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ABSTRACT

Stimulated by new evidence from both "in situ" oceanic observations
and results from numerical modelling, a laboratory study of quasigeostrophic
flow and turbulence in a rotating homogeneous fluid has been undertaken.
Two dimensional turbulence driven by a uniform distribution of sources and
sinks which oscillate in time, can be fairly well reproduced in this con-
text. Inertial time scales are about ten times smaller than Ekman spin-
up time, and typical Reynolds numbers read 2000. The observations em-
phasize the spectral tendency of the energy containing eddies. The case of
no topography is first discussed. In steadily forced turbulence, it is
observed that the energy containing scale is significantly larger than
the forcing scale. In the decaying stage the red cascade is observed and
rates of interaction are measured. Theoretical arguments for both be-
haviors are presented; the former concerning the forced turbulence case is
believed to be new.

The forcing is next applied over various large scale topographies,
modelling the geophysical beta effect. The polar beta plane geometry pre-
serves the above spectral characteristics but at the same time introduces
anisotropy into the flow pattern. A broad westward mean flow develops in
the north and is surrounded by a belt of cyclones lying on its southward
side. The calculated second-order Eulerian mean flows induced by steadily
and uniformly forced Rossby waves in a long zonal channel, exhibit much of
the same momentum distribution in the inertial regime. In contrast, the



ABSTRACT (cont.)

"sliced cylinder" geometry which possesses no closed geostrophic contours
drastically modifies the above picture. Both mean flow production and a
large scale tendency for the eddies are inhibited. The geographical dis-
tribution of the eddy intensities and scales is now wildly inhomogeneous.

The second aspect of this work is a study of the interaction of Rossby
waves with mean flows. A zonally travelling, forced wave is generated near
the southern boundary of a polar beta plane. Due to energy radiation in
the free interior and (or) potential vorticity mixing by the finite amp-
litude waves, a westward zonal flow develops. The effect of the mean flow
upon the forced steady waves is to weaken the anticyclones and intensify
the cyclones. Pressure time series reveal a growth of harmonics and
general spectral broadening as the waves travel freely inwards, suggesting
active nonlinear interactions. An experimental test of Rhines' (1977) poten-

tial vorticity mixing theory is also presented at free latitudes, The decay
period when the driving is suppressed shows that a net transfer from the
waves to the mean flow kinetic energy occurs. Connection with hydrodynamic
stability theory is discussed.

Interaction of Rossby waves with an externally generated westward mean
flow allows one to make a controlled study of the critical layer problem.
For small amplitude waves, the mean flow is accelerated in the entire region
between the forcing and the critical latitude which acts as a wall for mean
wave momentum. In nonlinear runs the steady profile of the westward flow
indicates that an accelerating force is acting everywhere, revealing the
increasing transmission of wave momentum through the critical layer. At
the same time, pressure measurements near the critical point show consider-
able fine structure developing over a long time scale.

The third part deals with steady isolated source-sink flows in the
sliced cylinder geometry. The response of the fluid to a meridionally
oriented steady dipole extends exclusively westward of the forcing. The
viscously balanced solutions are discussed and relevance to oceanic abys-
sal circulation is emphasized. With strong driving, the combination of
a cyclone to the north and an anticyclone to the south is absolutely
stable although the reverse configuration is not. A connection with a
certain class of free, steady, isolated, inertial solutions developed
recently by Stern (1976) is made.

Thesis Supervisor: Dr. Peter B. Rhines

Title: Senior Scientist
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INTRODUCTION

Because of its immediate consequences for mankind and the relative

ease by which observations could be collected, the description of the

general circulation of the atmosphere started early in the eighteenth

century and attracted many scientific minds for its understanding. With

increasing technology, more information was soon gathered on the weather

itself and it was quickly realized that an explanation of the former

implied knowledge of the second order statistics of the latter. In view

of the complexity of the problem, progress toward an understanding of the

detailed dynamics has been slow compared to refinement in weather fore-

casting due to increased numerical capability. One can say that the same

story holds true for the ocean, as revealed by the past fifty years.

By use of geostrophy, routine density observations made it possible

to infer the baroclinic part of the general oceanic circulation. In the

last decade, deep mooring technology allowed a look at what had been

summarized in the deep water as levels of no motion. The presence of a

very energetic oceanic "weather" exceeding the mean circulation by at

least an order of magnitude was discovered, suggesting a very strong inter-

action between the mean and the eddy part of the flow. During the last

Mid-Ocean Dynamics Experiment MODE (1973), a particular eddy was tracked

for about three months. A time scale on the order of a month and a

length scale of about 100 km were soon agreed upon to define mesoscale

eddies, whose signature seems to appear now just about everywhere in the

world ocean.

The inherent complexity of the large-scale equilibrium of the ocean

necessitates the use and understanding of simpler models focusing on one

aspect of the dynamics, which may later be mixed in more sophisticated



studies. It should be remembered that the coincidence of observations

with theoretical results do not teach us anything unless we are able to

understand the model in simple physical terms. The aim of the present

study is to provide part of a physical understanding of certain barotropic

flows of a homogeneous fluid over various smooth topographies in a simply

shaped rotating container. Most of this work is devoted to flows in which

topography and rotation combine to provide -a restoring force acting on

individual fluid particles which models the beta-effect for quasigeostro-

;hicIfJlows on a rotating earth.

It is important to point out what are the underlying oceanic evidences

for undertaking such studies of low frequency homogeneous flows on a

beta plane: there is first an historical factor which prompts studies of

barotropic flows. Only the velocity shear can be inferred from density

measurements and in the past it has been customary practice to assume a

level of no motion to infer absolute velocities. Secondly there is now

evidence that the vertical structure of low frequency flows can be sum-

marized in terms of a barotropic mode and the first few baroclinic modes

(Gould, Schmitz, and Wunsch (1974), Richman (1976)). Recently as part

of the POLYMODE experiments, time dependent energetic, almost depth

independent flows have been reported from Array II by Schmitz (1977) (see

fig. 1-1). As for the importance of the BETA effect, we might advance

that it was one of the most ubiquitous features to have come out of the

MODE experiment. Eulerian features, such as current veering, or tem-

perature jumps were seen to be strongly spatially correlated on given

latitude lines with a time lag indicating phase propagation to the west.

Figure 1-2 is an example of such a correlation computed by Freeland,

Rhines and Rossby (1975) using the Sofar float body of data. Theoretical
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evidence for the importance of the role of the depth independent mode,

even in a stratified ocean, is abundant. We might retain the following:

it is the barotropic mode which is responsible for the vertically in-

tegrated water transport and therefore we might expect its important role

in the dynamics of large scale circulation. Recent numerical experiments

by Rhines (1976) bear very strongly on this point. In his 2-layer

numerical ocean, Rhines considered a number of free spin down experiments:

a field of eddies with initial horizontal scales smaller than the internal

Rossby radius of deformation and a vertical scale typical of a baroclinic

mode evolved at first independently in each layer to a scale close to the

Rossby radius, then locking of vorticities of like sign occurred in the

vertical to achieve an equivalent state of barotropy. At the other end of

the spectrum, initially large scale baroclinic eddies break up into smaller

scale eddies on the order of the deformation scale, as classical baro-

clinic instability would predict, but there again one observes a modal

migration toward barotropy with the accompanying transfer from potential to

kinetic energy. As those states are reached, simpler ideas concerning the

subsequent evolution of a homogeneous, two-dimensional fluid may be ap-

plied.

Most of the results obtained in the present work come from obser-

vations of laboratory flows. It is believed that the application of

laboratory modelling to two-dimensional turbulence studies is rather new

and meant to supplement numerical simulation of these processes. On the

other hand the modelling of geophysical geostrophic flows in the labor-

atory has already reached an advanced stage with works by Phillips and

Ibbetson (1967), Beardsley (1969, 1975). These studies have focussed

primarily on realisations of flows governed by linear theory and its



first non linear corrections. The good ability of these experiments to

reproduce features predicted by theory made us believe even more strongly

that laboratory experiments were perfectly suited to observe flows with

higher "energy levels" remembering the inherent difficulty that numerical

models have to cope with: namely the finite number of interactive scales

of motions, limiting the inviscidness of the model.

In the first part of this study we will present a derivation of the

quasigeostrophic equations of motion for a laboratory ocean and a general

description of the basic experimental techniques used. Reference will be

made constantly to this part in order to eliminate unnecessary repetition

of some material when looking at a particular problem. The second part

is concerned with geostrophic eddy-eddy turbulent interaction in three dif-

ferent geophysical contexts:

(1) - f plane model with no topography

(2) - polar beta plane model: the topography is a paraboloid dish,

and the geostrophic contours are closed

(3) - sliced cylinder model: the topography consists of a linearly

sloping top and the geostrophic contours are open.

In these three cases we are looking at the interaction of turbulent eddies

in the presence of dissipation and external forcing. The evolution toward

a statistical equilibrium is also described. Global conservation laws

for energy and potential entrophy are used for describing the transient

and final states of the eddies identified by their length scales and

their energy level. Attention is especially directed in cases (2) and (3)

to formulate theoretical mechanisms for explaining the observed aniso-

tropy and inhomogeneities of the turbulence.

We will describe in the third part work involved with the classical



interaction of Rossby waves and mean flows. As shown first experimentally

by Whitehead (1975) and theoretically by Rhines (1976) freely propagating,

finite amplitude Rossby waves are susceptible of generating westward mean

flows; that problem is reconsidered in more detail, having in mind a more'

complete comparison between theory and experiment. By doing so, some new

features of the interaction will be revealed. With the versatility of our

forcing mechanism it was very tempting to try an interaction between a

steady Rossby wave and an externally forced westward mean flow. This par-

ticular problem known in the literature as the critical layer problem

(when the phase speed of the wave matches the speed of the mean flow at

some "critical level") was a unique opportunity to reveal how the time

dependent interaction and the steady state depended on the strength of

the wave; these features are very difficult to obtain by either analytical

or numerical techniques and furthermore they might help in other contexts

as the internal gravity wave-mean flow interaction.

Finally the last part deals with apparently simpler steady flows

produced by steady dipole forcing in the sliced cylinder model. Relevance

of these observations to earlier laboratory studies of abyssal flow

is particularly discussed. An interesting instability of the flow is put

into evidence and physical arguments will be put forward to hint at its

nature.



PART ONE
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I. The quasigeostrophic vorticity equation

In this chapter we seek to derive in some orderly fashion the vor-

ticity equation valid for quasi two dimensional flows in a rapidly rotat-

ing container when the fractional depth change due to the topography is

small. This problem has been looked at in depth by Greenspan (1969) and

much of his formalism will be followed, adding in, at the outset, the

possible effect of a free surface upon the dynamics. Going through the

scaling, is a necessary operation to list accurately the approximations

involved and define appropriate non dimensional parameters.

The geometry used is sketched on figure 2-1. The forcing method used

throughout this study is to impose the vertical velocity at the bottom

through a distribution of sources and sinks. The analysis which will fol-

low is essentially inviscid, the role of the Ekman layers being to impose

at any horizontal solid boundary an additional vertical velocity whose

value has been calculated once for all in terms of the interior vorticity.

This will be incorporated further along in the analysis.

The inviscid form of the Navier-Stokes equation is:

ag q-~ + - VP

1 t+ q * Vq + 2Q k x q =
(1) 4 ~ + ~ k q

V - q = 0

with boundary conditions:

at z = -Hq * k = w(x,y,t)

at z = ad (x,y) + q (x,y,t), q * k = aq Vd + --
Dt

f = 2Q is the Coriolis parameter.

a specifies the order of magnitude of the topographic slope.

H is the mean depth of the container.

Introducing the non dimensional primed quantities:



(x",y') = (x,y)/L, z' = z/H, t' = act, q' = q/EQL

P' = P( ), I. ( ) , where E is the Rossby number -.

P 9. L

The scaling for pressure and wave height come from geostrophy and hydro-

statics respectively. The non dimensional equations become after dropping

the primes:

q

a~t + Eq * Vq + 2 x q -p

(2) V - q = O.

By linearizing the upper boundary condition, one obtains:

at z = 0, (k- aVd) - q - a Fr - Fr 6 q Vp= 0at

(3)

at z =-6, q k = w + W
0 E

where the following parameters introduced themselves:

Fr is the Froude number ,
gH

6 is the aspect ratio H/L,

W is the Ekman pumping introduced arbitrarily at this point as

an additional requirement on the vertical' velocity at the bottom and

1 1whose value is: W = E x and- 2 Vq

E is the Ekmari number /H2

The logical procedure is now to consider a as the small parameter of

the problem, and rescale E as aR , E as U2 E , and w as aw
0 0 0

Doing so introduces naturally the quasigeostrophy of the motions. One

now expands pressure and velocity fields as a perturbation series in a:

q = q + q + ... p = p + ap +... .

Substituting into the set of equations (2) and (3), one is led to the

following sequence:



Oth order: :2k x q = -Vp

(4)

V - go =0
3q

Taking the curl of the momentum equation gives -z E 0 and we deduce
az

go * k = 0, which states the Taylor-Proudman theorem, i.e., that the

velocity field is essentially two dimensional at Oth order in a .

The first order balance removes the degeneracy of the problem through

the use of the upper boundary condition:

1+th order:
aq 0+%. -I % 3

at + Ro q *V qo + 2k x q= -Vp

(5) V *q 1 = 0
q ,_ 

a p 0-A

at z = 0, q k -Fr 6 - R Fr 6 q p -Vd q 0
0 0

at z =- 6 , q k = w + -E V x q.
o 2o o

From (4), one derives immediately that q - V p 0 0, and taking

the curl of the momentum equation in the set (5) yields:

2q 1 V o2 = Vx (- +R q e Vg).

Integrating in z:

z o

q =- Vx ( +R 0 q Vq) + A

where A is an arbitrary constant.

at z =0, A * k =Vd qo + Fr , and

6 + qo ^
at z - * k * V x ( + R q - Vqo) + A *k=

1 J9 -*

w +- E 2 V x qo.
0 2o o



Eliminating A between the two last equations and taking an order 1

aspect ratio 6, gives the following:

a .%. -%- ap0
-- V xq + R qo- V (V x qo) - 2Vd * q - 2Fr t=

-2w - E0kV x qo.

P 0
From (4) it is seen that is a stream function 1$ , hence:

2V 3% V2 v2a $ + R J(,$ -2J($ ,d) - 4 Fr -= -2W - E 72t o at 0 0 0

J being the Jacobian operator.

At this stage, it is interesting to rewrite the final equation in

dimensional variables:

( a 2 _ faVd - k x V$ - 1 0 -2(6) at o0 H O H

where X = gHf 2  is the Rossby radius of deformation and R= E is the

inverse of the Ekman spin down time.

When a second solid horizontal boundary is imposed at the top, (6)

is still valid by taking the limit X + co and doubling the value of R.

This last vorticity equation is to be studied using as a lateral boundary

condition the fact that the streamfunction must be constant along vertical

walls, consistent with our neglect of lateral friction altogether. The

present study is not concerned with the role of the Stewartson layers

required to bring the velocity to zero at a solid wall. A simple scale

analysis shows that away from those boundary layers, the ratio of dis-

sipation of vorticity by lateral friction over Ekman friction is of order

H V 3_H (j2 )2, usually small for good sized eddies, justifying our earlier

inviscid interior treatment. Nevertheless, when necessity dictates a

look at internal scales of order H E, lateral friction will be

included directly into (6).
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II. General description of the laboratory techniques

Earlier workers modelling geostrophic motion in the laboratory have

used a wide variety of forcing mechanisms: Phillips and Ibbetson used

a paddle mechanism mounted on a vertical axis, Beardsley considered the

differential rotation of the upper horizontal lid. It turned out that

these devices are well suited for generating weak amplitude motions but

rather unsatisfactory to produce 2D turbulence. On the other hand

it was realized that a distribution of sources and sinks on the bottom

of the tank would force the fluid quite naturally by stretching and com-

pressing the water column, modelling rather well the forcing mechanism of

large scale flows in both atmosphere and ocean. A consequence of that

choice was the ease by which both spatial and temporal aspects of the

generating mechanism could be varied.

The design of the forcing mechanism is due to A. McEwan and it is

perhaps worth describing it in detail for ways of operating that component

might be unclear at first sight. The heart of the system is a manifold

shown in figure 2-2, whose function is to distribute fluid from the pump

toward the drilled holes at the bottom of the tank: 72 sources and 72

sinks can be used on the two independent sections of the manifold. The

rotating shaft of the manifold is driven by a reversible, variable speed

electric motor. It is the rotation of the shaft which allows sources

and sinks to be turned on and off periodically at each revolution.

Varying the spatial distribution of the sources and sinks in the con-

tainer and on the manifold provides a large number of combinations of

forcing patterns. Two of the main combinations used are described.

When the spatial distribution in the container is periodic, careful

wiring of the connecting tubes onto the manifold allows the modelling



of a travelling forcing wave. At the other extreme when the spatial

distribution in the container is uniform, random wiring onto the manifold

provided an adequate forcing for generating random turbulence in which

case the event that two sources (sinks) chosen randomly in the tank have

the same phase, occurs with a probability of 0.166. The forcing used in

turbulence studies is thus periodic in time and pseudo random in space

with the meaning described above.

The experimental tank itself is a polyester cylinder 62 cm in

diameter, 30 cm high, whose bottom is covered by a 2 cm thick foam rubber

sheet to allow an increase in the efficient section of sources and sinks,

so reducing their jetting effects.

All the experiments are carried out on the one-meter diameter rotat-

ing table of the Woods Hole Oceanographic Institution. Its maximum

rotation rate is 10 rad/sec and variations of speed are less than 0.3%.

