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Preface,

This thesis investigation began with the structure

determination of coosite but, once the structure was obtained,

the study of its characteristics led to the investigation of

various topies. The presenoe of 4-membered rings of tetrahedra

in coesite as opposed to larger rings in low preesure silioas

indioated a possible connection between the size of the rings

and the energy of the structures. Consequently this relation-

ship was studied. Once the size of the rings was found to be a

function of energy, this appeared to be a natural basis for the

subolassification of the tetrahedral structures, During the

improvement of the olassification several other characteristics

of tetrahedral structures were noticed and incorporated in the

new olassification. Due to the mineralogical importance of the

silicates the latters were deseiibed separately. A large number

of structure models were construoted during the oourse of the

improvement of the classification of tetrahedral structures. A

novel technique was developed for their construction which appears

to be interesting enough for publication. The thetAs is, thus,

the report of a ooherent study, although separated into five

publishable sections.



Abstract.

I, The crystal struoture of ooesite, the dense,

high-pressure form of silica.

Coesite is monoclinic, and described in the first

setting by the dimensions a= 7.17 A, b- 7.17 1, on 12.38 X,

g a 1200, spacs group B2/b, Z- 16 3iO2 per cell. Three-dimen-

aional intensity data were obtained from precession photographs

using MoKo- radiation, The full three-dimensional Patterson

function was computed and this was solved for an approximation

to the electron density by use of minizam functions. The -ana-

lysis was started with the aid of a new theoretical device

for the location of inversion peaks.

In coesite, Si is tetrahedrally surrounded by four

oxygen atoms, and the structure is a new tetrahedral network,

There is a certain resemblance between the ooesite structure

and the alumina-*silica network in feldspar.

II. The relative energies of rings of

tetrahedra

The structure of ooesite was compared with the

structures of the other forms of silica. It was noted that



high-pressure ooesite has 4-membered loops of tetrahedra, that

the normal-presaure quartz, tridymite and oristobalite have 6-

membered loops of tetrahedra and that intermediate - pressure

keatite has 5-membered loops of tetrahedra in their structures,

This observation stimulated a quantitative investigation of the

relative energies of isolated neutral tetrahedral rings. These

rings were assumed to be composed of tetrahedra whose relative

orientations were similar to those of the benitoite and beryl

rings* The energies of 2- to 10-meabered rings and of an infi.

nite chain were computed. The energies obtained indicate that

the 5-membered tetrahedral ring is the most stable, and that

6- and 4-membered rings have the next lowest energies. Using

these data the relative energies of silioa structures contai-

ning regular tetrahedral rings were estimated and found to cqr-

respond with their relative stability.

III. Classification of tetrahedral structures.

The old classification of the silicates is no longer

sufficient to classify the ever-increasing number of determined

ionio tetrahedral structures. More detail is desirable in the

olassification, and oonsequently, new classification oriteria

are necessary to provide larger number of subdivisionso The study

of the relative energies of isolated rings of tetrahedra suggests

that the size of the tetrahedral loops may be used as one addi-

tional criterion. A second criterion is based on the different

nature of the corner sharing of tetrahedra. A numerioal expression,
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called the sharing ooeffioient is derived to cover this ori-

terion, These two criteria are added to the revised geometric

system of the Oustomary silicate elassifioation, and oonse,

quently, the olassifieation proposed is basically in aooor-

dana. with the accepted scheme.

A classification table is given, and illustrated

with examples. 3peoial attention has been paid to the colloo-

tion of examples of tetrahedral structures with three-dimen-

sonal networks of tetrahedra. These examples inelude silicates,

salphates, germanates, and other compounds with tetrahedrtl

strutures.

IV. Classification of silicates4

A revised classification is presented with a suf-

fiokent number of subdivisions, not only for the simpler si-

licate structures, but also for the more complicated three-

dimensional networks. This olassitioation is based on the

elassification of tetrahedral struotures previously presented

by the author, A consistent treatment of the different tetra-

hedrally ooordinated eations in the silicates is diseussed. It

is Suggested that all of the tetrahedrally coordinated oations

should be considered as part of the tetrahedral frame of a

silioate, provided, that their bonding is similar to that of

the silicon.

Tetrahedral models were qonstruoted for the illus-

tration of the tetrahedral frames of the silicates with three-

dimensional networks of tetrahedra. Photographs of these models

are enolosed.
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V. Simple technique for the construction of

polyhedral structure models.

A simple, inexpensive and efficient technique is do*-

oribed for the construction of polyhedral orystal-structure mod-

*e* The polyhedra are made of acetate sheets and are assembled

by oementing the polyhedra together with acetone and narrow

acetate strips. The construction does not require calculations,

but can be done with the aid of tracing a good drawing of the

strueture. The models made by this technique are illustrative

and semi-permanent.
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Chapter I

The orystal struoture of coesite, the dense,

high-pressure form of silica



Introduction

About five years ago a new form of siliea was dis-

covered by Coes who obtained it at high pressures and high

temperatures, Since the form has a density of 3,01 g/o,

which is considerably greater than that of quarts, 2.65 g/oc,

this discovery'aroused considerable interest. There was

some informal speculation about the poasibility that, in

this form, silicon might have six coordination, although

MacDonald2 pointed out that this would require an even

greater density than 3.01 g/o.

We were gathering intensity data for a complete *truo-

ture determination of ooesite when Ramsdell's paper on the

erystallography of ooesite appeared. hen assured by

Ramdell that he planned to proceed no further than the unit

cell and space-group deternination, we continued our

investigation.

Unit oefl and space group

The unit cell and space group of ocoesite were deter-

mined with the aid of procession photographs. Ordinarily,

unit cell and space-.group determinations are routine, but

several points are of more than routine interest in this

case. In the first place the cell of ooesite is dimension-

ally hexagonal, and no departure from this dimensional

symetry could be observed. The cell dimensions are as

follows

& . 7.171

g . 7.17 120.00.

S 550 A3

In spite of this hexagonal dimensional symmetry, the dis.

tribution of intensities is distinctly monoolinio, To

emphasize the hexagonal dimensional symetry, the first

II



Monoclinio settilg is chosen. Because of the hexagonal
dimensional symmetry the space group can be desaribed in
three ways A2/A 42/4, and I2/j. The relations between
these descriptions are shown in 1ig. 1-1. Te to the close
relation of A22/ to Ramsdell's eetting 22/, the description

924 was retained by "s.
The second unasual feature of the oell is that,

assuming that the density determination is correct, the
cell contains excess -matter in some form, for it appears to
have 16.6 formula weights of $i0 2 per cell. The cell mass
is

mass density x volume

3.01 X 350 x 10"24

S 1656 X 10" .4Srame

1 1 - 996 chemical mass units
1.66 x 10-24

The mass of 16 6102 is 961. 2hus a cell contains an excess
mass of 35 chemical mass units. Our material was kindly
supplied by the Norton Company, Woroester, Massachsetts,
through the courtesy of Dr. .o. aThibault. It was
prepared by heating a charge of dry sodium metasilioate and
diasmonium phosphate at 700OCo and 40,000 atmospheres for
16 hours.

The hexagonal dimensional symmetry and excess cell
density were both observed by Ramdell 3 . Our cell dimen-
saons agree with his within olose limits. Our spaoe-group
designations differ by interohange of k and . axes sine
Ramsdell ohose the traditional second monoclinto setting
and we have chosen the first monoolinio setting to
emphasise the dimensional hexagonal symmetry.



Fig. 1-1

Spaoe group symbols of oossite.
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Intensity data

A full set of three-4imensioal x-ray diffraction
intensities as obtained with a single setting of a orystal,
using precession photographs and Motg' radiation. Some

orthographic projections of the crystal used in stracture

determination are given in Pig. 1-2. The paendo-hexagonal

aspect is evident. The intensities were determined by the

..f?. modification of the Dawton method4 . About 900
reflections were measured, some two or three times on
different films. All auch duplicates were found to corres-
pond to the same to within 10$ error. Although the

shape of the crystal va flat (.03 x .10 x .15 ma) the

maximu= error due to neglect of differential absorption

effects when using Mdoc radiation was found to be only about

101. Accordingly, in transforming intensities to ja,
abnorption vas neglected. It was discovered subsequently

that extinction as not negligible, however.

Structure analysis

Preliminaries. The structure as solved by solving

the three-dimensional Patterson synthesis. This function

va computed from our data at the V.I.. Computation

Center using the ld3J.M 04 oomputer. The program for the

Fourier synthesis as prepared by Dr. W. Sly, who also
aided us in using it in the computer.

The space group of ooesite is .24A. The space group
of the corresponding Patterson funotion is A2/3, Pig. 1-3.
The asymmetric unit of this spae group has a volume of

ell We accordingly computed an asywmetrio block of the

Patterson syntheais for the range 0-1 along , 0- along It
and 0- alone j2. These were synVtesized as sections
parallel to (001).

II



Pig. 1-2

Drawing of a wejl-developed ooeit* crystal





Fig. 1-3

Crystal and vector space group of ooesite
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u eatres oft he P at t eason func t Ion. Aoepting

16 $1O2 per *01, this corresponds to 8 Si0 per primitive

Oellfand 2 8102 per asymmetric unit. The relative weights
oft e peaks to be expected can be predicted5. Assuming

2+
silica and oxygen to be half ionized, i.e. Si2, and 0",
th~se should have 12 and 9 electrons respectively, and the

weights of certai peaks, on an absolute basis, should be

single 8i -i: U1x 12 144
tingle 0 9 X 9 31

double Si Si 2 x 12 x 12 288

double 0 - 0 2 x 9 x 9 162

double Si - 0 2 x 12 x 9 216

origin s 3(122 + 92) 2448

the distribution of the various types of peaks in the

Patterson cell is analysed in Table 1-1.
It is easiest to solve a Patterson synthesis by

starting with an inversain peak5 . The heaviest such peak

is that due to Si - A1. According to Table 1, this has a

weight of only 144, and there are only two such peaks per

asymmetric unit, embedded in a colleotion of 40 miaoell-
aneous non-origin peaks all but 4 of whioh have greater
weight. Acoordingly it is not easy to find the desired
inversion peaks without some theoretical help.

Use of the minimum tation to find inveriion oaks.

the theory of finding inversion peaks will be disoussed in

some detail elsewhere6. If the space group oontains

reflectin operations (including glides) as well as
inversions, it must contain rotation (possibly screw)
operations, The points in vector space due to a pair of
points related by an inversion, and t4ose due to a pair of
points related by a rotation, comprise images of the same

pair, but the images are separated by the glide component



of the glide plane, plus an unknown component normal to the

glide plane. If a minimum function is formed of two

portions of the Patterson function which are separated by

the glide plus an unknown parameter (j in this case) normal

to the glide plane, the inversion peaks are automatically

found.

In space group 32/4 there are glide planes at z = 0
with glide 1, and another set at j = with glide a. In
this case, the former were chosen, so that the rotation
images at level A = 0 were compared with possible inversion
images at all levels & by superposing the latter levels on

level zero, but with level zero shifted by the amount of the
glide, namely V/2. An example is shown in Pig. 1.-4.

This procedure turned up six candidate inversion peaks.
To test these, eaoh was treated as an inversion peak, and

an 2 minimum-function map was prepared for the particular
level on which an atom Ahould occur in order to provide
that inversion peak. Of the six maps so prepared, four
were very similar while two others were different from

these four and from each other. The ti> candidate inversion

peaks giving rise to these wild maps were rejected.

Of the four oandidate inversion peaks not rejected,

two gave rise to strong A2 maps, the other two to weak 12
maps. Zince there are two Si atoms per asymmetric unit,
the strong maps were assumed to be based upon Si inversion
peaks. The candidate peaks giving rise to these maps were
accordingly treated further to improve the power of the

minimum function,
formamtfion of Eg44u anotions. Sach of the two

inversion peake was used as an image point to form a
complete set of sections of an 12 (n) function. Sach

such section involves forming the minimum function for two

different Patterson levels, the levels differing by the j



Pig. 1-4

Illustration for the location of an inversion peak oandidate
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ooordinate of the inversion peak. As a result of this

procedure two separate )I(.=a) functions became available,
each based (presumably) on one centrosymetrical pair of
the two kinds of silicon atoms per asymmetric unit.

Each of the sections of these two A. functions oon.

formed approximately to the symmetry of the 2-fold axes of

the space group as it intersected the aeotion. Each 12
section oan be combined with itself by making use of this

symmetry operation, thus forming an £4 function of greater

power. This was done for all sections of each of the two

initial A2( ) funotions. The result was two complete

4 (g) functions.
These two £g(m) functions were similar in that both

outlined similar areas of electron density, except that

these were referred to different origins. Sach was also

of substantially the same weight, a fact further confirming
that each was based upon the inversion peak of a different
$1 atom. Assuming that they are both based upon Si
inversion peaks, they can be combined without scaling. 5

An "%(=g) funot ion was then available. This shows a
peak for each of the atoms expected in the asymmetric unit.
The projeotion of these maxima on (001) is shown in Pig. 1--5.
The coordinates of the atoms derived from it are shown in
Table 1-2. The table also shows the manner in which the
coordinates chan.ged as the result of subsequent refinement.
This brings out how well the minimum function oorresponds

to the actual structure.

Refinement

The coordinates, as found from the gg(xya) function,
were refined along with individual isotropic temperature
factors by the least-squares method using the I.B.M. 704
computer. Again we are indebted to Dr. W. Sly for his 1elp



II

nig. 1--5

(001) projection of the m maps
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in performing the computation.
Using an arbitrary value of 2 1.0 for all atoma, the

discrepanoy factor a for the original coordinates derived
from the (&gs) function was found to be 36.1$. Using all
reflections, and including unobserved reflections at 0,
this disorepancy was reduced by three cycles of refinement

to = 25.2:1. On detailed compsarison of observed and

computed I's. six intense reflections of small sin Q value
(240, 720, 220, 020, ?12, and 004) uniformly showedi >i ).

This was attributed to extinction. More generally,
similar effects could be observed within a sphere in the

reciprooal lattice of radius corresponding to sin Q M .095.
Accordingly, five more cyales of refinement were undertaken
omitting all 56 possible reflections within thin range, and
also omitting reflections for which = 0. This resulted
in a set of coordinates and isotropic temperature factors

for whtoh 4 16.9%. These are listed in Table 1-3.
After the refinement was complete, a three-dimensional

eleotron-density function was prepared by Fourier synthesis.
The peaks of this function are shown projeoted on (001) in
Fig. 14 for comparison with the orresponding minimum
function in Fige 1-5. We would like to point out that in

the method of analysis we used, Fourier a;yntheses are
unnecessary, and this one was prepared entirely for the
purposes of making the comparisoi of the minimum function
with the final eloctron density.

The coesite structure

The coordinates of the atoms given in Table 1-3 define
a structure in which each silicon atom has as nearest
neighbor four oxygen atoms in tetrahedral arrangement.
The actual distances between nearest neighbors are system--
atically listed in Table 1-4. All the Si-0 distances in

II
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Fig. 1-6

(001) projection of the electron density maps
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A
the two kinds of tetrahedra are almost exactly the same
(1.60 1 to 1.63 1), and the eight edges of the two kinds of

tetrahedra are closely the same (2,60 X to 2.67 A). The
tetrahedra are therefore qUite regalar and substantially

equal.
The tetrahedra are joined together in a single network

which is a new type. ?ig.I-7 illustrates the network by
means of a pair of stereoscopic drawings. The nature of
the new network can perhaps be best understood by noting
that the tetrahedra are required by symetry to join into
two kinds of rings of four tetrahedra. The two-fold "is
in the lower middle of Pig* 1-6 causes the tetrahedra to
form a ring parallel to the (001) plane, while the symmetry
center at A. requires them to foxm a ring of four
approximately parallel to (010). The whole network may
therefore be described as one eaposed of a network of
4-arings, each ring having eight external conneotions. Both
the feldspar and paraeelsian networks also share these
characteristics.

The specifio nature of the *oesite network can be
appreciated somewhat by following the connections of the
4-rings. The controsymetrical rings are centrosymetrical
about inversion centers at levels j and * Such rings4 4
join one another through the oxygen atoms on the- other kind
of inversion centers on levels £ a 0 and ) to form diagonal

4 I

Obains. For example, the ring centering at . . s
approximately parallel to (010) and joins body-oentering
translation.euivalent rings to AM c ahain whose direction
is 101 * Pig. 1-8. This chain is isolated from other
translation-equivalent chains in the same plane. The two-
fold rotation axis requires that an equivalent chain ocour
in the center of the c11, also parallel to (010) but
trending in the direction of the other diagonal. 101
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Figo 1-7

Stereoscopio drawing of the ocesite

structure.



THE COESTE STRUCTURE
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Pig. 1-8

Illustration of the rings of tetrahedra

parallel to(010)

II





II.

V

This is thown in the right of Pie. 1-4. The ooesite struoturo
can be desoribed in terns of these orias--crossed chains, tiah
are connected in a manner which can be seen in Pie> 1-7.

