8%Q
which 1s a Fourler cosine series with m 1 termg, Similarly
2
24
m
Im{H(w)] = - sji (a-a, ) ein on(s-) 346

which is a Fourier sine geries with % terms., Therefore, the coefficiente

in (3.45) are given by

5

¥
(a‘3 + “’m—s) = 3 4{ Re[H(w)] cos whis- %) dw 3.47

and the coefficlents in (3.46) are given by

)= fg In[H(ew)] 8in mh(&-%) dw 3.48

(s ~ &
8 m-s T 4

It is seen that these coefficlents are the definitions of twice the symmetiic
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and antisymetric components as given in equations (3.36) and (3,37).
. Thus it is poseible to derive an operator using equations (3.47) and
(3.48) if we are given any filter characteristics whose real part is
representable by a Fourier cosine series, and whose imeginary part is
representable by a Fourler sine series of one less term and of the
pame period. The resulting operator will have & wvalue of k = ~'§
and it the Fourier cosine series contained M terms, then the operator
will have m = 2(M~1).
Now let ue attempt to examine the physical significance of this

repult. Again we return to egquation (3.15)

Ho) = £ as;mh( a+k) 3.15

830

If we let p = jw where p = pﬁ+ 3pI is & complex number representing
the complex frequency plane (Fig. 2), we then have

(e = ; . ;pnh(mk)a-jpxh(wk) 3.49

gso °

It is seen that this function is anslytic except at p=+ @, If

k€0 there is a pole at + ® . Therefore Re[H(p)] = Hy and ng{H(;;)]wﬁx
are conjugate harmonic functions in the finite plane and they satisfy

' Laplace's equation &

2. 2
"a“"z‘g"' ”é'z"g Ld 0’ 3'50
aPR apl

We therefore know that if, for instance, HR is known for all values of p,
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then EI mey be determined by the equation
PpPy
ol bY:
- R
Hp = f (-3-55- dpp + Tﬁ; dpx)«rc

0,0 I
3.51

To determine the arbitrary constant ¢, let ug evaluate the integral,

Now m -gnh(s-?k)
Hp = S ae cos py(s+k)h 3,52
B0
Therefore
) m ~poh{stk)
-é-£l-n = - g ls(ﬁ"l"k) he Rh gin Plh(ﬁ"'k) 3453
Pr . 8=0
and
H n -p b a+k)
-s—p-jé- B - éﬁ as(g*f'k) he R a0s pIh(sﬂc) 3.54

If we break the line integral in equation (3.51) into two parts

Pﬁwe Ppr Py
= f + f 4 3.55
0’0 pR,O
we obtain
Ppeo g - Bh(&-i'k)
By = J b3 L (s+k) he sin plh(sﬂc) dpy -
0s0  8=0
. R m -pgh(stk)
-3 aa(s*k) he cos pxh(s«!-k) dp; + ¢ =
Ppo 8%
m  -pph(stk)
= - aéo 2 e sin prh(s+k) + ¢ 3,56

Thus ¢ must equal szero.
I11-14



As we have already stated, HR and HI satisfy Laplace's
equation. In order to uniquely determine a function which satisfies
Laplace's equation it is/necessary to know either the value of the
function or its slope on 3 closed bounﬁary;ﬁf However, when we say
that we prescribe the real part of the filter characteristics, we
are in reality only preecribing wvalues of the function RR on the Py
or real frequency axis. Nevertaeless, since we know the form of HH,

h(s+k)

2 R

= 2 ae

cos pIh(s*k), 3.57
8=0

under certain conditions, i.e., ranges of k, knowledge of ER slong

the P1 axis is sufficient to determins HR over half of the complex
plane. Suppose, for instance, that we know lim HR = 0 88 PP,
Thus, there are no singularities in the right half plane. Now we

know, from the theory of complex variablea;éf that every harmonic
function of Pr and Pr transforme intc & harmonic function of u and

v under the change of variables
wt+jv o= flpg + Jpy) 3.58

where f is an analytic function. Now the particuler transformation

which we wish to consider is

pB*;!pI—l

BV E AL

Since we only congider the right half of the p plane where pna Oy

then f ig analytic in this region. This iransformation maps the right
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half of the p plane into the interior of the unit eircle in the
u + jv plane and the Pr axis ie mapped into the closed boundary of
the unit circle (¥ig, 3). Therefore, if Hy is a harmonic function
in the entire right half of the p jplane, it will transform into a
harmonic function in the u + jv plane and, thus, must satisfy
Laplacets egquation within the unit circle and on the boundary. But
we have prescribed the value of KR on the Py axig, Therefore, we
have prescribed the wvalue of the transform of HR on a closed boundary
in the u + jv plane and hence, we have prescribed the valus of the
transform of ER throughout the unit cirele, or throughout the right
half of the p plane,

How let us pes under what conditions HR is & harmonic function
in the entire right half of the p plane. We see from equation (3.57)
that tais will be so if (stk)2 € for all values of B8 where € isg a
gmall positive quantity. 7Thus we must have k2 g + € for all s, Now
g8 has e minioum value of 0. Therefore k > € . A similar treatment
may be carrled through in the left half of the p plane, and, in thie

cege, we find that H, is only complstely specified by its Dirichlet

R
conditions 1f e+k< -€ where € ie a small positive number, Since in
this case the maximum value of s iz s=m, k< ~(mte€).

We therefore see that H,. ir completely specified by ite boundary

R
conditions on the p; axis only if k2> € or k€-(mt€)., This treat-
ment does not, however, determine the degree of specification when

~-{m+€ )<k < € or when € = 0, In conclusion, we can say that in view

11117



ot equation (3.51), the imaginary component of the filter characteristics
will be completely determined by the real frecuency characteristics of
the real component of H(w) if k2> € or k€ -(m+e€), and that if

~(m+€ ) < k< € then Im[H{w)] is &t least partly independent of
ﬁg[ﬁ(wD]. Only when k = ~‘§ is Im[H(w)] completely independsnt

of Re[H(m)]. Hevertheless, in all the above situations, Re[H{w)]

mist be an even function of @ and Im[H{®w)] must be an odd funection,

The requlrements that & trensfer function H(w) be reslizable
in terms of a phyeical, stable network, whether active or pagsive, aay
be stated as followsgéf

1, The zeros snd poles of H(p) in the p plane mugt be resl,
or they must oceur in conjugate complex pairs.,

2. The resl and imaginary components of H{(w) must be, respsc-
tively, even and odd functions of p on the imaginary p axie (the real
frequency axis).

