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Abstract

Seismic imaging applications using a source or receiver in a borehole are significantly
complicated by the coupling of the wavefields propagating in the formation with
those in the borehole. In particular, a borehole source can generate a very large
amplitude Stoneley wave, and a borehole receiver will record both incoming body
waves and tube waves generated by the interaction of these waves with the receiver
borehole. These problems are particularly severe when the source and receiver are
in the same borehole, the single-well imaging configuration. In this thesis we have
explored ways of using conventional, staggered-grid finite difference codes to model
these wave propagation effects to help understand data that may be collected in such
experiments.

The most fundamental problem in simulating these effects with finite difference al-
gorithms is that both the borehole and the surrounding medium must be discretized,
and a modeling scheme that must finely discretize the small borehole (diameter about
0.20 m) will not be able to incorporate large models (on the order of 100 m) around
the borehole because of the sheer size of the resulting discretized model. We there-
fore show results of tests demonstrating that it is possible to relax these constraints
somewhat in two ways: (1) at lower frequencies (i.e., wavelength in the formation is
relatively large compared to the borehole), the borehole need not be discretized as
finely to accurately reproduce the same effects on source wavefields as a fine discretiza-
tion, and (2) as long as the wavelength remains fairly large compared to the borehole,
the size of the borehole can be increased without significantly altering the radiation
pattern. Both finite difference and stationary phase radiation pattern results confirm
the second point.

The second issue we address is the problem of tube waves recorded in single-well
imaging experiments. One way of helping to suppress the effects of these waves on
receivers, especially hydrophones, is to place damping devices within the borehole
between source and receivers. We use the finite difference method to simulate the
effects of dampers of various velocities and lengths. In general, the larger the velocity



contrast between the damper and the fluid, the more the tube wave is suppressed.
Likewise, a longer damper will also better suppress the tube wave. In contrast, at
least for realistic values, the center frequency of the source does not influence the
effectiveness of the damper very much. One very important consideration we prove
with the calculations is that the use of multiple dampers is very effective, suggesting
that an effective procedure in the field may involve placing two or more dampers
between source and receiver.
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Title: Professor of Geophysics

Co-Thesis Advisor: Richard L. Gibson, Jr.
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Chapter 1

Introduction

1.1 Objective

An important task of borehole geophysics is the use of full-waveform seismic data to

infer subsurface structures. Conventional sonic borehole measurements focus mainly

on primary sonic arrivals such as refractional compressional P-waves, refractional

shear S-waves and borehole Stoneley mode arrivals. These methods are only effective

in the assessment of near borehole formation properties.

In this thesis, we propose methods to effectively utilize three-dimensional finite

difference method to simulate seismic wave propagation in and around a borehole.

Also we propose methods for modelling the effects of tube wave dampers on artificial

attenuation of the dominant borehole tube waves. The goal of this work is to develop

methods that can eventually be applied to the task of simulating single-well imaging

experiments.

1.2 Background

Crosshole tomography can provide finer substructure details and utilize reflection in-

formation from boundaries outside the borehole. A variety of full-waveform crosshole



imaging approaches have been proposed, ranging from VSP-CDP mapping (Baker

and Harris, 1984; Iverson, 1988; Abdalla et al., 1990), to migration (Hu et al., 1988),

to acoustic diffraction tomography (Devaney, 1984; Wu and Toks6z, 1987, Lo et al.,

1988; Pratt and Worthington, 1990a) or elastic diffraction tomography (Beydoun et

al., 1989; Pratt and Worthington, 1990b; Dickens, 1994). One of the major difficul-

ties concerning these techniques is the lack of understanding of the seismic signatures

radiated from various seismic sources placed downhole. Another problem is the ac-

curate time-picking of arrivals. Many of these methods don't consider the influence

of receiver boreholes and assume a constant velocity background with weak scatters.

Additionally, crosshole tomography is much more expensive than single-well tomog-

raphy.

There is also some increasing interest in single-well imaging. Hornby (1989) ob-

served reflected P- and S-wave signals originating from dipping boundaries away from

the borehole and, using an algorithm based on a depth migration before stack, formed

a high resolution image of the near-borehole bedding features. He also applied his

method to more complex geologic settings (Hornby, 1993). The method used the 2-D

finite difference method to simulate borehole refracted arrivals and to detect velocity

vertical variations. Although it can be applied to detect lateral velocity variations

in the horizontal well case, it is limited to very near borehole surroundings and a

high frequency assumption. Thus the waves in the borehole behave like classic rays

and Stoneley waves are relatively weak and, consequently, the refracted wave is high-

lighted.

