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Preface,

This thesis investigation began with the struocture
determination of coesite but, once the structure was obtained,
the study of its charmcteristics led to the investigation of
various toples. The presence of 4L-membered rings of tetrahedra
in coesite as opposed to larger rings 1n low pressure sllioas
indicated a possible connection between the s'izo of the rings
and the energy of the struotures., Conseguently this relation-
ship was studied. Onoe the size of the rings was found to be a
funotion of energy, this appeared to be a nmatural basis roxj the
subclassification of the tetrehedral structures, During the
mpron&ant of the classification several other characteristics
of tetrahedral structures were notioced snd incorporated in the
new classitioatim‘. Due to the minerslogloal impez:tanec of the
elliocates the laﬁtors were desoribed separately. A large number
of struoture models were construoted during the course of the
improvement of the classifioation of tetrahedral structures. A
novel teohnique was developed for their oconstruction which appears

to be interssting enough for publication. The thesds 1s, tous,
the report of a ooherent study, slthough separated into five

pudblishable sections,



Abstract.

I. The orystal structure of coesite, the dense,

high~pressure form of sillca,

Coegite is moncelinle, and desoribed in the first
setting by the dimensions &= 7,17 A, b= 7.17 4, o= 12.38 &,
¥ = 120°, space group B2/d, Z= 16 510, per cell. Three-dimen-
sional Intensity date were obtained from precession photographs
using MoK radietion. The full three-dimensional Patterson
function was oomputed and this was solved for an approximation
to the electron density by use of minisum funoctions. The ane-
lyeis was started with the ald of s new theoretloal device
for the looation of inversion peaks. |

In soesite, 31 is tatrahadrally surrounded by four
oxygen atoms, and the structure is & new tetrahedral network,
There 1s a certain resemblance between the coesite structure

and the alumina-sillos network in feldspar.

II1. The relative energles of rings of
tetrahedrs,

The structurs of coesite was compared with the

gtructures of the other forms of silica., Tt wes noted that
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high-pressure occesite has L-membered loops of tetrehedra, that
the normale-pressure guartz, tridymite end oristobalite have 6
membered loops of teirahedre and that intermediate - pressure
keatite has 5-membered loops of tetrahedrs in their structures.
This observation stimulated & quantitative investigation of the
relative snergles of isolasted neutral tetrehedral rings, These
rings were aassumed to be composed of tetrahedra whose relative
orilentations were simllar to thoss of the benitoite and beryl
rings. The snergies of 2~ %o lO-membered rings and of an infi.
nite ohain were computed. The energies obtained indloate that
the 5-membered tetrshedral ring 1s the most steble, and that

6~ and h-membered rings have the next lowest energies. Using
these data the relative energies of silica strustures contai-~
ning regulsr tetrahedral rings were estimated and found to cor-
respond with their relative stabllity.

I1I. Classification of tetrahedral struotures.

The 0ld oclassificatlion of the silicates is no longer
sufficient to claseify the ever-inoreasing number ©of determined
foniec tetrahedral structures. More detail is desirable in the
slasaification, and consegquently, new classifiocation oriteria
are necessery to provide larger uumber of subdiviaiané. The study
of the relative energiea of isolated rings of tetrshedra suggests
that the size of the tetrahedral loops may be used as one addi-
tional criterion, A second criterion is based on the different

nature of the corner sharing of tetrshedra., A numeriocal expression,
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oalled the sbaring coefficlent is derived to cover this ori-
terion, These two oriteria are added to the revised geometric
system of the customary ailieagn classifiocation, and oonse~
quently, the olassifieation proposed is basieally in accor-
dance with the aoaepﬁaé scheme,

A olassifioation table 1is given, and illustrated
with examples. Special aettention has been paid to the colleo~
tion of examples of tetrahedrel struotures with three-dimen-
sional networks of tetrahedrs. These examples include siliocates,
sulphates, germenstes, and other ocompounds with tetrahedral

atrustures,
IV. Classificaetion of silicates.

A reviseld classification s presented with e suf-
fioclent number of subdivisions, not only for the simpler ai~
liocate structures, but also for the more ocomplicated three-
dimensional networks., This clesmifioation 1s bas;a on the
olassifiocation of tetrahedral structures previously presented
by the author. A consistent treatment of the different tetra=-
hedrally ocordinated cations in the silioates 1s discussed. It
is suggested thet all of the tetrahedrally coordinated cations
should be considered as part of the tetrahedral freme of a
silioute. provided, that their bonding is similar to that of
the silieon.

Tetrahedral wodels were gonstructed for the illus-
tration of the tetrahedral frames of the silicates with three-
dimensional networks of tetrehedra. Photographs of these models

are enclosed,
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V. 8imple technigue for the sonstruction of
polyhedral strueture models.

A simple, inexpensive and efficlent teohnique is des~
oribed for the construotion of polyhedral orystal-struocture mod-
els. The polyhedre are made of acetate sheets and are assembled
by ocementing the polyhedra together with mseetons and narrow
acetate strips. The construection does not require omloulations,
but can be done with the aid of tracing a good drawing of the
atruoture., The models made by this technicue &re illustrative

and semiepermansnt.
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Chapter 1
The crystal structure of coesite, the dense,

high-pressure form of silica



Introduction

About five years agod a new tor& of silice was dis-
covered by coeul who obtained 1t at high pressures and high
temperatures, Since the form has a density of 3,01 g/ee,
which is considerably greater than that of guartz, 2.65 gfec,
this discovery'aroused considerable interest. There was
some informal speculation about the poasiblility that, in
this form, silicon might have aix coordination, although
ﬁaannnaldz pointed out that this would require an even
greater density than 3,01 g/ce.

We were gathering intensity data for a complete struce
ture determination of coesite when Ramsdell's papers on the
erystallography of coesite appeared. When assured by
Ramsdell that he planned to proceed no further than the unit
cell and space-group deteraination, we continued our
investigation. '

Unit ocell and space group

The unit cell and space group of coesite were deter-
mined with the aid of preceseion photographs. Ordinarily,
unit cell and space-group determinationse are routine, but
gseveral points are of more than routine interest in this
cage, In the first place the cell of coesite is dimenaion-
ally hexagonal, and no departure from this dimensional
symmetry could be observed. Phe cell dimensions are as
follows:

& L T.17 &

B o= 774 & = 120.0°,
g = 12,38 4

I = 550 &7

in spite of thie hexagonal dimernsional symmetry, the dis-
trivution of intensities is distinetly monoelinio, To
emphasize the hexagonal dimensional symmetry, the first



monoclinie setiing is chosen. Because of the hexagonal
dimensional symmeiry the space szroup can be desoribed in
three ways: A2/a, 32/b, and I2/a., The relations between
these desorxiptions are shown in PFig., 1-1. e to the close
relation of B2/ to Ramsdell's setting C2/¢, the description
B2/b was retained by us, ‘

The second unusual feature of the cell is thas,
assuming that the density determination is correct, the
cell oontains excess matter in some form, for it appears to
have 16,6 formula weights of Siﬁz per cell, The cell mass
is

BABS = denslty x volume

= 3,01 x 350 x 1024

= 1656 x 10'24 sramns

= 1686 x 19'24 = 996 chemical mass units
1.66 x 1024
The mass of 16 510, is 961, Thus a cell contains an excess
mass 0f 35 ohemioal mass units, Our material was kindly
supplied by the Norton Company, Worcester, Massachusetts,
through the courteay of r, N. ¥. Thibsult. It was
prepared by heating a charge of dry sodium metasilicate and
diummonium phosphate at 700°¢C, and 40,000 atmogpheres for
16 hours.
The hexagonal dimensional symmetiry and excess cell

density were both observed by Ramedsll’. Our cell dimen~
sions agree with hie within close limits, Our space-group

designations differ by interchange of } and g axes since
Remsdell chose the traditional seeond monoelinio setting

and we have choaen the flrst monoolinic setting to
emphasige tne dimensional hexagonal symmetry,
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Spaoce group symbols of coesite.






Intensity data

A4 full set of three~dimensional x-ray diffraction
intensities was obtelned with a single setting of a orystal,
using precession photographs and Mo« radiation. Some
orthographie projections of the crystal used in structure
determinuation wre gilven in Flg. 1-2. The pseudo-hexagonal
aspect 1s evident. The intensities were determined by the
¥,1.7. modification of the Dewton method®,  About 900
reflections were measured, some two or three times on
different films. All such duplicates were found to corres-
pond to the same ¥ to within 10% error. Although the
shape of the crystal wag flat (.03 x .10 x ,1% mm) the
maximim error due to neglect of differential absorption
effects when using MoKk« radlation was found to be only about
10%. Aceordingly, in transforming intensities to g?'o,
absorption was neglected. It was discovered subsequently
that extinotion was not negligible, however,

Structure analysis

Preliminaries. The structure was solved by eolving
the three-~dimensional Patterson synthesis, This funetion
was computed from our }J data at the ¥,I.?, Computation
Center using the I.B.4. 704 computer. The progrem for the
Pourier synthesis was prepared by I, ¥W. Bly, who also
alded us in uweing it ir the ocomputer, ’

The space group of coesite is B2/b. The speace group
of the corresponding Patterson function is B2/m, Pig. 1-3.
The asymmetric unit of this space group hes a volume sf'%
eell, We aecoordingly computed an asymmetric block of the
Patterson synihesis for the range 0=l along a, Gm% along b,
and Gu% along 8. These were synthesized as sections
parallel to (001},
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Drawing of a well-developed coemite orystal






E‘ig. 1“3

Crystal and vector space group of coesite
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Gengral features of the Patterson fumotion. Accepiing
16 510, per ocell, thls corresponds to 3 $10, per primitive
cellyiand 2 Si02 per asymmetric unit. The relative weights
ox'ﬁﬁe peaks to be expected can be predicted5. Assuming
siliea and oxygen to be half ionized, i.e, 312*. and 07,
-these snould have 12 and 9 electrons respectively, and the

weights of certain peaks, on an absolute basis, should be

single 81 - 811 12 x 12 = 144
gingle O - 0 9x9 = 81
double 51 - 8i¢ 2 x 12 x 12 = 288
double 0 -0 312 x 9 x99 = 162
double 81 - 0 §1 2 x 12 x9 = 216

origin 3 8(122 . 92) = 2448

f $he distribution of the various types of peaks in the

‘Patterson oell is analyzed in Table 1-1.

' It is easiest to solve a Patterson synthesis by
starting with ar inversiosn paaks. The heaviest such peak
is that due to 81 « 8i. According to Table 1, this has a
weight of only 144, and there are only two such peaks per
asyametrio unit, embedded in a oollection of 40 miscell-
aneous non-origin peaks all but 4 of which have greater
welght. Acoordingly 1% is not easy to find the desired
inversion peaks without some theoretical help.

Use of the minimua function to find inversion peaks,
The theery of finding inversion peaks will be discussed in
some detall elaewheroé. If the space group contains
reflection operations (inoluding glides) as well as
invereions, it must contain rotation (possibly screw)
operations, The pointe in vector space due to a pair of
points related by an inversion, and those due to a pair of
points related by a rotation, comprise images of the same
pair, but the images are separated by the glide gomponent



of the glide plane, plus an unknown component normal to the
glide plane. If & minimum function is formed of two
portions of the Patterson function whieh are separated by
the glide plus an unknown parsmeter (g in this case) normal
to the glide plane, the inversion peaks are automatically
found,

In space group B2/ there are glide planes at g = 0
with glide b, and another set at z = % with glide p. 1In
this case, the former were chosen, s0 that the rotation
images at level g = O were compared with possible inversion
images at all levels z by superposing the latter levels on
level gero, but with level zero shifted by the amount of the
glide, namely p/2. 4n example is shown in Pig. 1-4,

This procedure turned up six candidate inversion peaks,
To test these, each was treated as an inversion pesak, and
an.ﬁe minlmum-function map was prepared for the particular
level on whieh an atom should ocour in order to provide
that inversion peak, 0f the six maps &0 prepared, four
were very similer while two others were different from
these four and from each other., The tw ocandidste inversion
peaks giving rise to these wild maps were rejeetéd.

0f the four candidate inversion peaks not rejected,
two gave rise to strang,ge mape, the other two to weak ﬁ?
BADS o Since there are two 51 atoms per asymmetric unit,
the strong maps were assuned to be based upon Si inversion
penks. The candidate peaks giving rise to these maps were
accordingly treated further to improve the power of the
msinimum funoction. 4

Formation of minimum funotions. Faoh of the two
inversion peake was used as an image point to form a
complete set of sections of an Y,(xz¥z) function., Bach
guch seotion involves forming the minimum function for two
different Patterson levels, the levels differing by the g



?‘ig. 1=4

Illustration for the location of an inversion peak candidate






- goordinate of the inversion peak., As a result of this
procedure two separate M,(xyz) funotions became available,
each based (presumably) on one centrosymmetrical pair of
the two kinds of silicon atome per asymmetrie unit.

Pach of the sections of these two ga funetions con-
formed approximately to the symmetry of the 2-fo0ld axes of
the space group ae# it Intersected the section. Each [,
section can be combined with itself by making use of this
symmetry operation, thus forming an.§4 function of greater
power, This was done for all seotions of each of the two
initial ¥, (x¥z) functions. The result was two complete
gl(sxg) functions.

These two §4Qxxa) functions were similar in that doth
outlined similar areas of eleotron density, except that
theee were referred to different origins. Bach was also
of substantially the sane weight, a fact further confirming
that eaghh was based upon the inversion peak of a different
S1 atom, Assuming that they are both based upon 51
inversion peaks, they oan e combined without aoa11n3.5

An geﬂzxg) function was then available, This shows a
peak for each of the atoms expected in the aaymmetrio unit.
The projection of these maxima on (001) 4s szhown in Mg, 1S5,
The coordinates of the atoms derived from it are shown in
Table 1-2., The table also shows the manner in which the
eoordinates cha.ged as the result of subsequent refinement,
This brings out how well the minimum functilon corresponds
10 the sotual stracture.

Refinenent

The coordinates, as found from the M.(xyz) function,
were refined along with individual isotropie temperature
factors by the least-sguares method using the I,B.M, 704
computer., Again we are indebted to Dr. W, Bly for his help

10



ﬁg. 1-5
(001) projection of the M

8

maps
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in performing tﬁe computation,

Using an arbitrary value of § = 1.0 for all atoms, the
discrepancy factor Z for the original coordinates derived
from the g@(m) function was found to be 36.1¥., Using all
reflections, and including unobserved reflections at E‘Q = 0,
this discrepancy was reduced by three cycles of refinement
t0 § = 25.2%  On detailed compurison of observed and
computed pF's, six intense reflections of small sin & value
(240, 220, 220, 020, 212, and 004) uniformly showed a_g_&ngs\.
This wae attrivuted to extinection, Hore generally,
similar effeots could be observed within a sphere in the
reciprocal lattlice of radius corresponding t0 8in 6 = «095,
Aéoordingly, five more oyeles of refinement were undertaken
omitting all 56 possible reflections within this rangs, and
also omitting reflections for which 22 = 0. This resulted
in a set of coordinstes and isotroplc temperature factors
for whicu § = 16.,97%, These are listed in Table 1-3,

After the refinement was complete, a thres-dimensional
electron~-density function was prepared by Fourier synthesis,
The peaks of this function are shown projeoted on (001) in
Mg. 1-6 for comparison with the oorresponding minimum
function in Flg. l=5. We would like %o point out that in
the method of analysis we used, Pouriler s niheses are
unnecesegary, and this one was prepared entirely for the
purposes of making the comparison of the miniaum functicn
with the final eleciron density.

Ths coesite structure

The coordinsates of the atoms given in Table l1-3 define
a etructure in which each silicon utom has a® neerest
nelghbor four oxygen atoms in tetrahedral arrangement.
The actual distances between nearest neighbors ure systeme-
atioally listed in Table l-4. All the S81i-0 distances in



Fig. 1”6

(001) projection of the electron density maps
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 the {;c kinds of tetrahedra are almost exsotly the same
(160 X to 1.63 %), and the eight edges of the two kinds of
tetrahedra are oclosely the same (2,60 & to 2,67 ). The
tetrahedra are therefore gquite regular and substantially
equal,

The tetrahedra are joined together in a aingle network
vhioh 18 a new type. Pige-T 1llustrates the netwoark by
means of a pair of stereoscopiec drawings, The nature of
the new network can perhaps be best understood by noting
that the tetrahedrs are required dy symmetry to join into
two kinds of rings of four teirahedra. The itwo-f0ld axis
in the lower middle of Fig. 1l-6 causes the tetrahedra to
form & ring parallel to the (001) plane, while the symmetry
genter at ;%Oi. requires them to forml a ring of four
epproximately purallel to (010), The whole network may
therefore be described as one composed of a network of
4-rings, each ring having eight external oonneetions, Bosh
the feldspar and paracelsian networke also share these
characteristics,

The specific nature of the ooesite network can be
appreciated somewhat by following the connections of the
4-rings. The centrosymmetrical rings are centrosymmetrioal
about inversion centers at levels g a-i and'%. © Such rings
Join one another through the oxygen atoms on the- other kind
of inversion centers on levels g = 0 and~% to form diagonal
chains, For example, the ring centering at . rg is
approximately parallel to (0l0) and joins body-centering
translation~equivalent rings to 28 8 gnain whose direction
is 101 , PMg. 1-8, This ohain is isolated from other

translation-equivalent ohains in the same plane, The two-
f0ld rotation axis requires that an eguivalent chain ooocur

in the eenter of the cell, also parallel to (010) but
trending in the direction of the other diagonal, 101 ,



Flg, 1-7

Stereoscopic drawing of the coesite

structure,
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Pig. 1-8

Illustration of the rings of tetrahedra
perallel to{010)
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Thie 1 chown in the right of Pig., 1-8. The coesite struecture
can be desoribed in teras of these oriss-crossed chains, whieh
are oonnacted in a manner which can be sesn in Pg. 1-7.