3. Poles on tne imaginary p axis must be simple,

he Hone'of the poles of H(w) can be found in the right half
of the p plane,

Now let us examine squation (3.49),
-pgh(s+k) o pyh(etk)

m
H(p) = 2 &e
5=0

s 3449
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with respect to these requirements. Requirement (1) is fulfilled with
respect to poles, for only infinite velues of p; can make H(p) = oa.
Zeros csn only occur when Re{[H(p)] = 0. Therefore if Py, 1s a sero,
then -n must also be a zero. Thus the zeros must be real or occur
in conjugate complex pairs., We have already seen that Re[H(w)] is
even and Im{H(w)] 18 0dd, so that requirement (2) is slso satisfied.
Reguirement (3) is certainly satisfied since no poles exist on the
imaginary p axis, FRequirement (4), however, will be violated unleszs
k > 0. Nevertheless, this limitation on the reslizability of H{w)

ie only apparent gince k must be finite. If, for example, k<0, we
can introduce a delay k such that Y(m) is raaliuble,z', where

m
Y(w) = H{w) Gk -2 by a«-j@hs 3.59
#=0

This situation may perhaps be visualized more clearly in terms of the
discrete impulse response Ki’ vwhere Ki is given by the inverss
Fourier transform of H(w)

T,
= :33"'7; H{w) e g 3.60
-,

or

7/h wm
h ~joh{s+k) johi
K, =5 f Z ae e do = &, ..
i 2 ‘ /h s i-k

3.61

Ki is interpreted as the output obtained from a filter in response to
a unit impulse impressed upon its input at time 1 = o. To make

physical sense, the output can only be non zero for 12 o and for
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etability, it must drop to zero agsin me 1 becomes large. Therefore,
Ki must be zero for 1 <0 and Ki mugt again become zero for 1> M
where B 1ie some large finite number, The second condition is auto-
matically fulfilled, for k and m are both finite. The firet con-
dition, however, will not be fulfilled if k<0, for then K_ lk? LN
K~Ikl+1 = 8y eto, Thet is, the response o the unit impulse will
ccour before the unit impulse is impressed upon the filter, However,
since k is finite, we can introduce & delay of Jkl into the filter
such that the response le szero before the impulse is impressed;z/
One further problem exists in the comparison of the one dimeneional
linear operator filter with a real network, for as we have seen, the fil-
ter characteristica of the linear operator are periocdic, This phenomenon
is & result of the fact that the linear operator is discrete. However,
we have seen that the computed epectra are elgo periodic of the same
period, and therefore the whole spectrum of our discrete data lies be-
tween

or Os»mé‘g@

4

Lo <L

g

-

whers h is the spacing of the discrete data, The spectrum of the

discrete data does not, in general, represent the spectrum of the con-

tinuous trace because the discrete computational procedure cen not dis—
tinguish frequencies differing by % or valueg of @ differing by %, where

n is an integer, It is therefore necessary to choose h suffieciently small
such that the power at frequencies Ifl>% is negligidle. If this is the case,

then the spectrum of interest in the continuous case lies between 0% ms%
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and the filter cuaracteristics of the continuous case correspond to the
filter cusracteristics of the discrete case.

To summarize the above resulls, we can say that 2 one dimensional
linear operator filter may be reyresented by sa eguivalent nctive, stable,
physical network, Further, it may be ayproximated to any degres of
accuracy by a passive lumped element natwork, together with a single
amplifiar;z/ On the other hand, can a finite linsar ogsrator ;ossess
filter cnaraoteristics equivalent to those of any active, stabls, physical
network? The answer to this question is grobsbly no. We have seen that
the transfer function of a linear operator which represents a vhysical
network, can _have only cne pole at Py =~ . The transfer function
of & physical network, however, may have poles throughout the left half
of the p plane and on the Py axis, But poles on the Py axis corrag-
pond to infinities on the real frequency axie, and since H{w) is essen-
tially a Fourier series representation of some transfer funetion H'{(w),
we have a Fourler series epproximation problem, Thus we can only approx-
imate the infinities as m#xima, and in general we must require an infinite
number of operstor coefficients for & good spproximation,

We can, therefore, say that the one dimensionsl linear operator
fiiter is & special case of all possible activaz, physiecel, stable filters,
However, if we use a sufficient number of terms in the operator we can
probably approximate any physical filter charasteristics to a satislactory

degree of accuracy,
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The filter characteristics of a two dimensional operator may be
derived in a marnner analagous to that used in the derivation of the one

dimensional linear operator filtar.ﬁ/ Buppose we consider the input

jﬁmlhlil+ mbhziz)

x = @ ,
then the output will be
m
i ! 2 Jooyhy (4, -k, ) Jonoh,(1,-k,8,)
a &= a e e
Ledy z 3 81987
8,=0 8,70
3.62
and the output over the input, H(ai}wb), will be
®1 ,1 BB ~joyby (8t ~Joyh, (8 k)
B(w, y0,) = *ux =Z Z 8 ®
1,1, 8% 8,70 1?72
3.63
Also, the two dimensional input spectrum may be defined as
B B
1 2 ~3(ayh 1 ke k1)
= 171 222
oy ,m) = 5 53 xil’iz e
= 154 3,64
and the output spectrum as
B B
- 2 -3{eyhy 1 +woho1 )
E(%"*’z} - 2 é ei i e Y
1,=A 1=4, 12
1 2R 3.65
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Again, for the relation

E(w) ,0,) = X{oy,0,) 8o, ,0,) 3.66

to hold, the spectra must not vary too rapidly with respect to il or

12 in the intervals of length ml+ kl and m2+ kz.
We can visualize the two dimensional speetrum as follows. If

the subscript 1 again refers to the time axis of a seismogram and the

subseript 2 refers to the ensemble axis, we can construct a three

dimengional diagram where one axis ig the il axig, another is the 12

axis and the third represents the amplitude of the trace. Thus the

two dimensional amplitude 1s essentially a surface., If we now take the

Fourier transform of the surfsce along the il axis, we oblain a surface

representing the spectrum of a single trace along one axial direction,

gay the mi axig, while moving in the 1_ axial direction we pass from

2
the spectrum of one trace to the spectrun of aunother. If we now take

the Fourier transform of this surface along the 12 axis, we obtaein a
new surface, with coordinates @y anﬂ.mb, which represents the two dimen-
sional spectrum. This second transformation is essentlally a spectrum
analysis, in the 1
of e

To clarify the situation, let us congider an example, Suppose we

2 direction, of the trace spectra at various velues

have a seismogram with M traces and we wish to operate on it with the

two dimensional linear operator

Wagx, o 3 teany 1,11
1212

= (a_x +a, X
i 00 11,12 lo il"l, 12 1 2

3.67
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That is, we wish to use an operator with four coefficients, two on each
of two neighboring traces., We can compute the spectrum xi (&1) of the
2
i, trace and the speetrum x12~1(“5) of the 12~l trace, We can also
compute the filter characteristics, Hy «l(ml) for the 1,-1 trace.
2
Further, we can write the spectrum of the outpit as E, (mi) for this
2

case of the operator applied toc the 12 and 12-1 traces, Thus

) =X (o) B (@) 43 @) 8 ).
3.68

We see that Eia(mi) ie the result of the filtering of Iiz(wi) by

(o)
2~1“’1

Equation (3.68) corresponde to taking the Fourier Transform of (3.67)