Exxon (Chen et al., 1994) recently designed a single-well profiling tool suitable

for imaging steeply dipping geologic structures, horizontal well imaging, and low-

frequency logging. In their illustrations of these tools, the designers suggested that by

varying the spacing between the source and the receivers, one can record the reflection

signals within data windows where the tube wave is either absent or minimal. The

primary P wave propagates parallel to the vertical borehole axis, while the reflected P



wave has both horizontal and vertical components. Data recorded on the horizontal

components can be used to more easily differentiate a reflected arrival from a direct

P wave arrival. By using an array of three-component geophones, reflected arrivals

can thus be detected, especially when they arrive before tube waves. However, if the

formation is a slow formation, and the source-receiver spacer is not long, the Stoneley

wave will come before the reflected arrivals. Because the reflected arrivals are much

weaker than the tube waves, one will not be able to detect the reflections.

A complete analysis of single-well imaging is, however, not possible without under-

standing the borehole radiation and reception patterns and the interaction of seismic

waves with boreholes. The single-well imaging problem is more complicated than

cross well imaging, because the source and receivers are in the same borehole. In

this case, tube waves and primary refracted arrivals are the two dominant waves and

separation of the reflections from them in seismic data processing is thus difficult.

The first study of the effect of a borehole on an explosive source was done by

Heelan (1953). He studied the P and S-wave radiation from an explosive source

in an empty borehole of finite length embedded in a homogeneous elastic medium.

Lee and Balch (1982) extended Heelan's work by considering a fluid in the borehole

and used the stationary phase method in deriving a low frequency approximation.

Meredith et al. (1990) developed both numerical and analytical solutions to describe

radiation from a downhole source in the near and far field for a variety of downhole and

sources, and identified the Mach wave radiation in a slow formation. The stationary

phase formulation is also employed by Gibson (1994) in studying radiation from a

source in a cased borehole, where the stationary phase wavenumber is determined

analytically and the boundary condition equations are solved numerically. Dong

et al. (1992) investigated the source borehole effect on downhole source radiation

in homogeneous and heterogeneous anisotropic layered media. He gave analytical

approximations and numerical modeling using the boundary element method from

various downhole sources in different boreholes. Peng (1993) made a complete and



systematic investigation of the borehole receiver coupling theory. He studied the

borehole effects on downhole seismic measurements. He also developed numerical

solutions to take them into account and processing techniques to remove them from

field data.

Considering the various algorithms for full waveform numerical simulation, the

finite difference method is one that can't be ignored. The finite difference method

(FDM) has been widely used since digital computers became available. High-speed

and massively parallel computer machines now make it possible to use FDM to simu-

late very complex geologic structures. However, because the finite difference method

requires that the entire physical space of the earth model be discretized, the most

limiting factor is the size of the model which can be considered relative to the short-

est seismic wavelengths that are present. This limitation makes it difficult to study

the propagation of high frequency seismic energy at great distances from the source,

especially in 3-D situations. Both the computation time and the computer memory

requirements become important in the computation of synthetic seismograms for 3-D

earth models. There exists a large scale difference between the borehole geometry

and the surrounding formations so that the finite difference method is numerically

very expensive. In this case, saving memory and enhancing grid step sizes becomes

significant.

1.3 Outline

Chapter 2 gives first a summary description of the implementation of the three-

dimensional finite difference method (FDM). Then we discuss two methods to more

effectively utilize the finite difference method. The basic goal of these methods is

to use fewer grid points to model a larger model. The first method is to coarsely

discretize the borehole to enhance grid step size; the second is to use a larger borehole

and higher frequency. We find that in the low source frequency range, both in a



hard formation and a soft formation, a coarse borehole discretization will not affect

the computed borehole radiation pattern. If we use four points for the borehole

discretization instead of fifteen points discretization (Cheng, 1994), a tremendous

amount of computing time will be saved. In addition, if the borehole radius is much

less than the borehole fluid wavelength, the radiation patterns of two different size of

boreholes are very similar to each other. Hence, a larger borehole can be used in the

modeling, further increasing the discretization spacing.