The structure can also be desoribed in terns of the rings
symmetrical with respect to the 2-fold axes. These rings are
parallel to (0Cl) and form chains parallel to 010 , Pig. 1l-9,
The ochains on the sume level are not connected together, but
are joined by the rings of glide-equivalent chains in the
levels above and below, Fig. 1.9,



Pig. 1-'9

Illustration of the rings of tetrahedra
parallel to (Q0l)

i8
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Enumeration of peak types to be expeoted in

the Petterson synthesls of coesite,

“Peak dus }S | Number afd‘ Humber of [ Total b »
| i ymmetry ‘individual)] indistinguishable [weight of Co-
| to atom % peaks per eaks indistin- ordinate
R S e e G B
unit
3i-381 giaentity 8 l1{orig.; . 000
inversion 8 ., 8 single 2 144 xl,y1¢%,31
rotation 8 | L doubdle 1 288 i X)4¥7140
reflectios 8 | 4 aouble | 1 288 0,52,
saymmetrio 32 | 16 double & 288 X,¥,2,
(totel) | (8% 64)
0~0 identisy 16 l{orig.) 000
inversion 16 | 16 single i 81 xg,y2+%,zg
rotation | 16 8 double 2 | 162 X5,¥2,0
refleotio& 16 8 double 2 162 0,%,22
asymmstric§ 192 | 96 double | 24 162 XY 2
(total) %(162-&56) ‘
% 81-0 asymmatrieé 256 (128 double | 32 216 X, V.2
| ~ (total)(24%=576) (40) }
1 ‘




Table l-2,

Coordinates of atoms in coesite, as determined

from minimum function maps,

As obtained from Mg(xyz) Changes due to refinement

{for which H=40.69) (aftpr which E=16,95)

x ¥ '3 Ax Ay AR
Bil 0.16 0,08 C.11 eﬁtqgo 0,006 ~(,002

/4

812 0.51 0.53 .16 «O.GC\} G.009 -0 ,002
Dl 0 0 ¥] 0 0 0
0, 1/2 3/4 0.11 0 0 04007
03 0;27 0.92 0013 "0;001 0:&21 "0&001}
0& C.30 0.32 0.11 0,008 0.009 -0 4,007
05 0,01 Ouk7 Q.22 0.002 0.003 -0,008
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Table 1-3.

¥Pinsl coordinetes of stoms in coesite and

their isotropie tempereture factors.

Atom Coord m@u Wfﬁ%ﬁaﬁm
x y % B

84, | ‘1403 | .0375 | .lo84 0.813 £°
31, 5063 | .5388 | .1576 G600

0, 0 0 0 0.856

0, 1/2 3/b <1166 1.197

05 2694 | L9405 | .1256 1.111

0, 23080 | 43293 | L1030 1.381

0 J0123 | 4726 | .2122 0.656




Tahl' l“ﬁo

Interatomio distances in tetrahedrs of

31l tetrahedron

goesite structure.

Ql {)3 0& 05
ﬂil 1.60 1.63 1l.61 1.61 4
Ql 2,67 2.62 2,64
03 2,63 2.61
0, 2,61
81, tetrahedron
o, o, 0, 0,
312 1,62 1.60 1.62 1.61 A
02 2.63 2.62 2.63
03 3065 2066
2,66
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Chapter Il
The relative energies of rings of tetrahedra



When the structure of coesite was solved, its structure
was ococmpared with those of the other forms of silica, All
these structures, of course, are oomposed of silica tetra-

hedra linked into three-dimensional networks. The structures

can be desoribed in many waye, but one of their obvious
qualitative features is the relative compaoctness of the
structures, fThus, the oristobalite and tridymite struotures
are comparatively open, the quartz structure is less open,
and the ooesite structure is compaot, displaying listle void
spage., Of course, the oompactness of the coesite structure
is to be expected bDecause of its relative denseness, and this
is oonsistent with ites etability at bigh yrcisurcnl.

This observation, however, does not explain the struc-
tural reason for the oocmpactness. In studying the several
silioa structures it became evident that the compactness is
related to the relative shortness of loope in the silica
network., In coesite, stable only at high pressures, two
kinds of loops, requiring four tetrahedra to complete them,
are distinguishable. In the more open quartg, tridymite
and oristobalite structures, stable at ordinary pressures, no
loops shorter than six tetrahedra ocour. In keatite, stable
in & pressure range between gquartz and eoesitel. loops of
five tetrahedra oeanrﬁ.

These siructures also have different relative energies,
A% normal pressures quartz is sSable, keatite less stadble and
coesite most unstable, 80 that it is tempting to mpeculate
that 6-membered loops are stable, S.menbered loops less
stable and 4-membered loops moat unstable. But feldspar
and paracelsian, also oomposed of silica and slumina networks,
have 4-membered loops like coesite, and are stable at room
pressures. In these instances the additional alkali can be
regarded a8 supplying an internal pressure whioch stabiligzes
the 4-membered loope,
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Loops are not confined to three~dimensional networks,
but are also known in two-dimensional networks (sheets), in
double chains and in metasilicate rings. Among two-dimensional
networks the commonest have O-membered loops (micas, clays,
chlorites), while 5-membered loops (hardystonite) and
4-membered loopes (apophyllite) are relatively rare, and
3-membered loops are unknown. Among double ohaine, 6-membered
loope are the most common (amphiboles) but 4-membered loops
are also nown in high-pressure (sillimanite). Among rings
the G-membered loops ocour in the most coamon minerals
{(tourmaline, dioptase), S-membered rings are unknown,
4-memdbered rings are rare (axinite) and 3-membered rings ocour
in the rare minerals, benitoite and c¢atapleite.

The common occurrence of G-membered loops suggests that
it i2 the most stable loop under normal conditions, and that
S, 4= and 3-membered loops are less stable. Loops with two
menmbers share an edge, and #o are inherently high-energy loops.

It is interesting to seek a rational explanation for the
relatsive frequency of ocourrence of n-membered loops of tetra-
hedra. The moast commonly observed loops have probably the
least energles, The solution of this problem ocalls for
computing the relative energies of these loope. O0f course,
the energy of an g-membered loop depends on many things,
including the detailed shape of the loop and the relative
orientation of the loop to the other parts of the structure,
But the general trend of the relative energiles of the various
n-membered loops can be examined by computing the energies of
free loops,

To make a start on this problem, the energies of the
moet symmetrically shaped rings, like the beryl, the axinite
and the benitoite rings were investigated, In these rings,
the plane of the ring is a plene of symmetry; the atoms
shared between tetrahedra lie in this plane, and the unshared
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atoms are mirror images of each other, on each side of the
plane, FPig.2-1l. The atoms at the centers of the tetrahedra
were assumed t0 have charges of +4 (like silicon if
.oompletely lonized) the atoms at the shared corners to have
charges of -2 (like oxygen if completely ionized) while the
atoms 8% the unsiared corners charges of -1 (like fluorine)
in order to make the ring neutral. The tetrahedra were
assumed to have the same size in all rings. The energy of
& tetrahedral unit due to the rest of the ring was computed.
If the chemical composition ie regarded as S10F, then the
energy of this unit was ocomputed, that is, of the atom at
the center, the two unshared J atoms end the two half
oxygens pertaining to the unit. The energy was oomputed
by summing for these atoms, the energies due to all the
other atoms of the ring, by means of the relation (for any
two atoms):
’Uﬂm
r

where 2 iz the charge on atonm 1.,32 the charge on the other
and p the distance between them., In this preliminary work
X was detexmined by measuring it on a earefully drawn
diagrem of the ring. The computation was carried out for
rings of 2, 3, 4, 5, 6, 7, 8, 9, 10 and ~ tetrahedral units,

The relative energies of these rings are plotted in
Flg.2«-2, I% ocan be seen that the computed energies bdear
out the original expeotations, There is a nminimum energy
at the S-membered ring, with the t-membered ring having a
little more energy and 4-, 3=~ and 2-membered rings paving
sharply increasing energies. The 7=, 8~, 9~ and
1C-membered rings have nearly the same energies and the
etraight chain still higher energy.

Although these conolusions are not strietly applicable
t0 the relative energles of complete tetrahedral structures
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with p-membered rings, it is still reasonable to expect that
the energy of the p-membered ring will significantly affeot
the energy of the whole structure. A tetrahedral structure
composed only of regular S-membered rings is expected to have
lower energy than a structure composed of 6- or 4-membered
rings., The O-membered ringe are, however, the most common,
since no two~ or three-dimensional network structure can be
composed of regular S-membered ringe alone,

Most structures are composed of more than one kind of
loop each oontaining a different number of tetrahedra. The
energy of such a structure iz expected to be affected by the
energy of each kind of loop., The structure of keatite is
composed of 5-, 7= and S-membered rings, while the structures
of tridymite and oristobalite are composed only of G-membered
rings, It seemns reasonable to expect the combined energy of
5=, T~ and S-membered rings to be higher than the energy of
t-membered ring, and that the tridymite and eristobalite
structures should have lower energies than the structure of
keatite,

Because the ringe are comparatively regular 1in these
structures, the energies of the tridymite and oristobalite
structures can be compared with the energy of the keatite
structure by utiligzing the relative energies of the p-~membered
rings. A similar compurison, however, can not be made with
quartz, since the rings in quarte are collapeed and their
energy probably became less than the energy of a corresponding
open p-membered ring.
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Chapter III
Classification of tetrahedral structures
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Introduetion

The classification of things of scientific interest 1s not
merely a filing system, but is also a Lasis for evaluation and
oomparison of these thinga. Ais such, it oonstitutes an
important step in the progress of seience and may lead to the
better understanding of nature, and to the establishment of
new directions of research. Machatschki's oclasaification of
the tetrahedral silicate atrueturenl was an excellent system
for oclassifying a large number of silicates. It also explained
many of the important physical properties of silicates.
Consequently, the classification was of considerable importance
in the understanding of the silicutes and other crystals with
#imilar tetrahedral structures. Since 1928 the mumber of

tetrahedral structures Jetermined has grown so0 tremendously that
Machatschki's classification is no longer adequate for the
classification of the tetrahedral struoctures, especially for
structures with a three-dimensional network of tetrahedra.
There 1s a definite need for an improved classification, first,
to provide more subdivisions in the system of classification
and, second, to point ocut minor, but important, similarities
between different tetrahedral structures.

After the structure of coesite was determined and compared
with struotures of other silicas, the mignificance of tetrahedral
loops in the tetrahedral structures became apparent., In
Machatsohki's clasaification the geometric forms of the tetra-
hedral structures are related to the cleavage, hardness and the
optical properties of the orystals; similarly the size of the
tetrahedral loops are related to the energies of the tetrahedral
struoctures. The importance of the size of the tetrahedral loops
in a etructure and its prospeotive avplication as a natural
classification oriterion stimulated an investigation of tetra-
hedral structures and the construction of an improved classi-
fication. |
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fication.

Othexr importsant features of tetrahedral structures were
disoovered during the course of this study. Mot of them
are applied in the proposed classification system. The
classificetion criteria are discussed in detail in their
order of application,

The geometrical forms

Machatschki's clasasification is based on outstanding
geometrieal forme oreated by the aggregation of tetrahedra.
These forms are referred to as "types"” in the literature.

They are: isolated ietrahedres, groups, ochains, rings, sheets
and three-~dimensional networks of tetrahedra. These
features are important, and are widely accepted. Consequently
they are adopted in this clasasification. Minor revisions,
however, are made in order to systematioally group these
types, and to cover all the possible ionic tetrahedrel
_structures, Some of the types have distinet directione in
whioch the tetrahedral structures extend to infinity. In
others the tetrahedrel structures are terminated in all
directions, Consequently, if the tetrahedral structures are
extended to infinity in gero-, one-, two- and three-dimensions,
four major types of tetrahedral structures are possible.
These four types are:

(1) Isoluted groups of tetrahedra.

(2) One=dimensionally non-terminated
struetures of tetrahedra.

(3) Two~dimensionally non-terminated
structures of tetrahedra.

(4) Three~dimensionally non-terminated
structures of tetrahedra.

It 18 theoretically possible that a crystal can be composed
of two or more different types of tetrahedral struoctures., To
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cover such possibilities a fifth type 1is established:
(5) ¥Mixed types of tetrahedral structures.

These types, except for the last one, have distinet form
structures which are the simplest possible atructures defined
by the dimensional termination of the types. In the first
type, the form structure is = single tetrahedron, in the
second type it is an endless chain of tetrahedra, in the third
type it is an endless sheet of tetrahedra, and in the foursh
type 1t 18 an endless three~dimensional network of tetrahedra,
within eaoch type, subiypes can be established. In the first
three types the subtypes can be conveniently defined by the
number of form structuree welded intc one unit, and by the
presence of one or more such unite in the structure of a
erystal. In the fourth type the subtypes are defined
according to the anaring of tetrahedral corners, or by
sharing in addition one or more tetrahedral edges or faces.

In the isolated groups of tetrahedra there is a special
form in which several tetrahedrs form & olosed ring. In order
%o follow popular practice, this ring struoture is separated
from the group structures. Instead of an isolated group of
tetrahedra it is regarded as én eridless chain ourved into a
ring, and is treated as an extra form atructure in the two-
dimensionally non~terminated structure type. .

The fifth type is merely a collection of the possible
combinations of the different types in the structure of a
erystal., The subtypes are the deacriptions of each type
ocomposing the collection of types. |

The typee and subtypes are listed in the first two
coluans of Table j-1.

Corner sharing of the tetrahedral structures

A brief study of the tetrahedral structures revealed
that e different numver of tetrahedral oowners can be shared
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and still make up the sane type, and even the same subtype
structure. Por example, two single chains can be welded
into a double chain 1f each tetrahedron of the first chain
iz connected to a tetrahedron of the second chain, Two
single chains can also be welded into a double chain 1f only
every second tetrahedra of the first chain is oonnected to
every second teirahedra of ithe second chain, In the former
case six tetrahediral corners are shared per two tetrahedra
and in the lattexr only five. The geometrie form, however,
£311l rewains « double chain. A slmilar situation exists
in the sheet structures. A sheet ocan be constructed if each
tetrahedron shares three corners with other tetraliedra. A
sheet can also be coustructed 1f certain tetrahedra share only
two oorners. Once again, the number of tetrahedral corners
shared 1s the only difference between the two sheets, In the
three~dimensional network usually all four cornere are shared.
In zome structures a few coruers are left unshared, and '
consequently the number of tetrahedral corners shared becomes
less than four.

In these examples it was tacitly assumed that only two
tetrahedra can share a tetrshedral corner, ?his“ie not
always the case. There are severasl three-dimensional networks
of tetrahedra where three or even more tetrahedrs share a
tetrahedral corner, In order to dletinguish between suoch
structuree, the number of tetrahedral corners shared ie no
longer sufficient, It has to be supplemented with the number
of tetraheldra participating in the sharing of a corner.

It is possible to derive a single numerical value whioch
can express both the number of tetrahedral corners shared and
the number of tetrahedra partieipating in the sharing, if we
make two assumptions:

A, The difference between the smallest and
the largest number of tetrahedra partio-
ipating in the sharing of a tetrahedral
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corney in a struoture can not be
more than one,

B. No tetrahedral corners can be shared
petween more than twd tetrahedra and
no tetrahedral edges or faces can be
shared in structures other than three-
dimensionally non-terminated structures
of tetrahedra. :

“Assumption A means, for example, that as long as there
ar;lfroo oorners present in & structure, no corners can be
shared between more than two tatraheara§ or if some corners
are shared between two tetrahedra only, no cormers can be
shared between more tha: three tetrahedra. Assumption B
states that in groups, chaine, ringe and sheets of tetrahedrs,
where the structure is terminated in one or more directiona
the maximum numvber of tetrahedra participating in the sharing
of a corner is two, and that no edges or faces can be shared,

Under these conditions the average number of tetrahedra
participating in the sharing of e tetrshedral eormer in a
structure also defines the number of corners shared. The
average number of tetrahedra partieipating in the sharing of
a comer in a structure is called the sharing coefficient of
the structure. Since the sharing coefficient 1s an average
number it can be an integer as well as a fraotion., An integer
number defines a state in which each corner of each tetrahedra
is shared between p tetrahedra, where n is the integer in
question, A fractional number, on the other hand, defines a
state in which some corners are shared between 5 tetrahedra
and others between n+l tetrzhedra, where 3 1s the integral
part of the sharing coefficlent. The fractional part, further,

defines the ratio of the number of c¢8¥BE€r# shared between
and pe+l tetrahedra, A sharing coefficient of n+t means, for

example, that all the oOrners are shared between at least 3



tetrahedra and in addition every fourth corner is shared
between n+l tetrahedra; or a sharing coefficlent of{g«g%
means that all the corners are shared between at least p
tetrahedre and in addition every twentieth corner ies shared
between n+l tetrahedra. ’

There i@ & simple relationship Letween the sharing
coefficient and the cation-anion ratio in the tetrahedral
radical of the chemical formula. The relationsihip is
obvious when a tetrahedral corner is shared between two or
moréi@trahedra. Then the same anion simultaneously belongs
to two or more cations, The cation-anion ratio in a single
tetrahedron is 134 and in a pair of tetrahedra it is 1133,
end the coiresponding sharing coeffiocients are 1,00 and 1,235
respectively. Consequently the sharing coeffioient not only

describes a geometric feature, but alzo defines part of the
chemical formula. A list of possible sharing coefficient
ranges for the types and subtypes of the tetrahedral
structures, and the corresponding cation-anion ratios are
tabulated in the tiird and fourth columns of Table 3-1,

Assumptions 4 and jJ were found, empiriocally, to be
correct for dominantly ionie orystals. These assumptions are
generaligations of Fauling's third rule whioh states, briefly,
that the sharing of adges and partiocularly of faces of ionio
polyhedra deoreazes the stability of the structure. This is
because such sharing necessitates the close approach of two
eations and thue inoreases the potential energy of the system.
Our assumptions ean be supported by similar arguments, When
more tetrahedra share a tetrahedral corner, more tetrahedra
come in ocontact, and the high valence cation® approach each
other, thereby increasing the potential energy of the aysten.
8ince s system tends toward the lowest energy state possible
the corners should be shared by the least poesible number of
tetruhedra, Thus no corner is shared by three tetrahedra
unless there is no lower energy state available. Bimilafly
no tetrahedral corners will be shared between three tetrahedra
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in a doudble chain when a multiple ohain or other geometric
forms represent lower enexgy with the corners shared between
two tetrahedra only. The same srgument restiricts the
sharing of edges and of faces 10 structures whexe it is
necessitated by geometry, in extremely dense three-dimensional
networks.

