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ROBUST CROSS-RACE GENE EXPRESSION ANALYSIS
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Division of Health Sciences and Technology, Harvard-MIT, Boston, MA

ABSTRACT

This paper develops a Bayesian network (BN) predictor to profile
cross-race gene expression data. Cross-race studies face more data
variability than single-lab studies. Our design handles this problem
by using the BN framework. In addition, unlike existing methods
that unrealistically assume independent genes, our BN approach can
capture the dependencies among genes. Existing BN algorithms in
biomedicine applications quantize data, leading to information loss;
we adopt linear Gaussian model to keep the data intact, so our result-
ing model is more reliable. The application of our BN predictor to a
lung adenocarcinoma study shows high prediction accuracy, and per-
formance evaluation demonstrates our gene signature agreeable with
those reported in the literature. Our tool has a promising potential in
finding disease biomarkers common to multiple races.

Index Terms— gene expression, Bayesian networks, transcrip-
tional diagnosis, cross-race studies.

1. INTRODUCTION

Comparative analysis of gene expression levels between multiple tis-
sue states makes transcriptional diagnosis feasible [1]. The analysis
starts with identifying a signature of gene transcripts that differen-
tially express across tissue conditions, and then constructs a tissue
classifier using the signature. A decade ago, expression studies were
conducted by single-lab analysis; i.e., the training data and the in-
dependent testing data were collected from the same research lab.
Along with the advancement in microarray technology, gene expres-
sion profiling becomes a widely accepted technique in many molec-
ular biology labs. As such, researchers can test the generalizablity of
signatures beyond lab boundaries. Cross-lab studies seek biomarkers
by the data acquired from one institute, and then test the predictive
performance of the signature using the data obtained from another
institute. Cross-lab expression analysis is more challenging because
the data collected in different labs has more variability, induced by
nonuniform experimental protocols such as RNA sample preparation
and microarrary operations [2].

Cross-race studies are a new application area of gene expres-
sion profiling. The task of cross-race studies is to look for disease
biomarkers common to multiple races. Besides having the same
sources of data variability as cross-lab studies, cross-race data ex-
perience other variability due to distinct patient populations. Due to
non-identical living environment, the genes in different races express
diversely, so the expression levels of the same set of biomarkers vary.
To handle the data variability arising from multiple data sources, we
need a robust analysis tool, which is the goal of this paper.

Most of existing works were designed in the era of single-lab
studies. Popular techniques can be categorized into data-driven and
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model-driven approaches. Data-driven methods, such as fold change
[3], t statistic [4], or signal to noise ratio [5], rank all the genes based
on the statistical measures of their expression levels. Model-driven
methods describe the microarray data by probabilistic models and
rank the genes based on a measure quantifying the model differ-
ence between tissue conditions [6]. The genes with measures ex-
ceeding an empirically determined threshold assemble a signature.
Data-driven approaches are easily vulnerable to any data variabil-
ity, so we opt for the model-driven approach to process multi-race
data. Unlike current model based schemes, our design needs a more
sophisticated model which is robust to cross-race data variability.

To avoid the predictive performance deteriorated by data vari-
ability, we consider two aspects in the design. First, we adopt a
probabilistic model to describe the expression data and to regularize
decision making. Second, existing methods assume that genes are
independent, contradicting to the reality that genes interact directly
or indirectly in biological processes. We propose to incorporate our
classifier design with a more realistic network model capable of de-
scribing these dependencies. Among various design paradigms, we
choose the Bayesian network (BN) framework, which is a proba-
bilistic graph model, to meet our needs.

Besides handling data variability and capturing gene dependen-
cies, our BN approach has the following features.

• In gene expression data, the phenotype is a discrete variable
taking category numbers and the genes are continuous vari-
ables with expression levels ranging from zero to infinity.
Existing BN based methods [7] in biomedicine applications
quantizes variables to infer the optimal BN for the data, but
quantization results in information loss. In contrast, we keep
the data intact by adopting the linear Gaussian model to ex-
plore the dependencies among genes, yielding a more genuine
BN model.