ﬂiz(@i) plus the vector addition of Xigwl(wi) filtered by H,

in the i, direction onmly. But we wish to know the output spectrum of

1

each set of traces tc which the operator ie applied., We could there-

fore compute Ei for all values of 12 and compare this set of spectra.
2

A corresponding form of this information can be obtained by teking the

Fourier transform of (3.68) with respect to 1,. We then obtain

fince we know that a one dimensional linear operstor corresponds to
filtering, we can see from (3.67) and (3,68) that a two dimensicnal linear
operator corresponds to filtering and mixing, or from (3.66), filtering in
two dimensions. Since, however, the data is nct continuous across the
traces, the two dimensional filter ie not realisable in terms of networks
and we gust be satisfled with a filtering and mixing device. To put it
another way, slectronic filtering in the ensemble direetion must be carried

out by using discrete data, just as is done in the linear operator,
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IV Methods of Determininz the Cptimum Linear Overator or ¥ilter

L+l The Influence the stistica Lee of the Dais on the

te a the binear O tor

In the two preceding sesctione, the characteristice of the linear
operator have been developed, independent of nssumptions as to the sta-
tigtical nature of the input data. However, in order to evaluate the
ugefulness of the linear operator, (and therefore the linear filter),
it is necesgsary to consider the charascteristics of the gignal and noige
to which the linear operator will be applied. Also, these characteris-
tics of the signal and noise will in large part determine the critsrion
by which the linear operstor should be optimized,

¥le have seen that the operator cocefflcients ere independent of
time, and that therefore the filter characteristics must also be inde-
pendent of time. Thus, if we design an optimum phase and amplitude fil-
ter tor the signal and noise in one intervel of time, and we wish this
filter to be equally as satisfactory in another iaterval of time, then
we must require the phase and amplitude spectira of the signal and noige
to be essentially constant with respect to tine. If we had only op-
timized the power characteristics of the filter, then we could reduce the
restriction on the spectra to the requirement that the power spectra of
the noise and eignal be approximately constant with time, 4if, for instance,
the nolse power speetrum is approximately constant with time, but the
signal power spectrum is not, then the criterion of optimization ehould
be to design a filter with power characteristics which minimize the

power in the noise spectrunm,
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Another criterion for designing the linsar operator is the transient
response or the impulce response, If, for example, the signal consisted of
a series of similar transiente, then we might wish to contraet these tran-
glents in such a way that they would appear in the output as distinguishable
pulses,

It is apparent from the mbove discussion that the eriterion of
optimization depends upon the nature of the input information and also upon
the desired output, There are thus two alternative approaches to deter-
mining the best criterion. The first approach, and perhaps the more direct,
is to thoroughly analyze the data, drawing on all svallable knowledge of
ite probable characteristics. The second approach is to apply the oriteria
or optimization in successlon, beginning with the criterion which imposes
the weakest requirements on the data. The optimum ecriterion in this case
should be that which gives the best signal from noise separation.

As will be seen, the exact fitting of an wm+l term linear operator
to mt+l points corresponds to optimiszation éf the phage and amplitude
filter characteristics in that interval., The least squares method of
titting an m+l +term linear operator to ¥ points, where M>> m+l, cor-
responds to the optimizstion of the power filter charscteristics in the
titting interval,

In a previous section i1t was mentioned that seismic data might be
considered as existing from -00 to o, However, it ie obvious that the
statistical properties of this data differ radically before the shot and
Just after it, OSimilarly, the statistics of the trace just after the

shot must differ from the statistics ae t-ow. Thus, the best we can
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hope for ie that in the interval of the rscorded trace, the charac~

teristics of the signal or noise are approximately constant with time.

4.2 The Method of Least Sguares Fitting of the Linear Operator to the
Signal

This method requires that we kpow the signal in some interval of

the data, We then write

B %8 — & 4l
where 8; is the value of the mignal at 4, ey is the output of the
linear operator at 1, and gi is the difference between si and ei et

1, We then eum the (g;) over some interval A to B and determine the
coefficients of the linear ogerator such that
B
1= £ g° he2
i=A
is a minimum,

Let ue consider the case of the two dimaneional linear operator.

s | )
= & s

] a x
LWkl gre e f1%2 hfria% len3

If we know the signal sil+kl’12+k2 over the interval Al to Bl on each

trace, we can sum the squared difference over Al to Bl on traces A2 to BQ.

First, however, let us assume that we wish to determine the operator

= k.. We can then gimplify the notation of equation

only for trace 12+k2 5

(4e3) to



2 - bok
Equation (4.4) can be written

Oy 4k,

¥ eoxil, 810" i ~1,0 Yoot 8o1%1 l,.ml*allxilul,—l*'"

4ed

The right hand side of this eguation has the form of the product of

a row matrix and a column metrix. Let us therefore write

= & 4&6
T

where

= ey .se o7
zil [ il’a il 1,0' l,"‘"l il““l;; l. ] 4
and L= [am aleg'ﬁ. an all n.cq} A.ﬁ
Therefore g = g 4.9
’ RN S N

¥or each value of 1i,, we obtain a relationship of the form (4.9).

2
Therefore, if we define a column matrix

E= {gA gk“'l teen 8114&1 csen ﬁB} 4,.10
we can write
E-E~-Z28 4ell
where g = {SA LJVORTRE ai}.ﬂ(l “oes SB} 412
and =z = X ,5 ra0e ek 4013
{ pky Eaok + =N Ea..kl}



or x 1is a rectangular matrix with rows x, as defined in equation (4.7).

—-i‘

1
¥ron (4.10) we see that
B
1= 2 g§ +k =g & 4eld
il+kl=A 171
T T
But g = [g-za)" =g - (x8)7 .
T T T
Therefore I=gg=[s-(z8"lls-x38]=
T T T.T
“.ﬂ?ﬁ".ﬁ Eﬁ‘é.&T.@*& X x8 415
T TT,.T ,
But & xa = (8 xs) is a scalar and the transpose of & socalar is

the secalar itself, Therefore, _QT xXa= _q:r _;T_g and equation (4.15)

becones

I= .aT.a -2 .!T.;T.ﬁ + sT.;Tz 2 416

Minimizing (4.16) we get

§1=-2 §lals's) + Sla’x'xal =0 4417
But Slaxxal=d(a) xxa+exsds 418

Again, since J'(QT} _:_c?.,x, &= [gf ;T zdé g]T 18 a scelsar equation, the
transpose of the right hand side is the right hand side itself, and

from the resuliing equality we see that (4.17) may be written

ST=-2 6axal +2 &) xxa=0 419

The resulting minimiszing condition can then be written



§@) xzxa= £k e 4220

If we premultiply both sides of equation (4.20) by & (a) mnd denote

§ (2) J(&T) by G, (4.20) becomes

G fzs 2=0G .aT.a. 4e21

It is seen that the determinant of the square natrix G is the erimg/
of J(aj). Therefore, if the ¢ (aj)‘s are independent, |Gl # o

and thus G possessee an inverse, If we then premultiply both sides of

—

(4.21) by G, we obtein the simplified minimizing condition
st.; &= f.ﬁ kel

The matrix 5:{; is square, symetric, and in general | ;T_m £ o. We
may therefore compute the inverse of ;ng, and premultiply both sides
ot (4.22) by [g%]“l. Therefore

s = [x'x15"s 4423

The requirement that the & (a ;}) 's be independent is the requirement
that a 58 's be independent variables. If, however, some of the
2
By o 's are restricted to be constants, then the corresponding é (s J}'s
1
will be zero and the matrix squation (4.20) may be partitionedw such
that a new G' is found which hag a determinant |G') # O. Then a

similar simplification may be carried out with the result

a' = [T 2 Tsr. byo2l,
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in the gpeclial case when some of the aslsg‘& are dependent warisbles,
the situation is more complex, but if the dependence is linear, then a
get ol linear simultansous equatione again results,