Repeat-units and loops of tetrahedra

With the exce:tion of the isolated groupe of tetrahedra,
the single chains, and the three-dimensionsl networks with
one or more faces shaored, all the tetrahedral structures
contain loops of tetrahedra. These loops are outstanding
features. They are also important irn the consideration of
the energles of structures. Consequently the tetrahedral
loops are simple and non-artificial oclassification
criteria,

dodern investigators of the tetrehedral and other
polyhedral structuree noticed the significance of these
loops, and, in one form or other, they applied the loop
concept to the subclassification of certain typeé of tetra-
hedral and polyhedral stiruotures,. wu1133 subdivided the
polyhedral networks according to the size of the loops
formed by polyhedra. Tetrahedral networke are also
included in his clawvsification. However, he considered
only the highly regular tetrahedral networks with a sharing
coefficient of 1,75 and 2.00. Liebau4 clasasified the
tetrahedral silicate structures on the basis of the number
of tetrahedra in the periodic unit of the tetrahedral
structure. Liebau'e olassification subclassifies the
simpler tetrahedral st:uctures very oonveniently, but fails
to glve a sufficient number of subdivisions for the three-
dimensional networks.
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The combination of Wells and Liebau's principles eould
conveniently ove applied t0 the subclaesification of all types
of tetrahedral structures. The structures containing no
loops of tetruhedra (with the exception of the face-sharing
three~-dimensional networks) can be subdivided according to
the numver of tetrahedra in the periodic unit of the tetra~
hedral stracture, and structures containing loops of tetra~
hedra can be subeclassified according 1o the numter of
tetrahedra in the loops. The former term is called the
repeat-unit of tetrahedra, and the latier the loop of tetra-
hedra,

The repeat-unit of tetrahedra in the isclated groups of
tetrahedra would be aimply the number of tetrahedra in the
EXroups. If there are different kinds of groups in the
structure, seversl units will be listed and one number will
repf&aant euch kind of group.

In an endless single chain the repeat-unit of tetrahedra
is the nmuaber of tetrahedra in the motif of the chain which
is repeated by transletion to form the chain . It, for
example, all the tetrahedra of the chain are similarly
oriented and are translation equivalenis, the repeat-unit
is one teirahedren But 1f every seoond tetrahedron 1is
oriented differently from the fi:st one, then only every
third tetrahedren 1s a translation equivalent, and the
repeat-unit of the chain is two tetrahedra. ‘

In most of the othex types of tetrahedral structures
there are loops of tetrahedrs and every tetrashedron of the
structure is part of one or more loope. These structures
can be subolassified either (1) by the size of the smallest
loop of the structure, or (2) by the list of the different
sizes of loops occurring in the structure, or (3) by the
1li¢t of all the symmetrically non-equivalent loops, in
order of the increasing size of the loopse The first
alternative has only five or six subdivisions, which is not
suffieiont to distinguish between a large number dt.possible



structures, especially in the three~dimensional networks.
The second alternative increases the number of subdivisions
considerably, The third alternative, however, inoreases it
to such an extent that almost every ¥nown structure has a
different list of loop sizes=.

Although the third alternative offers a greater number
of subdivisions than the seeond, the second has been chosen
for thie classification for the following reasons: beoause
the determination of the symmeirically non-equivalent loops
is aifficult and in complicated structures might become
confising; secondly becouse the number of subdivieions
offered by the much simpler second alternsztive seeme to be
sufficient since only very similar struotures have the same
loop sizes.

The loop sizes can be determined either by simple
observation or by a more systematlc approach offered by the
symmetry of the structure: all the possible loops of the
structure must include the tetrshedra of the tetrahedral
motif of the structure. The number of tetrahedra in a motif
is usually lesa than five. Unfortunately in complicated
structures there might be a very long list of loop sizes,
especially for the larger loops. In order to aveid an
unnecessarily long list, the loop sizes can be limited
arbitrarily. It seems 10 be satisfactory to limit the
numver of loop sizes of a structure to four, and the size
of the largest loop to twelve.

As the sharing coefficient ineoreases above 4,00, tetra-
hedral edges are shared, and in sddition to the loops incom-
plate polyhedral openings are present. When the sharing
coefficient approach~s 3,00 certain openings become com-
plate polyhedra, but When the sharing coefficient reaches
8.00, all the edges are shared and all the openings are
polyhedral, For example, the openings in the fluorite
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structure are octahedral, In structureswith a sharing
coefficient higher than 3.00, the polyhedral openings start
to dieappear, aaking room for solid bodies of tetrahedra.
with a sharing coefficient at and z2bove 3,70 there are no
more loops of tetrahedra. Instead of units and loops

these structures can oe subdivided according to the shape of
their polyhedral openings.

Ssruoture families

After the tetreshedral structures are classified
according to types, subtypes, sharing coeffieients, and
repeat-unite or loops of tetrahedrs, tgere remain: only very
similar structures in esoh category of the oclassification,
They are in most gases isomorphie, isotypie, or derivative
structures, It 1is theoretically poseible, however, that
two structures can be 80 similar that they have the same
tetrahedral loops, yet their tetrahedral linkages are
different; these should not be left in the same final group.
Two such siructures are apophyllite and  illepsite. ‘Thoy
are similer in every respect, except in the linkage of
tetrahedra. In both structures the tetrahedrs are oriented
£0 that they form triamgular pyramids with their bases in the
* plane of the sheet of the sheet structure. In apophyllite
the three bassl corners of the pyramide are ahaﬁéd, but in
‘gillapsite the two basal corners and the apices of the
pyramids are shared, Such structures should be separated
as two different families, 80 that in the final eoclumn of
the families there are only closely related structures.
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Sharing coefficients and cationwanion reatios of the types and
subtypes of tetrahedral strustures.

Types

Subtypes

Sharing soefficients

‘s

Cationwanion r=tios

1,

2

b

4

Se

Isolated groups of
tetrshedrs

One=-dimensionally
non=terninated
structures of
tetrahedra

Twowdimensionally
none=torminated
structures of
totrahedra

Three-dimensionally
nonetermineg ted
structiures of
tedtrahedra

iixed types

i 4 S ot T

SRR Y

ae8ingle tetrahedron
bepalr of teirahedra;
¢«largs groups
d.mized groups
s.oingle chairs
b.single rings
vedouble chains
dedouble rings
e,multiple chains
formltiiple rings
gemixed chains and
rings
se8ingle sheets
be.double sheets
semultiple sheets

demixad sheets

a.networks with
corners shared

benetworks with one
or more edges
shared

c.natworks with one

or more fases i
shored j

e S LT

1,00
1e25
1e25mlaT0m{1aT 2 )*
1.25=1,50={1.75)
1.50
150
1,50=1.75
1.50=1472
(1s50)=1e 752,00
(1.50)w1,75=2,00
(1450 )=1.75=2,00

1.50=1,75

1(1450)=1475=2,00
é

(1e50)=1,75=2,00
(1e50)=2e75=2400
1.75=4,00

l}n 00" {:';‘ QO

8400w

14
1:§%
1855 ~ 125 = (1.28)
1:5% - 115 - (1:2%)
185
122

113 - 132k
113 - 132
“

L. 1
1 (1s3) = 1323w 132
(123) - 132 - 132

[N

[(113) - 1:a§- 112

[P

(133) = 1225 = 132
(113) - 132§ - 132
L (183) - 1325 - 152
i 1:2é'- 1:1

151 - 1:%

| ad
*
N §

* Sharing coefficlients in parentheses indicate theoretically
poesible but practically imprebable ranges,




Table 3.2,

Classification of tetrahedral structures.

Sharing|:epeateunits
Types Subtypes coelfi~|and loops of| Families Menmbers
cients jtetrahedrs
leIsolated fesingle totraw 1.00 Olivine, garnet,
groups of hedron aphens, gypsum oto,
tetraheadra
b.pair of tete 1.25 Ilvaite, tilleyite,
rahedra ZYP0L otce
codurre proups 1.0 |5 Zunyite
demixed ;roups 1,11 jl=2 Vssuvianite,
allanite
2, Twowdimensioe| asningle chaine 1.50 |2 Pyroxenes Enstatite etc,
nally none c
terminated 1.5 |53 Wollastonite
structures of
besingle rings 1.50 3 Senitoite Catapleite,wadeite
1,50 4 Axinite
1.50 {6 Tourmsline | Dloptase,caledonital
os,double chains 1.62 8 Xenotlite
1.67 |6 Amphiboles Anthophyllite ete,
1.75 |4 3411imanite
dedouble rings
e.nultiple chaing
femul tiple rings :
gemixed chedns
and rings
3¢ Twowdimensiowln, single sheets 1,75 |48 Apophylite Datolite
nally none ‘
torminated 1.75 |48 Gillepsite -
structures of
tetrahedra 175 6 ¥ica C}ay ete,.
1,75 |6 Sapiolite Baryllmiu,vz\ﬁﬁ
1.78 {5 Hardystonite | Melilite,gehlenite,

akermanite
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Sharing, Repeate-units,
Types Subtypes osooffi~| and loops of] Fsmilies Hembers
glents | tetrahedra
bedouble sheeie 2,00 ) X Geleian
c.tultiple sheets!
demixed sheets
4, Three=d inene a.networks with 175 10 9305
sionally corners
nonetermine~ shered 1,82 SmlO 120a0.741 0
>
ted struc-
tures of 2,00 | 36 gLEDS
tetrahadra
D LBl scapolites Marialite ete,
2.00 b6 Sodalite Ultramarine,helvite,
danslite,hauynite
2,00 fu 6 Paracelsian | Danburite,hurlbutite
2400 L G Analeite Pollucite,loucite
2400 e Coesite BeF, (1)
2400 Le Gue B 10 Feldspars Sanidine eto.
2400 LGB} 2 Chabazite
2400 Lo OBl 2 Gmelinite
2,00 LD Beryl Cordierite
2,00 ] Milarite Onumilite
2,00 lm6oml 2 Faujasite
2400 bmbwl2 Cansrinite
2,00 Y Bdingtonite | Retrolite,thomsonite
| 2,00 o] Petalite
2,00 Sl Heulandite Fhilippsite
2400 SeT=8 Keatite
2,00 6 Oristobalite Gamgu'h, suprite,
| PO DAy KaFez0l
Ka&iaﬁ%
, ; Na 0eS40y, Aﬁaa. :znwﬂ)
| | |
12,00 6 Tridymite

Nepheline, LiKSO4 l




Table 3=2, (continued)

Sharing] lepes teunits
Types Subtypes coefi=fand loops of| PFamilies HMewbers
glents |tetrahedra
2,00 6=8 ‘uarte Berlinite, Alas0s,
HeBucryptite, Gel,
BAsO)
2,15 BunLimls Bertrandite
2715 Fon Liom 58 HYemimorphite
2,75 | Zedie] B0,
2400 Bl Phenacite Willemite
%400 | Swlms AgpHely
4400 oo warzite BeS, BeTe
4,00 | Fmb Sohelerite | DBe0, MgTe
benetworks with 4,00 Bl Cubanite
one or more
edges shared 4,00 4 Cooperite
600 Bub 3'3.203 ﬁnﬁf‘a
8.00 octahedron { Fluorite Antifluorite, Nen0,

5ow mﬁﬂ

cenetworks with
one Or mWOre
faces shared

K0, Zr0p, L0
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Chapter IV
Classification of sillcates



There is a complication in the structures of the
silicates whioch makes their classification difficult. This
complication gives rise to an inconsistency in the treatment
of various siliocates by different authors and can dbe illus-
trated in three points,

(1) It is generally aoccepted that il can replace Si
and when it does the Al tetrahedra still remain part of the
tetrahedral framework, In some oases, however, the Al
tetrahedra are not 80 regarded. Por example, cordierite is
usually regarded as a collection of isolated rings of eix Si
tetrahedra, but Al tetrahedra connect these rings into a
continuous three-~dimensional network.,

(2) 1In other cases, other cations ocour in tetrahedra
and they are sometimes acocepted as part of the frame and
sometimes not. For example, B in danburite is accepted as
part of the frame, and dendurite is classified a2 a silicate
with a three-~dimensional tetrahedral network. Ca ooccurs in
tetrahedral coordination in KagcaSie‘ and is soccepted as part
of the framework, s0 that the oryetal 1s a derivative of
the oristobalite structure. But tetrahedrally ccordinated
Be is not accepted in bderyl, phenacite or bertrandite, nor
Zn in willemite, hemimorphite or hardystonite.

(3) Almost every author treats this matter ditfercntlyl‘ﬁ.
Most authors exclude cations other than 81 or Al from the
frame, and some authorse inelude a few, Btrunzﬁ acoepts
most tetrahedrally coordinated cations as part of the frame,
and even treats beryl and cordierite as three-dimensional
networks. lNobody, however, has given this problem a system-
atio treatment, as yet.

Geometrically there are several cations which ocan sub-
stitute for silicon in a tetrahedron without changing
significantly the size of the tetrahedron. 7Table 4~1 is a
list of some cations whioh can Le found tetrahedrally coordin-
ated in silicate structures and some which might eduoeivably
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be present in tetrahedral coordinstion. They are listed in
order of inoreasing cation-oxygen radius ratio. The

minimum radius ratio geometrieally required for a tetrahedron
is .225, 80 thut any one of the catione listed from B to Ca
in Table 4~1 can fit into an oxygen tetrahedron., Dus to its
large size, however, Ca distorts the tetrshedron considerably.
It i8 interesting to note that most of these cations have
eimilar electro-negativity, 80 that their substitution for
gilicon would not signifiecantly change the nature of the
chemical bond.

The list of the observed cation-oxygen distanoes
indicates that the variution in the size of the tetrahedron
is not great. Except in the case of the B and Ca tetrahedra,
the different cation-anion distances are almost equal 1o the
gation~anion distances in the 81 or in the Al tetrahedra.

There is only one important criterion which can lead to
discarding a tetrahedron from considerstion as part of the
tetrahedral frame, namely the nature of its bonding. The
B8iliocates are considered to be mesodesmic structures
striotly speaking, however, only the pure siliocass are really
mesodesmio. In the aluminosilicates the oxygen bond to Al
oease L0 De mesodesmic, since the charge of the oxygen is
not halved exactly between two cations., The frame, lowever,
remains a unit, since in each tetrehedron more than nalf of
the cation's bond strength is expended holding the tetrahedral
frame together, and less than half is connecting the cation
t0 the rest of the struoture. In oomoclusion, not only the
allicon tetrahedra should be considered as oconstituents of
the tetrahedral frame of a silicate but also tetrahedra of
other cations, provided that half or more of the cation's
bond strength is distributed within the tetrahedral frame,

If less than half of the bond strength is distridbuted within
the frame, the tetrahedra belong to the rest of the struocture
rather than t0 the frame. A good example is offered by

axinite, Here the four membered rings of Si tetrahedra are



oconnected by Al tetrahedra, but the Al's contribute less
than half of their bonding strength to oonneot the 31
tetrahedra and more than half to0 conneot the Pe ootahedra
and B triangles. ‘

0f course, it 18 expeocted that in a silicate a large
number of tetrahedra are 51 tetrahedra in order to classify
the erystal chemically as a siliocate, If the replacement
of Si by another cation goes as far as the complete replace-
ment of all the 8i, the compound should not be oanlled a
silicate, chemically, although structurally it still might
be ineluded in the silloates. An example 18 yttro-garnet
in whioh practiocally all the Si is replaced b& Al.

By including several cations in the tetrahedral frame
of the silicates, some major and minor changes have to be
made in the classification of a few silicates., The most
striking of these changes concern the classification of
beryl, cordierite, hemimorphite, phenacite, willemite,
bertrandite, hardystonite and melilite. Beryl and oordierite
are three-dimensional networks instead of single rings, and
hemimorphite, phenacite and willemite are three~dimensional
networks instead of pairs of tetrahedra, Bertrandite is
also a three-dimensional network instead of a complex of
chains and groups of tetrahedra. In hardystonite and
melilite the pairs of tetrahedra become sheets of tetrahedra.

In hemimorphite, phenacite, willemite and bertrandite,
all <’ the cations are tetrahedrally coordinated. These
tetrahedra build up & neutral network, somewhat similar to
that of the pure siliocas. The cation-anion ratio in these
minerals is higher thar in 3102. and oonsequeatly the sharing
of one oxygen by two cations would no longer give a neutral
structure. In order to obtain neutrality, the oxygens in
these minerals are shared by up to three cations and some of
the 07 4e replaced by (OH)™,



In Table 4-2 the sillcutes are olaseified according to
the clasaification of the tetrahedral struotures, presented
by the author, and according to the suggested evaluation of
the tetrahedrally coordinated cations. In the preparation
of this table, special attention was paid to the silicates
with three~dimensional networks of tetrahedra. Fhotographs
of the models representing the tetrashedral frames of the
three-dimensional silicate networke are showmm in the plates,
The technique by which these models were constructed is
described elsewhere.
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Table ‘lv"l .

e

Some lmportant tetrahedrally coordinated

cations in silicetes.