Chapter 3 then discusses the use of dampers to simulate the attenuating of the

Stoneley wave. The goal is to explore ways to highlight the reflected arrivals in

single-well applications. The dampers are modeled as simple, solid material hollow

cylinders in the borehole. We investigate the effects of block length, width and block

material property on attenuating Stoneley waves, at both low and high frequency

and in soft and hard formation cases. We find that a hard rigidity formation has a

strong effect on attenuating tube waves. The reflected energy of the Stoneley wave is

proportional to the block top area. The longer a block, the stronger an effect it has

on the attenuating of Stoneley waves. But when the length reaches a specific value

(about 1/4 Stoneley wavelength), the effect will not increase. The same applies to

the block material and the block width.

Conclusions are provided in Chapter 4 along with an outline of the future direction

of our research.



Chapter 2

Effective Finite Difference Method

2.1 Introduction

The limiting factor of the use of the finite difference method to simulate borehole

acoustic wave propagation is the large scale difference between the borehole size and

the surrounding formation. The borehole radius is usually about 20 cm and the

seismic wavelength on the order of meters. A fine discretization of borehole requires

that the grid size be less than a tenth of the borehole radius, or namely in order of

centimeters. It is impossible to use a grid size of the order of centimeters to simulate

a model of tens of meters.

A number of finite difference methods have been proposed to circumvent this dif-

ficulty. However, most of them do not directly treat boreholes. The stress around

the borehole is calculated separately or other methods are used. Two representa-

tive ones are the receiver borehole coupling method (Peng, 1993) and the equivalent

source/receiver array method (Kurkjian et al., 1994).

Peng developed his borehole coupling method for cross well tomography. His

method decomposes the finite difference simulation into two parts: compute the stress

fields in the vicinity of the presumed borehole locations, and apply the borehole

coupling theory thereafter to obtain the pressure in the borehole fluid. Peng's method



reasonably ignored the effects of the source borehole, because his applications were

to VSP experiments. However, this is not true for the single-well imaging, in which

the source borehole and receiver borehole are identical. The dominant waves in the

borehole are the primary arrivals (Stoneley wave and the refracted waves) excited

directly by the source. The waves generated by the incident reflections are very weak

compared to the primary arrivals, and are hard to identify and separate from the

dominant borehole waves.

Again, the equivalent source/receiver array method (Kurkjian et al., 1994) is

suitable for cross hole tomography. The source borehole and the receiver borehole are

represented by a distributed seismic source/receiver. Finite difference method is used

to compute the body wavefield between the source and receiver borehole. The waves

that reach the receiver borehole are the body waves excited by the source borehole.

And the effect of the source borehole waves is negligible at receivers in most cases.

However, their method must be altered for single-well applications so that it is a bit

complicated to utilize their method. it difficult for accurate simulation of borehole

primary arrivals.

The work in this thesis is motivated by the characteristics of the single-well imag-

ing. A single-well imaging problem can be divided into four parts: (1) the radiation

pattern of the source that determine the waves that escape the source borehole and

propagate to the far-field formation; (2) the propagation of the waves in 3-D medium

that encounter the dipping formation subsurfaces and reflect back to the borehole; (3)

the reception pattern that determines the interaction of borehole, the reflected waves

with the borehole; and (4) the interaction of the primary borehole waves and the

reflected waves. To simulate these effects, we develop a finite difference method that,

unlike the above mentioned methods, directly treats the boreholes. In particular, we

circumvent the limiting factor of the scale difference between borehole and formation

by using a coarser borehole discretization and a larger borehole.

The finite difference method requires that the entire space be discretized, and the

11 .1



fluid borehole-solid formation is approximated by a polygon. To avoid the boundary

scattering due to the inaccurate geometrical approximation, a fine discretization is

usually required (Cheng, 1994). However, if the borehole radius is much smaller than

the minimum seismic wavelength that is present, we show below that a much coarser

discretization will not influence the seismic wavefield either in the borehole or in the

formation. This is true for both the fast formation and slow formation. We also show

that further increase in efficiency can be obtained by replacing a smaller borehole

with a larger borehole yielding the same radiation pattern.

Below we first provide a brief description of the staggered-grid finite difference

algorithm. After this overview, we address the efficient simulation of single-well syn-

thetic seismograms by using the coarse discretization of the borehole. A direct com-

parison of different borehole discretizations proves that a coarse model is accurate.

Secondly, we show that a larger borehole can also be used in the modeling as long as

the ratio of wavelength to borehole radius remains fairly large.

2.2 Finite Difference Implementation

The finite difference method is based on a three-dimensional staggered grid (Virieux

1984, 1986; Cheng, 1994), using the stress-velocity first-order hyperbolic differential

equations. The time domain finite difference are adopted in fourth-order accuracy

in space and second-order accuracy in time. The grid dispersion and anisotropy

are negligible when using a grid spacing of 10 points per wavelength (Kelly et al.,

1976). The stability condition is obtained by choosing the numerical velocity much

larger than the maximum media physical velocity (Kelly et al., 1976). A damping

layer at the outside boundary is used to absorb the artificial boundary reflections.