The shaft of the table is aligned to within 4 second of arc. We refer to

the Ibbetson, Frazel (1965) report for more information.

Measurement techniques are twofold: photographic equipment being

available, quasi-Eulerian information is obtained by taking short

exposure pictures of tracer particles, and Lagrangian information needed

for diffusion studies is derived from movie film. The tracer particles

are neutrally buoyant polystyrene beads with typical size of 1/2 mm. Their

density may be adjusted by heating them slowly up to 85*C. This is a

necessary process to have a good distribution of beads in the vertical in

the case of a sealed container without a free surface. The beads are

translucid and lighted from the side of the tank by three fluorescent

lights. At the same time, a closed circuit television system with video

tape recording capability was used and found to be extremely useful to



go through exploratory runs in real time.

It might be interesting to see what is needed to do a meaningful

conversion from Lagrangian to Eulerian data:

Lagrangian accelerations at a particle x' is related to its Eulerian

counterpart at the fixed point X by:

av. au. au.
(I) = ( - + u )

x a X=X(x ,t)

Integrating in time following particle x' yields:

(v.) = (u.+j u.)t au.

x ( X=X(x',t)

A short time expansion of the above gives:

(v.) = (u. + 2At u. u.)
1- 1 ax. 1 3 -

This shows that however small At, short scales of motion of order

u. * At (if any) will bias the Eulerian estimates. One would like to

reduce the exposure time At as much as possible without impairing the

measurement of the streaklines. These were measured with an eye gauge

and relative error on the velocity was about 5%. In some of the experi-

ments statistical information about the velocity field was needed. When

the turbulence was homogeneous, spatial averaging was carried out over a

particular realisation of the field.. The selected sampling grid inter-

val of 2.5 cm required the measurement of the velocity field at about

100 points. This sampling scheme was chosen empirically to guarantee



stability of the statistics (total kinetic energy, integral length

scale) within 10%.

At one point, true Eulerian information, continuous in time, seemed

very desirable and capacitance probes were built in order to sense the

"time dependent" free surface displacement. They operate on the principle

that a coated wire immersed in a fluid changes its capacity as the depth

of immersion varies. The inner metallic conductor and the conducting

fluid form the plates, the wire coating being the dielectric. It remains

only to transform this capacity in a voltage output. This was done using

McGoldrick's scheme (1969). It turns out that this device is very sen-

sitive and linear over the range of amplitudes that we measured. The

output of the detector in our experiments consists typically of a 50 m V

time dependent signal superimposed on a 20 volt DC part. To suppress the

DC part without too much contamination of the wave signal which has a

time scale of the order of 10 sec, a high pass filter with a time constant

of 100 sec is interposed. It was found necessary to set up a low pass

filter at 20 Hz in front of the recording to cut down the high frequency

noise caused by the slip rings of the table. The amplitude range caused

by topographic Rossby waves being small (1 mm at most) a physically small

probe was needed and an ordinary teflon coated wire 35 microns in diameter

was chosen. Figure 2-3 shows the circuit. The detector then needed to be

tuned for maximum sensitivity and linearity. At a stabilized voltage of

20 v. DC it was found that the sensitivity threshold was about 50 microns,

still keeping an adequate signal over noise ratio, and that the maximum

gain was about 50 mV/mm. Calibration curves were constructed for both

probes at a given mean depth of immersion. This enabled absolute height

measurements to be made which then could be compared in different runs,
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provided that the mean immersion of the probe did not change. Surface

tension acting on the probe element did not seem to play any detrimental

role. All in all, extreme satisfaction resulted from the use of these in-

struments in view of their low cost and the smallness of our pressure

signals.



PART TWO



At the outset, it is of informative value to compare a little more

closely the respective advantages and limitations of numerical and labor-

atory models.

To provide a successful simulation of 2D turbulence, attention must

be directed toward maximizing the number of octaves of scales susceptible

to interact inertially. Lateral friction is provided at the high wave-

number end of the energy spectrum. Present numerical simulations show that

a typical range of 7 octaves is available. This range of scales is of a

discrete type. The Reynolds numbers associated with the energy containing

eddies is around 100. In the laboratory experiments initiated here, a

range of 8 to 9 octaves of scales is available between the size of the box

and the viscous cut off. The great advantage over numerical experiments

is that this range is continuous. Moreover the Reynolds number of the

energy containing eddy is an order of magnitude larger (around 1000). On

the other hand scale independent Ekman friction is overwhelmingly present

with a typical ratio of Ekman spin up time over inertial time scales-6f

only 10. As in the ocean, the laboratory model requires the additional

assumptions of geostrophy and hydrostatics. Although these are usually

correct in the energy containing range, difficulty might arise at the

small scales of motion. Recalling from part one that geostrophy holds

when s is small and that the pressure remains hydrostatiQ if (CS) 2 is

also small, evaluation of these parameters for the small scale motion show

that the energy spectrum must be steeper than K in order to secure

further use of the quasigeostrophic vorticity equation(6). Thus as for

the inviscid mesoscale oceanic motions, but to a lesser degree, ageo-

strophic effects might well appear in the laboratory context before the

lateral dissipation range is reached.
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Further improvements to attain higher laboratory Reynolds number,

still retaining geostrophy, might prove prohibitive from an engineering

point of view since it requires a larger container and higher rotation

rates.



I. Two dimensional turbulence in a rotating fluid of constant height

Two dimensional turbulence has been considered an important aspect

of atmospheric dynamics for the past twenty years. Both the possible

relevance to certain aspects of the large scale atmosphere, and the ad-

vantage over 3D turbulence in numerical simulation favored its development.

It was recognized early (Fjortoft, 1953) that conservation of both total

energy and enstrophy for an inviscid fluid leads to a spectral transfer

of energy toward the larger scales. At the same time, random migration

of fluid particles conserving their own vorticity produces more and more

convolution in the vorticity contours, transferring effectively the vor-

ticity to smaller scales of motion. Kraichnan (1967), then, postulated

that on each side of forcing wavenumber there might exist two inertial

ranges: one below in which the energy spectrum is function only of the

rightward energy flux and wavenumber, and one above where the vorticity

spectrum is function only of the leftward vorticity flux and wavenumber,

the latter yielding a K-3 slope for the energy spectrum. This result

interested meteorologists because of observations of such a spectral

slope in both temperature and horizontal wind spectra in the range of

wavenumber 7-15, well above direct forcing action such as baroclinic

instability of the mean zonal flow. Charney (1971) showed that after re-

scaling the vertical coordinate, the same spectral slope could be expec-

ted in the case of geostrophic turbulence after hypothesizing isotropy

between horizontal and vertical directions. Numerical simulations of

2D turbulence have been numerous, confirming the "red cascade" but

being inconclusive concerning the predicted inertial ranges, due to lack

of numerical resolution.



A laboratory experiment on two dimensional turbulence is attractive

because it is free of the scale limitations of its numerical analog.

Because vertical motions are inhibited by rotation in a homogeneous fluid,

it was thought that tendencies toward coalescence of vortices of like

sign could be detected; the measured cascade rate could then be compared

with values obtained from numerical studies. No attempt was made to con-

struct the energy spectrum although our experiments were rather high

Reynolds number experiments: the actual bias due to both sampling and

error measurements would have prevented meaningful comparison of spectral

slope with theory. In particular, attempts to resolve the small scale

contributions of the Eulerian velocity field using streak photographs are

bound to be unsuccessful as shown earlier, but the small scale is crucial

to the enstrophy cascade to higher wavenumbers. An important weakness of

such a laboratory model is the difficulty of obtaining good statistical

estimates for the various fields.

Despite these limitations the experiments were run as follows: the

sources and sinks were spread out over the entire bottom with a uniform grid

spacing of about 4 cm. As explained in PART I, each source (sink) was

assigned a random position on the forcing manifold according to a table

of random numbers. Various runs were then executed for low ratios of

, at the same maximum forcing amplitude (to being the forcing frequency
f

and f the Coriolis parameter). When the fluid was at rest in the

rotating frame, the periodic forcing was impulsively turned on, and the

turbulence allowed to reach a statistical steady state; at this point we

let the motion decay freely. Short exposure photographs were made

during the two stages, providing quasi-Eulerian information.



Casual observation of the flow field revealed the following facts:

in the forced turbulence case, eddies initially at small forcing scale

grow in size until some kind of equilibrium is reached. In the decaying

turbulence case, the turbulence grows to even larger scales until the bulk

of the motion is dissipated by scale independent friction. For references

visualize the flow in figures 3-1, 3-2. To obtain a more objective des-

cription, a number of specific runs were analyzed quantitatively. To

measure both length scales and kinetic energy for the flow, the usual

procedure is to introduce spatial Eulerian correlation functions. In

isotropic 2D turbulence they have some important properties, summarized

below.

The correlation function is defined as:

R.. (r) = u. (x) u. (x +r
13 1 3

The bar represents a suitable average depending on the properties of

the turbulence. It can be more conveniently written in terms of longi-

tudinal and transversal correlation functions, u f(r) and u g(r)

respectively:

R.. (r) = - g r. r. + g 6..]
13 r2  I 1)

with g= f + r -
3r

From measurements of f and g, a reasonable eddy length scale can

be identified, for instance by the zgro crossing of g(r) or by the

longitudinal integral scale L =f f(r) dr. Moreover by expanding f

0



Steady stake of f-plane forced 2D turbulence. The black

segment indicates the forcing scale. Laboratory parameter

valljes are: w/f = 3.8 x 10-2, E = 3 x 10 , = 1.5 x 10-2
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U'L = 988.
V

Decaying state of f-plane

figure 3-1.

2D turbulence as evolved from3-2
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and g near the origin, one can obtain the microscales X and X
p n

X2and X2
p f(o) n (o)

x
Using the relation between f and g one finds: A= r-.

n
These scales allow computation of the rms vorticity in the fluid:

. = -V2 R.. = u
i 13 )L2

r=0

The practical procedure used to get the functions f(r) and g(r)

from streak photographs was to accumulate product of velocity

u (x ) u (x + Ar), u (x ) u (x + Ar) for a given orientation of the
po p o n o n o

radius vector and various values of Ar, the sampling interval being

2.7 cm. Products with given separation Ar were then averaged over x ,

a permissible operation in view of the homogeneity of the turbulence.

This was done for ten selected orientations of the radius vector as

a test for isotropy: typical contours of these spatial correlations

appear in figure 3.3. As a result correlation functions were further

averaged around circles, since the field appears sufficiently isotropic.

From these heavily averaged estimates, integral scale, nmicroscale and

zero crossing were obtained for each run. The results for forced and

decaying turbulence are displayed in tables 3-4 and 3-5 respectively.

Before inferring any conclusions from those, the conservation laws

for total energy 'and enstrophy in the basin shall be considered. The

derivation -of the vorticity equation given earlier does not hold in the

limit of no topography (a + 0). However, the quasigeostrophic vorticity

equation on an f plane can be found by applying the same general
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3-3 Contours of the transverse correlation function.



TABLE 3-4

Summary of parameters and basic statistics of forced 2D turbulence on an f plane (CGS units)

Q(rad/s) 3.2 5.23 5.23 4.33 2.32 5.14

w(rad/s) 0.4 0.4 0.14 0.78 0.14 0

u = (72)2  0.78 1.27 1.16 0.8 0.82 1.43

L
L = f(r) dr 4.31 7.78 5.36 8.91 9.75 7.56
p f

0

Zero crossing for g(r) 5.96 7.2 6.56 7.37 9.7 8.0

2.84 4.2 3.9 3.71 4.68 5.29
P

2.24 2.95 3.0 2.9 3.02 3.86

P/ 1.27 1.42 1.29 1.27 1.55 1.37

n

= (7)2 0.78 0.85 0.84 0.6 0.49 0.77

u-L
338 988 620 712 800 1080

-u 2.8x10 2  1.5X10 2  2X102 10 2 1.8X10 2 1.84X10-2

p
2 -2 -2 -2 -26.25X10 3.8X10 1.3X10 9X10 3X10 02QX1 tX031

--- 8.4xlO 8.4x10 2.4x10 4.3X10 2  2.4x10' O
WH

( ) 2 2.6 G 7. 4 6.3 5.3 5.9 11.3
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procedure using W as the small parameter instead of the bottom slope, W

being the forcing frequency. By so doing, the 3 dimensional inertial wave

modes are filtered out. Because of the cascade of vorticity to smaller

scales, lateral friction cannot be neglected and it is included here in

order to dissipate enstrophy at the very small scales.

The vorticity equation now reads

(1) + J($,V29) = -RV2 - -w + VV4$, with R = 2E 2.
t H

Multiplying (1) by i and integrating spatially over the basin:

(2) (-+ 2R) - v22 where ( ) I/ ( )dSat 2 H
D

Multiplying (1) by V2 p and integrating yields further:

(3) (-- + 2 R) = - - w 2at 2 H

With these two powerful conservation laws at hand, the experiments

can be considered in more detail; first the steadily forced case shall be

investigated.

The results in 3-4 indicate that the experiments have rather high

Reynolds number compared to their numerical analogs. Estimates of rms

velocity and vorticity indicate that a typical ratio of Ekman friction to

lateral friction ( )2 is about 5, which says that Ekman friction is

a little more efficient than lateral friction in damping the bulk of the

kinetic energy. In figure 3.6 (b) the rms velocity decreases with -
f

as is consistent with a balance between the first and fourth terms in



equation (1). On the other hand the rms vorticity seems rather less

sensitive to that parameter, perhaps because of a sampling problem in

the microscale calculations, as indicated by low values of ,A
n

compared to the predicted V3T for 2D isotropic turbulence. Figure 3-6 (a)

shows that both the Eulerian integral scale and the zero crossing of the

transverse correlation function are significantly larger than the forcing

scale. These estimates for the eddy scale appeared to be smaller by a

factor of 2 than the largest visual eddy diameter.

Lilly (1969, 1972), trying to test Kraichnan's prediction concerning

the existence of inertial ranges, observed the same large scale tendency

for forced 2D numerical turbulence. A proof of why this should be true

will now be presented, (No such proofs seem to have yet appeared in the

literature.) For simplicity, assume the energy spectrum to be continuous

rather than discrete as the presence of solid boundaries would require:

this does not affect the general validity of the derivation.

Let E (k) dk be the contribution to from the wavenumber band
2

k, k + dk. In statistically steady turbulence, the zeroth, first and

second moment of the energy spectrum are steady.

(4) Identifying 2 j E(k) dk, 2 =fk Edketc... and

0 0

~kEdk
defining the energy containing scales as <k> = , we consider the

f Edk
0

steady state forms of (2) and (3) and subtract <k> 2 times equation (2)

from (3) after rearranging terms resulting in:



[k (k)2 - (k 0) k' k) 2- k k fk2 -- 2
(5) 2_ + 2R _(<k> w$ + wV)

(k0)-2 k0 H

with the convention that k = f kn E(k) dk. To estimate the sign of the

left handside of (5) a convenient form of Schwartz's inequality may 'be applied.

If n (x) and e (x) are two integrable functions on the interval

[a, b], we have:

b 2 b b

f h * edx < h2dx e2dx.
a a a

This applied to the lateral friction term in (5) yields successively:

k20(k) 2 < (j7) 2 j C< F) 2 ek 4

Therefore the first term is negative. The second term related to the

effect of Ekman friction can be evaluated in the same way:

(k) 2 <k 0*k.

The second term is also negative and it can be concluded that:

(6) <k> 2 i + wV2 ip < 0 .

If the forcing wavenumber spectrum is strongly peaked at the wavenumber

kF, it appears that: k = - *v 2 w/w.F F

For more general forcing distributions, the above expression could be

taken as a definition of the forcing scale. After noticing that wV2

is equal to $V2w, substituting the forcing scale in (6) gives:

(7) (<>2 - k )2 s 0.F

$pw is the generation term for the mean kinetic energy, equal in the

steady state to 2R *i + 2V * O, i.e., a positive definite term. Ex-

pression (7) says that the energy containing scale must be greater than

the forcing scale. It may be reasonably expected that this spectral



definition of the energy containing scale does not preclude application

of the above result to the experiments in which other definitions of the

eddy scales have been used.

The more extensively studied case of freely decaying turbulence may

now be considered. An inspection of table 3.5 shows that in the three

runs examined, the length scale estimates grow in the decay state, a well

known result also found in numerical studies. The Eulerian correlations

in both initial and final states appear for comparisons in figure 3-7.

The reason for this spectral tendency can be found rigorously from

the conservation laws of energy and enstrophy, Fjortoft (1953), Batchelor

(1953). The nonlinear interactions are willing to disperse energy in

Fourier space, but the constraint of total energy and enstrophy conser-

vation forces the center of gravity of the spectrum to larger scale, while

at the same time, the fourth moment of the spectrum increases as the

vorticity contours get convoluted just as do passive dye lines in the fluid.