The struoture can also be described in teztis of the rinags
syraetrical with respect to the 2-fold axes. These rings ar
parallel to (001) and form chains parallel to 010 , Pig. 14.
The ohains on the same level are not connected tocether, but
are joined by the rin4s of glide-equivalent chains in the
levels above and below, Pig. 1.9,
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Pig. 1-9

Illustration of the rings of totrahedra

parallel to (001)

II
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Table 1-1.

Tnumeration of peak types to be expeoted in

the Patterson synthesis of ocoesite.

P uftber or Number or Total
,Symmetry individual indistinguishable weight o Co-

to atom peaks per k IndIatin- ordinate
of pair primitive per prim- per as- guisiable type

pair cell itive oell symmetr peaks
unit

si-SI identity 8 1(orig.) 000

inversion 8 8 single 2 144 1 ,i

rotation 8 4 double 1 288 xi,y1,0

refleotio 8 4 double 1 288 0, 1
asymmetril 32 16 double 4 288 xOyOZ,

(total) (82- 64)

0-0 identity 16 1(orig.) 000

inversion 16 16 single 4 81 '

rotation 16 8 double 2 162 x2 ,y290

refleotion 16 8 double 2 162 02,2

asymmetrioi 192 96 double 24 162 xOYjz

(total) '( 1 6
2 - 2 5 6 )

Si-a asymmetri& 256 28 double 32 216 x,y,z

(total) (24 2 s576) (40)
-I f iIM 0 0 W O I+ --I,- _ _- IIi ,iW 0
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Table 1-*2,

Coordinates or atoms in ocasite, as determined

from minimum funot ion maps.

s obtained from Mg(xyz) Ohanges due to refinement

(for hiPi R-4 6 (o92rtar whioh x-16.95)

4x Ax y Asz

i ,16 0,0 0.11 -0.020 -. o006 -0.002
11

S12 0.51 0.53 0.16 -0.003 0.009 -0.002

1 0 0 0 0 0 0

02 1/2 3/4 0.11 0 0 0.007

0 0.27 0.92 0.13 -0.001 0.021 -0.004

0 0.30 0.32 0.11 0.008 0.009 -0.007

0.01 0.47 0.22 0.002 0.003 -O.008
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Table A3.

Final ooordinates of atoms in coesite and

their isotroplo temperattare factors.

*mpra tar
Atom Coordinates ooeffioient

x y B

Si *1403 .0375 .1084 0.813 F
312 .5063 .5385 .1576 0.600

01 0 0 0 0.856

02 1/2 3/4 .1166 1.197

0, .2694 .9405 .1256 1.111

0 .3080 .3293 .1030 1.381

05 .0123 .4726 .2124 0.656

S0-' W N' O .W MM
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Table 1-u4.

Interatonio distanoes in tetrahedra of

oossite struture.

1 tetrahldron

04

sil

01

04

1460 1.63

2,67

02

812

02

04

1.62

1.61

2.62

2.63

04

1.60

2*63

1.62

2*62

2.65

1.61 1

2.64

2.61

2.61

0

1.61 A

2.63

2.60

2.66

II

1212-tetrah!dron

mamaw"m - - . - -0- 1. -1 - - , .- I . -1 -- - I . . 00 - i 100.
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The relative energies of rings of totrahedra



24

When the structure of ooesite as solved, its structure
was compared with those of the other forms of silica. All
these structures, of course, are composed of silica tetra-
hedra linked into three-disensional networks. the structures

can be dearibed in many ways, but one of their obvious
qualitative features is the relative compaotness of the

structures. Thus, the oristobalite and tridymite structures
are comparatively open, the quarts structzre is less open,
and the ooesite structure is compat, displaying little void
space. Of course, the compaotness of the ooesite structure
is to be expected because of its relative denseness, and this
is consistent with its stability at high pressures1.

this observation, however, does not explain the strut-
tural reason for the compactness. In studying the several
silica structures it became evident that the compactness is
related to the relative shortness of loops in the silia
network. In coesite, stable only at high pressures, two
kinds of loops, requiring four tetrahedra 'to omplete them,
are distinguishable. In the more open quarts, tridymite
and oristobalite structures, stable at ordinary pressures, no
loops shorter than six tetrahedra occur. In keatite, stable
in a pressure ranp between quarts and ooesite1 , loops of
five tetrahedra oocur 2 .

These structures also have different relative energies.
At normal presuares quarts is stable, katite less stable and
ooesite most unstable, so that it is tempting to speculate
that 6-membered loops are stable, 5-aembered loops less
stable and 4-sembered loops most unstable. But feldspar
and paracelsian, also composed of silica and alumina networks,
have 4-membered loops like ocoesite, and are stable at room
pressures. In these instances the additional alkali can be
regarded as sapplying an internal pressure which stabilizes
the 4-membered loops.
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Loops are not confined to three--dimensional networks5

but are also know in two-dimensional networks (sheet), in

double chains and in metasilicate rings. Among two-dimensional
networks the commonest have 6-aembered loops (mica., clays,
oblorites), while 5-aembered loops (hardystonite) and
4-aembered loops (apophyllite) are relatively rare, atg

3-mambered loops are unknown. Among double chains, 6-aembered

loops are the most common (amphiboles) but 4-vmembered loops
are also known in high-pressure (silliaanite). Among rings
the 6-aembered loops cocur in the most camon minerals
(tourmaline, dioptase), 5-membered rings are unknown,
4-membered rings are rare (axinite) and 3-membered rings oeur
in the rare minerals, benitoite and catapleite.

The common ooourrence of 6-membered loops suggests that
it is the most stable loop under normal conditions, and that

5-, 4- and 3-membered loops are less stable. Loops with two
members share an edge, and so are inherently high-energy loops.

It is interesting to seek a rational explanation for the

relative frequency of oocurrence of -membered loops of tetra-

hedra. the most comaonly observed loops have probably the

least energies. the solution of this problem oalls for
computing the relative energies of these loops. Of course,

the energy of an a-membered loop depends on many things,
including the detailed shape of the loop and the relative

orientation of the loop to the other parts of the structure,
But the general trend of the relative energies of the various
n-aembered loops can be examined by computing the energies of
free loops.

To make a start on this problem, the energies of the

most symmetrically shaped rings, like the beryl, the axinite

and the benitoite rings were investigated. In these rings,
the plane of the ring is a plane of symmetry; the atoms
shared between tetrahedra lie in this plane, and the unshared
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atoms are mirror images of each other, on each side of the

plane, Fig.2-1. The atoms at the centers of the tetrahedra

were assumed to have charges of +4 (like silicon it

cappletely ionized) the atoms at the shared corners to have

charges of ~2 (like oxygen it completely ionized) while the

atoms at the unsared corners charges of -1 (like fluorine)

in order to make the ring neutral. The tetrahedra were

assumed to have the sam size in all rings. The energy of

a tetrahedral unit due to the rest of the ring was computed.

If the chemical composition is regarded as 8i0P2 then the

energy of this unit vas computed, that is, of the atom at

the oenter, the two unshared I atoms and the two half

oxygent pertaining t# the unit * the energy was computed

by susaing for these atoms, the energies due to all the

other atoms of the ring, by means of the relation (for any
two atoms):

U M .... ,.....
r

where £1 is the oharge on atom 1, &2 the charge on the other

and j the distance between them. In this preliminary work

z was determined by measuring it on a earefally drawn
diagra of the ring. The computation was oarried out for

rins of 2, 3, 4, 5, 6, 7, 8, 9, 10 and o tetrahedral units.
the relative energies of these rings are plotted in

Pig.2-2. It can be seen that the computed energies bear

out the original expectations. There is a minimum energy

at the 5-aembered ring, with the 6-ambered ring haiing a

little mofl energy and 4-, 3- and 2-meabered rings having
sharply increasing energies. The 7-, 8-,O 9-4 and

10-membered rings have nearly the same energies and the

straight chain still higher energy.

Although these conclusions are not strictly applicable

to the relative energies of oomplete tetrahedral structures
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Pig. 2-1

4- and 6-raembered rings of tetrahedra
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Pig. 2-2

Relative energis of ,-Uembered rings of tetrabedra
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with g-membered rings, it is still reasonable to expect that

the energy of the s-membered ring will significantly affect

the energy of the whole structure.* A tetrahedral structure

composed only of regular 5-membered rings is expected to have

lower energy than a structure composed of 6- or 4-membered

rings. The 6-membered rings are, however, the most cammon,

since no two- or three-dimensional network struoture can be

composed of reaular 5-etbered rings alone.

Most structures are composed of more than one kind of

loop each containing a different number of tetrahedra. The

energy of such a structure is expected to be affected by the

energy of each kind of loop. The structure of keatite is

composed of 5-, 7- and 8-membered rings, while the structures

of tridysite and oristobalite are composed only of 6-membered

rings. It seems reasonable to expect the combined energy of

5-, 7- and 8-membered rings to be higher than the energy of
6-membered ring, and that the tridymite and cristobalite

structures should have lower energies than the structure of
keatite.

Beeause the rings are comparatively regular in these

structures, the energies of the tridymite and oristobalite

structures can be oompared with the energy of the keatite
structure by utilizing the relative energies of the 0-membered

rings. A similar comparison, however, can not be made with
quarts, since the rings in quartz are collapsed and their

energy probably beoame less than the energy of a corresponding

open g-membered ring.

II
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Chapter III

Classifioation of tetrahedral struotures
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Introduction

the classification of things of soientifie interest is not

merely .a filing system, but is also a basis for evaluation and

Oomparison of these things. As such, it conatitutes an
important step in the progress of stienos and may lead to the
better understanding of nature, and to the establishment of

new directions of research. Machatschki'a classification of

the tetrahedral silicate structures1 was an excellent system
for classifying a large number of silicates. It also explained
many of the important physical properties of silicates.
Consequently, the classification vas of considerable importance
in the understanding of the silioates and other crystals with
similar tetrahedral structures. Since 1928 the nmber of

tetrahedral structures determined has grown so tremendoasly that
Maobatchkits Olassification is no longer adequate for the
classification of the tetrahedral structures, especially for
structures with a three-dimensional network of tetrahedra.
There is a definite need for an Improved classification, first,
to provide more subdivisions in the system of classification

and, seoOnd, to point out minor, but important, similarities
between different tetrahedral struotures.

After the structure of coesite was determined and compared
with structures of other silicas, the significance of tetrahedral
loops In the tetrahedral struotures beoame apparent. In
Kaoatsohkits classification the geometric forms of the tetra-
hedral struotures are related to the cleavage, hardness and the
optioal properties of the orystals; similarly the size of the
tetrahedral loops are related to the energies of the tetrahedral
structures. The importanoe of the size of the tetrahedral loops
in a structure and its prospective application as a natural
classification criterion stimulated an investigation of tetra-
hedral structures and the construOtion of an improved olassi-
fication.

II
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fiOation.
Other important features of tetrahedral structures were

disoovered during the course of this study. Most of them

are applied in the proposed classification system. The

classification criteria are discussed in detail in their

order of application.

The geometrical forms

Maohatsctki's classification is based on outstanding

geometrieal formn created by the aggregation of tetrahedra.

These forms are referred to as "types* in the literature.

They are: isolated tetrahedra, groups, ohains, rings, sheets

and thre-dimensional networks of tetrahedra. These

features are important, and are widely aoepted. Consequently

they are adopted in this classifioation. Minor revisions,

however, are made in order to systematically group these

types, and to cover all the possible ionic tetrahedral

-structures. Some of the types have distinct directions in

whih the tetrahedral structures extend to infinity. In
others the tetrahedral structures are terminated in all

directions. Consequently, if the tetrahedral structures are

extended to infinity in ero-, one-, two- and three-dimensions,

four majot types of tetrahedral structures are possible.

these four types ares

(1) Isolated groups of tetrahedra.

(2) One-dimensionally non-terminated
structures of tetrahedra.

(3) Two-dimensionally non-terminated
structures of tetrahedra.

(4) Three-dimensionally non-terminated
structures of tetrahedra.

It is theoretically possible that a crystal can be composed

of two or more different types of tetrahedral structures. To

II



cover such possibilities a fifth type is established:

(5) Mixed types of tetrahedral structures.

These types, except for the last one, have distinct form
structures which are the simplest possible struotures defined
by the dimensional termination of the types. In the first
type, the form structure is a single tetrahedron, in the
second type it is an endless chain of tetrahedra, in the third
type it is an endless sheet of tetrahedra, and in the fourth
type it is an endless three-dimensional network of tetrahedra,
Within each type, subtypes can be established. In the first
three types the subtypes can be onveniently defined by the
number of form structures welded into one unit, and by the
presence of one or more such units in the struoture of a
crystal. In the fourth type the subtypes are defined
according to the sbaring of tetrahedral corners, or by
sharing in addition one or more tetrahedral edges or faces.

In the isolated groups of tetrahedra there is a special
form in which several tetrahedra form a closed ring. In order
to follow popular practice, this ring structure is separated
from the group structures. Instead of an isolated group of
tetrahedra it is regarded as an endless chain curved into a
ring, and is treated as an extra form structure in the two-
dimensionay non-terminated structure type.

The fifth type is merely a collection of the possible
combinations of the different types in the structure of a
crystal. The subtypes are the descriptions of each type
composing the oollection of types.

The types and subtypes are listed in the first two
columns of Table 5-1.

Corner sharing of the tetrahedral structures

A brief study of the tetrahedral straotures revealed
that a different number of tetrahedral e#gers can be shared

II
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and still make up the sarae type, and even the same subtype

structure. For example, two single chains can be welded

into a double chain if each tetrahedron of the first chain

is connected to a tetrahedron of the second chain, Two

single chains can also be welded into a double chain if only

every second tetrahedra of the first chain is connected to

every second tetrahedra of the second chain. In the former

case six tetrahedral corners are shared per two tetrahedra

and in the latter only five. The geometric form, however,

e.till remains a double chain. A similar situation exists

in the sheet stractues. A sheet can be constructed if each

tetrahedron shares three corners with other tetrahedra. A

sheet can also be constructed if certain tetrahedra share only

two oorners. Once again, the number of tetrahedral corners

shared is the only difference between the two sheets. In the

three-dimensional network usually all four corners are shared.

In some structures a few corners are left unshared, and

consequently the number of tetrahedral corners shared becomes

less than four.

In these examples it ns tacitly assumed that only two

tetrahedra can share a tetrahedral corner. This is not

always the case. There are several three-dimensional networks

of tetrahedra where three or even more tetrahedra stare a

tetrahedral corner. In order to distinguish between such

structures, the number of tetrahedral corners shared is no

longer sufficient. It has to be supplemented with the number

of tetrahedra paxticipating in the sharing of a corner.

It is possible to derive a single numerical value which

can express both the number of tetrahedral corners shared and

the number of tetrahedra participating in the sharing, if we
make two assumptionas

A. The difference between the smallest and
the largest number of tetrahedra partio-

ipating in the sharing of a tetrahedral
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corner in a struoture can not be

more than one.

B. No tetrahedral corners can be shared

tetween more than two tetrahedra and

no tetrahedral edges or faces can be

shared in structures other than three-

dimensionally non-terminated structures

of tetrahedra,

'Isamption A means, for example, that as long as there

are free oorners present in a structure, no corners can be
shared between more than two tetrahedra; or if some corners

are shared between two tetrahedra only, no corners can be

shared between more thaxn three tetrahedra. Assumption B

states that in groups, chains, rings and sheets of tetrahedra,

where the structure is terminated in one or more directione

the maximum numoer of tetrahedra participating in the sharing

of a corner is two, and that no edges or faces can be shared.

Under these conditions the average number of tetrahedra
participating in the sharing of a tetrahedral corner in a
structure also defines the number of corners shared, the

average number of tetrahedra participating in the sharing of

a corner in a structure is called the sharing coefficient of

the structure. Since the sharing coefficient is an average
number it can be an integer as well as a fraction. An integer

number defines a state in which each corner of each tetrahedra

is shared between a tetrahedra, where g is the integer in
question. A fractional number, on the other hand* defines a
state in which some corners are shared between g tetrahedra
and others between U+l tetrahedra, 'where U is the integral
part of the sharing coefficient. The fractional part, further,
defines the ratio of the number of cPr'er shared between a
and u+1 tetrahedra. A sharing coefficient of a+ means, for
example, that all the corners are shared between at least a
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tetrahedra and in addition every fourth corner is shared

between U+l tetrahedra; or a sharing coefficient of A+$
means that all the corners are shared between at least a

tetrahedra and in addition every twentieth corner is shared

between U+1 tetrahedra,
There is a simple relAtionship between the sharing

coefficient and the cation-anion ratio in the tetrahedral

radical of the chemical fozmnla. The relationship is

obvious when a tetrahedral corner is shared between two or

morejetrahedra. Then the ame anion simultaneously belong

to two or more cationa. The cation-anion ratio in a single

tetrahedron is 1.4 and in a pair of tetrahedra it is Is3k,

and the coxresponding sharing coeffioients are 1.00 and 1.25

respectively. Consequently the sharing coefficient not only

describes a geometric feature, but also defines part of the

chemioal formula. A list of possible sharing coefficient

ranges for the types and subtypes of the tetrahedral

stractures, and the corresponding oation-anion ratios are

tabulated in the third and fourth oolumns of Table 3-1.
Assumptions A and 4 were found, empirioally, to be

correct for dominantly ionic crystals. These assumptions are

generalizations of tauling's third rule which states, briefly,
that the sharing of edges and particularly of faces of ionio

polyhedra deoreases the stability of the structure.. This is

because such sharing necessitates the close approach of two

cations and thus increases the potential energy of the system.

