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AN EXPERIMENTAL STUDY OF THE SPIN-UP OF A STRATIFIED FLUID
Kim David Saunders
Submitted to the Department of Meteorology on June 7, 1971 in
partial fulfillment of the requirements for the degree of
Doctor of Philosophy

A simple model of the spin-up of a contimuously stratified
fluid is examined both theoretically and experimentally. The
geometry of the system is a right circular cylinder, bounded
on the top and bottom by planes., A linearly stratified fluid is
contained between the planes, rotating at an angular velocity
Q( 1 -¢ ). At t = 0, the rate of rotation is changed to Q.

The problem is to determine the way in which the fluid adjusts
to the new angular velocity.and how this differs from homogeneous
spineup, The theory is studied for the cases where the Rossby
number is small, the Froude number is small, the Burger number
is 0(1) and the side walls partially conducting. The results of
previous investigators are compared and it is shown that Holton's
theory for the interior flow is a special case of partially
conducting side walls,
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Experiments testing the validity of the linear theory were
conducted. The Froude number was small, the Rossby number O(E%),
and the Burger number was 0(1). The side wall conditions were found
to be effectively insulating. The experiments confirmed the
qualitative aspect of the theory, showing that the fluid attains
a quasi-steady state after a time of O(Q'J'E'%), but not reaching
a state of solid body rotation on that time scale. Quantitatively,
it was shown that the first modal spin.up times are smaller than
predicted, the discrepancy depending on the local Rossby number
( the Rossby number based on the E%L length scale). This suggests

non-linear effects in boundary layers of that length scale.

Thesis supervisor: Professor Robert C. Beardsley
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1. INTRODUCTION

1.1 Geophysical motivation

The process where a rotating fluid changes from one state
of rotation to another is known as Y“spin.up". Recently, this
has been of interest in an astrophysical problem: Is the interior
of the sun rotating at a faster rate than the surface? The
answer to this question is of vital importance in determining
the validity of the Brans-Dicke (1964) scalar-tensor theory
of general relativity. This is a spin-down problem with the
entire sun initially rotating rapidly and being slowed down
by the torque of the solar wind.( See also Dicke,1970)The
spin-up process is of geophysical interest in problems relating to

the time response of the oceans, the atmosphere and the earth's

core to external forcing.

1.2 Purpose of the thesis and description of the problem

The purpose of this thesis is two-fold:

1. to provide experimental results which describe the time
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dependent motion of a rotating, continuously stratified

fluid for a simple set of initial and boundary conditions,

and

2, to compare the results with a simple linear theory,

indicating the limits of validity of the model.

As mentioned in 1.1, stratified, rotating, time dependent
fluid motions are of major concern in any study of the oceans
or atmospheres. In order to apply mathematical models to these
systems, it is necessary to determine the limits of the theory.
one useful method is the laboratory experiment. Heretofore, most
problems of the stratified, rotating, time dependent type have
been studied theoretically as a two layer system with viscosity
or a continuously stratified system without viscosity. The
problem considered in this thesis incorporates both viscosity
and continuous stratification.

The geometry of the problem consists of a right circular
cylinder, bounded by two planes at right angles to the axis of
symmetry of the cylinder, rotating at an angular velocity Q(1-¢)
coincident with the axis of the cylinder and antiparallel to the
gravity vector. This is illustrated in figure 1. A stably,
linearly stratified, viscous fluid is contained in the cylinder.
At some time, the angular velocity of the container is changed
by a small amount from Q(l-c) to Q , The problem is to determine
the temporal and spatial structure of the flow which this change

of rotation causes.,
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1.3 Discussion of previous theory

Greenspan and Howard (1963) were the first to carefully
study the problem of homogeneous spin-up. They found the
adjustment time for a homogeneous fluid to reach a new state
of solid body rotation was O( Q'lE'%). The spin-up is accomplished
by the conservation of angular momentum in the interior as
fluid from greater radii replaces fluid removed from the interior
by the Ekman suction. Greenspan and Weinbaum (1965) studied the
non-linear theory for the homogeneous case. They found the
spin-up times were not greatly affected by Rossby number below
0.5 and that the sign of the deviation of the non-linear spin-up
time was opposite the sign of the Rossby number.

The stratified problem was first studied by Holton (1965),
who derived the correct interior equations and Ekman layer
conditions for the linear problem. He chose unrealistic boundary
conditions at the side walls for the interior variables, though
these are consistent with a special case of partially conducting
side walls.

Pedlosky (1967) next published a model for stratified spin-
up with an insulating side wall. He rederived the interior equations
and obtained the same Ekman layer equations as Holton. He analyzed
the E% buoyancy layer equations and correctly concluded that the
insulating condition prevented this side wall layer from carrying
any fluid from the Ekman layers to the interior. From this, he

concluded that the Ekman layers could not exist and that the
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spin-up must occur on the longer diffusive time scale Q'lE'l.

He was wrong ( Holton and Stone,1968) in the sense that a spin-up
process does take place near the horizontal boundaries by a

return flow through the interior. He was right in that the full
spin-up to a new state of solid body rotation does occur on the
diffusive time scale and that on the homogeneous spin-up time

scale, any constant height level of fluid conserves its circulation.
A part of this problem is the need for a precise definition of

what is meant by " spin-up time " for a stratified fluid. This

will be discussed at the end of chapter 2.

Walin (1969) and Sakurai (1970) published careful treatments
of the linear, insulated wall spin-up problem on the homogeneous
spin-up time scale. Their results were identical with the earlier,
unpublished results of Siegmann (1967). Their solutions use the
same Ekman layer conditions on the interior as Holton and Pedlosky
and the same buoyancy layer conditions as Pedlosky. They applied
both boundary conditions to the interior and obtained a result
similar to Holton's, but differing in detail. This linear theory
will be referred to henceforth as the "Walin" theory ( as he

published the result first ) to avoid confusion.

1.4 Previous experiments

Holton (1965), MacDonald and Dicke (1967), and Modisette and
Novotny (1969) conducted experiments on the stratified spin-up

problem. These experiments were not carefully performed and will
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not be discussed here. ( See Buzyna and Veronis, 1971, for
more discussion.)

The only careful experiments to date have been those of
Buzyna and Veronis (1971). They studied the problem using
salt stratification and dye-wire techniques to measure the
azimathal velocity at four levels, The salt stratification
ensured a perfectly insulating condition and a2 high Schmidt
number., They found some apparently paradoxical results., Near
the mid-plane of the cylinder, they found the angular velocity
agreed well with that predicted by Walin's theory, and near
the bottom, the angular measurements showed a more rapid
ad justment than predicted, but a derived "spin-up" time showed
the opposite results at both levels. They explained the faster
response as a possible effect of a non-linear interaction in
the " corner " regions where the Ekman transport is returned

( or removed for spin-down ) to (from) the interior.

1.5 Outline for the remainder of the thesis

The second chapter discusses the linear theory. This is not
presented in chronological order of publication, but in a form
unifying all the previous theory in a common notation. In a
real experiment, perfectly insulating walls cannot exist for
thermally stratified fluids. Therefore, the previous theory was
enlarged to include the case of partially insulating walls to

determine the proper theory for the experiment. It was found that
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the experiments presented in this thesis were in good approximation

to the insulating side wall, and it was shown that Holton's
boundary condition on the interior flow at the side wall was
a special case of a partially conducting side wall. The extension
of the theory also reproduced Pedlosky'!s boundary condition
for a perfectly conducting side wall, Chapter 3 discusses the
experimental apparatus, method and technique of data analysis.
The results of the experiments are discussed in chapter 4. One
experiment is considered in detail and the rest are discussed
in relation to this experiment.

In the text to follow, the parameter, B, is called a Burger
number, This is not quite correct, as the aspect ratio also
enters into the definition of the 3urger number in its usual

meaning.
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2, THE LINEAR THEORY

2.1 Formulation of the problem

Most of this chapter is concerned with a presentation of
the linear theory, parts of which have been discussed by Holton
(1965), Siegmann (1967), Pedlosky (1967), Walin (1969), and
Sakurai (1970). Each of these authors has used different conventions
concerning the scaling parameters and basic variables. The
scaling has been chosen to be consistent with Walin's in order that
the solutions derived in this chapter may be compared to his
and the basic variable has been chosen to be the stream function
to reduce the order of the equation governing the interior field.
The basic equations used are the Navier-Stokes equations for
an incompressible fluid. The Boussinesq approximation has been
made and axial symmetry is assumed. The scaling, as mentioned above,
is consistent with Walin's., It should be noted that the time scaling
is 315 rather than ™7 , and that L is the half-height of the
container.
The variables are scaled as follows:

(rys2,) = L (r,2),
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1
t, = 20)7E ¢,

(U s VoW, ) =  eql(u,v,w),
Py = ZOZLzepo P,
Px = ZﬂzLepog'l P
ps* = Qs Ps?
where
P, = real, total pressure = ps*(r*,z*) + P (T, e2,,t,),
p5*= real, static pressure = p (-gz, + 3 eri ),
ptotal* = real, total density = ps*(z*) + 0, (ThsZyity),
and
Q_ = aaT.

s
Other parameters used in the analysis are

¢ = the Rossby number = AQ/Q.

(0 = the final angular velocity of the system,
AQ = the change in angular velocity,

L = 1 the height of the cylinder,

P the average density of the fluid,

AT = the temperature difference between the upper and lower

]

boundaries,
v = the average kinematic viscosity,

= the average thermometric conductivity,

n

E = the Ekman number = v/ 20L%,

F = the Froude number = QZL/g,

B = the Burger number = N/2Q,

N = the Brunt-VHisili frequency = ng/ZL ,

o = the Prandtl number = v/x«,
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a = the coefficient of thermal expansion.

If we define the operator

2 1 31 o 9
£ =2V e = = = =r + =3,
r2 or r or az2
the scaled equations of motion, heat and continuity are

n

1
E? u, + %e( u.vu - vZ/r) -v=-p +Efut+ SFr( p + szs ),

t

ELv

EZ v, + 3e(u.vv +uv/r) +u

i
Ezwt+%e(g.vw) =-pZ+EV2w -p
1 %s 2 E 2
E? pt+%‘e(2.7p)+WS'2"'—B = 59 e
and,
ve.u = 0,

The incompressibility condition allows the introduction of a stream
function § such that (u,w) = ( ¥, -(r¢)r/r )e

In the theory to follow, the Rossby number and the Froude number
will be neglected. Although the existence of an initial state of
solid body rotation is precluded in any rotating, stratified fluid
whose Froude number is not identiecally zero ( see Barcilon and Pedlosky,
1967), such a state will be assumed, arguing that the superposed
Sweet-Eddington flow can be separated from the spin-up in the
linear theory. The further assumption of a linear basic density

op

gradient will be made: 5;§ = =1 , The full equations, after

eliminating the pressure field, are



i
(B2 s -85 4 -v, - p =% (o (o), - 550 -
193 /.
= szt (ry), - 2vv, [r +
%Fl'(pz"Bz)o
i3 1 €
(B2 -ES)v +y, =35 (v, (rv), - ¥,(xv))),

I - g'vz) p + Bz(rw)r/r 3¢ (((r‘k)r/r)pz - pab,)e

oV

The initial condition for the problem is v = r at t = 0, and

the boundary conditions are u = 0 on all boundaries, and
o0 -
2= Tn Co=py)o

where

%E is the derivative normal to a boundary
and r, and Py depend on the boundary and the specific case under
study. Physically, this condition is an approximation to partial
heat conduction through a thin wall, See appendix II for the

derivation of this condition.

2.2 Conventions

The convention used in the perturbation expansion follows.,

Let Y be any dependent variable. Then

i i v
v =1 Lg%y L5 v2) L
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1/3

No expansion in powers of E are needed for the problem when B
is 0(1). See appendix II for details.

The boundary layer variables will be denoted by diacritieal
marks above the dependent variable. The stretched coordinates
will be represented by lower case Greek letters and "x",

The conventions for the boundary layer independent and

dependent variables are

_1_,_ .
Ekman layer, (=E° (1 + («1)Y 2z ), j = 0 on the bottom

j =1 on the top,
Y = Y,
i -t 5 =
E* horizontal layer, T =E"*( 1 + (1) z), Y = 7,
1 S .
E? buoyancy layer, £ = E™2( r, =T ), Y = fz
1 i A
E? Stewartson layer, x = E™*( r,-r ), Y=Y,

Other conventions will be introduced as needed,

2.3 The linear problem

For the linear problem, ¢ = 0 and F = 0, The variables are
ES
expanded in a perturbation expansion in powers of E*.