Radius ratio | Observed ¥-0 | %leetro-
Cation Examples
{ealoulated) | distance pegetivity

B3 .25 1.50 .05 & 2.0 Danburite,
datolite,homolite

Bec* #28 1,60 1.5 Beryl,phenacite

A8’ 30 - 2.0 -

po+ 34 - 2.1 fstiliwellite

ﬁik* «38 1.60 1.8 2illcas,silicates

Li* ‘39 - l.G

AL3* kel 1.78 1.5 Eluminaailicates

Gel o3 1.80 ‘1.8 feny silioates

ca?* o4b - 1.5 ﬁﬁn? silicates

Mg?* 47 1.80 1.2 felilite,
kermanite

Pe?*3t | 48-.50 1.80 1.5 -2.0 Btaurolite,
ordierite

Zn?+ 250 1.82 1.8 temimorphite,
hardystonite

miht .55 1.82 1.6 ohlorlomite,
strophyllite

oa®" .67 1.50 1.0 ia,02310,,

Data from Pauling®, mort?, smitnl®
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ﬁ"XO &*2*
Classification of ailloates.

fsharing | Repeat-units {
Types subtypes coeffi~ | and loops of | Pamilies Hembers
slents | tetrahedra \

B¢ Isolated a.single totra~ 1.00 Olivine, garnet,

groups of hedron zireon ota.
tetrahedra
bupairs of tet- .28 Ilvaite, tilleyite,
rohedra thorveltite
celarge groups 140 {5 ‘unyite
d.nixed groups 1,11 | le2 Vesuvisnite,ullanite
Be Twomdimen~ zesdngls chalus .30 {2 Pyroxenss instatite eto,
sionally
noneternsi-~ 150 |3 wollastonite
nated -#trucs
tures of 1.50 | % R:odonite
tetrahedra
besiugle rings 1.50 {3 Ranitoite Catsploite,wadeite
1.50 14 Axinite
1.5 |6 Tourmaline Dioptase,caledonite
z,double chains 1.62 |8 senotlite
1.67 |6  {Amphiboles Anthophyllite etc,
1.75 | & 31114 entte
Ki,double rings
leomultiple chains
fyrultiple rings
«mixed chains ond
rings
Be Twoedimon- h,single sheets 1.79 |48 Apophylite  |Datolite
sionally
non=~terni- 1.75 |4=8 Gillepsite
nsted siruec-
tures of .75 |6 @&sa Clay eote.
totrahedra
1.7 |6 Seplolite
1.78 15 ielilitos Hardystonite otc.
b.double shesats ;

2:00 (46 X Celsian

SO

wromes:

pe.multiple ghosts

3 ?,mi;wd gheets




Table hw2, (continued)

‘ 5uixed types |

¥
foces shared)
i

'
:
H

=

E}:arinp; Repeat~units
Typos iubtypes 087 i=jand loops of| Families lombers
o3 ante tetrohedra
4, Three-dimen~ | 2.nvtworks 2000 | dmSmGm8 Seapolites iariclite otc,
sionally non~] with cor-
terninated ners sha- 2,00 | h4=b sodalite Ultracisrine, hauynite,
structures of] red denalite, helvite
totrahodre
2:00 | dmied Parsocelsian | Danburite, hurlbutite
el | Al Analeite Follucite, leucite
2600 | AufmBud Joesite
200 | limbmBad0 feldspar Sanidine etc.
2400 | lembenBalR Chabezite
2000 | lwAmBal2 Gmelinite
2200 1 Lm0 Beryl Jordierite
2400 | Amfmly #4larite Osumilite
2,00 | feBmiz Faujusite
2,00 | hmbeil Cancrinite
2000 1 LB adingtonite | Yatrolite, thomsonite
00 [ Smd Fetalite
2:00 1 Bubad Heulandite Philippeite
2,00 Sm7wb Keetite
2.00) & Oristobelite] “arneglelite,linsCasiOy
2,501 6 Tridymite ¥epheline
Ze 30 w8 uartz Hi-Busryptite
2275 Bmliwds Bertrandite
CoT5]  Bmijmimd Hemirmorphite
5,00 Swbed Fhenecite ¥1llemite
b.networks with
one or more
odges shared
¢.natworks with
one or more
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The following plates are photographs of
models of the tetruahedral frames of sillicatss,
and of the tetrahedral models of silieca struc-

tures.

ilate 1.

Secapolite Sodalite
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Paracelslan

Cossite

Plate 2.

Fl&t‘ 3 »

Analcite

Sanidine
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Chabazite

Beryl

Tlates 4.

Flate 5.

Gmelinite

MIlarite
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Faujasite

Petalite

Plate 6,

Canorinite

Plate ? -

Heulandite

Edingtonite

Keatite
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Hi-Cristobalite

Bertrandite

Plate 8.

Hi-Tridymite

Plate 9.

Hemimorphite

Hi-Cuartz

Fhonaaitq
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Chapter V.

A simple technique for the comstruotion
of polyhedral models.
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When oomplex crytal structures are studied the viasu-
allzation of the structures reguires good strueture models. The
standard ball models help this visuslizetion, but they are often
either too expensive to purechasse or too time~consuming to oon~
struot, Most structures, however, can be illustreted by polyhede
rel models, where the polyhedra represent tie eﬂor&;nﬂﬁiaa poly-
hedra of the catlions., These polyhedrsl modsls not only illus-
strate the linkage of the polyhedrs and the whole struotwre, in
many ozses better than a ball model, but also offer possibllities
for simpler and inexpensive model construction techniques.

The use ol polyhedral models is not unknown smong
erystallographers, ost of the published models are made of oard-
bosard paper and some are mede of wooden bloocks or plaster of pa-
ris, The first technique is eimple and time-saving, but the mode
éls are primitive and temporery only. In studying tetrahedral
stractures the author sought a simple and fast teochnigue to make
over LO structure moéala; An effielent and inexpensive technigue
wag found whioch permits making well-oonstructed and sturdy mod-
els in a matter of a few hours, .

{1} The tetrahedrs of the model are made of acetatse
sheets. /cetate sheets of 15 mils thickness were found to be the
most satisfaotory for the sonstruction of models with a soals of
1 inoh to 2 Angstroms. The soetate sheets are first dulled with
steel-wool, This foggling provides the necessary opacity of the
tetrahedre and helps to hide the uinor impsrfections 1@ the model.,
Bquilateral trisngles are then aét out., This eutting can be
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schieved by a simple peper cutter, but if a large number of
models 18 antieipated, it pays to have a die made for mechani-
oal outting. The acetate triangles are then glued into tetra-
hedral form with acetone, whiahfa solvent of the eacetate and
dries very cguickly. This processe oen be aoccelerated if a mold,
suoh as shown in Flg. 5~1., 12 used for tihe assemblage of the
tetrehsdron.

{2) The tetrahedra are atteched to each other by
means of narrow acetate strips (1l mm, by 8 mm.). These strips
are set at the approximete linkage angle and fiatanad to the
abrraspondiug corners of the tetrehedrsa with acetons. The two
softened soetate surfaces stiok ilmmedietely and the Jjolnt her-
dens in & matter of & few seoonds., This approxlimate angle is
later ohnﬁgad to the ocorreot engle by softening the acetate
strips with & drop of acetons. The model is assembled by fol~
lowing & good drawing of the structure, or by construoting the
motif of tetrahedra of the structure and repeating it aceor-
4ing to the symmeiry of the space group.

(3) Before attaching the last few tetrehedra to the
model, the model is placed in a 1/8 ineh brass wire frame. The
freame might represent a unit cell or any multiple or fraction
of the unit oell, The last tetrahedrs are then sdded to the
model to eomplete 1t. In some oases the brass wire haa to be
embedded in & tetrahedron. This can be done easily by cutting
and partially opening the tetrahedron, and removing & cirou-
ler area of acetate whet¥® the wire is to penetrate through



yi&' 5«1,

Photograph of & mold to aid the

assemblage of a tetrahedron.
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the face. The tetrahedron is then glued together again after
it is pleced on the frame. In order to fix the position of the
model in the wire frame & few narrow sitrips of acetate c&n be
glued to peripherislly located tetrahedrs and the frame. Trans-
parent strips of acetate oan be used for this purpose in order
to prevent their interference in the appearance of the modsl.
¥%hen the model 1s ready and all the linkage Bngles are sst cor-
rectly and extra acetete strip can be added to eech connected
sorner to assure firm connections, The model with the frame ocan
then be fixed to a base, if desired,

A model of high-quartz oonstructed by this technique
is shown in Pig. 5«2, In this model the struocture is extended
beyond & unlt cell in order to illustrate the 6- and 8- mem-
bered loops of tetrahedre. All the silica and siliocate models .
oan be construocted similarly and plastic balls ocan be added to
illustrate the location of the non-tetrahedrally coordinated
oations of the silicates, Mlca and clay models can be construc-
ted by the oombinetion of tetreahedral and ootahedral sheetis.

This technique is bvelieved to be satisfaetory for the
eonatrustion of any polyhedrs}l model. If so desired the poly-
hedra of the different cations ocan be painted in different
ocolors, These models are impressive and falrly permanent. Un-
fortunately, the acetate becomes brittle after a few ysars and
the model may fall apart if they are handled constently. It is,
therefore advisable to keep them in closed display 99598 49

much a8 possible.
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?&8# 5”2 .

Photograph of a high-guartz modsl
construeted by this technique.

65






PART II.



3upplement to Chapter I,

The orystael structurs of coesite, the dense,

highepresaure form of silica.
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Introduoction and historical notes.

Ooesite was first msde by L, Coes Jr. He discovered
this new form of silioca, performing hlgh-pressure experimente
in 1952, In his paparl gannouncing this discovery he listed some
of the physieal and chemiocal properties of coeslite, The most
important of them are:

Composition: pure 310,,

Density: 3.01 guw/cc.,

Hardness; in the hardness range of apinel,

hefractive indices: n,=1.5%9, ne=1.604,

Chemical innertness: coesite ean not be dissolved in hot
hydrofluoric aoid,

Stability: ocesite can be made at & pressure of 35,000
atmospheres and at & temperature of 500-800°C, Below
and above this pressure quartz 1s yroduned;

Inversion: Above 1,7009C. opesite trensforms to ailioca
glase end eristobelite.

This discovery aroused sonsliderable interest in miner-
alogieal and geological &s well as in chemical and thermodynemi-
eal oiroles. The mineraloglists were obvicusely interssted in the
new member of the silies family, while the geologists antleipa-~
ted coesite to be a poasible mineral in deep seated rocks. Eelo-
gltes, kimberlites and peridotitea were trested with hydrofluo-
rie sold in order to obtaln coesite, The results were unsuccess-

ful. This failure, however, does not exclude the possibillity
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of natural oocurance of coesite in other deep seated rooks,or
even in these ultramefic rooks, in a small amount, Some ge-
oclogists expected to find coesite in meteorites, which may
represent the oomposition of the mantle of the earth. These
tries wers also unsuccessful. The chemlats and the thermody=-
nemists, obviousely, had great interest in coeslte, one of the
first fruits of sxtensive high-pressure experiments.
Crystallographers also looked at coesite with a
spsclal interest., It offered & new silica strueture whieh might
not only give & new structure but could be expected to illusw
trete the behaviour of the silica structure at higher pressures.
Professor ¥. J. Buerger expscted %o find a basic siliea strue~
ture in ocoesite for some slilioate aerivativeﬁ. Feldspar appesared
toc be a possible derivative structure of coesite, due to the

olose similarity between the cells of the two ocompounds,

Morpholeogy of coesite.

¥We were presented a small sample of coesite orystals
by Dr. H. %. Thibault, Assistent Director of Reaoar&h and De-
velopment, Norton Company. The orystals were made at 40,000 at-
mospheres pressure, at 700°C, temperature and were ocured for 15
hours. Some of the orystals measured up to 100 miorous end
offered good meteriel for x-rey investigation. Approximately
104 of the sample was oomposed of single orystals end the re-
maining 90% of twias. nemsdell's’ desoription of the orystels
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applied to our sample, exocept that almost all of our seample
was euhedrel. The twins were mostly twinned on the (012)
plane resulting in perfect tetrahedral prisms. The single
prystals were flat, and as Hamsdell desoribes then, they re-
peable smell gypsum oryatals.

Yany of the well developed single orystals were ex-
amined with an optical gonlometer. All the aingie orystals ap-
peared to have developed the asame facaa, The best crystal is
shown in Pig. 1-2. The cesloulated interfacial angles, axisl ra-
tios and gnomonie projection standards are listed in Table 1.5,
The observed interfaciel angles were found to gorrespond to
the caloulated angles within 3 30', and they were found to cor-
respond to the data recorded by Ramsdell.

Preliminary z-ray lovestigation.

A perfeet single orystel of ooesite, similar to the
one shown in Flg. 1-2., was wmounted oun & precession oamsra and
diffreotion photographs were obtalned with MoK, radiation, Good
photographs were obtalned and the following cell dim;nsiana wers
measured

8 =b =717 £, o = 12,38 %, and y = 1209,
Theses measursments are sllghtly lower {han the measurenents re-
sorded by Ramsdell. Ho significence is attached to this disorep-
anoy, since, firat, the two samples came from d&ifferent charges

and mey have had different cell dimensions and, second, nelther
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of the two investigators used precision instruments.
" The precession photographs showed regular extinctions

as follows:

{hkl) type, h+l= 2n

(bkO) type, k= 2n
These extinotions indicate a B-centered cell and & b glide. The
possible space groups are, sonsequently, B2/b and Bb. Since the
morphologioal investigation indicated & center of symmetry, B2/b
was expested to be the more probable spaoce group.

The number of formula welght of 310, per cell was oal-
oulated. It was found that the occesite cell contains an excess
mass of 35 ohemical mass units. The nature of this excess mass
has not been investigated, but it appears probable that it rep-
resents impurities in the struocture. Through private communica~
tions ( ¥. Dachille, V. Walkenberg ) we learned that coesite with
a density of 2.94 was also made, Wwith this density the number
of 810 per unit cell of coesite would be just slightly above
16 (1.e. 16.22), This indicates that man-made aesaibé oontains
oonsiderable amount of impurities, and probably our sample con~

tained more than some others,
X~ray powder pattern.
A few orystals of coesite were powdered and mounted in

8 1l4.6 mm. diemeter NDebye-3cherrer camera., CuKx radiation at

40 kv, and 20 ma, was used, Relatively good powder patterns were
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obteined, The ¢ values were caloulated from the diffraction
lines and were ocompared with the ¢ values recorded by Coesl.
The ecorrespondance was found to be very satisfaotory.

Since & large number of diffraction lines were ob-
teined and the lines were relatively sharp, an attempt was mede
to index them, Since coesite has a monoolinie cell the indexing
could not be achieved by the aid of charts, A modification of

Tto's method for the indexing of powder photographs was selected:

the iz’a of the dAiffrsction lines were ocomputed and compared

-

with the ﬁ?’a celoulated from the unit sell dimensions obtained
previousely. iccording to the correspondance of tue calculated

and obasrvad<§gls the diffraction lines were indexed, Most of the
lines, especially the stronger lines, were indexed with no daif-
fioulty. Some weeksr lines, however, could be indexed but with

a larger diserepancy between the osloulated and ebsefvad.%z’s.

—

1
The correspondance between the caloulated and observed Eﬁ'a

L d
-

ranged between ¢ .005 and i .0l. Considering that the caumera
uged 18 a standard non-foousing oamers and that the radlation
wavelength is relatively short, this correspondence can be re-

garded satlsfectory. The caloulated and observed 4's s&nd the

iz's with the corresponding indices are listed in Teble l-6.

L
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{ The observed intensities were later cheoked with the struo-

ture faotors and were found to be reascnsble, )

Collection of three~dimensional intensity data.

The symmetry of space group B2/b derfines that one
quarter of the limiting sphere oontains all the diffraction spots
with non~equal intensities. Consequently, it is sufficient to ob-
tain one quarter of the limitng sphere. The following guarter
hes been selected:

along & axis from -a to «+a,
along b axis from O to +D
along ¢ axis trom 0 to +g

The precession ocamera was used to obtain the intensity data. Due
to the meshanioaml limitation of the camera and to the blank area
in the ocenter of the photographs of higher levels, different set-
tings of the disl exis waz necessery to obtain data.ror the Tfull

quarter, Four settings were found to be necessary:

Settings: A dial readins:  0%0!
B 90°00"
¢ (a}),(b) 49%12', 229%12"
D 30005

These four setiings are illustrated in Fig. 1-10,.

Several levels were recorded with eaoh setting. With

setting A the levels from 0 to £, with B from 0 to 3, with C
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(a) and (b) from O to 5 and with D from 0 to 4 wers recorded,
Settings C (a) and C (b) do not require two different photog-
raphs, sinoe with either setting the data of both sre recorded,
one on the top and other on the bottom half of the same film,

The intensities were measured by the H.I.T, modificaw
tion of the Dawton nethod:

The x~ray Iilms were not developed in the usual x-ray
developer, but in a specislly prepared 4odak D-76 developer, to
whieh 2 ec of 1.0% ¥T end 20 ce. KBr were added per gsllon,
These films were then printed on Kodak commercisl ortho £ilm, so
the dark dirfractian gspots of the first film became trunsparesct
spots on the print, The light transmission of these spots was
then measured by means ol Qbhotoelectrie‘cell, whose light aper-
ture was kept oconstant during the whole procedure, After measur~ .
ingz the light transmission of the spots, the transmisaion of
the beokground wes wewsured on the white radlation streak, ade
Jacent to the spot. The difference of these two readings gave

the relative integrated intensity of the diffrsction spot. The

weaker spots could not be measured by the photoelsotric cell, con-

seguently, the intensitles of these spots were eatimﬁtcd by eye.
Invisible diffraction apots, whioh were not absent due to extinc-
tions, were assigned e minimum intenaity.

| The relative intensities obtsired were then multipllied
by the reciprocal value of the Lorentz and pél&riz&tian factor.
The Lorentz and polarization factor was read from the %gaer»
Grenville~Abrahams charts available in the orystallogrephi®

laboratory.

P



?iﬁq l*lﬁ.

Mal settings of the precesslion camers.
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The linear absorption coefficient for 81&2 has been
¢sleulated using the mass abgorption data in the Internationsle
Tabellen zur Bestimmung von Yristallstrukturen:

Wai #o .
= ( u-;:%n- X LT S } X =
1 100 31 350 T 0
by — 6» G —— . (’ .G
( Too X 670 + To5 ® 1:50 ) x 3.01 =

= ( 467 X 6,70 + 4533 X 1.50 } £ 3.01 =

- 11.8 on~t = 1,18 mn~t

where i is the weight percent of the element in the formuls,
is tho mass abmorption coefficient and‘i is the density of the
compound .