Our absumptions can be supported by similar argwuents. When

more tetrahedra share a tetrahedral corner, more tetrahedra

come in contact, and the high valene cations approach each

other, thereby increasing the potential energy of the system.

Since a system tends toward the lowest energy state possible

the eorners should be sbared by the least possible number of

tetrahedra. Thus no eorner is shared by three tetrahedra

unless there is no lower energy state available. Similarly

no tetrahedral oorners will be shared between three tetrahedra

II
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in a double chain when a multiple chain or other geometrio

forms represent lower energy with the corners sbared between

two tetrahedra only. The same argument restricts the
sharing of edges and of faces to structures wheeit is
necessitated by geometry, in extremely dense three-dimensional

networks.

Repeat-unite and loops of tetrahedra

With the exception of the isolated groups of tetrahedra,
the single chains, and the three-dimensional networks with

one or more faces shared, all the tetrahedral structures
contain loops of tetrahedra. These loops are outstanding

features. They are also important in the consideration of
the energies of structures. Consequently the tetrahedral
loops are simple and non-artifioial classification
criteria.

Modern investikators of the tetrahedral and other
polyhedral structures noticed the significanoe of these

loops, and, in one form or other, they applied the loop
concept to the subolassification of certain types of tetra-

hedral and polyhedral structures. Wells3 subdivided the
polyhedral networks according to the site of the loops
formed by polyhedra. Tetrahedral networks are also
included in hi ola.sifioation. However, he considered
only the hi6hly regular tetrahedral networks with a sharing
coefficient of 1.75 and 2.00. Liebau4 classified the
tetrahedral silicate structures on the basis of the number
of tetrahedra in the periodic unit of the tetrahedral
structure. Liebau's olaesifioation subolassifies the
simpler tetrahedral atiuctures very conveniently, but fails
to give a sufficient number of subdivisions for the three-
dimensional networks .
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the omnbination of Wlls and Lieba's principles eould
conveniently be applied to the subolassifioation of all types

of tetrahedral structures. The struotures eontaining no

loops of -tetrahedra (with the exception of the face-sharing
three-dinensional networks) can be subdivided according to

the nuimuer of tetrahedra in the periodic unit of the tetra-
hedral structure, and structures containing loops of tetrt-

hedra can be anbelassified according to the number of
tetrahedra in the loops. The former term is called the
repe.t-.unit of tetraiedra, and the latter the loop of tetra--
hedra.

2he repeat-unit of tetrahedra in the iaclated groups of
tetrahedra would be simply the number of tetrahedra in the
groups. If there are different kinds of groups in the

struotare, several units will be listed and one number will
represent each kind of group.

In an endless single chain the repeat-unit of tetrahedra
is the number of tetrahedra in the motif of the chain which
is repeated by translation to form the ohain . If, for
example, all the tetrahedra of the chain are similarly
oriented and are translation equivalentas, the repeat-unit
is one tetrahedren. But if every second tetrahedron is

oriented differently froa the fix at one, then only every

third tetrahedron is a translation equivalent, and the
repeat-unit of the ohain is two tetrahedra.

In moit of the other types of tetrahedral structures

there are loops of tetrahedra and every tetrahedron of the

structure is part of one or more loops. These structures
can be subolaasified either (1) by the size of the smallest

loop of the structure, or (2) by the list of the different
sizes of loops ocourring in the structure, or (3) by the
liet of all the symmetrically non-equivalent loops, in

order of the increasing size of the loops. The first

alternative has only five or six subdivisions, which is not
suffiieent to distinguish between a large number of possible
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stractures, espeially in the three-dimensional networks.
The second alternative increases the number of subdivisions
considerably. The third alternative, however, increases it
to such an extent that almost every known strdcture has a
different list of loop sizes.

Althou4h the third alternative offers a greater number
of subdivisions than the second, the second has been chosen
for this classification for the following reasons: because
the determination of the symmetrically non-equivalent loops
is difficult and in complicated structures might become
confising; secondly because the number of subdivisions
offered by the much simpler second alternative seems to be
sufficient since only very similar structures have the same
loop sizes.

The loop sizes can be determined either by simple
observation or by a more ystematio approach offered by the
symmetry of the structure: all the possible loops of the
structure must include the tetrahedra of the tetrahedral
motif of the structure. The number of tetrahedra in a motif
is uAally les than five. Unfortunately in complicated
structures there might be a very long list of loop sizes,
especially for the larger loops. In order to avoid an
unnecessar$ly long list, the loop sises can be limited
arbitrarilyi It seems to be satisfactory to limit the
number of loop rizes of a structure to four, and the size
of the largest! loop to twelve.

As the sharing coefficient increases above 4.00, tetra--
hedral edges are shared, and in addition to the loops inom~
plate polyhedral openings are present. When the sharing
coefficient approacihs 3.00 certain openings become com-
plate polyhedra, but tin the sharing coefficient reaches
8.00, all the edges are shared and all the openings are
polyhedral. Por example, the openings in the fluorite
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structure are ootahedral. In structures with a sharing

coefficient higher than 8.00, the polyhedral openings start

to disappear, makin6 room for solid bodies of tetrahedra.

With a sharing coefficient at and above 3.10 there are no

more loops of tetrahedra. Instead of units and loops

these structures can oe subdivided according to the shape of

their polyhedral openings.

#tnoetur* families

After the tetrahedral structures are classified

according to types, subtypes, sharing coefficients, and

repeat-units or loops of tetrahedra, there remaint only very

similar structures in each eategory of the olassification.

They are in most eases isomorphie, isotypie, or derivative

struotures. It is theoretically possible, however, that

two structures can be so similar that they have the same

tetrahedral loops, yet their tetrahedral linkages are

different: these should not be left in the same final group.

Two suo structures are apophyllite and illepsite. They

are similar in every respect, except in the linka g of

tetrahedra. In both structures the tetrahedra are oriented

so that they form triangular pyramids with their bases in the

plane of the sheet of the sheet structure. In apophyllit*

the three basel corners of the pyramids are shared, but in

gillepite the two basal coners and the apices of the

pyramids are shared. Such structures should be separated

as two different families, so that in the final column of

the families there are only closely related structures.



Table 3w1.

Sharing tooffiients and eationsanion ratios of the types and
subtypes of tetrahedral struotaras.

Types Subtypes S haring ooettic tents 0atiero.anion ratios

1. Isolated groups of
tetrahsdra

2. One-dimensionally
non-terminated
structures of
tetrahedra

3. Twodimensionally
non-tnrminated
structures of
tetrahedra

4. Three-dimensionally
nonoterminated
struatures of
tetrahedra

a.single tetrahedron 1.00

b.pair of tetrah4iedra i.23

o.largo groups 1.251.50-(1.71)*

d.mixed groups 1.251.50-(175)

n.aingle chairs 1.50

b.single rings 1.20

o.double chains

d.double rings

e.multiple chains

f~rnultiple rings

gmixed chains and
rings

a.single sheets

b.double sheets

o.multtpls sheets

dmtxad sheets

a.networks with
corners shared

b.networks with one
or more edges
shared

c.networks with one
or more faces
shared

1.50-1.75

1.50-1.75

"(1.5o)-1.75-2.00

i(1. 5 0)-1, 7 52.00

t(1,50)-1.7%2.00o

1,501.75

j(1. 5 0)al.752.00

( 1.50 )1.75-2.00

1.75-4.00

4.00-8.00

8.00.-

114

34
1 -1:35- (1.24)

1%$- 13 -(1:2 )

31i

1:1

1 4 1:2-l

18 1:2

(l') - 12 12

(1;3) - 22 to

(1*3) - 1:4- 1*2

(1:3) -1**}

1 '2k- 1*1

112

II

5. MIxod types

* Sharing coefficients in parentheses indicnte theoretically
possible but practically improbable ranges.

1002



Table 3-2.

lassifteation of tetrehedral struatures.

Sharing Opat-units j-
Types Subtypes coeff-J and loops of Families Mmbers

4040 _ _ 0_o'-_ Iients tetrahedra

1.1solated
groups of
tetrahedra

2.Twoedmeneio-s
nally non.
tarninated
struotrs o?
tetrahedra

3. Two-dimens to-
nally Aon
terminated
struotuwrs ot
tetrahedra

a. single tetra-
hedron

b.pair of tet~.
rahadra

c.harge gr oup s

d.mnixod jroupj

aseingle chains

b.single rings

odouble chain.

d.double rings

e.multiple ehain

fomultiple rings

g.aixed shainD
and rings

a.single sheets

1.00

1.25

1.50

1.50

1.50

1.50

1.50

16 2

1.67

1.75

IT5

1.75

1.75

1.75

1.78

5

1-2

2

3

5
4

6

8

6

4

4.8

4-8

6

6

5

Pyroxenes

Rhodonite

Bentite

Axinite

Tourma line

Xnotilite

Amphiboles

Sillimnanite

Apophylite

Gillepsite

Mica

Sepiolite

Hardystonite

Olivine,garnet#
ephene, gyp sun etc.

11taite, tileyte,
ZyPOh et*.

Zunytte

Vesuvianitt,
allanite

Entatite etc.

Catapleitepwadeite

Doptaso,ealedonit

'Anthophyllite etc.

Dlatlite

clay etc.

Beryllonit,Y
2 0%

ia ilitSehlenito,
akermanite



Table 5-2. (oontinued)

4t.r-d l
sienally

ted oties-
imres of
tetrshedr

Typos subtypes s06fripod and lo*Popa i Families %=be
ents teTahdr d

b.dnuble sheste

e.multiple sheets

d.mixed sheeta

a.networks with
oornrs
sha red

2.00

1.75

1.82

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2400

4*00

2.00

2.00

2.oo

4-6

10

5-10

5-6

4-5-8

4-6

4-6-8

4-6-8

4-6-8-10

4-6.8-12a

4..6w.9-l

4-6-9

4-6-12

4-6-12

j4-8

15-6-8

j6

6"

o Gelaian

V205

120faO.7A1 205

Qe3 2

:Jeapo1lites

Sodalit

Paracel stan

Analectte

Qoestte

Ohbaite

Ge linite

Beryl

Milarite

Canerinita

£dingtonite

petalite

$mal4andlt

Keatit.

ristobalit*

Tridymite

Marialite etc.

Ultra4arne,helvite,
danalite,hazyntte

Danbrite,burlbutite

Pollueito leu wit.

eP2 (1)

Sanidine etc.

orderiat

NatrolIte,tsonite

Phil ippaite

Ca.rnegiettD ouptite,
B704, D430 4, k2F*204
N24l20 BAL04,

xa20asr4, 4H20,, u(m)

Nepholine, LiK04
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able 3-2. (oontinued)

Sharing- Rpeat-units i n

types Subtypes *afft- and loops of Families Members
_ _ _ient s erhedra

200 6-8 vsartz Berlinit, AIA9O4,
H-.iuryptit, 0002
BDM0 4

475 S-4-6 Bertrandita

2,75 >4-6-8 Hemimorphito

2.75 34-7 203

3.00 3-4-5 JPhnett Willemdte

5.00 54-6 AZ2jir 4

4.00 3-4 WurzIte BUS, BeTe

4.00 5-4 Sphalerite a.0, s gTe

b.networks with 4.00 3-5 Cubanite
one or w mo
edges shared 4.00 4 Gooper±te

6.00 $5-6 1203 fltj2

8.00 octahedron Fluorite Antifluorite, N-20#

c.networks with2
one or more
faces shared

5ned type0



References

F. Maohatschki. zur Prae der SItrktur und- KonAtitutton
der £Feldaate.

Zb1. AMin. Geol. Palaent. A (1928) 97 - 104.
2
R. C. Evans. An introdctInm to 1crxlal_ o12a sirv.

Caledon Press (1952).

3 '
A. P. Wells. The .zeajetri balskais of .or-et4lhemistrr.

Part f - 6.

Aota Cryst. 7 (1954) 535 - 554, 842 - 853, 8 (1955)
32 - 36, 9 (1956) 23 - 27.

4
P. Ideban. 4agmrknaan mu; Sratruatik 4er Kritalgl-

struktunen von 8i1aten at .hoohkondeustertMn Antonen4.
zeit. Phys. Chem. 206 (1956) 73 - 92.

M. J. Buerger. Derivatire Arystal sumotures.
J. Chem. 15 (1947) 1 - 16.

6
M4. J. Buerger. The stuffed derivatives of the silica

structures.
Contr. from E. Washken iab., Cambridge, Mass.

(1953) 600 - 614.

Refernoe for strnoture data
7
*Strukurk9ericht. 4and _I - YIII.

Zeit. Krist. (1913 - 1939).

8
8truoture Renortsi. Vol. 8 15.

Intern. Union Cryst. (1940 1951).
9
S. V. Berger .Crsta~. 4 truurAte f2 .

Acta Cryst. 5 (1952) 388 - 389.



G. Berghoff, W. H. Baur, W. Nowacki. UIerAe

Zrietallotatur den aa4*es.

Leues Jb. tin. gh. 9 (1958) 193 - 200.

K. Brauner, A. Preisinger. Strutu u#4 Fnetaung dog

Teahermake Min. Petr. Mitt. 6 (1956) 120 - 140.

tal gtrature ofL a :Dent, j. o o Smith. Car
Chabazite . a moleqular sieye.

Nature 181 (1958) 1794 - 1796.

H. G. Heide. o structur des 4optas.

Die Naturwisa, 41 (1954) 402 - 403.

0. B. Henhaw. The structurn of mdiAte.
Min. Mas. 227 (1955) 585 - 595.

T. Ito, H. Nori. the ornte structure of datolite.

Acta Cryst. 6 (1953) 24 a 32.

T. Ito, Y. Takeuchi. The Irra
Acta Cryat. 5 (1952) 202 - 208.

A. tiyashiro. 0Mi

in orrsttl struotnre.

I otrcture -of axizite.

e. a .n Ailicate mineral and

Amer. Miner. 41 (1956) 104 - 116

B. Nagy, W. P. Bradley. 1he 9r

Amer. Miner. 40 (1955) 885 - 892.

J. V. aith. The orrststal-atra
AOta Crysat. 6 (1953) 613 a 62o.

alwsI achee -of

tre of raelian.

10

11

12

13

14

15

16

17

18

19



H. Strnan. Dig Zoolithe QaeliUite. Cha
Neues it. gin. th. 7 (1956) 250 - 259.

U. Ventriglia. a stitxura del
Period. Min. 24 (1955) 49 - 83.

A* Zemann-Hedlik, J. Semann. Die

Acta Cryst. 8 (1955) 781 - 787.

B. B. viagin. DeteSMnation 1 .the
oaledonite tn e9Z leot Aiffraotion.

ietalletctar rIo

Russ. Phyb. Cryst. Vol. 2 (1957) No.3. 388 - 394.

II

20

21

47

22

L Lyn.

lA jnljanditO 0

23
atr-ature -Of



Chapter IT

Ciassifioation of silioates
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There is a complication in the structures of the
silicates which makes their classification difficult. This
complication gives rise to an inconsistency in the treatment
of various silicates by different authors and can be illus-

trated in three points.

(1) It is generally accepted that Al can replace St
and when it does the Al tetrahedra still remain part of the

tetrahedral framework, In some oases, however, the Al
tetrahedra are not so regarded. Por example, oordierite is

usually regarded as a collection of isolated rings of six Si

tetrahedra, but Al tetrahedra connect these rings into a
continuous three -dimensional network.

(2) In other cases, other cations occur in tetrahedra
and they are sometimes aeepted as part of the frame and

sometimes not. Por example, B in danburite is accepted as

part of the frame, and danburite is classified as a silicate

with a three-dimensional tetrahedral network. Ca occurs in

tetrahedral coordination in Na2CaSiO4 and is accepted as part

of the framework, so that the crystal is a derivative of
the cristobalite structure. But tetrahedrally coordinated

Be is not accepted in beryl, phenaoite or bertrandite, nor
Zn in willemite, hemimorphite or hardystonite.

(3) Almost every author treats this matter differently 14

Most authors exclude cations other than Si or Al, from the
frame, and some authors include a few. Struns5 accepts
most tetrahedrally coordinated oations as part of the frame9

and even treats beryl and oordierite as three-dimensional

networks. Nobody, however, has given this problem a system-
atie treatment, as yet.

Geometrically there are several cations which can sub-

stitute for silicon in a tetrahedron without changing

sipificantly the size of the tetrahedron. Table 4-1 is a,
list of some cations which can be found tetrahedrally coordin-

ated in silicate structures and some which might Qonceivably

II
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be present in tetrahedral ooordination. They are listed in

order of inoreasing cation-oxygen radius ratio. The
minimum radius ratio geometrically required for a tetrahedron
is .225, so that any one of the cations listed from B to Ca
in Table 4--1 can fit into an oxygen tetrahedron. his to its
large size, however, Ca distorts the tetrahedron considerably.
It is interesting to note that most of these cations have
similar electro-negativity, so that their substitution for
silicon would not significantly change the nature of the
ohemical bond.