Interior equations

0(1)
O NN ()
2 r

\géo) = 0

(rw(o))r =0
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O(E®)

i
The equations for the E* terms are the same as the 0(1)

equations,

o(e?)
v;z ) + p:l(‘2 ) = 0
Véo) + ¢;2) = 0

2
p_l(_'o) + __]3__ ( rd;(z))r = 0

Elkman layer equations

o(1)

5‘(0) - ‘5(0) = 0
0E")

rLE DR € R
0(E?)

—(2)

Vecee  + (<)Y Fé°)= 0

=(0) 3 -(2)
Voo - W)

B2y fr - o7t -,gi) 0

1
E* horizontal thermal boundary layer equations

0(1)
aTl

= 0

N
oY IOJ
s
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0(E¥)

The same equations hold to this order.

1
E? buoyancy layer equations

0(1)
ACHR
O(E™)
@) 2o
0(&%)
~(2) A(0) _
Vegge - Pg =0
';,ég) + oB ’q?éz) 0

1
E" Stewartson layer equations

o(1)
AR
%(0) =0
O(E%)
%(1) =0
9;(1) =0
0(8%)
%(2) =0
@(0) _{;(0) = 0
t XX

LN
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2.4 Solution of the interior problem

From the interior equations, a single equation may be obtained

(2),

for ¢
o 13 (2 -2 (2)
* T 5% ry + B L 0.

This is clearly separable for the geometry of the problem and
solutions obtained in terms of Bessel and hyperbolic functions.
The boundary conditions on the interior fields must be derived

from the boundary layer equations.

2.,4.1 The quasi-steady Fkman layer condition

The quasi-steady Ekman layer conditions are used as the
Ekman layers do not change rapidly with time after the initial
spin-up on the 0(1l) time scale., This condition is consistent
with the scaling on the E'% time scale.

The non-slip conditions at the top and bottom demand
'\u'éz) =0, 73 @) -0, and 79 £ (9 Z 0 onz = 11 and
¢ =0,

From the Ekman layer equations, the Ekman layer azimuthal

velocity and stream function are found to be

w0 o v exp( -27%) cos 277,

—(2) s L 1 1 1
v (<1)J 272 V5 exp(=272¢) ( cos 27%¢ + sin 27%¢ ),
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where vg = v(o)( z =+ 1 ). From these equations, we have
— 3 2 2
73 (g=0)= (-1)9 272 v, = 1B (a=s1).
These conditions, with the interior equations give

s 4
R O P I O

as the boundary conditions on the interior flow at the horizontal

boundaries.,

1
2.4.2 The E? buoyancy layer conditions on the interior flow

The non-slip and thermal boundary conditions give

After the tangential velocity condition is applied, it is
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found that

,5(0) = b exp(-hE) cos hE,

G . .1113_2. exp(~hg)( sin hg + cos hg ),
oB
where
i1
h = (3B)%*.

(r*-h)b= -1y atr=r_,

and hence

2 ) n
gB° (' - h) ¢(z)( £=0 ) = _p(o)

I''h
As ‘b(Z) +¢p(2) = 0 at r=r, g€=0, we have
o2’ (r'-n) (2 _ (0
I'*h

or

H

oB% (' = h) ,(2) ()
I'h t t
and as

2
péo) = - 2—. (r‘#(z))r'
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(2)

the boundary condition on § at r = T, is

‘hEZ) + I'h %( r ‘V(Z))r = 0.
o(rI*-h)

This condition, the Ekman conditions, and the requirement that all

fields remain finite at r = 0, define the boundary value problem,

The side wall boundary condition may be studied in a number
of cases. In the first case, where the coefficient K= hr' /o(rt=h)
is O(E%), the side wall boundary condition reduces to ¢(2) =0
at r=r, ( as w(z) goes to zero as t increases without bound).
This is just the insulating condition o = Oatr=r. When
this condition is used, it should be noted that the buoyancy
layer ceases to exist and thus cannot transport fluid from the
Ekman layers to the interior. This condition may be created by
either an insulating wall or a large Prandtl number.

The next interesting case occurs when I'' = h. This requires
that (rw(z))r =0 at r =r_. This is the equivalent of Holton's
boundary condition, expressed in terms of the stream function.

The last special case of interest occurs as I'' becomes
infinite. This corresponds to a side wall held at constant
temperature, or a perfectly conducting side wall. This gives
a boundary condition which is equivalent to Pedlosky's side
wall gondition, expressed in terms of the stream function.

Both Holton's and Pedlosky's boundary conditions would be
very difficult and expensive to produce in a laboratory experiment.

This is mostly due to problems in constructing side walls of
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sufficient conductivity and maintenance of the outer wall

temperature,

2.4.,3 The form of the interior solutions

The initial condition for the interior fields is v(o) =".1",p(0)=0,
at t = 0, The solution of the problem is then quite straightforward

( see appendix II ) and is given by

inh m_z
(2) _ -4 St ° n
" = Z 272 r C e™n —-—---——s - Jl(a.nr/ro),
n inh m
‘ hma
(0) 8.t °0S
v =-r + r C (lae"n") J. (o r/r ),
g 0 n cosh n 1Y'n" "o

(0) Z roB €, (1- e"Bnt ) sinh 2 Jo(anr/ro),

n cosh m
n

©
"

where

1
- = 2°%
m = Bt:tn/ro , B = 2%m cothm ,

and the o satisfy the equation

J (o) % Ba
Anl 2 bl tanh —2 = 0.
Jola) B (' -«h) To

The Cn are defined by
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r = z Cn Jl(anr).

n
For the insulating case, Cn = S — o For the non-insulating
a J O(ocn)

cases, the solutions for the Cn are obtained by numerical methods
( see appendix II ).

From these solutions, we can now define a precise ''spinup
time ", The modal coefficients, Bn, are of the form of reciprocal
times. The n-th modal spin-up time will be defined as 1/Bn. It
should be noted that these spin-up times are independent of position
or time,

For the experiments described in this thesis, the coefficient
in the second term of the eigenvalue equation is O(E%) and thus,
the theory that will be used for comparison with the experiments

will be the insulating side wall walin theory.
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3. DESCRIPTION OF THE EXPERIMENTS

3.1 Description of the apparatus

The apparatus was designed to test the theory discussed in
the previous chapter. The basic geometry of the test section was
a right circular cylinder, made of plexiglass, 8,89 cm high,
10,03 cm inner radius, with all walls approximately 1 cm thick,
This eylinder was bounded on the top and bottom by 0.6 em thick
glass plates, flat to better than 0.002 cm. Glass was chosen
for its relatively high thermal conductivity, clarity and mechanical
strength., The walls and the glass plates were made rather thick
for reasons of rigidity. The cylinder and the glass plates were
sealed inside a large plexiglass box, Spaces were provided above
and below the glass plates for the heating and cooling water.
The interior of the cylinder was filled with Dow-Corning 200
silicone o0il, 1 es viscosity grade. This was chosen as the working
fluid for its large coefficient of thermal expansion and high
resistivity. The low surface tension of the oil made removal of
air bubbles particularly easy. The space around the cylinder,

between the glass plates was filled with Dow-Corning 200 silicone
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0il, 500 cs viscosity grade. The surrounding oil served the purpose
of providing a thermal isolation from the room and a medium for
viewing the interior of the cylinder from the side with little
distortion. The high viscosity was used to ensure that the spin-up
by side wall diffusion would be at least as important as the Ekman
pumping mechanism. The purpose was to preserve the temperature field
outside the cylinder as much as possible. An even higher viscosity
would have been used, but the problems involved in working with
such high viscosity oils prevented this.

The plastic box was mounted on a three point leveling system
on the turntable and provided with clamps which allowed leveling
and centering of the test section. Before the experiments were
performed, the tank was leveled to better than 30" of arc and
centered to within z 0.02 cm of the rotation axis of the turntable.
The centering was needed to make the flow axisymmetric and to
avoid problems of variation of the centrifugal acceleration on
the fluid. The centrifugal effect could be neglected for a
homogeneous fluid, but not for a stratified fluid. When the
turntablds rate of rotation is changed to give the initial condition,
the centering must be accurate.

The turntable was the MIT/GFDL Air Bearing Turntable. The
details of construction of this turntable are described in
Saunders (1970). The axis of rotation of the table was adjusted
to within 3" of the vertical. ( This is the same order as the
tilt of the building due to differential heating at the 6th floor.

See Simon and Strong,1968) The rate of rotation of the turntable was
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very stable. Under very good conditions, stabilities of several
parts in a million have been obtained. For most experiments, however,
the stability was of the order of a few parts in 10“.

The density gradient in the test section was maintained
by heating the upper plate and cooling the lower plate by running
hot and cold water through the spaces above and below the plates,
respectively. Temperature was used instead of salt to maintain the
density field because of diffusive problems near the boundaries
with salt and the ease of monitoring the density field when
temperature was used., The temperature of the water was controlled
by two water temperature controllers to better than 0,05 °C. The
temperature on the top and bottom plates varied by less than
0.02°¢C during the experiments,

The density field was measured by sensing the temperature
at a number of thermistors placed in the interior of the cylinder.
Twenty thermistors were originally available for determining the
temperature field, but two ceased to function, leaving eighteen.
The location and numbering system of the thermistors is shown
in figure 2. The locations of the thermistors were chosen to
increase the density of thermistors near the boundaries where
the temperature field would be changing most rapidly. The arrangement
of putting the thermistors at half the distance from the wall as
the previous thermistors made the data reduction easy.

The temperature sensing was done by measuring the out of null
voltage of a Wheatstone bridge in which the thermistors constituted

one of the resistors, Thirty bridges were available, but not all
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were used, A stepping switch from a guidance system testing computer
was used to sequence the bridge's output. This was amplified by a high
input impedance amplifier before the signal left the turntable.
Mercury slip rings were used for electrically connecting the
turntable to the stationary laboratory reference frame to keep
slip ring noise low. The signal was then filtered to remove 60 Hz
hum and higher frequency noise. The voltage was then converted
into a digital format and read into the memory of a computer.

The computer used in these experiments was a Digital
Equipment Corporation P.D.P. 8/S computer. All the sequencing
and data sampling operations in the experiments were performed
under the control of this computer.

The sequence of operations in a typical experiment began
with starting the computer. This was followed by a five second
wait state for the operator to set a series of switches which
could not be set before the run, due to possible accidental
triggering of some of the circuitry. After the five second wait
period was over, the stepping switch was set to the first position and
the speed changed. A photograph was taken and the stepping switch
sequenced and the temperature taken for all the thermistors.
The photograph-thermistor sequencing cycle todk about 4.5 seconds
to sample all the thermistors. About twenty five pictures were
taken and fifty full cycles of thermistor readings taken for each
experiment,

The velocity field data was measured by photographing neutrally

buoyant particles at the mideplane of the cylinder. The particles
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were polystyrene spheres, about 0.05 cm in diameter. The camera
used was an automatic Nikon F (35 mm ), The film used was Kodak
Tri-X, developed in Diafine. The light source was a G.E. projector
lamp and the beam was collimated by two slits. The thickness of the
beam at the mid-plane was about 1 cm,approximately 10% of the
cylinder height.

The apparatus is described in more detail in appendix I.

3.2 The experimental method

A typical experiment began by turning on the water temperature
controllers and the pumps on the table and letting the system
equilibrate for two to three hours. This time was necessary for
the system to reach thermal equilibrium and to make sure the flow
rates and pressures were balanced to avoid breaking the apparatus.,
During this time, the equipment was checked and the computer tested.
The camera was loaded and the experiment number and date photographed.
The turntable was then turned on and the speed checked, If the
rate was constant to better than one part in 104, the system was
left to settle for another two hours. This allowed the large
initial spin-up transients to die out and the temperature field
to adjust by diffusion. The temperature was measured during this
time to determine when it had reached steady state and linearity.
These measurements were performed at a lower amplification than
used during the actual experiments. This allowed checking the

absolute temperature field. After these measurements were made,
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the amplification was increased to allow the use of differential
measurements of higher precision. The experimental parameters were
set into the computer and the apparatus readied for the run.
The sampling during the run was conducted in the sequence
described in the previous section. The sampling time usually

covered two to five homogeneous spin-up times.

3.3 Data analysis

The temperature data from the thermistors were taken sequentially.
In order to analyze the time dependence of the temperature field,
it was necessary to interpolate the output of each thermistor to
the beginning of the sampling sequence. A linear interpolating
routine was used, as the temperature data seemed smooth enough
to warrant it,

After the data were synchronized, the initial readings were
subtracted from the later readings to give the perturbation
temperatures, This put the data into a form which could be readily
compared to the theory. As the Sweet-Eddington flow is essentially
a steady phenonmenon, this subtraction of the initial readings
from the time-dependent readings eliminated the effect of this
superposed circulation to 0(e).