It will be remembered that the preceding development was carried
through for the determination of the least squares linear operator from
the signal contained in one trace only, Let us now determine the best
least squares linear operator using the eignal information contained in

traces A, through B,. ¥e see that equation (4414) will then be

modified to

I
I =
€4 4k ,i 4k 31 oty Birk,
1,¥=h, LHkg=h, 1L 124»3:2 2
Lak5
or 32
T TT TT
I= £ & - 28 +a sl 4a26
14%,7h, Lgiz*ka %k, B, T AR R
Ir we let B
2
T
B.= & s
g
B =
TXE 4 ak omA ziz 512+k2 » 4e28
2 KyThy
B
2 T
= X
and o 1 *f =A 2212 2
2 Ka"ha
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Then we may write (4.26) as

— T T,
waiBuZE Ro*a 2.8 4e29

-—-s

This equation has the same form as (4.16) and thus the resulting

minimizing condition, or normal equation matrix is

a=[& 1% B 4.30
Thus, the coefficients as determined by equation (4,30) constitute the
operator coefficlents of the best least squares two dimensional linear
operator. OUne could also determine a two dinensional linear operator by
finding the least squares operator for each signal, as given by equa-
tion (4.23), and averaging the resulting coefficients. However, it can
be shown that thé resulting two dimensional linear operator is not the
"best™ in the least squares sense,

The mpplication of this technique to seismograms ie somewhat
gpecialized since the signal 8y is usually not considered ag a continuous
function of time. That 1s, we think of each reflection as a separate
unit. Bowever, if we know the aignal to be zero in some interval, then
we can use this interval of gy =0 to determine the operatcr:ﬁf The
resulting operator will then be the best least squares approximation to
g, =0 in the fitting interval and, if the statiesticel properties of
thevtraces are near constant with respect to time, the operator should
continue to give a good approximation to zerc as it moves along the
time axis. If, however, the presence of a reflection modifies the pro-

perties of the trace in some region of time, we would expect the

Iv-8



approximation ey to differ from zerc in the reflection interval., Thie
does not imply, however, that the ocutput e, in this interval will

regemble the gignal s, 1in form, for we included no information sbout

i
the form of reflections when we designed the operator in the interval
8; = O The best we can thersfore expect is that the amplitude of e
will be greater in a reflection interval than in a non-reflection inter-
val, and since this ig our only criterion by the least squares method,
the output may best be displeyed as ei‘
Ae sn alternmative procedure in applying the least squares method
of determining the linear operator, we might fit ey to a reflection

interval, In this case, we would expect e, to be small when in any

i
reflection interval, if we assvume the characheristics of all the ve-

flectiong to be similar, and we would expect e, to have a greater am-

i
glitude when in & non-reflection interval. "he above problems will be
considersd again, later in this section.

It should be noted that if we assume s, =0 in the fitting inter-
val, then the right side of equation (422) will be zero, and the solu-
tion of tuis equaticn will be the trivial solution =& g = O Fe must

5%
therefore require that one of the coefficienus, say a_, be equal to &
00
congtant, As we have seen, we must then go back and partition the
metrix in (4,20) snd obtain & modified form of (4.22). This procedure
corregponds to throwing away one of the homogeneous squations of the

et T
AXAB"9, 431

and thus reducing the rank of the matrix ;33 such that it is one less
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than the number of unknown coefficients a The solutions we

8 8y
then obtain will be multiples of an arblitrary constant which we can
specify for convenience. This case correspords to the predietion

opsrator where the first coefficlent, multiplying the predicted trace,

¢
\

is regquired to be equal to 1,

or Characteristics
Equation (4.14) is the expression for the sum of squared dif-

terences beiween the signal and the operator output along one trace.

B

1
2
I= & g
. i,+ Leld
IO R Nt
By
But éf gi K is the computed amutocorrelation of & 4+
itk =A 1y 1t
17171
at zero lag. That is
B1 )

il*klmAl 171
Pargeval's Theorem for a periodic spectrum telis us that

/h

dgglo) = 2m [ T Gla) @ 433

where G{m) is the spectrum of gy 4+ Therefore
171

#/n

I = 2rh Glw) Glw) do 4e34
-/h
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w/h

Qf [Ex - SX + 2m)] S do =0 438
and ‘
n/h
J [sfx s 3K+ ) SE dw=0 4e39
[+

Since HR is & finite Fourler cosine eaeries and HI is & finite Fourier
gine series, in general o HB. and ¢ EI are not arbitrary functions ir the
intervel 0<% © €W/h and we must be content with equations (4.38) and
(4439). The integration of equations (4.38) and (4.39) yields a pair of
matrix equations equivalent to the matrix relation (4.19), and if the
ecafficients in the HR and HI series are independent, then the matrix
equation (4.23) resultis.
if, howsver, as the number of terms ir the Fourier series ﬁR and

Hy 1s increased, it happens that the functions & Hp and & H; become
sufficiently arbitrary such that we can choose two functions J'HR and

d'HI which make the integrands in (4.38) and (4.39) positive whenever

they are not zero, then we must require that

-ﬁx-s&'a—ﬁmaue LekD
and

~§5X + JEX + 2% = 0 Ledd

Therefore, the minimizing condition may be written in terms of filter

characteristics and spectra ag



XX behR

T - 61

In Section I, the input information x, was defined

X, =

i Bi + ni beodidy

where 8y represents the signal and n, represents the background inter-
Terence. It was stated that, in genersal, ny consiets of & predictable
conponent 2y and a random component Ty Therefore, if the corresponding

spectra of x,, 8, ng, Py and T, are X{w), S{w), ¥(w), P(»), and E{w)

i
respectively, where R{w) is undefined, then

Xw) = S(w) + P(w) + R(w) Lok5

XX = 85+ PP + RR + GP 4 PS + SR + RS + PR + RP, Lakb

X = S5 + EF + gR, bo 47

and SX = S5+ & + SR hedB

But gince Ty i8 a random component, the cross power spectra of r, and sny

i

other component will bs zero if the mean of r, is zero.;;/ Only the power

i
spectrun ot ri will be non zero. Therefore (4.46) reduces to

—

XX = 86 + PP + RR + BP + BS 4ed9
and {(4.47) and (4.48) become

SX = 85 + SP 450
and X = €8 + &P 4e51
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Thus equations (4.42) and (4.43) may be written as

fy = S5+ Be[SP] 4e52
85 + PP + RR + 2Re[EP]

and

g = =In[ER] 453

I 85+ Fp + TR+ 2Re[P)

and the best least squares linear operstor transfer funetion is therefore

o) = S2EBE ' hoSh
S + PP + RR + 2Re[5P)