The list of the observed cation-oxygen distanoes
indicates that the variation in the size of the tetrahedron
is not great. Except in the case of the A and Ca tetrahedra,

the different cation-anion distances are almoet equal to the
cation-anion distanoes in the Si or in the Al tetrahedra.

There is only one important criterion which can lead to

discarding a tetrahedron from consideration as part of the

tetrahedral fzame, ramely the nature of its bonding. The
silicates are considered to be mesodesmic stractures;
strictly speaking, however, only the pure silicas are really

mesodesaio. In the aluminosilicates the oxygen bond to Al

cease to be mesodesaio, since the charge of the oxygen is
not halved exactly between two cations. The frame, however,

remains a unit, since in each tetrahedron more thei half of
the oation's bond strength is expended holding the tetrahedral

frame together, and less tha half is connecting the cation
to the rest of the struoture. In conclusion, not only the
silicon tetrahedra should be considered as constituents of
the tetrahedral frame of a silicate but also tetrahedra of
other cations, provided that half or more of the oationts
bond strength is distributed within the tetrahedral frame.
If less than half of the bond strength is distributed within
the frame, the tetrahedra belong to the rest of the struoture
rather than to the frame* A good example is offerd by
axinite. Here the four membered rings of Si tetrahedra are
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oonnected by Al tetrahedra, but the Al's oontribute less
than half of their bonding strength to connect the Si
tetrahedra and more than half to connect the Pe oetahedra
and B triangles.

Of course, it L# expected that in a silicate a large
number of tetrahedra are Si tetrahedra in order to olassify
the crystal chemically as a siliate. If the replacement
of Si by another cation goes as far as the complete replace-
ment of all the Si, the compound should not be called a
silicate, chemically, although structurally it still might
be inoluded in the silicates. An exaMle is yttro-garnet
in which practically all the Si is replaced by Al.

By including several cations in the tetrahedral frame
of the silicates, some major and minor changes have to be
made in the classification of a few silicates. The most
striking of these changes concern the classification of
beryl, cordierite, hemisorphite, phenaoite, willemite,
bertrandite, hardystonite and melilite. Beryl and cordierite
are three-dimensional networks instead of single rings, and
hemimorphite, phenacite and willemite are three-dimensional
networks instead of pairs of tetrahedra. Bertrandite is
also a three-dimensional network instead of a complex of
chains and groups of tetrahedra. In hardystonite and
melilite the pairs of tetrahedra become sheets o tetrahedra.

In hemimorphite, phenacite, willesite and bertrandite,
all cf the oations are tetrahedrally coordinated, These
tetrahedra build up a neutral network, somewhat similar to
that of the pure silicas. The oation-anion ratio in these
minerals is higher than in SiC2, and consequeatly the sharing
of one oxygen by two cations would no longer give a neutral
structure. In order to obtain neutrality, the oxygens in
these minerals ar shared by up to three cations and some of
the O~ is replaced by (OH)".
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In Table 4-2 the silicates are classified acoording to

the classification of the tetrahedral struatures, presented

by the author, and according to the suggested evaluation of

the tetrahedrally ooordinated cations. In the preparation

of this table, special attention was paid to the silioates

with three-diensional networks of tetrahedra. Photographs

of the models representing the tetrahedral frames of the

three-dimensional silicate networks are shown in the plates.

The technique by which these models were constructed is

described elsewhere.

II



Table 4-1.

Some important tetratedrally ooerdinated

cations in silicates.

Radius ratio Observed M-0 Electro-
Cation Examples

(oalculated) distance negativity

B3*.25 1.50 t.05 A 2.0 Danburite,
datolitehoiolite

B42+ .28 1,60 1.5 *ryl,phenaoite

As5+ 0 20 -

p34 2 1 tillwellite

S 38 1.60 1.8 Ailioas,silieates

Li39 10

A 41 1;'78 1* 5 aluminosilicates

.e 43 1.80 '1.8 dany silicates

n *46 - 1.5 !any silicates

Mg2 47 1. 1.2 (elilite,
ksrnanita

F02+3+ .4$-.50 1.80 1.5 -20 'taurolite,
ordiorite

Zna' .50 1082 1.8 smimorphite,
ardystonite

Ti4* .55 1182 1.6 o-hlorlomite,
strophyllite

Ca .67 1.90 1;0 *a20asio4

Data from Pauling , ori, Smithl0

II



Table 4-2.

Clasatfiation of sftentns.

Types

L. Iaolated
groups of
tetrahodra

2, Twedimn-
aionally
non-termi-
nate str
tures of
tetrahedra

5. Two4ierr
sionally
nonoterm-
nated strue-
tares of
tetrahedra

Jubtypeo

- _ - - _ _ __ -__. 1._ ._- - - - % W . 1 ' -- x S. i O M0 i a

Sharing
0oeffiM.
o tnt s

Repeat-gnit*
and loops of
trahedr

Families Nibers
It' - - L - " .W "W "P S I 1~ S. - ~ . a -I1 - -~ e ~ . 1w , a

a. single tetra-
hedron

b.pairs of tet-
rahedra

e~large groups

damixed groups

s,.single ch-tins

Cdouble chains

,.double rings

*multiple chains

.urltiple rings

,mixed chains and
rings

.sinrle sheets

.double shootv

.multiple sheets

kImixd shoots

IIM

1.75

1.75

1.75

1.78

400

1.00

1.*25

1.40o

1.41

1.50

1.50

1.50

1.50
1.50

1.62

1.67

1.75

448

4-8

6

6

46

1-2

2

3
5

4

16

Olivine, gat,
ziroen etc.

Ilvaite, ttleytte,
thorveitite

Zunyite

Vauvianit. , a lanite

Snstatite e.

0ata p1lito, wad ite

Pyroxenes

wollastonite

Rhodonite

Panitoite

Axinita

Tounral ine

senotlite

Amphiboles

sill anite

Apophylite

Gilleptte

0ca

Sptoli~te

'YClsian

Dioptas, oaledonite

Anthophyllite ate.

Datolite

Clay etc.

liardystonite etc.

MOON 0 1 P'L jj'- '1W_-- ANON,



Table 4w.2. (continued)

4.Thr--dimen-
atonally now
terminated
structures of
tetrahedra

Types ubtypes

a.nttworks
with cor-
nters sha-
red

- I

-nte

00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2400

2.00!
2.00 I

2.01

2.751
3.0 &7

Reapeat-unit
ani loops of Families Membere
tetrdhedra ______

4o6

406-8

4-6-84-6ot8.-9

4.6-840

4-6-t8-12

41060*8-12

4-6-9

4-6-12

485-6-2

57-8

6

68

5-4-6

5-4-65

Scapolites

Sodalite

Paracelsian

Analite

Cooesite

Feldspar

Ohabazite

GOelinite

Beryl

Pauj3 site

0ane rini te

zdingtonite

Petalite

Heulandite

Keatite

Cristobl ite

Tridymite

Q4uartz

Bertrand ite

Hemixiorphite

Phenac ite

b.networks witi
one or more

edg0e shared

c.networks wit 1

one or more
faces shared'

IArialite etc.

Ultramta rinehauynite,
danalite, helvite

Darburite, hurlbutite

al l0cite, Ieuc it.

Sanidine eta.

.ordierite

Osumilite

'eitrolito'thVomtsonite

Philippuite

arnegiette, Na2 OaSiO4

Nepheline

Hi-Wetryptite

Wllemite

S1.ixed types
iw 10'.- W -00Ixed tvues M-1 1 -mg-MAN M, WN" - -
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TTA I Pxmg3 '15Pn0TJQ-X4Sl

'464 - 4e5 (t46z) I q9K0WO

ea0outteTp 0-IS 'o-rV St4t 70 AGTAXV *Tfl-TWO 'A 'I'
01

*gT- 60T (t 61 T *JznO2 *XwUyW
#gQVS0T r U tzOfTtrfltSOt 0t100PV4P 0111, XO #~0 '37 p

6

26- U1 (%~61) 90? #W943 *sttg *"raZ

USxOTtZY u SrTRtzaPU03t400t *TV U# VIrATTTS UOA"tZ'flZ!TX1

t*LII 1911 6L901 £101O (LU61) sZ %t'OUTT *4zaUy
'aav.to~tre t8MMx ettA. ; UOT~fl0TZSVt 929 ~ S'I

*£8 09 (4 61) Z6 STS TOZf

***- L0t (1£6I) 91 *IauTZ tIGEY

*eVa1T OU0 $0 a3TzTOfl.Z saur- OJUT IL 'A f

'Sot - ?t£ (1561) ?? *4aTW 'flIV

u

'40£ - LCZ (o(6T) *L '*trrax *z

000t-OTtT9S $0 5775-5n A i *R',v-xr '7 'Al
1

sOouSIZQJ wr

5 4G



56

The following, plates are photographs of

models of the tetrahedral frames of silicates,

and of the tetrahedral models of silica struc-

tures.

Ilate 1.

Seapolite Sodalite





57

Plate 2.

Paraoel $an Analo it.

Plate 3.

Sanidineoesite
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Plate 4.

Chabazite Gaelinite

plate 5.

Milarite

II

Beryl





?aqjasit,

Plate 6.

Canorinite Edingtonite

Plate 7.

HeulanditePetalite Keatits
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Plate 8.

Hi-Orlstobalite Ht-Tridymit Ri.KuartZ

Plat* 9.

Hemixorphite PhenaoiteBertrandite





Ohapter V.

A sispie teoMique for the ocastruation

of polyhezal aodele.

II



When cmplex crytal struotures are studied the visu-

alisation of the strutars requires good strueture Mod0ls. The

standard ball motels help this visualization, but they are often

either too expensive to purchasse or too time-oonsuming to con-

struct, Most stractures, however, ean be illuitrated by polyhed-

ral zodels, where the polyhedra represent the *oordination poly-

hedra of the eations. These polyhedral zodels not only illus-

strate the linkage of the polyhedra and the whole structure, in

many oases better than a ball model, but also offer possibilities

for simpler and inexpensive model construction techniques.

The use of polyhedral models is not uknown aong

*rystallographers. Most of the published models are made of card-

board paper and some are made of wooden blocks or plaster of pa-

ris. The first technique is simple ant tiae-saving, but the aodw

ela are primitive and temporary only. In studying tetrahedral

structures the author sought a simple and fast technique to make

over 40 structure aodels. At efficient and inexpensive toehnique

vas found which permits making well-oonstruated and sturdy mod-

els in a matter of a few hours.

(1) The tetrahedra of the model are made of acetate

sheets. Acetate sheets of 15 ails tbiokness were found to be the

most satisfactory tor the construction of models with a scale of

1 inch to 2 Angstroms. The aetate sheets are first dulled with

steel-wool. This fogging provides the necessary opacity of the

tetrahedra and helps to hide the minor imporfeations in the model#

Equilateral triangles are then out out,. This etting een be

II
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achieved by a simple paper cutter, but if a large number of

models is antieipated, it pays to have a die ade for mechani-

cal cutting. The acetate triangles are then glued into tetra-

hedral form with acetone, which A a solvent of the acetate and

dries very quickly. This process can be aoelerated if a mold,

such as shown in Fig. 5-1. is used for the assemblage of the

tetrahedron.

(2) The tetrahedra are attached to each other by

means of narrow acetate strips (1 ma. by 8 m.), These stripe

are set at the approximate linkage angle and fastened to the

corresponding corners of the tetrahedra with acetone. The two

softened acetate surfaces stiok immediately and the joint har-

dens in a matter of a few seconds. This approximate angle is

later changed to the correct engle by softening the acetate

strips with a drop of acetone. The model is assembled by fol-

lowing a good drawing of the structure, or by construoting the

motif of tetrahedra of the strueture and repeating it aocor-

ding to the symmetry of the space group.

(3) before attaching the last few tetrahedra to the

model, the model is placed in a 1/8 inch brass wire frame, The

frame night represent a unit cell or any multiple or traction

of the unit oell. The last tetrahedra are then added to the

model to complete it. In some cases the brass wire has to be

embedded in a tetrahedron. This can be done easily by cutting

and partially opening the tetrahedron, and removing a cirou-

lar area of acetate where the wire is to penetrate through

II
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Fig. 5-1.

Photograph of a mold t& aid th

assemblage of a tetrahedron.



I
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the face. The tetrahedron is then glued together again after

it is plaed on the frame. In order to fix the position of the

model in the wire frame a few narrow strips of aetat. can be

glued to peripherially located tetrahedra and the frams Trans.

parent strips of acetate can be used for this purpose in order

to prevent their interference in the appearance of the model.

When the model is ready and all the linkage angles are set *or-

reotly and extra acetate strip can be added to each connected

corner to assure firm connections. The -model with the frame can

then be fixed to a base, if desired.

A model of high-quartz constructed by this technique

is shown in 9ig. 5-.2. In this model the structure is extended

beyond a unit cell in order to illustrate the 6- and 8- mes.

bered loops of tetrahedra. All the silica and silicate models

*an be construoted similarly and plastic balls oan be added to

illustrate the location of the non-tetrahedrally coordinated

cations of the silicates. Mica and clay models can be construoe

ted by the combination of tetrahedral and octahedral sheets.

This toehnique is believed to be satisfactory for the

constration of any polyhedral model. If so desired the poly-

hedra of the different oations can be painted in different

oolors. These models are impressive and fairly permanent. Un-

fortunately, the acetate becomes brittle after a few yoars and

the model may fall apart if they are handled constantly. It is,

therefore advisable to keep them in closed display 9 as

much as possible.
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fig, 5-2,

Photograph of a higk-quartz model

construoted by this teohnique.
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Supplaesnt to Chapter I.

The crystal atraoture of oosite, the dense,

Aigh-preossure form of silioa.

II



Introduotion and historical notes.

Coesite was first made by L. Coos Jr. He discovered

this new form of silica, performing high-pressure experiments

in 1952. In his paper1 annotnoing this discovery be listed some

of the physicl and chemical properties of coesite. The most

important of them are:

Composition: pure 3102,

Density; 3.01 gm/co.,

Hardness; in the hardness range of spinel,

Refraotive indices: n,=1.599. nel.604,

Chemical innertness; coesite *an not be dissolved in hot

hydrofluoric acid,

Stability: ooesite oan be made at a pressure of 35,000

atmospheres and at a temperature of 500-800040 Below

and above this pressure qaartz is produced.

Inversion: Above 1,70000. coesite transforms to silica

glass and oristobalite.

This discovery aroused oonsiderable interest in miner-

alogioal and geological as well as in chemioal and thermodynami-

eal oircles. The mineralogists were obvieusely interested in the

new member of the silica family, while the geologists anticipa-

ted ooesite to be a poasible mineral in deep seated rooks. olo--

gites, kimberlites and peridotites were treated with hydroflue-

rie acid in order to obtain coesite. The results were unsucoens-

fu. This failure, however, does not exolade the posaibility
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of natural ocouranee of cosite in other deep stated rooks,or

*yen in these ultramafio rocks, in a small amount. Some ge-

ologisto expected to find ooesite in meteorites, which may

represent the composition of the mantle of the earth. These

tries were also unsueessful. The chemists and the thermody-

namists, obviousely, had great interest in ooesite, one of the

first fruits of extensive high-pressure experiments.

Crystallographers also looked at coesite with a

speclal interest. It offered a new silica struoture which might

not only give a new structure but could be expected to illus

trate the behaviour of the silica structure at higher pressuros#.

Professor M T. Buerger expected to find a basio silica struc-

ture in ocasite for some silicate derivatives. Feldspar appeared

to be a possible derivative structure of oesite, due to the

close similarity between the cells of the two compounds.

Morphology of ocesite.

We were presented a small sample of ooesite orystals

by Dr. N W. Thibault, Assistant Director of Research and De-

velopment, Norton Company. The crystals were made at 40,000 at-

mospheres pressure, at 70000. temperature and were cured for 15

hours* Some of the crystals measured up to 100 microns and

offered good material for x-ray investigation. Approximately

10% of the sample was composed of single crystals and the re-

maining 90% of twins. Ramadell's3 desoription of the crystals

II
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applied to our sample, ezoept that almost all of our sample

was euhedral. The twins were mostly twinned On the (012)

plane resulting in perfect tetrahedral prisms. The single

crystals were flat, and as Rasmadell describes thez, they re-

semble smll gypsum crystals.

fany of the well developed single crystals were ex-

amined with an optical goniometer. All the single crystals ap-

peard to have developed the same faces. The best crystal is

shown in Fig. 1-2. The caloulated interfacial angles, axial ra-

tics and gncnonio projection standards are listed in Table 1-5.

The observed interfacial angles were found to correspond to

the calculated angles within t 30', and they were found to cor-

respond to the data recorded by Ranadell.

?reliminary x-ray investigation.