In order to analyze the temperature field, it was first
necessary to obtain a representation of the field from the
measurements at specific points in space and time. A least
squares technique, using Bessel functiors in the radial direction
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was found to be inadequate, due to the large oscillations produced
in the fit. The representation of the field finally decided upon
was a double polynomial expansion in the radial and vertical

coordinates, If T'(r,z;t) is the fitted field, then
J=N-1
i=N
1 . =
T*(r,z;t) }2 aij
i=1
J=1

In the actual analyses, N was taken as either 3 or 4., This

L2(1-1) 23-1

polynomial was fitted to the data by a standard least squares
technique. The fitted field was computed and contoured. If the
contours indicated a bad fit, the standard deviation of the fit
was checked, This was usually more than 15 digitizing intervals
( one digitizing interval = 0,0026 OC). If the contour plot indicated
a good fit, the standard deviation was usually no more than 2 to
4 digitizing intervals. There was never any question whether the
fit was good or bad. The fits which were not reliable were not
used, This fitting program is listed in appendix IV.

In order to compare the observed results with the theory,
it was decided to try to analyze the modal behavior of the
temperature field. This was accomplished by decomposing the
polynomial into its Bessel modes in the radial direction, based
on Jo(anr) where the o, are the eigenvalues of the previous chapter,
This is quite easy to do, as the even powers of r are easily
Fourier-Bessel analyzed by recursion methods. These are discussed
in appendix II., Once these have been found, the modal structure

of the flow is known at any time,
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According to the linear theory, the modal structure of the
temperature field has the general farm An(z)( 1- e'ant), where
the B's are the reciprocal spin-up times. The fitted field, after
the Fourier-Bessel decomposition, was fitted to this functional
form with a non-linear fitting routine, GAUSHA, which is listed
in appendix IV. The An(z) and B were determined for sixteen
equally spaced values of z and n=l, and for the field integrated
in z from 0 to -1l. Only the first mode was computed.

The accuracy of the analysis procedure was checked by generating
theoretical data according to the linear theory and analyzing
them in the same manner as the observed data, The first mode
was reproduced to within a few percent, but the second mode was
in error by more than twenty percent. Because of this, the second
mode was not used.

An attempt was made to determine the modal spin-up times
by fitting the observed angular positions of the particles with
the theoretical form. It was found that this method was not
feasible, as it was too sensitive to random errors in the data.

This will be discussed in more detail in the next chapter.
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4, EXPERIMENTAL RESULTS

4,1 Experimental parameters

One of the original purposes of this thesis was to study
the stratified spin-up problem over a wide range of parameter
space. The way in which the experiment was constructed limited
the number of parameters which could be varied. The length and height
scales, the viscosity, coefficient of thermal expansion and the
thermometric conductivity were all held constant for all the exper-
iments., In order to avoid changing the settings of the thermistor
bridges and to keep the effect of the viscosity stratification
constant, the temperature difference between the top and bottom
plates was kept approximately constant. This required that changes
in the Burger number could be produced only by changing the rotation
rate, hence making the Burger number proportional to the Ekman
number and to the square root of the reciprocal of the Froude
number. The Rossby number was independent of the other non-dimensional
parameters of the system. The values of the non-dimensional
parameters and some of the mors important dimensional parameters

are given in table 1.
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Not all the data were used. Some were not reliable due to
errors committed during the runs. The temperature data from
the first nine experiments could not be used as the electrical
noise from the pumps on the turntable was too large. After that
experiment, electronic filters were introduced to remove this noise.

The data usage is given in table 2.

4,2 Detailed description of one experiment ( No, 24 )

Before looking at the data from all the experiments, it
is worthwhile to consider one experiment in detail. Experiment
24 was chosen because it was representative of the stratified
spin-up experiments, lying in the mid-range in both the Burger
and Rossby numbers, and being rather free from noise.

The velocity data for experiment 24 had the least noise
of any of the velocity data. The angular position of one particle
at an average non-dimensional radius of 1,08 is plotted in
figure 23, The non-dimensionalized angular velocity for the
same particle is plotted in figure 24. The solid lines in
both figures are the theoretical curves predicted by the Walin
theory with insulating side walls, At first glance, it appears
that the agreement of the data with the theory is good. It
would be easy to conclude that the experiment agrees well with
the theory for the mid-plane. This is actually not warranted.
If the spineup time for the first mode is determined by fitting

the angular position with the theoretical functional form, it is
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found that the precision of the experiment is not great enough
to determine the spin.up time to any reasonable degree of accuracy.
With ten points, a value of 2,0 is found instead of the theoretical
value of about 1,2, If eight points are used, the value changes to
1.6, If the data were reliable, there would have been no
significant change when two points out of ten were deleted,
Another indication of the precision needed is that the large
deviations occured even though the positions agree with the theory
to within a few thousandths of a radian, Unfortunately, this is
the limit of resolution for these experiments, The fitting
procedure has shown that the spin-up time is shorter than
predicted, even though the exact value is in doubt. The other
experiments were more subject to noise and this procedure was
not used for them. The causes of the noise were mostly in the
copying and digitizing of the photographs.

The temperature data offer much better hope for experimentally
determining the modal spin-up times, The interpolated temperature
perturbations, in terms of absolute digitizing intervals are
presented in figures 5 - 22 versus time. It may be seen that
the actual results show the same trends as the theory, but exact
agreement is not very good. In most cases, the perturbation
temperatures start out with larger amplitudesthan the theoretical
temperatures and have a greater curvature. In some cases, they
cross the theoretical curves, and in others, they show a tendency
to cross outside the time range. Another feature is the values of

the perturbation temperatures at the mid-plane (i.e., thermistors
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whose numbers are even multiples of four) are not exactly zero,
as predicted, This is especially evident in figures 14, 18, and
22,

In all cases, the perturbation temperature was lower than
predicted. The experiment was a spin-down, and therefore, the
Ekman pumping would have been upward for fluid near the lower
boundary. The viscosity of the fluid is greater there, due to
the lower temperature, resulting in a larger local Ekman number
than assumed for the whole flow. This would have resulted in a
larger Fkman pumping for the bottom than for the top. The fluid
below the mideplane would have been expected to penetrate some
distance above the mideplane and cool the thermistors there,
This is exactly what was observed. The thermistors were observed
to be warmer for the cases where the fluid was spun-up,

The temperature data from this experiment were analyzed
by the method discussed in 3.3. A typical fit of the temperature
field is shown in figure 41. ( For a qualitative comparison with
contoured data from a numerical model of stratified spin-up,
see figure 40,) The fits are generally good, the standard deviation
being one or two digitizing intervals., The Fourier-Bessel
decomposition and fitting the time dependent functional form
was carried out for seven levels in z and for the vertically
integrated polynomial., The reciprocal spin-up time for the first
mode are shown in figure 25 as a function of depth., The non-
linear fitting routine computes the confidence limits assumimg a linear

hypothesis on the other variables far the input data, These are
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the error bars indicated in the figure. At the 95% confidence
level, the reciprocal spine-up times are not significantly
different from being constant with depth. They are all slightly
greater than the integrated result, but this is probably a result
of the fitting procedure. The integrated results and the results at
the different heights do not differ on the 95% confidence level.
Both the value from the vertically integrated data and the values
at the various levels are significantly greater than the values
predicted by the linear theory. This feature has been found in
all the experiments which have been analyzed. The asymptotic
coefficient for the first Bessel mode are plotted in figure

26 as a function of depth,

4,3 General discussion of the temperature data

The temporal coefficients for the first mode are plotted
in figure 28 versus the Burger number. It may be seen that as
the Burger number increases, the coefficients also increase,
about as rapidly as predicted by the theory. However, the values of the
computed coefficients are all greater than those predicted by the
linear theory. This means that for all the experiments considered,
the spin-up times are smaller than predicted.

A smaller spin-up time would be expected for several reasons,
The wires which support the thermistors exert a certain amount
of drag on the interior flow. This drag would cause the interior
to spin-up more rapidly than predicted and must be considered in
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any explanation of the increase in the reciprocal spin-up time,
Another possible cause is the increased Ekman pumping near the
bottom boundary which would increase the value of the coefficient
in the bottom half of the tank, where the thermistors are located.
Non-linear effects could be another possible cause.

The effect of the wires may be estimated by comparing the
rates of energy dissipation of the wire drag to that of the
spin-up process. The simple case where the wires are all on
diameters of the cylinder and the spin-up is homogeneous is discussed
in appendix II. It is found that the rate of dissipation is less
than 5% of the spin-up process. This eliminates the effect of the
wire drag as a major source of the smaller spineup times, ( The
case where the fluid is stratified has also been studied and the
same result found.)

The viscosity varies by about 104 from the bottom to the
top of the tank, The difference in viscosity, and hence the
Ekman number, from the average value is about 5%. The implied
difference in the Ekman suction and hence, the decrease in the
spin-up time for the lower half of the cylinder would be about 2%%,
which is less than the effect of the wire drag .

There remains the possibility of non-linear interactions.
These could occur anywhere in the fluid, but could appear in
the lowest order solution in the boundary layers when the loecal
Rossby number ( based on the length scale E%L ) becomes 0(1),
even though the interior Rossby number is small. This effect can

be seen when the percentage deviation in the spin.up coefficients
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are plotted against the local Rossby nunber, The magnitude of
the discrepancies increases with increasing local Rossby number,
though there is a great deal of scatter. The scatter is the same
order as the 95% confidence limits determined by the fitting
routine. These results are plotted in figure 29. The graph

indicates that the effect may be taking place where the length

i 1
scale is O(E?), These regions are the Ekman layers, the E°

buoyancy layer and the E% X E% " corner " regions.

The buoyancy layer may be ruled out if it is argued that the
non-linear terms are identically zero for the first order, thus
the equations for the first non-linear interaction are the same
as the linear equations and ther is no correction.

The Ekman layers may be ruled out by arguing that the
non-linear stratified Ekman layers are not qualitatively different
from the non-linear homogeneous Ekman layers, In the homogeneous
case, the sign of the deviation from the linear theory depends on
the sign of the Rossby number. In these experiments, it does not.

The only regions left are the 'corner" regions where the
Ekman transport is returned to the interior. This is a singular
region in the analytic theory, and it may be expected that the
scaling arguments do not hold there, Unfortunately, the solution
of the problem in that region requires the solving of the full
non-linear lavier«Stokes equations. This is not very tractable
analytically, but may be numerically.

The asymptotic oefficients agree well with the linear theory

and are presented in figure 27.
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L, Conclusions and recormmendations

From the experiments it may be concluded that the experiment
and the theory are in qualitative agreement. The first modal
spin-up times are smaller for the stratified fluid than for
the homogeneous fluid. The order of magnitude of the temperature
and velocity fields are consistent for the theory and experiment,
The fluid does not attain a solid body rotation on the E'% time
scale, but does reach a new quasi-steady state. The insulating
wall condition is a good approximation for the experiments,

There is some disagreement with the linear theory. In all
cases, the spine.up times are shorter for the first mode than
predicted by the linear theory. The discrepancy between the
theoretical and observed values increases with increasing local
Rossby number, The discrepancy cannot be accounted for by wire
drag or viscosity stratification, though they affect it,or
by non-linear effects in the Ekman or buoyancy layers. The effect
of the corner regions cannot be ruled out.

Buzyna and Veronis (1971) have studied the problem of
stratified spineup in a similar geometry, using salt stratification
to obtain the density gradient., They measured the azimuthal
velocities at four levels using the Thymol blue dye line technique
( Baker, 1966 ). They compared their results with the theory at
the mid-plane and near the lower boundary, above the Ekman layer.
The insulating side wall condition was the proper side wall

boundary condition for their problem and their Schmidt number
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was very large.

From the comparison of the azimuthal positions of the
dye lines with the theory, they found that the spin-up was
more rapid near the horizontal boundaries, reproducing the
qualitative aspects of the theory. This is in agreement with
the observation in this thesis.

They also computed some 'spin-up times" at two levels, These
were defined as the time at which the azimuthal veloeity had

1 of its final value. Therefore, each

fallen to within e~
point in the fluid ks a different "spin-up" time as defined

by Buzyna and Veronis., They found that these'spin-up times®

were smaller than predicted at the mid-plane and agreed with

the "spineup times" computed from the theory ( within the error
bounds) for z = 0.8 and r/ro = 0.5, This form of measuring

spin-up times is not well suited to a comparison with theory,

but for higher values of the Burger number and large time, it
approximates the behavior of the first modal spin-up time.