Rhines (1975) has given values for the cascade rates of such spin

down experiments which are independent of the Reynolds number as to be

expected from Batchelor's similarity solution (1969). Rhines finds:

d <k>= 3.102 U . To apply this to the experiments with a non neg-
dt rms

ligible bottom friction and where length scales other than <k>~ are

estimated, it is transformed into:

d L -Rt
dt rms

where L is the integral scale. By integrating this equation between
p

initial and final state, one may compute values of C as:



TABLE 3-5

Initial and final states of decaying 2D turbulence on an f-plane

Run 1

Initial State Final State
t= 0 t = 77s

Rug 2

Initial State Final State
t = 0 t = 56s

Ru~ 3

Initial State Final State
t = 0 t = 77s

3.2 5.23 2.32

w 0.4 0.4 0.14 _

u 0.78 0.183 1.27 0.173 0.82 0.2

L 4.31 5.61 7.78 12.7 9.75 13.5
p

Zero crossing
for g(r) 5.96 9.1 7.2 7.14 9.7 10.4

x 2.84 3.56 4.2 4.27 4.68 5.0

An 2.24 2.7 2.95 3.52 3.0 4.4

0.78 0.145 0.85 0.11 0.49 0.11

338 988 800

f 2.8x10-2 1.5X10-2 1.8X10-2
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C P 2 - Log 0

[U(t ) - U(t)](t - t ) U(t)

where t is the initial state.
0

RUN 1 RUN 2 RUN 3

C 4.lXlO- 2 16X10 2 lixio- 2

R l.8X10-2  3.6Xl0-2  1.8X10-2

UL
R = 338 988 800
e V

If one makes the rough order of magnitude correspondence between

and L , the value of C from lower Reynolds number numerical

studies comes out to be 9.4X10-2, in reasonable agreement with the above

experimental values. Typical relative errors on the above values of C

are about 20%.

The large scale tendencies for both forced and decaying turbulence

as observed and explained theoretically in this section is a common con-

necting link throughout this study. It reveals itself in many peculiar

ways, sometimes identified as manifestations of negative viscosity

phenomena, so unfamiliar in the three dimensional turbulent world.



II. Two dimensional turbulence on a polar 0 plane

Although the exploration of pure two dimensional turbulence began

almost a generation ago, it is only very recently that the ways of

thinking and methods used in turbulence have started to be applied to

more geophysically relevant situations. Work by P. Rhines (1975) who

included the presence of the 0 effect in a turbulent numerical model

with periodic boundary conditions, is very relevant here. A conspic-

uous development of the flow field was observed in these spin down ex-

periments. Unforced eddies initially at small scales, coalesce in much

the same way as described in the preceding section, until energy contain-

ing scale reaches the level at which Rossby waves can propagate, thus

effectively braking the cascade and introducing anisotropy in the

velocity field. The end state of the cascade is a banded structure of

quasisteady zonal currents. In the meantime the continuous deformation

of potential vorticity contours caused by mixing is severely reduced as

fluid particles start feeling the beta restoring force.

Along the same lines, Bretherton and Haidvogel (1976) considered

the decay of a pack of eddies above rough topography in a closed basin

and found that in the end state the currents flowed mainly along the

large-scale topography, anticyclonically around bumps. They then hy-

pothesized that such a state could be one of minimum potential ens-

- trophy for a given energy level, because the small scale enstrophy cas-

cade allowed lateral or higher order computer friction to damp ens-

trophy faster than energy. Both these numerical experiments were car-

ried out in geometries with closed geostrophic f/H contours.

The laboratory experiments to be described below make use of a

geophysically analogous geometry and are meant to provide real fluid



cr

3-8 Turbulent flow on a polar P-plane. Experimental parameter

values are = 3.92 rad/s, w 0.4 rad/s, H = 14.5 cm,

w 0.12 cm/s
t\



analogs of the above numerical free problems. The container, centered on

the axis of the rotating table, is allowed to spin with its free surface

developing a paraboloid of revolution. This models either an isolated

topographic bump in an f plane ocean or a polar basin on a rotating spher-

ical cap with flat bottom. The latter interpretation and associated vocab-

ulary will be used here. The shallow center is identified as the north

pole and beta increases linearly radially toward the southern boundary.

The time-periodic forcing pattern is identical with the one used in

Section I.

Applying the driving abruptly, small scale eddies are first generated.

After an :-inertial time scale or so, they have grown remarkably large,

while at the same time a strong westward mean flow has developed around

the north pole. The statistically steady state consists of a prominent

westward current with an associated belt of cyclones along the southern

boundary. The transient and statistically steady flows are shown on

figure 3-8. The mean profile of the steady zonal current is plotted on

figure 3-9 for a typical run. It was obtained by zonally averaging east-

west velocities from streak photographs. The latitudinal sampling interval

was 3 cm and about 20 uniformly spaced velocity measurements were taken

over each latitude circle. The meridionally integrated angular momentum

contained in the westward jet is about -3800 cm.4/s while it is 3200 cm4/s

in the eastward return flow: the total angular momentum balance is thus

achieved in this run to within 20% indicating that the forcing puts neg-

ligible amounts of direct "torque" in the fluid.

After that brief presentation of the results, the rest of this sec-

tion is devoted to developing an understanding of the observed mean flow

generation processes and tendencies to large scale.
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A. Spectral evolution of free and forced eddies

With the free surface condition defined as:

o2 r2
z 2g

the appropriate vorticity equation from Part I is:

(8) a (V2  - *) + J($,72*) + f = RV2$ + vV4- wat X24XTa H

(gH)2where A is the Rossby radius of deformation.

If the scale of the motion is smaller than X, then the second term

in (8), which represents indroduction of vorticity through free surface

deformations, can be neglected and the surface is dynamically rigid. Since

tendencies toward larger scales for the eddies are found in the experiments,

caution dictates retention of those terms, noting that typical values for

the experimental Rossby radius are about four times smaller than the dia-

meter of the container.

Conservation laws (integrated over the basin) give

(9) (I)= -2R IVI 2 - V V22 2+fiw(9 at (2 +2>,2 2 H

and then the total enstrophy;

(10) (§_)= - 2R 2 2 - w 2

It is worth noting that the topographic - Beta term does not introduce

any novel feature in the conservation laws, which is a general result for

geometries with closed geostrophic contours. Furthermore the second

term in (9) represents the potential energy stored in the free surface.



The spectral evolution of a set of free inviscid eddies is inves-

tigated first, to see if the free surface terms might reverse the now

classical tendencies:

Let C(k) and P(k) be the kinetic and potential energy spectrum respec-

tively. From their definitions it is found that:

P(k) = (kX) C(k).

The total energy spectrum E(k) is the sum of the kinetic and poten-

tial energy spectrum. Omitting the right hand sides of (9) and (10), one

derives:

(11) a k = 0

(12) a 0
at

where as usual

k =f k E(k) dk.
0

Expressions (11) and (12) indicate that "total" energy and enstrophy

are also invariants of the motion. The requirement that the breadth of

the spectrum increases in time due to non-linear interactions shows, as

earlier, that the "total" energy containing scale <k>~1  increases in

time. Because the kinetic and potential energy spectra are, respectively,

the high and low pass filtered versions of the total energy spectrum,

both will tend to larger scale. The kinetic energy of eddies initially

at scales smaller than the Rossby radius of deformation will move its

center of mass toward the Rossby radius while at the same time it is con-

verted into potential energy. At scales larger than the Rossby radius,

the main transfer of energy is a red cascade of potential energy. Al-

though either form of energy may be present and conversions from one to



the other are possible, the flow must migrate to larger scales as its

spectral contents become richer. There are no processes like baroclinic

instability in a stratified fluid that can generate small scale transient

motions from the potential energy stored in the free surface.

The large scale circulation of steadily forced eddies is even simp-

ler to prove. The left hand sides of expressions (9) and (10) vanish,

reducing them to those considered earlier on an f-plane. Thus, the

derivation given there holds here as well. Both of these results are con-

sistent with our earlier observations of eddies on a Beta plane.

An investigation of the generation of Eulerian mean flows on a beta

plane can now be undertaken. Use will be made of a simple, steady, linear

model of forced Rossby waves in which the second order mean currents are

calculated in detail.

B. Forced Rossby waves in an infinitely long channel .

It is perhaps important to realize why attention is directed to sim-

plified analytical models for an understanding of steadily forced flow.

After Whitehead's (1975) observations that purely periodic forcing acting

on a Beta plane led to strong Eulerian mean flows, westward in free

regions and eastward in forced ones, Rhines (1977) demonstrated that such

westward flows were the result of an irreversible meridional mixing of

fluid parcels conserving their potential vorticity. At that time, ex-

planation of the eastward flow over the forced regions originated from

angular momentum considerations, assuming that the forcing put no torque

on the fluid. In our experiments, in which the fluid is forced uniformly

everywhere, it seemed very natural to seek an extension of Rhines' finite

amplitude theory which would be valid over forced regions. The inherent

difficulties of this problem are now briefly exposed.
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The vorticity equation derived in Part I can be written on a constant,

infinite Beta plane as:

D
(13) (- + R) q = Ry + F,

Dt
D "f 3H"
D being the material derivative, 6 being , F a possible forcingDt H 3y

function, and q = + Sy the potential vorticity. The zonally averaged

complete x-momentum equation may be manipulated to yield:

(14) ( + R) u = qv

where it has been assumed that the forcing does not introduce any direct

mean force on the fluid.

To obtain a simple expression for the meridional transport of poten-

tial vorticity one may construct the time integral of (13) following a fluid

parcel which had potential vorticity qo at latitude and time t = 0:

t t

q = q e-Rt + R f y(t') eR(t-t) dt + fF (x (t) ,y (t) , t) e R(t-t) dt'

0 0

Zonally averaging the transport qv along a "fixed" latitude line yields:

t t
-- --- Rt r - -Rt -r -R(t'-t)

(15) qv = q v e -RSJ k (z)e dt +j v(y,t)F(y(t'),x(t ),t*)e dt

0 0
where the diffusivity is:

- 1 D(y-y )2 t
k (t) =- Dty0 R(T) dT

0

R(T) = v(t) v(t-T) being the Lagrangian autocorrelation function.

The first term in (15) represents the viscous spin down of the initial

potential vorticity transport. It is the important term where one considers

initial value problems (These will be looked into in Part III of this study.)



The second term which remains in the steady balance, is the planetary

vorticity mixing term and the'last one is the direct forcing contribution

to the potential vorticity transport, when fluid particles happen to alter

their potential vorticity while wandering over forced regions. Using

simple kinematical arguments, Taylor (1921) constructed the short and long

time behavior of the diffusivity k(t). Combined with the intuition

available to determine the sign of k(t)(as emphasized by Rhines (1977)),

one is in a position to make a reasonable estimate of the second term. On

the other hand, no simple ideas were found to illuminate the behavior of

the Lagrangian velocity-forcing correlation involved in the last term. In

the steady state, the potential vorticity transport is balanced by the

frictional force proportional to the mean zonal flow and this prevents us

from making any predictions about the zonal flow, when the fluid is forced

uniformly everywhere, as in the experiments. Therefore, it was necessary

to look for a model whose dynamics could be solved explicitly. The

relation (15) could then be calculated and hopefully understood.

The model used is linear, steadily forced and viscous. Its geometry

consists of an infinitely long zonal channel on a Beta-plane, preserving

the essential feature of the experiments, namely the existence of closed

geostrophic contours. The relevant "linear" vorticity equation is

simply:

(16) + $ = -RV + F(x,y,t)at jx R 2 1

where bottom friction is the dissipative mechanism and F(x,y,t) repre-

sents a forcing function. The object is to solve (16) subject to the

boundary conditions that $ = 0 at y = 0, and a, the sides of the



channel. An alternative version to (14) is:

(17) + R)U - --
at +3y

The term on the right hand side is the divergence of the Reynolds stress.

Knowing $, the steady mean flow, if any, will be obtained from:

(18) R u -
DYx y

Scaling time by (Sa) 1 , length by a, $ by -- the following non-

dimensional vorticity equation is obtained:

v2 t + $ = - EV2$ + G(x,y,t) where R
Sa

Let us recall that interest is somewhat arbitrarily restricted

to the steady forced solution of equation (19), therefore we look solely

at that part of the solution remaining after the transients generated by

the switch-on have been damped out by -friction in a 'time of order C1.

The free inviscid normal modes are:

n = sin nry e (kx + nt)

with o
n

satisfying the dispersion relation:

k
n k2 + n2 R 2 -

(19)



Assume at first the obvious forcing function

i(kx+wt)
G(x,y,t) = e sin n?ry, *whose envelope has the normal mode shape in

the meridional direction. The solution of (19) satisfying the boundary

conditions is:

.ri(kx+wt-iT)
{( - Wn + ic) e 2 sin niryl
(k2+n2 T2) ((W& )2+ c 2)

n

As the vorticity is constant over a streamline, the above solution

satisfies the complete non linear vorticity equation, the non linear terms

vanishing identically. As a result the Reynolds stresses also vanish and

no mean flow can be generated. At this point, it was necessary to consider

a forcing distribution richer in meridional scales, hoping that interaction

of different scales would generate mean flows. For this purpose and with

experimental comparisons in mind, a constant forcing across the channel was

chosen. Hence

G(x,y,t) = ei(kx + Wt) L(y) with L(y) = l for 0 < y < 1.

The solution to (19) is found by expanding the unknown 1) and the

forcing L(y) in terms of the inviscid normal modes. The Fourier co-

4
efficients of the forcing are L .= -l - , L = 0 and the

2p+l1 i (2p + 1) 2p

result is:

i(kx+tI-- (W-ot +iE).

(20) $(x,yt) = p i- [(e-o2 +] 2p+l 1)i(k2 +(2p+)2 2
2p+l

p

The coefficient of the Fourier series, shows the familiar amplitude

and phase expressions found in resonance problems: the denominator



controls the amplification of a particular harmonic and the numerator

expresses the phase difference between that particular harmonic and the

forcing which is the crucial part of mean flow generation. Using the

solution (20), the Reynolds stress divergence -RS can be obtained and one

finds:

(21) RS = 8kE B2p+1B2q+l(2q+1)2( 2p+- 2q+ )sin(2p+1)7ry sin(2q+1)7ry

p,q

with B 2p+ =[(k 2 + (2p+1)2w2)(2p+l)( 2p+1 _ 2 + 2 )] -.

The expression (21) shows again that self-interaction of harmonics does

not contribute to the divergence. The double sum (21) will usually be

evaluated numerically for different values of the three parameter k, W

and C. Before proceeding,however, an alternative expression for the

Reynolds stress divergence can be found as indicated earlier. It enables

us to separate out the effects of the potential vorticity mixing of the

forcing.

Equation (15), non dimensionalized, is used to calculate the diffusive

term DF and the forcing term FT. Lagrangian path integrals occurring

in (15) are calculated to first order in the wave steepness, consistent

with the neglect of the non linear terms in (16). The results after some

algebra are:

(22) DF = k B B sin(2p+1)7ry sin(2q+l)lry
T2 (:2+W2) 2p+1 2q+l

pq

2p+l o 2q+l o

and



(23) FT = 82 (k+ ) 2p+ sin(2p+1)7wy sin(2q+l) iry - w(23) FT = E: 1.2+W2) /,2q+1 s2p+1

pq

and one can check that RS = DF + FT as given by (21), (22) and (23).

Another quantity of interest is the "Stokes drift" of the solution

(20), and the related Lagrangian second order mean currents. Because the

Eulerian velocity gradients are important, particle paths are not exactly

closed. The net drift experienced by a passive tracer in the flow is

simply the sum of the Eulerian mean currents RS and the Stokes drift

SD. Using (20), one finds that:

(24) SD = - B B [(2p+1) sin (2p+1) Ty * sin (2q+1) Ty-
Y, 2p+1 2q+1
p,q

(2p+l) (2q+l) cos (2p+l) Ty cos (2q+l) Ty]

[E2 ((2p+l 2q+l

This bears a direct relation to the experiments in which the mean cur-

rents measured are in fact the Lagrangian ones. Dependence of the

strength and structure of the mean flow upon the forcing parameters k,

W and C may now be investigated. For convenience, when

2p+1W 2p-1, one defines:

Aw = w p- - o p~ = 8722 pk 27?]2 f22p-1 2p+12p-l 2p~l[k 2+(2p-1) 2 2] [k2+(2p+1) 2 12

Aw is the discrete equivalent to the north-south group velocity of

inviscid Rossby waves in an infinite medium.

The viscous regime specified by a large value of C/W is des-

cribed first. In this regime Aw is also small and it indicates that
E



the resonance will be poor as waves do not feel the boundaries of the

channel.

When the forcing scale is very large, the double Fourier series can

be summed analytically with the following results:

RS= (-5y4 + 1oyl - 6y2 + y)
48 E:

DF =- k 2)2

8 EC

FT= k2  4 2 - y + y/2
24 2 2

k 2 1
SD = (-3y + 3y -)

4 EW

These expressions are plotted on figures 3-10(a) and (b). The structure

of the mean current is westward in the interior and eastward near the

boundaries. The diffusive term is always negative, small near the wall

and large in the interior compared to the forcing term which is positive,

large near the walls and smaller in mid channel. However the scale

factors show that the Eulerian mean flow is very small compared to the

Stokes drift which is eastward in the interior and westward near the walls.

This indicates that the Lagrangian mean flow will swamp the mean Eulerian

picture. In these runs, the friction coefficient is large and only a

small Eulerian flow is needed to balance the Reynolds stress. On the

other hand the Stokes drift, a purely kinematical effect, makes reference

to friction only indirectly through the solution (20).

When the forcing scale is small, the Eulerian mean flow is insig-

nificant throughout the channel. The diffusive and forcing terms are
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3-10 The viscous, long wavelength limit:

(a) The mean flow RS, the vorticity mixing term

DF and the forcing term FT

(b) The Stokes drift SD.
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3-11 The viscous, short wavelength limit:

(a) The mean flow RS, the diffusive term DF,

and the forcing term FT

(b) The Stokes drift SD.



constant and balance each other while the much larger Stokes drift which

vanishes in the interior, indicates Lagrangian flows to the east and then

to the west when approaching the walls. Refer to figures 3-11 (a) and (b).