The dimensions of the orystal used are ,10 x .03 x .15
nm, and the orystal was mounted with the largest dimension per-
pendioular to the direction of the x«ray beanm, Consequently, the
largest mean distance the x-ray beam had to travel in the orystal
1s in the order of .12 mm, and the shortest mean distance is

+03 mm. 5o the x-ray beam effected by the most end by the least
absorption is:

*01&2

I= IQQ = ,868

I - IQQ-'Q3§Q“ ‘965

This means that the maximum veriation in the effect of the &b
sorption on the Intensity of the diffraction, due to different
orientations of the orystel, is less than 10% of the intensity.
Thie is small enough to be negleoted.
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Preparation of the Patterson maps.

Prom the adjusted intensity data the three~dimensional
Patterson funetion was ocomputed at the ¥M.I,T. Computation Cen-
ter. The three~dimensionsl Fourier progre: wes prepsred by Dr,
W.8ly. The Patterson funetion was evaluated at 1/60-th inter-
vals for 1/8-th of the reciproosl cell. These functions were
plotted on reeiprocal cell maps and were contoured,

Sinoce it was decided that the minimum funetion method
would be epplied, « set of maps was prepared for 1% by l% unit
eell in tha plane of the & and b axes and for each 1/60-th level‘ a
along the ¢ axis. The contours on these maps were ooloursd acoor-

ding to the magnitude of the peaks, and depressions were sheded.

Loocation of inversion peaks,

The possible types of ratterson peaks, their number,
relative welght and relationships with each oﬁhar are illustra-
ted in Table 1-1, This table shows that there are 24 inversion
peaks in the primitive cell of ocoesite, & of them are 3i~-31 and
16 0«0 inversion peaks., In order to solve the Patterson funotion
by the minimum funotion method one or more of these inversion
peaks have to be located”?, There is a oconvenient relationship

between inversion, rotation and refleotion pesks whioh 1is
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Illusatration of the relationship between

inversion, rotation apnd reflection peaks.
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illustrated in Fig.l-ll., for the space group of ocoesite, 24 in~
version peak oandidates have been located in the primitive ocell
by the procedure which has been described previousely and is il-
lustrated in Fig. l-i4.

4 large number of these inversion peak oandldates,
howesver, were expected to be false, Half of them, right away,
were known to be false, since half of the candidate peaks are
only symmetry repetitions of the others, an inverslon peak can-
didate below the refleotion plane at ¢/4 hes o symmetry equiva-
lent sbove the refleoction plane and they both fulfill the inver-
siop~rotation-reflection peak relationship. But only one of the
two represents the inversion veotor. Only 1/4 of the primitive
oell 12 the assymmetric unit. In order to cover both sldes of the
reflection plene, however, 1/2 of the primitive cell had to be
considered in the search for iuversion peaks. Consequently, there
were only 12 possible inversion peaks in the 1/2 primitive sell
considered, The looation of these pesks are listed in Table 1-7.
The symmetriocally equivalsnt pesks from which only ené g&n be &
true inversion peak, are recorded side-by-side as (a) and (b).

There is no other way to distingulish between true and
false inversion peaks but to ocarry out the conatruatian of one
or more g& maps for each of these pesks, The same level Lig map
has been consatructed by the ald of each one of ths ocandidates.
Four out of the 12 gave essentislly the same pattern while the

other eight had different wild patterns, It was oconcluded thet
the four inversion peak oandidates yielding similar }, maps

were true inversion peaks &nd the others were false., The true
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inverslon pesks in Table 1-7. are l(a), 2(a), 3{a} and 4(b).
The relative magnitude of the pesiks in the lgﬁ and %ﬁa 0E ps
ware almost the same, and the relative magnitude of the pesks
in the ét&er two M, maps were also simllar but different from
that of the first two meps, It was decided to use number 1 and
2 inversion peaks for the construstion of edmplete sots of mine

dmum Tunotion maps.

Construotion of the minimum funotion maps.

A set of My maps was prepared for both number 1 and
2 inversion peaks. This is socomplished by superimposing two
Patterson maps, with a 2 coordinate difference between them,
~ which z ooordinate corresponds to the z coordinate of the in-
version peak. The origin of the higher level masp is placed at
the x,y coordinates of the inversion pesk on the lower level
map. The origin of the ¥, map 1s then takﬁg at the new oenter
of inversion whioh is half way between the origins of the two
Patterson maps. In Teble l-8, the ocorresponding pairs of Patter~
son maps are listed for both of the inversion peaks;, with the
new z ocordinates of the M, maps. All the coordinates are given
in 1/60-th units,

The M, maps were combined into }; maps by traoing
the minimum funotlion of the two rotetion-equivalent halves of
the My maps, Pig. 1-12. The two sets of i maps were, in turn,

sombined into one sst of Mg maps by tracing the minimum
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funotion of the oorreapcn&ing,gh maps of each set., It was found
that these two sets of ¥, maps had two different cemters of in-
verasion at their origins. The origin of the lgk mBPE Was accep-
ted and the origin of the 4y maps was shifted to the center of
inversion corresponding to the origin of the ;ﬁk maps. Flg.l-13,
illustrates this procedurs,

The resulting 1”%§8 maps revealed the structure of
coesite. There are only two small and insignifiocant peaks in

the ¥y maps whioh 4o not represent an actusl atom location.

Refinement.

The atomlc eoordinstes of the g maps were then refi-
ned by eight cyoles of refinement. This has been desoribed 15
detail previousely, Table l-9,.shows in detail the coordinates
of each cyole of refinement and the R, R', B and socale faotors.
After the third oycle of refinement six diftraetiwé, and after
the sixth oyele of refinement all the diffractions with siné.
less than .095 were removed, since it is belleved that these
diffractions were too much effeocted Ey primary extinection, The
list of the indices of these diffructions ars given in Table
1-10, _

The refinement program simultaneousely oaloulated the
structure factors and printed them along with the observed in-
tensities, The latters were soaled down by the computer to the

soale of the computed structure faotors. The correspondsance
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Combination of ¥, maps into ga mADS .
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Tig. 1=13.

Combination of two [, meps into oue 1, mep.
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between the observed and oomputed values was satisfactory. In
order to save oconsiderable typlng, ths structure faoctors and
the comparative intensities as printed by the computer have
been deposited in Professor M, J. Buerger's files.

The difference between the ocoordinates as obtalned
from the My maps and the finel coordinates after elght oycles
of refinenent are listed in Table l-3. The Tinal coordinates

for all the astoms in a full unit e¢ell are listed in Table lell,

The ovesite siruoture,

The structure of ocoesite has been descridbed previocuse-
ly end iz illustrated in Fig.'s 1l-7, 1-8 and 1-9%9. It is & new
three~dimensional silioca network, but it shows striking aimi-
larities with the tetrahedral network of the feldspar structure.
Both structures can be described as a oomposition of Lemembe-
red loops of tetrahedra. There are two.aymmatriaaliy non-equive
alent 4-meibered loops in eaoch of these two structures, and the
whole structure can be built up by the repetition of elther
one of these two rings. One of the a~ﬁamﬁera& loops has a center
of symmetry and the other is perpendicular to a 2~fold rotation
axis, Both these L-membersd loops are shown in.Pig.l-lk,, in
both the cossite end the sanidine (feldspar} struotures, The
dlagram illustrates that the rings in tns two struetures differ
only in the orlentatlon of the Iree corners of the tetrahedra,

Thess L-membered rings are also praseng in the para-

celsian, analoite and scapolite structures. But the orientation
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Pige 1~lh.

The two n9n~aquivglant h-membered loops

of tetrahedra in aoesite and in sanidine,

oo



Sanidine
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of the tetrahedra in the rings of these structures differ
considerebly from the orientation of tetrahedra in the coesite
and feldspar rings. It can ve concluded that the coesite struoe
ture is & new structure, but its basic chearacteristics are

simi{lar to the stiuctures of several silicates.
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Table 1-5.

Crystal morphologio data

of coesite.

a= 7,17 2 Pgidpily = 1:.501:1

be 7.17 & rpthpiqy = Le9kbila9klil

o= 12.38 & Po' 10 iXg! = 1el547:45791145773
§ = 120°00° /Aa% 0°00

a3bior=,57911.5791:1

Forms* ¢ é Y. Pa Pa=C % B A
o 010 | 90°00* | 30900* | 60°00" 90“06' - 60°00°*
b 001 000 {9000 | - 0 00 | 90%0*{ 90 00
g103 | 3340 [9000 | o000 | 3340 | 7355/ 5620
x 012 | 2630 |5219 | 6000 | bk 55 | 4565 | 69 19
4110 [-90 00 |30 00 112000 | 90 00 | 60 00 120 00
vill | 7131 {6118 | 3000 | 7350 | 3343 3343
4 1i1 bl 55 39 17 1120 00 63 22 63 27 116 33

* L.3, R&m@dsllB observed additional ((10l}) and ((013)) forms



X-ray powder data of coeslte.

Table l-6.

e Ty [ e | s
1| vw 6.23 | .0258 | .0258! 6.23 {002)
2| v | 5.69 | .0308 | .0320{ 5.57 (101) (111)
3! s 3.42 | L0851 | .O844| 3.34 (103) {111)
L1 vs 3.09 | .1040 | .1034| 3.10 (020) (230) (252) (212)
5| m 2.77 | .1298 | .1294 2:.%3 (022)
6 m 2.70 | L1369 | .1360| 2,71 (113) (123)
71 m 2.29 | .1894 | .1885) 2.30 (105) {121) (31I1) (321) (115)
g m |2.19 | .2076 | .2076] 2.19 (024) (220) (224) (212) (232)
9| = 2.04 | .2402 | .2402] 2.04 (301) (331) (1R3) (115) (133) (323)
10 =m 1.85 | .2927 | .2922| 1.85 (303) (333) (127)
11 m 1.80 «3089 .3100 1.80 {220)
12 = 1.71 <3415 | J3k481] 1.70 (107) (311) (381) (125) (325) (135}
13| = 1.66 | .3620 | .3620 1.66 (s12) (432)
W | = |1.59 |.3953 | .3953| 1.59 (305) (133) (313) (343) (305) (335)
15| m }1.55 |.4166 | 4266 1.55 (008) (040) (216) (650) (236)
16 | vw 1.50 | J4b4h | J4402 | 1.51 (sI4) (4k2) (353) (o42)
17 | w 146 | 4670 | L4670 | 1.46 (036) ) )
18 | ww l.41  |.5013 | .5013 | 1.4 (553) (521) (351) (345) (223) (135)
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Pable 1l=-6. {continued)

Xo. ﬁ‘iﬁ?“” .w_ﬂimm %2 G%:“”f Indicss

19 | m  [1.347] .5515| .5498 |1.438 (323) (551) (109) (246) (323) (226)
20 | ww  [1.323] .5716 | .5704 | 1,324 (116) (436) (452)

21 | = |1.288] .6031| .6014|1.289 (143) (513) (234) (234) (147) (218)
22 | w |1.235| .6557 | .6538|1.237 | (325) (551) (501) (355) (5Z5) (535)
23 m }1.188] .7090 | .7048 | 1.191 (503) (331) (3B1) (145) (515) (129)
2 | we |1.170] 7320 | 7239 |1.175 | (632) (2u0) (256) (228) (248) (428)
25 | ww | 1.070] .8699 | .8598|1.078 (513) (335) (157) (319) (139) (149)
26 w |1.040] .9242 | .9306 | 1.037 (060) (636) (519)

27 1 m }1.025] .9519 | .9566 | 1.012 (062} {346) {418)

28 | =m !1.015] .9709 | .9824 | 1.009 (k32) (165) (515) (1,2,11) (3,1,11)
29 w 997} 1.005 [1.006 | .992 (367) (329) (539) (529)

30 | vw | .986] 1.028 [1.034 | .983 | (260) (604) (343) (373)

31 - 973} 1.057 |1.06x | 971 (434) (723) (523) (058)

32 | w | .960|1.085 |1.080 | .962 | (35) (149) (735) (638) (159)

33 | w | .o1]1.130 [1.132 | .o40 | (2T (375) (157) (517) (1,3,11)
% | v 936 1.161 {1.137 | .938 (612) (248) (268) (428) (628)

35 w 2921} 1.179 {1.170 | .92 (173) (713) (525) (725) (606) (509)
36 | w | .903|1.226 [1.225 | .903 | (353) (618) (339)

37 | w .886| 1.274 |1.273 | .886 (351) (440} (531} (165) (701) (163)




Table 1-6, (continued)

% Nod 1§§§§"U‘N§Bff333§§§wa gf%;ﬁl‘t”d " Indices
38| w [.886 | 1.386| 1.293 | .88z | (072) (L,2,13) (3,2,11] (3,2,13)
39| w |.s67 | 1.332| 1.332 | .866 | (701) (383) (527) (159} (169)
40| ww | .860 | 1.351| 1.347 | .062 (616) (608) (4,0,12)(2,1,14)
BL| ww. ] .855 | 1.369] 1.369 | .855 (822) (074) (262) (622) (438)
k2| w 1.850 | 1.377] 1.347 | .853 | (2,4,10) (6,2,10) (2,2,14)
B3] w | 835 | 1.436| 1.429 | 836 | (355) (705) (535) (7I7) (267) (177)
bh| w | .826 | 1.460] 1.475 | .823 (4h6) (6,1,10) (2,1,14)
L5 w | W817 | 1.499| 1.499 | .817 (812) (315) (076) (836) (349)
k6 W | 801 | 1.557] 1.542 | .805 (1,2,15) (1,1,15)
w71 w | .7o1 | 1.598| 1.585 | .79k | (357) (626) (707) (640,10
L8 w | .780 | 1.642| 1.638 | .782 (175) (1Bs5) (719)
Wi w .76 1.660] 1.65, | 777 | (800)
Rotes: v@ = very weak
- weak
%. = mediom -
8 = strong
vs = very strong
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Table 1-7.

List of inversion peak candidates,

Peak

89

3

H
3

j

PSP ——

Looation and; Inversion pesk Rotation Rarleatian%
¥o.! magnitude off. cand idates peaks peeaks
peaks a — b
l x 8 12 18 0
y 9 9 39 30
z 13 17 0 13
Magnitude 342 342 740 750
2 x {G 30 0 o
y b b % 34 30
z 19 11 % 0 19
Magnitule | 360 | 360 738 530
3 x 27 13 i ze% 0
y O 30
z 13 0 17 | o 13
3 Megnitude 300 300 | 320 750
- x 0 30 0 0
| y 4 30
| % 26 0 26
% Magnitude 300 306 738 530
% 5 x 8 22 8 o
| ¥y 22 22 52 30
| 2/ 13 17 0 13
| Magnitude 238 238 348 750
e | % | oy | % :
| y L5 b5 15 30
13 17 0 13
Magnitude 232 232 381 750

i

P———

Note: The denominator of 60 has been omitted in the coordinates

of the Patterson maps.
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'I’Ebl& 1“8 -
Superposition data for the oconstruction of Mp maps.,

Inversion| FPlace the origia at the inversion pesk ‘tc give My map g
peak No. | of map No. location of map ¥No. level %
1 7 s, or (6) | 1/2 |
55 (5) 11/2
9 56 (4) 2 1/2 |
10 57 (3) 31/2
11 58 (2) L 1/2
12 59 (v 5 1/2
13 0 ' 6 1/2
1 1 7 1/2
15 2 8 1/2
16 or (l4+a/2) 3 - 9 1/2
17 (13+a/R) L 10 1/2
18 (12e+a/2) 5 11 1/2 ;
19 (1l+a/2} 6 12 1/2
20 (10+a/2) 7 13 1/2
21 (9+a/2) 8 | U 1/2
2 10 1 sl oar (9) 12
11 52 (8) .1 1/2
12 53 (7) 2 1/2
13 54 (6) 3 1/2
14 55 (5) -l 4 1/2 |
15 56 (&} 51/2 ;
: 16 or (l4+a/2) 57 (3) 6 1/2 é
117 (13+a/2) 58 (2) 71/
118 (12+a/2) 55 (1) L8 ?

1/2



@abls 1-8. {oontinued)

Inversion | Flagce the origin |at the inversion peak | to give ¥y map
peek No. | of map No. location of map No. level
2 19 {1ll+e/2) 0 9 1/2
(oont,) ,
20 (10+a/2) 1 10 1/2
21 {9+a/2) 2 11 1/2
22 (8+a/2) 3 12 1/2
23 (7+a/2) b 13 1/2
2 (6+a/2) ! 5 b 1/2

Note;: The denominstor of 60 has been omitted in the coordinates

of the Patterson mapa,
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| De#erIpvion

Table 1-9.
Atomic coordinates and other data of each

ocyele of refinement,.

Cyo

le=n

3 4

Teflnement

1st

2nd

rd

ith

5th

6th

7th

&th

Soale
fastor

R
B‘
311

81,

X

B W SN S - - B "W S N - T I B - I S L B«

35652
46,69
36.39
«1600

.1100
1.000
+5100
+5300

1600

1.000
«0000

i «0000

«0000
1.000
«5000
+7500
«1100
1.000
«2700
« 9200
‘.1300

1.000

f5h3l
36.11
10.37
1501
.0803
«1082
1.110
«5052
+5373
«1581

«790
.0000
«0000
«0000
«+984
+5000
<7500
«1124
1.194
«2635
+9302
#1287

878

5423 Skl

27.55

5494
1448
0788
«1083
1.085
«5054
+5383
1577

o724
«0000
<0060
«0000

«967
#5000

7500

e1136
l.146
«2621
«9359
»1277

«903

25.26

5.19
o1hh3
+0763
«1086
1.027
»5058
5386
1577

689
«0000
«0000
«0000
1,009
«5000
+7500
01134
1.041
« 26438
9372
«1274

+923

5406
18,35
2.58
«1416
0749
21084
+503
+ 5060
+5383
+157%

632
.0000
0000
+0000

.828
«5000
+ 7500
#1154

+997
+2676
+9376
«1272

908

5427
18,00

243
«1408
0741

+1084

«875
+5060
5384
1575

+639
«0000
+0000
.0000

.858
»5000
»7500
o1149
l.032
«2680

9382

+1270
+975

«5378
16.94

1.96
<1406
.0738
»1084

.817
<5063
<5385
+1576

.589
.0000
.0000

«0000"

«827
«5000
«7500
.1168
1.102
2686
+93%
«1259
1.006

.5374
17.03
1.93
« 1404
.0738
<1084,
817
5063
+5386
1577
+599
0000
.0000
0000
" +839
+5000
+7500
.1164
1,180
.2693
9397
1257
1.070

«5363
16.95
1.9
+1403
0735
.1084

.813
.5063
.5388
«1576

.600
.0000
0000
«0000

.856
«5000
.7500
1166
1.197
« 2654
9405
(1256
1.111
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- Table l-%, (eontinued)

Desoription

Cyocles of

ref

inenent

lst 2n€ 3rd 4th

5th

6th

7¢h

e tsicimeneeag

8th

93

0

B o8 W M m R O« M

. 3000
+3200
.1100
1,000
.0100
<4700
+2200

| 1.000

+3038 .3031 3051 .3061
.3205 .3235 3243 .3278
+1062 ,1038 .1028 .1043
1,009 1.193 1.281 1.269
«0123 L0135 L0131 .O0llk
W4706 4701 o711 W4751
+2155 .2133 .2129 .2135

607 579 .585 .526

«3076
« 3285
«1040

14231

0135
4740
v2121

«561

« 3079
+ 3290
+1030
1.311
+0130
4735
.2123

«573

«3081
«3293
+1031
1.367
.0129
+4739
»2121

+525

« 3080
+3293
«1030
1.381
0123
4726
»2122

+656




(240)
(220)
(020)
(220}
(200)
(200)
(Ia2)

{331)

Indices of diffraotion with 8in@ ¢.095.