At the mideplane their result is in qualitative agreement with

the experiments in this thesis, but it disagrees with the measurements
at z = «0.8. One of the authors ( Buzyna, private commnication)

has suggested that this discrepancy may be due to the diffusion

of the salt near the lower boundary over the time from when

the stratification was produced and the time when the experiment

was conducted, This would allow greater penetration of the effects

of the Ekman layers and tend to result in a larger spin-up time than

would be expected for a linear gradient, The observed spin.up time



50

was that expected from a linear gradient., Thus, if the stratification
had been linear, the spinup time would have been smaller,
’Therefore,'the results of the expepimsnts of Buzyna and Veronis
are qualitatively consistent with the results presented here..

Further experimental work should be performed to study |
the effects of nonplineartity, viscosity and stratification on
the deviations from the linear theory. This can be done most easily
for the larger Rossby numbers and intermediate stratificatiéns.
Small Rossby numbers and small stratifications cannot yi91d 
accurate results as the temperature perturbations are too small

to resolve.

-
(f{g :
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Table 1
Experimental Parameters
& L

Experiment Je/ s= NZ/QZ B Ex10 Fx10 tspin AT Q a0
1 0.106 0.627 0.396 2.12 88.6 24,54 8.3 1.398 -0.148
2 0.038 0.882 0.470 2.12 88.6 24,54 8.35 1.398 ~0.053
3 0.038 0.882 0.470 2.12 88.6 24,54 8.35 1.398 -0.053
4 0.038 0.915 0.478 2.13 88.2 24,57 8.64 1.395 -0.053
5 0.037 0.882 0.470 2.05 95.0 24,12 8.64 1.448 +0,053
6 0.038 0.915 0.478 2.13 88.2 24,57 8.64 1.395 ~0.053
7 0.029 0.776 0.440 1.90 110.5 23,22 8.20 1.561 -0.045
8 0.029 0.617 0.393 1.90 110.5 23.22 8.30 1.561 -0,045
9
10 0.041 1.331 0.576 2.92 L6.9 28.78 9.32 1.017 ~-0.041
11 0.000
12 0.000
13 0.0082 1.286 0.567 3.05 42.7 29,45 8.20 0.971 -0.0080
14 0.0084 1.250 0.559 3.06 42,7 29,47 7.97 0.970 - -0.0081
15 0.0082 1.229 0.554 3.03 43,4 29,36 7.97 0.979 -0,0080
16 0.050 1.292 0.568 3.19 39.3 30.09 8.14 0.932 -0,047
17 0.035 1.293 0.564 3.4 40,5 29,87 8.14 0.946 -~0.033
18 0,228 0.865 0.465 3.72 28.8 32.52 9.20 0.798 -0.182
19 0,029 2.808 0.851 4,58 19.1 36,06 8.25 0.649 -0,0185
20 0,081 3.175 0.891 4,81 17.3 36.97 3.18 0.617 -0.0502
21 0,147 3.561 0.944 5.10 15.4 38.07 8.16 0.582 -0.085
22 0.223 L, 140 1.017 5olby 13.5 39.31 8.34 0.546 -0.1215
23 0,028 3.827 0.978 5,25 4.5 38.63 8.27 0.565 -0.016
24 0.044 2.053 0.716 3.88 26,6 33.19 8.14 0.766 -0.,034
25 0.095 2.131 0.730 3.88 26.6 33.20 8.45 0.766 -0.073
26 0.065 7.363 1.356 7.51 7.08 46,20 7.78 0.395 +0.026
27 0.061 7.450 1.365 745 7.19 46,01 8.00 0.398 +0,024
28 0.033 12,711 1.783 9.67 4,27 52,43 8.10 0.307 +0.010
29 0.047 16.60 2.037 11.1 3.24 56,17 8.03 0.267 +0.013



Table 1 (continued)

Experiment /el S B Exlou Fxlo4 tspin AT 9! AQ
30 0.057 18.87 2,172 11.90 2.82 58.15 7.95 0.250 +0,014
31 0.055 22,41 2.367 12.9 2.42 60.43 8.09 0.231 +0.013
32 0.098 12.779 1.787 9.70 L,24 52,51 8.09 0.306 +0.030
33 0.083 17.323 2.081 11.2 3.16 56.53 8.17 0.264 +0.022
34 0.047 9.202 1.517 8.3 5.87 48,41 8.07 0.360 +0,017
35 0.048 9,956 1.577 8.52 5.50 49,21 8.17 0.348 +0.017
36 0,090 9.800 1.565 8.53 5.48 49,25 8.02 0.348 +0.031
37 0.056 11,754 1.714 9.28 L, 64 51.35 8.14 0.320 +0.018
38 0.032 11.759 1.715 9.28 L, 64 51.35 8.14 0.320 +0.010

19
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Table 2
Data Usage
Experiment Temperature Photographic
Data Data
1 N* N
2 N* N
3 N* N
L N* -
5 N -
6 N* -
7 N* N
8 N* -
9 - -
10 N N
11 - N
12 N
13 - N
14 N N
15 +3 N
16 - +
17 +G N
18 +G N
19 +3 +
20 +3 +
21 +G +
22 +G N
23 +D +
24 +G +
25 +G N
26 +3 N
27 +G +
28 +B N
29 +G N
30 +3 +
31 +G +
32 +D +
33 +G +
34 +G +
35 +B +
36 +G +
37 +G N
38 N +
Key:
+ taken and reduced * no filtering
- not taken B too large fitting error
N taken but not reduced D result of doubtful quality
G fit seems reliable
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™

oW

R

OO Ny O

10

0.000
0,042
0.180
0.318
0.456
0,50
0.732
0.870
1.008
1,146
1.284
1.422

1.560

TABLE 3

Temperature Perturbation Data for Experiment 24

0.0
-1.0
-19.0
-25.0
-34.0
-39.0
43,0
46,0
~52.0
~53.0
<530
-53.0
-53.0

0.0
-2.2
-12.3
-26.1
~32.1
-38,1
H2,0
3.1
46,0
46,0

48,0

48.0
7.0

L

0.0
0.0
0.0
0.0
0.0
-0,1
-1l.9
-0.1
-0.9
-0.1
-0.9
-0.0

-0.1

Thermistor

5

0.0 0.0
-0.5 -2.3
-5.6 ~5.6
-11.6 =10.5
-17.6 -=14.2
~24.5 =16.5
-29.4  =20,3
=33.2 <23.2
~35.4  -26,0
-39.1  -26.2
0,1 -28,2
1,1 =29.9
42,0 29,1

0.0
-1.4
.6
-8.6
-12.3
-14.8
-20.0
~20.4
-23.1
-2k b
-27.0
=27.1
-28.0

0.0
1.0
1.0
1.0
1.0
0.8
0.0
0.0
0.0
0.0
0.0
0,0

0.0

10

0.0
1.6
4,2
5.0
5.0
1,8
3.6
1.8
0.6
-1
-3.2
ol

6.0

11

0.0
2.5
4.0
4.0
4,0
3.8
3.0

2.5

0.8
0.0
0.2
-1.0

~l.2

12

0.0
3.0
3.5
h.7
4,0

4,0

h,o
4.0
4.0
L.o
3.3
3.7
3.3

LS



Series

o

N

[CANNNRN 1 F w

~}

13
0.0
S5
10.7
16.1
20.4
2,6
26.8
29.6
31.6
33.0
33.3
4.0
33.7

14
0.0
5.1
11.8
16.9
19.9
2249
25.9
28.6
30.0
30.6
32.0
32.0

32.3

15
0.0
3.3
7.0
10.3
13.6
15.3
16.6
18.0
18.6
20.3

20,7

20,3

21.0

TABLE 3 (continued)

Thermistor
16 17
0.0 0.0
3.3 6.2
4,0 12.2
L,0 18.2
4.0 23.5
4.0 27.5
4.3 31.1
b7 .1
k.o 37.1
4.0 40,1
L.0 L2 b
4.0 434
3.7 b5.1

18
0.0
6.8
12.6
17.2
22,0
25.8
28.6
31.8
34.6
37.8
39.8
41.8
43.0

19
0.0
3.7
7.7
11.2
4.2
16.8
18.8
20.8
22.0
2342
25.4
26.0
26.8

20

0.0
3.0
3.0
3.0
3.4
3.6
3.0
3.0
3.0
3.0
3.0
3.0
3.0

89
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TA3LE 4

Experimental parameters which do not vary from experiment to

experiment,
v = 0.01172 cmzsec'l
" = 0.000837 cmzsec'1
L = L,445 em
« = o.0003 %t
g = 14.0
) = 0.818 gm r:m"3
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APPENDIX T

DETATLS OF THE APPARATUS




Test cell configuration

The test section consists of a right circular cylinder,
made from plexiglass, 8.89 cm high and 10.03 cm inner radius,
The wall thickness of the cylinder is about 1 cm. The cylinder
is mounted between two 0.6 cm thick glass plates. This assembly
is mounted inside a large plexiglass box. ( See figure 30), The
space above and below the glass plates is used for heating and
cooling water to maintain the temperature gradient in the
cylinder,

The large box is mounted on a three point leveling system
independent from the leveling system of the turntable., The
mounting system also has a provision for centering the test
section with that of the turntable and clamping the outer box,

The interior of the test section is filled with Dow-Corning
200 Silicone oil, 1 cs nominal viscosity grade. The region
between the test section and the outer box wall is filled with
Dow-Corning 200 Silicone o0il, 500 cs nominal viscosity grade.

Twenty thermistors ( VECO # 61A5 ) are located in a vertical
plane along one radius in the cylinder. (See figure 2 ), Two
thermistors are mounted on the glass plate on either side of
the cylinder and two thermistors are mounted on either side

of the cylinder wall,



Thermistor circuitry

All temperatures in the stratified spin-up experiments
are measured by the out of null voltages of Wheatstone bridges
with a thermistor in one of the arms of the bridge. There are
thirty available bridges, of which twenty four are used. Twenty
thermistors , two of which are broken, are mounted in the
interior of the fluid. Two thermistors are mounted on either
side of the cell wall and two thermistors are mounted on the
upper side of the lower glass plate on either side of the cell,

A stepping switch from an ICBM guidance testing computer
is used to sample the output from each of the bridges sequentially.
The output is amplified by a Zeltex 132 F.E.T. operational
amplifier in an amplifier-follower mode. The gain at this stage
is about 240, When operating in this mode, the input impedence
is above 1012 ohms, thus, the bridge ( typical impedence
106 ohms) is not loaded significantly. The signal is amplified
on the turntable to minimize slip-ring noise. ( See figure 33
for the basic thermistor circuitry.)

The signal is sent through slip-rings and is passed through
an active low pass filter and an active notch filter with a
notch at 60 Hz., ( See figures 36,37 for the filter design.)
The signal then passes through another amplifier ( used for
the actual runs, but by passed when the basic field is to be
measured) and a biasing circuit that changes the range from

+ 15V to 0 to +10 V to accomodate the analogue to digital
converter. ( See figure 35 for the bias circuit.)
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The computer interfacing circuitry

The data taking process is under control of a Digital
Equipment Corporation FDP 8/S computer. In order for the
computer to be able to control the experiment, a number of
interfacing circuits had to be built. The basic idea behind
the interfaces was to allow an I/0 command to set a flip-
flop to a desired state. The flip-flop's state then controlled
other circuitry, such as relays, which performed the tasks
involved in the experiments.

As the computer operates on a -3V logic and the external
logic operates on a +5V logic, an extra inverting step was
needed in all the interface logic.