Analysis of grid dispersion and stability can be found in a number of references

(Kelly et al., 1976; Virieux, 1986; Levander, 1988); Analysis of the absorbing of

artificial boundary reflections is discussed by Lindman (1975), Clayton and Enquist



(1977), Virieux (1986), and Higdon (1986, 1987, 1990).

Our finite difference scheme is implemented on an nCUBE-2 parallel computer

in the Earth Resources Laboratory, Massachusetts Institute of Technology (Cheng,

1994). A grid decomposition algorithm is applied to minimize the internode data

communications. This algorithm decomposes the whole grid into small subgrids and

then maps these subgrids into nCUBE nodes. The finite difference algorithm is cal-

culated on each subgrid. In message passing, only wave fields that are specifically

used in the neighboring nodes take part in the communication.

2.3 Formation Properties

Formation properties we use in this thesis are shown in Table 2.1.

Lithology V, m/s V m/s p kg/m 3

Solenhofen Limestone 5980 3300 3300

Berea Sandstone 4000 2300 2656

Shale 2770 1230 2250

Water 1500 1000
Table 2.1: Physical properties of lithologies and materials used in this thesis. Physical

properties include P-wave (V,) and S-wave (V,) velocities, densities (p). The Velocities are in

meters per second, densities in kilograms per cubic meters. References are Thomsen(1986)

and Peng (1993).

2.4 Borehole Discretization Effects

Our first approach to utilize the finite difference method effectively is to discretize the

borehole coarsely. In low frequency range, the coarser discretization of the borehole

will not influence the borehole radiation pattern and reception pattern. This is easy

to explain. Intuitively, if the borehole radius is much smaller than the minimum

seismic wavelength present, the roughness of the borehole boundaries will not be



"recognized" by the waves. Yet the result is numerically significant. For example, if

the borehole is discretized using 3 points per radius instead of 15 points per radius

(Cheng, 1994), it can handle three-dimensional model a 125 times larger, using the

same CPU computing time and memory.

Figure 2.1 shows the borehole geometry we use. A source is located in the center

of a fluid-filled borehole, surrounded by a homogeneous formation (shale in Table 2.1).

An array of hydrophones are located along the borehole axis in the fluid and an array

of geophones outside of the borehole in an array direction parallel to the borehole

axis. The source is monopole, with frequency 2.0 kHz. The borehole radius is 0.15 m.

The frequency and the borehole radius are so chosen that the borehole radius is much

less than the minimum seismic wavelength present. We then discretize the borehole

with 2, 4, 8, 12 grid points. We want to see the effects of the discretization on the

radiation pattern.

Figure 2.2a is the seismogram of pressure for soft formation (shale in Table 2.1).

The difference is small if we discretize the borehole with 4, 8, or 12 points. There

is less than 5% difference between the results of using 2 points and using 4 points.

We find that the errors in the refracted P-waves are much less than the error of the

Stoneley waves. This is likely due to the difference in wavelengths of these two waves.

The Stoneley wave has a smaller wavelength and will therefore be more sensitive to

details of the borehole model.

Figures 2.2b and 2.2c are the particle displacement velocities along the x-direction

(radial) and z-directions (vertical), which are perpendicular to and parallel to the

borehole axis, respectively. The distance between the borehole axis and the receiver

array is 0.3 m where the Stoneley wave still exists but has decayed. As we can see in

Figure 2.2, the P-wave's amplitude decreases, the S-wave's amplitude increases and

the Stoneley waves remain constant. This is expected from the radiation patterns of

P and S waves from the source in the borehole. Still there is no substantial difference

when the grid points per radius is 4 or larger. This means that 4 points per borehole



radius discretization is enough in general.

2.5 Effective Borehole

Figures 2.3a and 2.3b are the radiation patterns computed using the stationary phase

method. The formation is fast formation (Berea Sandstone, Table 2.1). A volume

injection source is used, with center frequency 600 Hz. The boreholes used have radius

values 0.15 m and 0.60 m. The ratios of the borehole radius to the compressional

wavelength are separately 0.0225 and 0.09. This means the borehole radius are much

smaller than the formation compressional wavelength.