(131)
(131)
(321)
(121)
(121)
(311)
.‘illll

(311)

Table 1-10.

(301)
{301)
(432)
(232)
(032)
(322)
(022)

(212}

(202)
(002)

(202)

(I33)

(323)

(123)

(123)

(113)

(113)
(103)
(103)
(224)

{0=4)

(214)

(014)

{004}

{204}
(204)
(I15)

(115)

(Ios) .

(105)
(206}

(206)
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Table lell,

Atomic coordinates in a full

unit oell of coesite.

(1) xyz
x y z
81, 3403 +0735 #1084
81, «5063 «5388 »1576
0, 0 0 4]
0 1/2 3/ 1166
0# « 3080 « 3293 1030
95 ,0123 4726 #2122
(R} 2§ 2
x y -4
31, 4937 5612 8424
0 o} o 0
03 1/2 /4 8834
0y 6920 6707 «8970
Og +9877 5274 «7878




Table 1l-ll. (ocontinued)

{3) i‘ %"’y. 4

x y
81, -8597 4265 +1084
81, 4937 <9612 1576
0y 0 1/2 0
0, i/2 3/b «1166
04 +7306 5595 1256
0, 6029 »1707 21030
; 05 9877 0274 2122
(&) x, %*y. z
X y 2
81y +1403 5735 8916
84, 5063 .0388 . 8424
0, 0 1/2 0
0g 1/2 1/k <8834
04 . 3694 WANE 870k
0, . 3080 8293 8970
05 0123 9726 7878
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() xyz+30}

Table l-ll.{continued)

x y z
31, 6403 .0735 6084
0y 1/2 o 1/2
0, 0 3/h +6166
o, L8080 .3293 +6030
O «5123 4726 .7122

{6) x5 z «%- 0 %

b ¢ ¥ z
si, 3597 <9265 »3916
s1, «9937 4612 3424
0, 1/2 0 1z
0, 0 1/2 3834
04 «R2306 0595 374k
0 4877 5274 .2878
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Teble l«ll. {(continued)

-~ 1 1.1
(7) 2, 3-v, 2 +5 03
x ¥ z
s, | .3597 4265 .6084
8, | .99 9612 .6576
0y 1/2 1/2 1/2
0, 0 3/4 6166
05 2306 5595 6256
0, 1920 1707 6030
| 0g 4877 .027i 7122
{8) x, %wy, z wé 0 %
x y z
311 «6403 5735 + 3916
a1, L0063 0388 3424
0, 1/2 1/2 1/2
Oa 0 1/4 23834
93 <7694 s4405 3744
0y . 8080 .8293 3970
05 +5123 9726 .2878
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Supplement to Chapter II,

The relative energies of rings of tetrahedra.
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Computation of the energles of n-membered

rings and an endless ohsain of tetrahedra.

Projections of n-membered rings of tetrahedra were
osrefully drawn to & socale of one inch to one unlt length. The .
values for n were 2 %o 10. The tetrahedra in these rings were
oriented as described before, and conseguently, in the drawings
the two shared oﬁraaré and the eenter of the tetrahedron are
in the same plane, while the unshared corners are equal distan-
ces above and below this plane, The ocorners of the tetrahedra
were lettered, and the centers were assigned & number, as it 1is
shown in Fig. 2-3. The interatomlc distances were carefully
measured to three significant flgures on the drawinga. The mul-
tiplicity of each type of interatomlc distance was determined
by the symmetry ol the rings. The ilnteratomic distgneaa, their
multiplicity faotors and the pruducts of the lnvolved atoms
were tabulated and the emloulation of the energles was carried
out in the tables, as it is shown 1n Table 2-1.

i similar calculation for an endless chain of tetra-
hedra was also undertaken, with certain approximations. A chaln
of 30 tetrahedra, oriented similarly to the tetrahedra of the
rings , was drawn to a soale of one inch to two uait lengths.
The lettering of the elsments of the tetrahedra are shown in
¥ig. 2=4., It was found that beyond & certain number of tetra-
hedra some types of interatomic distances differ only by less

tlan the error of meeasurement, and oonsequently, they can be
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regarded equal, These interetomloc distances were grouped beyond
this oritiocal point and the seme interatomic distance was as~
slgned to them. The different types of interatomic distances,
and the limits beyond whioh some of ther: are sssigned the same
interatomic distances are shown in Table 2-2,{a)}. This table
also inoludes other deta necessary for the computation of ene
ergies, such as the product of the charges of atoms correspon-
ding to the interatomic dlstanoes, and the multiplioity fectors.

All these essential data are repeasted in Table 22,
(), and the caloulation of energles is carried out in this
tabulated form, similerly to thet of the n-membered rings of
tetrahedra, This caleuletion is, however, limited to only 20
tetrahedra in the ochelin, Beyond the 20-th tetrabedron there are
only two different interatomiec distances, one iz between repule
sive atoms and tue other between attractive atoms. Both hav§
the same products of charges, and multiplicity faetors, The
repulsive energy is slightly higher than the attractive, con-
sequently, this difference was caloulsted to & limit beyond
which it becomes negligible. This ealculation is shown in
Table 2-2, {(c¢)., The total approximate energy of the sendless
shaeln of tetrahedrs was obtained by the summation’ of the finel
energles of Tadble 2~-2,(b) and Table 2-2,{0).



?ign 2""3 .

Illustration of symbols used in the
ocomputation of energies of n-membered

rings of tetrahedrs,

RV RS
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Illustration of symbols used in the
computatlion of snergy of an endless

chain of tetrahedra,

102






Table 2-1.
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Energy oomputation data of n-membered rings of tetrahedrsa.

Attraotion = ,952,

~6%4 = ~ 2.443

n_Type Charge Distance 1/Dist, rPotential Multipl. Attract? Repuls®
1-D 4 1.95 .513 2,052 2 Ie10k
1-2 16 1.4 877 144032 1 14,032
A 2 b 1495 513 2.052 2 4.104
A=D 1 2.30 435 435 2 +870
A-B 1 283 353 v353 2 V706,
C~2 & 1,00 14000 8.000 1 8,000 R
C=D 2 1.63 4613 10226 2 z‘asgﬁf
¢<F 4 1.63 «613 2:452 1 ziaééﬁ%,
o | 16,208 2s¢siﬁﬁ§f
Repulsion = 4,304, ;QEA”zMzNZAgQgZ
3 1eD 2447 ;aas 1.620 b 64480
O 1er 2.00 4500 44000 1 4000 A
1.2 16 1.83 546 8.736 2 | 17,472
A2k 247 405 1.620 & 6,480 S
A-D 1 2.8 4356 4356 4 1‘&2#,*'
A=E 1 3.25 308 .34 4 1,232
AT 2 269 .72 Thh 2 ' 1438
c-2 8  1.00  1.000 8,000 1 8,000 -
C=3 8 2,00 «500 4.000 1 44000
6-D 2 1.63 613 1.226 2 2,452
C-F 4 1.63 613 2.452 1 2.h52
06 2 2.69 .72 T2 1,488
28,960  28.008



b

1-D
1-F
1-6
1-2
1-3
AwZ
A-3
A=D
A=
A-F
A=G
A-H
Cu2
c-3
=D
geF
-G
0-I

1-D
l-F
1-G
1.1
1-2

4
8

&
16

| g
o

A SR A S S S L - L A B S

® & &

16

2:54
2436
346
1.97
2.79
2,54
346
2.79
3.23
3.01
3.93
TAN-TN
1,00
2.36
1.63
1.63
3.01
2,30

2.51
2.50
3.85
3.09
2.06

Table 2«1, {ocontinued)

n _Type Charge Distance 1/Dist, Potential Multipl, Attract? Repulsi

« 3%
b2l
+ 289

bﬁqg'

+358
+ 394
<289
.358
+310
+332
«254
236
1.000
k2l
613
613
332
435

Attraction = 1,208,

+398
<400
»260
324
485

104

1.576 L 6.4 304
34392 2 6,784
1.156 2 2,312
8.128 2 16.256
5,728 1 5,728
1.576 A 64304
1.156 2 2,312
.358 4 1.432
»310, b 14240
NI 4 2,656
254 2 . 508
236 2 472
8,000 1 8,000 '
3.392 2 6.784
1.226 2 2,452
2,452 1 2,452
661, " 2,656
1,740 1 1,740
38800  37.592

~8%4 = ~3.104

1.592 L 6.368
3.200 2 6,400
1.040 4 L.160
2,592 1 2.592
74760 2

15.520



Table 2-1, {ocontinued)
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n_Type Gharge Distance 1/Dist. FPotential Multipl. Attraoctl Repulsh

1-3
Aw2
A=3
AD
A=E
Awl
AwG
AeH
A=-T
Cm2

0-3

Cm4
C~D
CeF
C-G
C-1
Ced

1-¥
1~G
l-1
1-J
le2
1-3

16

8 N N e B8 N M R

Ll B - R o

16
16

3.23
2,51
3.85

2.66
3.12

3.10
4,30
4460
3.70
1,00
2450
3.09
1.63
1,63
3.10
.63
370

Attreotion = 1,756,

2eb5
2.57
b0l
3.48
4.57
2,00
Jobly

<310
«398
«260
+ 376
w321
322
«233
.217
.270
1.000
" 400
. 324
613
613
322
.380
.270

408
« 389
249
<387
«219
+500
»291

4,960
1.592
1.040

<376

0321
Lk

«233
«217

8.000
3.200
2.592
1,226
24542

NINA
1.520

«540

2

NONOE NN NP >

1.632
3.112

996
2.296

«876
8.000
L.656

NN NN

024 = ~ 4,507 .

94920
6,368
4e160
1,504
1.284
2.576
.932
868
1.080
£.000 |
6 +400
2.592
k2«k52
25k
2,576
3,040
1,080
L7.040 45,284
6528
64224
3.984
4592
1.752
164000

9.312
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Table 2~1. {eontinued)

n_Type Charge Distance 1/Dist, Fotential Multipl, Attractn, e

1-h . 16 3.99 251 4,016 1 4,016
-2 4 2.45 408 1.632 4 64528
A3 i b.01 o249 996 4 34964
Ak & be57 .219 876 2 1.752
A-D 1 2. 54 . 394 I TR 1.576
A-3 1 3,01 332 « 332 L 1,328
A-F 2 314 .318 636 4 2,54k
A 1. U o 40 227 227 4 908
A1 s +68 W14 2Lk .856
A-I 2 b12 V243 TN 1.4
i3 1 5414 195 .195 2 +390
A-K 1 5.40 185 .185 2 .370
Cwgd 8 1.00 1,000 84,000 1l 8.000
C=-3 8 2.57 « 389 3.112 2 6.224
o=k 8 3448 287 2.296 2 L.592
C-D 2 1.63 613 1,226 2 | 2,452
K 1.63 613 2452 1 2,452
c-6 2 3.14 318 636 4 2,544
Cel L 2.81 «356 1.424 2 . 2.848
c-3 2 412 243 W86 4 1,944
c-L & 3.26 2307 l.228 1 1,228
| 54,160 52,712
Attraotion = 1.448,  —e°A = =3.716
7 1-D &4 2,42 A13 0 1652 & 6.608
1.7 8 2,60 .85 3.080 2 6.160

1-0 4 4.10 o 2y +976 b 3.904



Table 2-1, (¢ontinued)

B _Type Obarge Distance 1/Dist, Potential iultipl. sttraet? Repulsi

107

1-I
1-7
i-L
1-2
1-3
1l
A=2
A=3
A=l
A«D
A=E
A-F
A=G
A~H
A-1
A-J
A-X
ALl
C-2
Ce3
Ceby
Ce5
¢=-D
C-F
0-G
g-I
Ced

g
L
8
16
16

P
o

NOFEOROFRNE RSN MNP R M o P

3.73

5405

Laelh
1.97
3.55
boled
2.42
bel0
5.05
2446
2.95
3.12
b olphy
Lae72
4e33
5.51
5475
4476
1.00
260
373
bodhy
1.63
1.63
3.12
2.93
bhe33

$ 268
«198
242
«508

282

o227
413
o244
.198
406
«339
+321
225
+212
«231
.181
174
+210
1.000
«385
268
+242
+613
+613
«321
«341
«231

2,144
«792
1.936
8,128
Le512
3.632
1,652
«976
792
406
+339
6h2
«225
o212
o462
«181
+174
oh20
8.000
3.080
2edihy
1.936
1.226
Relb52
642
1.364
462

F N F N NN RN FE R T T T NN N

2

4,288
3.168
1,936

6.608
3.904
3.168

8,000
6,160
4,288
1,936

164256
G.024
7« 264

1.624

1.356
2.568

«900

848
1.848
V724
696
48L0

2,452
2.542
2.568
2,728
1.846



Table 2-1. (continued)
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n_Type Charge Distenoe 1/Dist. Potentiel Multipl. Attract} Repuisd

C~L

Cwf

i-F
1-G
1-1
l=d
1L
-5
12
1-3
1-k

A-2
A=3
A=l
Aws
A=D
AvE
A~F
A=G
AeH
Aol
A-J

L
2

W I
N~ S o & & «©

e S T = IR S ST R Y SR

3.65
476

Attraction = 1,100,

2437
2459
bo07

3,88
5,25
be56
5.68
1.9

3.58 .

4.68
507
2.37
4,07
525
5.68
R.38
2.88
3.12
L.38
o 66
bl
5.72

274
+210

h22
« 38C
246
.258
,190
.219
176
515
+279
v214
1,197
22
246
190
176
420
o347
.321
.228
<215
225
175

1.096 2 2.192
o420 2 ,84,0
; 60.128  59.028
824 « - 2,823
1,688 b 6,752
3.088 2 64176
984 iy 3.926
2,064 2 ho128
V760 b 3,040
1.752 2 3.504
704 2 1,408
84240 2 16 4430
b 16l 2 6,928
3 424 2 6,848
3.152 1 3.152
1.688 4 6,752
984 k4 3.936
+ 760 i 3.040
0L 2 1,408
o420 b 1.680
« 347 b 1,388
o642 b 2.568
.228 b 912
.215 I 860
© o450 b 1.800
175 b 700



Table 2~1, {continued)
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n_Type Oharge Distance 1/Dist, Potential Multipl. Attracti Repulsy

AwX
A-L
Al
AN
C=2
0=3
O=ly

‘c”n
CwF
CnG
C«I
Ced
C-1
C~M
C-0

g 1D
l-F
1-G
1-1
1.3
1-L
1M
1-0

1

£ o & N F D OF N e B B W

w & B o~ & oo

5.9
5.12
6,17
637
1,00
2,59
3.88
La56
1.63
1.63
312
2.99
Lol
391
5012
La.22

Attraoction = 1,168

2434
2,63
L.O7
k00
5.46
Lo,92
6.14
5.28

168
.195
162
157

1.000

. 386
«258
«219
613
613
«321

«334

.225
.256
2195
237

427
«380
WRL6
250
2183
«2C3
+163
«189

+168
+390
162
2.157
8,000
3.088
2.064
1.752
1.226
2,542
. 2642
1,336
o450
1,024
» 390
948

*‘gh = - 3,074

4L

A 2 ST OO e I O N L

672

1,560

324

o314
8.000
6.176
44,128
3504

2.452

2,452

2,568

2.672

1.800

2.048

1.560

+ 948

1.708
3040

984
2.000C

$732
l1.624
<652
1.512

LR - o B . A

6.832
6,080
3.936
44000
2.928
3248
2.608
l1.512



Table 2«1, (continued)
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n_Type GOherge Distance 1/Dist. Pctential sultipl. Attract® Repulsh

l-2
1-3
Led
1-5
A2
A-3
Al
Ae5
AeD
Awd
h=F
A
A=H
A-T
A-T
A=K
AL
AN
Awf
A=Q
Cm2
C3
Cmbs
G5
c~6
C-D

16
16
16

™)
o

LR T - ¢ T A T T o B G I N Y ¢ B L A S S A o - P - -

1.92
3.61
4490
5.57
2,34
4.07
5eb6
6.lb
2.33
2.85

La36
468
be57
5.90
6.1l

5452

6.72
6.94
5.78
1.00
2+63
4,00
ha92
5.28

-~ 1.63

521
277

+ 204 .