The PDP 8/S does all its I/0 logic from a common bus,
Six bits are needed to define a device and three bits exist
to initiate various functions of the device. The device is
selected by a diode gate defining the device and the function
of the device is decided by which of the three other bits is
anded with the first gate. ( See the D.E.C. book The Small

Computer Handbook, 1966-67,Maynard,lass.) The three pulses,

I.0.P.'s, are each 1 u sec long and separated by a few u sec.
The short time of the pulse causes problems due to the
capacitance of the diode gate. This is partially avoided by
jisolating the slow six bit portion of the gate from the I.O0.FP.
section by a transistor network. If this network is not used,
the device selector is very prone to noise., (See figures 34,39

for designs of several typical interfaces.)
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Camera trigger

The schematic diagram for the camera trigger is shown in
figure 39 and plate 6. The purpose of this circuit is to
trigger the camera shutter and film advance motor. The principle
of operation is an input signal from a flip-flop is amplified
by the transistors and energises a relay which controls the current
to the camera. When the input from the flip-flop is high, the
camera shutter is triggered. When the level falls to ground, the
film is advanced,

Frequency changer

The schematic diagram for the frequency changer is shown in
figure 36 and the actual circuit is shown in plate?7. The purpose
is to change the input frequency to the motor amplifier when
an input pulse from a flip-flop is sensed and to lock in that
mode until the circuit is manually reset. Input signals of about .
5 V rms at two different frequencies are fed in at locations 1 and
2 on the diagram. Initially, the SCR is non-conducting. When a
positive level from a flip.flop is sensed, the SCR conducts and
continues to conduct until the circuit is broken by the epening
of the switch. Before triggering, the frequency fed in at 1 is
grounded by the first transistor. This means that the second
frequency is output. When the trigger is set, the first transistor
ceases to conduct and the first frequency is passed. The capacitor

is a bias remover.
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Bias and Impedance matching circuitry

The schematic diagram for this circuitry is shown in figure 35.
The purpose is to transform the temperature signal from the thermistor
bridge to a form acceptable by the analog to digital converter.
The output from the bridge is in the range -15 to +15 V. The
converter, however, only accepts signals in the range 0 to +10 V.
Furthermore, the A.D converter has an input impedance of 1000 Q,
The follower circuit provides isolation of the bias ecircuit from

the converter.
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APPENDIX II

MATHEMATICAL NOTES
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Note on the derivation of the thermal boundary condition

After wWalin(1971), a thin wall approximation is assumed.

By the continuity of heat flux accross the wall,

Uinid = %all

This is equivalent to:

fluid, _ wall
kerniad(Tx n = Kan1(Ts  p |

at the boundary of the wall and fluid.

where the k's are the thermal conductivities and the T, 's are
the temperatures in the wall and fluid. By making a thin wall
approximation, the temperature gradient in the wall may be

replaced by

wall -1 wall .
(Tinside - Toutside)dw,where Tinside is the temperature
of the wall at the wall-fluid interface, and T is the
outside

temperature outside the wall,
After non-dimensionalizing, the heat flux equation at the
wall-fluid interface becomes

p. = gvﬁl_l___(p-po).

n
dwkfluid

where L = the length scale of the experiment, dw = the wall

thickness, and po is the non-dimensionalized form of Toutside

I define I' = . For the experiments in this

Lkwall/dwkfluid
thesis, I' = 7,41,
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Fourier-Bessel analysis of the even powers of r

To determine the Fourier-Bessel modes in r, the
coefficients of the Fourier-Bessel expansion of the even
powers of T are required:

2ne2
r

z By y Jo(@ ) . where Jy(a) =0,
K

The Bn may be computed by the usual relation
’

k

1
2 Zn-l
Bn,k = Jz( ) SO r Jo(akr) dr .
0\%

This integral may be computed by the recursionrelation defined
below. let

1

2n+l - =
SO r Jo(ar) dr = u where Jl(c.) = 0,

The recursion relatior 1is then given by:

\10 =0
U = '3?' Jola)
7z
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Note on the method of determination of the Cn

For the case where the eigenvalues of the eigenvalue
equation of chapter 2 are not solutions of either Jo(an) =0
or Jl(an) = 0, there is no simple inner product of the Bessel
function Jl(ahr) on the interval 0,1 which gives an orthogonality
relation. Therefore, an approximate method must be used to

compute the Cn'
The method I have used is to define an inner product

(£,8) = gi rfg dr
and form a large number of simultaneous equations
N
(9y(ar),e) = ) ¢y (J(er),dy(ar)), m=1,...,,
n=1
and solve for the Cn’ The value of N I have generally used has been
about 40, This seems to give results accurate to about 1%.
Two methods for solving the set of equations have been used,
The easiest to use has been the MIT program GELB. Another method
that I have used involves computing a set of Gram-Schmidt
orthogonal functions recursively and using these to solve the

set of equations,
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Note on the boundary layer scaling

The elimination of all but one dependent variable from

the equations of motion leaves

2 1
8 (g o 1o - -z (12
T (B SFFrorT * 22 )v=EF (S Vv, +
2
Bzé--9'--5---:-53v)+EKK§;K
or r Jr 12 2V
where
i 2
K, = 3fot - E2fo ¥°,

and

1
K, = 3/t - E®g.
To find if the boundary layers can exist, the stretched variables
were inserted into the above equation. If no balance existed for the
largest term, it was concluded that no boundary layer of that

i

scaling existed. In this way, it was seen that only the E? and

1
E* boundary layers could be present for B and o = 0(1).
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Detail of the solution of 4 )

From the equation B"Ztgz) 2 3, (2)

R ACRORACEY S
nd
y 2 5
(Kn(zot))zz - 2 Kn(z,t) =0 ’
rO
(2)

which, with the symmetry condition on ¥ gives

Kn(z,t) = Fn(t) sinh mnz/sinh mo
where
m = O.nB/l‘oo

n

The boundary condition on z = +1 requires

] 1
F + 2™°m cothm F =0
n n n n

whence
-3
Fn(t) = An exp( -2 mn coth mn t ) .
This implies that 4 > 0 as t = = or vB->O as t => o«

Now, véo)s tgz), or

t

v(O) = V(r,z) + So %;*(2)(r,z,t,') att .

The initial condition, v('g-)a' at t = 0 requires V(r,z) = r , and

the condition on v(o)(zsl) as t => « provides the condition on

the An.
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mstimation of the effect of the wire drag on the interior flow

The method for estimating the effect of the wire drag on the
interior flow will be to compare the rates of energy dissipation

of the spin-up of a homogeneous fluid and the energy dissipation

caused by the wire drag.

Let v = (r where Q = AQ e't/ts where t_ is the spin-up

time. The kinetic energy of the flow is

i

VAl rmax >
K.E. pH \ do S %rv dr ,
v 0

0

r
max
THp uz € r3 dr ,
Y0

. oo 2
n anrmax Q .

The rate of dissipation is then

4 2
E o= . PMHTy A -2/t

4 t
s

S .

The energy dissipation from the wire drag may be computed
from Lamb's formula ( Lamb, section 343, 6th ed.). The drag per

unit length on a cylinder of radius a is given by

D= __&EBXX___ where k = 7%; .
In( %ka )

The total dissipation produced by N wires is therefore:

Tmax
Ew = 8Nﬂpvbﬂz exp(-Zt/ts) S —r 4r
0 -1n(or)
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MO a e't/ts
where ¢ = .

4y

By a simple substitution the integral may be transformed as

r +a
S max rz o 1 S ey
— i = 5 y
0 -ln(or) %" _3n(or)

or, asymptotically for large(-3ln ormgx= €,

3
—r (1 + ¢l + eee) o

The the energy dissipation due to the wire drag is

L4 3
2 r 1
——— —_——)

E = 8Nmpvad™ exp(-2t/t ) (1 +
w ® 31lnor -3 Inor
max max
The ratio of the dissipation rates, Ew/ E is given by
32Nvt
2 (1 + 1 ) .
~3H r 1n or -3 Inor
max max max

This gives for an upper bound on the ratio for N = 10, 4Q = 0,03 sec”

E /E < 0.05 .

1

.
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APPENDIX III

DISCUSSION OF EXPERIMENTAL ERRORS
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Section 1: Limitations of the measuring systems

1.1 Time accuracy

The time measurements for the photographs were made by
recording the time each photograph was taken on a strip chart
recorder. The absolute accuracy was about + 0.15 sec,

The time measurements for the thermistor readings were
computed from the stepping switch times and the photograph
times measured with an oscilloscope. The absolute accuracy

of these time measurements is better than 10.05 sec,

1.2 Accuracy of the positions of the neutrally buoyant floats

The positions of the neutrally buoyant floats were determined
by photographing them with an automatic Nikon F, 35 mm camera.
The positions were copied onto tracing paper. This was done on
a large microfilm reader which advanced each frame to the same
approximate position as the previous frame., The positions on the
tracing paper were digitized on an automatic digitizer of Professor
Gene Simmons, These positions were punched onto cards in terms of
Cartesian coordinates, The final step in determining the positions
was to transform the Cartesian positions into polar coordinates and
correct for the parallax of the camera. Each of these steps
contributed to the error in position.

The microfilm reader was supposed to place each frame in the
same position as the previous frame.In fact this did not occur,

The positions of the frames would often be shifted horizontally
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a small amount, about # inch on the actual scale of projection,

This would amount to about 1/3 em in the computed position. For
large radii where the distance between successive points was large,
this would not make much difference., For points near the center,
and for points which were close together, these errors could be
sizable fractions of the total differential measuremént. It

is for these reasons that the low Rossby number and small radius
measurements are in the most error.

The errors in drawing the positions of the pointsyere no more
than about+0,05 in. The digitizing errors due to the digitizer
alone are 10,001 in. These are sufficiently small that they are
entirely masked by the error in the reader.

The errors due to the computing program are negligible, being

about one part in 106.

1.3 Accuracy of the temperature measuring system

The details of the temperature measuring system have been
described in chapter 2 and appendix II , Each part of the system
has an inherent error in the temperature measurement. This section
will discuss the magnitude of these errors and their effect on the
data. The units of temperature used in this section will be degrees
Gelsius or digitizing units, where one digitizing unit (d.u.) equals
0.0026 °c.

The resolution of the analog to digital converter is about
0.01 V. This corresponds to 0.0026°C or 1 d.u. This is the absolute

limit of accuracy possible with the system in the configuration used
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in the experiments.

There was always the possibility of signal degradation
due to electrical noise, particularly at 60 Hz, The main
contribution to the 60 Hz noise was the power to the hot and
cold water pumps on the turntable. These could not be eliminated,
so the effect of their noise had to be removed after the signal
had been contaminated, This was done by placing two active filters,
one, a band-reject filter with a sharp notch at 60 Hz, and the
other, a low pass filter with the cut-off at 60 Hz. These were
very effective in removing any noise at 60 Hz and 120 Hz. The
maximum observed error in the output signals after the filters
were installed was only 2-3 d.u. The only problem the filters
introduced was the requirement of a waiting time to allow the
signal transients due to the step response of the filters to
die out before sampling. This caused no problem, as the wait
time was the same order as the maximum stepping rate of the
stepping switch.

The computer, on occasion mistyped the output temperature.
This was finally traced to mistriggering of the skip bus, The
mistyped temperatures were corrected manually by interpolating
the previous value of the thermistor and the following value of
the same thermistor. This would have produced an error of no
more than about 5 d.u. at any thermistor or time.

The thermistors, unfortunately, cannot measure temperatures
at a mathematical point, but only give an average of the temperature

over their surface., Therefore, there could be the possibility
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of an error in the temperature at any thermistor equal to the
diameter of the thermistor times the temperature gradient across the
thermistor. The thermistors used in these experiments were about
0.025cm in diameter, and the vertical temperature gradient was
about 1 deg/cm, giving a maximum error of 0.025 °C or about 10 d.u.
As the maximum srror observed was two to three du., it can be
concluded that the thermistors can give a much more accurate
reading than might be expected.

The time response of the thermistors might cause problems
if the processes being investigated were varying too rapidly, but
for these experiments that is no problem. The time response of

the thermistors used in these experiments is about 10-2 sec.

There is the possibility of errors induced by the self heating
of the thermistors, For this reason, the resistance of the thermistors
was chosen as about 1 MQ. The ohmic heating, E°/R is thus about
10"6 Watt. This corresponds to about 0,001 OC increase.

The leads of the thermistor can conduct heat away or toward
the thermistor and could constitute a source of error. To estimate
the magnitude of this error, it will be assumed that the heat
conducted away from the thermistor is conducted along the wire,
and that the temperature gradient is determined by that of the fluid.
If the thermal conductivity is that of platinum and the radius is
0.005 em, the heat flux is about 4 x 107 watt which is less than
the ohmic heating.

Another possible source of error is radiative transfer between

the thermistor and the walls of the room. The heat flux, assuming



129

blackbody radiation is given by Q = kA( Tthermistor - Tzall)
or approximately Q =lkA AT rZall . IfA=12x 10'6 cm?, and
Teall = 300 %k, aT = 5 %K, k = 5.7 x 10~ erg om™? sec'l,

Q =IL2x.lO'8 Watt, which is much less than either the ohmic

heating or the lead conduction.

The secular variation in the thermistors is not known,but
this provides no problem in the differential measurements.