Let us examine now the more interesting inertial regime when E/W is

small. The Stokes drift is now typically smaller than the Eulerian mean

flow. Lagrangian mean flow will be a very good indicator of the Eulerian

one.

When the meridional or zonal forcing scale is small enough, such that

Aw is smaller than E/w, then -- is smaller than unity. Again the
W C

resonance will be poor as neighboring harmonics in (20) will have roughly

the same amplitude and phase. The results shown in figure 3-12 indicate

that the mean momentum is concentrated along the zonal boundaries, where

it is westward in the interior and eastward close to the walls.

When the forcing scale is large enough such that AW is greater

than , then is larger than unity. When the forcing excites one
W E

of the inviscid normal frequencies, the amplitude of that coefficient of

that particular mode in the solution (20) is magnified. It turns out

that this particular resonant structure may also leave its signature in

the mean current pattern, modifying the simple structure found up to now.

When the forcing excitation is off resonance, then the amplitude of the

mean flow drops sharply and its meridional structure is usually an hybrid

of the two adjacent resonant modes. Note this behavior for the five runs

presented in figure 3-13. In these cases the zonal forcing wavelength

and the Q of the cavity are held constant (both equal to 10), while

the forcing frequency gradually decreases, thereby exciting smaller meri-

dional scales. When W falls below W , considerable fine structure
5

appears and eastward jets may now be found in the interior.



3-12 The inertial, short wavelength limit (C/W = 0. 1).
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containing 9 discrete frequencies in the inertial regime.
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Although the intricacy of the picture has increased a great deal,

one may still find important internal consistencies in the structure,

which aid in the development of a physical understanding. First, an

eastward jet is always found at each zonal boundary. Second, the

"interior" meridionally averaged mean momentum, is always westward since

the total mean momentum is zero. Third, the diffusive term is negative

everywhere. Its absolute value is small near the boundaries compared

to the forcing terms which is positive in this region. On the other hand,

the forcing term may be of any sign and amplitude in the interior.

For completeness we have also plotted in figure 3-14, the Eulerian

mean flow, the Stokes drift and their sum for one of the above runs. It

will be seen that the structure of the Lagrangian mean flow does not

differ essentially from the rectified Eulerian mean flow.

When the bandwidth of the forcing wavenumber or frequency spectrum

increases, these observations lead one to expect a sharpening of the

eastward jets near the wall and a broadening of the region of westward

momentum in the interior. Indeed, this was demonstrated in a numerical

calculation designed to test it. With a constant friction parameter

(3.7 x 10~5) and zonal wavenumber (0.628) the individual responses to

nine various forcing frequencies were computed and averaged. With a

frequency range that was bounded by 0) and 01 and a mean Q of
5 11

about 15, the response to each individual frequency yielded considerable

fine structure in the mean flows. The total response shown in figure 3-15,

now reveals a much simplified pattern, with the smoothed interior flow

almost everywhere westward and the sharpened eastward jets along the walls.

To summarize the results of the model in the inertial regime, one

may say that subjected to a meridionally uniform forcing with varied



space and time scales, the fluid responds by building up a mean state in

which the meridionally averaged correlation $y is systematically positive.

1$ is the mean state stream function. As the forcing spectrum gets

richer, the tendency for a simple broad westward interior flow with con-

fined return flows on the boundary seem to develop.

In reference to the laboratory experiments, it is hoped that any

doubts concerning the true inertial nature of the laboratory flows have

vanished since the viscous regime of the model indicates opposite:Lagran-

gian mean flows to the one observed. On the other hand, the inertial

regime shows considerable qualitative agreement, the laboratory value of

Q being about 10 for the lowest Rossby modes.

At this point it seem desirable to gain some physical understanding

for the above mean flow structure. The following arguments are restric-

ted to the more interesting inertial regime when the concept of group

velocity may be used. Near each zonal boundary, with an energy source

acting quite close to the boundary, the net wave energy flux must be in-

ward since partial reflexion of energy occurs at the boundary. The

meridional extent of that inward energy flux region will be larger as the

north south group velocity increases while dissipation diminishes (i.e.,

the energy reflexion coefficient will increase). From the Rossby waves

dispersion relation, one concludes immediately that a northward group

velocity (respectively southward) is associated with streamline patterns

tilted in the northwest-southeast direction (respectively northeast-

southwest). This tilt of the wave troughs is just what is needed to

generate eastward jets at each wall. This reasoning leads to the belief

that the eastward jet region must increase when -- increases. (Remem-

ber that Ao is a "discrete type" group velocity equivalent.) Consider



then the five runs shown in figure 3-13 carried out at constant k and

6/w. In these experiments lower forcing frequencies and hence lower

make the eastward jets shrink to the sides of the channel.

Turning to an interpretation of the forcing and diffusive term in

(13), one may note the following: In a wavelike steadily forced motion,

one expects the meridional dispersion (y - y0) 2 to increase from zero

to a small constant value. This makes the sign of the diffusive term in

equation (13) unequivocally negative. Because this term is quadratic in

the meridional velocity while the forcing term is linear (for small meri-

dional displacements), one is led to expect that near the walls the east-

ward jets will be driven primarily by the positive forcing terms. On

the contrary, in the interior, the diffusive term is responsible for

driving the westward flow, while the forcing term may take any value and

sign. We may only say that the total meridional average of the forcing

term must be positive to counterbalance the effect of mixing of potential

vorticity by the waves.

This quasilinear analysis has provided a reasonable comparison with

the turbulent regime of the experiments. The meridional fine structure

that appears in the model distribution of the mean flows for low driving

frequencies must be considerably reduced for turbulent flows. Indeed

it is known that large scale flow tendencies occur over such beta plane

geometries. A limited quantity of information relevant to the turbulent

experiments is available directly from the finite amplitude transport

equation (15).

In the steady limit of (15), the mixing term is negative everywhere

because in a homogeneously forced fluid the diffusivity k is positive

and vanishes at the boundaries. Since the total angular momentum is



conserved, one concludes that the meridional average of the forcing term

in (15) is positive. As indicated earlier, the forcing term is greater

than the mixing term near the southern boundary where v' vanishes. Con-

sequently an eastward flow must be present near the wall. In the interior

the mixing term is greater than the forcing term on the "average" and

drives the return westward flow.

Although anticyclones gather in the north while cyclones are pushed

far south (figure 3-9), one may show that the area-averaged Gy cor-

relation vanishes assuming homogeneity of the forcing. Thus while the ex-

periments and the model reveal a non-zero, positive $y correlation, no

net vorticity partition is associated with it.

Considering the transient westward flow associated with the impul-

sive switch on of the turbulence, (figure 3-8), the present use of (15)

is limited. It is only when the driving is independent of longitude that

one may assert that the mixing term in (15) grows initially as t

faster than the forcing term, inducing the retrograde flow in the interior

where v2 is large. In the experiments, however, the forcing although

statistically homogeneous is not longitude independent, and one encounters

therefore the same difficulties as in the steady limit.



III. Two dimensional turbulence in the "sliced cylinder" model

The geometry examined in the preceding paragraph could be thought

of as a model of the polar cap of a barotropic atmosphere. The present

"sliced cylinder" was introduced first by Pedlosky and Greenspan (1967)

to simulate accurately in the laboratory the large scale oceanic circu-

lation. The geometry is one of a cylinder of revolution whose top sur-

face has been tilted through an angle a to the horizontal. The geo-

strophic f contours are now straight line running east-west and inter-
H

secting the walls. Intensive study of both the steady and time dependent

response has been made by Beardsley (1969, 1975). The success of these

experiments in reproducing both the Stommel and Munk's solution of the

wind driven oceanic circulation, and in shedding light on the unsteady

currents, led to the undertaking of turbulent experiments in which the

focus is on the structure of the eddies themselves. In particular the

eddies' ability to generate mean flows, as suggested by Pedlosky (1965)'s

quasilinear analysis, needed to be evaluated and compared to our earlier

experiments with closed geostrophic contours.

The forcing function used here is homogeneous on the bottom and

again of the pseudo-random type. The forcing amplitude is meant to be

large enough to generate turbulent eddies, while keeping the Rossby number

U small (L being an eddy scale). The experiments were run for various
fL

values of effective beta, Coriolis parameter and forcing amplitude. Both

the steadily forced stage and the decaying period were observed.

Throughout the runs the turbulent eddies behave in a similar way

and can be described as follows: When the forcing is impulsively turned

on, small scale eddies are generated. The subsequent scale evolution

does not depart much from the initial configuration. However, spatial in-



homogeneity develops quickly. Larger eddy scales and less kinetic energy

are found in the eastern basin compared to the western one. A more

peculiar north-south inhomogeneity is also observed, i.e., the kinetic

energy is significantly larger in the north. When the forcing is turned

off and the eddies allowed to decay, no significant scale change and no

hint of anisotropy is seen; the turbulence simply dies out in a spin-up

time scale. No mean flow whatsoever can be detected in either case. But

a word of caution is appropriate here: without a current meter in the

flow it is difficult to rule out the possibility of mean flows much

slower than a typical rms velocity. Indeed recent oceanic observations

have shown that statistically significant time averaged Eulerian mean

flow can be found superimposed over much more energetic motions. We con-

clude therefore, that any mean flows were at least an order of magnitude

smaller than eddy velocities.

A description of both the forced and the decaying aspects of the

turbulence may be found in figures 3-16 and 3-17 respectively. A visual

comparison of eddy scale with figures 3-1, 3-2 and 3-9 will convince one

that no large scale kinetic energy cascade was found in either the forced

or decaying experiments.

To present an intercomparison of the various runs explored, both

spatial kinetic energy and eddy length scale estimates were made. The

latter were roughly computed by counting the number of velocity reversals

normal to a straight line drawn ona streak photograph. This was averaged

for many such lines. Sucha "mean radius" of typical eddies is thought

to be a crude estimate of the zero-crossing of the transverse correlation

function. It enables one to compute an important parameter, namely

M = 47.2 u . M is a measure of the non-linearity in the vorticity

/



north

3-16 (a) 2D turbulence iri the sliced cylinder model: the

steadily forced case. Laboratory parameter values are

= 5.1 rad/s, (3 = 0.43 rad/s, H = 25 cm, a = 0.23,

w 0.12 cm/s.

3-16 (b) The state of decay as evolved from figure 3-16 (a).



equation and the ratio of a particle speed to the Rossby wave phase speed

for motions of scale L. Table 3-17 summarizes the important results of

the above analysis carried out for 5 selected forced runs.

Comparing runs 1 and 3, or runs 4 and 5 shows that doubling the

Coriolis parameter doubles the kinetic energy. In the same way a look at

runs 1 and 5, or 2 and 4, reveals that doubling the forcing amplitude

almost quadruples the kinetic energy. This indicates that the generation

term w$ for the mean kinetic energy increases roughly like the square of

the forcing amplitude and like the square root of the Coriolis parameter.

Although many more runs would be needed to establish the proper power law

with accuracy, the tendency is at least exhibited here. Significant

zonal inhomogeneity is seen in both energy level and eddy scale. The

energy in the western basin exceeds that in the eastern by about 30%.

The eddy scale in the east exceeds the one in the west by typically 40%.

Significant meridional inhomogeneity is also present, the energy in the

north being about 40% larger than in the south. Eddies seem to be fairly

isotropic in the west while in the east meridional kinetic energy usually

exceeds the zonal part. Greater energy and shorter length scale in the

west makes the flow very turbulent there (M = - reading 15), while less
c

energy and longer length scale make the eastern part more linear. At the

same time, the fluid could be considered as very diffusive in all those

runs since meridional particle excursions were huge compared to the eddy

scale.

It is worthwhile to write down the conservation laws for kinetic

energy and enstrophy again in order to explain some of the observed

inhomogeneities.



TABLE 3-17

Experimental results for the turbulent "sliced cylinder" experiments

(CGS units)

run 1 run 2 run 3 run 4 run 5

R(rad/s) 3.0 5.1 6.9 5.13 2.75

w(rad/s) 0.28 0.43 0.28 0.44 0.28

w 0.12 0.12 0.12 0.056 0.056

0.14 9.5x10- 2  0.14 4X10-2 7X10-2
H

U
-_rms 1.2x10 2  10-2 10-2 5.3x10~3  7.7x10 3

fL

KE 0.79 1.22 1.56 0.4 0.18

Western L 6.3 5.0 4.3 5.8 5.0
basin

u'/v' 1. 0.97 1.08 1.04 1.1

M 11.6 13.4 15.0 5.68 9.46

KE 0.62 0.95 1.17 0.24 0.12

Eastern L 9.5 9.5 5.5 8 7.0
basin

u 0.92 0.71 1.17 0.79 0.89

M 4.5 3.5 8. 2.32 3.9

KE (west)
KE (east)

KE(north)
KE (south)

1.26

1.33

1.28

1.77

1.33

1.29

1.66

1.48

1.5

1.89



(28) (B + R)V2$ +fa $ = -fw
Dt -i H

H H

where oa is the slope of the top surface, and $ = 0 is the boundary

condition at a wall. The total kinetic energy obeys:

(29) (- + 2R) 2 - H

and total enstrophy:

a I V211 2 f wv 1 fa ^ 2
(30) (-- + 2R)=--w$--- u sinO dt

t 2 H 2 H

3D

The fact that the geostrophic contours are now open introduces a new

term on the right hand side of (30) as noted by Rhines (1975). (juI is

the velocity amplitude along the boundary and 0 is the angle of a

positively directed vector tangent to the boundary with respect to east.)

Arguments put forward earlier to explain the red cascade are no longer

valid here because enstrophy may be generated (respectively dissipated)

at a western boundary (respectively eastern). This zonal enstrophy in-

homogeneity favors small scale motion in the west and larger scale in the

east. Rhines then argues that small scale motion propagating slowly will

also favor western concentration of eddy energy. These statements, valid

for turbulence, rationalize much of what has been observed in the

experiments. Nevertheless it is interesting to formulate them using

inviscid Rossby wave reflexion properties. Because of the meridional

barriers preventing zonal energy propagation, both small scale and large

scale waves must exist in the interior. If large scale energy were to

increase, small scale energy would increase as well in order to satisfy



the no energy flux conditions, thereby forbidding the red cascade.

Furthermore it is well known that waves of zonal wavenumber k. imping-

ing on a meridional western wall reflects with a larger wavenumber k .r

one may show further that:

E. k. S. k.
=--and =()

E k S k
r r r r

where E., Si are the incident energy and enstrophy respectively and

E , S the reflected quantities. This leads again to western energy and
r r

enstrophy intensification for the waves.

Although the experiments have verified most of the mental pictures

developed above, some unexpected features were discovered. The strong

meridional energy inhomogeneity belongs to this category. One thinks

immediately that forcing or dissipation might act at different efficiencies

in both shallow and deep regions if it weren't for the fact that their

ratio (in (29) say) is depth independent (assuming that bottom friction

is the important dissipative process). This makes it difficult to take

any position on that issue. Northern intensification of flows in a beta

plane basin is not new however as Veronis (1965) noticed when computing

non-linear correction to the "steady" Stommel's solution of the wind

driven ocean circulation. Beardsley (1975) also saw northern intensifi-

cation in the laboratory when studying large scale Rossby waves. He

attributed the effect to nonlinearity although the closed particle orbits

of his figures indicate a very linear flow . In table 3-18, meridional

inhomogeneity is seen to increase as the forcing amplitude is lowered,

making a nonlinear mechanism doubtful at best. A possible rationalisation,

independent of the generating and dissipative mechanism, might come from



the fact that topographic wave energy tends to build up while moving into

shallower water (i.e., a region of higher equivalent beta). This is so

because incident rays normal to the topographic contours are bent grad-

ually along the contours and tend to bunch together at a caustic running

parallel to the topography. Wave energy is thus focussed at such a sin-

gular line.

The last surprise came finally from the absence (or weakness) of

rectified mean flows. Relating to the earlier polar beta plane experi-

ments, one is led to believe that efficient mean flow production and

large scale spectral cascade are two phenomena which cannot be dis-

associated. Absence of closed geostrophic contours seems to conceal both.

Imagining the simplest steady driving acting in the two geometries

(polar beta plane, sliced cylinder) helps to understand the difference

of amplitude of steady flows in the two cases. Assuming the bottom sur-

face to rotate steadily slightly faster than the container, currents of

T/ V X T
order R will exist in the former geometry, but only of order

in the latter, their ratio being large (of order -) in the inertial
R

regime. (T is the applied stress, L its scale). This is a quite

plausible "interior" scaling but caution is dictated because we know

that western intensification in the sliced cylinder may sustain swifter

local flows or order R also. The above interior argument is only

suggestive of the mean flows differences observed in the turbulent experi-

ments. Geophysically this seems to bear upon the large differences of

the ratio of mean over eddy kinetic energy found in the atmosphere of the

earth and in the oceanic basins.

Concerning the gyre scale inhomogeneity of the eddy kinetic energy

in the ocean, one may reasonably hope that the rough picture developed by
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3-18 The fluid response to an isolated, oscillating dipole

in the sliced cylinder (C. = 0.095). The darker cir-

cular region in the east indicates the position of the

C.doe.



Swallow (1961) will be improved through the considerable efforts of the

POLYMODE experiments. The present experiment suggests a drop in time

dependent barotropic energy of about 30%, going from the western to the

eastern basin.

To close this paragraph, a very brief description of a complementary

experiment in the sliced cylinder will be made. The forcing in this ex-

periment consisted of an oscillating source sink dipole oriented normally

to the latitude lines and situated east of the center of the tank. With

large amplitude but isolated forcing, strong rectified mean flows lying

west of the dipole built up after half a dozen periods of oscillation.