«180

27

.246
.183
,163
429
.351
.318
4229
.21
.219
.269
,163
L1681
V149
V144
173
1000
.380
+ 250
+203
.189
,613

84336
boli32

3.:264
‘2880

1,708
«984

i732

o652
42G
« 351
+636
« 229
o214
+4 38
«169
«163
« 362
+ 149
oLy
173
8,000
34040
R2.000
1.624
1.512
1.226

2

L S S S o - Sul Y ol o Sl . P AR R Y Sl B S N Sal - SRS -V B .V

| 6.832

3.936
2,928

2.608

8,000
6,080
44000
3e248
l.512

16,672
8.864
64526
5.760

1716
LeAOk
Ru5ki
916
856
1752
676
652
Lol 8
«596
.576
692

2.452



Table 2~1. (ocontinued)
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n_Type Oharge Pistance 1/Dist. Potentiul fultipl, Attrectd Repuls?

10

C-F

el

G-I
C=d
C-1
Ol
C~0
CeP

1-b
1-F
1-06
1«1
1-d
1-L

1-0
1P
1-2
13
1~
i-5
1-6
A2
A~3

4

N S " S Y

1.63
3.14
3.08
L.57
Lal6
5.52
ba7R
5.87

613
+318
«325
«219
240
181
+212
«170

Attraction = 1,092,

¢ B & © & & & B

Tl
00 O O O

2.30
263
Ls07
T
5.53
5.07
bbb
5463

78
1.91
3.63
LS5
5484
6.15
2,30

4,07

435
« 380
o246
o248
«181
»197
155
178
o147
+52
+275
202
71
o163
o435
e246

2. h52
+636
1.300
o438
. s960
+362
« 8438
« 340

-0%4 = - 2,803

1

L
R

&

ORI

ny

1.740

3.040

+984
1.984
« 724
1.576
620
1.424
»588
8,384
b b 00
3.232
2.736
2.608
1.740
«984

£ O0F M N ONNR N PN PN R

24452

2454k

2.600

1,752

1.920

1ob48

1,696

6680

| 70.286 69,196
6.960
6,080
3.936
3.968
2.896
34152
2,480
2,848
1.176

16,768

8,800

6446l

54472

2,608
64960

3.?36



Tagle 2-1. {sontinued)

112

n_Typs Charge Distance 1/Dist. Potential Multipl. Attraot? Repulst

Avly
fim5
Awd
A=D
Awlf
AT
Al
A-H

A=Y

A=Y
A=N
Al
A-P
A~R
Ce2
C-3
C=4
Cw5
Cnb
C=D
C-F
Ce
c-I

Y

LB S D S - T - - S« S - - - S I N I U . o O R T U 5 S R R o

5453
646
6.78
R426
2,78
3.10
k.30
b 60
457
5,69
£.12
5.66
6.93
712
6425
7.30
7460
1.00
.63
L0
5.08
5.63
1.63
1.63
3.10
3.09

<181
«155
147
elb2
«350
+323
+233
«217
# 219
»170
«163
177
o1l
+140
«160
+137
132
1.000
+ 360
«248
2197
178
«613
o613
«323
324

» 724
.620
+ 588
oy
+ 360
«6i6
«233
e217
o438
«170
2163
+ 354
o 14
«140
4320
«137
o132
8,000
34040
1.984
1.576
1ob2h
1.226
2.452

.. +646

1.296

4

LU S - B - R SRR VRN I LV VI T A R Y R S S O o R R S

2.896
24480
1.176

84000
£.080
3.968
3.152
R 848

1.768
1440
24584
932
« 368
1.752
680
+652
1.416
576
«560
1.280
2274
+ 264

252
2452
24584
2,592



-

Table 2~1., {oontinucd)
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n_Type Charge Distance 1/Dist, Potential Multipl. sttract? nepuls’

Cmd

2

N N

Attraotion = 1.039, -elh = 24667

Led7
be25
5.66
5.00
6.25
5426

219
2235
177
«200
+160
«190

+4 38
«$40
«35h
+800
320
«760

b

p
b
2
&
1

1.752
1.880
1,416
1,600
1,280

+ 760

Tha992 73.953



114
" Teble 2-2. (a).

Energy ocomputation data of an endless chain of tetrahedra.

Pype 122  A=A; G=C, leA, A~2 A-B; 1a0p C=2 A=0, Ceiy
Charge 16 1 b 8 b 1 8 8 2 2
§§§§§§?o§’ R R R A A R A A R R
Multipl. 2 T | A b b 2 1 b 2
Dis- 1.00 1.63
tan- 1,63 = = 1,91 = 2,33 2,51 = 2.8 =
ces 3.26 = = 342 = 3466 442 = hu3k =

k.89 = = 5.00 = 5,16 5.95 = 5.90 =
6.52 = = 662 = 672 7439 = 7.50 =
8,15 = = 8.2 = B3k 9,00 = 9.1 =
9.78 = =  §.36 =  9.90 10.63 = 10.73 -

1l.41 = = 11.49 = 11,52 12,27 = 12.35 -

13.04 = = 13.10 = 13.15 13,90 = 13.97 =

W67 = = 1471 = 14.80 15,52 = 15.58 =

16.30 - = 16.34 = 16440 17,16 = 17.20 =

17.93 = = 17,95 = 18.02 18,78 = 18.82 =

19.56 = = 19,58 = 19.65 20.42 =  20.45 =

21,19 = = 21.20 = 21,25 22,04 = 22,08 =
22.82 = - 22,83 = 22,90 23,68 = 23,70 =
2445 = - - - 24,50 25.30 = = .
26.08 = - - = 26,12 26,92 = - -
27.71 = - - . 27.7h 28,56 = . = -
29,34 = = - « 29,38 30,18 = - -

30,97 = - = am 30,97 31.78 = - -
1«21 u - - = - 1-{}21 - p =

ch&rﬁo X 0 G A 0 A . 12 3 A T A - - - 12 a W o

mult 1})1 »

Hote: = algn indleates that distance is equal to the one left of it.
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‘Table 2-2. (b).

Type gﬁ;ﬁf;lf Distance 1/Dist., Attreotion Repulsion
1.2 &0 1.63 »613 24.520
1-3 40 3.26 +307 12,280
l=4 40 4.89 « 204 8.160
15 &0 6.52 «153 6.120
1-6 4O 8415 123 54920
1-7 40 9.78 «101 4,040
18 40 1141 .0876 3.520
1-9 40 13.04 L0767 3.080
119 40 14.67  .0682 2,728
1-11 40 16430 0613 2.452
1-12 b0 17.93 0558 Re232
1-13 40 19.56 L0511 2.0b4
1-14 40 21,19 O0k72 1.888
1-15 40 22,82 <04 38 1.752
1-16 8 Rk ole§ (0409 327
1-17 8 26.08 0383 4306
1-18 8 2771 «0361 289
1-19 8 29,34 <0341 273
1-20° 8 30.97 0323 e258
1A, 32 1.91 .524 174 3bk

1-44 32 342 292 9344

1oy, 32 5,00 «200 64400

1-h5 32 6.62 151 4832

lehg 32 8.24 2121 3.832

lwhy 32 9.86  .101 3.232



Charge x
TIP® nuitipl,

Table R«2.{b}.
{continued)

Distance 1/Dist,

Attraction Repulsion

l-4g
1-A10
1wy
1Ay,
1-hy4
1-A34
=415
A~B,
A~By
A-B,
AR 5
A=Bg
A-B,
A-By
A-Bg
A-Byg
A-Byy
A=Bya
AwB

13
A=Byy,

15
A<Byq
AR

18
ﬁ"ﬁlg

32
32
32
32
3
32

N
M

R I Y R o I I I I I R

12.10
14,71
16434
17.95
19.58
21 .20
22.83
2433

3466

5.16
6.73
8.34
9.90
11.52
13.15
14,80
16440
18.02
19465
21.25
22,90
Ri 4 50
26.12
27 Tk
29,30

0763
0680
»0612
<0557
L0511
0472
0438
429

273

+194

«149

+120

«101

» 0868
0760
0676
+0610
+0555
0509
20471
20437
» 0408
«0383
+0360
o0341

Robeh2

2,176
1.958
1.782
1.635
1.510
1.402

1.716
1.092
776
+596
«4 80
+b 04

o347

+ 304
2270
o2y
222
«204
«l88
o175
«163
«153
bk
'.}36
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Teble 2-2, (D).

{continued)

Type gﬁ:i?;lf Distanoe 1/Dist, Attraction Repulsion
A”BEQ & 30.98 (323 ) «129
lwﬁz 24 2.51 +398 9.552
1“63 24 bed2 o2h3 5.832
1-0, 2 5475 W7 4176
1065 24 739 135 3,240
1-Cg 24 9.00 .11l 2,664
lwﬁ? yzb 10.63 «0941 2,258
1-0g 2% 12,27  J0815  1.956
1~39 24, 13.90 0719 1.726
1«919 24 15452 0644 1546
I-Gll 24 17.16 .0583 1.399
1*@12 24 18,78 «0532 1.277
15 24 20,42 090 1.176
1.0y, 2 22,0 .O0bS5h 1,090
105 2 23.68 L0422 1,013
1, 12 25,30 L0395 A7k
10y, 12 26,92 ,0371 e
1*318 12 28,56 «0350 420
1-0,9 12 30,18 .0331 .397
10,y 12 31,78 .35 .378
Qw2 8 1.00 1,0000 8.000
a0, 12 2.85 351 40212
3*53 i2 i o 34 +230 2.760
AeG, 12 5,90 169 2,028
A-C5 12 7050 1133

1.596
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Table 2~2. (bl.

(oontinued)
Type gﬁ‘iﬁ;ﬁ Distemce 1/Dist. Attraction Repulsion
AsCg 12 9,11 110 1.320
A-G, 12 10.73 0932 1,118
&wca 12 12,35 » 0810 972
A=Qq 12 13.97 »0716 859
ﬁnglo 12 15.58 0642 776
A0y, 12 17.20 L0581 697
h=Cy 5 12 18,82 +0531 «637
4eCyy 12 20,45 40490 .588
ACy, 12 22,08 .OM53 «Sbi
&«Gls 12 23,70 «0422 +506
Q*&z 4 1.63 613 24542

Repulsion = ,389,

118

~02A = + 998

109,692  110.081
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Table 2«2, {o).

Ko. of ntﬁavarage Hultipl. Dirference Total X ohar
tetrabedra tetrahedron factor in distence difference ge
20
25 10 00052 0052 0624
30
40 20 00020 0040 «0480
50
75 50 200054 #0027 0324
100
150 100 0000038 .0004 ,0048
200 -
400 400 0000026  ,0008 0096
600 | |
5,300 95400  ,00000011 _ ,0001 0012
10,000 0132 L1584

Additional repulsion = ,158

Additional -eR4 = + 406

Totel energy of endless chain = + ,998

hd d&ﬁé .

+ lebOh = + Lokl & 0L




Supplement to Chapter III,

Classifiocation of tetrahedral structures.



120

History of the olassification of
tetrahedral structures,

8ince silloates form an important group of tetrahed-
ral struotures end since they represent important minerals in
the orust of the earth, they received muoh attention. Other
ionic tetrahedrel structures were desoribed and classlified acw
cording to their analogy with the tetrahedrsl structures of
silioates, Consequently, the history of thé olassification of
tetrahedral structures begen with the classifioation of sili-
oates,

(1) In the early stages of mineralogy several attempts
were made to classify the silicates. MHost of these olassifiom-~
tions were based on chemical and geological principles, and meny
of them persisted, The history of these olassifiocations 1is 4irf-
fioult to trace in the literature, leny of them are oconatantly
used, like the distinction between dirfferent silieates ascocording
to thelr cleavages, colors and weathering resistence; or the
grouping of the sllicates agoording to mineral agsemblages, or
to thelr occurance in similar rocks. '

(2) The Tirst erystaellographioc classification was
presented by ¥sohatsehkil in 1928, “ith this he opened & new
era of more rational olassificetion. He recognized three major
types:

I. Orthotype; separate tetrahedrs of 310,
II. Metatype: ohains of tetrshedra
I11. Peldsper type: networks of tetyrahedra.
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{3) “mchatschki's classification was improved two

years later by #. L, Bragg?4 who added two more types. Bragz's

classification has the following types:

I.
11,

III.

Iv,
V.

Separate tetrahedra
Self~oontained groups of tetrahedra
{a} pairs of tetrahedrs
{b) rings of tetrahedra
Chains of tetrahedra
{e) single chains
(b) doudble chains
Sheets of tetrahedra

Three~dimensional networks of tetrahedrs.

{L) In the same year it. V. W&r&y»ﬁz&bazs added sube

divisions to Bragg's classifiocation, These subdivisions are ba-~

sed on the presence
hedral struoture of
1,
2,
3.
b
S
6.
7e

{5) In 1932 Maehatschki

of accessory oatvions and anions in the ietr&—
silicetes, These subdivislons are:
Titano-silicates
Boro-siliocates
Carbonasto-gilicates
Vanado-gilicates
Sulphato~siliocates
3ulfo~gilicates

Silioates with several anlons

26 enlarged his own classifioca-

tion by the recognition of the sheet atruotures, The new scheme

of his olassification 18 az follows:
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I. Orthotypes. (separate tetrahedra, pairs,
groups and rings of tetrahedra )
II. letatypes., { ochains of tetrahedrs )
III. ¥loa types, ( sheets of tetrahedra )
IV, Feldspar types., { three-dimensional net-
works of tetrahedra )

{6) In 1936 C. llermann, 0. Lobrmann and H, ?hiliypz7
adopted a olassification whioch is essentlally that of W, L,
Brags, exoept that they divide the first group into two parts:

I. Beparate tetrahedra inaluﬁ;ng other than O
anions also
| II. Separate tetrahedra not inocluding other than
0 anions .
I1I. ¥inite groups of tetrahedra
IV, Two~dimensional extended sheet of tetrahedra
V. Three-dimensional extended structures of
tetrahedra.

(7) In 1937 H. Berman?® presented a elaséirioacion
whieh was based on the c;oas relationship between the chemicel
and physioal ocheracteristiocs of silicates, His types are;

I. 8ilica type X3:0 isz
II. Disilicate type X;0 2:5
17I. ¥etesilloate types

{a} chains %x:0 3:8
X:0 h:1ll
X130 1:3

{b) rings x:0 Bi3n
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IV. "yrosillicates X110 317

¥, Orthosilicates X0 14
He subdilvided these types into divisions according to chemiosl
an&'atructural similarities between different struoctures of the
same type. For example, in the silica type he listed groupslike:
Petallte, 31ilica, Feldspar, Nepheline, Canorinite, Sodalite and
other groups. Some of these groups were further subdivided into
members, The Feldsper group, for example, was subdivided into
monoelinie and trielinic members.

(8) also in 1937 C, Swartz?? came out with another
chamical modification of the alresdy aocepted scheme of erys-
tallographic classifiecation, His types whieh he called families
are;

I. Orthosilicates (single tetrahedra)
IT.0rthodisilicates (pairs of tetrahedrs)
III. %et&silicataa {(ehains and rings of tetrahedra)
IV. &etadiailicataa {sheets of tatraﬁedr&)
V. Dioxide typea
He divided all these "families" of silicate structures into sub-
divisions acoording to their associstion with hyafnua and anhye
drous ocombinations of bi-, tri- and quadrivelent cations. He
stressed these chemioal charsoteristios more than the geometri~
cal oharacteristies of silioates.

{9) In 1937, again, H. 3trunz’0 presented a classifi-
eation which differed from the principles of Machatsochki's
oclassirication only in detalls, He recognized the following
types:
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I. Three-dimensgionsel networks of tetrahedra
II. Bheets of tetrahedra
III1. Chains of tetrehedra
IV, Groups of tetrahedra
V. Islands of tetrahedrs (i.e. singles)
Vi. Mixed structures of tetrahedra
He asccepted other then 81 and Al tetrehedra in the tetrahudrel
structures of siliocates, such as P, is, Pe, B, Be, Zn, and Mg
tetrahedra, He subdivided his types into "normal types" and
"subtypes" according to the presence or ubsence of sadditional
anlons whiech are not e¢onneeted with the tetrahedrelly coordina-
ted ecatlions. He provided further subdivisions according to the
presence of other than O anions, and to the variations in the
cation-anion ratio in the struoctural-ochemioal formula of the
silicates,

Between 1937 and 1954 no significant changes were pro-
posed in the elassiflecation of the siliocates or otnér tetrahedral
structures. ioast textbook authors and teachers of minerslogy ac~
copted one or another of these classificetions or a combination
of two or more of them, It became a general practlice, however,
to separate the ring struoctures from the group structures and
aevoclate them with the chain structures. This was done because
of the similarity of the cation-anion ratios in the structural
formule of the chaln end ring structures. Similarly, the chemical
aspects of these clagsifications received considerably less at-
tentlon than their geometric prinmciples,

The system of al&aaifﬁeatian started by lMaohatsohkil
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and Bragg was homogeneous. It involved no other than orystal-
lographio prineciples. The other properties of silicates were
explained through thelr astructures. Later, however, other authors
started to 1lnvolve chemioal principles and the original classifri-
cation lost its power, The nannhemﬂgeneeua'nataro of the later
classifications is, probebly, responsible for their unpopularity.
In other words, the development of the claseificetion of sili-
cates becanme side-treacked and stopped. A revision of Machutaonki's
and Bragg's system, however, became essential due to the rapid
inorease of the determined silieate and other tetrahedral struc-
tures, espeoially of the three-dimensional network types.

In 1954 and in 1956 Wells and Liebau presented new
advances in the devslopument of the classification of tetrahedral
struotures., Both used different, but purely orystallographic
prinelples, and as far as they went, they 5raugﬁt invhealthy
ideas. These two contributions are described below in more

detail.

eview of Liebau's and Wells'

-

classifioation of certain tetrahsdral structures,

In his clagsirication of silicates ¥, Lisbnuk aocepts
the Machetsohki-Bragg classification and recognizes five types
of silicate structures:

I. Silicates with single tetrahedra
IX, 31llcates with groups of tetrahedra
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III. Silioetes with single or double chains and
rings of tetrahedre
IV, Silicates with sheets of tetrahedrs
V. Silicates with three~dinensional networks of
tetrahedra, |

For the subdivisions of these types he introduces & new
term whioh may be translated as l-, 2~, 3«, L4-, and 5-fold repeat-
units. This term refers to the number of tetrahedra in the peri-
odie unit of the tetrahedral structure of silicates. For example,
if, in s chain, each tetrshedron 1s translation eguivalent of
the other, the chain has a l-fold repeat-unit, but if only every
second tetrahedron is translationally identical, the chain has
a 2~fold repeat-unit, an éx&mple of & chain with 2-fold repeat-
unit is the pyroxene chain, and a 3-fold repeat-unit ochsin is
the wollastonite ohein, By the same principle double c¢hains and
rings can be broken down to suoh units and be suboclassified ace-
cording to them. An infinite number of chains welded together in.
a plane produce & sheet, and, conseguently a sheet can be sub-
eolassified according to repeat-units, Furthermore, a three-di-
mensional network of tetrahedra can be resclved into a collection
of sheets and cen also be subclassified acoording go the number
of tetrahedra in the periodic unit. Table 3»3. is a reproduction
of Liebeu's table of olassification.