The last possible problem was noise due to the slip-rings.,

This was not notiecable above 1 or 2 d.u.
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APPENDIX IV

COMPUTER PROGRAMS



OO OO0 OO0

TEMPERATURE ANALYSIS PROGRAM VERSICN 6, 17 JANUARY 1371

SUBROUTINES USED:
BESJ
GELSB
CONTUR

DEFINITION OF VARIABLES
Z(K) THE K-TH VALUE OF I
F(K) THE K-TH VALUE OF THE FEILD VARIABLE
FOB : THE FIELD FORMED FROM THE BESSEL EXPANSIUN
FGR : THE RADIAL TEMPERATURE GRADIENT FORMED FROM THE POLYNUMIAL
EXPANSION
BB : THE BESSEL DECOMPOSITION TERMS OF THE POLYNOMIAL
BBB THE COEFFICIENT TERMS UF THE BESSEL FIT
ALPHA : THE ZEROED OF J1

.
.
.
»

O(I,J) THE COEFICIENT MATRIX TO BE INVERTED
X{I) THE POLYNCMIAL COEFICIENT MATRIX
FF(I) THE ReHeSIDE OF THE MATRIX EQUATION

N THE NUMBER OF ODATA POINTS
NN THE DEGREE OF THE FITTING PULYNOMIAL/Z

TET



DIMENSION VEBAR(16,416)

CUMMUN ALPHA(50)

DIMENSIUN BB(20,20),BLOG(20,20) yAAZ(4441) 468B(20Uy5)
DIMENSION Q(1) +S(1) +FGR{16416)

DIMENSION R(20),2(20),F(20), FF{20C), X(20)y D(2D920U)s A(4LO),
1FD(1l6416)

DIMENSION BAVI(5)

CIMENSION BALG(5)

DIMENSIGN TTNC(40)

DIMENSICN Q2(5)

DATA QZ/5%0Q.U/

DATA BAV/5%04,0/

DIMENSION XXB(21,17)

DATA VBAR/256%00.0/

DATA Q(1)/? T'/,S(1) /7" R/

CATA 122/0/7

RU = 26259 "
READ EXPERIMENTAL DATA }3
NUM = 0

N =18

NN = 2 g

NNN = NN + 1

READ{5,250) NEXPT,SSSyROSBY,EKNU ,TSPIN
BURG = SQRT(SSS)/2.

WRITE(64+251) NEXPT,BURG,RUSBY ,EKNU

B = BURG

FA = 2

ETA = ,0C001

SBAR = 7441*SQRT{EKNO)

PRAND = 14,0

H = PRAND*%(C4250%SQRT(B/2.)

CONS = H¥B*24,259%SQRT(FA)*SBAR/(SBAR - H)
CALL ALPH(ETA,CONS+SBAR,yHyBURG,1a0)
WRITE(64278)(ALPHA(I )} 1I=1,40)
WRITE(64200)



CALL NGRTH{ALPHA,AAZ,NNN)
WRITE(O9290 ) (K AAZ(1yK)»AAZI2+sK) yAAZ(39K) yK=1,40)
WRITE(6,20G0)
RR = GOQ
DO 1701 K=1,19
RR = RR + 0.l
RSUM = AAZ(2,1)
DO 1700 I = 2,40
XY= RR®ALPHA(I-1)
CALL BESJ(XY,0,8J1,4e001,IER)
RSUM = RSUM+AAZ(2,1)%BJ1

1700 CONTINUE
RRR = RR#RR
WRITE(649291) RRyRRR,RSUM

1701 CONTINUE
WRITE(6,200)

278 FORMATI( 8(F10es444X))
ISw =0

6600 CUNTINUE
NUM = NUM + 1
CO 5ul0 KK = 1,5

5010 BAVIKK) = 040
DO 2C00 I1 = 1,400

2600 A(II) = Ce0
L =20
DU 999
DJ 999
D(I,d)
(1)
R(I)
FLI)
FF(I) =
L=L+1
AlL) = 0490

S99 CONTINUE

c

1,20
1,20

won
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INPUT THE DATA

IF(IZZ.NEe3) GO TO 6001
READ(S5+101) (R(K) Z(K)yFIK) 4 TIME,IZZ4K=14N)
B0 1011 K = 1,N

R{K) = R({K) + L0uGl1
ZIK) = Z(K) + 030001
FIK) = F(K) + J0GDO1

1011 CCNTINUE

PRODUCE THE *'3' MATRIX

LLN = ¢

DO 1luDl L = 14NNN
DO 1001 ¥ = 1,AN
LLN = LLN + 1

LLXx = 0

DU 1301 I = 1,NNN
DO 1u01 J = 14NN
LLX = LLX + 1

DILLN,LLX) = 00
IX = 2%(I+L-2)
LX = 2%(J+M - 1)
DO 1001 K = 14N
1001 D(LLN,LLX) = DILLNyLLX) + RUK)®XIX%Z(K)¥k*%|X
PRODUCE THE FF MATRIX

LLN = O
D3 1L02 L = 1,NNN
DO 1602 M = 1.AN
LLN = LLN + 1
FFILLN) = 0.0
DU 1002 K = 1,N
1002 FRLLN) = FF(LLN) + F(K)®R(K)*=(2%(L-1))%Z(K)*%(2%M=-1)

71
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1¢C8

1633

1¢C4

1006
1005

DO 1068 I=1.16
DO 1uU8 J = 1,16
FO(I,J) = Deu
F3>R(I,J)=00.0

PUT L INTO FORM FOR USE IN GELB

LLK v

NNK NNEANN

Cu 1003 I = 1,NNK
DO 1GG3 J = 1yNNK
LLK = LLK + 1
A(LLK) = C(Jdo1)
NNX = NANK =1

DJ 1884 I = 1.ANK
X(I) = FF(1)

CALL GELBU(X»AyNNKsL o ANNXyNNXyoOLLOOL, IER)
WRITE( 6,302) IER

it W

OUTPUT CCEFICIENTS

WRITE(6,201)
WRITE(64+202)(KsX{K) yK=14NNK)

COMPUTE TEHE ERROR FUNCTION AND THE STD DEVIATION

E = 0.0

DO 1905 K = 14N

P = U0

LLX = 0

DJ 1006 I = 1,.NNN
DO 1u06 J = 1NN

LLX = LLX + 1

P =P 4+ X{LLX) *RIK)*x{(2%([-1))*Z(K)*x(2%J=-1)
E=E + (FI(K) - P ) *x%2

SIGMA = E/(N-1)

SET
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1007

1CC9

SIGMA = SQRT(SIGMA)
WRITE(6,4200)
WRITE(6,203) E+SIGMA

COMPUTE THE FITTED FIELD

IF{TIMESLESCeDULl) TIME = 1440 + 4,58%x(NUM - 1)
WRITE(6,252) TIME

TIMND = TIME/TSPIN
TTND(NUM) = TIMND
WRITE(6,253) TIMND
WRITE(6,208)

DR = 264259/1%,

DZ = le/1l6e

DO 1009 L = 1,16

DU 1C09 M = 1,16

RR DR=(L~-1) + 20001
IZ = DI¥*(M-1) + o400CO1
FO{L,M) = D0

VBAR(L M) = 0.0

FGR(IL yM)} = (a0

1}

LLXx = 0

DU 10067 I = 1.NNN
Bu 1UU7 J = 1sNN
LLX = LLX + 1

FD(LsM) = FDILyM) + XULLX)®RR¥®(2%(]=1))sZ2%%(2%J=-1)
VBAR{L yM) = VBAR(L,M) + X{LLX)*®{[-1)%RRR¥%(2%][-3)%77*%(2%]J)/J
FGRIL ¢M) = FGRAL M) + 2%{I-1)*%RR*k&{22{[-1) -1)%77Z%x{2%)=-1)%X{LLX)
WRITE(S92C3 )L MyRRyZZyFDIL ¢M) 4FGR(L M), VBAR(L M)

CGNTINUE

WRITE(6,2C0)

CALL CCNTURI(FD16+18)

WRITE(6,200)

CALL CCNTUR{(FGR 91€416)

WRITE(6,200)

CALL CCNTUR{(VBAR416,916)

9T
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WRITE(6,200)

CALCULATE THE BESSEL COEFICIENTS
DO 5400 NU = 1,45

NX = NU +1

DO 5000 10 = 1,10

ZZ = (10 - 1)#CZ + 0,00001
BB(NU,IO) = U.0

Lix = ¢

DO 5003 I = 1,NNN

DU 5GU2 J = 1,NN~

LLX = LLX + 1
ANNO = ALPHA(INX)
CALL BESJ(ANNG,0,8J0,e00U1,I1EX)
XINT = AAZ(I,NU)
BAVINU) = BAV(NU) + X(LLX)*24259%%(2x] )¥XINT/{24%J%BJO%%2)
BBB{NUM,NU) = BAVINU)
BBINU,IO) = 3BINUyICI+X(LLX)®24259%%(2%(1-1))%XINT/BJORk2%ZZx%( 2%
1J-1)=%2,
5002 CONTINUE
E6C3 CONTINUE
BBZ = ABS(BAVINU) )
BALG(NU) = ALOG{(BBZ)
XXB{NUM,1I03) = BB{(1,I0)
3bX = BB{(NU,IO0)
BBX = ABS(BEX)
BLOGINU, IO) = ALOG(BBX)
5000 CIONTINUE
WRITE(6,200)
WRITE(6,220)
HRITE(évZZl) (( I’J’BB(I,J',BLOG{I)J’QI=115’¢J=1916’
WRITE(6,200)
WRITE(6,2490)
WRITE(6,241 ) (KKyBAV(KK) yBALG(KK) KK=1,5)
WRITE(6,200)

LET



CU 5J11 KK = 1,5
QQ = BURG*ALPHA(KK+1)/RO
QA = =QuU¥De TOTL*TIMND*CISHIQQ)/SINHIQQ)
QZIKK) = 1le = EXP(QA)
5011 CUNTINUE
WRITE(64254) (KKyQZ(KK)KK=1,5)
WRITE(6,42(C)
Gu TGO 6ugn
6001 CCNTINUE

WRITE(7,277)0 TTNDIK)8BBB{K,y1),K = 1,NUM)
WRITE(T7,279)
ARITELT7+277)( TTNDIK) 4BBBIK2) 9K = 1,NUM)
WRITE(6,200)
WRITE(6+277)( TTINDIK)4BBB(Ky1)yK = 14NUM)
WRITE(64+279)
WRITE(69277)( TINDUK),BBBIK,2) 9K = 1,NUM)

DO 5100 IK = 1,16

282 FURMAT(/7177717717)
WRITE(T7,282)
WRITE(64282)
WRITE(7,281)( TTNDUIN) 9XXBIINsIK) s IN9yIKyNEXPTyIN=1,NUM)
WRITE(6+9281)( TTNDCIN) 9 XXBOINGIK) ) INyIKyNEXPT, IN=1,NUM)

281 FORMAT(2F1041,315)

5100 CCNTINUE

100 FORMAT( 31I5)

101 FORMAT(4F1045,38X,12)

200 FURMAT(1H1)

201 FORMAT(® POLYNCMIAL CQEFICIENTS 7777)

202 FIRMAT( 5X,154,E2048)

203 FORMATI(///! E(N) ='4E20.8///" STANDAKD DEVIATION =7,
1E20.8777)
208 FORMAT(1H1///7% L tyt M 1,1 R Ty? A 'y TEMPERATURE!

1* DT/DR *»'BAROCLINIC VELOCITY*/////7/7)
209 FURMAT( 21542F8e544F11e5)
220 FURMAT( ! NU J B(NU,J) LOG(BINU,J) Y /7777)
221 FORMAT(IS56X,15,2E2068/)

8eT



240 FURMAT(
241 FORMAT( I5,2
250 FURMAT( 15,4
251 FORMAT{1HL/?Y
171 ROSSH
252 FCRMATL( * RE
253 FURMAT(* NCN
254 FIORMAT(' NU

NU BAVINU
E20.3)

Fl10e7)
EXPERIMENT NUMBER =',13/7//"
Y NUMBER =',F13e5/" EKMANN

AL TIME =',F1045,"'SECH)
DIMENSICONAL TIME =',F19.5/1H1)

=4,13," U = EXP(QINUY) =

2717 FORMAT( 2F13.2)

2719 FORMAT(/7777
290 FORMAT{ I5,3
291 FORMAT(* R =
300 FORMAT( ' MA
301 FURMATI( £20.
302 FuURMATH{ ' IE
700 FURMAT( * T

/177)
E20Ce8)
' yF1l0e59'R¥¥2 = vV, F1648,y' SUM
TRIX A ')
8)
R = 1,15)
EST POINT?)