A prfeot single crystal of ooesite, similar to the

one shown in Fig* 1-2,, was mounted on a precession camera and

diffraction photographs were obtained with MoKa radiation, Good

photographs were obtained and the following call dimensions were

measured:

a = b 7.17 X o 12.38 1. and 1200.

These measurements are slightly lower than the measurements re-

cor4ed by Ramdell. No significance is attached to this disorep-

anoy, since, first, the two saaples came from different oharges

and may have had different cell dimensions and, second, neither



of the two investigators used procislon instrumnts.

The procession photographs showed regular extiaotions

as follows:

(takl) type, h+1m 2n

(tkO) type, ka 2n

These extinctions indicate a 1-weentered cell and a kb glide. The

possible space groups are, consequently, B2/b and Bb. Since the

morphologioal investigat ion ind loted a oehter of symetry, B2

was expected to be the more probable spaos group.

The number of formula weight of 812 per cell was oal-

oulated. It was found that the ooesite oell contains an excess

mass of 35 ohemioel mass units. The nature of this excess mass

has not been investigated, but it appears probable that it rep-

resents impurities in the struoture. Through private communiea-

tions ( F. Daohille, V. Walkenberg ) we learned that ooesite with

a density of 2.94 was also made. 4th this density the number

of 3102 per unit cell of oeasite would be just slightly above

16 (i.e. 16.22). This indioates that man-made ocosite contains

oonsiderable' amount of impurities, and probably our sample con-

tained more than some others .

X-ray powder pattern.

A few crystals of coesite wore powdered and mounted in

a 114.6 mm. diameter Debye-$oherrer camera. OuKo radiation at

40 kv. and 20 ma, was used. Relatively good powder patterns were
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obtained. The 4 values were calOulated from the diffraction

lines and were compared with the d values recorded by 00,51.

The oorrespondanoe was found to be very satisfactory.

Since a large number of diffraction lines were ob-

tained and the lines were relatively sharp, an attempt was mad*

to index them. Sinoe ooesite has a 4onoolinio oell the indexing

could not be achieved by the aid of charts. A modification of

Ito's method for the indexing of powder photographs~was selectedi

the 2's of the diffraction lines were computed and compared
4

with the 's calculated from the unit sell dimensions obtained
A

previousely. Aoording to the correspondance of the caloulated

and observed 2 s the diffraction lines were indexed, Most of the

lines, especially the stronger lines, were indexed with no dif-

fioulty. Some weaker lines, however, could be indexed but with

a larger discrepaney between the calculated and observed *

The correspondance between the oalculated and observed 2'0

ranged between t .005 and ± .01, Considering that the oamera

used is a standard non-focusing oamera and that the radiation

wavelength is relatively short, this correspondance can be re-

garded satisfactory. The calculated and observed 4's and the

's with the corresponding indices are listed in Table 1-6.
0"d
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( The observed intensities were later ohooked with the struc-

ture factors and were found to be reasonable, )

Collection of three-dimensional intensity data.

The symmetry of space group B2/b defines that one

quarter of the limiting sphere contains all the diffraction spots

with non-equal intensities. Consequently, it is sufficient to ob-

tain one quarter off the limitag sphere. The following quarter

has been selected:

along a axis from -a to +a,

along b axis from 0 to tb

along _ axis from4 Q to +C

The precssilon camera was used to obtain the intensity data, Due

to the mechanical limitation of the camera and to the blank area

in the center of the photographs of higher levels, different set-

tings of the dial axis was neoessary to obtain data for the full

quarter. Your settings were found to be necessary:

Settings: A dial readins: 0 00#

B 90000t

0 (a)(b) 49012', 22912#

D 30*05*

These four settings are illustrated in Fig. 1-10.

Several levels were recorded with each setting. With

setting A the levels from 0 to 6, with b from 0 to 2, with 0
4mO
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(a) and (b) from ( to I and with D from 0 to 4 were reoorded.

Settings C (a) and C (b) do not require two different photog-

raphs, since with either setting the data of both are recorded,

one on the top and other on the bottom half of the Same film.

The intensities were measure{ by the M.I.T. modifioam

tion of the Dawton rmethod:

The x.ray films were not developed in the usual x-ray

developer, but in a specially prepared Yodak -76 developer, to

which 2 c of 1.0% 1T and 20 co, KBr were added per gallon,

These films were than printed on Kodk commercial ortho film, so

the dark diffraction spots of the first film became transparent

spots on the print. The light transmission of these spots was

then measured by maans of photoelotrio cell, whose light aper-

ture was kept constant during the whole procedure, After measur-

ing the light transmission of the spots, the transmission of

the background was measured on the white radiation streak, ad-

Jacent to the spot. The difference of these two readinga gave

the relative integrated intensity of the diffraction spot. The

weaker spots could not be measured by the photoelectrio cell, con-

sequently, the intensities of these spots were estimated by eye.

Invisible diffraction spots, which were not absent due to extino-

tions, were assigned a minimum intensity.

The relative intensities obtained were then multiplied

by the reciprocal value of the Lorentz and polarization factor.

The Lorentz and polarization factor was read from the aser-

Grenville-Abraamas charts available in the orystallographiO

laboratory.
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ris 1-10-

Dial settings o&f the preession camera.

II
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The linear absorption coefficient for 3102 has been

Calculated using the mass absorption data in the Internationale

Tabellen zur Bestimmung von Kristallstrukturen;

100* s i si +fn 0 ) S -

'i1) WO
* ( - 6.70 + x 1.50 ) z 3.01 *

100 100

( .467 x 6.70 r.533 x 1.50 ) x 3.01

a 11.8 oMnV a 1.18 zmml

wher W is the weight percent of the element in the formula,

is the mass absorption ooeffieient and is the density of the

compound,

The dimensions of the crystal used are .10 x .03 z *15

in. and the crystal was mounted with the largest dimension per-*

pendioular to the direction of the x-ray beam, Consequently, the

largest mean distance the x-ray beam had to travel in the crystal

is in the order of .12 m. and the shortest asan distance ia

.03 ma. So the x-ray beam effected by the most and by the least

absorption is:

I a 142 - .868

a i 0 354 a .965

This means that the maximum variation in the Offect of the ab~

sorption on the intensity of the diffraction, due to different

orientations of the crystal, is less than 10% of the intensity,

This is mll enough to be neglected,

II
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Preparation of the Patterson maps,

?roa the adjusted intensity data the three-diaensional

Patterson function was computed at the M.I.T. Computation 0en-

ter. The three-dimensional Fourier programl was prepared by Dr.

W.Sly. The Patterson function was evaluated at 1/60-th inter-

vals for 1/6-th of the reciprocal cell. These functions were

plotted on reciprocal cell maps and were contoured,

Since it was decided that the minimumtfuntion method
1 1would be applied, a set of maps was prepared for 1j by 1 unit

cell in tha plane of the a and b axes and for each 1/60-th level

along the & axis. The contours on these maps were coloured acoor-

ding to the magnitude of the peaks , and depressions were shaded.

Location of inversion peaks.

The possible types of katterson peaks, their number,

relative weight and relationships with each other are illustra-

ted in Table 1-14 This table shows that there are 24 inversion

peaks in the priaitive cell of oossite, 8 of them are $i-i and

16 0.0 inversion peaks. In order to solve the Patterson funotion

by the minimum funot ion method one or more of these inversion

peaks have to be located5 . There is a convenient relationship

between inversion, rotation and reflection peaks which is

II
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rig. 1-11.

Illustration of the relationship between

Inversion, rotation and reflection peak*.
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illustrated in Figa-l1., for the space group of ooesite. 24 in-

version peak oandidates have been looated in the primitive cell

by the procedure which has been desribed previousely and is 11-

lustrated in Fig. 1-4.

A large number of these inversion peak candidates,

however, were expected to be false. Half of them, right away,

were known to be false, since half of the candidate peaks are

only symmetry repetitions of the others. An inversion peak Oan-

didate below the reflootion plane at f/4 has a symmetry equiva-
lent above the reflootion plane and they both fulfill the inver-

sion-rotation-refleotion peak relationship. But only one of the

two represents the inversion vector. Only 1/4 of the primitive

cell is the assyanetric unit. In order to cover both sides of the

reflection plane, however, 1/2 of the primitive cell had to be

oonsidered in the search for inversion peaks. Consequently, there

were only 12 possible inversion peaks in the 1/2 primitive cell

considered. The location of these peaks are listed in Table 1-7.

The symmetrically equivalent peaks from which only one can be a

true inversion peak, are recorded side-by-side as (4) and ( ).

There is no other way to distinguish between true and

false inversion peaks but to carry out the construction of one

or more jM2 maps for each of these peaks, The same level M2 mar

has been constructed by the aid of each one of the candidates.

Four out of' the 12 gave essentially the same pattern while the

other eight had different wild patterns. It was concluded that

the four inversion peak candidates yielding similar 12 maps

were true inversion peaks and the others were false. The true
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inversion peaks in Table 1-7. are 1(a), 2(4), 2(a) and J(b).

The relative magnitude of the peaks in the 12 and x2Mp

were almost the same, and the relative magnitude of the peaks

in the other two M2 maps were also similar but different from

that of the first two maps, It was decided to use number 1 and

2 inversion peaks for the construction of complete sets of mine

iaum funotion maps.

Construction of the minimum function maps.

A set of M2 zaps was prepared for both number 1 and

2 inversion peaks. This is aooomplished by superimposing two

Patterson maps, with a z coordinate differenos between them,

which z coordinate corresponds to the z coordinate of the in-

version peak.. The origin of the higher level map is placed at

the zz ooordinates of the inversion peak on the lower level

map. The origin of the M2 map is then taken at the new center

of inversion which is half way between the origins of the two

Patterson maps. In Table 1-8. the corresponding pairs of Patters

son maps are listed for both of the inversion peaks, with the

new a ooordinates of the 2 maps. All the coordinates are given

in 1/60-th units,

The M2 maps were combined into 4 maps by tracing

the minimum funation of the two rotation-equivalent halves of

the 2 maps, Fig. 1-12. The two sets of M maps were, in turn,

combined into one set of 1g -aps by tracing the minimum



79

function of the corresponding 4 maps of eeah set. It was found

that these two sets of M4 maps had two different centers of in-

version at their origins. The origin of the 19 maps was accep-

ted and the origin of the 2V maps was shifted to the center of

inversion corresponding to the origin of the 14 maps. Figel13,

illustrates this procedure.

The resulting 1-2gS maps revealed the struoture of

coesite. There are only two small and insignificant peaks in

the 118 maps which do not represent an actual atom location.

Ref inemen at

The atomic coordinates of the US maps were then refi-0

nod by eight cyoles of refinement. This baa been described in

detail previousely. Table 1-9.shows in detail the coordinates

of each cycle of refinement and the R, Rt, B and scale factors.

After the third cycle of refinement six diffractions, and after

the sixth oyale of refinement all the diffractions with sinQ-

less than .095 were removed, sinoe it is believed that these

diffractions were too much effected by primary extinction. The

list of the indioes of these diffractions are given in Table

1-10.

The refinement program simualtaneousely caloulated the

structure factors and printed them along with the observed in-

tensities. The latters were scaled down by the computer to the

scale of the computed structure factors. The correspondance
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Fig. 1-12,

Combination of 52 maps into 4 maps,
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Fig. 1-43

Combination of two 4 maps into one g map.





between the observed and oomputed values was satisfactory. In

order to save considerable typing, the structure factors and

the comparative intensities as printed by the computer have

been deposited in Professor M. J. Buerger's files,

The difference between the coordinates as obtained

from the 1- maps and the final coordinates after eight cycles

of refinement are listed in Table 1-3..The final ooordinates

for all the atoms in a full unit cell are listed in Table 1-11.

The ooesite struoture.

The structure of ocasite has been described previouse-

ly and is illustrated in Fig.'s 1-7, 1-8 and 1-9. It is a new

three-dimensional silica network, but it shows striking seimi-

larities with the tetrahedral network of the feldspar structure.

Both structures can be described as a composition of 4einmbe-

red loops of tetrahedra. There are two symtrially non-equiv-

alent 4-membered loops in each of these two structures, and the

whole structure can be built up by the repetition of either

one of these two rings. One of the 4-membered loopa has a center

of symmetry and the other is perpendicular to a 2-fold rotation

axis. $oth these 4-membered loops are shown in,Fig.1-14.,in

both the coesite and the sanidine (feldspar) structures. The

diagram illustrates that the rings in the two structures differ

only in the orientation of the free orners of the tetrahedra.

These 4-membered rings are also present in the para-

oelsian, analoite and soapolite struotures. But the orientation

II
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Fig. -.14

The two non-equivalent 4-membernd loops

of tetrahedra in ooesite and in sanidine,



C oesite Sonidine
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of the tetrahedra in the rings of these structures differ

considerably from the orientation of tetrahedra in the ooesite

and feldspar rings, It can be concluded that the coesite strao-

ture is a new structure, but its basic obaracteristies are

similar to the structures of several silicates.
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Table 1-5.

Crystal morphologio data

of oeasite.

0
am 7.17 A

0
be 7.17 A

0
o* 12.38 A

*120000

a:bzog-.5791:,5791;1

po store 1:501:1

r2 2 944;*944:

PO 4q' ixo' - 1.1547:.5791:5773

60000'

* L.3. Ramadel 3 observed additional ((101)) and ((Ol))) torMs

Forms* 2 2* B A

0 010 900009 300009 60000* 90000 60000'

b 001 0 00 90 00 0 00 900O' 9 00

g 103 33 40 90 00 0 00 33 40 73 55 56 20

x 012 26,30 52 19 60 00 44 55 45 05 69 19

d 110 -90 00 30 00 120 00 90 00 60 001120 00

V Il1 71 31 61 18 30 00 73 50 33 43 33 43

p il -44 55 39 17 120 00 63 22 63 27 116 33
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Table 1-7.

List of inversion peak candidates.

Location and Inversion peak
Magnitte of can idatespeaks h

1

2

3

4

x

y

Magnitude

x

y

z

Magnitude

x

7
Magnitude

x

y

Magnitude

x

y

a!

Magnitude

Magnitude

Rotation
peaks

18

9-

* 13

342

0

19

360

27

24

13

300

0

4

300

22

13

238

45

13

232

Reflection.
peaks

12

9

17

342

30

4

11

360

3

24

17

300

30

4

26

300

22

22

17

236

20

45

17

232

II

Peak
No.

18

39

0

740

0

34

0

738

26

5 3

0

320

0

34

0

738

81

52

0

348

94
15

0

381

5j

6

0

30

13

750

0

30

19

530

0

30

13

750

0

30

26

530

0

30

13

750

0

30

13

750

A4 11 .

Note: The denominator of 60 has been omitted in the .coordinates
of the Patterson maps.

I

I
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Table InS.

Superposition data for the construotica of U2 maps.

Inversion
peak No*

-o- -

2

at the inversion peak
looation of map No.

Place the origin
of map No.

7

9

10

12

15

16 or (14+a/2)

17 (13+a/2)

18 (12+a/2)

19 (11+a/21

20 (10+a/2)

21 (9+a/2)

10

1 11
i12

13
14

15

16 or (14+a/2)

17 (13+a/2)

1$ (12+a/2)

51

52

53

54

55

56

57

58

59

Or (6)

(5)

(4)

(3)

(2)

(1)

or (9)

(8)

(7)

(6)

(5)

(41

(3)

(2)

(1)

to give M2 map
level

54

55

56

57

58

59

0

3

4

5

6

7

8

1/2

1 1/2

2 1/2

3 1/2

31/2

5 1/2

6 1/2

7 1/2

8 1/2

1/2

1 1/2

2 1/2

3 1/2

4 X/2

5 1/2

6 1/2

7 1/2

8 1/2

9 1/2

10 1/2

11 1/2

12 1/2

13 1/2

14 1/2
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Table 1-S. (oontinued)

Inversion Fla** the origin 'at the Inversion 'peak to give M2 Map
peak No. of map No. location of map No. level

2 19 (11+a/2) 0 9 1/2
(cent.)(Ont) 20 (10+a/2) 1 1 1/2

21 (9+a/2) 2 11 1/24

22 (8+a/2) 3 12 1/2

23 (7+a/2) 4 13 1/2

24 (6+a/2) 5 14 1/2

Note; The denominator of 60 has been omitted in the coordinates

of the Patterson maps.

II
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Table 1-9.

Atomie coordinates and other data of each

oycle of refinement.