• Our signature search is capable of eliminating collinearly ex-
pressed genes. When a gene expresses collinearly with a
biomarker, existing methods tend to include it in the signa-
ture. We avoid this problem by evaluating the likelihood of
the gene’s dependence on the phenotype or on another gene.
If the gene is most likely dependent on the phenotype, it is a
biomarker, and our BN model depicts it as modulated by the
phenotype. For example, Figure 1 presents a BN describing
a data set of six genes. Genes 1, 2, 3 are the biomarkers and
modulated by the phenotype; genes 5 and 6 are not biomark-
ers but are collinear with gene 3, so the BN describes them as
modulated by gene 3.

• Our BN based approach is threshold free to determine biomark-
ers. After computing scores of genes, existing works have to
cut off the list by assigning a threshold. Unlike these meth-
ods that require subjective thresholds, our BN approach has
determined the signature genes once the optimal network is
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Fig. 1. Illustration of a Bayesian network.

learned from the data. The signature genes for sample clas-
sification are the genes modulated by the phenotype. Other
genes not modulated by the phenotype do not play a role in
classification, so they can be discarded. With reference to
Figure 1, genes 1, 2, 3 assemble a signature for tissue classi-
fication; genes 4, 5, 6 can be discarded because of their irrel-
evance to the classification task.

2. METHODS

The BN framework for gene expression analysis consists of two
steps: learn the optimal BN characterizing the given data and de-
velop the corresponding classification scheme on testing samples.
This section starts with the algorithm for learning optimal BN with
linear Gaussian model, and then describes how to make prediction
in our model.

2.1. Learning Bayesian Network with Linear Gaussian Model

Let Y1, Y2, · · · , YG be Gaussian random variables representing the
expression levels of genes, and C be a binomial random variable
characterizing two tissue conditions. We use uppercase to denote
random variables and lowercase to denote their values. Given the
gene expression data D = {y1, · · · , yG, c} , the task is to find the
best BNmodel from a set of candidate modelsM = {M1, · · · , MK}
or, equivalently, searching for the largest posterior probability p(Mk|D).
Applying Bayes’ theorem to p(Mk|D) results in

p(Mk|D) ∝ p(Mk)p(D|Mk), (1)

where p(Mk) is the prior probability of each model and p(D|Mk)
is the marginal likelihood. The computation of p(D|Mk) is to av-
erage out θk from the likelihood function p(D|θk), where Θk is the
random vector parameterizing the distribution of Y1, Y2, · · · , YG, C
conditional on Mk. We can exploit the local Markov properties en-
coded by the network Mk to rewrite the joint probability p(D|θk)
as

p(D|θk) = p(c|pa(c), θkc)
G∏

g=1

p(yg|pa(yg), θkg), (2)

where pa(yg) denotes the values of the parents Pa(Yg) of Yg , and
θkg is the subset of parameters used to describe the dependence of
Yg on its parents.

In this paper, we model a gene Yg to be dependent on either the
phenotype C or another single gene Ya, and the phenotype C is a
root in the network without parents. We further can assume the J

samples in the database are independent. The likelihood function
becomes

p(D|θk) =

[
J∏

j=1

p(cj |θkc)

]
×

[
J∏

j=1

G∏
g=1

p(ygj |pa(ygj), θkg)

]
, (3)

where the subscripts j indicate the jth sample. The first term can
be estimated by the sample frequencies: γJA

A (1 − γA)J−JA , where
JA and γA are the number and the frequency parameter of the sam-
ples occurred in tissue condition A, respectively. The second term
is computed by the linear Gaussian model [8]. When the parent of
Yg is another gene Ya, i.e., Pa(Yg) = Ya, the conditional mean is a
first order linear regression

μg = βg0 + βg1ya. (4)

When Pa(Yg) = C, the conditional mean of Yg is parameterized by
c:

μg = βg0(c). (5)
It follows that

p(ygj |pa(ygj), θkg) =
( τg

2π

)1/2

exp

(
−τg(ygj − μgj)

2

2

)
, (6)

where μgj denotes the conditional mean of Yg in sample j, and the
vector θkg denotes the set of parameters τg , βg0, βg1 in modelMk.

It is more convenient to adopt matrix notation to write the likeli-
hood function in a compact form. We use the vector c = [c1, · · · , cJ ]T

to denote the sample phenotypes, the vector yg = [yg1, · · · , ygJ ]T

to stack the observations of Yg , the vector βg = [βg0, βg1]
T to col-

lect the regression coefficients, and the matrix

Xg =

⎡
⎢⎣

1, pa(yg1)
...