Figure 3-18 shows both the structure and direction of the mean flows.

The mean flows are now concentrated close to the forcing latitude, west-

ward in the north and eastward in the south, with the circulation closing

itself at the western wall where an intense meridional current flows

southward with boundary layer character. It overshoots inertially before

turning back east again. A large, somewhat more intermittent, anticyclone

can also be found north of the westward flow. The same consistent pattern

was found to hold for many runs in which bottom slope, rotation, forcing

frequency and amplitude were varied. This experiment was designed to

test the effect of meridional walls on the qualitative mean flow picture

found by Whitehead in his polar beta experiments. The changes (as wit-

nessed by the mean gyre in 3-18) are profound. It is interesting to

observe that turbulent interaction of isolated eddies (rather than closely

packed as in the preceding case) leads to the generation of strong

inertial mean flows in this model. It is fair to say that the direction

and sense of the mean circulation have so far eluded theoretical inter-

pretation.
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PART THREE



Certain novel aspects of the classical interaction of Rossby waves

with a mean zonal flow are discussed here in the light of new experimental

results. Meteorologists, having the westerlies at hand, identified the

large scale perturbations of the jet streams as quasistationary Rossby

waves embedded in the mean zonal flow, and developed the barotropic in-

stability theory of such flows. Oceanic evidence for both Rossby and

topographic waves has been reviewed in a comprehensive way by Rhines (1977).

Simulated by possible geophysical implications and by the importance of

mean flows in general for transporting passive markers far away from their

source, it is wished to explore certain aspects of the role of wave

momentum flux carried by Rossby waves and the various conditions under

which it may be used to accelerate mean flows. Although the concepts em-

bodying the energy propagation at the group velocity by wave packets are

built up on solid theoretical grounds for both linear and nonlinear waves

in homogeneous slowly varying media, it appears that the mean momentum

associated with waves in fluids does not lend itself to an easy inter-

pretation as say, in electromagnetic waves. However for dispersive waves

a knowledge of the direction of energy travel implies a well defined

wavecrest orientation. This anisotropy is associated with a mean wave

stress which may be used to accelerate a mean flow if genuine radiation

from a forced region occurs. Another radically different approach makes

use of vorticity mixing concept introduced by Taylor (1915) and used in

geophysical situations by Rhines (1977). In unforced regions, some

reasonable knowledge about the diffusivity of turbulence is sufficient to

predict the mean currents in the fluid.



I. Mean flow rectification by topographic Rossby waves

Rossby wave radiation was invoked in an oceanic context by R. Thompson

(1971) for explaining the systematically negative Reynolds stress (uv) of

long period motions at site D north of the Gulf Stream. The latter was

suggested as a likely energy source, for the topographic Rossby wave dis-

persion, relation associates northward group velocity with negative

stresses. In the laboratory, Whitehead's experiment is just a variant of

this mechanism. The present experiment relies freely upon these ideas,

the novel feature being a rather sophisticated forcing mechanism, which

allows one to visualize quite well the forced eddies and the mean cir-

culation.

The geometry used is the polar beta plane with a free surface.

Driving is provided by a zonal ring of sources and sinks distributed

along the outer wall. As explained in Part I, the use of the forcing

manifold allows the generation of a wave travelling in a prograde or

retrograde sense. A zonal wavenumber of 12 was chosen to favor both

zonal homogeneity and possible nonlinear interactions. A typical experi-

ment was run as follows: when a state of rest is obtained in the rotat-

ing frame, the forcing is impulsively turned on until a steady state is

reached after a few spin-up times. Both transient and steady state were

recorded photographically. The evolution of the flow pattern, when the

forcing influence propagates westward, may be seen on figures 4-1 and

4-2. The northwest-southeast tilt of the eddies in the transient phase

and the mean westward circulation found in the steady state are very

clear features.

It is planned to present first an essentially linear analysis of

the small amplitude flow and then to focus on an alternative exposition
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4-1. The Rossby wave transients induced by the switch-on of

(P the westward travelling ring forcing at the outer boun-

- dary. Laboratory parameter values are = 3.06 rad/s,

w0.4 rad/s, H =7 cm, Q =363 cm/3

E =6.8 x 10~ ', fL = 2.5 X 10 .



of vorticity mixing theory whose validity remains at large amplitude. In

both sections some efforts will be made to confront experimental data

against theoretical results. The very striking spin down experiment will

be described separately at the end.

A. Rossby wave resonance, wave stresses

Although the forced waves have a scale much smaller than the dimen-

sions of the basin, it is to be expected that minimizing frictional effects

will enable wave resonance to show up, allowing the experimental deter-

mination of the frequencies of the inviscid free Rossby modes. The wave

frequency varying like f3 and the inverse of the spin down time R

like f2 (f being the Coriolis parameter) such advantage was gained by

going to high rotation rate. In practice, one is limited in reaching

too high values because the fractional depth change must remain small with-

in the quasigeostrophic approximation. In the present geometry this

f2L2

turns out to be a condition of small Froude number . For order one
gH

aspect ratio container, a small slope of the free surface is thus re-

quired. This constraint of small Froude number renders negligible the

vortex sitretching caused by free surface motions. Keeping in mind this

parameter regime, an optimum value had to be found for the Coriolis para-

meter. (Notice that a change in the depth of the fluid will not affect

the value of the quality coefficient Q = R of the "cavity" remember-

ing that Ekman friction is the importantdissipative mechanism here.)

The linear, steady, forced solution may be found by solving the

following vorticity equation:

(1 ) - 6 =(21i, - ~2) + 2 =

with$= 0 at r = a.



Local north is at the shallow center of the container, time has been

nondimensionalised by the Coriolis parameter and E = R/f. The inviscid

free normal modes are:

r i(Wt + nO)
(1) p =J (n -) e

m n m a

th . th
J is the n order Bessel function of the first kind, and nj its m
nm

zero. The dispersion relation needing to be satisfied is:

(2) = n.
m2

4(1 +T1 mX2 )

a2

As usual it associates large frequencies with large meridional scale

(small fm ). The radial equation derived from (1) having a turning

point, the radial envelope of the normal mode Jn changes its nature as

its argument is smaller or larger than n. Thus when r is greater than

r = a * , the Bessel function has oscillatory character while for
c n

smaller values of r it is evanescent. This corresponds physically to

the impossibility for a wave packet starting from the outer wall to reach

the center. As it moves into shallower water, beta decreasing linearly,

its meridional scale must increase. This augments and bends the group

velocity more eastward till the packet is essentially reflected at a

critical latitude, limiting thereby further meridional penetration of

energy.

Again the normal modes satisfy also the nonlinear version of (1).

The forced solution is found by expanding the forcing over the normal

modes. The following forcing function was chosen:



6(r - r ei(t + nO)
0

r

The radial part is idealised by a Dirac .6. function rather than

a more distributed forcing as in the experiments. This simplification is

probably a good one when the scales of motion are larger than the effec-

tive size of the driven region. The travelling wave is assumed to be

harmonic in the zonal direction and in time although a square wave was

forced in the experiments. It will be seen that this richness of har-

monics has some important consequences in the nonlinear regime but of no

real concern here. At any rate the nondimensional solution of the forced

equation turned out to be:

r
o rO [i(W-o )-E] J ( 0 )J (r

(Wt+nO) m n ma n ma

(3) $ =.{2e L [(W) 2 +E2  2 2( )]2
M=1 m m n+1 m

in which the approximation << 1 has been made. This is valid for
m a

comparing with our experiments because - never exceeds 2 or 3 and the

smallest value of qm is 16.70 for a mode of number 12.

The easiest check to see if the solution (3) has anything to do

with the experiment is to sense the free surface elevation as a function

of time and compare the rms pressure with the amplitude found from (3).

There is however an unknown adjustable parameter which is the forcing

amplitude w . Although the mass flux is known, there are no direct ways

of inferring the vertical velocity because the effective area of sources

and sinks covered by a diffuser is essentially unknown. Instead the

present comparison provides a way of estimating it. This value was then

used to scale the data at other frequencies.
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Pressure was measured using capacitance probes at two points in the

tank, one in the near forcing region and one in the far field. Because

the Rossby wave pressure signal is very small one could not go as low in

forcing amplitude as one wished for a test of linear theory. The smallest

free surface elevation that we could detect with still a good signal over

noise ratio was about 50 microns. This corresponded to particles speed

of the order of the phase speed for the gravest Rossby modes, making a

linear comparison still a rough one.

Figures 4-3 show the comparison between experimental data and the

theoretical curves computed from (3). One can see that a reasonable

agreement exists for the general frequency dependence. The lowest mode

is slightly resonant in the near field but the theoretical resonance

curves look sharper. At low frequencies the comparison becomes a bad one

as nonlinearity creeps in. The spectral broadening of the empirical

curves was seen very clearly in runs of increasing forcing amplitude.

This is to be expected from the general tendency for nonlinearity to

whiten spectra. One will notice in figure 4-3 (b) that the presence of

beta critical latitudes is well demonstrated: the driving frequency must

be below a certain cut-off for any wave energy to reach the far field

probe. Again from runs with increasing forcing amplitude, one could

see more and more energy tunneling through the critical latitude when the

driving frequency was above the "linear theory" low frequency cut-off.

A further and more important check on the validity of the linear

theory could be provided in a simple way by the versatility of the forcing

mechanism. The well ordered "steady" waves found in the retrograde case

(Figures 4-1, 4-2) were replaced by quite an unsteady, messy pattern

when the forcing moved in a prograde sense showing that the fluid dis-



liked such excitations. To have quantitative estimates of that repulsion,

three pressure traces shown on figure 4-4 were obtained in the near and

far field region when a large constant amplitude forcing pattern moved in

a prograde or retrograde sense, or did not move at all. The enhancement

of the signal for the retrograde case demonstrates quite clearly the neces-

sity for the forcing speed to match the Rossby wave speed in order that

significant motions be produced. For smaller forcing amplitude the signal

corresponding to the prograde case looked exceedingly small.

The question of the mean wave stresses will now be discussed. Al-

though all the needed information is contained in the exact solution (3)

the mathematical form is not very enlightening. A more suitable, quali-

tative approach might be to rely on the wave packet concept in an infinite

medium as developed by Lighthill (1967). In order for wave forms varying

i(kx - wt) to be solutions of the vorticity equation, the following
like e--

dispersion relation is required:

k2 + 12

k and £ denote the zonal and meridional wavenumber respectively.

Lighthill demonstrates that travelling forcing effects generate waves

whose crests are stationary relative to the velocity of the forcing region.

Away from the westward moving forcing region, they will be found in the

direction of the relative group velocity with wavenumbers satisfying:

- _= -kU, U > 0.
k2 + 12

The possible wavenumber vectors may lie on the £ axis and on a
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circle of radius (A) centered at the origin. The former family with
U

zero zonal wavenumber will not be excited because our forcing spectrum has

no energy there. On the other hand, wavenumbers lying on the circle will

be excited. On figure 4-5 we have plotted this locus with the direction

of the group velocity. It is seen that all waves trail the forcing pattern

as the group velocity points toward the east. Since the forcing region

in our experiments is bounded to the south by a wall, the northern interior

will be filled up by waves found in the first and fourth quadrant of

figure 4-5 exclusively. This indicates in turn a northwest-southeast

orientation of the wave crest. This orientation could be seen very

clearly in movie films. In order to include the evidence here, long ex-

posure photographs over one forcing period were made for small amplitude

forcing so that particle paths were essentially closed. Figure 4-6

reveals the elliptical orbits with orientation as deduced from the theory.

One may also see that the size of the ellipses decreases going north be-

cause of the usual geometrical spreading of energy going away from a

source. These two effects, orientation and varying size of the orbits,

are just the necessary ingredients to produce a positive divergence of

the waves Reynolds stresses. The net westward mean flow which results

may thus be considered generated by Rossby wave radiating away.

As suggested earlier this wavelike mechanism for westward mean

flow generation away from energy sources is recovered by the large am-

plitude validity of the vorticity mixing theory. Along with its ex-

position the interesting nonlinear phenomena arising from the experiments

with the retrograde forcing pattern will now be discussed.
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Locus of wavenumbers excited by a westward propagating

forcing. Arrows indicate the direction of the group

velocity relative to the forcing.

Long exposure photograph, revealing the tilt of the

particle orbits.

4-5

4-6



B. Potential vorticity mixing and associated finite amplitude effects

The stage for the matters to be discussed has already been set in

Part II, paragraph B. One must emphasize that investigation of a mean

flow acceleration as a divergence of a Reynolds stress is of little infor-

mative value usually, because the concept accumulates in itself possibly

different physics. The novelty of a vorticity mixing approach is that it

allows the explicit separation of the free and forced contributions to

the Reynolds stress. Although what one can say about forced regions is

limited, considerable intuition is available to predict mean flows over

the free latitudes of a forced beta plane as shown by Rhines' explanation

of Whitehead's experiment.

The starting point is the expression (15) in Part II. The trans-

port of the initial potential vorticity by the eddies q v can be re-

written as - k, k being the usual zonally averaged meridional diffus-

ivity of fluid parcels from their rest latitude. One obtains equivalently:

t t
- -Rt - RT --- R -t'-t)

(4) qv = -Ok e - Rf k'(T)e dTC + f;F e dt'

0 0

This expression predicts that at free latitudes y, where no con-

tribution to qv comes from parcels having wandered over "steadily

forced" latitudes, a westward mean flow is to be expected both in the

transient regime (from the first term in (4))and in the steady case

(from the second term in (4)), because of the positive diffusivity induced

by the continuous forcing. This is clearly what happened in the experi-

ments as witnessed by figures 4-1, 4-2. The meridional structure of the

mean flow and the Reynolds stress is shown in figure 4-7 for a large am-

plitude run. Not represented thereon is a persistent eastward flow
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(a) westward mean flow and Reynolds stress

(b) eddy and mean kinetic energy.
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found over the forcing region quite close to the southern wall. Lighting

deficiencies prevented accurate measurements there. This prograde mean

flow is nevertheless an essential ingredient to balance out the total

angular momentum. Again the precise way by which correlation forcing-

meridional velocity build up in (4) to reach that goal is obscure.

As may be seen on the photographs, the anticyclones have disappeared

over the ring forcing regions. The retrograde sense of the interior mean

flow is evidently just what is needed to intensify cyclones and weaken

anticyclones at the forcing latitudes. A further check on this process

was carried out by devising the same experiment but replacing the upper

paraboloidal surface by a rigid flat lid. Initially small eddies of

either sign were found in the driving region. They exhibited the usual

tendency to grow to larger scales "irrespective of their signs". The

beta effect introduces therefore an assymetry: the anticyclones grow

preferentially to larger scales (to form the westward interior mean flow)

while cyclones stay at smaller scales tied up to the driven region. As

in the polar beta plane turbulence case, one may show however that the

area-averaged Ey correlation vanishesbecause of forcing axial symmetry.

It was decided finally to test the steady part of relation (4)

directly. At free latitud s, the amplitude of the westward flow must

finally equilibrate to O k(T) eRT dT. A number of Lagrangian particle

paths were extracted from movie films, and digitized for building up

zonally averaged Lagrangian velocity correlation. Being forbidden to

average meridionally or temporally by the nonhomogeneity and nonstation-

arity of the statistics made the calculation difficult, for at any given

time and any given latitude, a large number of fluid parcels just crossing

the control line is needed for constructing meaningful zonal averages.
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We never had enough! To increase the number of degrees of freedom, the

zonal average was applied to a narrow latitude band rather than to a line

as in (4). Fixes were taken roughly every fifth of a wave period, an

operation which effectively low pass filter the data. This does bias the

small time behavior of the empirical diffusivity but must leave the large

time behavior essentially unchanged. The steady part of qv involves a

time integral of the diffusivity weighted by an Ekman friction term, one

may reasonably think that the bias from the temporal sampling will decrease

as R. With typically more than 700 fixes spread over a spin up time

scale, it was found that the number of degrees of freedom at a given time

and latitude band oscillated between 5 and 15, which indeed is not very

much in view of the large amount of data input. Bearing in mind those in-

escabable limitations, the results of such free latitude computations are

shown on figure 4-8 for the transient and steady case respectively.

The meridional transport of potential vorticity is always negative and

has roughly the same magnitude as the mean flow divided by the spin down

time, indicative of a (only) gross qualitative agreement with the theory.

Increasing the data base for improving further the statistics seemed

both unrewarding and prohibitive: doubling the number of fixes would de-

crease the sampling error by a factor of /2 only.

Although visual information was adequate for revealing the mean

flows, the primary goal of this experiment, pressure time series turned

out to be invaluable here for unraveling the associated finite amplitude

modifications of the Rossby waves. As before the probes were set up in

the near and far field. Several runs with constant, large forcing amp-

litude and of decreasing frequency were made. Although not much modif-

ication occurred at the near field instrument, the interior probe showed
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the build up of second and third harmonics as the frequency decreased.

Wave forms are shown on figure 4-9. Digitization of the wave form over

"one period of the primary wave" enabled us to construct the high fre-

quency part of the pressure autospectrum. The corresponding spectra to

4-9 are plotted on figure 4-10. Lowering the driving frequency thus

broadens the spectra. The observation that harmonics (2w, 3W, etc...)

occur at an unvariable place on the back of the primary wave train

suggest that they travel at the same phase velocity as the basic wave.

This indicates that we are dealing with a genuine manifestation of non-

linear interaction of the primary wave. The further degeneration of the

wave form at lower driving frequencies brings to mind the sideband in-

stability mechanism put forward by Benjamin and Feir (1967) to explain

the instability of a quasi-monochromatic surface wave on deep water.

