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AN EXPERIMENTAL STUDY OF THE SPIN-UP OF A STRATIFIED FLUID

Kim David Saunders

Submitted to the Department of Meteorology on June 7, 1971 in

partial fulfillment of the requirements for the degree of

Doctor of Philosophy

A simple model of the spin-up of a continuously stratified

fluid is examined both theoretically and experimentally. The

geometry of the system is a right circular cylinder, bounded

on the top and bottom by planes. A linearly stratified fluid is

contained between the planes, rotating at an angular velocity

Q( 1 - e ). At t = 0, the rate of rotation is changed to Q.

The problem is to determine the way in which the fluid adjusts

to the new angular velocity.and how this differs from homogeneous

spin-up. The theory is studied for the cases where the Rossby

number is small, the Froude number is small, the Burger number

is 0(1) and the side walls partially conducting. The results of

previous investigators are compared and it is shown that Holton's

theory for the interior flow is a special case of partially

conducting side walls.



Experiments testing the validity of the linear theory were

conducted. The Froude number was small, the Rossby number O(E2 ),

and the Burger number was 0(1). The side wall conditions were found

to be effectively insulating. The experiments confirmed the

qualitative aspect of the theory, showing that the fluid attains

a quasi-steady state after a time of O(0-a -), but not reaching

a state of solid body rotation on that time scale. Quantitatively,

it was shown that the first modal spin-up times are smaller than

predicted, the discrepancy depending on the local Rossby number

( the Rossby number based on the E'L length scale). This suggests

non-linear effects in boundary layers of that length scale.

Thesis supervisor: Professor Robert C. Beardsley
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1. INTRODUCTION

1.1 Geophysical motivation

The process where a rotating fluid changes from one state

of rotation to another is known as "spin-up". Recently, this

has been of interest in an astrophysical problem: Is the interior

of the sun rotating at a faster rate than the surface? The

answer to this question is of vital importance in determining

the validity of the Brans-Dicke (19 64) scalar-tensor theory

of general relativity. This is a spin-down problem with the

entire sun initially rotating rapidly and being slowed down

by the torque of the solar wind.( See also Dicke,1970)The

spin-up process is of geophysical interest in problems relating to

the time response of the oceans, the atmosphere and the earth's

core to external forcing.

1.2 Purpose of the thesis and description of the problem

The purpose of this thesis is two-fold:

1. to provide experimental results which describe the time
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dependent motion of a rotating, continuously stratified

fluid for a simple set of initial and boundary conditions,

and

2. to compare the results with a simple linear theory,

indicating the limits of validity of the model.

As mentioned in 1.1, stratified, rotating, time dependent

fluid motions are of major concern in any study of the oceans

or atmospheres. In order to apply mathematical models to these

systems, it is necessary to determine the limits of the theory.

one useful method is the laboratory experiment. Heretofore, most

problems of the stratified, rotating, time dependent type have

been studied theoretically as a two layer system with viscosity

or a continuously stratified system without viscosity. The

problem considered in this thesis incorporates both viscosity

and continuous stratification.

The geometry of the problem consists of a right circular

cylinder, bounded by two planes at right angles to the axis of

symmetry of the cylinder, rotating at an angular velocity g(l-e)

coincident with the axis of the cylinder and antiparallel to the

gravity vector. This is illustrated in figure 1. A stably,

linearly stratified, viscous fluid is contained in the cylinder.

At some time, the angular velocity of the container is changed

by a small amount from Q(l-e) to Q , The problem is to determine

the temporal and spatial structure of the flow which this change

of rotation causes.
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1.3 Discussion of previous theory

Greenspan and Howard (1963) were the first to carefully

study the problem of homogeneous spin-up. They found the

adjustment time for a homogeneous fluid to reach a new state

of solid body rotation was 0( Q"S~ ). The spin-up is accomplished

by the conservation of angular momentum in the interior as

fluid from greater radii replaces fluid removed from the interior

by the Ekman suction. Greenspan and Weinbaum (1965) studied the

non-linear theory for the homogeneous case. They found the

spin-up times were not greatly affected by Rossby number below

0.5 and that the sign of the deviation of the non-linear spin-up

time was opposite the sign of the Rossby number.

The stratified problem was first studied by Holton (1965),

who derived the correct interior equations and Ekman layer

conditions for the linear problem. He chose unrealistic boundary

conditions at the side walls for the interior variables, though

these are consistent with a special case of partially conducting

side walls.

Pedlosky (1967) next published a model for stratified spin-

up with an insulating side wall. He rederived the interior equations

and obtained the same Ekman layer equations as Holton. He analyzed

the E2 buoyancy layer equations and correctly concluded that the

insulating condition prevented this side wall layer from carrying

any fluid from the Ekman layers to the interior. From this, he

concluded that the Ekman layers could not exist and that the
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spin-up must occur on the longer diffusive time scale Q~E".

He was wrong ( Holton and Stone,1968) in the sense that a spin-up

process does take place near the horizontal boundaries by a

return flow through the interior. He was right in that the full

spin-up to a new state of solid body rotation does occur on the

diffusive time scale and that on the homogeneous spin-up time

scale, any constant height level of fluid conserves its circulation.

A part of this problem is the need for a precise definition of

what is meant by " spin-up time " for a stratified fluid. This

will be discussed at the end of chapter 2.

Walin (1969) and Sakurai (1970) published careful treatments

of the linear, insulated wall spin-up problem on the homogeneous

spin-up time scale. Their results were identical with the earlier,

unpublished results of Siegmann (1967). Their solutions use the

same Ekman layer conditions on the interior as Holton and Pedlosky

and the same buoyancy layer conditions as Pedlosky. They applied

both boundary conditions to the interior and obtained a result

similar to Holton's, but differing in detail. This linear theory

will be referred to henceforth as the "Walin" theory ( as he

published the result first ) to avoid confusion.

1.4 Previous experiments

Holton (1965), MacDonald and Dicke (1967), and Modisette and

Novotny (1969) conducted experiments on the stratified spin-up

problem. These experiments were not carefully performed and will
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not be discussed here. ( See Buzyna and Veronis, 1971, for

more discussion.)

The only careful experiments to date have been those of

Buzyna and Veronis (1971). They studied the problem using

salt stratification and dye-wire techniques to measure the

azimuthal velocity at four levels. The salt stratification

ensured a perfectly insulating condition and a high Schmidt

number. They found some apparently paradoxical results. Near

the mid-plane of the cylinder, they found the angular velocity

agreed well with that predicted by Walin's theory, and near

the bottom, the angular measurements showed a more rapid

adjustment than predicted, but a derived "spin-up" time showed

the opposite results at both levels. They explained the faster

response as a possible effect of a non-linear interaction in

the " corner " regions where the Ekman transport is returned

( or removed for spin-down ) to (from) the interior.

1.5 Outline for the remainder of the thesis

The second chapter discusses the linear theory. This is not

presented in chronological order of publication, but in a form

unifying all the previous theory in a common notation. In a

real experiment, perfectly insulating walls cannot exist for

thermally stratified fluids. Therefore, the previous theory was

enlarged to include the case of partially insulating walls to

determine the proper theory for the experiment. It was found that
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the experiments presented in this thesis were in good approximation

to the insulating side wall, and it was shown that Holton's

boundary condition on the interior flow at the side wall was

a special case of a partially conducting side wall. The extension

of the theory also reproduced Pedlosky's boundary condition

for a perfectly conducting side wall. Chapter 3 discusses the

experimental apparatus, method and technique of data analysis.

The results of the experiments are discussed in chapter 4. One

experiment is considered in detail and the rest are discussed

in relation to this experiment.

In the text to follow, the parameter, B, is called a Burger

number. This is not quite correct, as the aspect ratio also

enters into the definition of the Burger number in its usual

meaning.



2. THE LINEAR THEORY

2.1 Formulation of the problem

Most of this chapter is concerned with a presentation of

the linear theory, parts of which have been discussed by Holton

(1965), Siegmann (1967), Pedlosky (1967), Walin (1969), and

Sakurai (1970). Each of these authors has used different conventions

concerning the scaling parameters and basic variables. The

scaling has been chosen to be consistent with Walin's in order that

the solutions derived in this chapter may be compared to his

and the basic variable has been chosen to be the stream function

to reduce the order of the equation governing the interior field.

The basic equations used are the Navier-Stokes equations for

an incompressible fluid. The Boussinesq approximation has been

made and axial symmetry is assumed. The scaling, as mentioned above,

is consistent with Walin's. It should be noted that the time scaling

is fo~9" rather than Q "'E , and that L is the half-height of the

container.

The variables are scaled as follows:

(r*,z*) = L (r,z),



=I

(u,,v*,w*) = eQL(u,v,w),

p = 202L2ep p

p, = 202Lep g 1 t

Ps * Q s Ps'

where

P= real, total pressure = p5 (r,,z,) + p*(rz*,t*),
2 2

p = real, static pressure = p (-gz* + o r ),

ptotal* = real, total density ps (z*) + p,(rz*,t*),

and

Q =aAT.

Other parameters used in the analysis are

£ = the Rossby number = 6C/1,

the final angular velocity of the system,

n= the change in angular velocity,

L = the height of the cylinder,

p = the average density of the fluid,

AT = the temperature difference between the upper and lower

boundaries,

v = the average kinematic viscosity,

x = the average thermometric conductivity,
2

E = the Ekman number = v/ 20L ,

F = the Froude number = G2L/g,

B = the Burger number =N/2C,

N = the Brunt-V~istlA frequency = Q g/2L

a = the Prandtl number = v/x,
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a. = the coefficient of thermal expansion.

If we define the operator

21 1 C2
V = r2 r r 7r + 2

the scaled equations of motion, heat and continuity are
±

E ut + e( u.vu - v2/r) - v = -pr + E L u + lzFr( p + B2

E v + e(u.vv + uv/r) + u = E Z v

E2 w + ( vW = -pz + E v2 w p

t aV)s 2 E 2
E pt + e( .Vp) + w B2= v p,

and,

v.u = 0.

The incompressibility condition allows the introduction of a stream

function * such that (u,w) = ( *z , .-(r*)r/r ).

In the theory to follow, the Rossby number and the Froude number

will be neglected. Although the existence of an initial state of

solid body rotation is precluded in any rotating, stratified fluid

whose Froude number is not identically zero ( see Barcilon and Pedlosky,

1967), such a state will be assumed, arguing that the superposed

Sweet-Eddington flow can be separated from the spin-up in the

linear theory. The further assumption of a linear basic density

gradient will be made: = -1 . The full equations, after

eliminating the pressure field, are
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( t E - - V ~ Pr z r - r

r (Z)(rr - 2vvz/r +

zFr ( z - B2

E E ) v + r rt)r *z(rv)r)'

( E - - v2 ) p + B2 (re )r/r = e (((r*)r/r)ps r r

The initial condition for the problem is v = r at t = 0, and

the boundary conditions are u = 0 on all boundaries, and

=n Fn ( P - n *

where

a is the derivative normal to a boundary
6n

and In and pn depend on the boundary and the specific case under

study. Physically, this condition is an approximation to partial

heat conduction through a thin wall. See appendix II for the

derivation of this condition.

2.2 Conventions

The convention used in the perturbation expansion follows.

Let Y be any dependent variable. Then

Y = Y(0) + EA Y + E Y(2) +
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No expansion in powers of E are needed for the problem when B

is 0(1). See appendix II for details.

The boundary layer variables will be denoted by diacritical

marks above the dependent variable. The stretched coordinates

will be represented by lower case Greek letters and "x".

The conventions for the boundary layer independent and

dependent variables are

Ekman layer, C = E 2 ( 1 + (-l)j z ), j = 0 on the bottom

j = 1 on the top,

Y -> y,

E horizontal layer, T = E~ ( 1 + (-1) z), Y -> Y,

El buoyancy layer, ( = E~( r - r ), Y ->

E2 Stewartson layer, x = E~4( r - r ), Y -> Y.

Other conventions will be introduced as needed.

2.3 The linear problem

For the linear problem, e = 0 and F = 0. The variables are

expanded in a perturbation expansion in powers of El.

Interior equations

0(1)

V(O) (0) 0
vz+ pr = 0

(0) 0
z

(r (0))r = 0



The equations for
t

the E4 terms are the same as the 0(1)

+ p (2)
r

+ $(2)
z

equations.

O(E 2)

v(2)z

v(o)t

(0)

= 0

= 0

+ 2( rt (2) ) =

Ekman layer equations

0(1)

-(0)

( 4

I

0(E4 )

-(1)

1

0 (E 2)

-(2)
cccc

7-(0)
cc

B2 (r2)) r/r

-(0)

S-(1)

= 0

= 0

+ (-1)j -(0) =

-(2) _
c

-l -(2) = 0
- acc

E

E* horizontal thermal bou~ndar'y layer

0(l)

-1 a2 =(0)
-Y 2a

I
0(E 4)

equations

= 0



1
0(E4 )

The same equations hold to this order.

1
Ez buoyancy layer equations

O(l)
A (0) = 0

0(E 4 )

0(E 2 )

(2) (0) 0

^ (0)

El Stewartson

+ 2 (2) = 0

layer equations

0(1)

(0)

p

0(E 4 )

S(1)
p

O(E2)

(2)

(0)
t

A(2)
Px

= 0

=0

=0

=0

=0

^^(0)-vxx
/ (1)

z



2.4 Solution of the interior problem

From the interior equations, a single equation may be obtained

for *(2)

a 1 a (2) -2 (2) 0.r* + B- * 0or r 5r zz

This is clearly separable for the geometry of the problem and

solutions obtained in terms of Bessel and hyperbolic functions.

The boundary conditions on the interior fields must be derived

from the boundary layer equations.

2.4.1 The quasi-steady Ekman layer condition

The quasi-steady Ekman layer conditions are used as the

Ekman layers do not change rapidly with time after the initial

spin-up on the 0(1) time scale. This condition is consistent
1

with the scaling on the E-2 time scale.

The non-slip conditions at the top and bottom demand

-(2)=0, (2 (2) = 0, and ~(0) + v( = 0 on z = l and

= 0.

From the Ekman layer equations, the Ekman layer azimuthal

velocity and stream function are found to be

-7(0) J
= -VB exp( -2-2C) cos

7(2 ) (.,)j p$ = (-1)$2-2 vB exp(-2-ag) ( cos 2-2C + sin 2-2C)
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where vB =(0)( z = * 1 ). From these equations, we have

7(2)( = 0 ) = (-l)J 2-1vB = ~ *(2)( z = t

These conditions, with the interior equations give

(2)
4 t (l)j 2" (2) = 0 at z =+ 1

as the boundary conditions on the interior flow at the horizontal

boundaries.

2.4.2 The E2 buoyancy layer conditions on the interior flow

The non-slip and thermal boundary conditions give

(2) ^(2) 04 +*

0(2)
- 0,

(0) -r' ( 0)
+ (0) ) at r = r , t = 0,

where
1

= E2  ,

pn 0 0

After the tangential velocity condition is applied, it is



found that

A (0)p = b exp(-ht) cos ht,

$2 = exp(-h§)( sin h§ + cos h§ ),
aB

where

h = (1 B) ;

From the thermal boundary condition

( r' - h ) b = - r' p(0) at r = r ,

and hence

uB 2 ( '-h ) (2)( (= (0)
Ith

As +(2) + (2) = 0 at r=r0, §=0, we have

aB 2 ( F' - h) (2)
I-thJ]7'h

aB ( '-h) (2)

rth

_ (0)
- p

_ (0)

and as

p(0) B (2)
t r r.~
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the boundary condition on *(2) at r = r is

(2) + rth 1r (2)) 0
t F1'-h) r r

This condition, the Ekman conditions, and the requirement that all

fields remain finite at r = 0, define the boundary value problem.

The side wall boundary condition may be studied in a number

of cases. In the first case, where the coefficient K= hr' /('-h)

1 (2)
is 0(E2 ), the side wall boundary condition reduces to * = 0

at r = r ( as $(2) goes to zero as t increases without bound).

This is just the insulating condition pr = 0 at r = r0 . When

this condition is used, it should be noted that the buoyancy

layer ceases to exist and thus cannot transport fluid from the

Ekman layers to the interior. This condition may be created by

either an insulating wall or a large Prandtl number.

The next interesting case occurs when r' = h. This requires

that (r (2))r = 0 at r = r 0 . This is the equivalent of Holton's

boundary condition, expressed in terms of the stream function.

The last special case of interest occurs as F1 becomes

infinite. This corresponds to a side wall held at constant

temperature, or a perfectly conducting side wall. This gives

a boundary condition which is equivalent to Pedlosky's side

wall qondition, expressed in terms of the stream function.

Both Holton's and Pedlosky's boundary conditions would be

very difficult and expensive to produce in a laboratory experiment.

This is mostly due to problems in constructing side walls of
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sufficient conductivity and maintenance of the outer wall

temperature.