...
1, pa(ygJ)

⎤
⎥⎦ (7)

to denote the expression values of parents of yg . When Pa(Yg) =
C, βg = [βg0] and Xg = 1. It follows that the second term in the
likelihood function becomes

G∏
g=1

( τg

2π

)J/2

exp

(
− (yg − Xgβg)T (yg − Xβg)

2/τg

)
. (8)

To compute the marginal likelihood, we need to learn the dis-
tributions of τg and βg . The standard conjugate prior for τg is a
Gamma distribution

τg ∼ Γ(αg1, αg2), p(τg) =
1

α
αg1
g2 Γ(αg1)

τ
αg1−1
g eτg/αg2 (9)

where αg1 =
νg0
2
and αg2 = 2

νg0σ2
g0
are characterized by hyper-

parameters νg0, σ2
g0. The marginal expectation of τg is

E(τg) = αg1αg2 =
1

σ2
g0

(10)

and

E(1/τg) =
1

(αg1 − 1)αg2
=

νg0σ
2
g0

νg0 − 2
(11)

is the prior expectation of the population variance. BecauseE(1/τg)
is similar to the estimate of the variance in a sample of size νg0, σ2

g0

is the prior population variance, based on νg0 cases seen in the past.
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Conditional on τg , the prior density of the parameter vector βg is
supposed to be multivariate Gaussian:

βg|τg ∼ N (
bg0, (τgRg0)

−1) (12)

where bg0 = E(βg|τg), Rg0 is the identity matrix so that the re-
gression coefficients are a priori independent, conditional on τg .

It can be shown that the marginal likelihood is

p({y1, · · · ,yG, c}|Mk) =
1

(2π)J/2

|Rg0|1/2

|Rgn|1/2

Γ(νgn/2)

Γ(νg0/2)

(νg0σ
2
g0/2)νg0/2

(νgnσ2
gn/2)νgn/2

(13)
where the parameters are specified by the following rules:

αg1n = νg0/2 + J/2 (14)
Rgn = Rg0 + XT

g Xg (15)

bgn = R−1
gn (Rg0bg0 + XT

g yg) (16)
1

αg2n
= (−bT

gnRgnbgn + yT
g yg + bT

g0Rg0bg0)/2 +
1

αg2
(17)

νgn = νg0 + J (18)
σgn = 2/(νgnαg2n) (19)

The Bayesian estimates of the parameters are given by the posterior
expectations:

E(τg|yg) = αg1nαg2n = 1/σ2
gn (20)

E(βg|yg) = bgn (21)
E(1/τg|yg) = νgnσ2

gn/(νgn − 2) (22)

The selection of the best BNmodel M̂ relies on the Bayes factor,
BF . For arbitrary two candidate models Mk and Mh, their Bayes
factor is

BFkh =
p(Mk)p(D|Mk)

p(Mh)p(D|Mh)
. (23)

If BFkh ≥ 1, we choose model M̂ = Mk; otherwise, M̂ = Mh.
Note that when the prior distribution on the models is uniform, only
the posterior odds p(D|Mk)/p(D|Mh) contribute to the Bayes fac-
tor.

2.2. Phenotype Prediction

The phenotype prediction ĉ of a testing sample is to find the maxi-
mum probability of the tissue class that the sample belongs to, con-
ditional on the expression values of the sample. The formulation for
the prediction is as follows:

ĉ = arg max
c

p(c|y1, · · · , yG). (24)

The application of the Bayes’ theorem to Eq. (24) gives rise to

ĉ = arg max
c

p(y1, · · · , yG|c)p(c)

p(y1, · · · , yG)
(25)

= arg max
c

p(y1, · · · , yG|c)p(c), (26)

where the second equality holds because the denominator in Eq. (25)
is not a function of c. Since only genes directly dependent on the
class variable C matter in the maximization, the tissue classification
becomes

ĉ = arg max
c

p(c)
∏
g∈H

p(yg|c), (27)

whereH denotes the set of genes that are the children of the pheno-
type C in the BN model.

Fig. 2. The network structure learned from training data.