Such a possibility for Rossby wave instability requires separate inves-

tigation.

That the disintegration of the primary wave occurs as the driving

frequency decreases while the amplitude of the wavemaker remains the

same, is not a surprising fact however. The time T needed for an
p.

energy signal to go from the forcing region to the far field probe

varies like the inverse of the meridional group velocity and therefore

increases with lower frequencies. The nonlinear interaction time T.

varies like a wavelength divided by particle speed. Since the dispersion

relation associates small wavelength with small frequency, one expects

T. to decrease with the driving frequencies. The number N of possible

nonlinear interactionsof the primary wave as it moves from the forced

T
region to the far-field instrument varies like p/T.. From the above

two statements one concludes therefore that N will increase drastically
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4-9 Wave pressure time series for three distinct frequencies

of excitation

(a) w = 0.216 rad/s

(b) o = 0.167 rad/s

(c) o = 0.124 rad/s
o'

Other parameter values which were held fixed, are:

2 = 3.7 rad/s, H = 9 cm, Q = 300 cm3 /s.
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as the forcing frequency decreases, making thereby the nonlinear energy

transfer between Fourier components more promiscuous and complete.

C. The period of decay

When mean flows and eddies reached their steady state, suppression of

the driving led at first sight to anomalous behavior. The signals of the

fluctuations turned out to be strongly damped as shown on figure 4-11.

The damping time scale of the eddies was close to the inertial time scale,

itself much smaller than the Ekman spin down time. Such fast disappearance

of the signal at a fixed point is due partly to wave energy radiating

away from the region of concentrated forcing. However this does not tell

the whole story. The evolution of the flow field itself revealed much

more. On figure 4-12 compare the initial state with the decaying stage two

inertial time scales later. Evidence for unequal disappearance of mean

flows and fluctuations seems to be there. To test further the idea,

spatial averaging of both mean and fluctuating eddy kinetic energy was

achieved as a function of the decay time with results depicted on

figure 4-13. The slow (respectively fast) decay of the mean kinetic

energy (respectively eddy kinetic energy) compared to the Ekman time

scale is particularly significant. On the other hand the total kinetic

energy decays with the appropriate viscous time scale. At the same time

the meridional distribution of eddy kinetic energy initially concentrated

in the south, has spread out uniformly in the basin during the decay

while no appreciable change was found for the distribution of the mean

kinetic energy.

These observations are therefore saying that the westward mean flow

is stable to finite amplitude, smaller scale perturbations. In view of

the conservation integrals for energy and enstrophy derived in Part II
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4-11 A pressure time series showing the fast disappearance

of the waves when the driving is switched-off.
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K

4-12 The decay period of the velocity field:

(a) the steady state

(b) the decaying state 20 sec after switch-off.
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f
for the case of a beta plane with closed - contours, this is not very

surprising. It has been shown there that the energy containing scale must

increase in time in freely decaying turbulence. The energy migration from

the short waves to the mean flow is after all just following that rule.

The linearised theory of hydrodynamic stability being rather well

advanced, it was found interesting to point out the relevance that it

bears upon this concrete situation. The barotropic instability of a zonal

flow was first studied in detail by KuO (1949) in connection with the

large scale fluctuations of the atmospheric westerlies. The perturbations

in that context have the nature of shear waves. It is interesting to

consider specifically the instability of a westward flow because the per-

turbations can now be considered as modified Rossby waves whose origin is

independent of the existence of a mean flow.

KuO showed that for the flow to be unstable it is necessary that the

meridional gradient of the mean potential vorticity S - U vanishes at

some point. This condition turned out to be satisfied for the large ampli-

tude runs and the analysis which follows is thus restricted to these cases.

This allows unstable waves to exist throughout the flow domain. The mean

potential vorticity was computed for a large amplitude run at the onset of

the decay and is shown on figure 4-14. The two extremums occur just to the

north and south of the band of maximum flow speed. (The corresponding mean

flow was depicted on figure 4-6.) Because the potential vorticity gradient

vanishes at some point, the actual stability of the westward flow may not

be proved without further examination of the linearized theory.

The geometry is that of an infinitely long zonal channel or a beta

plane. To investigate the stability properties one first constructs, if

possible, a singular neutral wave solution satisfying in this case:
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4-14 Excerirmental values of potential vorticity as a fun-

ction of radial distance as obtained from figure 4-12 (a).
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(5) (U - c) ($ - a2) + (8 - U )$ = 0
yy yy

ict(x -at)
the stream function being #(y) e

(5) is to be solved with appropriate boundary conditions at the side

walls. It may be shown (Lin (1955)) that the Reynolds stress, which

vanishes on the boundaries has a jump discontinuity at the critical point

where U equals c. For monotone velocity profiles this implies that

U - must also vanish at such a critical point for a singular neutral
yy

solution to exist. Using these properties the singular neutral solutions

can be computed and the remaining task is to investigate the behavior of

the solutions around the neutral one. One considers possible unstable

solutions with a non zero imaginary part of c, close to the neutral wave

solution. To find the sign of c~ for neighboring wavenumbers, one looks

at the limit as the unstable solution approaches the neutral solution.

The proper limiting process involves the passage of c . to zero through

positive values. Only a consideration of the viscous form of (5) allows

the elucidation of this important point (explained at length by Lin).

The result is the following:

f2
y2 dyS

dc 1
(6) =-

da2 rY2 k (Y)$2 k(y )$
pv s dy + s s s

U -c dy+ i U |
Ca a y 1s y

where k(y) = ,# , a , c referring to the neutral solution.
U -c s s s
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If k(y) is positive throughout the flow, then (6) shows that scales

of motion slightly shorter (respectively longer) than neutral are damped

(respectively self excited). Within the same hypothesis on k(y), this

can be extended by certain related results of Howard (1964) who shows that

if the wavenumber of an unstable mode is greater than the largest eigen-

wavenumber of the singular neutral solution, the flow is stable. His

results imply also that, if the boundaries are so close together that the

eigenwavenumbers become imaginary then the flow is also stable. The point

to be made here is that people interested in the stability characteristics

of the westerlies did not use those results extensively because the fun-

ction k(y) rarely keeps the same positive sign throughout the region of

interest. Indeed to satisfy the necessary criterion for instability,

an eastward jet profile whose curvature near the axis is negative must

possess a point of inflexion allowing the curvature to become pos-itive

away from the axis. This makes it very easy for k(y) to change again.

Because the natural curvature of a westward jet is positive, no inflexion

point is necessary for satisfying KuO's instability criterion, and for

smooth profiles, k(y) will usually be positive throughout the channel.

In this eventuality, the only remaining problem to decide about the in-

stability is to calculate the eigenwavenumber of the neutral solution.

A particular example related to the experiments is appropriate here.

The sine-curve velocity profile being particularly simple to work

with the following form of westward mean flow is chosen.

(7) U = -(U + U0 sin ), 0 < y < a, U >' U > 0
1 0 b 1 0
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The requirement for a critical point to exist is

(8) sin b = R where R = 2b o o UT 2
0

If R is smaller than unity, (8) has at least one solution. At

such a point y c
c gc

c -U 1 L+ U in ).
1 0 b 7T2/ 2

The function k(y) is therefore a positive constant equals b2 .

The singular neutral solution obeys:

*y+ ( - a2 )$ = 0 with (0) = $(a) = 0.
yy b2

The eigenvalues and eigenfunctions are:

2

a = r2 ( -g-) with n = 1, 2,..., Integral part of a/b

(9)

nwly$ p= sin .
s a

If b/a is larger than unity, then no real eigenvalues exist but

the flow can be shown to be stable (Howard, Drazin, 1964). If b/a is

smaller than unity then a necessary and sufficient condition for instab-

ility ( i.e., a positive c.) is that:

a2 <a2 where t2 = F2
M M b2 a2)

The marginal scale (a ) predicted by the theory is of the order of
M

the scale of the mean flow if b/a is much less than unity. If b/a is
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order 1, the marginal scale tends to infinity and the flow will therefore

be stable to all perturbations. This latter case seems to be relevant to

the experiment judging by the aspect of figure 4-6. Lin's formula (6) can

then be used to estimate the damping rate of the perturbations. In the

above example, such a calculation was done for the case a = b.

dc 1
Let da2 A + iB

Evaluation of the integrals in (6) using eigenfunctions (9) gave:

R 7T , l+ (1-R ) -l+(l-R2

A 4 =1 {1 + (1-R ) log1( 1-(1R 2) log
a2U 2 o - 1-(1-R2)'1 0 R

0 0 0

B = { i ).
o (1 - R2)

0

Because B is always positive and the marginal neutral scale
. dc

dci r
infinite the flow is stable. The scaled values of da2 and d2 are

a 2T

plotted on figure 4.15 as a function of R . The contrast between the

dc
shapes of the real and imaginary part of d2 is prominent. Significant

damping rates occur in the vicinity of R = 0.88. This value corres-

ponds to critical points situated at a/2.92 and a/1.52 respectively,

symmetrical and close to the point of maximum velocity as in the experi-

ments. The corresponding maximum values of the damping rate ac. that

one gets using experimental parameters can be estimated as:

c. = 8.5 x 10-3 - U (caa)2 - a
1 0



118

1 dCi
d a 2 da 2

5x10--

0 0.5 1 R0

-1 dCr
u~a 2 Ta2

0.5 1 Ro

4-l5 The perturbation phase velocity as a function of

R =b 2
o U 'T

0

(a) imnagina ry part

(b) real part.
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12
with U =2 cm/s, a = 12 and a - one obtains:

o 30

cC. = 0.97 rad/s.

This rough estimate falls well within the order of magnitude of the

experimental damping rate.

The general statements that we made about the behavior of the function

k(y) for the case of a westward jet suggest that the conclusions drawn

above for the sin profile remain valid for other potentially unstable

westward flow as long as they do not include "intense" regions of

negative curvature. In these'cases (when k(y) is positive), Lin's formula

(6) which indicates that scales shorter (respectively longer) than neutral

are damped (respectively unstable) agrees with the general spectral ten-

dency for the total flow (eddies + mean) to evolve to larger scales.
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II. The Rossby wave critical layer

Because the experimental simulation of the interaction of a Rossby

wave and an externally forced mean zonal flow turned out to be straight-

forward, interest in the subject developed quickly in view of its geo-

physical importance. The extensive literature available today reveals

that it is only recently that the physical role of the region,where the

wave phase speed matches the velocity of the mean flow,has been recognised.

Excluding these regions, Eliassen and Palm (1960) demonstrated in the

internal gravity wave context that the Reynolds stress is independent of

height. Somewhat later, Booker and Bretherton (1967) considering initial

value problem extended the analysis by showing that most of the inter-

action between the wave and mean flow occurs at the critical level where

the gradient of the Reynolds stress is large. For large Richardson num-

bers the direction of the energy and momentum transfer is from the wave

to the mean flow. Using these ideas, a successful simulation of the at-

mospheric quasibienniel oscillation was done by Lindzen and Holton (1968).

Dickinson (1970) carried out an analytical initial value problem of forced

Rossby waves in a shear flow. He shows that the zonal perturbation of

the wind never settles down to a steady value at the critical level but di-

verges logarithmically in time. The eddy momentum transport grows

initially in the same way on either side of the critical layer, then goes

back slowly to zero beyond the critical level, suggesting a momentum tran-

sfer in the ever thinning layer. Classically the singularity that occurs

in the steady state at the critical level has been dealt with by includ-

ing dissipation. This method smears out the Reynolds stress discon-

tinuity over a finite viscous layer of order (U1k) , U being the
U k

mean shear at the critical level, and k the wavenuinber of the pertur-
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bation. An alternative approach was developed by Benney and Bergeron (1969)

who considered the effect of the non-linear terms on the steady solution

at the critical level. If u is a measure of the eddy velocity, the

U! 2
layer over which non-linear terms become important is order u"k) 2

Asymptotic matching on both sides of this layer reveals that no jump in

the momentum transport exists around the critical level. The important

parameter determining which of the frictional or finite amplitude effects

1/3 A /
dominates is therefore v - u 2 (U'k)- . Dickinson's linear

analysis was extended by Beland's (1976) numerical analysis. Carrying

out numerical integration of the weakly non-linear, inviscid vorticity

equatior., he finds a tendency for the critical layer thickness to equi-

librate at the above length icale. At the same time, the jump in the

Reynolds stress across the CL is reduced strongly. Obviously such

numerical studies are only tendency calculations. With increasing time,

more and more of the fine structure produced at the critical layer be-

comes unresolvable. As pointed out earlier a laboratory model is free

of all these limitations and it offers a unique opportunity to discover

what is the steady state of the interactions and its dependence upon the

strength of the wave. Before presenting the experiments, it is wished

to present the results of a new time dependent linear theory in view of

the difficulty of interpretation of past analytical solutions. In par-

ticular, one wants to relate the possible absorption of wave energy at

a critical level with the resulting momentum transfer. Moreover the

model has zonal boundaries and is definitely new in that respect.
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A. Linear theory of the Rossby wave-zonal flow interaction

Consider first the interaction described in the framework of ray

theory. A slowly varying wave packet is allowed to propagate in a zonal

shear flow, the scale of which is much larger than a representative wave-

length of the wave packet. Under this formalism, the wave energy moves

along ray tube, envelopes of the absolute group velocity, and the amplitude

variation along the ray is found from the conservation of wave action.

For a Rossby wave with phase (kx + k - wt), the dispersion relation
y

can be written:

w w + k * U where 3 = -
a r r k2 +1 2

Let us consider the simple linear shear flow U = -aXy and let the

waves start from y = 0 at t = 0 with a northward component of group
k

velocity. For simplicity of exposition choose O9 << 1.

Following a wave packet at the absolute group velocity, the .absolute

frequency and the zonal wavenumber are conserved. However because the

wavecrests rotate under the action of the mean shear, the meridional wave-

number increases linearly with time. Allowing for this, the ray equations

can be solved explicitly to yield:

x =
0

c (A+ at) 2

where y = 2 is the point at which the frequency relative to the mean
c at'

flow vanishes. A wavepacket will thus never reach the critical level as

the rays asymptote at yc. Because total wave action is conserved, the

total wave energy as measured by an observer moving with the mean flow
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goes to 0 with O as the critical level is approached. On the other
r

hand, because the rays bunch together as time goes on, the local energy

density increases linearly with time. The total wave energy is thus

neither transmitted nor reflected at the critical level. Since it de-

creases with time, one might say that the wave energy is effectively ab-

sorbed at the critical level. It is difficult to say anything precise

about the wave momentum in this framework. Moreover the WKB approximation

upon which the ray theory is grounded ceases to be valid as the packet

approaches yc. Indeed, one may show that the relative change of the

meridional wavenurber over a wavelength increases linearly with time.

To investigate the questions about the wave momentum transfer the

following model is considered.

A linear westward shear flow is constrained between two zonal boun-

daries on a beta plane. The waves are forced at the southern boundary by

the distribution of sources and sinks at the wall. The geometry is shown

in figure 4-16. Consideration of a slowly switched-on problem will remove

the singularity at the critical level. The time scale of the switch-on is

assumed to be the longest scale of the problem, and the linear solutions

derived in the following are valid for times smaller than this forcing

time scale. The critical level is kept "fixed" at the center of the

channel of width 2a, so that:

c + U(y) = U (1 -
a

The forcing is introduced through the boundary condition at y = 0

Et i(kx + wt)
where the meridional velocity is imposed as (F * e * e )

et i(kx + wt)
Postulating a solution of the form iP = [4(y) e e ], and
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4-16 The geometry of the critical layer problem.
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scaling y by the length a, yields the following two point boundary

value problem:

~ -l

$ - (. . + p2

(10) $(2) = 0

$(0) = F

with the following definitions: 6 = Ep, y = ka, R = U/Sa 2 , M = y 2R = Uk2

The parameter 6, the ratio of the wave period to the forcing time

scale, is assumed to be small. Its main purpose is to prevent the dif-

ferential equation (10) from becoming singular at the critical level

y = 1.

The solutions to (10) will now be presented when the parameter M

is much smaller and much greater than unity.

(a) M << 1, R << 1

This regime implies short waves with almost horizontal wave crests.

In a sense it contains the WKB solution valid far from the critical level

that we just discussed. (10) can now be approximated throughout the

channel by:

R _
yy (y-1 +6)

By changing variables to z = 2R 2 (y - 1 + i6)2 and $ = z$(z)

one obtains the following equation for $:

z2 z + zVz - (1 + z 2)$ = 0
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This differential equation is satisfied by modified Bessel functions

I (z) and K (z). The solution to (11) is therefore:
1 1

$ = z(AI + BK)
1 1

The constants A and B are found by using the boundary conditions.

The parameter a = 2R being large, the variable z is also large near

the walls and in this region one can expand the Bessel function for large

arguments. The correct determination of z must be used according to

whether the regions of interest are situated above or below the critical

level:

y-1'2- 2 ly
when y - 1 < 0 and >>1, z = 2R e

6.X

jy-1l j
when y - 1 > 0 and 6 >> 1, z = 2R 2 ly-l 2

On that basis, one expects to find wavelike solutions below the CL

and evanescent solutions above. The critical point in the Rossby wave

context has the nature of both a singular and a turning point. This is

an essential difference from the internal gravity case which possesses

the second order pole ((U - c) ) rather than (U - c) . Oscillating

internal gravity waves may therefore be sustained "above" the CL (their

amplitude is non negligible if the Richardson number is small).