On the whole, if the borehole radius is much less than the minimum seismic

wavelength present, the radiation patterns of boreholes of different sizes are very

similar. This means that the numerical results for larger boreholes can be thus applied

to numerical simulation associated with a smaller borehole if the ratio of wavelength to

borehole radius is similar. This circumvents the difficulty coming from the in by large-

scale difference between the borehole and its surrounding formation using FDM. It

could save tremendous computing time and can handle much larger numerical models.

The radiation pattern results depend on the wavelength size relative to the bore-

hole. The dependence of borehole wave propagation on the wavelength can be further

demonstrated with an example calculation. Figures 2.4a and 2.4b show two boreholes.

The first borehole has radius 0.6m and source center frequency 0.75 kHz, while the

second one has borehole radius 0.15 m and source center frequency 3.0 kHz. There-

fore, the ratios of the borehole radius to the wavelength in the formation are the same

in these two models. The array of the receivers is defined to be a constant distance

of the same number of wavelengths.

Figures 2.5a-d are the particle displacement velocities of these two source bore-

holes. The seismograms are identical when the distances are compared in terms of

wavelengths and the time axis are scaled to take into account the change in fre-



quency. Hence, this shows that the wavelength is the physical parameter governing

wave propagation in the borehole system.

2.6 Summary

We adopt two approaches to effectively utilize the finite difference method for the

purpose of single-well imaging. The first one is to coarsely discretize the borehole.

If the borehole radius is much less than the minimum seismic wavelength present,

this method works very well for both soft formation and hard formation. The second

one is to replace a smaller borehole with an effective larger borehole. Two source

boreholes are called effective boreholes to each other if their radiation patterns are

very similar. The radiation pattern and the borehole primary arrival modes of two

effective boreholes are very similar. Both of these two approachs allow us to keep the

advantages of the simplicity and explicitness of the finite difference method.



Borehole Discretization Test

?
*.....

Borehole Fluid:

Vf = 1500m/s

p = 1000kg/m 3

Slow Formation:

VP = 2770m/s
Vs = 1230m/s

p = 2250kg/m3

Legend:

0: hydrophone
o : geophone
*: Source

Figure 2.1: The bore discretization test. The monopole source has center frequency 2.0
kHz. The borehole radius is 0.15 m. 4 hydrophones are set in the borehole center with
source-receiver-distance from 1.5 m to 1.95 m, and 4 geophones are in the solid formation.
The receivers are evenly distributed with spacing 0.15 m. The distance between the two
receiver arrays is 0.40 m.



pressure inside boreiole. monopole vx outside borehole. monopole

1.91

1.5

1.41.5 a Z. 3.5

(a)
0 2 .5 3 3.5

(b)

vz outside borehole. monopole

1.91

1.6

d2

d4

d8

d 12

1 1.5 2 2.5 3 3.5 4

(c)

Figure 2.2: Tests of borehole discretization effects.
Figure 2.1. Figure 2.2a is the pressure detected
and vertical components of particle displacement
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Figure 2.3: Radiation patterns computed by the stationary phase method (Gibson, 1994).
The monopole source, with center frequency 600 Hz, is located in the center of fluid-filled
borehole of radius 15 cm and 60 cm. a and b are the shear and compressional wave
radiation pattern. The fast formation is the Berea Sandstone (Table 2.1).



Effective Borehole Test

Distance 8.Om Distance 2.Om

center frequency 0.75khz
borehole radius 0.60m
distance of the receiver 8m

center frequency 3khz
borehole radius 0.15m
distance of the receiver 2m

VP = 4000m/s

Vs = 2300m/s

p = 2650kg/m3

Figure 2.4: Two boreholes in the fast formation. Distances are scaled so that they remain
constant in terms of wavelengths. 23 receivers are evenly distributed with spacing 1.0 m
for (a) and 0.25 m for (b). Source is monopole.
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Figure 2.5: The radiation patterns computed by the finite difference method. The borehole
geometry is shown in Figure 2.4. (a) and (b) are vertical and radial particle velocities for
the model in Figure 2.4a, with frequency 0.75 kHz. (c) and (d) are the same quantities
for model in Figure 2.4b, with frequency 3 kHz. The seismograms are essentially identical
showing the dependence of borehole wave propagation in wavelength.

z-component particle velocity



Chapter 3

Attenuating Tube Waves

3.1 Introduction

The energy radiated by a source in a fluid-filled borehole is mostly trapped in the

borehole and transferred to the borehole waves, the head waves and the guided waves.