Mi nyief o6 r int a m

o l0 t 2nd 3rd 4th 5th 6th 7th 6th

I Scale
factor

y

a1

B

0 2 x

y

10

03 x
y

SizB
O02

B

a 2

.5652

46.69

36 *39

.1600

.0800

.1100

1.000

.5100

.5300

.1600

1.000

.0000

.0000

.0000

1.000

.5000

.7500

.1100

1.000

.2700

.9200

.1300

1.000

.5431

36.11

10*37

41501

.080,3

.1082

1.*110

.5052

.5373

.1581

.790

.0000

.0000

.0000

..984

.5000

.7500

.1124

1.194

.2635

.9302

.1287

.878

.5444 .5406

25.26 18.35

.5423

27.55

5.94

.1448

.0788

#1083

1.085

.5054

.5383

.1577

.724

.0000

.0000

.0000

.967

'05000

.7500

.1136

1.146

.2621

.9359

*1277

2.58

.1416

.0749

.1084

.903

.5060

.5383

.1574

4632

.0000

.0000

.0000

.828

.5000

.7500

.1154

.997

.2676

.5427

18.00

2.43

.1408

.0741

.1084

.875

.5060

.5384

.1575

.639

.0000

.0000

.0000

.858

.5000

.7500

.1149

1.032

.2680

5.19

.1443

.0763

*1086

1.027

.5058

.5386

*1577

.689

.0000

.0000

.0000

1.009

.5000

.7500

.1134

1.041

.2648

.9372

.1274

.5378

16.94

1.96

.1406

.0738

.1084

.817

.5063

*5385

.1576

*589

.0000

.0000

.0000

*817

.5000

-7500

.1168

1.102

.2686

.9394

.1259

.903 .923 .908 .975 1.006

.5374

17.03

1.93

.1404

.0738

.1084

.817

*5063

.5386

.1577

#599

.6000

.0000

.0000

* .839

45000

.7500

.1164

1.180

.2693

.9397

.1257

1.070

.5363

16.95

1.92

.1403

.0735

.1084

.813

.5063

.5388

.1576

.600

.0000

.0000

.0000

.856

.05000

.7500

.1166

I.197

.2694

.9405

.1256

1.111

.9376 .9382

.1272 .1270
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Table 1-9, (oontinued)

Desoription

04 1

y

a

B

B

a y 1 e a

0 let 2nd

.3000

.3200

.1100

1.000

*0100

.4700

.2200

1.000

.3038

.3205

,lo62

1.009

.0123

.4706

*2155

.607

.3031

.3235

.1038

1.193

.0135

.4701

.2133

o f r e f i n o o n t

3rd 4th 5th 6th 7th 8th

.3051

*3243

.1028

1.281

.0131

.4711

.2129

.3061

.3278

.1043

1.269

.0114

.4751

.2135

.579 .565 .526

.3076

3285

.1040

1,231,

.0135

.3079

.3290

.1030

1*311

.0130

.3081

.}293

.1031

1.367

.0129

.3080

.3293

v1030

1*381

.0123

.4740 .4735 .4729 .4726

.2121 .2123 .2121 .2122

.561 .573 .625 o656
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Table 1-10.

Indioes of ditfraotion with sinG (.095.

(240)

(220)

(020)

(220)

(200)

(200)

(141)

(131)

(131)

( 321)

(121)

(121)

(311)

(111)

(301)

(301)

(432)

(232)

(032)

(222)

(022)

(202)

(002)

(202)

(133)

(323)

(123)

(123)

(113)

(103)

(103)

(224)

(024)

(214)

(014)

((12) (113) (004)

(204)

(204)

(115)

(115)

(105)

(105)

(006)

(206)(331) (311-)



T. al 1-all *

Atomio ooord1nates ini a fLull

unit 0011 of ooesits*

No

II
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Table . ,(en n

- 1
W -Y z

(4) 21
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Table 1.P11'(Oontinuod)

(5) z y z 4 o

a 6 )1 1
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Table 1.,* (oontinued)

(7) 2 -,a .-.

Si 1  .3597 .4263 .6084

S12  .9937 .9612 .6576

1/2 1/2 1/2

2 0 3/4 .6166

03 .2306 ,5593 .6256

10
4 .1920 1707 .603o

04877 .0274 712

1 A



Supplement to Chapter II,

The relative energies of rings of tetrahedra.
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Computat ion of the energies of a-membered

rings and an endless chain of tetrahedra.

Projections of a-membered rings of tetrahedra were

oarefully drawn to a soale of one inch to one unit length. The

values for a were 2 to 10. The tetrahedra in these rings were

oriented as described before, and consequently, in the drawings

the two shared corners and the center of the tetrahdedron are

in the same plane, while the unshared corners are equal distan-

os above ant below this plane. The corners of the tetrahedra

were letteret, and the centers were assigned a number, as it is

shown in Fig. 2-3i The interatomic distances were oarefully

measured to three significant figures on the drawings. The mul-

tiplicity of each type of interatomic distance was determined

by the symmetry of the rings. The interatomic distances, their

multiplicity factors and the pruducts of the involved atoms

were tabulated and the ealoulation of the energies was carried

out in the tables, as it is shown in Table 2..

A similar calculation for an endless chain of tetra-

hedra was also undertaken, with ortain approximations. A chain

of 30 tetrahedra, oriented similarly to the tetrahedra of the

rings , was drawn to a scale of one inch to two unit lengths.

The lettering of the elements of the tetrahedra are shown in

-Fig. 2-4. It was found that beyond a certain number of tetra-

hedra some types of interatomio distances differ only by less

tian the error of measurement, and consequently, they can be
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rngarded oqual, Those interatomic distances were grouped beyond

this critical point and the same interatomic distance was as-

signed to them. The different types of interatomic distances,

and the limits beyond which soms of tha are assigned the same

interatomic distanoes are shown in Table 2m2,(a), This table

also includes other data necessary for the computation of ent-

orgies, such as the product of the charges of atoms corr*spon-

ding to the interatomic distanoes, and the multiplicity factors,

All these essential data are repeated in Table 2-2,

(b), and the calculation of energies is carried out in this

tabulated form, similarly to that of the na-exmbered rings of

tetrahedra, This calculation is, however, limited to only 20

tetrahedra in the chain. Beyond the 20-th tetrahedron there are

only two different interatomic distanoes, one is between repul-

sive atomas and tAe other between attractive atoms. Both have

the same products of charges, and multiplicity factors, The

repulsive energy is Slightly higher than the attractive, con-

sequently, this difference was calculated to a limit beyond

which it becomes negligible. This calculation is shown in

Table 2-2, (c). The total approzxmate energy of the endless

chain of tetrahedra was obtained by the ssuaation'of the final

energies of Table 2-2,(b) and Table 2-2,(c).
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Fig. 2-3,

Illustration of symbols used in the

oomputation of energies of nmembered

rings of tetrahedra.



I V
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Figs 2-4.

Illustrat ion of symbols used in the

computation of energy of an endless

chain of tetrahedra.



CV



Table

Energy aomputation data

2-1.

of n-mexbered rings of tetrahedra.

a

4

a

16

4

1

1

2

2

4

2

2.47

2.00

1.83

2147

21 

3,25

2*69

1.00

2i 00

1463

1 63

2.69

.405

,500

.546

.405

i 356

i 308

w372

1,000

.500

.613

.613

* 372

Votwnttal

2.052

14,032

2.052

i435

.353

8.000

1.226,

2,452

1.620

44000

8.736

1.620

.056

* 308

*744

6.000

4.900

1.226

2.452

.744

S
multipl. -A

2

1

2

2

2

3.

2

4

2

4

4

4

2

1

2

1

2

ttracti

4.104

4.104

Repa4a

14o032

S

C.460

1.424

1.232

S1.488

8.000

4.000

2.452

22452

26,960 26.00$

-teA - 2 443

2 l-D

1*-2

A.2

A-D

A-E

0e2

O-D

sAg DsaneI1Pist.

4 1.95 .513

16 1.14 .877

4 1.95 .513

1 2.30 *435

1 2.83 353,

a 1.00 14000

2 1.63 ,613

4 1#63 .613

Repulsion -4.0"i

103

.8670

.706

8.000

2.45

16.208 20,512

6,480

4.000

17 ,472

3 1-D

1'4

1-2

Av*2

Le*D

AsIB

A-2

0-2

0-3

0-D

04'

0-04

Attraotion - .952,
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Table 2-4. (continued)

Chare listane 1/Dist. PotentXal Multixl, AttraotQ Repuls4

4 1-Dl

low)

l-mo

1-2

1-3)

A-2

A-3

A-D

A-F

A-G

A-I

0-2

0-3

0-D

0-?

04D

0-I

Attraction a 1.20$,

6.368

6.400

4.160

2.592

15.520

4

4

16

16

4

4

2

1

2

4

2

4

2,.54

2.36

3.46

1.97

2.79

2.54

3.46

2.79

3.23

3.01

3.93

4.24

1,00

2.36

..63

1.63

3.01

2.30

.394

.424

.289

.508

.358

.394

.289

.358

.310

. 332

.254

.236

1.000

.424

.613

.613

. 332

.435

1.576

3.392

1.156

8.128

5.728

1,576

1.156

.358

.310,

.644

.254

,236

8.000

3,392

1.226

2.452

.664.

1,740

6.304

6.784

2,312

16.256

5.728

6.304

2.312

1.432

1.240

2.656

.508

.472

8.000

6.784

2.452

2.452

2.656

38'.800 37.592

5 1-D

1-P

1-0

1-1

1*-2

4

$

4

8

16

2.51

2.50

3.85

3#09

2.06

.398

.400

.260

* 324

.485

1,592

3.200

1.040

2,592

7.760

n ie
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Table 2-1. (ooatinued)

n Tnt Ohate Distance 1/Diet. Potential multiul. Attraot# Renuls4

1-3

A-2

A-3)

A-D

Aol!

A-E

A-0

A-G

A-I

0-2

0-34
0-4

-D

0-17

0-Q

C-I

0-*:

16

4

4

21

2

2

4

2

2

Attraction 1 1.756,

2o45

2.57

4.01

3.48

4*57

2.00

3.44

.408

*389

.249

* 387

*219

.500

,0291

3.23

2.51

3.85

2*66

3.12

3.10

4,30

4.60

3.70

1.00

2.50

3.09

1.63

1.63

3.10

2.63

3.70

9.920

6.368

4.160

* 310

*.398

.260

* 376

-. 321

.322

.233

.217

.270

1.000

.400

o.324

.613

.613

*322

.380

.270

4.960

1.592

1.040

o376

* 321

.644

.233

.217

.540

8.000

3.200

2.592

1.226

2.542

.644

1.520

.540

2.42

2 *542

2.576

3.040

1.080

47.040 45.284

-2 -= .507 v

1.632

3.112

.996

2.296

.876

8.000

4.656

6.528

6.224

3.984

4.592

1.752

16.000

9.312

1.504

1.284

2*576

* 932

.868

1.080

8.000

6,400

2.592

6 l-D

1-F

1-0

1-4

1-2

4

8

4

8

4

16

16

ow q l/Disto



106

Table 2-1. (oontinued)

n Type Ohara* Pitance

1-4

A-2

A-3

A-w4

A-D

A-.?

A-Q

A-I

A-K

0-2

0-3

0-4

0-fl

0-0

0.I

0-3

0-L4

16

4

4

2

4

1

2

1

8

2

4

2

4

3.99

2.45

4.01

4.57

2* 54

3.01

3,14

4.40

4*68

4.12

5*14

5.40

1.00

2.57

3.48

1.63

1.63

3.14

2.*81

4.12

3*26

4/Dist.?Potential Mlttpl, Attraotn, 2tepulSiOn

.251

.408

.249

.219

* 394

.332

.318

.227

.214

.243

.195

*185

1,000

*389

.287

.613

.613

* 318

.356

.243

*307

4.0164.016

1.632

.996

*876

*394

.332

.636

.227

.214

.486

.195

.185

a.000

3.112

2.296

1.226

2,452

.636

1.424

.486

1.228

6.528

3,984

1.752

1.576

1.328

2.544

.908

*856

1.944

* 390

.370

8.000

6.224

4.592

2.452

2.452

. 2.544

- 2.84$

1.944

1.22$

54,160 520712

Attraction a 1.44$,

2.42

2.60

4.10

.413

.385

.244

1.652

3.080

.976

-te2A -3.716

6.608

6.160

3.904

II

7 1-D

1-r

1-0

"" - -,-- I . I-. 11 1 1w4w 0 -

1/k mtv Potoutial Mult pio, Attraoton't Ropul Ion
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Table 2-1. (oontinuod)

Ay1P Oh4a Distane

1-I

1-4

1-L

1-2

1-4

A-2

A-3

A-D

A-Z

A-?l

A-G

A-H

A-I

A-

A-K

A-L

0-2

0-3

0-4

0-5

C-D
c-F

0-G

c4I

0-*

8

4

8

16

16

16

4

4

4

1

1

2

2.

4

2

1

2

8

8

6

8

2

4

2

4

2

3.73

5.05

4.14

1,97

3.55

4.41

2.42

4.10

5.05

2.46

2.95

3012

4.44

4.72

4.33

5.51

5.75

4.76

1.00

2.60

3*73

4.14

1.63

1.63

3.12

2,93

4.33

1 Dist, Potential mult 1. AttraotROepls

.268

.198

.242

.508

.282

.227

.413

.244

.198

.406

.339

.321

.225

.212

.231

.181

.174

.210

1.000

.385

.266

.242

.613

.613

.321

.341

.231

4.288

3.168

1.936

2.144

.792

1.936S

8.128

4.512

3.632

1.652

.976

.792

.406

.339

.642

.w225

.212

.462

.181

.174

.420

8.000

3.080

2.144

1.936

1.226

2.452

.642

1.364

.462

6.608

3.904

3.168

1.624

1,356

2.568

.900

*848

1.648

.724

.696

,840

8,000

6.160

4.288

1,936

2.452

2,542

2.568

2.728

1.648

16.256

9.024

7,264
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Table 2-1. (oontinued)

9ALrge Dsance 1!Diet. Potential Multil. Attractq ROPul4

1.096

.420

2.192

60.12$59 $840

60,128 59.,028

Attraction u 1.100,

1-F

1-?0
1-1Q

I-I

Lax

145

1-2

1-3

1A-4

1-5

A-2

A-3

A-f5

kAi

A-D

A-il

A-I

A-J

6.752

6.176

3.936

4.128

3.040

3a504

1.408

4

8

4

8

4

a

4

16

16

16

16

4

4

4

4

2

1

2

2

1I

16.4$0

8.928

6.*84.8

3.152

237

2.59

4.07

5.25

4.56

5.68

1.*94

3.58

4,68

5.07

2.37

4.07

5.25

5.68

2.38

2.88

3.12

4.38

4.66

4.44

5 *72

.422

.386

.246

.258

.190

9219

.176

.515

.279

.214

*197

.422

.246

.190

.176

.420

.347

*321

.228

.215

.225

.175

L1 TypL-

0-4

0 * -T

3.65

4.76

*274

.210

1.688

3.088

4984

2.064

.760

1.752

.704

8.240

4.464

3.424

3.152

1.68$

.984

.760

.704

.429

.347

.642

.228

.215

.450

.175

4

2

4

2

4

2

2

2

2

4

4

4

4

2

4

4

4

4

. 4

4

4

6,752

3.936

3.040

1.408

1,680

1.388

2.568

.912

.860

1.00

.700
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Table 241, (Oontinued)

h4argp Distance 1/Diat, _Potential Multipl, Attrate Reu4o4

.672

1*560

324

.314

A-K

A-L

A*4

A-N

0m-2

0-4

0-5

O-F

0-44

Cast

0-4
01-L

O-M

0-0

5.94

5.12

6.17

637

1.00

2 59

3486

4.56

1463

1.63

3.12

2.*99

4444

3 .91

5*12

4.22

Attraction - 1.19$

2,34

2.63

4.07

4.00

5.46

4*92

6.14

5.28

.427

* 380

.246

.250

.183

.203

.163

.189

II

Ul Ty

.168

.195

.162

.157

1.000

.258

.219

*613

.613

. 321

*334

.225

.256

.195

.237

.168

S390

.162

2.157

8$000

3.088

2.064

1.752

1.226

2.542

.642

1.336

.450

1,024

* 390

.948

2,452

2.452

2.568

2.672

1.800

2.048

1.560

O -MA.4

65,888 64.690

9 1l-D

1-G

1-0

1-.1

1-3

l-L

leu

1.708

3.040

,984

2.000

.732

1*624

.. 652

10512

6,832

6 080

3.936

4.000

2.928

34248

2.608

1.512

8.000

6i176

4,128

30504
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Table 2-1. (oontinued)

n, Type s, ki~ Dis!!aoe 1/Dist. PoItential Mvultipl. Attraotq Ruls,29

1-2 16 1.92 .521 8.336 2 16.672

1-3 16 3.61 .277 4.432 2 8,864

1-4 16 4490 .204 3.264 2 6.528

1-5 16 5.57 .180 2880 2 5.760

A-2 4 2,34 .427 1.708 4 6.832

A-3 4 4.07 .246 .984 4 3.936

A-04 4 5.46 .183 4732 4 2.928

A-5 4 6.14 .163 .652 4 2.608

A-D 1 2*33 .429 .429 4 1.716

A-2 1 2.65 .351 .351 4 1.404

A-F 2 3.14 .318 o636 4 2.544

A-0 1 4.36 i229 .229 4 .916

A-H 1 4.68 .214 .214 4 #856

A-1 2 4*57 .219 .438 4 1.752

A- 1 5.90 .169 .169 4 .676

A-K 1 6.14 .163 .163 4 .652

A-L 2 5.52 .181 .362 4 1.448

A-K 1 6.72 .149 .149 4 .596

A-N 1 6.94 ,144 .144 4 .576

A-0 2 5078 .173 .173 2 .692

0-2 0 1.00 1.000 8.000 1 84000

0-3 8 2.63 .380 3.040 2 6.080

0-4 8 4.00 .250 2.000 2 4.000

08 4.92 .203 1.624 2 3.248

0-6 8 5.28 -189 1*512 1 1.512

0-D 2 1.63 .613 1.226 2 2.452
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Table 2-1. (oontinued)

Charge aPItance 1/ist. Potential 4ultipl. Attrotq Repalas

*613

*318

* 325

0219

.240

.181

.212

.170

Attraction - 1.092,

4

8
4

8

4

4

8

4

16

16

16

16

16

4

4

2.30

2.63

4,07

5.53

5.07

6i46

5.63

6.78

1.91

3.63

4.95

5.84

6.15

2,30

4.07

.435

.380

.246

.248

.181

.197

.155

.178

.147

.524

i275

.202

.171

.163

.435

.246

-*I$2A - 2.03

1.740

3.040

i984

1.984

.724

1.576

.620

1.424

.588

8,384

4.400

3.232

2.736

2.608

1.740

*984

a-F

Q-7

0-I

C-M

0-0

C-p

1.63

3.14

3,08

4.57

4*16

5.52

4*72

5.87

10 1-D

1-F

1-G

1-

l-p;

1-L

1-4A

1-*0

lop

1-02

1-03

14

1-6

A-*2

A-3

6.960

6.080

3.936

3.968

2.396

3,152

2.480

2#848

1.176

16,768

8.800

6.464

5.472

2*603

64960

3.936

2.452

.636

1.300

.438

.*960

.362

* 48

.340

1 2.452

4 2.544

2 2.600

4 1.752

2 1.920

4 1.448

2 1.696

2 '60

70,288 69.196

A, Type m
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Tagle 2-1. (oontinued)

n Type Charge Distanoe

A-4

A-6

A-D

A-it

Aou

A-G

A -H

A-I

A-;

A-K

A-L

A-I

A-N

A.-0

A-Pa

0-2

0-30

0-4

0-5

0-6

0-D

0-F

0-I

5*53

6*46

6*78

2.26

2.78

3.10

4.30

4.60

4.57

5.69

6.12

5.66

6.93

7.12

6.25

7.30

7.60

1.00

2.63

4.04

5.08

5.63

1.63

1.63

3,10

3.09

1/Dist.