The determination of A and B yields the solution:

F i(T/4 + C)ciF e 1,T/4+ a -a
(12) # = 2 z[e K (z) - TTe I (z)]

[csWr(cosh2a~ - cos2aL)] 1 1

tanhct
where tanG = - ._

tanU

Using asymptotic expansions, this solution may be simplified in
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in various regions

*|y - 1 >>R

South of the critical layer (y < 1) the solution may be approximated

by:

' F ei(C+ W/2) 9a i8- E (ty-1 )
(13) i1=+2-{/2 y - 1 [e e e 2w

2(cosh2a - cos2a)21  - -

-a ie E (t + -y- )]
-e e e 2-

+Ik
where 9~=kx + wt ±aly - 11.

In this large region, the solution (13) is the sum of two waves.

The first term represents an incident wave whose amplitude modulation

moves north although the phase propagates southward. The second .term re-

presents a reflected wave whose amplitude travels southward and phase

northward.

The ratio of the incident to reflected amplitude is given by:

A
i 4R 2

A
r

This quantity is large in this limit and goes to 00 as the width

of the channel. (The reflected wave must disappear in an infinite

medium to satisfy the radiation condition.) In a bounded fluid, however,

part of the wave energy sent up north is reflected back at the critical

level.

North of the critical layer the solution is:
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F 2 et e (kx + wt) ei(C + /4) 1 .
(14) =L, ' I e ly -1 sinha(1 - y - |)

(cosh2a - cos2a)2

There is no propagation in the meridional direction other than slowly

moving transients. However some kinetic energy is able to tunnel through

the critical layer. To determine the acceleration regions of the mean

flow (if any), the wave Reynolds stress uv needs to be calculated.

South of the CL the incident wave is associated with a negative uv cor-

relation while the smaller reflected wave has a positive correlation.

This agrees with the Rossby wave dispersion relation. On the other hand

it is the divergence of the Reynolds stress which indicates if there is

any momentum transfer between the wave and the mean flow. In solution

(13), this mean vortex force (so called by Lighthill) vanishes to 0(6).

Both the incident and reflected waves conserve their momentum, but incident

wave energy decreases as the CL is approached while reflected energy in-

creases with distance away from the CL. North of the CL, both the wave

stresses and the vortex force vanish to 0(6). These last results in-

dicate that the definition of mean wave zonal momentum as wave action

times zonal wavenumber in the earlier ray theory description would have

correctly predicted conservation of wave momentum in the WKB regions.

6 << ly - 11 << R

In this narrow layer, the Bessel functions in (12) are expanded in

series for small arguments.

South of the CL, the solution is:

=k{A (x,t)(e [l - 1 - y j(loga2 l1 - yI + in)] + e - - 11 - y1}}
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et i(kx + Wt) i(7T/4 + ;)
where A= Fee=

(aT) (cosh2a - cosa)

and north of the CL, one obtains:

# =&{A(x,t){ea [1 + 1 i - ylloga2l _ yi -iTe _a y}

The main formal difference between the two expressions comes from

the introduction of i in the former. The Reynolds stress, scaled by

F2 e ,2t turns out to be:

for y - 1 < O, uv = [1 + -(ya
2

)]
2(cosh2a - cosa) 4

for y - 1 > 0, uv = 0.

No anisotropy and momentum transfer is found north of the CL, however

southward, a negative uv is again present. Furthermore the divergence

of the Reynolds stress is

duv +ka e 2
dy 8(cosh2a - cosa)'

The vortex force is thus negative and accelerating the mean flow in

that narrow layer. For large a, the impulse of momentum flux integrated

3/2 Mmeridionally is of order kR * aR or -- . The final form for uv
R

below the critical layer shows that the reflected wave does not play any

role in the momentum transfer. Formally there is a third inner layer of

order 6 where the solution can be expanded. One may show that the mo-

6
mentum transfer is in the same direction as above. However because R
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- -- -muchsate1lle. Lhanuni Lg ,thatlayerdbes~ridt~ c 1nribute much to the

total impulse of momentum flux. In contrast with the above results, the

following parameter regime will now be considered:

(b) M << 1, R >> 1.

The same differential equation (11) is valid throughout the channel.

Expansion of the Bessel functions for small arguments is needed to satisfy

the boundary conditions. The detailed solutions will not be reproduced

here but the conclusions will be discussed. In the interior region away

from the inner layer of order 6, the Reynolds stresses are:

I I --- 8ky - 1 < 0, y - 1 >> , uv = -- 2(3 2y)wa

y - 1 > 0, Jy - 1 6, uv = 0.

Below the CL the Reynolds stress is positive and the mean vortex

force "decelerates" the mean westward flow. The order of magnitude of

the momentum flux impulse is (RM) 2. The waves are now able to extract

momentum from the mean flow. This is not surprising: the limit small M

and large R implies a very small value for the parameter p = ka. The

waves have a wavelength much larger than the channel width which is also

the scale of the mean flow. Therefore the direction of the momentum trans-

fer agrees with general requirements deduced from energy and enstrophy

conservations: namely that the flow of energy must be toward the large

scale structure either waves or mean flow.

(c) M >> 1, R << 1

This last case may also be handled simply. It corresponds physically

to short waves with vertical wavecrests. When ly - 1| is smaller than
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M 1te so-ution.wiU satisfy-the-differentiaLequation-(11)-. However in

the interior where |y - 1| is much larger than M-1 , the solution has

to be found from the full equation (10). Fortunately the WKB solution may

be used with good accuracy in that region.

-1 - - - Q d B e dy3

if jy - l >> M 1 : # = Qk[A. e + B" e

-1
where Q =1 2 + R

y-1 + i6

if ly - li << M : # = z(A I (z) + BK (z)]
1 1

A' and B' are found by using the boundary conditions. A and B

are calculated by asymptotic matching between the two above solutions.

The oscillating solutions are now trapped below the CL in a narrow region

between y = 1 and y 1 - M_ which is a pseudo turning point. In

this oscillating region the solution has basically the same form as (12)

in (a) , and contains most of the same physics. When R << jy - lj <M_,

an incident and a reflected wave may be identified transporting energy

respectively toward and away from the critical layer. The ratio of their

amplitudes is now:

A. 4ka
- = e , a large value in this limit.
A
r

The wave momentum is again conserved in that layer. In the region

S<< jy - l << R 'most of the momentum transfer occurs as in (a) .- The

Reynolds stress is negative, and the vortex force is such as to acceler-

ate the mean flow. The meridionally integrated impulse of momentum flux
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M
is of order -

R

In light of these 3 cases, one realises that the sign of the vortex

force is sensitive to the parameter R which compares the scale of the

wave to the channel width. Relating to earlier infinite beta plane

studies, one realises that new physics may arise in the bounded case for

long wavelength excitation: the mean flow is now decelerated in a broad

region. On the contrary, when the wavelength is small, the flow is ac-

celerated in a narrow region around the critical level. The critical

layer appears to play the role of a weakly reflecting barrier for incident

wave energy rather than purely absorbing as in an infinite medium. The

reflected wave does not appear to play any role in the momentum transfer.

The amplitude of the vortex force is sensitive to the parameter M in

this regime: for the same short wavelength, it is larger for waves whose

crests are oriented more meridionally at the source.

A side benefit from the formulation of this transient theory is that

the same solutions may be used to treat the interaction of linear steadily

forced waves and mean flows in presence of Ekman dissipation. The earlier

parameter C1 must be interpreted as the Ekman spin down time. If the

forcing is specified as [F ei(kx + Wt)] at the southern boundary, all

the earlier solutions must be multiplied by e -t. In particular this

identification allows one to predict the momentum transfer in the linear

steady regime. This is relevant to the laboratory experiment designed

to reveal the wave momentum absorption by the mean flow in both the tran-

sient and steady regime in which the important dissipative mechanism is

caused by Ekman friction.
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The wave generating mechanism is the same as described in Part Three,

paragraph I. The mean flow is externally driven by a source placed at the

center of the basin. Fluid is expelled through a diffuser of a radius of

about 3 cm to avoid jetting effects. The corresponding sinks are dis-

tributed uniformly along the circumference of the container. Because the

mass flux involved in the generation of the mean flow is much smaller

than the mass flux running through the wave driving, the influence of the

mean steady sinks upon the "wavelike" sources and sinks is negligible.

Moreover, the two driving mechanisms were built to operate independently

with the only common paths for fluid parcels in the two systems exclusively

in the interior of the basin. With a steady source at the center, an

'axisymmetric" solution has to satisfy the following vorticity equation in

the interior:

w

RV 2 =- f o 6(r)
H r

The source has been modelled by a 6-function at the origin. Since

the nonlinear and beta terms vanish identically, the solution is simply:

1 f1 = f -- w Log r
2ir RH o

which yields a 1/r profile for the zonal westward interior velocity, the

fluid being expelled radially toward the sinks in the lower Ekman layer.

Because of the existence of dynamical and physical constraints, the -para-

meter range of the critical layer problem that one can explore is small.

The preceding theory (and many others in the internal wave context)
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suggested that it would be particularly interesting to consider waves

much shorter than the scale of the mean flow in order to see the gradual

motion of the "acceleration zone" toward the wave source. This turned

out to be impossible on account of Ekman friction lowering too much the

Q of the resonator for short waves. The same zonal mode number of 12 was

therefore kept. A complicating factor is the existence of critical

latitudes induced by the variation of beta. One wants these critical

latitudes to be situated beyond the critical level in order to avoid inter-

ference. Remembering that this necessitates small driving frequencies

and hence smaller Q, it limits singularly the possible positions of the

critical level. It could not be situated more than one wavelength away

from the wave source. This gave the following typical figures for the

parameters R and M introduced earlier,

U U k 2
c c

R = c = 2 X 103, M = = 0.3

Both the proximity of the critical level from the wave source and the

order one value for M prevents a detailed comparison of the simple

theory outlined above with the experiments but both of them seem to be

interesting in their own right.

The important parameter in determining whether nonlinear terms are

u'2

important far from the critical level is simply S = where u is

the eddy rms speed. Near the critical layer, however, Benney and Bergeron

have shown that linear terms will be large if the ratio of the

thickness of nonlinear critical layer to the viscous critical layer,

thickness is large. If the scales of motion are such that dissipation is

dominated by an Ekman friction mechanism, the relevant vorticity equation
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for the waves is:

(U - c).V 2  + J($,V2 $) + (s-U )$ = -
x yy x T

Balancing the first and second terms of this equation at the critical

level yields the thickness of the nonlinear critical layer:

k= -n k(U )2

ay

while balancing the first and the last gives the thickness of the viscous

critical layer

6 =( )
v By

The important measure of the nonlinearity at the CL is therefore

6n - II
e - = T (u k -).

v a

Because of the difficulty of measuring accurately Reynolds stress

when u'/- is much smaller than unity, most of the experiments were
U

carried out for values of E which are order one, although S may be

smaller than unity.

When the mean flow reaches a steady state, the wave driving is im-

pulsively turned on. Streak photographs of the flow are taken at short

intervals until the appearance of a steady state. The velocity data is

then digitized in order to measure the mean flow, the Reynolds stress and

the eddy kinetic energy at a given instant. Extensive zonal averaging re-

duced the relative error bars of these estimates below 4%. Because

pressure time series
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at a fixed point proved invaluable, other similar runs were made with

two capacitance probes situated on either side of the CL. (Note that it

is not possible to make simultaneous measurements of velocities and

pressure because use of capacitance probes necessitates a clean free

surface.) Although many runs were carried out for consistency, the

essentials of the experiments may be unveiled in presenting only two

runs. The parameter regime of these two runs is shown on table 4-17.

Run1 will be called a quasilinear run because S is small although

6 and 6 have same order of magnitude (about one fifth of a wave-
n v

length). Run 2 is a higher amplitude run, everything else being kept

the same. The figures in table 4-17 indicate that the critical layer

has definitely a nonlinear character.

Visual information about the steady state of the flow in

Run 1 may be seen on figure 4-18. The tilt of the wave troughs needed

to accelerate the mean flow is particularly apparent. The transient

states of the mean flow are depicted on figure 4-19 (a). Because the

transients generated by the impulsive switch-on covers a wide range of

frequencies, the mean flow is accelerated everywhere and in particular

well beyond the CL. As the steady state is reached, the mean flow be-

yond the CL has relaxed back to its original profile. The momentum

absorption is thus confined between the CL and the wave source. The

associated steady state Reynolds stress uv shown in figure 4-19 (b),

is large and negative between the wave source and the CL and'vanishes

smoothly away from the CL consistent with the mean flow accelerations.

Pressure time series from the two probes which were separated by 12 cm,

show that the signals remain fairly monochromatic both in the near

forcing region and beyond the CL. This indicates that nonlinear terms



TABLE 4-17

Parameter regime for the critical layer experiments

R(rad/s) w(rad/s) Q (cm /s) Qwaves(cm3/s)

U
R=-c2

Ta
M- UkS-u k

-

- ~ a
S=(T -)

n ku v k y
Dy

RUN 1 4.0

RUN 2 4.0

0.358

0.358

1.37

1.37

109

333

2.4X10~ 3 0.98 0.11

2.4x10~3 0.98 0.33

1.6

2.8

1.32

1.32

1.21

2.12

6
I= n/
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-- a-

4-18 (a) The mean flow used in the critical layer experiments

(b) The steady state of run 1.
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4-19 Mean flow and Reynolds stress as calculated from run 1

(a) transient and steady state of the zonal

flow: curves #2, 4, and 16 correspond to photographs

taken respectively at T/5 , T/2  and 4T, T being

the Ekman spin-up time

(b) The steady state Reynolds stress (#16).
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are probably not very important in this run, judging by the absence of

harmonics. The eddy kinetic energy "beyond the CL" could be easily com-

pared in presence or absence of the external mean flow. It was found in

fact that the rms pressure dropped by about 30% when the mean flow was

present. This appears to say that part of the wave energy has been

effectively absorbed at the CL and used for conversion to the mean kinetic

energy. The simple experiment suggests that the qualitative picture ob-

tained from the linear theory remains of some value in this run. In the

steady state the critical layer acts as a rigid wall for mean momentum

transfer but allows some eddy kinetic energy to leak through the other

side of the CL. In the transient stages, as the mean flow accelerates,

the critical level moves toward the wave source but eventually returns

close to its original position in the steady state. Note also that the

shear of the mean current has been severely reduced.

- As we said, Run 2 is much more nonlinear as the speeds of the waves

and the mean flow are about of the same order of magnitude. The thickness

of the nonlinear critical layer is about two times larger than the viscous

thickness. The changes in the time evolution and the steady state of the

mean flow are profound as witnessed by the photographs from figures 4-20.

In the initial transient stage, overreflection occurs as the mean

flow structure is completely anihilated by the eddies, but then gradually

the mean flow regains its strength to attain a steady state shown in

figure 4-21 (a). The mean flow has been accelerated everywhere along the

profile as wave momentum and energy are able to be transmitted much more

easily through the critical layer region. The steady state Reynolds ,,

stresses and eddy kinetic energy are shown in figure 4-21 (b). Consider-

able mean momentum may now be transferred to the mean flow beyond the
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II

a

4-20 Th- trainsient (a) and steady state (b) of the non-

linear run 2.
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4-21 Averaged fields as calculated from run 2

(a) Mean zonal flow: curves #1, 2, 4 and 17

correspond to photographs taken respectively at T/11,

3.5, 1.7 and 5T, T being the Ekman spin-up

time.

(b) Reynolds stress and eddy kinetic energy(#]7)
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critical level as indicated-byth&Waluedf~Thdcdy stressss The~weker

dependence of the Reynolds stresses upon the meridional scale as compared

to Run 1, is also an indication of the larger width of the critical layer.

The two capacitance probes #1 and 2 were situated at a radius of 24

and 12 cm on each side of the critical level (r = 18 cm). The rms pressure

time series showed a very interesting unsteady behavior at the interior

position. This appears in figure 4-22 (a). Over a spin up time scale a

lot of fine structure develops in the critical layer region. Spectra of

the wave form were computed a short time after the switch-on and much later

when a statistically steady state had been reached. They are shown on

figure 4-22 (b). The spectral broadening as the steady state is reached

is evident and reveals the difficulty of numerical studies in reproducing

such fine effects. The time series at the interior probe show also that

the rms amplitude are large initially but drop somewhat as the steady state

is reached. This is consistent with observations of the mean kinetic

energy, small initially but building up as time goes on, suggesting a

transient transfer from the mean flow to the wave but reversing quickly to

feed the mean flow in the steady state. Absorption of wave energy and

momentum by the mean flow now occurs in a much broader region revealing

an increasing transmission through the critical level. The presence of

many harmonics in the steady state indicated by the turbulent aspect of

the pressure time series supports the conclusions of Lin (1958) who pre-

dicted it in a study of nonlinear-viscous parallel flow problem.
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PART FOUR
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Some new results of stationary source-sink flows over a beta plane

with meridional barriers are now presented. Stommel, Arons and Faller

(1958) pioneered work in that direction by carrying out a remarkable series

of experiments exhibiting the tortuous paths that dyed fluid had to follow

to go from a source to a sink in a rotating pie-shaped basin with a para-

boloidal free surface. These flow patterns are thought to be relevant

primarily to the abyssal thermohaline circulation in the ocean. In the

latter, the forcing is provided by localized sources of bottom water as

for instance the Weddell Sea, the Labrador basin or the Norwegian Sea.