3. RESULTS AND DISCUSSION

We apply our method to studying molecular biomarkers of lung ade-
nocarcinoma. The training data includes 107 subjects from the Lom-
bardy region in Italy [9], which is publicly available on Gene Expres-
sion Omnibus (GEO) with accession number GSE10072; there are
49 controls and 58 cases. The testing data includes 63 subjects col-
lected in Taiwan [10], which consists of 31 controls and 32 cases
and whose GEO accession number is GSE7670. The gene expres-
sion experiments were carried out by Affymetrix HG-U133A, which
is equipped with 22,283 probes. Probe level analysis was performed
using the Robust Multi-array Algorithm (RMA). The detailed pro-
tocols of sample preparation and the demographic information of
patients were described in [9, 10].

After our algorithm learns the optimal BN, we trim away the
genes not modulated by the phenotype, leading to the final predictive
BN model shown in Figure 2. The rectangle node is the root indicat-
ing the phenotype and the 12 elliptic nodes are signature genes. We
further evaluate the prediction performance using these 12 biomark-
ers. The criterion for performance evaluation is the area under re-
ceiver operating characteristic (AUROC) curve. The quantity of
AUROC ranges from 0 to 1; the higher the AUROC is, the better
performance the predictor has. The fitted validation, i.e., predicting
the training set itself, yields 100% AUROC. The prediction on the
independent Taiwanese data produces 95% AUROC.

Besides the performance evaluation by AUROC, we examine the
biological quality of the 12 biomarkers. Table 1 summarizes the 12
signature genes and their functions revealed in the literature. Except
HBA and SPINK1, the other 10 genes are discovered to be related to
lung cancer or a subtype of lung cancer, confirming good quality of
our method. We briefly discuss the biomarkers in the following:

• FAM20B, MUC5B, SFTPC, and XAGE1 have been reported
as biomarkers to lung adenocarcinoma.

• KRT6, KRT16, and MAGEA2 are biomarkers of squamous
carcinoma; since adenocarcinoma and squamous carcinoma
are both the subtypes of non-small-cell lung cancer, these 3
biomarkers explain that there is similarity between the two
subtypes of lung cancer.

• CXCL13 and SERPINB5 have been known as biomarkers of
lung cancer, so it is not surprised that they are predictive on
adenocarcinoma.

• MARCO expresses when the lung is exposed to smoke, al-
though it is not directly related to lung cancer. It is common
that smokers have higher probability of getting lung cancer,
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so MARCO is a reasonable biomarker for predicting adeno-
carcinoma.

• Although HBA and SPINK1 have not been reported for their
association with any subtypes of lung cancer, our result sug-
gests that it is worthwhile to study their biological function in
lung cancer.

Gene Name Function Reported in Literature
CXCL13 biomarker of lung cancer [11]
FAM20B abundant in lung and differentially ex-

pressed in lung adenocarcinoma [12]
HBA1/HBA2 n/a
KRT6A/B/C biomarker of lung squamous cancer [13]
KRT16 biomarker of lung squamous cancer [14]

MAGEA2/2B biomarker of lung squamous cancer [15]
MARCO upregulated when exposed to

Lipopolysaccahrides and smoke [16]
MUC5B biomarker of lung adenocarcinoma [17]
SERPINB5 biomarker of lung cancer [18]
SFTPC biomarker of lung adenocarcinoma [19]
SPINK1 n/a

XAGE1/1B/1C/1D/1E biomarker of lung adenocarcinoma [20]

Table 1. The 12-gene signature for lung adenocarcinoma diagnosis.

4. CONCLUSIONS

This paper develops a gene expression analysis algorithm in the BN
framework for cross-race studies. Unlike prior works, our devel-
opment adopts linear Gaussian model and considers more realistic
biology that genes are dependent through their molecular interac-
tions. The application of our BN predictor to an international lung
adenocarcinoma study demonstrates how the BN method solves the
real world problem. The BN predictor obtains 12 biomarkers. The
prediction on an independent data set using this 12-gene signature
reaches 0.95 AUROC, showing good generalizability. The biologi-
cal confirmation agrees our signature with the lung cancer genes in
the literature. The proposed method will have a potential to perform
clinical cross-race transcriptional diagnoses.
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