Let us consider some special cases of equation (4.54). If the

random component of the noise r, is equal to zero, then BR = 0,

i
Equation (4.54) then reduces to

Ho) = S22 455
S8 + 2Re[SP] + PP

But 2Re[SP] = EP + SP. Therefore

H{w) :"é‘% = 'é% he56
(S+P) (S+P)
Equation (4.56) tells us that in the sbsence of a random component, the
best least squares linear operator ie the one which transforms the signal
plus noise exactly into the signal, This corresponds to perfect fitting
in the fitting interval, For a finite interval, it is possible to des~
cribe the noise as & function of time., Thereflore, for this finite

interval there is no random component,

V-14



As another special case, let us suppose that the predictable
component of the noise is zero, but the random component is not., Then

by equations (4.52) and (4.53)

E = :’ : 49 56

B S5+
and ﬂx = 0 he 57
-.C‘
Therefore Hiwp) = e 4e58
&8 4+ RR

ince S€ and RR must be positive, then not only is H(w) in (4.58) real,
but it must also be positive. Therefore, the phase angle of H(w) is
zero or some multiple of 2¥. In tnls case it is seen that the best
lesast squares transfer function is dete;mined sclely from the power
spectra of the signal and noise,

Another special case, which has been treated in Part 4.2 of this
section, is the case in which we wish to determine the operator in an
interval of zero signal., It is evident from equation (4.54) that the
trivial solution H(®) = 0 will be the optimum solution in this inter-
val., In order to prevent this solution from ccecurring, it is necessary
to restrict H{w) in such a manner that it can not be identically zero
for all values of w. A restriction we have already considered is that{f
one of the operator coefficlents be equal to & constant ¢. This res-
triction may be written as

Y /
'%v' fh H(w) amlu*k) do=a =c 0€4<n 4e59
-5/h
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or

w/h ’ n/h
b h.
= .*,/{ ﬂRmsaﬁz(l*k)dm+521dv/}{ Hy sin ah(4 +) do +
/h #/h
+ j-ﬁ*— f choaaﬁz(lﬂ*k)dm»%; f Elaium(alirk)dwﬂc.
“r/h -/

4460

However, since HR is even and KI is ¢dd, the second and third inte-
grals in (4.60) must bs zero. Further, eince the integrands in the
first and fourth integrale are even functions, the constrain equation

{4.59) may be written as

w/h
i [ (8, coe @h(4 +k) - By sin ah({ +K)] do = WD 0<1< n
0 461
Ve therefore wish to minimize
7/b
I= 4mh f X B d&o 4eb62
Q
| -2,
pubject to the constraint (4.61). If we write HH = Hp + Hy , we can
sat
¥ =X [ + H§1 + AHy cos @n(4 k) - NH . sin ab( 4 +K)
4e63
and minimize T /h
4h j ¥ do
Q

subject to no constraints.
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The resulting equation is

w/h
/ {Iﬁiﬂa + ANecos wh (X +k)] JKR + [zxxﬂ]:- Aginah (£ +k)]JHI}dawG
[+
f YA

Again, as the number of terms in the operator goes to infinity, we may

obtain the equations

B = = Ncas gh (ktd)

and
B = Asingh (b)) 4,66
2Xx
i
Then
’ g-don(k+ 4 )
H{w) = = - 467
2XX%

where is to be determined such that equaticn (4.61) is satisfied.
Equation (4.67) may be written in the alternative form

Bla) = A—Se 2 ) 4068
2 PP+ 2 RR

since S{w) = O.

A formula somewhat similar to (4.68) may be obtalned using
equation (4.54). If, instead of assuming the elgnal to be zero in the
fitting interval and non zerc in some other interval, we assume that
the signal is & random function with a constant power spéctm A, we
can obtain from equation (4.54)

x
A + PP + HR

H(w) = . 1“69
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An extension of this development tc the ceasze of the two dimen~
sionsl linear operator will not be considered, Only & brisf mention
will be made of the case involvirg the prediction operator using more
than one trace., Let us consider the two trace predictlon operator of
equation (2.13), where the spectrum of the error series was given by
equation (3,22)

E(w) = X(w) [1~A(w}] - Y(w) B(w) 3422

Therefore the sum of squared errors is given by

7/ #/b
I =k fﬁ@&nmm f (X-XA-YB][X-XA-YB] dio =
-r/n -/h

#/h
=4 f (Xx(1-8)(1K) - TY(1-K) BT (1-a) B + VB8] dw

/b 4,170

The minimizing condition is then, that &I in (4.70) equal zero. The
first and last terms in the integrand in (4.70) are positive. The
middle two terme may be nsgative for some w. If the cross gpectrunm

XY ie approximately zero, as it would be 1f the x and y traces were
uncorrelated, then the minimization of (4.70) consiste essentially of

minimizing the integrels

r/h
I, = [ XX(1-4) (1-K) do 4T
-w/n
YY BB .
I = [ o 472
-/h



Fouation (4.72) will be minimized by B = 0, Therefore we would expect
the b! coefficients in the linear operstor to be zero.
I XY is not approximately zero, then we must essentially mini-

mize (4.71) and (4.72) while maximizing

7/h
Iy =2 [ rex1-DB] @ 4T3
/n

The variocus expressions for the optimum transfer functions in
this section have been derived with no upper limit on the number of
terms in the linear operator, Therefore, if the linear operator is
restricted to m+l terms, it‘will usually be necessary to spproximate
the optimum transfer function. But the optimun transfer function muet
be a complex Fourier series yith ¥ terms where M may approach co.
Therefors the best approximation to the optimum trenefer function H'(w),
in the least squares sense, will be a complex Fourier series with m+l
terms where the m+l coefficients are the same as the corresponding
set of wm+l ocosfficlents of the series with M terms.