2.4.3 The form of the interior solutions

The initial condition for the interior fields is v(o) (0)=0,

at t = 0. The solution of the problem is then quite straightforward

( see appendix II ) and is given by

4(2) :nt sinh m z
E(2 2- r Cn en sinh ,(( nr/r ),
n n

v(0) = r r Cn (1 e~n ) cosh m nz 1a n r/rO),
no)cosh mnv onn~ cohn

p (0) n 0 ( l - e n ) sinh mn z 0 (nr/r o),
n cosh mn

where

m = BM /r , @ = 2"mn coth mnn n o h n

and the an satisfy the equation

J ((C) IBMt
1ln +2 h r ' n

J O an) Ba ( I'l - h )0

The C are defined by



r = I Cn 1(a. nr).

n

2
For the insulating case, C= . For the non-insulating

n no0 n

cases, the solutions for the Cn are obtained by numerical methods

( see appendix II ).

From these solutions, we can now define a precise "spin-up

time ". The modal coefficients, Srn' are of the form of reciprocal

times. The n-th modal spin-up time will be defined as l/n. it

should be noted that these spin-up times are independent of position

or time.

For the experiments described in this thesis, the coefficient

in the second term of the eigenvalue equation is O(E2 ) and thus,

the theory that will be used for comparison with the experiments

will be the insulating side wall dalin theory.



3. DESCRIPTION OF THE EXPERIMENTS

3.1 Description of the apparatus

The apparatus was designed to test the theory discussed in

the previous chapter. The basic geometry of the test section was

a right circular cylinder, made of plexiglass, 8.89 cm high,

10.03 cm inner radius, with all walls approximately 1 cm thick.

This cylinder was bounded on the top and bottom by 0.6 cm thick

glass plates, flat to better than 0.002 cm. Glass was chosen

for its relatively high thermal conductivity, clarity and mechanical

strength. The walls and the glass plates were made rather thick

for reasons of rigidity. The cylinder and the glass plates were

sealed inside a large plexiglass box. Spaces were provided above

and below the glass plates for the heating and cooling water.

The interior of the cylinder was filled with Dow-Corning 200

silicone oil, 1 cs viscosity grade. This was chosen as the working

fluid for its large coefficient of thermal expansion and high

resistivity. The low surface tension of the oil made removal of

air bubbles particularly easy. The space around the cylinder,

between the glass plates was filled with Dow-Corning 200 silicone
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oil, 500 cs viscosity grade. The surrounding oil served the purpose

of providing a thermal isolation from the room and a medium for

viewing the interior of the cylinder from the side with little

distortion. The high viscosity was used to ensure that the spin-up

by side wall diffusion would be at least as important as the Ekman

pumping mechanism. The purpose was to preserve the temperature field

outside the cylinder as much as possible. An even higher viscosity

would have been used, but the problems involved in working with

such high viscosity oils prevented this.

The plastic box was mounted on a three point leveling system

on the turntable and provided with clamps which allowed leveling

and centering of the test section. Before the experiments were

performed, the tank was leveled to better than 30" of arc and

centered to within 1 0.02 cm of the rotation axis of the turntable.

The centering was needed to make the flow axisymmetric and to

avoid problems of variation of the centrifugal acceleration on

the fluid. The centrifugal effect could be neglected for a

homogeneous fluid, but not for a stratified fluid. When the

turntables rate of rotation is changed to give the initial condition,

the centering must be accurate.

The turntable was the MIT/GFDL Air Bearing Turntable. The

details of construction of this turntable are described in

Saunders (1970). The axis of rotation of the table was adjusted

to within 3" of the vertical. ( This is the same order as the

tilt of the building due to differential heating at the 6th floor.

See Simon and Strong,1968.) The rate of rotation of the turntable was



very stable. Under very good conditions, stabilities of several

parts in a million have been obtained. For most experiments, however,

the stability was of the order of a few parts in 104.

The density gradient in the test section was maintained

by heating the upper plate and cooling the lower plate by running

hot and cold water through the spaces above and below the plates,

respectively. Temperature was used instead of salt to maintain the

density field because of diffusive problems near the boundaries

with salt and the ease of monitoring the density field when

temperature was used. The temperature of the water was controlled

by two water temperature controlleis to better than 0.05 0C. The

temperature on the top and bottom plates varied by less than

0.020 C during the experiments.

The density field was measured by sensing the temperature

at a number of thermistors placed in the interior of the cylinder.

Twenty thermistors were originally available for determining the

temperature field, but two ceased to function, leaving eighteen.

The location and numbering system of the thermistors is shown

in figure 2. The locations of the thermistors were chosen to

increase the density of thermistors near the boundaries where

the temperature field would be changing most rapidly. The arrangement

of putting the thermistors at half the distance from the wall as

the previous thermistors made the data reduction easy.

The temperature sensing was done by measuring the out of null

voltage of a Wheatstone bridge in which the thermistors constituted

one of the resistors. Thirty bridges were available, but not all
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were used. A stepping switch from a guidance system testing computer

was used to sequence the bridge's output. This was amplified by a high

input impedance amplifier before the signal left the turntable.

Mercury slip rings were used for electrically connecting the

turntable to the stationary laboratory reference frame to keep

slip ring noise low. The signal was then filtered to remove 60 Hz

hum and higher frequency noise. The voltage was then converted

into a digital format and read into the memory of a computer.

The computer used in these experiments was a Digital

Equipment Corporation P.D.P. 8/S computer. All the sequencing

and data sampling operations in the experiments were performed

under the control of this computer.

The sequence of operations in a typical experiment began

with starting the computer. This was followed by a five second

wait state for the operator to set a series of switches which

could not be set before the run, due to possible accidental

triggering of some of the circuitry. After the five second wait

period was over, the stepping switch was set to the first position and

the speed changed. A photograph was taken and the stepping switch

sequenced and the temperature taken for all the thermistors.

The photograph-thermistor sequencing cycle tod about 4.5 seconds

to sample all the thermistors. About twenty five pictures were

taken and fifty full cycles of thermistor readings taken for each

experiment.

The velocity field data was measured by photographing neutrally

buoyant particles at the mid-plane of the cylinder. The particles
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were polystyrene spheres, about 0.05 cm in diameter. The camera

used was an automatic Nikon F (35 mm ), The film used was Kodak

Tri-X, developed in Diafine. The light source was a G.E. projector

lamp and the beam was collimated by two slits. The thickness of the

beam at the mid-plane was about 1 cm,approximately 10% of the

cylinder height.

The apparatus is described in more detail in appendix I.

3.2 The experimental method

A typical experiment began by turning on the water temperature

controllers and the pumps on the table and letting the system

equilibrate for two to three hours. This time was necessary for

the system to reach thermal equilibrium and to make sure the flow

rates and pressures were balanced to avoid breaking the apparatus.

During this time, the equipment was checked and the computer tested.

The camera was loaded and the experiment number and date photographed.

The turntable was then turned on and the speed checked. If the

rate was constant to better than one part in 10 , the system was

left to settle for another two hours. This allowed the large

initial spin-up transients to die out and the temperature field

to adjust by diffusion. The temperature was measured during this

time to determine when it had reached steady state and linearity.

These measurements were performed at a lower amplification than

used during the actual experiments. This allowed checking the

absolute temperature field. After these measurements were made,



the amplification was increased to allow the use of differential

measurements of higher precision. The experimental parameters were

set into the computer and the apparatus readied for the run.

The sampling during the run was conducted in the sequence

described in the previous section. The sampling time usually

covered two to five homogeneous spin-up times.

3.3 Data analysis

The temperature data from the thermistors were taken sequentially.

In order to analyze the time dependence of the temperature field,

it was necessary to interpolate the output of each thermistor to

the beginning of the sampling sequence. A linear interpolating

routine was used, as the temperature data seemed smooth enough

to warrant it.

After the data were synchronized, the initial readings were

subtracted from the later readings to give the perturbation

temperatures. This put the data into a form which could be readily

compared to the theory. As the Sweet-Eddington flow is essentially

a steady phenonmenon, this subtraction of the initial readings

from the time-dependent readings eliminated the effect of this

superposed circulation to O(e).

In order to analyze the temperature field, it was first

necessary to obtain a representation of the field from the

measurements at specific points in space and time. A least

squares technique, using Bessel functiorv in the radial direction



was found to be inadequate, due to the large oscillations produced

in the fit. The representation of the field finally decided upon

was a double polynomial expansion in the radial and vertical

coordinates. If T'(r,z;t) is the fitted field, then

j=N-l
i=N

T'(r,z;t) = a r(il) z 2J.
ij

i=l
j=1

In the actual analyses, N was taken as either 3 or 4. This

polynomial was fitted to the data by a standard least squares

technique. The fitted field was computed and contoured. If the

contours indicated a bad fit, the standard deviation of the fit

was checked. This was usually more than 15 digitizing intervals

( one digitizing interval = 0.0026 6C). If the contour plot indicated

a good fit, the standard deviation was usually no more than 2 to

4 digitizing intervals. There was never any question whether the

fit was good or bad. The fits which were not reliable were not

used. This fitting program is listed in appendix IV.

In order to compare the observed results with the theory,

it was decided to try to analyze the modal behavior of the

temperature field. This was accomplished by decomposing the

polynomial into its Bessel modes in the radial direction, based

on J0 nr) where the an are the eigenvalues of the previous chapter.

This is quite easy to do, as the even powers of r are easily

Fourier-Bessel analyzed by recursion methods. These are discussed

in appendix II. Once these have been found, the modal structure

of the flow is known at any time.
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According to the linear theory, the modal structure of the

temperature field has the general farm An(z)( 1 - e3nt), where

the O's are the reciprocal spin-up times. The fitted field, after

the Fourier-Bessel decomposition, was fitted to this functional

form with a non-linear fitting routine, GAUSHA, which is listed

in appendix 1V. The An(z) and 0n were determined for sixteen

equally spaced values of z and n=l, and for the field integrated

in z from 0 to -1. Only the first mode was computed.

The accuracy of the analysis procedure was checked by generating

theoretical data according to the linear theory and analyzing

them in the same manner as the observed data. The first mode

was reproduced to within a few percent, but the second mode was

in error by more than twenty percent. Because of this, the second

mode was not used.

An attempt was made to determine the modal spin-up times

by fitting the observed angular positions of the particles with

the theoretical form. It was found that this method was not

feasible, as it was too sensitive to random errors in the data.

This will be discussed in more detail in the next chapter.
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4. EXPERIMENTAL RESULTS

4.1 Experimental parameters

One of the original purposes of this thesis was to study

the stratified spin-up problem over a wide range of parameter

space. The way in which the experiment was constructed limited

the number of parameters which could be varied. The length and height

scales, the viscosity, coefficient of thermal expansion and the

thermometric conductivity were all held constant for all the exper-

iments. In order to avoid changing the settings of the thermistor

bridges and to keep the effect of the viscosity stratification

constant, the temperature difference between the top and bottom

plates was kept approximately constant. This required that changes

in the Burger number could be produced only by changing the rotation

rate, hence making the Burger number proportional to the Ekman

number and to the square root of the reciprocal of the Froude

number. The Rossby number was independent of the other non.-dimensional

parameters of the system. The values of the non-dimensional

parameters and some of the more important dimensional parameters

are given in table 1.



Not all the data were used. Some were not reliable due to

errors committed during the runs. The temperature data from

the first nine experiments could not be used as the electrical

noise from the pumps on the turntable was too large. After that

experiment, electronic filters were introduced to remove this noise.

The data usage is given in table 2.

4.2 Detailed description of one experiment ( No. 24 )

Before looking at the data from all the experiments, it

is worthwhile to consider one experiment in detail. Experiment

24 was chosen because it was representative of the stratified

spin-up experiments, lying in the mid-range in both the Burger

and Rossby numbers, and being rather free from noise.

The velocity data for experiment 24 had the least noise

of any of the velocity data. The angular position of one particle

at an average non-dimensional radius of 1.08 is plotted in

figure 23. The non-dimensionalized angular velocity for the

same particle is plotted in figure 24. The solid lines in

both figures are the theoretical curves predicted by the alin

theory with insulating side walls. At first glance, it appears

that the agreement of the data with the theory is good. It

would be easy to conclude that the experiment agrees well with

the theory for the mid-plane. This is actually not warranted.

If the spin-up time for the first mode is determined by fitting

the angular position with the theoretical functional form, it is



found that the precision of the experiment is not great enough

to determine the spin-up time to any reasonable degree of accuracy.

With ten points, a value of 2.0 is found instead of the theoretical

value of about 1.2. If eight points are used, the value changes to

1.6. If the data were reliable, there would have been no

significant change when two points out of ten were deleted.

Another indication of the precision needed is that the large

deviations occured even though the positions agree with the theory

to within a few thousandths of a radian. Unfortunately, this is

the limit of resolution for these experiments. The fitting

procedure has shown that the spin-up time is shorter than

predicted, even though the exact value is in doubt. The other

experiments were more subject to noise and this procedure was

not used for them. The causes of the noise were mostly in the

copying and digitizing of the photographs.

The temperature data offer much better hope for experimentally

determining the modal spin-up times. The interpolated temperature

perturbations, in terms of absolute digitizing intervals are

presented in figures 5 - 22 versus time. It may be seen that

the actual results show the same trends as the theory, but exact

agreement is not very good. In most cases, the perturbation

temperatures start out with larger amplitudes than the theoretical

temperatures and have a greater curvature. In some cases, they

cross the theoretical curves, and in others, they show a tendency

to cross outside the time range. Another feature is the values of

the perturbation temperatures at the mid-plane (i.e., thermistors



whose numbers are even multiples of four) are not exactly zero,

as predicted. This is especially evident in figures 14, 18, and

22.

In all cases, the perturbation temperature was lower than

predicted. The experiment was a spin-down, and therefore, the

Ekman pumping would have been upward for fluid near the lower

boundary. The viscosity of the fluid is greater there, due to

the lower temperature, resulting in a larger local Ekman number

than assumed for the whole flow. This would have resulted in a

larger Ekman pumping for the bottom than for the top. The fluid

below the mid-plane would have been expected to penetrate some

distance above the mid-plane and cool the thermistors there.

This is exactly what was observed. The thermistors were observed

to be warmer for the cases where the fluid was spun-up.

The temperature data from this experiment were analyzed

by the method discussed in 3.3. A typical fit of the temperature

field is shown in figure 41. ( For a qualitative comparison with

contoured data from a numerical model of stratified spin-up,

see figure 40.) The fits are generally good, the standard deviation

being one or two digitizing intervals. The Fourier-Bessel

decomposition and fitting the time dependent functional form

was carried out for seven levels in z and for the vertically

integrated polynomial. The reciprocal spin-up time for the first

mode are shown in figure 25 as a function of depth. The non-

linear fitting routine computes the confidence limits assuming a linear

hypothesis on the other variables far the input data. These are
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the error bars indicated in the figure. At the 95% confidence

level, the reciprocal spin-up times are not significantly

different from being constant with depth. They are all slightly

greater than the integrated result, but this is probably a result

of the fitting procedure. The integrated results and the results at

the different heights do not differ on the 95% confidence level.

Both the value from the vertically integrated data and the values

at the various levels are significantlr greater than the values

predicted by the linear theory. This feature has been found in

all the experiments which have been analyzed. The asymptotic

coefficient for the first Bessel mode are plotted in figure

26 as a function of depth.

4.3 General discussion of the temperature data

The temporal coefficients for the first mode are plotted

in figure 28 versus the Burger number. It may be seen that as

the Burger number increases, the coefficients also increase,

about as rapidly as predicted by the theory. However, the values of the

computed coefficients are all greater than those predicted by the

linear theory. This means that for all the experiments considered,

the spin-up times are smaller than predicted.

A smaller spin-up time would be expected for several reasons.

The wires which support the thermistors exert a certain amount

of drag on the interior flow. This drag would cause the interior

to spin-up more rapidly than predicted and must be considered in
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any explanation of the increase in the reciprocal spin-up time.

Another possible cause is the increased Ekman pumping near the

bottom boundary which would increase the value of the coefficient

in the bottom half of the tank, where the thermistors are located.

Non-linear effects could be another possible cause.

The effect of the wires may be estimated by comparing the

rates of energy dissipation of the wire drag to that of the

spin-up process. The simple case where the wires are all on

diameters of the cylinder and the spin-up is homogeneous is discussed

in appendix II. It is found that the rate of dissipation is less

than 5% of the spin-up process. This eliminates the effect of the

wire drag as a major source of the smaller spin-up times. ( The

case where the fluid is stratified has also been studied and the

same result found.)

The viscosity varies by about 10/o from the bottom to the

top of the tank. The difference in viscosity, and hence the

Ekman number, from the average value is about 5%. The implied

difference in the Ekman suction and hence, the decrease in the

spin-up time for the lower half of the cylinder would be about 21%,

which is less than the effect of the wire drag .

There remains the possibility of non-linear interactions.

These could occur anywhere in the fluid, but could appear in

the lowest order solution in the boundary layers when the local

Rossby number ( based on the length scale EIL ) becomes 0(l),

even though the interior Rossby number is small. This effect can

be seen when the percentage deviation in the spin-up coefficients



are plotted against the local Rossby nunber. The magnitude of

the discrepancies increases with increasing local Rossby number,

though there is a great deal of scatter. The scatter is the same

order as the 95% confidence limits determined by the fitting

routine. These results are plotted in figure 29. The graph

indicates that the effect may be taking place where the length
1 i

scale is 0(E2 ). These regions are the Ekman layers, the Ea
1 1

buoyancy layer and the E7 x E7 " corner " regions.