Less than 1% of the total energy escapes the borehole and radiates into the formation

(Ellefsen, 1990). A portion of the escaping waves may encounter a dipping formation

in the subsurface, such as a fault or salt dome, and then reflect. The reflections then

may return to the borehole. These reflected waves carry information from relatively

distant subsurface structures and can be utilized to image the formation subsurface

structures around a single borehole.

The utilization of the reflected waves for single-well imaging requires the sepa-

ration of these from the borehole direct arrivals. However, this is difficult without

attenuating the tube waves, because the energy of the tube waves is much stronger

than the reflected waves (Figure 3.1). Basically, the Stoneley wave and the pseudo-

Rayleigh wave (Toks6z et al., 1984) are the two dominant guided waves in a fluid-

filled borehole in a fast formation. The pseudo-Rayleigh waves attenuate rapidly in

low frequency range due to a cut-off frequency generally around 7 to 8 kHz. In a

slow formation there is no pseudo-Rayleigh wave. Although the Stoneley wave at-



tenuates exponentially away from the fluid-solid borehole wall (both in the formation

and the solid formation), it does not attenuate very much while propagating along

the borehole. If the Stoneley wave arrives after the reflected waves, Chen et al. (1994)

suggested separating the reflections by choosing an appropriate time window. In most

cases the borehole waves arrive before the reflected arrivals, and the reflected waves

are strongly contaminated by the Stoneley waves. It is therefore difficult to identify

the reflected waves and separate them from the dominant tube waves. The difficulty

imposes the importance of investigating a way to artificially block the Stoneley wave

in real borehole imaging.

It has been reported that the petroleum industry has tried to use tube wave

dampers to attenuate the borehole Stoneley wave. But, to our knowledge there is

no theoretical or quantitative analysis to investigate how the dampers work and how

the physical and geometrical properties of the dampers affect the attenuation of the

tube waves, and how to design the best tube wave damper according to formation

properties, the source center frequency, and the borehole geometry. In this chapter

we investigate these effects with the finite difference method.

3.2 Numerical Simulation

The damper model and the borehole geometry are shown in Figure 3.2a. In our

numerical modeling, the tube wave damper is simply modeled as a hollow cylinder.

The monopole source is located in the center of the borehole of radius 15 cm. Receivers

are evenly located upward along the borehole axis, and go through the damper to

detect the tube waves and the changes when a tube wave damper is applied. The

objective of the modeling is to investigate the effects of the damper material and

geometry on the attenuation of the Stoneley wave.



3.2.1 Effect of Damper Rigidity

Four types of material are used as dampers and their physical properties are shown

in Table 3.1. All dampers have the same damper geometry-a hollow cylinder with

inner radius of 3 cm and outer radius of 15 cm and length of 10 cm.

Damper Material Properties

Table 3.1: Physical properties of materials used in the tube wave damping numerical

tests. Physical properties include P-wave (V) and S-wave (V,) velocities, densities (p), The

Velocities are in meters per second, densities in kilograms per cubic meters.

Synthetic seismograms for the high rigidity damper show clearly the attenuation

of the tube waves (Figure 3.2b). Amplitudes of the tube waves picked from these

seismograms and the analogous results for other materials show the effect of the

material rigidity on the attenuation of the tube waves (Figure 3.3). The curves are

the maximum amplitudes of each trace vs. the receiver number. The first receiver is

the nearest and the last receiver is the farthest. As we can see, if no damper is applied

there is no attenuation of the Stoneley wave. This is expected since the Stoneley wave

attenuation depends primarily on borehole fluid attenuation, and in our modeling we

assume fluid to be water with no attenuation. In the presence of a tube wave damper,

the Stoneley wave is reflected back toward the source and generally has the maximum

amplitude between the source and the damper. The harder the material, the better

the damper's attenuating effect. The best damper is the one made of the highest

rigidity material. But there is no significant difference between the highest rigidity

V, m/s V, m/s p kg/m 3

highest rigidity 5970 3300 3300

high rigidity 5000 3000 3000

medium rigidity 2000 1000 1200

fluid 1000 0 500



damper and the high rigidity damper. This is easy to explain. It is the reflection at the

damper-fluid interface that attenuates the Stoneley wave. So the attenuating effect

is dependent on the reflectivity of the damper-fluid interface, which is determined

by the acoustic impedance contrast of the damper and the borehole fluid. Since the

difference between the acoustic impedances is small, the corresponding difference of

the attenuating effect on the tube waves is also small.