The emphasis in the present study was determined oddly enough by use

of different techniques of flow observations which revealed unexpected

features. By dyeing the fluid, Stommel et al. mainly interested in the

actual mass transport, have put the emphasis on the particular time his-

tory of fluid parcels as they are expelled from the source. However, this

leaves large regions of the flow field essentially unmapped. On the con-

trary Eulerian information was provided in our experiments. It high-

lighted different aspects of the flow and some effort had to be made to

reconcile the two pictures. Moreover an investigation of the stability

of the small amplitude circulation has brought to light some interesting

properties about the relative stable position of stationary cyclones and

anticyclones on a beta plane.
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north

5-1 Time dependent response to an impulsive 6(t) func-

tion dipole in the sliced cylinder. Laboratory para-

meter values -are 0 = 5.43 rad/s, ct = 0.2, H = 22 cm.
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north

north

The flow induced by a steady dipole

(a) transient

(b) steady state

Laboratory parameter values are = 4.18 rad/s,

ct = 0.095, H = 25.

5-2
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I. The small amplitude dipole circulation - Experiments and theory

In the sliced cylinder geometry a sink was placed at a distance of

4 cm northward from the center of the basin. The source was situated

symmetrically south. Figure 5-1 shows the initial fluid response to an

impulsive 6(t) function dipole. It is included here because it illus-

trates some remarkable Rossby wave properties. The driving influence

has been propagated rapidly to the west yet slowly to the east with con-

siderable anisotropy in the flow. West of the driving, the crests are

elongated zonally while more meridionally east of it. This observation is

in agreement with what is known about the time dependent propagation of

energy for small amplitude Rossby waves.

With steady forcing, the flow develops as in figure 5-2 which shows

that the western boundary is a key feature in the evolution to a steady

state. The steady flow lying exclusively west of the forced region con-

sists of two counterrotating gyres whose center has been shifted to the

west. Viewing the steady forcing as a time dependent one whose frequency

goes to 0 explains the absence of flow east of the forced region since the

group velocity points to the west. In this run carried out for a large

rotation rate, the velocities are actually meridional over the source and

the sink. Notice also the flow intensification that occurs near the wes-

tern boundary. The picture that one gets from the flow seems to differ

radically from the qualitative transport lines proposed by Stommel et al.

This is recalled in figure 5-3 extracted from their paper. It is proposed

to present first a theoretical explanation for our observations and then

to reconcile simply the two sets of experiments.

In Part I, a vorticity equation has been derived for small quasi-

geostrophic motions forced by vertical velocities imposed at the bottom
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(a)

(b)

of Stommel et al. (1958)

Transport lines

Their experiments.
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of the basin. The tilt of the lid being a small angle a, the requirement

is that frictional terms and vertical motions are small at least of order

a. Under these hypotheses, the interior motion is non divergent to zeroth

order in a. A streamfunction $ which satisfies the following steady

vorticity equations may be introduced to describe the bulk of the motion.

RV
2 + = - (y

x H
(1)

= 0 on the bounding walls

2Qoa
As usual R = 2QE 2 and = .

H

In (1) the scale LF of the forcing function w is assumed to be

large enough, so that lateral friction is negligible. The velocity of the

flow is thought to be small enough such that nonlinear advection terms do

not play any significant role. This requires that the nondimensional

quantity -- )2 be much smaller than unity. The free length scale that

FR
comes out from the homogeneous part of (1) is LR = -I specifying the scale

at which friction becomes important compared to advection of planetary

vorticity. It is, in fact, the width of Stommel's frictional Gulf Stream.

If a denotes the radius of the basin, different regimes may be found

according to the value of R

R
If - is much larger than unity, viscous effects are dominant and

a

the flow pattern is the one produced by a steady dipole on an f-plane.

It is analogous to the electric field produced by two equal and opposite

charges, and completely symmetrical with respect to the meridi.onal axis.

The transport of water from the source to the sink is small and of order

E and achieved by the upper and lower Ekman layers exclusively.

The inertial regime when --
Sa is much smaller than unity is the one

to be considered here. We are interested in dipole structure for which
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the source-sink separation is large of order a typically. On the other

hand the effective section of an individual source or sink introduces

another length scale LF much smaller than a. If L is smaller than
F

unity, the gyre produced by one source (or sink) of size LF has essen-

tially the behavior of Stommel's wind driven gyre. Over the source, the

Sverdrup balance holds and the flow is meridional to the south. Away from

the forcing it turns west as a broad, inviscid zonal current. Two ingre-

dients are necessary for the return flow: a western wall and Ekman fric-

tion however small. A swift and narrow northward current develops along

the wall and turns east again at the latitudes where the forcing vanishes.

The circulation is similar around the sink. The other limit when

is large does not seem to have been previously studied. Because there are

important differences with the above case, the solution will be presented

R
thoroughly. The simplest way to make R small is to take a 6 function

SLF

for the forcing function W. The problem is then to find a Green's fun-

ction for Stommel's equation (1). We first look at the solution generated

by one sink placed at x = x , y = yo. Setting 6 = -, one makes the
0 2R

-6(x - x
following change of variable in equation (1): = G e 0 . G now

obeys the following nondimensional equation:

(2) V2G - 62 G = -2f(x - x0, y - y ).

This elliptic Helmhotz equation has to be solved in the circle

r = a. Following the general methods of Courantand Hilbert (1962) one

introduces first the Green's function valid in an infinite medium. Thus

we set

G = Y (6R) + V(x I x )
o0 -
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where K is the zerotih drdeimodified~Bessel function, and

R = [(x - x )2 + ( - )2]2

The function V satisfies now the following Dirichlet problem

V2 V -62V = 0

(3)

V =-K on r = a
0

The idea is to look for a solution of the form:

(4) V= jT dt where V is

r=a

represented as a double layer potential with dipole density T on the

boundary, n is the outer normal at the boundary. To determine T,

the limit .of the potential V as the boundary is approached from the

interior is sought. One may find that the following equation holds at the

boundary:

DK

(5) -0T- dl = +T - K on r = a
3n - o

r=a

This is a Fredholm integral equation of the second kind for T.

Introducing polar coordinates it is easily solved by expanding the terms

of (5) in Fourier series. The value of T is then introduced into (4) to

calculate V. The complete solution of (1) for a 6-function source and

7T/ 7T/
sink situated at (r , 2) and (r ,- 2) turns out to be:
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r<r : 4 = e-6rcosO E (-l)psin(2p+l)O*I2p+ 1 (6r) [K2p+1 (6r ) +

p=o

I (6r )K (6a)H (6a)]
2p+1 o 2p+1 2p+l

(6)

r>r 0: = e-6rcosO Z (pl) sin(2p+l)-I (6r )[K (6r) +
o 2p+1 o 2p+l

r=O

I (6r)K (6a)H (6a)]
2p+l 2p+1 2p+1

where I , K are the usual modified Bessel functions and
p p

6a[ 2 2 (6 a) + K (6a)]
H (6a) = 2p
2p+l 1 - a6I1 (6a)[~K (6a) + K (6a)]'

2p+1 2p+2 2p

This is admittedly an awkward solution to deal with, although the

flow field that it represents is very simple. Note that the summation

involves terms symmetric with respect to the y-axis and antisymmetric

with respect to the x-axis. Thus the east-west asymmetry is provided

solely by the exponential term in front. Notice also that the solution

(6) being bounded at infinity is valid in an infinite basin. The solution

(6) was numerically evaluated and is exhibited on figure 5-4 for various

values of 6. The only regions of intense flow are now situated east of

the forcing and no western boundary layer develops as contrasted with the

R
preceding case. I~n the intermediate limit when - is order one,rapid

F

flows are thus likely to develop both at the western wall and around the

forcing region. These limits describe most of what happens in the ex-

periments. When going from low to high rotation rate, the parameter
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R
decreases, keeping L fixed. This enables us to observe the limits

OLF F

described previously.

The intense gyres found in both theories and experiments do not seem

to have been noted by Stommel et al. The reasons for the apparent dis-

crepancies are interesting. Their schematic diagram (figure 5.3 (a)) for

the transport lines corresponds to the singular limit when the size of the

source sink region and the frictional effects tend to zero. The gyres

considered in this study correspond to a finite vorticity appearing when

either of the above is non-zero. When the flow is inviscid and the source-

sink regions have dimension LF, the interior vorticity is order w aLF'

When the flow is viscous, driven by source-sink of infinitesimal size,

the vorticity is of order W/ V. In both cases it leads to intense

gyres. One wonders however how the fluid is transported from the source

to the sink in these symmetrical counter rotating gyres with a zonal

streamline (4 = 0) isolating the source and sink region. The required

transport is achieved because of the meridional depth changes. The con-

tours of the transport H(y)u are no longer symmetrical. They originate

from the source, turn west, bunch together near the western wall and

come back to the sink. When friction and finite size of source-sink are

neglected they would exhibit the behavior suggested by Stommel et al.

Because the net transport from the source to the sink is small (of order

a) compared say to the order one recirculation transport in one of our

gyres, it cannot be detected from our short exposure streak photographs

which emphasize the order one nondivergent motion. On the other hand

Lagrangian dye tracers used by Stommel et al. (figure 5-3 (b)) paint the

continuous time history of a set of fluid parcela and may reveal the

sluggish transport that occurs from the northern to the southern basin
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via the -western boundary T.7Fro t irphO apfr"thereT iidece,

however, that gyres of the kind discussed here were also present. The

persistence of these gyres was also found in our experiments when the

source and the sink were placed near the northern and southern boundary

respectively. These experiments suggest caution when comparing the oceanic

abyssal flow with theory. The net transport from source to sink may ap-

pear to be very small masked by intense flow recirculating gyres. Con-

sideration of only one branch of these gyres would lead to serious errors.

Because both bottom friction and size of source-sink are probably non-

negligible in the ocean, one must emphasize the need for evaluating mean

transport over large regions.

II. The finite amplitude dipole circulation

The behavior of the gyres when augmenting the mass flux was inves-

tigated experimentally with source-sink separation fixed at L = 8 cm.

The meridional extension of the gyres were thus smaller than the diameter

of the basin (62 cm). When the flow reaches speed such that U/ L2 be-

comes order 1, the non-linear terms become important, and interesting

asymmetries are found. When the source is south and the sink north

(configuration A) the flow is absolutely stable and intense steady cir-

culation can be induced. On the other hand, the reverse configuration

(B) when the sink is south and the source north leads to an instability

of the flow as soon as U is order one. That such asymmetry may occur

f3L2

results from consideration of the relevant nonlinear steady vorticity

equation:

(7) J($JV 2l) + f$ = -RV $ - H
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In fact the presence of the Jacobian in (7) shows that (7) is not in-

variant through the transformation -+ -$, w -* -w.

The free inviscid part of equation (7), when the right-hand side is

neglected, has been studied by different authors. Fofonoff (1954) has

found inertial solutions in a closed rectangular basin. The potential

vorticity is constant over a streamline for such solutions. Fofonoff

shows that very different behavior of the flow occurs according to the

sign of the constant of proportionality between q and $. When the sign

is positive the flow consists of eddies covering the entire ocean which

are in fact stationary Rossby waves superimposed on an eastward flow.

When the sign is negative, the mean flow consists of an interior broad

westward flow with intense return flow to the e.ast along each zonal boun-

dary. This generation of zonal jets was also found in a numerical in-

tegration of the complete equation (7) by Veronis (1965) who looked

specifically at the effects of nonlinearity upon Stommel's classical

solution. These two studies indicate that an anticyclone (resp. cyclone)

is stabilized by a zonal wall lying northward (resp. southward). The

middle zero streamline between source and sink may be thought of as act-

ing as a rigid wall. It is then significant to realise that the stable

configuration A is consistent with the above results.

M. Stern (1975) having in mind eddies rather than gyres has developed

isolated free inertial solutions on a beta plane. Furthermore, the dipole

must be bounded by a free streamline across which the vorticity has to

change discontinuously. This is because the nonlinear quadratic terms

cannot balance the smaller linear beta term at infinity. This constraint

rules out modons-dipole corresponding to our (unstable) configuration B.

All these results seem to suggest that indeed there must be a good
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physical reason for the instability that we observed. Rather than devel-

oping a complicated numerical study of the instability, it is wished to

enhance and isolate physical mechanisms leading to the observed behavior.

As we have seen part of the vorticity equation (7) may be solved

analytically. However the complete equation is difficult to deal with

because one cannot ascribe a priori the relative importance of the various

terms to certain definite regions of space as is customary with pertur-

bation methods. In the following, it is wished to show that a tendency

for potential vorticity conservation will occur over certain selected

streamlines. The solution is assumed to be known either from theory or

experiment. Equation (7) may be rewritten as:

fw
(8) u * V + Rq = RV - --

H

In the usual way (8) may be integrated following a fluid parcel whose

position is S over a given steady streamline and potential vorticity

q0 at t = 0. At time t the potential vorticity of the parcel will be:

t t

q = q e + RS V(t-,S )e dt - - w(t,S )e dt .
0 ~H fo

0 0

The motion being steady the particle will come back to its original

position with the same potential vorticity q0  after a revolution time T.

We thus have:

T T

(9) q (l-e RT = V(t ,S )e dt - - w(t-,S )e dt. '

0 0
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0

initial position of the parcel on the streamline and this implies that

q is not conserved over the streamline. Now consider a fast streamline

(if any) for which RT is much smaller than unity. Expanding (9) in

that limit, gives to leading order in RT:

T

(10) RT * q = w(t',S )dt' for RT << 1.
H 0

0

It is clear in this case that the above Lagrangian integral is in-

dependent of S . This implies that q is constant over such a stream-

line although the forcing is non negligible. This result has some con-

sequence for our experiments. It means that when nonlinear terms are

important compared to the viscous terms, there exist streamlines in the

flow for which the potential vorticity will be conserved.

Figure 5-5 shows meridional flow profiles for turns which were

carried out with the stable configuration A. A tendency for the broadening

of the north and south westward flow with increasing forcing amplitude

can be detected by comparing Run #1 to Run #3. Following a fluid parcel,

initially near the middle zero streamlines over a swift cyclonic stream-

line (for which RT << 1) indicates that relative vorticity and hence

shear will decrease over the northern westward flow. In the same way

the shear of the anticyclone will decrease on its southward side.

Potential vorticity consideration may show in a heuristic manner why

configuration B is effectively unstable. The anticyclone is lying

north and the cycldhe south. A fluid parcel in the middle westward flow

with negligible vorticity gains anticyclonic vorticity when moving north

in the anticyclone making it impossible for quiet fluid to exist north
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5-5 Meridional flow profiles with stable configuration A.

Laboratory parameter values are the following: L

the source-sink distance is kept fixed at 8 cm

U U L RL (U L
MAX MAX MAX '2

L = - . L =-(

R L

1.53 15.2 0.8 9.9

0.84 7.6 0.87 7.3

0.27 6.8 0.3 4.2



163

of the anticyclone. The same argument applies also for the cyclone and

therefore the flow has to become unsteady to escape constraints.

Figures 5-6 show two unstable runs with configuration B. The first one

for an order one value of U/ 2 reveals the typical inertial overshoot

that occurs in the western boundary layer. The second one for which

U/SL2 is 10 times larger shows the apparition of time dependent eddies

in the interior. Finally the heuristic argument advanced for explaining

the instability suggests that the proximity of the north and south solid

boundaries should stabilize the inertial flow in configuration B, by

suppressing the quiet regions north and south of the gyres. This was

indeed observed in the experiments with the source and sink situated much

closer to the northern and southern boundaries respectively.



164
north

north

5-6 Tw%,o runs with- unstable configuration B.

(a) U/LI = 1.2

(a.

(b) IBnort2.
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CONCLUSION

Specific conclusions have already been provided at the end of each

particular section. Some points are worth emphasizing here.

The course of this work has revealed the feasibility of studying two

dimensional turbulence in the laboratory by using sources and sinks acting

at the bottom of the fluid. This allows vorticity to be generated by the

vertical stretching and squashing of the vortex lines. The influence of

beta in various geometries has been shown and it is hoped that in geo-

physical situations the results of the present experiments will help in

unraveling the signature of large scale barotropic mixing processes from

a wealth of other natural phenomena. In view of our present results and

the inherent difficulties of numerical models in reproducing the richness

of scales of turbulent flows, laboratory experiments may prove to be a

valuable method of studying two dimensional turbulence. Although no such

limitation of scales appears in a laboratory flow, the measurements remain

difficult. To bring the usefulness of a laboratory model to its best,

considerable effort should be aimed at improving the recording techniques

of small scale, slow flow. This is a prerequisite to making accurate,

quantitative observations.

The more deterministic experiments focusing on certain finite aspects

of topographic Rossby waves show without doubt the far reaching conse-

quences of thinking of wave driven mean flows in terms of potential vor-

ticity mixing. They suggest the need of more theoretical work to elucidate

the ways by which potential vorticity transport occurs at forced latitudes.

Nonlinearity in the Rossby wave mean flow interaction enables the-

wavemomentum to be carried through the critical level and deposited into

the steady state mean flow. At the same time very fine structure is
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generated within the critical layer. It therefore seems that the primary

effect of the finite amplitude waves will be to broaden the effective

region of momentum transfer without altering the direction of the ultimate

transfer.

The last abyssal circulation experiment has warned us of the dif-

ficulties which can arise when one neglects the generation of vorticity

caused by friction or by the finite size of the sources. Although the

transport predictions are essentially unaffected, the lateral structure

of the flow may be richer than implied by a single jet running from source

to sink. The asymmetry of the flow stability properties illustrates the

peculiar effects which arise from potential vorticity considerations.

Real fluid experiments are attractive for their economy and their

ability to isolate important low frequency physical processes which may

later be explained within the framework of quasigeostrophic theory. There

are a number of experiments that are a natural outgrowth of the present

work. However for closer comparisons with geophysical phenomena, the

addition of stratification and short scale topography should be given the

highest priority.
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