The buoyancy layer may be ruled out if it is argued that the

non-linear terms are identically zero for the first order, thus

the equations for the first non-linear interaction are the same

as the linear equations and ther is no correction.

The Ekman layers may be ruled out by arguing that the

non-linear stratified Ekman layers are not qualitatively different

from the non-linear homogeneous Ekmani layers. In the homogeneous

case, the sign of the deviation from the linear theory depends on

the sign of the Rossby number. In these experiments, it does not.

The only regions left are the "corner" regions where the

Ekman transport is returned to the interior. This is a singular

region in the analytic theory, and it may be expected that the

scaling arguments do not hold there. Unfortunately, the solution

of the problem in that region requires the solving of the full

non-linear Navier-Stokes equations. This is not very tractable

analytically, but may be numerically.

The asymptotic oefficients agree well with the linear theory

and are presented in figure 27.
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4.4 Conclusions and recommendations

From the experiments it may be concluded that the experiment

and the theory are in qualitative agreement. The first modal

spin-up times are smaller for the stratified fluid than for

the homogeneous fluid. The order of magnitude of the temperature

and velocity fields are consistent for the theory and experiment.
1

The fluid does not attain a solid body rotation on the E- time

scale, but does reach a new quasi-steady state. The insulating

wall condition is a good approximation for the experiments.

There is some disagreement with the linear theory. In all

cases, the spin-up times are shorter for the first mode than

predicted by the linear theory. The discrepancy between the

theoretical and observed values increases with increasing local

Rossby number. The discrepancy cannot be accounted for by wire

drag or viscosity stratification, though they affect it,or

by non-linear effects in the Ekman or buoyancy layers. The effect

of the corner regions cannot be ruled out.

Buzyna and Veronis (1971) have studied the problem of

stratified spin-up in a similar geometry, using salt stratification

to obtain the density gradient. They measured the azimuthal

velocities at four levels using the Thymol blue dye line technique

( Baker, 1966 ). They compared their results with the theory at

the mid-plane and near the lower boundary, above the Ekman layer.

The insulating side wall condition was the proper side wall

boundary condition for their problem and their Schmidt number
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was very large.

From the comparison of the azimuthal positions of the

dye lines with the theory, they found that the spin-up was

more rapid near the horizontal boundaries, reproducing the

qualitative aspects of the theory. This is in agreement with

the observation in this thesis.

They also computed some "spin-up times" at two levels. These

were defined as the time at which the azimuthal velocity had

fallen to within e~ of its final value. Therefore, each

point in the fluid ]as a different "spin-up" time as defined

by Buzyna and Veronis. They found that these"spin-up times3

were smaller than predicted at the mid-plane and agreed with

the "spin-up times" computed from the theory ( within the error

bounds) for z = -0.8 and r/r0 = 0.5. This form of measuring

spin-up times is not well suited to a comparison with theory,

but for higher values of the Burger number and large time, it

approximates the behavior of the first modal spin-up time.

At the mid-plane their result is in qualitative agreement with

the experiments in this thesis, but it disagrees with the measurements

at z = .0.8. One of the authors ( Buzyna, private communication)

has suggested that this discrepancy may be due to the diffusion

of the salt near the lower boundary over the time from when

the stratification was produced and the time when the experiment

was conducted. This would allow greater penetration of the effects

of the Ekman layers and tend to result in a larger spin-up time than

would be expected for a linear gradient. The observed spin-up time
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was that expected from a linear gradient. Thus, if the stratification

had been linear, the spin-up time would have been smaller.

Therefore, the results of the experiments of Buzyna and Veronis

are qualitatively consistent with the results presented here..

Further experimental work should be performed to study

the effects of non-lineartity, viscosity and stratification on

the deviations from the linear theory. This can be done most easily

for the larger Rossby numbers and intermediate stratifications.

Small Rossby numbers and small stratifications cannot yield

accurate results as the temperature perturbations are too small

to resolve.
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Table 1 (continued)

Experiment /C/ S B Ex104  Fx104  t AT 0 AD
30 0.057 18.87 2.172 11.90 2.82 58-15 7.95 0.250 +0.014
31 0.055 22.41 2.367 12.9 2.42 60.43 8.09 0.231 +0.013
32 0.098 22.779 1.787 9.70 4.24 52.51 8.09 0.306 +0.030
33 0.083 17.323 2.081 11.2 3.16 56.53 8.17 0.264 +0.022
34 0.047 9.202 1.517 8.3 5.87 48.41 8.07 0.360 +0.017
35 0.048 9.956 1.577 8.52 5.50 49.21 8.17 0.348 +0.017
36 0.090 9.800 1.565 8.53 5.48 49.25 8.02 0.348 +0.031
37 0.056 11.754 1.714 9.28 4.64 51.35 8.14 0.320 +0.018
38 0.032 11-759 1.715 9.28 4.64 51.35 8.14 0.320 +0.010



Table 2
Data Usage

Experiment Temperature
Data

Photographic
Data

N
N
N

+3
+G

+G3

+D
+G
+G
+6
+G
+B
+G
-+B3
+G
+D
+G

+B

+G

N

taken and reduced
not taken
taken but not reduced

no filtering
too large fitting error
result of doubtful quality
fit seems reliable

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Key:



TABLE 3

Temperature Perturbation Data for Experiment 24

Series t Thermistor
1 2 4 5 6 7 8 10 12 12

0 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.042 -1.0 -2.2 0.0 -0.5 -2.3 -1.4 1.0 1.6 2.5 3.0

2 0.180 -19.0 -12.3 0.0 -5.6 -5.6 -4.6 1.0 4.2 4.0 3.5

3 0.318 -25.0 -26.1 0.0 -11.6 -10.5 -8.6 1.0 5.0 4.0 4.7

4 0.456 .34.0 -32.1 0.0 -17.6 -14.2 -12.3 1.0 5.0 4.0 4.0

5 0.594 -39.0 -38.1 -0.1 -24.5 -16.5 -14.8 0.8 4.8 3.8 4.0

6 0.732 -43.0 -42.0 -1.9 -29.4 -20.3 -20.0 0.0 3.6 3.0 4.0

7 0.870 -.46.0 -43.1 -0.1 -33.2 -23.2 -20.4 0.0 1.8 2.5 4.0

8 1.Q08 -52.0 -46.0 -0.9 -35.4 -26.0 -23.1 0.0 0.6 0.8 4.0

9 1.146 -53.0 -46.0 -0.1 -39.1 -6.2 -24.4 0.0 -1.4 0.0 4.0

10 1.284 .53.0 -48.0 -0.9 -40.1 -28.2 -27.0 0.0 -3.2 -0.2 3.3

11 1.422 -53.0 -48.0 -0.0 -41.1 -29.9 -27.1 0.0 -4.4 -1.0 3.7

1.560 -53.0 -47.0 -0.1 -42.0 -29.1 -28.0 0.0 -6.0 -1.2 3.3



TABLE 3 (continued)

Series Thermistor
13 14 15 16 17 18 19 20

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 5.4 5.1 3.3 3.3 6.2 6.8 3.7 3.0

2 10.7 11.8 7.0 4.0 12.2 12.6 7.7 3.0

3 16.1 16.9 10.3 4.0 18.2 17.2 11.2 3.0

4 20.4 19.9 13.6 4.0 23.5 22.0 14.2 3.4

5 24.6 22.9 15.3 4.0 27.5 25.8 16.8 3.6

6 26.8 25.9 16.6 4.3 31.1 28.6 18.8 3.0

7 29.6 28.6 18.0 4.7 34.1 31.8 20.8 3.0

8 31.6 30.0 18.6 4.0 37.1 34.6 22.0 3.0

9 33.0 30.6 20.3 4.0 40.1 37.8 23,2 3.0

10 33.3 32.0 20.7 4.0 42.4 39.8 25.4 3.0

11 34.0 32.0 20.3 4.0 43.4 41.8 26.0 3.0

12 33.7 32.3 21.0 3.7 45.1 43.0 26.8 3.0
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TABLE 4

Experimental parameters which do not vary from experiment to

experiment.

2 -1
v = 0.01172 cm sec

X = 0.000837 cm 2sec~1

= 4.445 cm

a, = 0.00134 'C-1

a = 14.0

p = 0.818 gm cm~3



GEOMETRY OF THE

PROBLEM

FIGURE I



LOCATIONS

FIGURE

THERMISTOR



LOCATIOA
IN ROSSB
NUMBER

04f

OF THE EXPERIMENTS
Y NUMBER - BURGER

SPACE

0

,121

O2

24

012

1.0

0,,

00
N4 P5

07
037

qo
00 

If

2.0

FIGURE

ols



OF THE EXPERIMENTS
IN EKMAN NUMBER
NUMBER SPACE

0
0

0

0

0
0

I.0

FIGURE 4

BURGER

Ex to

LOCAT ION

2.0



FIGURE 5 -22 ARE ALL FOR EXPT. 24 THERMISTOR I
THE SOLID CURVE is THE WALIN THEORY
THE TEMPERATURE 18 GIVENIN ABBOLUTE
DIGITIZING UNITS

T 0 l 0 0 0 000

0 F1 2

FIGURE 5



THERMISTOR 2

100

0 2

t

FIGURE 6



THERMISTOR 4

100

Ai ti ni no
T

_ f~'g

I, I

FIGURE



THERMISTOR 5

-0 0

FIGURE

100

7



0\0

9 HO.SI NH3H.L

001



THERMISTOR

0 0

0 0

0

0 0 0 0

O 0

FIGURE 10

100

T



i i 3ainfOId

4
I-f77% -'- 'Iel o

I

001

9 4JOIS1N 3H.

W



31 3aif 013

w * w~

0 0 0

I

001

01 4OJ.L&lNPJ3H.L



THERMISTOR

a a 0 a

100

T

FIGURE 13

tl"%

I I



THERMISTOR

o 0 0 0 0 0 0 0 0 0 o 0 0 0 0,

FIGURE 14

100

T

12



THERMISTOR I3

00
00

FIGURE

oo

T

Is



THERMISTOR 14

000

FIGURE 16

100

T

0



THERMISTOR 15

1O

T

o 0 o0 0 0 0 0

0

FIGURE 17

o



THERMISTOR 16

100

T

0 0 0 0 0 0 0 0 0 0 0

FIGURE

0o

18

~~1.



61 3 1(1 1.:

01

L O.S IH1&3H.L



THERMISTOR 18

0 0

0
0

100

T

0 0

FIGURE 20

e 
O



THERMISTOR 19

0 000

0 0
00

0o

FIGURE

100

T

21



THERMISTOR

0 0 0 0 0 0 0 0 0 0

FIGURE 22

100

T

20



ANGULAR POSITION
OF A FLOAT AT
R = 1.08
EXPT. 24

1.0

O(rad)

0

FIGURE 23

I 2



ANGULAR VELOCITY OF PARTICLE AT R-I.08

EXPT. 24

1.0
0

a,0

0

0 0.5 1.0

t

FIGURE 24

15

I



so 3aifleOi3

0: k -11t

tIN3kJld3dX3
93kJiIdn'- NidsIVO0~IdIO38J

3H1. d0 3 JflJoflu.L9 7011L?3A



VERTICAL STRUCTURE
OF MODE I

EXPT. 24

0

Z

00

0

00

so 100

A(z)

FIGURE 26



O/C

0DA

C) a
0,

.00005 .0001

eF(I -

FIGURE

- sechm )

27

LuJ

41~

4qc

Lu

0
0

0
U)



RECIPROCAL
VS.

FIGURE

5

4

3

2

I

/8

12

SPIN -UP TIMES

28



DEVIATION
SPIN- UP

"

oil

0

OF RECIPROCAL
THE

VERSUS
Y NO-

02

02,'

o0

10.0

FI GURE

T IME FROM

WALIN THEORY
LOCAL

1.0-

,6

0.1-

1.0

ROSSE

tE-1/2

29



Glass plates

Schematic Diagram of Test Cell

( Dimensions in cm )

FIGURE 30

500 cs
silicone
oil

Plexiglass

Hot water

___ - 20.066

1 cs
silicone oil

8.89

1.25 Cold water

Plexiglass



Temperature
Controller

Schematic Diagram of Temperature Control

FIGURE 31

Fluid
Slip-rings

Pump

Test
Cell

Systen



CONTROL

SPEED CHANGER

THERMISTOR
CIRCUI TRY

SKIP BU8

COMPUTER CONTROL

FIGURE 32

IN

CA MERA



d0d

HO.LVN
NVU3dHI

BOOWGe
UJOILS8NOU~3H

OU1714

&0N1&-dl7G

kJ.3.LSAs L .Ng3un~sv3k43fIVq3k3 3&nl Vd3dW31



TYPICAL INTERFACE CIRCUIT

FIGURE 34



BIAS AND IMPEDANCE

ISV

OUT
IN

FIGURE 35

MA TCHING CIRCUITRY



15 V FREQUENCY CHANGER
ISV

sv

OUT

FIGURE 36



60 HZ BAND

R

REJECT FILTER

PIGURE 37

I 
I I



fy-1 713-SSVd AtO0

se 38noi-d

---I



CAMERA DRIVING

i5 V

FIGURE 39

12 V

TO
CAMERA

CIRCUITR Y



DENSITY FIELD AT AN
STAGE OF SPIN-UP , COMPUTED FROM A
NUMERICAL Mf ODEL

FIGURE

PER TURBA TION EARLY

40



A TYPICAL FIT OF THE
PERTURBATION

TEMPERATURE FIELD

FIGURE

p

0
U

to
C4J

0

C4J
0

-40

Z--I

- mm

41



L~. Y

PLATE



PLATE 2



PLATE 3



PLAE,

PLATE 4



PLA TE 5



PLATE 6



PLATE 7



107

PLATE 8



110

APPENDIX I

DETAILS OF THE APPARATUS
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Test cell configuration

The test section consists of a right circular cylinder,

made from plexiglass, 8.89 cm high and 10.03 cm inner radius.

The wall thickness of the cylinder is about 1 cm. The cylinder

is mounted between two 0.6 cm thick glass plates. This assembly

is mounted inside a large plexiglass box. ( See figure 3). The

space above and below the glass plates is used for heating and

cooling water to maintain the temperature gradient in the

cylinder.

The large box is mounted on a three point leveling system

independent from the leveling system of the turntable. The

mounting system also has a provision for centering the test

section with that of the turntable and clamping the outer box.

The interior of the test section is filled with Dow-Corning

200 Silicone oil, 1 cs nominal viscosity grade. The region

between the test section and the outer box wall is filled with

Dow-Corning 200 Silicone oil, 500 cs nominal viscosity grade.

Twenty thermistors ( VECO i# 61A5 ) are located in a vertical

plane along one radius in the cylinder. (See figure 2 ). Two

thermistors are mounted on the glass plate on either side of

the cylinder and two thermistors are mounted on either side

of the cylinder wall.
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Thermistor circuitry

All temperatures in the stratified spin-up experiments

are measured by the out of null voltages of Wheatstone bridges

with a thermistor in one of the arms of the bridge. There are

thirty available bridges, of which twenty four are used. Twenty

thermistors , two of which are broken, are mounted in the

interior of the fluid. Two thermistors are mounted on either

side of the cell wall and two thermistors are mounted on the

upper side of the lower glass plate on either side of the cell.

A stepping switch from an ICBM guidance testing computer

is used to sample the output from each of the bridges sequentially.

The output is amplified by a Zeltex 132 F.E.T. operational

amplifier in an amplifier-follower mode. The gain at this stage

is about 240. When operating in this mode, the input impedence

is above 1012 ohms, thus, the bridge ( typical impedence

106 ohms) is not loaded significantly. The signal is amplified

on the turntable to minimize slip-ring noise. ( See figure 33

for the basic thermistor circuitry.)

The signal is sent through slip-rings and is passed through

an active low pass filter and an active notch filter with a

notch at 60 Hz. ( See figures 36,37 for the filter design.)

The signal then passes through another amplifier ( used for

the actual runs, but by passed when the basic field is to be

measured) and a biasing circuit that changes the range from

* 15 V to 0 to +10 V to accomodate the analogue to digital

converter. ( See figure 35 for the bias circuit.)
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The computer interfacing circuitry

The data taking process is under control of a Digital

Equipment Corporation PDP 8/S computer. In order for the

computer to be able to control the experiment, a number of

interfacing circuits had to be built. The basic idea behind

the interfaces was to allow an I/0 command to set a flip.

flop to a desired state. The flip-flop's state then controlled

other circuitry, such as relays, which performed the tasks

involved in the experiments.

As the computer operates on a -3V logic and the external

logic operates on a +5V logic, an extra inverting step was

needed in all the interface logic.

The PDP 8/S does all its I/0 logic from a common bus.