*1812

* 155

.147

.442

.360

.323

.233

*217

.219

.170

.163

-177

.144

.140

.160

.137

.132

1400

a380

*248

i197

.178

4613

.613

.323

* 324

Potent 14L

.724

.620

.588

.442

*360

.646

.233

.217

.438

*170

.163

.354

2I44

4140

* 320

.137

*1232

8.000

3440

1.984

1.576

1*424

1.226

2,452

... 646

1.296

Mlil.Attraaoi s0

4 2.896

4 2.480

2 1.176

4 1.768

4 1.4401

4 2.564

4 .932

4 .868

4 1.752

4 .680

4 .652

4 1.416

4 .576

4 .560

4 1.260

2 .274

2 .264

1 8.000

2 6.080
2 3.968

2 3.152

2 2.848

2 2.452

1 2i452

4 2,584

2 2o592
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Table 2-l. (oontinued)

Charge Distanoe 1/Dit, Potential 4ultipl. Attrapt -_ epl

1.752

1.880

0-74

O-L

0-49

0-0

0-P

$0-4

Attraotion m 1.039, -02A = - 2.667

n Type

4.57

4.25

5.66

5*00

6.25

5.26

.219

.235

.177

.000

.160

* 190

.4368

.940

* 354

,800

.320

*760

1.416

1.600

1 .280

74.992 73*953

u Type
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Table 2-2.

Snergy #omputation data of

(a).

an endleSS oiata of tetrahedra.

Typ

Charge
Attrae o2
Repulsion
Multipl.

tan-

000

Charge x
multipi.

1-2

16

R

2

1.63

3.26

4.89

6*52

8615

9.7

11.41

13.04

14.67

16*30

17*93

19.56

21.19

22.82

24.45

26.08

27.71

29,34

30.97

A-A
2

1

R

4

0*02

4

Rt

1I

4

A

4

H --------- -a

A-2

4

A

4

Ao-B2

1

4

a a 1.91 a 2.33

a a 3.42 m 3.66

- a 5,00 -5.16

- a 6.62 a 6.7a

- - 8.24 - 8.34

a - 9.36 a 9,90

p - 11.49 - 11.52

- - 13.10 a 13.15

- 14.71 14.80

- -16.34 a 16.40

a - 17.95 a 18.02

- - 19.58 19.65

- a 21.20 a 21.25

a a 22.83 - 22.90

a - a a 24,50

- a a a 26.12

- a a a 27.74

a a W 29.38

a a a a- 30.97

1-21
- - -as - ----. 12

14O02

8

A

2

2.51

4*12

5.75

7,39

9,00

10.63

12.27

13.90

15.52

17.16

18#78

20.42

22,04

23.68

25.30

26.92

28.56

30.18

31.78

------- s

0-2

S

A

I

1.00

A02
2

- 2.85

-c 4.34

a 5.90

a 7.50

- 9.11

- 10.73

- 12.35

- 13.97

- 15.58

a 17,20

a 18,82

a 20.45

- 22.08

a 23,70

a -

a - a

a -a a

- - a

a a -

a a a

-~ 12 A ----- 0..0

Notes w sign indicates that distance is equal to t±e one left of it-

II

- a a a a 1-021

0*A
2

2

R

2

1.63

a

-

a

-
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Table 22, (b).

Type Charge xauzitipi.

1.2

1-4

1-5

1 4

1-8

1-9

1.40

1.011

1-12

1-13

1-14

1-15

1-16

1-17

1-18

1-19

1-20,

1-A2

1--A
3

leA4

1"-A5

1*46
1,A6
14A7

14Ag

40

40

40-

40

40

40

40

40

40

40

40

40

40

40

32

32

8
8

8

32

32

32

32

32

32

32

Distanee

1.63

3.26

4.89

6,52

8.15

9.7$

11.41

13.04

14.67

16.30

17.93

19.56

21.19

22.82

24.45

26.0$

27.71

29,34

30.97

1.091

3.42

5.00

6.62

8.24

9086

11.49

1/Dist. Attraotion Repulsion

.613

,307

.204

.153

.123

.101

.0876

.0767

.0682

.0613

*0558

.0511

.0472

.0436

.0409

o0383

.0361

.0341

.0323

.524

.292

.200

*151

.121

.101

.0870

24,520

12.280

8.160

6.120

4.920

4.040

3.520

3.080

2.728

2.452

2.232

2.044

1.888

1.752

.327

*306

.289

.273

.. 258

17.344

9 * 344

6.400

4.832

3.832

3,232

2.784
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Tabl 2-2.(b).

(continued)

Typo Ca 1 Distance

1-*Ag

N*WA 1 0

1-A 1 1

1-A*1 2

1 -A 1

1-A 1 4

l-A 1 5
A-B

2

A-OB3

A-*B4

A- 6

A-B7

A-B9
A-B1 0

AewB 112

A-B 1 4A*-BlaA-B 1 3

A-B i

A-B1 9

32

32

32

32

32

32

32

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

13.10

14.71

16.34

17.95

19.58

21.20

22.83

2.33

3.66

5.16

6.73

8.34

9.90

11.52

13.15

14.80

16.40

18.02

19.65

21.25

22.90

24.50

26.12

27.74

29,30

1/Ditl. Attraotion Repulsion

.0763

.0680

.0612

.0557

.0511

.0472

.0438

.429

.273

.194

.149

,120

4101

,0868

.0760

.0676

.0610

.0555

.0509

.0471

.0437

.04063

.0383

.0360

*0341

2.442

2.176

1.958

1.782

1.635

10510

1.402

1.716

1.092

.776

.596

.480

.404

*347

.304

.270

.244

.222

.204

.188

.175

.163

.153

,144

.136

""1 *0109060 a
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Table 2-2, (b).

(continued)

Type 0a Distancealtipl.

ASB
2 0

1-0

1-'04

1-06

1m-071aC8

1~9
1011-0ol

1-.011

1-012

1-1'

10014

1-015

1-016

1.*017

1-018

1.019

1-020

0-2

A-02

A-0 3

A-14

A-C 5

4

24

24

24

24

24

24

24

24

24

24

24

24

24

24

12

12

12

12

12

8

12

12

12

12

30.98

2 -51

4.12

5,75

7.39

9.00

10.63

12,27

13*90

15.52

17.16

18.78

20.42

22.04

23.68

25.30

26.92

28.56

30.18

31.7$

1.00

2.85

4.34

5.90

7.50

1/Dist, Attraction Repulsion

.0323

.398

*243

* 174

.135

.111

.0941

.0815

.0719

40644

.0583

.0532

.0490

.0454

.0422

.0395

.0371

.0350

.0331

40315

1.0000

.351

.230

.169

.133

.129

9.552

5.832

4.176

3,240

2,664

2.258

1*956

1.726

1.546

1.399

1.277

1.176

1.090

1.013

.474

.445

.420

*397

.378

8.000

4.212

2.760

2.028

1.596
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Table 2-2. (b).

(continued)

Type harge x Distaasmult ipl.

A.06

AO 1 0

A-C1 1

A-O 1 2

A-C1 4

A-A15

C0-A2

12

12

12

12

12

12

12

12

12

12

4

9.11

10.73

12.35

13.97

15.58

17420

18.82

20.45

22.08

23.70

1.63

1/Dist.

*no

*0932

40810

,0716

.0642

*0581

.0531

*0490

.0453

.0422

.613

Attraction iRepalsion

1.320

.972

,859

.770

.697

o637

,58

.544

4 506

2,542

109.692 110.081

Repulsion a .369,

II

-*02A +

m- 00 0 0 - 1810mom

No ion 011111111111mi ON i ! I
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Table 2-2. (a).

No. of
tetrahedra

nthaverage
tetrahedron

Multipi.
faotor

DiffP rnau a

in distanos 4ifference z obarge

10

20

100

400

9,400

.00052

.00020

.000054

.0000038

*0000020

.00000011

.0052

.0040

.0027

.0004

.0008

.0001

.0132

*0624

.0480

40324

,0048

.0096

.0012

Additional repulsion o .158

Additional -02A + o406

Total energy of endless ahain + .998

+ .406

+ 1.404 * 1.41 * .01

30

50

100

200

600

25

40

75

150

400

5, 300
10,000

Ow'M i - M-WON

T t. 'I



Supplement to Chapter III,

Classifloation of tetrahedral struotures.

II
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History of the olassifiost ion of

tetrahedral structures.

Since silicates form an important group of tetrahed-

ral structures and since they represent important minerals in

the crust of the earth, they received such attention. Other

ionic tetrahedral structures were described and classified aom

cording to their analogy with the tetrahedral structures of

silioates. Qonsequently, the history of the classification of

tetrahedral structures began with the classitication of sili-

*atos,

(1) In the early stages of mineralogy several attempts

were made to classify the silicates. Most of these classifioa-

tions were based on chemical and geological principles, and many

of them persisted. The history of these classifications is dif-

fioult to trace in the literature. Many of them are constantly

used, like the distinction between different silicates according

to their cleavages, colors and weethering resistance; or the

grouping of the silicates according to mineral assemblages, or

to their ocourance in similar rocks.

(2) The first crystallographio classification was

presented by Maohatschki1 in 1928. Aith this he opene4 a new

era of more rational classification. He recognized three major

types:

I. Orthotype: separate tetrahedra of Si04

II. Metatype: -hains of tetrahedra

III. Feldspar type; networks of tetrahedra.
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(3) Maohatsohki's classification was improved two

years later by W, L. Dragg24 who added two =ore types. Bragg's

olassitication has the following types:

I, Separate tetrahedra

II. Self-oontained groups of tetrahedra

(a) pairs of tetrahedra

(b) rings of tetrahedra

III. Chains of tetrahedra

(a) single chains

(b) double chains

IV. Sheets of tetrahedra

V. Three-dimensional networks of tetrahedra.

(4) In the same year 2t. v. Ndray-aSabf 3 5 added sub-

divisions to Bragg's olassification. These subdivisions are ba-

sed on the presence of accessory cations and anions in the tetra-

hedral struoture of silioates. These subdivisions are:

1. Titano-siliates

2, Boro-ilioates

3. Carbonatos-ailioates

4. Vanado-asilicates

5. sulphato-ailioates

6. 3ulfo-silicates

7. Silicates with several anions

(5) In 1932 Maehatsohki6 enlarged his own olassifica-

tion by the recognition of the sheet structures, The new scheme

of his classification is as follows:
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I. Orthotypes. (separate tetrahedra, pairs,

groups and rings of tetrahedra )

11. Metatypes. ( chains of tetrahedra

III. Mica types, ( shoots of tetrahedra )

iV. Feldspar types. ( three-dimensional net-

works of tetrahedra )

(6) In 1936 0. Hermann, 0. Lohrmann and H, Philipp2 7

adopted a classification which is essentially that of W. L,

Bragg, except that they divide the first group into two parts:

I. Separate tetrahedra including other than 0

anions also

II. Separate tetrahedra not inolading other than

0 a4ions

III. Finite groups of tetrahedra

IV. wo-dimensional extended aheet of tetrahedra

V. Three-dimensional extended structures of

tetrahedra.

(7) In 1937 Hi. Beran28 presented a classification

which was based on the close relationship between the chemical

and physical oharacteristios of silicates. dis types are;

I. Silica type X30 1:2

II. Disilicate type I:0 2:5

III. Metasilicate types

(a) chains X:0 3:8

1:0 4:11

1:0 1:3

(b) rings X:0 n3n
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IV. Dyrosilicates X10 3:7

V. Orthosilicates XQO 1:4

He subdivided these types into divisions aoording to chemioal

and structural similarities betwoen different structures of the

same type. For example, in the silica type he listed groups like:

Petalite, $ilica, Feldspar, Nepheline, Canorinito, Sodalite and

other groups. Some of these groups were further subdivided into

members. The Feldspar group, for example, was subdivided into

monoolinic and trielinic members.

(8) Also in 1937 0. Swartz 2 9 eame out with another

chatioal modification of the already aooepted acheme of crys-

tallographio classification. His types which he called families

are;

I. Orthosilicates (single tetrahedra)

Il.Orthodisilioates (pairs of tetrahedra)

III. Metasilioates (ohains and rings of tetrahedra)

IV. Metadisilioates (sheets of tetrahedra)

V. Dioxide types

He divided all these "families" of silicate Struotures into sub-

divisions according to their association with hydrous and anhy-

drous combinations of bi-, tri- and quadrinalent cations. He

stressed these chemical characteristics more than the geometri-

eal characteristics of silioates.

(9) In 1937, again, H. 3traaz30 presented a classifi-

eation which differed from the principles of Maohatsohki'a

olassification only in details. He recognized the following

types:

II
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I. Three-dimensional networks of tetrahedra

II. Sheets of tetrahedra

III. Chains of tetrahedra

IV. Groups of tetrahedra

V, Islands of tetrahedra (i.e. singles)

TI. Mixed structures of tetrahedra

He accepted other than Si and Al tetrahedra in the tetrahedral

struotures of silicates, such as P, As, Fe, B, Bo, Zn, and Mg

tetrahedra. He subdivided his types into "normal types" and

"subtypes" according to the presence or absence of additional

anions which are not connected with the tetrahedrally ooordina-

ted cations. He provided further subdivisions according to the

presence of other than 0 anions, and to the variations in the

cation-anion ratio in the struotural-4hemial formula of the

silioates.

Between 1937 and 1954 no significant changes were pro-

posed in the elassification of the silicates or other tetrahedral

structares. Most textbook authors and teachers of mineralogy ao-

oepted one or another of these classifications or a oombination

of two or more of them, It became a general practice, however,

to separate the ring structures from the group structures and

asnociate then with the chain structures. This was done because

of the similarity of the oation-anion ratios in the structural

formula of the ohain and ring structures. Similarly, the chemical

aspects of these classifioations received considerably less at-

tention than their geometric principles,

The system of classifioation started by Maohatsohki
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and Bragg was homogeneous. It involved no other than crystal-

lographic principles. The other properties of silicates were

explained through their structures. Later, however, other authors

started to involve chemical principles and the original olassifi-

cation lost its power, The non-homogeneous nature of the later

classifications is, probably, responsible for their unpopularity.

In other words, the developwnt of the olassification of sli-

toes became side-tracked and stopped. A revision of Maehatstki's

and Bragg's system, however, became ssential due to the rapid

Increase of the determined silicate and other tetrahedral strua-

tures, especially of the threen-dinensional network types.

In 1954 and in 1956 Wells and Liebau presented new

advances in tie development of the elassification of tetrahedral

struotures. Both used different, but purely orystallographio-

principles, and as far as they went, they brougat in healthy

ideas. These two contributions are described below in more

detail.