If the borehole damper is a fluid with density even less than that of the borehole

fluid, the Stoneley wave energy increases after the application of the damper. Al-

though such a damper is not that realistic, the phenomenon is interesting. There are

only weak reflections from the two fluid boundary and so most of the Stoneley en-

ergy is transmitted through the fluid damper. Second, part of the body wave energy

propagating as refracted waves around the borehole is transferred to the Stoneley

wave inside the damper. A decrease of Stoneley amplitude above the damper is due

to interference of a small reflected wave. Since the velocity contrast is negative, the

reflection is of opposite polarity for the incident wave, and superposition then gener-

ates a reduction in amplitude. We will use the high rigidity damper in the following

numerical experiments to evaluate how the length and other properties influence the

tube wave attenuation.

3.2.2 Tube Wave Damper Length

Four tests are conducted to investigate the effects of the damper length on the at-

tenuation of the tube waves. The borehole geometry is shown as in Figure 3.2. The

source center frequency is 2.0 kHz. All the dampers are made of high rigidity material

(V, = 4000 m/s, V, = 2300, p = 2657 kg/m 3 ). The damper lengths are 5, 10, and

15 cm respectively. As shown in Figures 3.4a and 3.4b, the longer the damper, the

better the tube wave attenuation. But the attenuation effects for dampers 10 and 15

cm long are not large.



3.2.3 Dependence on Center Frequency of Tube Waves

In Figure 3.5 we show the effect of tube wave frequency on wave damping. As we shall

see, the effects are not too strong. Both frequencies are below the cut-off frequency

of pseudo-Rayleigh waves and as a result, not much energy is scattered into the

pseudo-Rayleigh.

3.2.4 Multiple Dampers

Figure 3.6a shows the geometry where two dampers, separated by 70 cm, are used

to attenuate tube waves. Figure 3.6b shows seismograms for two dampers. We can

see after after the attenuation of the Stoneley wave by the first damper that there is

further attenuation by the second. This means that for long receiver-source distances,

we can attenuate the Stoneley waves an order of magnitude by setting a series of the

dampers between the source and the receivers.

3.3 Summary

We have numerically investigated the effects of a tube wave dampers on the attenua-

tion of the tube waves. The higher the damper's rigidity, the better the attenuation.

Likewise, a longer damper is better. But there are cut-off values for the rigidity and

the length. Large increases of the rigidity or length do not make a big difference on the

attenuation. By applying a series of dampers, the Stoneley wave can be suppressed

further.
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Figure 3.1 Wave propagation in a borehole of radius 15 cm, surrounded by a fast formation
(Berea Sandstone, Table 2.1, Chapter 2). The center frequency is 2.0 kHz. We see
essentially only the Stoneley wave, showing how strong this wave is. It will easily mask
reflections in single-well experiments.



Tube Wave Damper Model
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Figure 3.2a: The borehole geometry with the tube wave damper. The monopole source, with

center frequency 2.0 kHz, is located in the center of the fluid-filled borehole of radius 15
cm. The cylindrical damper model is 12 cm wide (with inner radius 3 cm) hung on the
borehole, with distance 35 cm from the source. Hydrophones are evenly distributed along

the borehole axis with even spacing of 5 cm. The minimum source-receiver distance is
15 cm.
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Figure 3.2b: A high rigidity damper (V, = 4000 m/s, V, = 2300 m/s, p = 2657 kg/m 3) 10
cm long and 12 cm wide, is used to attenuate the tube wave. Twenty-two receivers are
evenly distributed along the borehole axis from 0.5 m to 2.65 m from the source with
even spacing 0.1 m. Top: tube waves without the damper. Bottom: with the damper
showing in detail the blocking of the Stoneley waves.
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Figure 3.3a: Five numerical tests conducted to investigate the effects of damper material
on the attenuation of tube waves. The damper model is a hollow cylinder touching the
borehole wall. Each damper is 10 cm long, 12 cm wide (the inner radius is 3 cm and the
outer radius 15 cm), with material with properties: (a) highest rigidity: V = 5000 m/s,
V, = 3300 m/s, and p = 3000 kg/m 3 ; (b) high rigidity: V, = 4000 m/s, V, = 4000 m/s,
and p = 2657 kg/m 3 ; (c) medium rigidity: V = 2000 m/s, V, = 1000 m/s, and p = 1200