Six bits are needed to define a device and three bits exist

to initiate various functions of the device. The device is

selected by a diode gate defining the device and the function

of the device is decided by which of the three other bits is

anded with the first gate. ( See the D.E.C. book The Small

Computer Handbook, 1966-67,Mlaynard,Mass.) The three pulses,

I.O.P.'s, are each 1 u sec long and separated by a few u sec.

The short time of the pulse causes problems due to the

capacitance of the diode gate. This is partially avoided by

isolating the slow six bit portion of the gate from the I.O.P.

section by a transistor network. If this network is not used,

the device selector is very prone to noise. (See figures 34,39

for designs of several typical interfaces.)



Camera trigger

The schematic diagram for the camera trigger is shown in

figure 39 and plate 6. The purpose of this circuit is to

trigger the camera shutter and film advance motor. The principle

of operation is an input signal from a flip-flop is amplified

by the transistors and energises a relay which controls the current

to the camera. When the input from the flip-flop is high, the

camera shutter is triggered. When the level falls to ground, the

film is advanced.

Frequency changer

The schematic diagram for the frequency changer is shown in

figure 36 and the actual circuit is shown in plate?. The purpose

is to change the input frequency to the motor amplifier when

an input pulse from a flip-flop is sensed and to lock in that

mode until the circuit is manually reset. Input signals of about

5 V rms at two different frequencies are fed in at locations 1 and

2 on the diagram. Initially, the SCR is non-conducting. When a

positive level from a flip-flop is sensed, the SCR conducts and

continues to conduct until the circuit is broken by the opening

of the switch. Before triggering, the frequency fed in at 1 is

grounded by the first transistor. This means that the second

frequency is output. When the trigger is set, the first transistor

ceases to conduct and the first frequency is passed. The capacitor

is a bias remover.
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Bias and Impedance matching circuitry

The schematic diagram for this circuitry is shown in figure 35.

The purpose is to transform the temperature signal from the thermistor

bridge to a form acceptable by the analog to digital converter.

The output from the bridge is in the range -15 to +15 V. The

converter, however, only accepts signals in the range 0 to +10 V.

Furthermore, the A-D converter has an input impedance of 1000 0.

The follower circuit provides isolation of the bias circuit from

the converter.



116

APPENDIX II

MATHEMATICAL NOTES
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Note on the derivation of the thermal boundary condition

After Walin(1971), a thin wall approximation is assumed.

3y the continuity of heat flux accross the wall,

fluid 1 Qwall at the boundary of the wall and fluid.

This is equivalent to:

k (Tfluid) = k (T wally
fluid * n wall * n

where the k's are the thermal conductivities and the T*'s are

the temperatures in the wall and fluid. By making a thin wall

approximation, the temperature gradient in the wall may be

replaced by

wnd - T outside)d"where Twalnde is the temperature

of the wall at the wall-fluid interface, and Toutside is the

temperature outside the wall.

After non-dimensionalizing, the heat flux equation at the

wall-fluid interface becomes

p = Lkwall (p p ),
d kw fluid

where L = the length scale of the experiment, dw = the wall

thickness, and p is the non-dimensionalized form of Toutside.

I define F= Lk wall /dw kfluid . For the experiments in this

thesis, F = 7.41.
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Fourier-Bessel analysis of the even powers of r

To determine the Fourier-Bessel modes in r, the

coefficients of the Fourier-Bessel expansion of the even

powers of -r ar. required:

= Bn,k 0 n(a nr)

k

, where J1 (CLn) W 0.

The Bn,k may be computed by the usual relation;

B ntk 2 2 S1r 2n-l J0(ckr) dr

JO(ak) 0

This integral may be computed by the recursion relation defined

below. Let

5 r2n+1 0 (ar) dr = un where J (a)= 0.

The recursion relatio is then given by:

u0 =0

211 2 a
, a20~

tn -

4n2

TL unl

2n-2
r
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Note on the method of determination of the Cn

For the case where the eigenvalues of the eigenvalue

equation of chapter 2 are not solutions of either J 0(n) = 0

or J 1(cn) = 0, there is no simple inner product of the Bessel

function J1 (anr) on the interval 0,1 which gives an orthogonality

relation. Therefore, an approximate method must be used to

compute the Cn*

The method I have used is to define an inner product
1

(fg) = rfg d

and form a large number of simultaneous equations

N

( J mr),r) = I Cn (1 1(anr),J (amr)), m =
n=l

and solve for the C n. The value of N I have generally used has been

about 40. This seems to give results accurate to about 1%.

Two methods for solving the set of equations have been used.

The easiest to use has been the MIT program GELB. Another method

that I have used involves computing a set of Gram-Schmidt

orthogonal functions recursively and using these to solve the

set of equations.
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Note on the boundary layer scaling

The elimination of

the equations of motion

all but one dependent variable from

leaves

(B a l ar + ) =E 2 (1 v2v +
8 t B or Tr r + 2 a - zz

2 

r- -r £ v ) +EK 1K~~r 1Yr ~

where

-E 
2/ v2

and
i

K2= /6t - E 2 S.

To find if the boundary layers can exist, the stretched variables

were inserted into the above equation. If no balance existed for the

largest term, it was concluded that no boundary layer of that
i

scaling existed. In this way, it was seen that only the E2 and
1

I boundary layers could be present for B and a = 0(1).

K 1=
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Detail of the solution of $(2)

From the equation B-2 2) + )r (2) = 0, we havez 6r iOweav

and

*(2) =

(Kn(zt))

Kn(Zet) J 1 (anr/r )

2B2cLB
.. Kn(z,t) = 0

r
0

which, with the symmetry condition on $ gives

Kn(z,t) F,(t) sinh mnz/sinh mn

where

mn C an B/r,.

The boundary condition on z = +1 requires

F + 2 2 m coth m F 0

whence

F (t) A exp( .2-mn coth mn t

This implies that 4+0 as t - co or vB - 0 as t -+ co

Now, Vt 2)

= V(r,z) + o *(2)(r s,t') dt'so
The initial condition, v -r at t = 0 requires V(r,z) = r , and

the condition on v (0)(z=l) as t -> o provides the condition on

the A.
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Estimation of the effect of the wire drag on the interior flow

The method for estimating the effect of the wire drag on the

interior flow will be to compare the rates of energy dissipation

of the spin-up of a homogeneous fluid and the energy dissipation

caused by the wire drag.

Let v = Or where 0 = &0 et/t s where ts is the spin-up

time. The kinetic energy of the flow is

*E PH 2r r max 2 d

d= pH Id rv2 dr
0 00

r
2 max r

= rHp u r dr ,
JO

4 2
= prHr 0.

max

The rate of dissipation is then

4 2
' prHr d2E max ,-2t/ts

4 ts

The energy dissipation from the wire drag may be computed

from Lamb's formula ( Lamb, section 343, 6th ed.). The drag per

unit length on a cylinder of radius a is given by

D = 4 TTpvv where k =
ln( -ka ) 2v

The total dissipation produced by N wires is therefore:

r~a
rmax 2

E = 8NurpvLD2 exp(.2t/ts) r dr
0 -ln(or)



123
6a et st

where o -
4 v

By a simple substitution the integral may be transformed as

rmax 2 +oD -Yr dr = -- dy
0 -ln(cyr) o -31n(ar)

or, asymptotically for large(-31n or x= e

r3 ( + 6l +.

The the energy dissipation due to the wire drag is

2 r3
E = 8NTipvT 2 exp(-2t/ts) r3( 1 +
ws -3 ln car m

1 
)

-3 ln or

The ratio of the dissipation rates,

32Nvt

-3H rmax ln or max

( 1

0 0

Ew/ E is given by

+ 1

-3 ln orm

This gives for an upper bound on the ratio for N = 10, &0 = 0.03 sec

<E 0.05 -E w/ E
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APPENDIX III

DISCUSSION OF EXPERIMENTAL ERRORS
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Section 1: Limitations of the measuring systems

1.1 Time accuracy

The time measurements for the photographs were made by

recording the time each photograph was taken on a strip chart

recorder. The absolute accuracy was about + 0.15 see.

The time measurements for the thermistor readings were

computed from the stepping switch times and the photograph

times measured with an oscilloscope. The absolute accuracy

of these time measurements is better than +0.05 see.

1.2 Accuracy of the positions of the neutrally buoyant floats

The positions of the neutrally buoyant floats were determined

by photographing them with an automatic Nikon F, 35 mm camera.

The positions were copied onto tracing paper. This was done on

a large microfilm reader which advanced each frame to the same

approximate position as the previous frame. The positions on the

tracing paper were digitized on an automatic digitizer of Professor

Gene Simmons. These positions were punched onto cards in terms of

Cartesian coordinates. The final step in determining the positions

was to transform the Cartesian positions into polar coordinates and

correct for the parallax of the camera. Each of these steps

contributed to the error in position.

The microfilm reader was supposed to place each frame in the

same position as the previous frame.In fact this did not occur.

The positions of the frames would often be shifted ho-izontally
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a small amount, about 1 inch on the actual scale of projection.

This would amount to about 1/3 cm in the computed position. For

large radii where the distance between successive points was large,

this would not make much difference. For points near the center,

and for points which were close together, these errors could be

sizable fractions of the total differential measurembnt. It

is for these reasons that the low Rossby number and small radius

measuremetts are in the most error.

The errors in drawing the positions of the points were no more

than about+,.05 in. The digitizing errors due to the digitizer

alone are ±0.001 in. These are sufficiently small that they are

entirely masked by the error in the reader.

The errors due to the computing program are negligible, being

about one part in 106

1.3 Accuracy of the temperature measuring system

The details of the temperature measuring system have been

described in chapter 2 and appendix II . Each part of the system

has an inherent error in the temperature measurement. This section

will discuss the magnitude of these errors and their effect on the

data. The units of temperature used in this section will be degrees

Celsius or digitizing units, where one digitizing unit (d.u.) equals

0.0026 'C.

The resolution of the analog to digital converter is about

0.01 V. This corresponds to 0.00260C or i d.u. This is the absolute

limit of accuracy possible with the system in the configuration used
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in the experiments.

There was always the possibility of signal degradation

due to electrical noise, particularly at 60 Hz. The main

contribution to the 60 Hz noise was the power to the hot and

cold water pumps on the turntable. These could not be eliminated,

so the effect of their noise had to be removed after the signal

had been contaminated. This was done by placing two active filters,

one, a band-reject filter with a sharp notch at 60 Hz, and the

other, a low pass filter with the cut-off at 60 Hz. These were

very effective in removing any noise at 60 Hz and 120 Hz. The

maximum observed error in the output signals after the filters

were installed was only 2-3 d.u. The only problem the filters

introduced was the requirement of a waiting time to allow the

signal transients due to the step response of the filters to

die out before sampling. This caused no problem, as the wait

time was the same order as the maximum stepping rate of the

stepping switch.

The computer, on occasion mistyped the output temperature.

This was finally traced to mistriggering of the skip bus. The

mistyped temperatures were corrected manually by interpolating

the previous value of the thermistor and the following value of

the same thermistor. This would have produced an error of no

more than about 5 d.u. at any thermistor or time.

The thermistors, unfortunately, cannot measure temperatures

at a mathematical point, but only give an average of the temperature

over their surface. Therefore, there could be the possibility
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of an error in the temperature at any thermistor equal to the

diameter of the thermistor times the temperature gradient across the

thermistor. The thermistors used in these experiments were about

0.025cm in diameter, and the vertical temperature gradient was

about 1 deg/cm, giving a maximum error of 0.025 0C or about 10 d.u.

As the maximum error observed was two to three da., it can be

concluded that the thermistors can give a much more accurate

reading than might be expected.

The time response of the thermistors might cause problems

if the processes being investigated were varying too rapidly, but

for these experiments that is no problem. The time response of

the thermistors used in these experiments is about 102" sec.

There is the possibility of errors induced by the self heating

of the thermistors. For this reason, the resistance of the thermistors

was chosen as about 1 Mo. The ohmic heating, E2/R is thus about

106 Watt. This corresponds to about 0.001 0C increase.

The leads of the thermistor can conduct heat away or toward

the thermistor and could constitute a source of error. To estimate

the magnitude of this error, it will be assumed that the heat

conducted away from the thermistor is conducted along the wire,

and that the temperature gradient is determined by that of the fluid.

If the thermal conductivity is that of platinum and the radius is

0.005 cm, the heat flux is about 4 x 10"7 watt which is less than

the ohmic heating.

Another possible source of error is radiative transfer between

the thermistor and the walls of the room. The heat flux, assuming
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blackbody radiation is given by Q kA( - Twall

or approximately Q =4kA ATT If A = 12 x 10 cm, 2and

Twal = 300 0K, AT = 5 *K, k =5.7 x 10-5 erg cm-2 sec.1

Q = 12x 10-8 Watt, which is much less than either the ohmic

heating or the lead conduction.

The secular variation in the thermistors is not known,but

this provides no problem in the differential measurements.

The last possible problem was noise due to the slip-rings.

This was not noticable above 1 or 2 d.u.
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APPENDIX IV

COMPUTER PROGRAMS



C
C
C
C TEMPERATURE ANALYSIS PROGRAM VERSICN 6, 17 JANUARY 1971
C
C
C
C
C
C
C
C SUBROUTINES USED:
C BESJ
C GELB
C CONTUR
C
C
C DEFINITION OF VARIABLES
C Z(K) TI-E K-TH VALUE OF Z
C F(K) THE K-TH VALUE OF THE FEILD VARIABLE
C FOB : TFE FIELD FORMED FROM THE BESSEL EXPANSIUN
C FGR : THE RADIAL TEMPERATURE GRADIENT FORMED FROM THE POLYNUMIAL
C EXPANSION
C BB : THE BESSEL DECOMPOSITIJN TERMS OF THE POLYNJMIAL
C BBB T-E COEFFICIENT TERMS OF THE BESSEL FIT
C ALPHA : THE ZEROEO OF Ji
C
C D(I,J) TIE COEFICIENT MATRIX TO BE INVERTED
C X(I) THE POLYACMIAL COEFICIENT MATRIX
C FF(I) THE R.H.SIDE OF THE MATRIX EQUATION
C
C N THE NUMBER OF DATA POINTS
C NN THE DEGREE OF THE FITTING POLYNOMIAL/2
C
C
C



DIPENSION VBAR(16,16)
CJMMUN ALPHA(50)
UIMblSIJN BB(20,20),BLOG(2U,20),AAZ(4,41) ,BBB(2U,5)
DIMENSION Q (1),9S (1) ,FGR (16,t16)
DIMENSION R(20),Z(20),F(20), FF(2f), X(20), D(2),iU),
IFD(16,16)
DIMENSION BAV(5)
DIMENSION BALG(5)
DIMENSIGIN TTNC(40)
DIMENSION QZ(5)
DATA QZ/5*0.0/
DATA BAV/5*0.0/
DIMENSION XXB(21,17)
DATA V8AR/256*00.0/
DATA Q(1)/ T'/,S(1)/' R'/
CATA IZZ/O/
RO = 2.259

C READ EXPERIMENTAL DATA
NUM = 0

N 18
NN = 2
NNN = NN + 1
READ(5,250) NEXPTSSS,ROSBY,EKNU ,TSPIN
BURG = SQRT(SSS)/2.
WRITE(6,251) NEXPTBURG,RUSBYEKNU
B = BURG
FA 2.
ETA = .00001
SBAR = 7.41*SQRT(EKNO)
PRAND = 14.0
H = PRAND**C.250*SQRT(B/2.)
CONS = H*B*2.259*SQRT(FA)*SBAR/(SBAR - H)
CALL ALPF(ETACONS,SBARH,BURG,1.0)
WRITE(6,278)(ALPHA(I),1=1,40)
WRITE(6,200)

II



CALL NGRTH(ALPHAAAZNNN)
WRITE(o,290)(KAAZ(1,K),AAZ(2,K),AAZ(3,K),K=1,40)
WRITE (6,200)
RR = 0.0
DO 1701 K=iL0
RR = RR + 0.1
RSUM = AAZ(2,1)
DO 1700 1 = 2,40
XY= RR*ALPHA(I-1)
CALL BESJ(XY,0.BJ1,.001,IER)
RSUM = RSUM+AAZ(2,I)*BJ1

1700 CONTINUE
RRR = RR*RR
WRITE(6,291) RR,RRRRSUM

1701 CONTINUE
WRITE(6,200)

278 FORMAT( 8(F1O.4,4X))
ISh =0

6000 CONTINUE
NUM = NUP + 1
00 5U10 KK = 1,5

5010 BAV(KK) = 0.0
DO 2000 II = 1,400

2000 A(II) = C.0
L = 0
DO 999 I = 1,20
00 999 J = 1,20
D(IJ) = 0.0
Z(I) = C.O
R(I) = 0.0
F(I) = 0.0
FF(I) = 0.0
L=L+1
A(L) = 0.0

i999 CONTINUE

II



C INPUT THE DATA
C

IF(IZZ.NE.0) GO TO 6001
READ(5,01)(R(K),Z(K),F(K),TIMEIZZK=1,N)
00 1011 K = 1,N
R(K) = R(K) + .0U001
Z(K) = Z(K) + .0(001
F(K) = F(K) + *0000l