Unfortunately this simple espproximation procedure dees not, in
general, conform to the requirements that the sum of squared errors, I,
be a minimum, This may be seen from the following discussion. Let
B'(®) represent the optimum least squares transfer function, where H'{(wm)
may contain an infinite number of terms, The most general representation
of H'(w) is given by equations (4.42) and (4.43) or in & slightly dif-

ferent form -

Hl(m) = - S Le'l4
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The equation for the sum of equared error is given by (4.36)

I = 4rh (85 - X8 - SXH + XXAH) do 4436

gubstituting (4.74) into (4.36) we obtain
w/h
1= jm f {'és + XX [-H'H -E'Ei»r'iﬁ]} do =
o
w/h
= [ {E-TEw B 0@ -D} @ 475
Q

Since gé and ‘Eﬁg’ﬂ‘ are constants, the minimization of I results
in the equetion
w/h
§ [ m(a-a)HE-H)] aw=o 476
0
Thus H 4is & weighted least gquares approxismstion to H' where the

welghting factor is the input power spectrum,

Let us again consider the problem of detecting the reflections
on a gingle seismogram trace. In this case we will assume that we know
a partlcular interval, A to B, in which the signal iz mero, and that we
know snother interval, C to D, in which the signal is non zero. We
can therefore introduce the following criterion for the determination of

the linear operator. We wish to minimize the output ey in the interval
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I. to B, and we wish to maximize the output e, in the interval C to D.

Therefore, if we write

B
Il = 2 61 4077
i=h
and
Do,
I,= 2 oy 418
§=C

then we wish to minimize N\, where

I
h = -f'l. 4079
2
I,81,-1, I
But §A= —S—2 1 2 _ Ll (g7 _afI)=o0 4.80
12 12 1 2
2
We therefore want
Jxlakﬁzzmo 481

Using the notation of the first part of Section IV, we then have

I, = 5(;5%.@5] 482
and
612:& S[&T_:_z_gggcg} 4.83

Whers X, represents the matrix of the data from the interval A to B
and p9) represents the matrix of the data from the interval € to D,

tTherefors,

611"‘A612 m;(&T) {sz}.“*}\é‘crzc]&’“o: 4'3‘6‘
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snd since the aﬁ's are independent, we get

béfzsy- Nxg xgla=g 485

The solution of this matrix equation will be the trivial eolution un-

less the determinant

My x, - Axgadl =0 4086

Thus we have a characteristic value problem, We must therefore deter-
mine the minimum characterietic mumber, since we wish to minimize N ,

and inserting this value of )\min in equaticn (4.85) we solve for a.

As was mentioned at the beginning of this section, it may be

desirable that the linear operstor have a certain transient response

or impulse response, The impulse response is the easiest criterion
from which to design & linear operator since, as wa have geen, the
operator coefficlent series constitutes the impulse response. The
transient response criterion may be more difficult to handle, depending
upon the situation. A4s &n example, suppose the signal occurs as a
wavelet £(t), and we wish to design & linear operator which will con—
tract this wavelet into an impulse. We can consider f(t) as the im-
pulse reeponse of some linear operator or filter with a transfer function
H(w). If tais filter represents a minimum phase network;Z/ then it hasg
& physically realizable inverse with transfer function H'l(mJ. There~
fore the linear operator corresponding to H"I(QQ should comprese f(t)

approximately into an impulse.
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Other criterion may be developed for the two dimensional linear
operator or for the prediction operator using more than one trace., FKor
instance, if the signal is in-phase on all the traces, it might be de-
girable to add the effects of the signal in-phase. This would cor-
respond to in-phase mixing. Many other possible criteris can be

devaloped,
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As a mesns of illustrating certain of the resulis of previous
sections, & controlled set of data has been choeen consisting of a
known signal pulse superimposed on & "noise" seismogram., See figure 4,
This artificial seismic record appeared in & recent paper by ¥Frank and
DotyéL{ where it wags referred to as case No, 1. Frank and Doty illus-
trate the relative effects of filtering this record by three different
filters. One filter is peaked at maximum signal, and two are peaked
at maximum signal-to-noise ratio. See figure 5. The suthors also
show the effect of several types of mixing procedures, Frank and Doty
conclude that the optimum filter for this record is the one peaked at
maximum signal-to-noise ratio, with the sharper high pass cut off
characteristics., They also find that graded or multiple mixing after
filtering by the optimum filter tends to improve the "pick",

1t will be of interest, in view of our previous results, to
determine the optimum amplitude filter response according to seversal
different eriterias, and to compare tﬁese results with the Fkrank and
Doty optimum filter., Unfortunately, their paper gives only the ampli-

tude spectra of the signal and noise, and the amplitude filter responses.

Ve are therefore necessarily limited in our comparison. Further, we will

determine three linear operators by the lesst sgquares method of fitting

in & noise interval, and compare these with the optimum filter deter-

mined from the noise spectrum, Finally, we wlll determine a linear opera-

tor which tlosely approximates the optimum ¥Frank and Doty amplitude filter

response.

V-1



It hag been shown in fection IV that for & small interval, if
we ere given S(w) and N(w) where S(w) is the signal amplitude and phase
gpectrum and N(w) is the noise amplitude and phase spectrum, we can

determine an

g(w) P .-..&QL......._

8(w) + N{ow)
which gives the signal exactly. This situation, however, is of little
interest in the present case,
Equation (4.54) tells ue that H{w) should be given by

Blo) = —SEXEE = LeSh
88 + PP + RR + 2Re [8P)

However, we know only | &| end I1¥) = V Fr + Er. Therefore, if we

aseume that SP = &P = 0, then (4.54) may be written as

12
181 + |N|
1 ¢ = -'!,%-:- s Wwhere -:3% is the signal to ncise ratio, then (5.1)
may be written as
P
H(&) = «%'w 5e2
e +1

It is apparent that this expression will be a maximum when Q is a
maximum, Using the amplitude spectre for the signal and noise as

given by Frank and Doty, we obtain the optimum filter characteristics
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for the assumption TP = P = 0 a2 chown in figure 6.
0
Using equations (4.52) and (4.53), and letting 8 =181 o *
)
and P =1P)l e P, we obtain the expression for the power response

ot the filter ag

_ 2 2 2
A = 16\ [1s1° + 2181121 cos (Qﬁ:fp) + |PI°]
[lsl"‘a + 218412l cos (08.-0?} + l:?l%litlz]"’2

5.3

If we agsume that all values of Qs - Qp are equally likely, then we

can write the expression for the expected value of HH as

Av(HH) = 2 /K 1802180 %421811P) cos x + 1212 dx
7o I|S|2+ 2181P) cos x + lPl2 + |R|2}2

- 112 f L8P e 2eim®) (1612 1pe ) ~ﬂj§l2l§l2)}g
L1229 2 4 (s12in )] Y2

2 8- 1PD2(1811P)) % i]zﬂglaﬂwz)
= 18l 2, (n1213/2 2, 101213/2
[C0s1=120 ) “+ 1RV <[ (1814 1P1 ) “+IR| %]
Reference 12/ 5.4
If IRl = 0, then

_ 2 |
av [HH] = '”2 >~ for 1512 > 1212
1€1%-1P)
= @ tor 'mzz IP|2
- _181? for 151° < |P)?
1P1%-18)2

Using the Frank and Doty values of 8] and INI = IP|, we obtain &

curve Av[HH] for IR] = 0, The square root of this curve is plotted



in figure 6, If %—:— =1, then INIZ = [PI? + IRI? = 2IPI2, ana

using equation (5.4) we obtain

av[EE] = 1812

(1812 1012) (1513 %imz) - 2018141817 } .
[1SI21RD)2 - 2(18121m12) 172

5 (e %)( 92+ %) -2 @° =
= e 7
{(€2"‘1)2 _ 29213/2

Using the Frank and Doty values of 18] and [Nl , we obtain a curve

Av [BH] for )P} = |Rl. The square Toot of this curve is also plotted

in figure 6.