701 FURMAT(* TEST PCINT 2 ')

CALL EXIT
END

LOG(BAVINUI)Y///77)

BURGER NUMBER ='F10.5
NUMBER ="' Flie7/1H1)

'y E2UlB)

= ', Flb6e8)

6€T
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SUBRUUT INE GELB(R»AyMyNyMUDJMLDHEPS,IER)

DIMENSION R(L)+A(L)

TEST CN WRONG INPUT PARAMETERS
IF{MLD)47,1,1

IF{(MUD)47,242

MC=1+MLE+MUD
IF{MC+1-M-M)3,3,47

PREPARE INTEGER PARAMETERS
MC=NUMBER OF COLUMNS IN MATRIX A
MU=NUMBER OF ZERCS T0O BE INSERTED IN FIRST ROW OF MATRIX A
ML=NUMBER OF MISSING ELEMENTS IN LAST ROW O3F MATRIX A
MR=INCEX COF LAST ROW IN MATRIX A WITH M(C ELEMENTS
MZ=TOTAL NUMBER OFf ZEROS TO BE INSEKRTED IN MATRIX A
MA=TOUOTAL NUMBER OF STORAGE LOCATIONS NECESSARY FOR MATRIX A
NM=NUVMBER CF ELEMENTS IN MATRIX R

IFIMC-M)5,5,4

MC=M

MU=MC-MUC~-1

ML=MC-MLD-1

MR=M-ML

MZ=(MU%(MU+1)) /2

MA=M&MC~- (MLX{ML+1))/2

NM=NkM

MUOVE ELEMENTS BACKWARD AND SEARCH FOR ABSJLUTELY GREATEST ELEMENT
(NOT NECESSARY IN CASE OF A MATRIX WITHOUT LOWER CODIAGONALS)
I1ER=0

PIV=0,

IF(MLD) 1421456

JJ=MA

J=MA-MZ

GELB TOU
GELB 69v
GELB 71v
GELB 72¢€
GELB 730
GEL3 740
GELB 75U
GELB 764
GELB 770
GELB 780
GELB 79v
GELB 800
GELB 81¢
GELB 820
GELB 330
GELB 384U
GELSB 859
GELB 364y
GELB 873
GELB 384
GEL3 894
GELB 900
GEL3 910
GELB 920
GELB 930
GELB 94y
GELB 950
GELB 960
GELB 97y
GELB 98¢
GELB3 990
GELB11GD
GELB1lVU10
GELBLlJ20
GELBL1O30
GELB1740

o4t
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19

i1

12
13

14

15
16

KST=J

DO 9 K=1,KST
TB=A(J)
A(JJ)=T8B
T8=ABS(T8B)
IF(TB=PIV)3+8,7
PIV=TB8

J=J-1

Jd=Jdd=-1

INSERT ZERJS IN FIRST MU ROWS (NUT NECESSARY IN CASE

IFIMZ) 14,414,190
Jd=1

J=1+MZ
IC=1+MUD

DU 13 I=1.My
BU 12 K=1,MC
A(JJ)=0.
IF(K-IC)1l1l,11,12
AlJJ)=ALJ)
J=J+1

Jd=JJd+1
IC=IC+1

GENERATE TEST VALUE FOR SINGULARITY
TUL=EPS®PIV

START CECCMPCSITION LOOP
KST=1

I0ST=MC

IC=MC-1

DO 38 K=1.M
IF({K-MR~1)16416,15
[DST=IDST-1

ID=1DST

GELBLU50
GELB136y
GELB1lUTY
GELB1I8G
GELB1I990
GELB1100D
GELB1l1lvy
GELB1120
GELR1130
GELBll4u
GELB115¢
GELBLl1l6U
GELB1170
GELBL113u
GELB119V
GELB 1290
GELB1210
GELB1220
GELB123¢0
GELBl240
GELB125%
GELB126y
GELBL2TV
GELB1284
GELB1290
GELB1309
GELB1310
GELB1320
GEL3133u
GELB134D
GELBL350
GELB1 36y
GELB137¢
GELB138%9
GELB139¢
GELB140y

™



17
18

19

20
21
22

23
24
25
26

27

ILR=K+MLD

IFCILR-M)18,18417

ILR=M
II=KST

PIVOT SEARCH IN FIRST COLUMN (ROW INDEXES FROM I=k UP TJ I=ILR)

PIV=0Ue

DO 22 I=K,ILR
TB=ABS(A(II))
IF(TB-PIV)24,2C,19

PIV=T8
J=1
JJ=11

IF{I-MR) 22422421

ID=1D~-1
11=11+ID

TEST ON SINGULARITY
IF(PIV)4T7,417,23
IFLIER) 26424426
IF{PIV=-TCL) 25,425,426

IER=K~1

PIV=1e/7A(JJ)

PIVOT ROW REDUCTION AND ROW INTERCHANGE IN RIGHT HAND SIDE R

ID=J-K

DO 27 I=KsN\NMsM

11=1I+1ID

TB=PIV*R{II1)
RUIT)=R{T)

RiT)=T8B

PIVOT RUW REDUCTICN AND ROW INTERCHANGE IN COEFFICIENT MATRIX A

II=KST
J=JJ+IC

DU 28 I=JJrJ

GELB141D
GELB1429
GELB143y
GELB1443
GELBLl459)
GELB1460
GELB1470
GELB1480
GELB149¢C
GELB1503
GELBL1510
GELB1520
GELB1539D
GELB1540
GELBL155%
GELB156D
GELB1579
GELB158%
GELB159v
GELRB1600
GELBL1SluY
GELB152u
GELB163y
GELBL 640
GELBL6597
GELB1661}
GELB16790
GELB168y
GELBLAID
GELB1 790
GELB1710
GELBL720
GELB1730
GELB1740
GELB1750
GELBL1766G

ot



28

29

30
31

32

33
34

35
36

37

TB=PIV®A(TI)
AlI)=A(I1)
A(IT)=T8
II=11+1

ELEMENT REDUCTION
IF(K-ILR)29,34,34
ID=KST

II1=K+1

MU=KST+1
MZ=KST+IC

B0 33 I=I1I,ILR

IN MATRIX A
Io=10+MC
JJ=]-MR-~1
IF(JJ)31,31,39
1D=1D0-0J
PIV=-A{1ID)
J=I0+1

DU 32 JJd=NMU,MZL
AlJ=-1)=A(J)+PIV=A(JJ)
J=J+1
A{J-11=0,

IN MATRIX R

J=K

DG 33 JJ=1,AM,¥
REJII=RUJI)+PIVER(J)
J=J+M

KST=KST+MC
IF(ILR-MR)3¢&,35,35
IC=IC-1

ID=K-MR
IF(ID)38,38,37
KST=KST-1ID

GELBL1T77D
GELB1780D
GELBLT79Y
GELB18Cuy
GELB181U
GELB182uy
GELB133y
GELB184D
GELB1850
GELB136y
GELR187w
GELB188Y
GELB189%
GELB190%H
GELB191%
GELB1932%
GELB193v
GELB1940
GELBL1I59
GELB1960
GELB1970
GELB13384
GELB1939u
GELB2J09O
GELB2D10
GELB 2120
GELBZ2)34
GELB204%
GELB2)5G
GELRB2D6V
GELB2D7T0
GELR238D
GELB2I90
GELB210D
GELBZ211w
GELBZ2L12N

€41
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OO

38

39

40
41

42
43

44

45
46

47

CINTINUE
END UF DECCMPOSITICN LOOP

BACK SUBSTITLTICN
IFIMC-1)46,46,39
IC=2
KST=MA+ML-MC+?2
Ii=M

DU 45 I=2.M
K5T=KST=-MC
I1=11-1

J=11I-MR
IF(J)41,41,40
KST=KST+J

DU 43 J=IIQNM9N
T8=R(J)
MZ=KST+IC-2

1D=J

DU 42 JJ=KST,MLZ
ID=1D+1
TB=TB~A(JJ)*R{ID)
R{J)=T8B
IF(IC-MC)44+45,45
IC=IC+1

CIONTINUE

RETURN

ERROR RETURN
IER=-1

RE TURN

END

FUNCTICN IFACIN)
IX =1

DU 1000 J = 1.N

GELB2139
GELBZ214u
GELB2159
GELB2169
GELB217%
GELB218C
GELR219%
GELB220u
GELB221J
GELB2220
GELB2230
GELB2240
GELB2259
GELB2260(
GELB227U
GELB2282
GELB2290
GELB2309
GELB231D
GELB2320
GELBZ2330
GELBZ2340
GELB235L
GELB236U
GELB237VL
GELBZ2338Y
GELB239¢4
GELB24UU
GELB2414
GELB242G
GELB2430
GELB244U
GELB2459



1680 IX = IX=xJ

IFAC =
RETURN
END

Ix
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SUBROUTINE ALPH(ETALCUNS,SBAR,H,B,yAQ)

THIS SUBRJOUTINE WILL FINE THE ROUTS OF THec EQUATIUN FOR THE ALPHAS
OTHER SUBROUTINES USED: ROUT
SEE *'ROUT* FUR FURTHER SUBROUTINES

IMPLICIT REAL¥*8({A-H,C~2)
REAL*4 ALPHA
DATA NK/50/
COMMUN ALPHA{59Q)
DIMENSION BB(6)
BB(1) = Ce0
BB(2)=2,404¢E3
BB(3)=5.,52G17
BB(4) =8.6€5373
BB{S5)=11.751%3
822 = B/AQ

INTIALIZE ALPHA

DO 11 = 1,59
1 ALPHA([)=0,0

XCQQ = SEAR - H
IF{XQdQeLToUed) GO TO 4
START THE SEQUENCE FOR FINDING THE ALPHAS

6 DO 32 I=1,3

ACC = B8B(I) + 05
BOU = B8(I+1) =-,.C5
ALPHA(I) = ROOJT(AGI,BIOLETA,CCONS,BZ2Z)
IF(ALPHA(1) oL Te0e01) GC TO 4
3 CCNTINUE

9L



AgU ALFHA(3) + 3,09
300 ALPHA(3) + 3,30
CO 2 1 = 4,5C A
ALPHA(I) = RCOT(AOD,B00.ETA,CONS,BZZ)
Auy = ALPHA(I) + 3,00
BJO = ALFHA(I) + 3.30
CONTINUE

RETURN

DO 5 J=ly4

BB(J) = BB(J+l)

Go TO o6

END

ihou

T
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180

3600

1¢ Q0

FUNCT IGN RCCT(X,Y+ETA,CONS,B)

SUBROUTINES LSED: BESJ,COSH,SINH .

IMPLICIT REAL*8LA-H,0-2)

REAL*4 ALPFA

C=1{( X+ Y)/2.