1011 CONTINUE
C
C PRODUCE THE '0' MATRIX
C
C

LLN = 0
00 l01 L = 1,NNN
00 1001 P = 1,AN
LLN = LLA + 1
LLX = 0
DU 1001 I = 1,NNN
00 1W01 J = 1,NN
LLX = LLX + 1
D(LLNLLX) = 0.0
IX = 2*(I+L-2)
LX = 2*(J+M - 1)
DO 1001 K = 1,A

1001 D(LLN,LLX) = D(LLNLLX) + R(K)**IX*Z(K)**LX
C PRODUCE THE FF MATRIX
C
C

LLN = 0
DO 1L02 L = 1,NNN
DO 1002 M = 1NN
LLN = LLN + 1
FF(LLN) = 0.0
DO 1002 K = 1,N

1002 FF(LLN) = FF(LLN) + F(K)*R(K)**(2*(L-1))*Z(K)**(2eM-1)



0O 1C8 I=1.916
DO 108 J = 1,16
FD(IJ) = 0.0

1C08 F;R(IJ)=00.0

C PUT U INTO FORM FOR USE IN GELB

LLK = U
NNK = NA*NNA
CJ 1003 I = 1,NNK
00 1003 J = 1,NNK
LLK = LLK + 1

1003 A(LLK) = C(Jl)
NNX = NNK - 1
DJ 1004 1 1,ANK

1C04 X(I) = FF(I)
CALL GELB(X,A,NNK,1
WRITE( 6,302) IER

C
C OUTPUT CCEFICIENTS

WRITE(6,201)
WRITE (6,202)(K,X(K)

,NNXNNX,.0LC01, IER)

,K=1,NNK)

C COMPUTE TFE ERROR FUNCTION AND THE STD DEVIATION

E = 0.0
DO 1005 K = 1,N
P = 0.0
LLX = 0
DJ 1006 1 = 1,NNN
00 1006 J = 1,NN
LLX = LLX + 1

1006 P = P + X(LLX) *R
1005 E = E + (F(K) - P

SIGMA = E/(N-1)

I

(K)**(2*(I-i))*Z(K)-v*(2*J-1)
) **2



= SQRT(SIGMA)
6,200)
6,203) ESIGMA

C COMPUTE Tf-E FITTED FIELD
C

IF(TIME.LE.U.001) TIME
WRITE(6,252) TIME
TIMNO = TIME/TSPIN
TTND(NUM) = TIMND
WRITE(6,253) TIMNOD
WRITE(6,208)
DR = 2.259/16.
DZ = 1./16.
DD 1009 L = 1,16
DO 1009 M = 1,16
RR = DR*(L-1) + .J0001
ZZ = DZ*(M-i) + .00C
FO(LM) = 0.0
VBAR(L,M) = 0.0
FGR(LM) = 0.0
LLX = 0
DD 1007 I = 1,NNN
DOU lU7 J = 1,NN
LLX = LLX + 1
FD(LM) = FD(LM) + X(LL
VBAR(L,M) = VBAR(L,M) +

1007 FGR(L,9M) = FGR(LM) + 2*
WRITE(6,2C9)L,M,RR,ZZFD

1C09 CGNTINUE
WRI TE(6,200)
CALL CGNTUR(FD,16,16)
WRITE (6,200)
CALL CCNTURIFGR,16,16)
WRITE(6,200)
CALL CCNTUR(VBAR,16,16)

1.40 + 4.58*(NUM -

1

X)*RRV'*(2*(1-1))4LZ**(2*J-1)
X(LLX)*(1-1)*RR**(2*I-3)*ZZ**c(2*J)/J
(I-1)*RR**(2*(I-I) -1)*ZZ**(2*J-1)*X(LLX)
(LM),FGR(LM), VBAR(LM)

SIGMA
WRITE
WRITE



WRITE(6,200)
C
C CALCULATE THE BESSEL COEFICIENTS
C

DO 5J00 NU = 1,5
NX = NU +1
DO 5000 ID = 1,10
ZZ = (10 - 1)*CZ + 0.00OU01
BB(NU,IO) = 0.O
LLX = 0
DO 5003 I = 1,NNN
DU 5G02 J 1,NN
LLX = LLX + I
ANNO = ALPHA(NX)
CALL BESJ(ANNO,0,BJO,.U001,IEX)
XINT = AAZ(INU)
BAV(NU) = BAV(NU) + X(LLX)*2.259**(241)*XINT/(2.*J*BJO**2)
BBB(NUMNU) = BAV(NU)
BB(NUIO) = 3B(AUI)+X(LLX)w*259**(2*(I-1))*XINT/BJO**2*ZZ**(

1J-I)*2.
5002 CONTINUE
50C3 CONfINUE

BBZ = ABS(BAV(NU)
BALG(NU) = ALOG(BBZ)
XXB(NUM,IO) = BB41,10)
abX = BB(NU,lO)
BBX = ABS(BBX)
BLOZGiNU,IO) = ALOG(BBX)

5000 CONTINUE
WRITE(6,20)
WRITE(6,220)
WRITE(6,221) 1( IJBB(1,J),BLOG(IJ),1=l,5),J=1,16)
WRITE(6,2C0)
WRITE(6,240)
WRITE(6,241)(KKBAV(KK),BALG(KK),KK=l,5)
WRITE(6, 200)



CU 5J11 KK = 1,5
QQ= BURG*ALPHA(KK+1)/RO
QA= -QQ*0.707*TIMNADuC9SH(QQ
QZ(KK) = 1. -

5011 CONTINUE
WRITE(6,254)
WRITE(6,2(0)
GU TO 6000

6001 CCNTINUE
WRITE(7,277)(
WRITE(7,279)
WRITE(7,277)(
WRITE(6,200)
WRITE(6,277)(
WRITE(6,279)
WRITE(6,277)(
DO 51U0 IK =

EXP(QA)
)/SINH( QQ)

(KK,QZ(KK),KK=1,5)

TTND(K),B88(Ki),K = 1,NUM)

TTND(K),BB(K,2),K =

TTND(K),BB8(K, 1),K

TTND(
1,16

282 FORMAT(//////////)
WRITE(7,282)
WRITE( 6,282)
WRITE(7,281)( TTND(
WRITE(6,281)( TfND(

281 FORMAT(2F10.1,315)
5100 CCNTINUE
100 FORMAT( 315)
101 FORMAT(4'F10.5,38X,1
200 FORMAT(IH1)

K),68B (K,2),K

1, NUM)

1,NUM)

1,NUM)

IN),XXB(INIK),[N,IKNEXPT,IJ=1,NUM)
IN),XXB(IN,IK),IN,IKNEXPTIN=1,NUM)

2)

201 FORMAT(' POLYNOMIAL COEFICIENTS
202 FJRMAT( 5X,15,E20.8)
203 FORMAT(///' E(N) =',E20.8//

1E20.8///)
208 FORMAT(IH1///' L 1,' M ','

1' DT/DR ','BAROCLINIC VELOCITY'
209 FORMAT( 215,2F8.5,4Fll.5)
220 FORMAT( ' NU J
221 FORMAT(I5,6XI5,2E20.8/)

'////)

/'

R

//////)

B(NU, J)

STANDARD DEVIATIJN =',

z ','TEMPERATURE'

LOG(B(NU,J))'/////I)

II

=



240 FORMAT( * NU PAV(NU LOG-(BAv(NU))'/////)
241 FORMAT( 15,2E20.8)
250 F6RMAT( 15,4F10.7)
251 FORMAT(IH1/' EXPERIMENT NUMBER =1,13///# BURGER NUMBER ='F10.5

1/' ROSSBY NUMBER =',F10.5/' EKMANN NUMBER =' Fll.7/lH1)
' REAL TIME =',F10

' N2N DIMENSIONAL T
3 NU ',13,
2F10.2)

/////I//)
15,3E20.8)

* R = ',F10.5,'R'F2
' MATRIX A ')
E20.8)
' IER = ',15)
' TEST POINT')

* TEST PCINT 2 *)

.5,'SEC' )
IME =',F1.5/lH1)
U - EXP(Q((NU)) =e E20.8)

= I, F16.8,' SUM = ', F16.8)

CALL EXIT
END

252
253
254
277
279
290

291
300
301
302
700
701

FCRMAT(
FORMAT(
FJRMAT(
FORMAT(
FORMAT (
FORMAT(
FORMAT(
FORMAT(
FORMAT(
FuRMAT(
FORMAT(
FORMAT(



SUBROUT INE GELB(R,A,M,N,MUDO,MLDEPSIER)

DIMENSION R(i),A(1)

TEST CN WRONG INPUT PARAMETERS
IF(MLD)47,1,1

1 IF(MUD)47,2,2
2 MC=1+MLL+MUD

IF(MC+1-M-M)3,3,47

PREPARE INTEGER PARAMETERS
MC=NUMBER OF COLUMNS IN MATRIX A
MU=NUMBER OF ZERCS TO BE INSERTED IN FIRST ROW OF MATRIX A
ML=NUMBER OF MISSING ELEMENTS IN LAST ROW iF MATRIX A
MR=INCEX OF LAST ROW IN MATRIX A WITH MC ELEMENTS
ML=TOTAL NUMBER OF ZEROS TO BE INSERTED IN MATRIX A
MA=TUTAL NUMBER OF STORAGE LOCATIONS NECESSARY FOR MATRIX A
NM=NUPBER GF ELEMENTS IN MATRIX R

3 IF(MC-M)5,5,4
4 MC=M
5 MU=MC-MUC-1

ML=MC-MLD-1
MR=M-ML
f"Z=(MU*(MU+1))/2
MA=M*MC-(ML*(ML+1) )/2
NM=N* M

MOVE ELEMENTS BACKWARD AND SEARCH FOR ABSOLUTELY GREATEST ELEMENT
(NOT NECESSARY IN CASE OF A AATRIX WITHOUT LOWER CODIAGONALS)
IER=O
PIV=o.
IF(MLD)14,14,6

6 JJ=MA
J=MA-MZ

GELB 700
GELB 690
GELB 710
GELB 72G
GELB 730
GELB 740
GELB 750
GELB 760
GELB 770
GELB 780
GELB 791
GELB 800
GELB 810
GELB 820
GELB 330
GELB 84(1
GELB 850
GELB 360
GELB 870
GELB 88W
GELB 890
GELS 909
GELB 910
GELB 920
GELB 930
GELB 940
GELB 950
GELB 960
GELB 97G
GELB 980
GELB 990
GELB1003
GELB1010
GELBlJ20
GELBI30
GEL81240



KST=J
00 9 K=1,KST
TB=A( J)
A( JJ)=TB
TB=ABS(TB)
IF( TB-PIV)d,8,7

7 PIV=TB
8 J=J-1
9 JJ=JJ-1

INSERT ZEROS IN
IF(MZ) 14, 14,10

10 JJ=1
J=1+MZ
IC=1+MUO
Du 13 I=1,MU
00 12 K=1,MC
A(JJ)=0.
IF(K-IC) 11, 11,12

11 A(JJ)=A(J)
J=J+1

12
13

FIRST MU ROWS (NUT NECESSARY IN CASE MZ=O)

JJ=JJ+1
IC=IC+l

GENERATE TEST
14 TDL=EPS*PIV

VALUE FOR SINGULARITY

START DECCMPCSITION LOOP
KST=1
IST=MC
IC=MC-1
00 38 K=1,M
IF(K-MR-1)16,16,15
IUST=IDST-1
ID=IDST

GELBI050
GELB1)6j
GELB10)70
GELB19J80
GELB1090
GELB1100
GELBillU
GELB1120
GELBI130
GELB1140
GEL3llSO
GELBII6
GELBi170
GEL 3l 180
GELB119j
GELB1290
GEL1210
GELB1220
GELB1230
GELB1240
GELB1250
GELB1260
GEL31270
GELB1280
GELB129U
GELB1300
GELB1310
GELB1320
GEL3133u
GELB1340
GELB1350
GELB136u
GELB1370
GELB1380
GELB139U
GELB1400



ILR=K+MLD
IF( ILR-M)18,18,17
ILR=M
II=KST

PIVOT SEARCH IN FIRST
PI V=0.
DO 22 I=K,ILR
TB=AbS(A (II))
IF(TB-PIV)20,20,19

19 PIV=TB
J=I
JJ=II

20 IF(I-MR)22,22,21
21 ID=10-1
22 11=11+10

23
24
25
26

COLUMN (ROW INDEXES FROM I=K UP TO I=ILR)

TEST ON SINGULARITY
IF(PIV)47,47,23
IF(IER)26,24,26
IF(PIV-TCL)25,25,26
IER=K-1
PIV=1./A(JJ I

C PIVOT ROW REDUCTION
ID=J-K
DO 27 I=KNM,M
II=I+ID
TB=PIV*R(II)
R(II)=R('I)

27 R(I)=TB

PIVOT ROW REDUCTICN
II=KST
J=JJ+ IC
00 28 I=JJ,J

AND ROW INTERCHANGE

AND ROW INTERCHANGE

IN RIGHT HAND SIDE R

IN COEFFILIENT MATRIX A

GELB1413
GELB1420
GELB1430
GELB1440
GELB1450
GELB1460
GELB1470
GELB148O
GELB1490
GELB1500
GELB1510
GELB1520
GELB1530
GELB1540
GELB1550
GELB1560
GELB157j
GELB1580
GELB159u
GELB31600
GELB 16 1,%
GELB162i
GELB163J
GELB1640
GELB 1650
GELB1660
GELB167U
GELB168Q
GELB1690
GELB1700
GELB 1710
GELB1720
GELB1730
GELB1740
GELB1750
GELB1760



TB=PIV*A( I)
A( I)=A( II)
A( II)=TB

28 11=11+1

ELEMENT REDUCTION
IF(K-ILH)29,34,34

29 ID=KST
Il=K+1
MU=KST+1
ML=KST+IC
DO 33 1 I 19,ILR

IN MATRIX A
1u=10+MC
JJ=I-MR-1
IF(JJ)31,31 ,3J

30 ID=I0-JJ
31 PIV=-A(ID)

J=10+1
DU 32 JJ=PU,MZ
A(J-1)=A(J)+PIV4A(JJ)

32 J=J+1
A(J-1)=0*

IN MATRIX R
J=K
00 33 JJ=IIM,
RIJJ)=R(JJ)+PI

33 J=J+M
34 KST=KST+MC

IF(ILR-MR)36,3
35 IC=IC-1
36 ID=K-MR,

IF(ID)38,38,37
37 KST=KST-ID

V*R(J)

GELB 1770
GELB1780
GELB1790
GELB180-
GELB 1810
GELB 1820
GELB1330
GELB1840
GELB1850
GELB136v
GELB187,.)
GELB1880
GELB1890
GELB1900
GELB 1910
GEL B1920
GELB193J
GELB1940
GELB1950
GELB 1960
GELB1970
GELB180
GELB 199U
GELB2300
GELB2010
GELB 2020
GELB20)30
GELB2040
GELB2350
GELB260
GELB2070
GELB208J
GELB2390
GELB2100
GELB211U
GELB21926

5,35

II



38 CONTINUE
END UF DECCIPOSITICN LOOP

BACK SUBSTITLTICN
IF(MC-1)46,46,39

39 IC=2
KST=MA+ML-MC+2
I I=M

40
41

42
43

Du 45 I=2,M
KST=KST-PC
1I=11-1
J=I I-MR
IF(J)41,41,40
KST=KST+J
DO 43 J=IINM,P
TB=R( J)
MZ=KST+IC-2
ID=J
D 42 JJ=KST,MZ
ID=ID+1
TB=TB-A(JJ),*R(ID)
R(J)=TB
IF( IC-MC)44,45,45
IC=IL+1
CONTINUE
RETURN

GELB2130
GELB2140
GELB2150
GELB2160
GELB2170j
GELB218C
GELB2190
GELB2200
GELB221Q
GELB2220
GEL32230
GELB2240
GEL82250
GEL12 260
GEL8227U
GELB2280
GELB2290
GELB2300
GEL B2310
GELB2320
GELB2330
GELB2340
GELB2350
GELB236U
GELB23T
GELB2380
GELB2390
GEL82400
GELR2,s10
GELB2420
GELB2430
GELB244U
GELB245 c

ERROR RETURN
47 IER=-1

RETURN
END
FUNCTICN IFAC(N)
IX = 1
00 1000 J = 1,N



1000 IX = IX4J
IFAC = IX
RETURN
END

El



SUBROUTINE ALPH(ETA,CONSSBAR,H,B,AO)
C
C
C THIS SUBROUTINE WILL FINE THE ROOTS OF THr EQUAFIJN FOR THE ALPHAS
C
C OTHER SUBROUTINES USED: ROOT
C
C SEE 'ROOT' FOR FURTHER SUBROUTINES
C

IMPLICIT REAL*8(A-HC-Z)
REAL*4 ALPHA
DATA NK/50/
COMMuN ALPHA(50)
DIMENSION BB(6)
B8(1) = 0.0
BB(2)=2.404E3
BB(3J=5.520 07
BB(4) =8.65373
88(5)=11.79153
BZZ = B/AC