Equation (4.68) gives the optimum leest squares transfer functiom
for minimizing the power in the noige gpectrum subject to the restriction
that one of the operator cosf{ficients equal & constent, The amplitude

responge of this tranefer function is given by

N

——

18w}l = 5,7

Using the Frank and Doty values of IN|, we obtain the curve plotted in
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tigure 7. The value of JAl has nct been determined from equation

(4.59)., A value of Il = 2?10'3 hae been assumed,

Three one dimensional linear operstors have been determined
from the input nolse by the least squares method described in part 4.2.
The titiing interval was from .3 to .6 secouncs, as shown on the record
in figure 4. Operators No. 1, No. 2, and No. 3 were determined in this
time intervel from traces Tl, T2, and T3 respectively. All three opera-
tors we determined subject to the restrictions that a = 1,000 and
8 = 000, The coefficients for these operators are given in table 1,

The amplitude filter responses of thssse coerstors are shown in figure 7.

We have gesn in Section IIIthat the real part of H(w) is in-
dependent of the imaginary pert if k = %’ end m 1ies an even integer.
Fe can therefore design a linear operator in which Ke[H(w)] & [4!(w)]
and Im[H(w)] = 0, where [H'(®w)] is the smplitude response of some
degired filter, ¥or |H'(w)| 1let us choose the 30 cps. step as
shown in figure 8, We have seen that the equation which determines the

operator coefficients is, in this case,

B w/h
(aa + am—-s) = f Bt ()] cos ah (8- %} dw. 5.8
-7/h
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0w <oy
|a ()| = where @ = 27 x 30 cps.

1 o < (vl
[+]

Taerefore (5.8) becomes

-2, w/h
(aaﬂm-»a) = ‘3 [ cos whis~ %) dw + “ﬁ: f cos wh{s~ %) &o
-r/n ®
[ o]
5.9
or B
~gin © h{s~- =)
(&a"’am-s) ﬁ‘g .[ (ﬁs) 2 } for s # —g 5o10
and
=2 [y - B
(a& + aﬂ) == [w w@h] for s =1 5.11

2 2

Since we also want Im{H(®)] = O, we must require that the coefficients

s, be symmetrical about o Therefore, equations (5,10) and (5.11),

2
and the requirement of aymmetry, determine the operator coefficienis,
Qperstor coafficlents are given in the right hand column of table 1 for
m = 20, k = 10, and ® = 2r x 30 eps. The amplitude response of this

linear operator filter is shown in figure 8,

5.6 Discusgion of Results

The amplitude responses of the optimum least sguares filters,
shown in figure 6, correspond in & generasl way with the reeponse oi the
rrank and Doty optimum filter. Apparently, the sssumption 8 = 8P = 0

gives the response most similar to that of Frank and Doty.
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Operators No. 1, No. 2, and No. 3 shown in figure 7 are quite
similar in the frequency ranges of the noise spectrum. This is to be
expected since they were determined from the nolse alone. The variation
observed between the responses of these operators could sasily be accounted
for by vaeriations in the noise spectra of the traces from which these
operators were determined. All three operstors have responses similar
in general character to that of the optimum filter determined from N ., <<
As we have seen, H(w), as determined by the least squares criteriom, is
& welghted least squares approximation to H'(») where the weighting fac-
tor is the gpectrum. This 1s exactly the result shown in figure 7. The
three operator responses best approximate the optimum response in the
region of maximum noise spectrum. From the standpoint of signal ampli-
fication, the three operators would be better than the optimum filter,

Ihis is, of course, because the criterion of optimizetion is minimization
of the noise spectrum, It ie interesting to note that the responges of
these three linear operators are quite similar to the response of the
Frank and Doty optimum filter in the region of significent noize and sig-
nal spectra,

¥igure 8 shows a 21 term linear operator approximation to a 30 eps
step response, It is interesting that the amplitude response of this
linear operator is almost identical with the response of the ¥Frank and
Doty optimum filter between 20 and 40 eps, There is no question but that
a linear operator of approximately 20 terms could be determined which
would have an amplitude response identical to that of the Frank and Doty

optimum filter. More important, perhaps, is the faet that the 21 term

linear operator in figure 8 is an approximation to & step response.
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Thus, as the number of terms is increased, the response of the

linear operstor will approach a step. Further, the transfer functionm

or thie linear operator is real. Thus, the phage angle must be a mul-
tiple of w. In fact, for freguenciee sbove 2i) cps the transfer function
is positive and the phase angle must be a multiple of 27, This is @
desirable filter property from the standpoint of not distorting the
gignal,

Frank snd Doty determined that a combination of optimum filtering
and miving gave the best "pick™. This result is perhaps trivial since
the same signal wes superimposed on the noise traces with no step out,
Heverthelese, a similar filtering and mixing may be achieved by use of
the two dimensionsl linear operator. The cperator coefficients for each
trace, in this case, would be proportional to thoee of the optimum one
dimensional linear operator, The proportionality fasctor would determine

the type of mixing.
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Operator

9&5%

4
N

\“@ #ﬁ wﬁ’

No, 1

17
1.000
«000
~1,640
+390
870
~+133
-+ 480
«280
« 266
«048
o457
-, 386
-+ 522
»350
+533
~e332
~+515
627

TABLE 1

No. 2 No. 3
0 0
17 17
1.000 1,000
+000 +000
~2,170 ~2 o R45
«690 1.267
999 600
065 -4 062
-.231 - 277
-+163 -.110
+000 « 202
076 197
.102 »092
=217 —s Q70
+109 ~e253
123 -+037
317 237
~.213 012
~«540 -.055
o443 143

Approximetion to
30 ¢pe SBtep

10
20
032
+032
023
» 007
-.016
-+ 045
~-.076
~+105

~+150

+850
~ 150
-a127
~+105
-~ 076

~+045
-.016

«023
+032
032
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In Bection IIX, it hee been shown that the linear operator and
the linear electrical filter are fundsmentally eguivalent, Thus they
may both be usged to perform linear operations on deta., Fach method
has itg computationel advantsges depending upon the form of the in~
put data and the available facilities, such ar & digital computer.
However, the linesar operator method possesses & basic advantage whieh
outweighe computationsl considerations. Thig advantsge may be stated
ar followe.

Based on knowledge of or assumptione ag to the stetisticel
’ natnﬁe of the data, criteria may be developed {as shown in fection IV)
which give the best filter characteristics as & function of the data.
Thug, given s eriterion for optimizing the filter characteristics, we
may determine the best filter for each set of input data, However,
gince the linear aper#tor method is & mathematical method, we may use
the same oriterion to &osign automatically the best linear operstor
for each set of dats, and having designed the linear operator, proceed
to filter the dats in the same operation.