kg/m 3 ; (d) a fluid: V, = 1000 m/s, V, = 0.0 m/s, and p = 500 kg/m 3 . The borehole
geometry is shown in Figure 3.1. The curves are the maximum amplitudes of each trace
vs. the receiver number. The first receiver is the nearest and the last is the farthest one.
The corresponding seismograms are shown in Figure 3.3b.
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Figure 3.3b: Tube wave seismograms in borehole showing effect of the attenuation of tube
waves. The material properties of the dampers are shown in the caption of 3.3a and the
borehole geometry in Figure 3.2.
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Figure 3.4a: The effects of the damper's length on the tube waves attenuating. One test
without damper and the other three with dampers 5 cm, 10 cm, and 15 cm long separately.
All dampers are made of high rigidity material (V, = 4000 m/s, V, = 2300 m/s, p = 2657
kg/m 3). The borehole geometry is shown in Figure 3.1. The curves are the maximum
amplitude of each trace vs. the receiver of number. The corresponding seismograms are
shown in Figure 3.4b.
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Figure 3.4b: The effects of damper length. The damper properties are shown in Figure 3.4a.
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Figure 3.5: A high rigidity damper (V = 4000 m/s, V, = 2300 m/s, p = 2657 kg/m 3 ), 10 cm
long and 12 cm wide, is used for testing the relationship between the frequency and the
attenuating effect of dampers on the tube wave. Frequencies of 2 kHz (f2) and 5 kHz (f5)
are used, the results are compared with reference case without damper (center frequency
2 kHz, f2_noblk). The corresponding seismograms are shown in Figure 3.5b.
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Multiple Dampers
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Figure 3.6a: The monopole source is located in the center of the fluid-filled borehole of
radius 15 cm. Each damper is 10 cm long and 12 cm wide (inner radius 3 cm). The lower
damper and the upper damper are 1.15 m and 1.85 m away from the source, respectively.
44 hydrophones are evenly distributed along the borehole axis with spacing 5 cm. The
nearest source-receiver offset is 0.5 m.
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Figure 3.6b: Two high rigidity dampers (V = 4000 m/s, V, = 2300 m/s, p = 2657 kg/m3),
each 10 cm long and 12 cm wide, are used. The center frequency is 15 kHz. Top:
maximum amplitudes of each trace. Bottom: pressure seismogram.
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Chapter 4

Conclusions

Single-well imaging requires the utilization of sources in a borehole and recording of

reflected waves in the same borehole to infer subsurface structures. A major diffi-

culty in modeling wave propagation in this situation is that a direct, conventional

incorporation of the source/receiver borehole in 3-D finite difference codes requires a

very fine model discretization. The borehole is small, though propagation distances

can be large, and so computation cost then becomes prohibitive. We proved that

these constraints can be relaxed somewhat under realistic conditions in two ways:

(1) at lower frequencies (hundreds of Hertz), the borehole can be modeled using as

few as 4 points per radius; and (2) the model size of the borehole can be increased

without significantly changing the radiation patterns as long as wavelength relative

to borehole size is still fairly large.

There are additional difficulties in single-well imaging, in that it is difficult to

implement because the reflected waves are generally contaminated by large amplitude

tube waves. To overcome this difficulty it is important to artificially block the tube

waves. In the second part of this thesis, we use the three-dimensional finite difference

calculation to simulate the tube wave dampers in the borehole. A damper is simply

modeled as a hollow cylinder touching the borehole wall. We investigated the effects

of the damper's geometrical properties and material rigidity on the attenuating of the



Stoneley waves.

The primary effect of mechanical dampers is to block transmission of the tube

wave by scattering the incident tube waves. At long wavelengths corresponding to

frequencies of 2 kHz or below, the damper act as as a reflector. Hence, the tube

wave attenuation depends on the damper's acoustic impedance, the cross-sectional

area, and length. The higher the rigidity of the damper material, the better the

attenuation. Reflection coefficients are roughly proportional to the cross-section area

of the damper. For optimum attenuation the damper length should be at least 10 cm.

A further increase of the length does not make a big difference in the attenuation.

The use of multiple dampers between the source and the receivers attenuates tube

waves more than a single. This may hold the promise to suppress the tube waves

sufficiently before the seismic processing to extract the reflected waves.

Further research direction is necessary to evaluate the other aspects of single hole

imaging. In this thesis, the main effort was to focus on effectively using the finite dif-

ference method to model the mechanical borehole dampers to block the borehole tube

waves. For simplicity, the study was limited to the low frequency monopole source

and homogeneous formation and simple structures. Further research needs to include

cased holes, complex structures, and more extensive modeling to generate suites of

seismograms and processing of data to separate the reflected waves for imaging of the

geologic features.
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