C
C INTIALIZE ALPHA
C

DOJ I I = 1,50
1 ALPHA(I)=0.0

C
XCQQ = SEAR - H

IF(XQQQ.LT.O.0) GO TO 4
C START THE SEQUENCE FOR FINDING THE ALPHAS
C

6 DO 3 1=1,3
ACC = B8([) + .05
BUO 88 (1+1) -.05
ALPHA(I) = ROOT(AOJB0,ETA,CCNSB1Z)
IF(ALPHA(1).LT.0.01) GC TO 4

3 CCNTINUE



AuO = ALPHA(3) + 3.0J
300 ALPHA(3) + 3.30
00 2 1 = 4,50
ALPHA( = RCOT(A00,BOO,ETA,CONSBZZ)
AUU = ALPHA(I) + 3.00
Bj3 = ALPHA(I) + 3.30

2 CGNTINUE
RETURN

4 DO 5 J=1,4
5 BB(J) = Be(J+1)

GO TO 6
END



FUNCTION ROCT(X,Y,ETA,CONSB)
C
C SUBROUTINES LSED: BESJCOSHSINH.
C
C

IMPLICIT REALA8(A-HtO-Z)
REAL*4 ALP-A

100 C = ( X + Y)/2.
ROOT = C

3C00 FORMAT(E20.8)
IF(CABS(C- X).LE.ETA) GO TG 100U
CALL BESJ(CqjBJO,.01,IK)
CALL BESJ(C,1,BJI,.M1,IJ)
QF= B*C

QPK = 1.oC000000000
IF(QF.LT.100) QPK = CSINH(QF)/DCOSH(QF)
G = BJL/BJO - CCNS*CPK
IF(G.GT.C.0) GO TO 2
X C
Y= Y
GO TO 100

2 X =X
Y =C
GO TO 1'0

1OO RETURN
END

II



SUBROUTINE NORTH(ALPHA,A,
DIMENSION ALPHA(40),A(4,4
INTEGER PPP
DJ 1000 P = 1,40
CALL BESJ(ALPHA(P),1,BJl,
CALL BESJ(ALPHA(P),0,BJO,
A(l91) = 0.5
Z(1,1) = 1./2.
A( 1,P+1)=8J1/ALPHA(P)
Zf1,P+1) = eJi/ALPHA(P)
Z(P+1,1) = Z(1,P+1)
DO 1001 M 2,MMAX
A(M,1) 1./(2.*M)
MM = M - 1

MMAX)
1),Z(41,41),AA(164) ,ZZ(1681)

.0001, 1EI)

.00j1,IEGl)

1001 A(M,P+1)= BJl/ALPHA(P) + ( 2.MM*BJO - 4*
1)**2
PP = P - 1
IF(PP.EQ.O) GC TC 1103
DU 1002 N = 1,PP
CALL BESJ(ALPHA(N),1,BJ1N,.0001,IE2)
CALL BESJ(ALPHA(N),0,BJCN,.0OO1,IE2)
Zl = ALPHA(P)*BJ*BJON - ALPHA(N)*BJO*BJIN
Z2 = ALPHA(P)**2 - ALPHA(N)**2
IF(Z2.EQ..C) WRITE(6,7000) Z1,Z2 ,N,P

7000 FORMAT( ' Zl = ',E20.8,5X,'L2=',E20.8,' N=
Z(N+1,P+1) = Zl/Z2
Z(P+1,N+1) = Z(N+1,P+1)

1002 CONTINUE
1103 CONTINUE

Z(P+1,P+1) = 0.5*(BJO*BJO + BJ1*BJI)
WRITE(6,7003)

7C03 FURMAT(' TEST POINT NUMBER ZERG ')
1000 CONTINUE

lM*rMA(MMP+1) )/ALPHA(P

P=' ,15///)

PUT A AND Z INTO PROPOER FORM FOR USE

',I 5 , I

IN THE ROUTINE GELG



NN = 0
DO 1004 M = 1,MMAX
WKITE(6,7U01)

701 FJRMAT(' TEST POINT NUMBER ONE#
DJ 1004 P = 1,40
NN = NN + 1

10C4 AA(NN) = A(MP)
NN = 0
DJ 1C05 N = 1,40
03 10L5 P=1,40
NN = NN +

10C5 ZZ(NN) =
1

Z(N,P)
C
C SJLVE FCR TFE A'S

CALL GELG(AAZZ,40,MMAX,.00001,IER)
IF(ItR.N.30) WRITE(6,200) IER

200 FJRMAT( ' ERRCR IN SOLUTION OF CJEFFICIENT MATRIX,ERRiR=',I5)
WRITE(6,7C02)

7C02 FORMAT( ' TEST POINT NUMBER TWO ' / 1Hli)
C
C RECCMPOSE A
C

NN = C
CU 1006 M = 1,MMAX
0J 1l06 P=1,40
NN = NN + 1

1GC6 ALY,P) = AA(NN)
RE TURN
END

II



SUBRDUTINE GELG(RA,M,N,EPS,IER) GELG 520
C TI-E ABOVE CARC SHOULD BE PLACED IN PROPER SEQUENCE
C BEFORE COMPILING THIS UNDER IBM FORTRAN G.
C GELG 10
C .. .. .. .. .. .. . .. .. . .. .. .... . . .. . .. .EG 20
C GELG 30
C SUBROUTINE CELG GELG 40
C GELG 50
C PURPOSE GELG 60
C TO SOLVE A GENERAL SYSTEM JF SIMULTANEOUS LINEAR EQUATIUNS. GELG 7U
C GELG 80
C USAGE GELG 90
C CALL GELG(R,A,M,N,EPS, IER) GELG 10i
C GELG 110
C DESCRIPTICN OF PARAMETERS GELG 120
C R - THE M BY N MATRIX OF RIGHT HAND SIDES. (DESTROYED)GELG 130
C ON RETURN R CJNTAINS THE SJLUTION UF THE EQUATIONS.GELG 140
C A - THE M BY M COEFFICIENT MATRIX. (DESTROYED) GELG 150
C M - THE NUMBER OF EQUATIONS IN THE SYSTEM. GELG 160
C N - THE NUMBER OF RIGHT HAND SIDE VECTURS. GELG 170
C EPS - AN INPUT CONSTANT WHICH IS USED AS RELATIVE GELG 18i
C TOLERANCE FOR TEST CN LOSS OF SIGNIFICANCE. GELG 190
C IER - RESULTING ERRJR PARAMETER CODED AS FOLLOWS GELG 200
C IER=0 - NO ERROR, GELG 210
C IER=-1 - NO RESULT BECAUSE OF M LESS THAN i OR GELG 220
C PIVOT ELEMENT AT ANY ELIMINATION STEP GELG 23u
C EQUAL TO 0, GELG 240
C IER=K - WARNING DUE TO POSSIBLE LoSS OF SIGNIFI- GELG 250
C CANCE INDICATED AT ELIMINATION STEP K+1, GELG 260
C WHERE PIVOT ELEMENT WAS LtSS THAN OR GELG 2T
C EQUAL TO THE INTERNAL TOLtRANCE EPS TIMES GELG 280
C ABSOLUTELY GREATEST ELEMENT OF MATRIX A. GELG 290
C GELG 300
C REMARKS GELG 310
C INPUT MATRICES R AND A ARE ASSUMED TO BE STuRED COLUMNWISE GELG 320
C IN M*N RESP. M*M SUCCESSIVE STORAGE LOCATIONS. JN RETURN GELG 330



C SOLUTICN MATRIX R IS STORED COLUMNWISE TCO. GELG 34J
C THE PROCEOURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS GELG 350
C GREATER THAN 0 AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS GELG 360
C ARE DIFFERENT FROM 0. HOWEVER WARNING IER=K - IF GIVEN - GELG 370
C INCICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELL GELG 38v
C SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BE GELG 39"
C INTERPRETED THAT MATRIX A HAS THE RANK K. Nu WARNING IS GELG 4U3
C GIVEN IN CASE M=l. GELG 41(
C GELG 420
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED GELG 430
C NCNE GELG 440
C GELG 450
C METHCD GELG 460
C SCLUTICN IS DCNE BY MEANS OF GAUSS-ELIMINATIUN WITH GELG 470
C CCMPLETE PIVOTING. GELG 480
C GELG 490

C GELG 510
C GELG 530
C . GELG 540

DIMENSION A(1),R(1) GELG 550
IF(M)23,23,1 GELG 560

C GELG 57J
C SEARCH FOR GREATEST ELEMENT IN MATRIX A GELG 583

I IER=U GELG 59
PIV=U. GELG 600
MM=M*M GELG 610
NM=N*M GELG 62
DO 3 L=1,MM GELG 630
TB=ABS(A(L)) GELG 640
IF(TB-PIV)3,3,2 GELG 650

2 PIV=TB GELG 660
I=L GELG 70

3 CONTINUE GELG 680
TUL=EPS*PIV GELG 690

C AM!) IS PIVOT ELEMENT. PIV CONTAINS THE ABSOLUTE VALUE OF A(l). GELG 340



C START ELIMINAT1-N LUOP
LST=1
C 17 K=1,M

C
C TEST ON SINGULARITY

IF(PIV)23,23,4
4 IF(IER)7,5,7
5 IF(PIV-TCL)6,6,7
6 IER=K-1
7 PIVI=1./A(I)

J=(1-1)/M
I=I-J"M-K
J=J+1-K

C I+K IS ROW-INCEX, J+K COLUMN-INDEX OF PIVUT ELEMENT
C
C PIVOT ROW REUUCTIGN AND ROW INTERCHANGE IN RIGHT HAND SIDE R

DO 8 L=KNM,M
LL=L+I
TB=PIVI*R(LL)
R(LL)=R(L)

8 R(L)=TB

C IS ELIMINATION TERMINATED
IF(K-M)9,18,18

C
C COLUMN INTERCHANGE IN MATRIX A

9 LtND=LST+P-K
IF(Ji12,12,10

10 II=J*M
00 11 L=LSTLEND
TB=A(L)
LL=L+II
A(L)=A(LL)

11 A(LL)=TB

GELG 71v
GELG 720
GELG 73i
GELG 740
GELG 750
GELG 760
GELG 77.,
GELG 7810
GELG 790
GELG 300
GELG 810
GELG 820
GELG 830
GELG 840
GELG 350
GELG 860
GELG 870
GELG 880
GELG 890
GELG 9U0
GELG 910
GELG 920
GELG 930
GELG 940
GELG 9550
GELG 960
GELG 970
GELG 980
GELG 990
GELG1900

GELG1310
GELG1020
GELG103o
GELG1C40
GELG1050
GELG1360

II



C RoW INTERCHANGE AND PIVOT ROW REDUCTION IN MATRIX A
12 Du 13 L=LST,MM,M

LL=L+I
TB=PIVI*A( LLA
A(LL)=A(L)

13 A(L)=TB
C
C SAVE COLUMN INTERCHANGE INFORMATIJN

A(LS[)=J
C
C ELEMLNT REDLCTICN AND NEXT PIVOT SEARCH

PIV=0.
LST=LST+1
J=0
D 16 II=LSTLEND
PIVI=-A(II)
IST=I1+M
J=J+1
D 15 L=ISTMM,M
LL=L-J
A(L)=A(L)+PIVI*A(LL)
TB=ABS(A(L))
IF(TB-PIV)15,15, jq

14 PIV=TB
I=L

15 CONTINUE
DJ 16 L=KNPP
LL=L+J

16 R(LL)=R(LL)+PIVI*R(L)
17 LST=LST+M

C END OF ELIMINATICN LOOP
C
C
C BACK SUBSTITUTION AND BACK INTERCHANGE

18 IF(M-1)23,22,19

GELG1 370
GELG1080
GELG1090
GE LG 1100
GELGil10
GELGIl20
GELGl130
GELGI14J
GELG1 15(4
GELGil 60
GELGI 170
GELG 1l80
GELGI 190
GELGI200
GELG 1210
GELG1220
GELG1230
GELG1240
GELGI250
GELG1260
GELG1270
GELG1280
GELG1290
GELG1300
GELG1310
GELG1320
GELG1 330
GELG1340
GELG1350
GELG1360
GELG1370
GELG1384
GELG1390
GELG1400
GELG1410
GELG1420

El



19 IST=MM+M
LST=M+1
DO 21 1=2,M
Il=LST-1 ,
IST=IST-LSf
L=IST-M
L= A (L) +* 5
00 21 J=II,AM,M
TB=R(J)
LL=J
DU 20 K=ISTMMM
LL=LL+1

20 TB=TB-A(K)*R(LL)
K=J+L
R(J)=R(K)

21 R(K)=TB
22 RETURN

GELG1430
GELG144J
GELG1450
GELG1460
GELG14TO
GELG148U
GELG1490
GELG15 500
GELG1510
GELG1520
GELG1530
GELG1540
GELGI550
GELG156u
GELG157U
GELGI58J
GELGI590
GELG1600
GELG1610
GELG1620
GELG163 J
GELG1640
GELG1650

ERROR RETURN
23 IER=-1

RETURN
END

ii



SUBROUTINE GAUSHA (NPRBC,FOFNBOYNQTHDIFZ,SIRNSEPIS, GAUS00l1U
1 EP2S,MITFLAMFNU) GAUSUO020

C
C
C ***~** ***4*************************4***w**

C
C
C
C VERSION MIT/1
C
C THIS VERSICN OF GAUSHA HAS BEEN CONVERTED FJR USE ON THE AIT-IBM
C 360/65
C KIM DAVIC SAUNDERS DEPARTMENT OF METEOROLOGY
C
C
C SUBRUUTINES RECUIRED:
C GAUS6C (SPECIAL)
C SIMQ (SSP)
C MINV (SSP)
C ALLMAT (MATHLIB)
C
C
C
C
C THE CALLING SEQUENCE IS:
C CALL GAUSHA(NPROB,FOF,NGB,Y,NPTH,DIFFSIGNSEPSIEPS2,MITFLAM,
C FNLSCTRAT)
C
C
C DESCRIPTICN CF THE INPUT PARAMETERS
C

NPROB
FOF

NO 6
Y

INTEGER CONSTANT GIVING THE PROBLEM NUMBER
THE NAME OF THE USER SUPPLIED SUBRPOGRAM. IT MUST BE
DECLARED EXTERNAL IN THE MAIN PROGRAM.
NUMBER OF OBSERVATIONS
ONE DIMENSIONAL ARRAY CONTAINING THE OBSERVEU



C FUNCTION VALUES.
C NP NUMBER OF UNKNOWN PARAMETERS*
C TH ONE DIMENSIONAL ARRAY CONTAINING THE PARAMETER VALUES
C BEFRE THE SUBPROGRAM IS EXECTED, TM MUST CONTAIN
C AN INITIAL GUESS, WHICH MAY HAVE NO ZERO COMPCNENTo
C UIFF ON JIMENSIONAL ARRAY CONTAINING A VtCTOR OF
C PROPORTIONS USED IN CALCULATING THE UIFFERENCE QUO-
C IENTS DIFF() MUST BE GT*0 AND LTo1
C SIGNS IF SET 0 t THERE IS NO RESTRICTION ON THE SIGNS OF
C THE PARAMETERS* IF *GT. U, THE SIGNS MUST REMAIN THE
C SAME AS THOSE OF THE INITIAL GUESS*
C EPSI REAL CONSTANT WHICH IS THE SUM OF SQUARES CONVERGENCE
C CRITERION. 2F EPSI = 0 , THIS FEATKJRE IS DIS4BLED.
C EPS2 A REAL CONSTANT WHICH IS THE PARAMTER CONVERENCE
C CRITERICN. IF EPS2 = 0, THIS FEATURE IS DIABLED.
C MIT MAXIMUM NUMBER OF ITERATIONS.
C FLAM STARTING VALUE FOR LAMCA* (eol USUALLY WORKS WELL)
C FNU. STARTING VALUE FOR NU. IT MUST BE oGTo
C SCTRAT A WORKING VECTOR. IT MUST BE LARGER THAN:
C 5*NP+2*NP**2+2*NJB+NPNOB
C
C
C IF THERE ARE ANY QUESTIONS, SEE KIM DAVID SAUNDERS
C 54-131(U
C EXT 5938
C
C
C
C
C

DIMENSION A(10v10),D( 10,10) ,DELZ( 3J010)
DIMENSION LLGL(U)VLLJM(10)
DIMENNSIEN AAXX(1R0)
DIMENSION TH(10)TDIFL(10),SIGNS(RIS( ED)Y(5C)
DIMENSICN VECTR(5)
COMPLEX AAA(10910),PPP(10)

- 0



COMMON Q(10),P(1U),E(10),PHi(10),TB(1U)
CUMMUN F(300),R(300)
CUMMCN /ELKL/X
DATA DET/1./
CATA LP/t/
NP=N\Q
NPRUB=NPRBO
NOB=NBJ
EPSI=EPlS
EPS2=EP2S
WRITE(LP,1000) NPRJB,NO3,NP
WRITE(LP,1001)
CALL GAUS60 (1,NPTHTEMPTEMP)
WRITE(LP,1002)
CALL GAUS60 (1,NPDIFZTEMPTEMP)
IF(NP.LT.1 .OR. NP.GT.50 *OR. NOB.LT.NP) GO TO 99
IF(MIT.LT.1 .OR. MIT.GT.999 *JR. FNU .LT. 1) GO TO 99
00 19 I=1,NP
TEMP = DIFL(i)
IF(TEMP) 17,99,18