In Section IXI, the concept of the Generalized kinear Operator
indicated how the linear operator might be extended to operate simul-
taneously on 8 set of seismic records plus a set of geologic informs—
tion, With the determination of the proper eriterion for optimizing the
linear operator, this method might provide an automatic technique for

correlating reflections with subsurface structure, Thus, a greater share
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of the work of separating desired intormetion from background inter-
terence might be assigned to ihie linear operater.

In cenclusion, it should be re-—empbesized that the linear opere~
tor and the linesr electrical filter are computational techniques cor-
responding to linear mathematiocel operutions, and that, therefore, the
theory of linear operations applies to both. The fundamentsl problem
is, thus, to determine the linear operation which best performes the
desired function, More generally, the problem is to determine the
best operation, whether linear or non linear, and, if need be, design
& non linear computationel technique, For cases in which the spectra
of the signal and poise vary with time, it may be desirable to design
a mathemmtical operation which aslso varies with time. Thus, the best
computational form for use in the analysis of selsmic records might
concelvably be a discrete non linear operator with coefficients which
are tunctions of time, It is therefore recommended, particularly in
the case of selsmogramg, that a thorough study be made of the ampli-
tude and phase spectra (and their variation with time) of the signal
and noise in san attempt to determine the operation which will best

separate the desired information from the background interference.
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Appendix 1

General H d
t = the independent variable; ususlly time.
£{t) = gome function of t.
x{t) = trece, input, dats, perturbed signal, or informe
tion. :
s(t) = signal, or desired information.
n(t) = noise or background disturbance,
p(t) = interference or predictable element of the noise.
r{t) = random noise or randorn element of the noise.
e(t) = approximation to the signal s{t) or s(t + ).
] = the angular frequency.
¥{w) = some funetion of angular frequency .
X(ew) = samplitude and phage spectrum of x(t).
5(w) = amplitude and phase spectrum of s(t),
N{w) = amplitude and phase spectrum of n(t).
P(w) =  amplitude and phase spectrum of p(t).
R{w) = smplitude and phase spectrum of r(t).
E(w0) = smplitude and phase spectrum of e(t).
& = operator coefficients of the one dimensional
linear operaior.
a, g = operator coefficients of the two dimensional
1 linear operstor.
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General Notation Used (cont.)

a;, b; = operator coefficients of the prediction
operator

h = spacing between data points

i=t/h = index corresponding to the independent variable.

K(t) = impulse response of a linear gystem.

H{w) = transfer function of a linear systenm.

HY () = optimam transfer function of a linear system.

?(m) = the complex conjugate of F(w).
F (ﬁ)} ® FR + 3 F 1
L =  Re[¥(w)] = the real part of ¥(m).
¥ =  Im[F(w)] = the imaginary part of F{w).
P = g tipp=ios o o
Matrix Notation Used
eij = the 1, ] element of a matrix
£ = the matrix of elements ew
g_T = the transpcse of the matrix g¢.
__(;_“1 = the inverse of the matrix ¢
g = oﬁ..u..... = g column matrix.
c = [ TP = g row matrix,
= N
e} = the determinant of the matrix g.
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Caloulus of Veristions Notation Used

d¥ = the variation of F. Solutions of §¥ =0
give stationary velues of F. The minimum
value of F 1is a stationary value.

Periodic Functions
T
¢ £..f (r) = % [ (t) f (tﬁ»'l ) dt = cross correlation
1772 J of £, and f,.

b P .t (1) = ‘% / fl(t} fl(t-%'r ) dt = auto correlation
b )
1 1 of flo

A iic Funct
b £, = 1lim %’f f fl(t) f m'r) dt = eroes cor-
1" r .0 relation of f, and f,.
4) P lim %f / fl(t) fl(t+ T ) dt = suto correlation
1271 T of £,.

T~p® - 1

B-T
¢x'y(r ) ® ‘g_;:i’ Z X ¥ ;4 = oross corrsletion of x and y.
=0
K- = auto correlation of x
*x x(T ) N+l Z ann-wr *
n=0



» f (1) a"'jm?‘d‘l' = eross epectrum

oo
£ (@) = % / bf f (1) evin d¥ = auto power spec-
1l 1’71 trum of £,.
—~00 1
®



Aopenidix

Given
1]
Hw) = S s.ae’fm(“""‘) 42,1
820
and
— nm
Gla) = 5 by oJen{{f +k) A2.2
1 =0

Then the product G (@) H(w) is given by the double sum

Glw) Hw) = % Zm ab, g-dan(o-1) 42,3
s=0 A =0

Howaver, it would be mors convenient to express & (m) H(w) as a single

sum

- )
G(a) B(o) = 5 B, 3T 2.,
T =M

where the coefficients é’»r are real,
Let us therefors determine the coefficients (P and the limits M.
Since the single summation expression for G{w) H(w) is & complex
Fourier series, we may determine the coefficients fp by taking the

rourier Transform of G(w) H(w). That is,

w
Or = %‘; -n'f Glw) Hw) R L LIPR A2,5

But G(») H{w) is given by equation (A2.,3)., Therefore
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Therefore, the only terms in the double sum which will contribute to

B+ ere those for waich s-t-T= 0, Therefore

m
pa = Z usbn A2,7=
5820

n

Pr= £ auq.d, T< o 82,70
e

n- T
ﬁrg‘- 2 &ﬂ?b ;o ARQ?G

s
B=0
If we consider the coefficients a and b g 28 being egual to zero
for E>m and 8<o0, then we may write
]

ﬂrm ago LN 3 for all T A2,8

This squation is nothing but the expression fur the cross-correlation

function of the transient series 8, and bs and we may therefore write
Br= b, (T 42,9

Also, the largest value of T for which /:’r exists 1s T = m, and simi-
larly the smallest is 7T = -m. Therefore the limits M on the summstion

in (A2.4) are m and -m for the upper and lcwer respectively. We can
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therafore write

1)
G(w) Bla) = £ balT) g ey 42,10
P =-m

For the special case of G(w) = H(w) we see that

-

I

(o) B@) = Z ¢, () 40T 12,1
T =-m
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The previous discussion of the discrete linear operator im-
plies an alternative method of electrical filtering. If the input
data were recorded on magnetic tape, an analog discrete linear opera-
tor ecould be constructed, consisting of magnetic pick-ups spaced
along the tape at intervels of h. Each pick-up would then be con~
nected through a varieble resistor to the output, and the settings
ot the variable resistors would correspond to the values of the
operator coefficlents, The effective value of the spacing h could
be changed by varying the speed of the tape during the initial re-
cording of data, With the exception of the tape recording equipment,
the components of this filter would be cheap variable resistors as
compared with the more expensive components of an equivalent con-

ventional filter,
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