This classgsification suboclassifies the simpler tetra-
hedral structures, such a&s thé chains, rings and sheets, but 1is
very awkward in the subclassification of the thisc-di&enﬁional

networks, In some structures it is hard to visualize subsheet



structures and aa}ect the units, These units are not equivalent
to the tetrahedral motif of the strueture, which latter repre-
sents the number of tetrahedra which is repeated by the sym-
metry of the structure, rurthermore, it gives only two or three
subdivisions for the three~dimensional neiwarks. in prineciple,
however, he introduced a good ides which can be worked into &
practical classification,

AJF. wells’? classifies the two~ and three-dimensional
networks of polyhedra. Hls classification will be reviewed here
with respeot tc the olassifioation of tetrahedral structures
only.

He derives the posslble networks analytiocally, using
the definition that in a two-dimensional network of tetrahedra
the centera of the tetr&hedra are oonnected to three other
centers of tetrahedra through the gorners. He calls such & nete
work a thwe-connected net. Jimllarly s three-~dimensional network
of tetrahedra is a four oonneoted net. The connections between
tetrahedra form different loops of tetrahedre, If.fé is the
fraction of the total number of polygons {loops) wﬁZ&h are

n-gons then

-

‘ 503‘*4)& "; ‘Pﬁ*\Pé Toaesnet ‘,n’l‘
In & three-conneocted net:
3¢3 + Iuph + 5‘/5 + 6’06 Yesnot IH‘PR '6,

and in & four-gonnected net:

3"?3 * A‘Pk + 5"P5 + 6‘P6 +aeeat n(fn = t);
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The solutions of these equations glve the possible
combinations of polygonal loops of tetrahedra in two- and three-
dimensional networks, The first 15 solutions for the twoedimen-
sional networks are given in Table 3~4. N in this table refers
t0 the number of tetrahedra in the tetrahedrsl motif. For exsm- .
ple, No, 1, net is the mioca or clay sheet, and Ho. 3. net is the
apophyllite sheet,

The derivatlion of the three-diasnsional networks is
wore complicated, The three~diensional networks are regarded as
collections of two-dimensional networks put together., The first
20 solutions of the four-connected nets are listed in Table 3-5.
In aotual struetures, No,l. net is the oristobalite structure,
Ho. 5. the quartz and 'o. 6, the tridymite structure.

This clessificavion certainly subolassifies the two-
and three-dimensional networks, but it has several drawbacks,
iirst of mll, it ia too complicated and the determination of the
place of a structure in this classification is & tedious under-
taking. Structures with uneven sharing coeffiolents in the type
of three~dimensional networks oan not be oclasaified in this sys-
tem, unless the combinations of different n-oonnected nets 1is

worked out. This would make the aystem even more obvmplioasted and
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wouli hide simple features in abstraot expressions., In oonclusion,

#glla* olassificetion gives the impression that he overocompli-
cated a simple problem, {owever, he discovered new principles

of subeclasslfication, namely the use of n-membered loops.
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Determination of the possidle sharing coefficient

rangas.

It has been recognizsd by earlier authors thut each type
of the tetrahedral structure has & definite range of possible ca-
tion-anion retios. Some silicate structures are even deseribed
by thelr siliea radicals. Due to the relationship between the
cation-anion ratio and the sharing coefficient 1t is obvious that
each type and subtype must have & definite range of sharing co-
efficisnts, These possible ranges of shariung coefficlents ocan ba
delfined by the ald of geomestrical and mathemstical logloe, xoapingA
the previousely defined assumptions A and B in mind.

1,{a). In & single tetrahedron all the Tour coraers
are unsiared and eansequantly, each coruer belongs po onae tetra-
hedron only. The éﬁariug coefficlent is thersfore, 1.00.

1,{b). In a peir of tetrahedra six corners are unsha-
red and two corners are joined out of the eight corners of the
two tetrehedra. Conseguently, 8ix oorners belong to only one
tetrehedron and two corners %o two tetrahedr&. These latter two
corners are Joined into one ovorner. The sharing co&frieieat ean

be expressed as an averege:
]

= 1,25  (3-1)

sharing coeffioient = 6x1 + 2x2

1,(0),(d). In the larger and in the mixed groups of
tetrahedra the number of ocorners shared is & funotion of the

numbeyr of tetrahedra in the group,., If it is assumed that the



groups do not form olosed rings, then if there ere n tetrahedra
in a group, there are (n-lj shered oornera, whiech represents
2{(p~-1) Jjoined corners., Sinos there is a total of 4n cornsers in
a group, there are 4n - 2(n-l) corners left unsimred. Since the
Joined corners belong to two telrahedra at the same time, they
are aslgned double welght and the unshared corners are assigned

aingle welght,

Sharing coefficient = L4 - 2(n-1)I » 2[2(n-1)I

in
e M = 20 4+ 2 + 4D = b
Ln .
- B -2, Jon-1 (3-2)
4n 2n

A gqulek look at the sguation reveals that the sharing coefficlent
tends to but never reaches 1,50, Conseguently, the sharing cocefe
fieient ranges from 1.00 to 1,50 for mixed groups snd from 1,25
to 1.50 for larger groups, if there are no loops in the groups,

If there are loops of tetrahedra in the grbup. tie
number of loegs should he added to the numerator of equation
(3~2)., If the grour consists of closed loops only, it 1s obvious-
ly & ring structure, but if in addition tc the ringb there are
tetrehedra which sre not part of & loop, the structure is a group
struoture, It is possible that sueh & group struetura,csntgina
& oolleotion of small loops, The meximum sharing coefficient for
such group structures would be 1.75.

2,{a),{b). In & single ochain or ring of tetrahedra

there ls one shared corner per tetrahedra. The number of shared

130



ocorners oan not either be more or less than one. If it would be
less the ohain would break into groups. If it would be more the
chain would either contain loops and would become & double or
multiple ohain, or would involve the sharing of edges,
Consequently, in a single chain or ring there are n

tetraehedra and n shured corners;

~

1(bn - 2nf - 2{2n) _

sharing ocoeffioclent = e

4n - 2n 4+ 4n
Ln

=

= 68 . 30 |
™ 1450 (3-3)

, 2,{(c),(d). When two ohains or rings are welded together

the sharing coefficient increases acoording to the freguency of
conneotion between the tetrahedrs of the two single chains of
rings. If the number of tetrahedre in the periodic unit of a
chain, or the number of tetrahedra in & ring, 13 n and the num-
ber of oonnections between the two ohains or rings is k per pe~
riodic unit of the chain,or per ring, the number of joined cor-
ners chenges from 2n to (2n+k)in the sharing coefficlent equa-
tion of {3-3).

Shering coefficient = SL4E = (2n+x)) « 2{20+k) _

Ln
- 4n - 2n - k + 4n + 2k -
4n
6n + k
"~ { 3=k )

The lower limit of the sharing coefficient range for double
' chains and rings 1s obviocusely 1.50 +, and the upper limit is
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1.75 where taree ocorners are shared,
2,(e),(L), (). ﬁu}ﬁiple schaing and rings ocan be

oonstruected by any number of connections between the single
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ohains or rings, Consequently, the lower limit of sharing coef-

riclent 1s that of the double chains and rings. st the upper
14imit all the four corners are shared and the sharing ooefli-
clent 1s 2.0C. The smse limitetions arec ebviously true for
mixed ohsins and rings.

3,{a). & single sheet of tetrahedra can be oonstruc=-
ted 1f more than two but less than three corners are shared.
This gives the same upper snd lower limits as {3«4).

3,{bj,{c)},(d), Theoretically two or morec sheets can
be welded together. In Lhls cuase more than two corners nave to
be shared per tetreahedra, up to the maximum of four. In te:mﬂ
of shariny coeificient that is a range from 1.50 to 2,00.

L,(a), i three~dimensional network of tetrahedre
can be constructed by sharing'thrae or more corners between
two tetrahedra, “uch & network has & sharing eoefficiant from

1.75 to 2,00. dore then two tetirahedra oan &also share a corner

in three-dimensionsl networks. The upper limit for this subtype

is a shearing coefflclent of 4L.00, Since the emrne}a of a tetra~

hedron represent atoms whose redii are about halfl of the length

of the edge of & tetrahedron, it 1s therefore geometrioally
impossible to joln more than four tetrahedra together turough
thelr corners without sharing ah edge .

| 4,{b). Sharing coefTiclents higher than 4.00 require
the sharing of edges. Consequently the lower limit of three-
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dimensional networks with one or more edges shared is the
sharing coefficlent of 4.J0, Tue upper 1imit 1s defined by a
geometrical llmitation. 3ince no more than eight totrahedra
oan be pleced togsther around a corner by allowing only edges
to share, the uppsr 1llait of sharing cosfficient is obviously
8.00.

L,{e). .ny three-dimaensiosal nstwork with & sharing
coefficient avove .00 regulres the sharing of fuces, The
maximun possible sharing coefficlent is 25,00 where all the
tetrahedral faces are shaured.

In prectice most of tuae sharing coeffloient ranges
defined sbove can ve restricted by anéréy considerations. For
example, groups of tetrahedra having s sharing coeffiolent
between 1.50 and 1,75 require the presence or jJ-mexbered loops.
Sueh & configurstion represents too high an energy concentration
and, conseguently, 15 higaly improvable, ~imilarly, & double
sheet of tetrahedra with the low sharing coeffioclent of 1.50
would require long stretches of slagle chaims within the sheet,
which reprrgents a higher energy then a more frequently connected
doubls ehain. Yhese luprobable shering coetfioiea} ranges are
placed between purentheses in Tauble 3-1.

( It might be necessary to dofine two terms used in
the determination of the sharing coefflecient ranges. These terms
are "shared corners” and "Jjoined corners”, The former refers to
a corner whioh is shered bstween several tetrehedra, while the
latter refers to th: several tetbahedral oornerg whieh are

joined in thig “shared cormer”. )
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Definition of an n-membered loop

in three-dimensional networks of tetrahedra.

The n-gembered tetrahedral loops are easy to deflne in
double oheins, rings and sheets, .\ simple observatlon reveala the
unmistakeble loops. In multiple sheet structures and sspecially
in three~dixensional nstworks of ﬁ@traﬁedra, however, the loops
nay require & definition 4in order to avoil possaible misunder-
standing. In the sodalite structure for example, 4w and H-uem-
bersd loops build up the 8o ezlled ultram&rima.b&akat. But 10~
and l2-membered loons ean also be visuelized, The 1lU-membered
loop oould be visualized where two 6- and one i~ membered loops
are besids eao& other and have one coummon tetrahedron, If this
common tetrahedron is neglaeted, the rest of the 6~ apd 4-mem-
bered loops give a complete l0-membered loop. The lZ2-membered.
loop e¢ould ba similarly visuallized around the aqua?or of the
spharisal outline of the ultromarine basket, These loops are
not acoepted as loops, since thoy ar@'only the descriptions of
poesible gaths‘which are directed through & number of tetrahedra
and end up with the originel tetrahedron. 3ueh patﬁs are not ocon-
sldered as loops in the literature and ere similarly Qisregurded
in the subelassification of tetrahedral struetures, However, to
avoid any possibility of ¢ mistake, the loops can be defined:

The n-membered loops aoccepted in the olassification of
tetrahedral structures are the regular or irregular closed loops
of tetrahedra which ure the smallest possible loops in the struoc-
ture and thelr sizes can not be decoressed by the inclusion of one

or more nelighbouring tetrahedra.
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Liebau's classification of silicates.
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' One-fold

Two-fold

Five~fold Iﬁav&n—f&lﬂ

Three«~fold
Single ohain kcuﬁo03)x FPyroxene wallaatonitﬁ Rhodonite Pyroxman-
ganlte
Double ohain| $111ime- |Amphibole | Xenotlite | Rabingto-
nite nite

Sheets Miea and |Apophyl-

clay lite
Hetworks Luarts Peldspar

Tridynite ‘

gristobe~

lite
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?&bla 3‘*&- -
Wells® olassification of simple

three~connscoted two-dimensionsal nets,

Het . Number of polygons in net

Ko, 3 & 5 6 7 8 9 1o 11 12
1] 2 - - - 6 - - - - - -
21 8,12} - - 5 - 7 - - - - -
31 4 - k - - - 8 - - - -
Li b 3 - - - - - 9 - - -
516 3 - - - - - - - - 1z
61 6 - b e e e e e 10 = -
716 ~ - 5 - - 8 - - - -
gl e6 T R 2
916 3 [ - - - - - - 11 -
1006 |3 = 5 =« « - « 10 - -
1112 |3 « -« 6 - e 9 e e .
12 | 6 T -
13 | 12 - 4 5 - - - 9 - - -
1 | 6 T « B e e, e o=
15 | 12 (e . - 5 7 . e e e o=




Table 3-5.

Wells' clasalfioation of simple

four-gonnected three-dimensional nets.

Het ﬁ Namha: of polygons in net

Ne. &% 5 6 7 8§ 9 10 11 12
1 | ? * e e 6 e e e e e -
2 |3 3 - - - 7 8 - - - -
3 |3 - 4 = 6 = 8 e e e =
s |3 - - - 6 - B - - e .
5 3 - = « 6 = 8 - - = -
6 | & - e e 6 e e e e e o=
7 | & « b e 6 « 8 e e - -
8 | & - 4 - 6 - 8 e e e =
9 |4 3 = « = = B = 10 = =
10 | b 3 = - - - 8 0§ = e =
O 3 4 =~ - 7 8 = 10 = =
12 | & 3 - 5 6 = = 9 10 - =
13 | & - 4. e 6 - 8 e e e .
1 | & - 4 5 . e 8 e e« e =
15 | & - k= = e B = - - -
16 | & 3 - 5 - - 8 - - - -
17 | & 3 bk = e« - 8 e e o« =
18 | & - 4 e = e B e = e o
19 | & 3 - - - - - 9 - - -
20 | & 5 J
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Supplement to Chapter IV.

Classification oi siliocates.
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qisborical notes and added discussion.

In 1937 H. Strunz’ presented the first silicate
classificantion in whioh other than 81 snd Al tetrehedra were
icaeptnd in the tetrahedral frame of the silipates, The influ-
\moe of his work was considerable in Vermany,., For example, W.
EitnllB of the faisepy Wilhelm Inatituts fir XKristallforschung
accepted his theory completely. But 3trunz's suggestion was
eitiner lgnored or rejected in this continent., Thare wgya but a
few arguments ageinst his consideration of other than 31 and Al
tetrahedra in the tetrahedral frame of the silicates., One of the
argusents stressed the different lonic radii of the other pos-
sihle ocetions., snother argument eriticized the different behavior
of 31 and other cations in infrered reflection spectrum and in
x~rays, It is true that such differences exist, but they are no
more severs than the difference between 31 and Al, With one ex-
ception. 31 and Al Dbehave similarly in strusture investipgations
using x-rays, while the other ocations beheve differently. But
such en argument is immaterial, sinece the totel numbar of elev-
trons in a cation has no importence In the bonding of a tatral‘
hedron.

Vhere could one 4draw the line between the agceptance
and the rejection of a cetion when suoh examples &3 the nmelilites |

existy In hardystonite S5i and Zn tetreahedra make up the sheet of
tetrahedre, While in akermsnite 31 and g tetrahedra and in geh-
lenite Si und Al tetrehedra, By all standards gehlenite would be



acoepted as & tetrahedral sheet struoture, but the others would
be rejected by most minerelogists. Suech a separation of other-
wise almost ldentierl structures in a eclassifiostion would cer-
tainly sound artificiel,

This irretional treatment of ths different cations is

reasognized by several authors, Wyeckoff, for exsmple, writes the

“following in the introduotion of his presentation of the siliocate

structurests:
"The classification that hes been acoepted is the con-

ventional one based on the sharacter a; the ailioan«oxﬁg@n‘aaae~
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oiations which prevail - isoclated silicate groups, silioste chains,

and sheets, eand silicate nets, To a degree, this 1s e¢lear enough
but with the borosilicates and sluminosilicetes it becomes arti-
ficinl end ecorrespondingly unsatisfactory." .

It seemz reasonable to suggest that all tetrahedraelly
eoordineted cations, with a previcusly described minor restrice-
tion, should be acoepted in the tetrahedral frame of a silicate.
This would certainly dissolve the "artificlal® taste of the con-
vontional olasssification and would persmit a erystallographie and

natursl system of classifiecation,
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Possible improvement of the polyhedral model

construotion tesohnicgue,

It is poesible to improve the previously described
technique to enadble one to construot completely permenent poly~
hedral models, Instead of meking the tetrzhedre of acetate
shests they ocould be molﬁéd of liquid plastic, and then cured.
Theses tetrahedra would be all solid and more decorative than the
ones made of acetate sheets, A hole ocould be drilled in each
apex of the tetrahedron, perpendioular of the épasita face, 3mall
brass rods, with corresponding #iameter, could be bsnt tc a pre-
calouleted angle and placed into the corresponding holes of the
tetrahedra. The caloulation of the bending angle of the brass
rods is relatively simple and most structures regulire the oal-
ouletion of less than ten different angles. Such en improved mod-
el would be more elaborate to sonatruet, but the estra affért
would be Justified if the model is expeocted to be u;a& in claas-
work,

An attempt was mede to construst such models. The
molds for the tetrahedra were completed, but due to the laock of
appropriste plastic the development of the ﬁeoh;ziqaa has been

teamporarely suspended,
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