17 TEMP = -TEMP
18 IF(TEMP *GE. 1 *OR. TH(I) .EQ. 0) GO TO 99
19 CONTINUE

GA = FLAM
NIT = 1
ASSIGN 225 TO IRAN
ASSIGN 265 TO JORDAN
ASSIGN 180 TC KUWAIT
[F(EPSI .GE. C) GO TO 10
EPS1 = 0

10 IF(EPS2 .GT. 0) GO TO 30
IF(EPSI *GT. 0) GO TO 50
ASSIGN 270 TO IRAN
GJ TO 70

50 ASSIGN 265 TO IRAN
GU TO 70

GAUS004U
GAUS00 5o

GAUS0070
-AUSO)80

GAUSO)90
GAUS0100

GAUS0120

GAUSO 140
GAUS0150
GAUS0160
GAUS0170
GAUS0180
GAUS0190
GAUS0205
GAUS0210
GAUS0220
GAUS0230
GAUSo 240
GAUSO250
GAUSQ26J
GAUS0270
GAUS0280
GAUSU290
GAUSO300
GAUS0310
GAUSO320
GAUSO330
GAUS0340

n



30 IF(EPS1 *GT. 0) GO TO 70
ASSIN 270 TO JORDAN

70 SSO = 0
CALL FOF(NPRUBTH,FNOB,NP)
CO 90 I=1,NOB
R(I) = Y(I) - F(I)

90 SSQ SSQ + R(I)*R(I)
WRITE(LP,1003) SSQ
Gu TO 105

C
C ** BEGIN ITERATICA
C

100 WRITE(LP,1004) NIT
105 GA = GA/FNU

INTCOU = 0
00 130 J=1,NP
TEMP = TH(J)
P(J) = DIFZ(J)*THIJ)
TH(J) = TH(J) + P(J)
Q(J) = 0
CALL FOF(NPRUB,Tl-,VE
DO 501G I = 1,N08

5G10 DELZ(I,J) VECTR(I)
00 120 I=1,N0B
DELZ (I,J) = DELZ(I,

120 Q(J) = Q(J) + DELZ(I
Q(J) = Q(J)/P(J)

GAUS0350
GAUS0360
GAUS0370
GAUSU 38J
GAJS0390
GAUSO400
GAUSu410
GAUS0420
GAUSU430
GAUSO440
GAUS0450
GAUS0460
GAUS0470
GAUSO480

GAUS0500
GAUS0510
GAUSV 520
GAUS053v
GAUS054u

CTRNCBNP)

J) - F(I)
,J)*R( I)

C
C ** Q=XT*R (STEEPEST DESCENT)
C

130 TH(J) = TEMP
DO 150 I=1,NP
00 151 J=1,I
SUM = 0.0
DO 160 K=1,NOB

160 SUM = SUM + DELZ(KI)*DELZ(KJ)

GAUS056U
GAUSO57
GAUS0 58U
GAUS0590
GAUSO60J
GAUS0610
GAJS0620
GAUSU630
GAUSU640
GAUS0650
GAUS0660
GAUSV67.j
GAUSO680

II



SUM/(P(I)*P(J))
= TEMP
= TEMP

(MCMENT MATRIX)

150 E(I) SQRT(C(I,I))
GO TO KUWAIT,(180,666)

C ** ITERATICN 1 2NLY
C

180 00 260 I=lNP
DU 200 J=1,I
SUM = D(I,J)
A(J,I) = SUM

200 A(IJ) = SUM
WRITE (6, 5003
WRITE(6,5004)(( AfIJhI=,NP),J
WRITEH 6,5003)

5003 F6RMAT(1H1)
5004 FORMAT( E20.8)

DO 5000 IKX = 1,NP
00 5000 JKX = 1,NP
PPP(IKX) = P(IKX)

5000 AAA(IKXJKX) = A(IKX,JKX)
CALL ALLMAT(AAAPPPNP,10,NCALL)
DO 5001 IKX = 1,NP
00 5001 IXJ = 1,NP
P(IKX) = REAL(PPP(IKX))

5001 A(IKX,IKJ) = REAL(AAA(IKXIKJ) )
WRITE(LP,1006)
WRITE(LP,2001) (P(I),I=1,NP)
WRITE(LP,1004) NIT
ASSIGN 666 TO KUWAIT

C
C ** ENE ITERATICN 1 CNLY

TEMP =
D J(, I)

151 O(IJ)

** D=XT*X

=1 ,NP)

GAUS0860
GAUS0870
GAUS088 )
GAUSU890
GAUSO900
GAUSO910

GAUS0690
GAUS3700
GAUS0710
GAUS0720
GAUS0730
GAUS0740
GAUS075U

GAUS0770
GAUS0780
GAUS0790
GAUS0300
GAUS081U
GAUS0820
GAUS0830
GAUS0840,

n



666 DJ
DO
A( I

153 A(J

153 I=1,NP
153 J=1,I
,J) = D(IJ)/(E([)*E(J))
,1)= A(I,J)

C ** A = SCALED MOMENT MATRIX
C

DO
P(
PH

155 A(

155 I=1,NP
= Q(I)/E(I)

(I) P(I)
,I) = A(II) + GA

G AU S92)
GAUSO930,
GAUS0940
GAUSO950
GAUSO960
GAUSu970
GAUS0980
GAUS0990
GAUSIJJU
GAUS1010
GAUS120
GAUSl30
GAUS1J4CI = 1I

IKK = C
DO 8000 I = 1,NP
co 800j J = 1,NP
IKK = IKK + 1
AXXX(IKK) = A(I,J)

8000 CONTINUE
CALL SIMQ(AMXX,P,NPKKS)

C
C ** P/E = CORRECTICN VECTOR
C

STEP = 1.0
SUMI = 0.0
SUM2 = 0.0
SUM3 0.0
DO 231 I=1,NP
SUMi = P(I)*PHI(I) + SUM1
SUM2 P(I)*P(I) + SUM2

2731 SUM3 = PHI(I)*PHI(I) + SUM3
TEMP = SUMI/SQRT(SUM2*SUM3)
IF(TEMP .LE. 1.0) GO TO 233
TEMP = 1.0

233 TEMP = 57.295* COS(TEMP)
WRITE(LP,1041) TEMP

GAUS106C
GAUS1)70
GAUS1080
GAUS1100

GAUS 1120
GAUSlil30
GAUS1140
GAUS1150
GAUSI 16C
GAUS 1170
GAUS1180

GAUS1200

II



170 00 220 1=1,NP
220 TB(I) = P(I)*STEP/E(L) + TH(I)

WRITE(LP,7000)
7C00 FORMAT('OTEST POINT PARAMETER VALUES')

WRITE(LP,2006) (TB(I),I=1,NP)
DO 2401 I=1,NP
IF(SIGNS(I).GT.0.0 *AND. TH(I)4TB(I).LE.o.0) Go Tu

2401 CONTINUE
SUMB = 0.0
CALL FUF(NPRCB,Tb,F,NCB,NP)
DO 230 I=1,NOB
R(I) = Y(I) - F(I)

230 SUMB = SUMB + R(I)*R(I)
WRITE(LP,1043) SUMB
IF( SUMB/SSQ-1.0 .LE. EPSI ) GO TO 662

663 IF(TEMP *GT. 30.0) GO TO 664
STEP = STEP/2.0
INTCUU = INTCOU +1
IF(INTCOL - 36) 170,2700,2710

6b4 GA = GA*FNU
INTCOU INTCOU +1
IF(INTCOU - 36) 666,27('0,2700

662 WRITE(LP,1C7)
DO 669 I=1,NP

669 TH(I) = Te(I)
CALL GAUS60 (1,NPTHTEMPTEMP)
WRITE(LP,1040) GASUMB
GO TO IRAN, (225,265,270)

225 00 240 I=1,NP
IF(ABS(P(I)*STEP/E(Il))/(1.OE-20+ABS(TH(I)I)-EPS2)

240 CONTINUE
WRITE(LP,10C9) EPS2
GU TO 280

250 GO TO JURCAN,(265,270)
265 IF(ABS((SUMB-SSQ)/SSQ) *GT. EPSI) GO TO 270
260 WRITE(LP,1Jl) EPS1

663

240,240,250

GAUS1210
GAUS1220
GAUS 1230
GAUS1240
GAUS1250
GAUS1260
GAUS127J
GAUS 1281
GAUS1290
GAUS1300
GAUS1310
GAUS13'20
GAUS1330
GAUS1340
GAUS1350
GAUS1360
GAUS1370

GAUS14U

GAUS1430
GAUS1440
GAUS1450

GAUS1470

GAUS1490
GAUS1500
GAUS1510
GAJS1520
GAUS1530

GAUS1550
GAUS1560

n



GO TO 28C
270 SSQ = SUMB

NIT = NIT+1
IF(NIT - MIT)

2700 WRITE(LP,2710)
2710 FORMAT(//'O****

1 SQUARES AT Tf-E
C
C ** END ITERATICN

280 WRITE(LP,1011)
WRITE(LP,2CCl) (F(
WRITE(LP,1012)
WRITE(LP,2001) (R(
SSQ = SUMB
IDF = NCB-NP
WRITE(LP,1015)
I = 0
IKK = 0
00 8C01 I = 1,NP
CU 8001 J = 1,NP
IKK = IKK + 1
AXXX(IKK) = D(I,J)

8001 CJNTINUE
CALL MINV(AXXXNPD
IKK = 0
D 8C02 I = 1,NP
00 8002 J = 1, NP
IKK = IKK + 1
D(I,J) = AXXX(IKK)

8002 CJNTINUE
D0 7692 I=1,NP

76G2 E(I) = SQRT(L(I,I))
DU 340 I=1,NP
00 340 J=I,NP
A(JI) = C(J,I)/(E(

1C,100,280

THE SUM OF SQUARES CANNOT BE
END OF THE LAST ITERATION - I

REDUGED TO THE SUM
TERATING STOPS' /)

I),I=1,N 8)

I),1=1,NOB)

GAUS1570
GAUS1580
GAUS1590
GAUS 1600
GAUS161u

OFGAUS162o
GAUS1630
GAUS1640
GAUS1650
GAUS166U
GAUS1670
GAUS1680
GAUS1690
GAUS1700
GAUS1713
GAUS1720
GAUS1730
GAUS1740

ETLLOLLLCM)

GAUS 176!
GAUS1770
GAUS1780
GAUS1790
GAUS 180dI )*E(J))

II



D(JI) = D(JI)/(DIFZ(I)*TH(I)*DIFZ(J)*T
D(I,J) = D(J, I)

340 A(I,J) = A(JI)
CALL GAUS60 (3,NPTEMPTEMPA)

7057 WRITE(LP,1016)
CALL GAUS60 (1,NP,E,TEMP,TEMP)
IF(IDF *LE. 0) GO TO 410
SDEV = SSO/IDF
WRITE(LP,1014) SUEVIDF
SUEV = SQRT(SDEV)
DO 391 I=1,NP
P(I) = THI) + 2.0*E(I)*SDEV

391 TB(I) = TH(I) - 2.0*E(I)*SDEV
WRITE (LP, 1029)
CALL GAUS60 (2,NPTB,PTEMP)
DQ 415 K=1,NCB
TEMP = 0.0
DO 420 I=1,NP
DO 420 J=1,NP

420 TEMP = TEMP + DELZ(KI)*DELZ(K,J)*D(I,J)
TEMP = 2.0*SQRT(TEMP)*SDEV
R(K) = F(K) + TEMP

415 F(K) = F(K) - TEMP
WRITE (LP ,108)
IE = U
DJ 425 I=1,NOB,10
IE = IE + 1C
IF(Nu'B-IE) 430t,435,435

430 IE = NOB
435 WKITL(LP,2001) (R(J),J=IIE)
425 WaITL(LP,2tjU6) (F(J),J=IIE)
410 WlITE(LP,1033) NPROB

RETURN
99 WRITE(LP,1034)

GO TO 410
1000 FORMAT('1NON-LINEAR ESTIMATION, PR9BLEM

H(J))

NUMBER ',13// 15,

GAUS1810
GAUS1320
GAUS 1830

GAUS1850

GAUS187u
GAUSLd80
GAUS1890
GAUS1900
GAUS1910
GAUS1920
GAUS1930
GAUS19401

GAUS1960
GAUS197u
GAUS198u
GAUS1990
GAUS2000
GAUS20)10
GAUS2323
GAUS2030
GAUS2040
GAJS2050
GAUS216C
GAUS2)7
GAUS2U80
GAUS2J9k
GAUS2 100J
GAUS2110
GAJS2120
GAUS2130
GAUS2140
GAUS2150
GAUS2160

II



l01
1002
1003
1WO 4
1OC5
1006
1007
1008

/'OINITIAL PARAMETER VALUES') GAUS2180
/'OPROPORTIONS USED IN CALCULATING DIFFERENCE QUOTIENrS') GAUS219l)
/'OINITIAL SUM OF SQUARES = ',E12.4) GAUS220v
/////45X,'ITERATION NJ. ',14) GAUS2210
'ODETERMINANT = ',E12.4) GAUS2220
/'0EIGENVALUES OF MOMENT MATRIX - PRELIMINARY ANALYSIS') GAUS2230

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
1 ')

1009 FORMAT
1 THAN

1010 FORMAT
1 THAN

1011 FORMAT
1012 FURMAT
1014 FORMAT

' I DE

1015 FORMAT
1C16 FORMAT
1033 FORMAT

(
(
(
C
(
4
(/'OPARAMETER VALUES VIA REGRESSION')
(////'UAPPROXIMATE CONFIDENCE LIMITS FOR

(/'OITERATION STOPS - RELATIVE CHANGE IN
IE12.4)
(/'UITERATICN STOPS - RELATIVE CHANGE IN
',E12.4)
('iFINAL FUNCTION VALUES ')
(////'ORESIDUALS')
(//'0VARIANCE OF RESIDUALS = 1,E12.4i',',
GREES OF FREEDOM')
(////'UCORRELATICN MATRIX')
(////'ONCRMALIZING ELEMENTS')
(//'0END OF PROBLEM NO. ',13)

GAUS2240)
EACH FUNCTION VALUEGAUS2250

GAUS2260
EACH PARAMETER LESSGAUS227o

GAUS2280
SUM OF SQUARES LESSGAUS2290

GAUS2300
GAUS2311
GAUS232o

14, GAUS2330
GAUS2340
GAUS2350
GAUS2360
GAUS237A

1C34 FURMAT(/'OPARAMETER ERROR') GAUS2380
1039 FORMAT(/'OINDIVIDUAL CCNFIDENCE LIMITS FOR EACH PARAMETER (ON LINEGAUS2390

1AR HYPOTI-ESIS)') GAUS2400
1040 FORMAT(/'OLAMBCA = ',E1O.3,40X,'SUM OF SQUARES AFTER REGRESSIJN ='GAUS2410

1 Ei.7) GAUS2420
1041 FORMAT('0ANGLE IN SCALED COORD. = ',F5.2, ' DEGREES') GAUS243j
1043 FORMAT('OTEST POINT SUM OF SQUARES = ',E12.4) GAUS244,)
2001 FORMAT(/10E12.4) GAUS2450
2CC6 FURMAT(10E12.4) GAUS2460

END GAUS247)

II

1 * OBSERVATICAS ',15,' PARAMETERS') GAUS2170



SUBRUUTINE GAUS6U(ITYPE,NQA,3,C)
DIMENSICA A(NQ),8(NQ),C(NQ,NQ)
DATA LP/6/
NP = NQ
NR = NP/10
LOW = 1
LUP = 10

10 IF(NR) -15,20,3
15 RETURN
20 LUP = NP
30 WRITE(LP,5100)(

GO TO (40,6C,8
40 WRITE(LP,60C)(

GO TO 100
60 WRITE(LP,6C0)(

GO TO 40

J,J=LUW,LUP)
0) , ITYPE
A( J) ,J=LCW,LUP)

BA(J), J=LCW,LUP)

80 DO 9G I = LCW,LJP
90 WRITE(LP,72C) I,(C(J,I),J=LOW

LOW2 = LUP + 1
00 95 I = LCi%2,NP

95 WRITE(LP,720)I,(C(J,I),J=LOW,
100 LUW = LOW + 10

LUP = LUP + 10
NR = NR - 1
GU TO 10

500 FORMAT(/18,9112)
600 FURMAT(lCE12.4)
720 F0RMAT(lH0,3,1X,F7.4,9F12.4)

END

,LUP)

LUP)