Review of Liebau's and Wells#

classification of certain tetrahedral structures,

In his classification of silicates F. Liebau4 aooepts

the Maohatsehki-Bragg olassification and recognizes five types

of silicate structures:

1. Silioates with single tetrahedra

II, 3ilieates with groups of tetrahedra

II
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Ill. SiliOates with single or double chains and

rings of tetrahedra

IV. Silicates with sheets of tetrahedra

V. SiliOates with three-dimensional networks of

tetrahedra.

For the subdivisions of these types he introduces a new

term which may be translated as 1-, 2-, 3-, 4-, and 5-fold repeat-

units. This term refers to the number of tetrahedra in the peri-

odio unit of the tetrahedral structure of silicates. For example,

if, in a chain, each tetrahedron is translation equivalent of

the other, the chain has a 1-fold repeat-unit, but if only every

seoond tetrahedron is translationally identical, the chain has

a 2-fold repeat-unit, An example of a chain with 2-fold repeat-

unit is the pyroxene chain, and a 3-fold repeat-unit cbAin is

the wollastonite chain. By the same principle double chains and

rings can be broken down to such units and be sublassified a0-

oording to them. An infinite number of chains welded together in

a plane produce a sheet, and, consequently a sheet can be sub-

classified according to repeat-units. Furthermore, a three-di-

mensional network of tetrahedra can be resolved into a collection

of sheets and can also be subolassified aoording to the number

of tetrahedra in the periodic unit. Table 3,3. is a reproduction

of Liebau's table of classification.

This classification subalassifies the simpler tetra-

hedral structures, such as the chains, rings and sheets, but is

very awkward in the subolassifioation of the three-dimensional

networks, In some structures it is hard to visualize subsheet
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structures and select the units. These units are not equivalent

to the tetrahedral motif of the structure, which latter repre-

sents the number of tetrahedra which is repeated by the sym-

metry of the structure. furthermore, it gives only two or three

subdivisions for the three-dliensional networks. In principle,

however, he introduced a good idea which can be worked into a

practical classification.

A.F. aellsd classifies the two- and three-dimensional

networks of polyhedra. His classification will be reviewed here

with respect to the classification of tetrahedral structures

oay.

He derives the possible networks analytically, using

the definition that in a two-dimensional network of tetrahedra

the centers of the tetrahedra are connected to three other

centers of tetrahedra through the corners, He calls such a net-

work a t*,s-conneated net. Jimilarly a three-dimensional network

of tetrahedra is a four connected net. The connections between

tetratedra form different loops of tetrahedra. If? is the

fraction of the total number of polygons (loops) which are

n-gons then

+ 1 + P5 + 6 .* * n * s

In a three-conneoted net:

313 + 4T4 + 5f5 * 656 ****** fVn -6

and in a four-oonneoted not,

3?3 + '4 + 59'5 + 6P6 i*** n **
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The solutions of these equations give the possible

combinations of polygonal loops of tetrahedra in two- and three-

dimensional networks. The first 15 solutions for the two-dimen-

aional networks are given in Table 3-4. N in this table refers

to the number of tetrahedra in the tetrahedral motif. For exaxm#.

ple, No. 1, not is the mioa or olay sheet, and No. 3. not is the

apophyllite sheet.

The derivation of the three-diaensional networks is

more complicated. The three-dLaensional networks are regarded as

oclloctions of two-dimonsional networks put together. The first

20 solutions of the four-oonnected nets are listed in Table 3-5.

In actual struotures, No.l. not is the oristobalite structure,

No. 5. the quartz and No. 6. the tridymite structure.

This classifioation certainly subclassifies the two-

and three-dimensional networks, but it has several drawbacks.

First of all, it is too complicated and the determination of the

place of a structure in this olassification is a tedious under-

taking, Structures with uneven sharing ooeffioients'in the type

of three-dimensional networks can not be classified in this sys-

tem, unless the combinations of different n-oonnected nets is

worked out. This would make the system even more complicated and

would hide simple features in abstract expressions. In conclusion,

Wells' olassification gives the impression that he overouapli-

cated a simple problem. However, he discovered new principles

of subclassification, namely the use of n-meabered loops.
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Determination of the possible sharing coeffioient

ranges.

It has been rooognized by earlier authors that each type

of the tetrahedral structure has a definite range of possible ca-

tion-anion ratios. Some silicate structures are even described

by their silica radicals. Due to the relationship between the

eation-anion ratio and the sharing coefficient it is obvious that

each type and subtype must have a definite range of sharing co-

efficients. These possible ranges of sharing coefficients can be

defined by the aid of geometrical and mathematical logio, keeping

the previousely defined assumptions A and B in ind.

1,(a). In a single tetrahedron all the four corners

are unshared and consequently, each corner belongs to one tetra-

hedron only. The sharing ooefficient is therefore, 1.00.

1,(b). In a pair of totrahedra six oorners are unsha-

red and two corners are joined,out of the eight corners of the

two tetrahedra. Consequently, six corners belon2 to only one

tetrahedron and two corners to two tetrahedra# These latter two

corners are joined into one corner. The sharing coefficient can

be expressed as an averee:

sharing ooefficient - 2X2 - 1.25 (3-1)

10(o),(4). In the larger and in the mixed groups of

tetrahedra the number of corners shared is a funotion of the

number of tetrahedra in the group. If it is assumed that the



130

grouip do not form olosed rings, then if there are n tetrahedra

in a group, there are (n-lI Shared oorners, which represents

2(n-1) Joined corners, Since there is a total ot Sp orners in

a group, there are n - 2(n-1) oorners left unshared. Since the

joined corners belong to two tetrahedra at the same time, they

are asigned double weight and the unshared corners are assigned

single weight.

Sharing ooefficient - [ -2n-lJ+[(nl]
4n

4U-2 4.Z+2.4zna-4
4n

4n 2n

A quick look at the equatton reveals that the sharing ooefficient

tends to but never reaches 1.50. Consequently, the sharing ooef-

fioleat ranges from 1.00 to 1.50 for mixed groups and from 1.25

to 1.50 for larger groupa, if there are no loops in the groups,

If there are loops of tetrahedra in the group, Ve

number of loops should be added to the numerator of equation

(3-2). If the group consists of closed loops only, it is obvious-

ly a ring structure, but if in addition to the rings there are

tetrahedra which are not part of a loop, the structure is a group

structure. It Is possible that such a group structure.contains

a collection of small loops. The maximum sharing ooeffioient for

such group structures would be 1.75.

2,(a),(b). In a single chain or ring of tetraheda

there is one shared corner per tetrahedra. The number of shared
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oorners can not either be more or less than one. If it would be

less the chain would break into groups. If it would be more the

chain would either contain loops aad would become a double or

multiple *hain, or would involve the sharing of edges,

Consequently, in a single chain or ring there are n

tetrahedra and n shared oorners;

sharing ooeffioieat l(4n - 2nf 2(2n
4n

4-w2U i4n
4n.

6z 3n 1.50 (3-3)

2,(c),(d). When two chains or rings are welded together

the sharing coefficient increases according to the frequenoy of

connection between the tetrahedra of the two single chains or

rings. If the number of tetrahedra in the periodio unit of a

chain, or the number of tetrahedra in a ring, is a and the num-

ber of oonnections between the two ohains or rings is k per pe-.

riodic unit of the ohain,or per ring, the number of joined oore

ners changes from 2n to (2n+k)in the sharing ooefficient *qua-

tion of (3-3).

Sharing coeffic ent 4n 2
4n

4n 2n - k + 4n + 2k
4n

6n + k
4ai

The lower limit of the sharing Qoofficient range for double

chains and rings is obviousely 1.50 +, and the upper limit is
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1.75 where three earners are shared.

2,(e),(f),(G. Multiple ohains and rings can be

constructed by any num ber of connections between the single

chains or rings. Consequently, the lower limit of sharing ooef-

fiolent is that of the double chains and xings, at the upper

limit all the four corners are shared and the sharing coeffi-

olent is 2.00. The srae limitations are obviously true for

mixed chains and rings.

3,(a), A single sheet of tetrahedra can be oonstrao-

ted if more than two but less than three corners are shared.

This gives the same upper and lower limits as (3-4).

3,(b),(c),(d). Theoretically two or more sheets can

be welded together, In this case more than two corners aave to

be shared per tetrahedra, up to the maxium of four.* In terms

of sharin coefioient that is a rante from 1.50 to 2.00.

4,(a). A three-diisnsional network of tetrahedra

can be constructed by sharing three or more corners between

two tetrahedra. Kuch a network has a sharing coefficient from

1.75 to 2.00. iore than two tetrahedra can also share a corner

in three-dimensional networks. The upper limit for this subtype

is a sharing ooefficient of 4.00. Since the orners of a tetra-

hedron represent atoms whose radii are about half of the length

of the edge of a tetrahedron, it is therefore geometrioally

impossible to join more than four tetrahedra together through

their corners without aharing an edge.

4,(b). Sharing coeffioients higher than 4.00 require

the sharing of edges. Consequently the lower limit of three-

'p
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dimensional networks with one or more edges shared is the

sharing ooefficient of 4.00. The upper limit is defined by a

geometrical limitation. Jince no t4ore than eight tetrahedra

can be placed together around a corner by allowing only edges

to share, the upper liait of shatring coefficient is obviously

8.00.

4,(o). :.ny three-diXensioal network with a sharing

ooefficient above 0.00 requires the sharing of faces. The

maxinum possible sharing ooefficient is 25.00 where all the

tetrahedral faces are shured.

In practice moat of the snaring coefficient ranges

defined above can be restricted by energy considerations. For

example, groups of tetrahedra having a sharing coefficient

between 1.50 and 1.75 require the presence of ,3-membered loops.

Such a configuration represents too high an energy concentration

and, consequently, is highly improbable. Aimilarly, a double

sheet of tetrahedra with the low abaring ooefficient of 1.50

would require long strebohes of single chains within the sheet,

which represents a higher energy than a m-ore frequently conneoted

double chain. These improbable sharing coefficient ranges are

placed between parentheses in Table 3-1.

( It might be necessary to define two terms used in

the determination of the sharing coefficient ranges-. These terms

are "shared corners" and "joined corners". The former refers to

a corner which is shared between several tetrahedra, while the

latter refers to tha several tettahedral oorners which are

joined in this "shared corner". )

II
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Definition of an w-membered loop

in three-dimensional networks of tetrahedra,

The n-membered tetrahedral loops are easy to define in

double ehains, rings and sheets. A simple observation reveals the

unmistakable loops. In multiple sheet structures and especially

in three-dizensional networks of tetraedra, however, the loops

may require a definition in order to avoii possible misunder-

standing. In the sodalite structure for example, 4- and 6-aew.-

bered loops build up the so called ultramarine basket, But 10-

and 12-membered loops can also be visualized. The l-membered

loop could be visualized where two 6- ad one i- membered loops

are beside each other and ave one comon tetrahedron, If this

cdmmon tetrahedron is nec zoted, the rest of the 6- and 4-mom-

bered loops give a oiplete 10-membered loop. The 12-membered

loop oculd be sirmlarly visualized around the equator of the

spherical outline of the ultramarine basket. These loops are

not aaoepted as loops, since they are only the desoriptions of

possible paths which are directed through a number of tetrahedra

and end up with the original tetrahedron. Such paths are not oon-

sidered as loops in the literature and are similarly disregarded

in the subolassifieation oZ tetrahedral structures, However, to

avoid any possibility of a mitake, the loops can be defined:

The w-meabered loops accepted in the classifioation of

tetrahedral struoturea are the regular or irregular closed loops

of tetrahedra which are the smallost possible loops in the struo-

ture and their sizes can not be dooreased by the ineluslon of one

or more neighbouring tetrahedra.
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Table 3-3.

Liebauto Classification of silicates.

One-f old Two-told Tkree-fold Five-fold Seven-fold

Single chain (Cu00 ) Pyrozene Wollastonit( Rhodonitm Pyroaan-
ganite

Double chain Sillima- Amphibole Xenotlite Rabingto
~Aite nite

Sheets Mioa and Apophyl-
clay lit,

Networks Ga4iartz Feldspar
Tridymite
CrIstob-
lite

M Will M - 11111 WN -ft,
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Table 3-4.

Wells' olassifioftion of simple

thr*e-oonneoted two-dimensional not$,

No Number of polygons in not
No N

*3 4 6 7 8 9 10 2

1 2 - -0 - 61

2 8,12 - - 5 7 - 4-11-0

3 4- 4 - - - 8-

4 4 3 - - - - - 9 -

5 6 3 - - - - 12

6 6 - 4 - - - - - 10 -

7 6 -111 -w 5 -A 6 - -

8 6 - 4 - - 7 -t - - -

9 6 3 4 - - -w

10 6 3 - 5 -0 - ~ 10 A*-

11 12 3 - - 6 - 9 -0 - -

12 6 3 - 7 aQ a a

13 12 -*A 5 -w -v - 9 -A-t

14 6 -6 8 -.

15 ,12 - - 5 6 7 - - - - -

a 5 1 ao a a 10 a

W.,~ ~ ~ ~ a! I 0 pi.
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Table 3-5.

Well' olassiftoation of simple

four-oonnected three-dimnsional nots.

Net Number of polygons in not
No, 4 5 6 7 8091 12

-h 0 N ,-t i0W --

2

[4

5

6

7

a

9

10

11

12

13

14

15

16

17

18

19

20 - - 6 - a - a

I i.b k 0 0 i-- -

w

aIM

Ow

-

-

10

a

10

10

-

-

-

-

-

-0

-o
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Supplement to Chapter IV.

Clussifioation o2: silioates.



139

Iitorical notes and added disoussion.

In 1937 11. Strnz5 presented the first silicate

classification in which other than Si and Al tetrahedra were

accepted in the tetrahedral frame of the silicates. The influ-

eace of his work was considerable in dermany. For example, a.

Sitel of the Kaiser Wilhelm Instituts ftlr Kristallforsehung

accepted his theory completely. But Strunz's suggestion was

either ignored or rejected in this continent. There were but a

few arguments against his consideration of other than Si and Al

tetraedra in the tetrahedral frame of the silicates. One of the

arguaents stressed the different ionic radii of the other pos-

sible oations. Another argument oriticized the different behavior

of Si and other eations in infrared reflection spectrum and in

x-rays. It is true that such differences exist, but they are no

more severe than the difference between Si and Al. With one ex-

oeption. Si and Al behave similarly in structure investigations

using x-rays, while the other eations behave differently. But

such an argument is imaterial, since the total number of eloe-

trons in a oation has no importance in the bonding of a tetra-

hedron.

Where could one draw the line between the acceptance

and the rejection of a oation when auch examples &s the nelilites

exist? In hardystonite Si and Zn tetrahedra mate up the sheet of

tetrahedra, while in akermanite Si and Mg tetrahedra and in geh-

lenite Si and Al tetrahedra. By all standards gehlenite would be
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asepted sea tetrahedral sheet structure, but the othera would

be rejeeted by most aineratlogists. st&aoh a separation of other-

wise almost identieal structures in a olassiftoation would *er.

tainly sound artificial.

This irrational treatment of the different oations is

reognited by several authors. Wyokoff , tor example , writes the

following in the introduotion of his presentation of the silisate

structures15:

*The classification that has been aocepted is the con-

ventional one based on the character of the silioon-oxygen ass*-

ciations which prevail - isolated silicate groups, ailicate chains,

and sheets, and silioate nets, To a degree, this is clear enough

but with the borosilioates and aluminosilieatea it beooes arti-

ftoial and correspondinely unsatisfactory."

It seems reasonable to sugest that all tetrahedrally

ooordinated oatione, with a previously described minor restric-

tion, should be aooepted in the tetrahedral franme of a silicate,

This would certainly dissolve the "artificial" taste of the oon-

ventional classification and would permit a crystallographio and

natural system of classification.

II



-r141

Additional referencos.

13 W. £1tl; Phyikaliaho Oheai, dr Silikat,. :. A, Bartb,

1941.

1 J, 'W Oruner; Progress in silicate structures. Aaer. Mner.

33, (1948) 6794691.

1 R. W. G Wyflttr; Crystal Struotures. Vol. III. (1953)

1II, 1.



3Upplement to Chtaptar V.

Simple teohnique for the oonstruction of

polyhedral models,



142

Possible improvement of the polyhedral model

construotion teohnique.

It is possible to improve the previously described

technique to enable one to construct completely permuneat poly-w

heral models. Instead of making the tetrahedra of acetate

sheets they could be molded of liquid plastic, and then oure.

These tetrahedra would be all solid and mtore decorative than the

ones made of aoetete sheets, A hole could be drilled in each

apex of the tetrahedron, perpendicular of the oposite face. Small

brass rods, with corresponding tiameter, could be bent to a pre-

calculated ansle and placed into the oorresponding holes of the

tetrahedra. The oalculation of the bending angle of the brass

rads is relatively simple and zioat struetures require the cal-

culation of less than ten different angles. Such an improved MoP-

el would be More elaborate to construct, but the estra effort

would be justified if the model is expected to be used in class-

work.

An attempt was made to oonstruct such models. The

molds for the tetrahedra were completed, but due to the lack of

appropriate plastic the development of the technique has been

temporarely suspended.
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