SUBRUUTINE BESJ(X,N,3J,D,IER)
IER = 0
Z = X/3.
IF(N.EQ.0) GO TO 1
IF(N.EQ.1) GO TO 2
IER = 5
GO TO 70CO

1 IF(L.GE.l.) GO TO 3
BJ = 1. - 2.2499997*Z*Z + 1.2656208*Z4*4 - *3163866*0Z4*6
1 + .0444479*L'**8 - .0039444wZ**10 + .00C2100*Z*v*2
GO TO 7UC0

3 Z = 1./Z
FU= (((((0.00014476*Z - *00072805)*Z + *J0137237)*Z-.00
1 "Z - .0055274C)*Z - .Y00077)*Z + *79788456
THETO=X-.78539816 + ((((( .00013558*Z - .00029333)*z -. 0

1 *Z + .00262573)*Z - *00003954)*Z - *04166397)*Z
BJ = FO*COS(THETO)/SQRT(X)
GO TO 7000

2 IF(Z.GE.1.) GC TO 4
L = Z*Z
BJ=X*((((((.0001109*L - .00031761)*Z + .00443319)*Z - .

1 #Z + .21093573)*Z -. 5624985)*Z + .5 )
GO TO 7000

4 Z = 1./Z
Fl=(((((-.00020033*Z+.00113653)*Z - .0C249511)*Z+ .0001
1 + .U165S667)*Z + *00000156)*Z + .79788456
THETl = X+(((((-.0C029166*Z+.00079824)*Z+.00074340)*Z -
1 .00637879)*Z + .(300565)*Z+.12499612)*Z - 2.35619449
BJ=Fl*CCS(TlETJ )/SORT(X)

7000 RETURN
END

7

009512)

0054125)

0394289)

105)4l

KB002
K8003
KB04
K B '005
KB00)6
KB30^7

K8008
KBJ9

KB011
K3012

KB013

KB015
KB0 16

KBO1d
K B0 19
K B02 0

KB22
KB023

KB024

KB026
K B027

KB029
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C TEMPERATURE INTERPOLATICN PROGRAM FOR DATA COLLECTED ON THE PDP/8S
C KIM CAVIC SAUNDERS MIT 54-1310
C
C VERSION 2 / 13 JANUARY 1971
C
C
C

DIMENSION T9-ETA(309,20),TEMP(330,20)
DIMENSICN T(30)
CATA T/3C40*.0/
DATA THETA/60040.)/,TEMP/600*0.0/,LP ,LU/5,b/

C INPUT TEMPERTURE DATA
C

10 READ(5,1CO) NSNTTHETA(NSNT),IQQQ
100 FORMAT( 215,F10o.5,58X,12)

IF(IQQQ.EQ.0) GO TO 10
NMAX = NS

C
C REDUCE T-E EATA TO DIFFERENCE FORM
C
C NOT: NS = 1 CORRESPONDS TO TIME = 0.0
C
C
C PAGE 2

WRI TE (LC ,210)
200 FURMAT(IHI)

DO 1JO0 I = 2,NMAX
DO 1000 J = 1,20
K = I - I
THETA(IJ) = THETA(I,J)

1000 WRITE(LO,201) KJ,THETA
CU 1004 J = 1,20

1004 THETA(1,J) = 0.0
201 FORMAT(' SERIES NO. =

- THETA(1,J)
(I,J)

,15,5X,' THERMISTOR NJ. =,15,5X,' DT = 1,F

n



16.1/)
WRITE(LO,20C)

PERFORM THE INTERPOLATICN ON SERIES i

DT = 1.40
DO 1001 J = 1,2J
TN1 = 1.40 4 (J-i)*0.106
TEMP(2,J) = THETA(2,J)*DT/TN1

1001 CONTINUE
C
C PAGE 3
C
C
C COMPUTE THE REST OF THE INTERPOLATED TEMPERATURES
C

00 10L2 I = 2,NMAX
D 1002 J 1,20
TN1 = 4.58
DT = (J-1)*0.106
TEMP(I ,J) = (THETA(I+1,J)

1002 CONTINUE
DO li03 I = 2,10

1003 T(I) = (I-2)*4.58 + 1.40
C
C OUTPUT THE CCRRECTED FIELD
C

- THETA(IJ))*DT/TN1 + THtETA(IJ)

PAGE 4

WRITE(LO,2GC)
WRITE (LC,202)

202 FORMAT(* SERIES TIME THERMISTOR
203 FURMAT( 14,3XF7.3,3X,14,20X,F6.1/

WRITE(LO,203)((I, T(I),J,TEMP(IJ)
RU = 2.259

CORRECTED TEMPERATURE'/////)

J=1,20), 1=1,NMAX)

N



00 2C00 I = 1,NMAX
LLX = C
DJ 2000 I = 1,5
DO 20OO J = 1,4
LLX = LLX + 1
R RO*(1.-l./2.**(5-I))
Z = 1. - l./2.**(4-J)
IF(LLX.EC.3) GO TO 200C
IF(LLX.EC.9) GO TO 2000
IP = 10 - 1
WRITE(7,204) RLTEMP(IOLLX),T(IO),IP,LLX

2000 CONTINUE
204 FJRMAT( 4F10.4,215)

CALL EXIT
END



C PROGRAM TO CCNVERT POINT DATA INTO
C RACIAL ANC AZIMUTHAL VELUCITIES FOR
C KIM DAVID SAUNDERS
C MIT
C OCTOBER 1970

POLAR COJORDINATES AND CALCULATE
THE STRATIFIED SPIN-UP EXPT.

THE MAIN INPUT DATA FOR THE PRJGRAM IS FROM THE DIGITIZER
ON THE THIRC FLOOR OF THE EARTH AND PLANETARY SCIENCE BLDG.
DEFINITICN OF OTHER PARAMETERS:
RO IS THE RAUIUS JF THE CYLINDER IN CM
H IS THE RATIO OF THE DISTANCE TFE PLANE OF LIGHT IS FROM THE

TOP OF THE CYLINDER TO THE TOTAL HEIGHT uF THE CYLINDER.
THIS IS NEEDED FOR PARALLAX CORRECTION.

PSI IS THE PARALLAX CORRECTICN FACTOR

DIMENSICN R(20,37),THETA(2C,36),DR(20,36),DTHET(20,36),TIME(36) ,
I X(36),Y(36) ,t(20,36),V(20,36)
CIMENSION TIMP(36) ,HEADR(20)
DIMENSION EU(20,36),EV(20,36)
DIMENSICN RPLT(36),UPLT(36),VPLT(36),UMGPT(36),TIMK(36)
READ(5,102) ( HEADR(I),I=1,20)
READ( 5,100) XO,YO,X1,Yl,X2,Y2,H,RO,N
READ(5,112) EXETIDEX
READ(5,113) DCPEGTSPIN
N = NUMBER OF SERIES IN CURRENT RUN
INITIALIZE EVERYTHING
DO 10 I = 1,20
R(I,37) = 0.0
0U 10i J=1,36
EU( I,J) = 0.0
EV(I,J) = 0.0
R(I,J) = 0.0
THETA(I,J) = 0.0
DR(I,J) = 2.0
UTHET(IJ) = 0.0
TIMP(J) = 0.0

TI



RPLT(J) = 0.U
UPLT(J) = 0.0
VPLT(J) = 0.0
CMGPT(J) =0.0
TIMK(J) = 0.0

10 TIME(J) = 0.)
Rll = SORT((X2 - XO)**2 + ( Y2 - YU)**2)
ROO = SQRT( (Xl - XO)**2 + ( Yl - YO)**2)
ROR = RO/Rll
PSI = 1. + H*( Ril/RCC - 1.)
WRITE(6,105)
WRITE(6,102)( HEADR(I),I=1,20)
WRITE(6,104)
DO WOO I=1,N

C FIRST CARD IN EACH SERIES MUST HAVE THE FJLLOWING lj4FRMATION:
C SERIES NO., NC. OF FIRST PICTURE, NO. OF CARDS IN SERIES IN THE
C FORMAT: NSER NPNOO NCARD-

READ(5,1C1) NSERNPNCONCARD
NN = NCARD - 1
NNC = NFNO0 + NN
DO 1001 J = 1,36
X(J) = G.0

1001 Y(J) = 0.0
READ( 5,103)(X(J),Y(J),J=NPNOONNC
00 1002 J = NPNUCNNC
XP = X(J) - X0
YP = Y(J) - YC
IF(IDEX.EQO.0) GO TO 3000
Xp = -XP

3000 CONTINUE
R(NSERJ) = ROR*PSI*SQRT(XP*XP + YP*YP)
THETA(NSER,J) = ATAN2(YP,XP)

1002 IF( THETA(NSERJ).LT.O.0) THETA(NSER,J) 2o*3e14159fTHETA(NStRJ)
1000 CONTINUE

00 1004 I=1,20
DO 1004 J=1,35

n



IF(R(I,J).LE..1J GO TO 1004
DR(I,J) = R(IJ+1) - R(IJ)
DTI-ET(I,J) = T-ETA(IJ+1) - THETA(I
IF(DT1-ET(IJ).LT.O.0) UTHET(I,J) =

1004 CONTINUE
READ(5,110) ( TIME(J),J=1,36)
DO 1006 I = 1,20
O 1006 J=1,35
IF( ABS(CR(I,J)). LT. .00001) GO TO
OT = TIME(J+1) - TIME(J)
TIMP(J) = 0.5*(TIME(J) + TIME(J+1))
U(I9J) = DR(IJ)/DT
V(I,J) = (DTET(I,J)/DT)*(R(IJ) +
EU(I,J) = ABS(EX/OT)+ABS(ET*UR(IJ)
EV(I,J) = ABS(EX/DT) + ABS(ET*V(I,J

1006 CONTINUE
WRITE(6,1C9)
00 1007 1=1,20
WRITE(6,111)
DOU 1007 J = 1,36
IF(R(I,J).GT..1)WRITE(b,107) I ,J,
IF( R(1,J).GT..l.AND.R(I,J+1).GT..1

1),U(IJ),V(IJ) , TIMP(J),EU(ItJ) ,t
1007 CONTINUE

WRITE(6,105)
CALL EXIT

100 FJRMAT( 3(2F5.3, 6X),2F1O.5,I5)
101 FORMAT( 5X,15,10X,15,5X,15)
102 FURMAT(20A4)
103
104
105
107
108
109

FORMAT(
FORMAT(
FORMAT(
FORMAT(
FORMAT(
FORMAT(

5(2F5.3, 6X))
1H , ////)
1Hi)
2i15,3F10.5)
40X,5F15.5/77X,2F10.6)

' SERIES PN R THETA

,J)
DTHET(1,J) + 2.*3.14159

loC. 6

R(IJ+1))/2.
/(DT*DT))
)/DT)

R(IJ),THETA(IJ),T
WRITE(6,108)DjR(I,

EV(IJ)

TIME

IME(J)
J),DTHET(IJ

U V TIME'/80X,'1DTHETA ERR13R



21N U ERROR IN V'////)
110 FURMAT(8F10.5)
111 FGRMAT( 1H ,///)
112 FCRMAT( 2F10.5,15)
113 FORMAT( 2F10,5)

END

7aJ

11



SUBROUTINE SIMQ(A,BNKS) SIMQ 490
C TIE ABOVE CARO SHOULD BE PLACED IN PROPER SEQUENCE
C BEFORE COMPILING THIS UNDER IBM FORTRAN G.
C SU4W l0

C SIMQ 30
C SUBROUTINE SIMQ SIMQ 4U
C SIMQ 502
C PURPOSE SIMQ 60
C OBTAIA SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS, SIMQ 70
C AX=8 SIMQ 80
C SIMQ 93
C LSAGE SIMQ 103
C CALL SIMQ(AB,N,KS) SIMQ lb
C SIMQ 120
C DESCRIPTICN OF PARAMETERS SIMQ 130
C A - MATRIX OF COEFFICIENTS STORED CJLUMNWISL. THESE ARE SIMQ 14
C DESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS SIMQ 150
C N BYNo SIMQ 160
C B - VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE SIMQ 170
C REPLACED BY FINAL SCLUTICN VALUES, VECTOR X. SIMQ 18J
C N - NUMBER UF EQUATIONS AND VARIABLES. N MUST BE .GT. ONE. SIMQ 190
C KS - CUTPUT DIGIT SIMQ 203
C 0 FCR A NORMAL SOLUTION SIMQ 210
C 1 FOR A SINGULAR SET OF EQUATIONS SI4Q 220
C, S I Mf 230
C REMARKS SIMQ 240
C MATRIX A MUST BE GENERAL. SIMQ 250
C IF MATRIX IS SINGULAR , SOLUTION VALUES ARE MEANINGLESS. SIMQ 26J
C AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX SIMQ 270
C INVERSION (MINV) AND MATRIX PRODUCT (GMPRD). SIMQ 28v
C SIMQ 29U
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED SIMO 304
C NCNE SIMQ 310
C SIMQ 320
C METHOC SIMQ 330

n



0000

DIMENS

FOR

TOL=O.
KS=0
JJ=-N
00 65
JY=J+1
JJ=JJ+
BIGA=0
IT=JJ
CL 30

SEA

IJ=IT+
IF( ABS

20 BIGA=A
IMAX=I

30 CONTIN

METHOD OF SOLUTICN IS BY ELIMINATION USING LARGEST PIVOTAL SIMQ
DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGINGSIMQ
ROWS WHEN NECESSARY TO AVOID DIVISI JN BY ZERO OR SMALL SIMQ
ELEMENTS. SI ;14Q
THE FORWARD SOLUTICN TO OBTAIN VARIABLE N IS DONE IN SIMQ
N STAGES. THE BACK SCLUTICN FOR THE OTHER VARIABLES IS SIMQ
CALCULATED BY SUCCESSIVE SUBSTITUTIUNS. FINAL SOLUTICN SIlQ
VALUES ARE DEVELCPED IN VECTOR B, WITH VARIABLE 1 IN B(1), SIMQ
VARIABLE 2 IN B(2),........, VARIABLE N IN b(N). SIMQ
IF NJ PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF C.0, SIMQ
THE MATRIX IS CCNSIDERED SINGULAR AND KS IS SET TO 1. THIS SIMQ
TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT. SIMQ

S I MQ

SIMQ
ICN A(1),E(1) SIMOQ

SIMQ
WARD SCLUTION SIMO

SIMQ
0 SIMQ

SIMQ
SIMQ

J=1,N SIMO
SIMQ

N+1 SIMQ
SIMQ
SIMQ

I=J,N SIMQ
SIMQ

RCH FOR PAXIMUM COEFFICIENT IN COLUMN SIMQ
SIMQ

I SIMQ
(BIGA)-ABS(A(IJ))) 20,30,30 SIMO
( IJ) SI MQ

SIMOQ
UE SIMQ

340)
3 5c*j
360)
37;j

380
390
400
410
420
430
440
450)
460
47C

480
500
510
520
530
540
550
56U
570
581)
590
600
610
620
630
640
650
660
670
680
690
700)

n



TEST FOR PIVOf LESS THAN TOLERANCE (SINGULAR MATRIX)

IF(ABS(BIGA)-TOL) 35,35,40
35 KS=l

RETURN

INTERCHANGE ROWS IF NECESSARY

40 Il=J+N*(J-2)
IT=IMAX-J
00 50 K=J,N
Il=Il+N
12=11+IT
SAVE=A(II)
A(I1)=A(12)
A(12)=SAVE

DIVIDE EQUATICN BY LEADING COEFFICIENT

50 A(I1J=A(I1)/3IGA
SAVE=B(IMAX)
8(IMAX)=8(J)
B(J)=SAVE/BIGA

ELIMINATE NEXT VARIABLE

IF(J-N) 55,7C,55
55 IWS=N*(J-1)

DO 65 IX=JY,AN
IXJ=IQS+IX
IT=J-IX
DO 6U JX=JYN
IXJX=N*(JX-1)+IX
JJX=IXJX+IT

60 A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX))

SIMQ 710
SI1Q 720
SIMQ 730
SIMQ 740
SIMQ 750
SIMQ 760
SIMQ 770
SIMQ 780
SIMQ 790
SIMQ 300
SIMi 810
SIMQ 820
SIMQ 330
SIMQ 840
SIMQ 850
SIMQ 860
SIMQ 870
SIMQ 880
SIMQ 390
SIMQ 900)
SIMQ 910
SIMQ 920
SIMQ 930
SIMQ 940
SIMO 950
SIMQ 960
SIMQ 970
SIMQ 980
SIMQ 99U
S IMQ1000
SIMQ121o
SIMQlJ20
S IMQ1030
SI MQ14)40
SIMQ1050
S IMQ106(



65 B(IX)=B(IX)-(B(J)*A(IXJ))

BACK SOLUTION

70 NY=N-1
IT=N*N
DOU 80 J=1,NY
IA=IT-J
IB=N-J
IC=N
CO 80 K=1,J
B(IB)=b(I8)-A(
IA= IA-N

80 IC=IC-1
RETURN
END

SIMQ1070
SIMQ1080
SIMQ1090
SIMQl1o
SIMQll10
SIMQ1120
S IMQ1130
SIMQI140
SIMQ1150
SIMQ1160
SIMQ1 17J
SIMQ1l80
s I m19U
S IMQ1200
SIMQW1210
SIMQ1220

IA)*B(IC)