ROOT = C

FCRMAT(E2D48)

IF{CABS{C- X)eLESETA) GO TC 1004
CALL BESJ(C,yu+BJGyeOl,yIK)

CALL BESJ(C,19BJdlye1,1J)

QF = B=%*(C

QPK = 1408C0C0R0000

IF(QF LT L100) QPK = CSINH(QF)/DCOSH(QF)
G = BJ1/BJO - CCNS%*GPK
IF(GaGToCe) GO TO 2

X =C

Y =Y

GU TO 100
X =X

Y =¢C

GO TO 17¢
RETURN

END



OO0

1601

7¢G0

18302
1103

1€03
1600

SUBRUUTINE NORTH(UALPHA,A,MMAX)

DIMENSION ALPHA(GD) yA(4441)92(41y41),AA(164) ,22(1681)
INTEGER P,LPP

DU 100G P = 1,40

CALL BESJ(ALPHA(P)419BUdlyeD2N1,1IE1)

CALL BESJ{ALPHA(P) ,04BJ0,eU0U1,1EG)

A(ls1) = 05

Z{1yi) = 1le/2e

A(1,P+1)=8J1/ALPHA(P)

Z{1,P+1) = BJL/ALPHA(P)

Z{P+1,1) = Z{1,P+1)

DU 1601 M = 2,MMAX

A(Mel) = 1la/12e%M)

MM =M - 1

AlMyP+1)= BJUL/ALPHA(P) + [ 24¥MM%EBJU — 4o ¥MMEMMA(MM,P+1) ) /ALPHAL(P
1) *%2

PP =P -1

IF{PPeEQeu) GC TC 1103

Du 1¢C2 N = 1,PP

CALL BESJ(ALPHA{N)+14BJIN,yoUGO1,1IE2)

CALL BESJ(ALPHA(N) +D+BJCNyoOU2L,1E2)

1 ALPHA(P)*BJ1%BJUN — ALPHA(N)*BJOXBJIN

12 ALPHA(P)*%2 — AL PHA(N)=%2

IF(Z24EQeNeC) WRITELSH,7000) Z1y212 NP

FORMAT( ' Z1 = "4E20e8e5X9%22="yE20GeB8s?! N=1,1I5,' P=,15//7)

ZIN+1,P+1) = Z1/12

Z{P+14N+1) = Z(N+1,P+1)

CONTINUE

CONTINUE

Z(P+1,P+1) = Q.5*%(BJO*BJO + BJI1*BJ1)
WRITE(6,7003)

FOURMAT(* TEST POINT NUMBER ZERC ')
COGNTINUE

PUT A AND Z INTO PROPOER FORM FOR USE IN THE ROUTINE GELG

64T
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NN = @
DO 1004 M = 1,MMAX
WKITE(6,7001)

7CC1 FORMAT(' TEST POINT NUMBER ONE? )
DJ 1G04 P = 1449
NN = NN + 1

10C4 AA(NN) = A(M.P)
NN = O
D3 1C05 N = 1,40
D3 1005 P=1,49
NN = NN + 1

18C5 ZZINN) = Z(N,P)

SOLVE FCR TFkE A'S

CALL GELG(AA,72,409MMAXye00CO1yIER)
IF{IcReNEeD) WRITE(6,200) IER

200 FUORMAT( ' ERRCR IN SOLUTION OF CIOEFFICIENT MATRIX,EKRJR=*,15)
WRITE(6,70D2)

7C02 FURMATL * TEST POINT NUMBER TWwO * / 1HL)

ReCCMPOSE A

NN = C
CO 1006 M = 1,MMAX
DU 1GG6 P=1,40
NN = NN 4+ 1

10C6 A(MyP) = AA(NN)
RETURN
END

05T



OO0 D000 00000 OO0

SUBROUTINE GELG(RyAsMyNyEPSyIER) GELG 523
THE ABOVE CARC SHOULD BE PLACED IN PRGPER SEQUENCE
BEFORE COMPILING THIS UNDER IBM FORTRAN Ge

GELG 10
.....‘.O....’C.....ﬂ....’......O........‘.'O......O....."...QCO’.GELG 2‘:}
GELG 30

SUBROUTINE CELG GELG 40
: GELG 50

PURPOSE GELG 69
TC SGLVE A GENERAL SYSTEM JF SIMULTANEQUS LINEAR EQUATIUNSe GELG 7U
GELG 8¢

USAGE GELG 99
CALL GELG(R,AyMyNyEPS,1ER) GELG 109
GELG 1190

DESCRIPTICN JF PARAMETERS GELG 129
R - THE M BY N MATRIX UF RIGHT HAND SIDESe (DESTRUYEDIGELG 139

ON RETURN R CIONTAINS THE SOLUTION UF THE EQUATIONSSGELG 14v

A - THE M BY M COEFFICIENT MATRIXe (DESTRJYED) GELG 150

M - THE NUMBER OF EQUATIONS IN THE SYSTEM. GELG 164

N - THE NUMBER OF RIGHT HAND SIDE VECTURSe GELG 17¢
EPS - AN INPUT CONSTANT WHICH IS USED AS RELATIVE GELG 182
TOLERANCE FOR TEST CN LOSS OF SIGNIFICANCE. GELG 19¢

iER - RESULTING ERRJR PARAMETER CODED AS FOLLOWS GELG 209
IER=D) = NUO ERROR, GELG 21y

IER=-1 - NO RESULT BECAUSE OF ™M LESS THAN 1 UR GELG 224

PIVDOT ELEMENT AT ANY ELIMINATION STEP GELG 23u

EQUAL TO 0y GELG 249

[ER=K = WARNING DUE TO PJSSIBLE LUSS UF SIGNIFI- GELG 259

CANCE INDICATED AT ELIMINATION STEP K+1ly GELG 264

WHERE PIVUT ELEMENT WAS LeSS THAN CR GELG 279

EQUAL TO THE INTERNAL TOLcRANCE EPS TIMES GELG 28y

ABSOLUTELY GREATEST ELEMENT OF MATRIX Ae GELG 29y

GELG 3Guv

REMARKS GELG 3190
INPUT MATRICES R ANC A ARE ASSUMED Tu BE STuRED COLUMNWISE GELG 32¢

IN M%N RESPe M*M SUCCESSIVE STURAGE LOCATIONSe. JN RETURN GELG 339

T
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o0

SOLUTICN MATRIX R IS STORED COLUMNWISE TCO.

GELG 3449

THE PROCEUURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS GELG 350

GREATER THAN O AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS
ARE DIFFERENT FROM 0o HOWEVER WARNING TER=K - IF GIVEN -
INCICATES POSSIBLE LOSS OF SIGNIFICANCEe IN CASE OF A WELL

GELG 360
GELG 370
GELG 38y

SCALEC MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BE GELG 399

INTERPRETED THAT MATRIX A HAS THE RANK Ke Nu WARNING IS
GIVEN IN CASE M=1l.

SUBROUTINES AND FUNCTION SUBPRUGRAMS REQUIRED
NCNE

METHCD
SCLUTICN IS DCNE BY MEANS OF GAUSS-ELIMINATIUN WITH
CCMPLETE PIVOTING.

GELG 4GJ
GELG 4ly
GELG 420
GELG 430
GELG 440
GELG 450
GELG 46D
GELG 470
GELG 43¢
GELG 49¢

...O.'..........O..Q........O'............’.0.0..OOOOQOQOOOQOQOOOOGELG 5(}*)

DIMENSIGN A(1)sR(1)
IF({M)23,23,1

SEARCH FOR CGREATc=ST ELEMENT IN MATRIX A
IER=C

PIV=0.

MM=MxM

AM=iN%*M

DO 3 L=1,MM

TB=ABS{(A{L))

IF{TB-PIV)3,3,2

PIv=TB

I=L

CONTINUE

TOL=EPS*P ]V

A{I) IS PIVOT ELEMENT, PIV CCNTAINS THE ABSOLUTE VALUE OF A{I).

GELG 519
GELG 530
GELG 540
GELG 554
GELG 561
GELG 574
GELG 589
GELG 594
GELG 60%
GELG 610U
GELG 629
GELG 639
GELG 649
GELG 650
GELG 660
GELG 570
GELG 680
GELG 69U
GELG 70g

r+
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OO0

aNe OO

~N o Vs

10

11

START ELIMINATICN LUCP
LST=1
Cd 17 K=1,M

TEST ON SINCULARITY
IF(PIVI23,2344
IFCIER) 74547
IF(PIV=TCL)E46,7
IER=K~-1
PIVI=1le/AL(I)
J=(I=-1)/M

[=1=-J%M=-K

J=J+1-K

[+K IS ROW=-INCEX, J+K COLUMN-INDEX OF PIVUT ELEMENT

PIVUT RUW REUUCTIGN AND RUOW INTERCHANGE IN RIGHT HAND SIDE R

DU 8 L=KyNM,M
LL=L+1
TB=PIVI*R(LL)
R{LL)=R(L)
R{L)=TB

IS ELIMINATICN TERMINATED

IF{K-M)9,18,18

COLUMN INTERCHANGE IN MATRIX A

LEND=LST+M-K
IF(J)12,12,1D

‘DU 11 L=LST,LEND

TB=A{(L)
LL=L+I1
A(L)=A(LL)
A{LL)=TB

GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG
GELG

Tlu
720
730
140
759
760
774
789
79¢
304
310
824
834
849
353
860
370
880
394
eIvhy)
910
920
93\}
9490
950
96U
970
984
99¢

GELG1n90
GELGLJILY
GELG1020
GELG103¢
GELGLI4C
GELG1050
GELG1J6G

€T



OO0

12

13

14

15

16
17

18

RuW INTERCHANGE AND PIVOT ROW RELUCTION IN MATRIX A

Ou 13 L=LST MMM
LL=L+]
TB=PIVI*A({LL)
A{LL)=A(L)
A(L)=T8

SAVE COLUMN INTERCHANGE INFORMATIUN
A(LST)=J

ELEMENT REDULCTICN AND NEXT PIVOT SEARCH

PIV=(e.

LST=LST+1

J=0

CO 16 ITI=LST,LEND
PivIi=-=A(II)

IST=11+M

J=J+1

DO 15 L=IST MM,M
Li=L-J
A(L)=AIL)+PIVIXA(LL)
TB=ABS{A(L))
IF(TB-PIV)15,415)14
PIV=T8

I=L

CONTINUE

DU 16 L=K.h¥,¥

LL=L+J
RILL)=R(LL)I+PIVI*R(L)
LST=LST+M

END OF ELIMINATICN LOOP

BACK SUBSTITUTION ANC BACK INTERCHANGE
IF{M-1)23,22+19

GELG1 )70
GELG108Y
GELGLU9G
GELG1100
GELG11190
GELG112Y
GELG1130
GELG1140
GELG115¢
GELG116%
GELGL17y
GELG1180
GELG119%
GELGL20V
GELG1219O
GELGL1229D
GELG1230
GELG1240
GELG1250
GELG1260
GELG1270
GELG1280
GELG1290
GELG1 300
GELG1310
GELG1320
GELG1339
GELG1340
GELG1359
GELG136y
GELG1370
GELG138u
GELG1390
GELG140DG
GELG141lD
GELG1420
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19

29

21
22

23

IST=MM+M

LST=M+1

DU 21 I=2,M
II1=LST-1
IST=IST-LST
L=1IST-M
L=A({L)+e5

DO 21 J=11sNM,M
TB=R(J)

LL=J

DO 20 K=IST,MM,M
LL=LL+1
TB=TB-A{K)*R({LL)
K=J+L

R{J)=R({K)
R(K)=TB

RETURN

ERROR RETURN

IER==-1]
RETURN
END

GELGLl430
GELGl44y
GELG1450
GELG1460
GELG14TG
GELGl48u
GELG149D
GELG15U3
GELGL5190
GELG1520
GELGL1530
GELG154¢C
GELG1550
GELGl56v
GELG157U
GELG1584y
GELG1590
GELG16GY
GELG1610
GELG1623
GELGLl53uy
GELG1640
GELG1650

119§
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SUBROUTINE GAUSHA (NPRBGFOF yNBOsY s NQsTHyDIFZySIUNS,HEPLS, GAUSOD10
1 EP2S+MIT,FLANM,FNU) GAUSUI2D

W oh % 2ok R H S 4ok ok R ok ok i ooy o R0 A 2 0 AR O 2 e R 5 R e o AR R ot 0 SR iR R o R o ke

VERSION MIT/1

THIS VERSICN OF GAUSHA HAS BEEN CONVERTcD FJUR USE ON THE MIT-I8M
360/65
KIM DAVILC SAUNDERS DEPARTMENT OF METEOJORUOLOGY

SUBRUUTINES REQUIRED:
GAUS6C (SPECIAL)
SIMQ (SSP)

MINV (SSP)
ALLMAT (MATHLIB)

THE CALLING SEQUENCE IS:
CALL GAUSHA(NPRUBsFOFyNUBsY NP, THyDIFF,SIGNSHEPS1,EPS2yMITyFLAM,
FNU,SCTRAT)

DcSCRIPTICN GF THE INPUT PARAMETERS

NPROB INTEGER CONSTANT GIVING THE PRUOBLEM NUMBER

FOF THE NAME OF THE USER SUPPLIED SUBRPOGRAM. IT MUST BE
DECLARED EXTERNAL IN THE MAIN PROGRAM.

NOB NUMBER OF OBSERVATIONS

Y CNE DIMENSIONAL ARRAY CONTAINING THE OBSERVEU

95T



OO0 GO0n

NP
TH

DIFF

SIGNS

EPS1
EPS2

MIT
FLAM
FNU .
SCTRAT

FUNCTICN VALUES,

NUMBER OF UNKNUOWN PARAMETERS.

GNE OIMENSIONAL ARRAY CONTAINING THE PARAMETER VALUES
BEFURE THE SUBPROGRAM IS EXECTUED, TH MUST CONTAIN

AN INITIAL GUESS, WHICH MAY HAVE NO ZERO COMPCNENT.
OUNg OIMENSIONAL ARRAY CUNTAINING A VECTOR OF
PROPURTIONS USED IN CALCULATING THE DIFFERENCE QUO-
IENTSe DIFF(I) MUST BE GTe0 AND LTal

IF SET = ¢ , THERE IS NO RESTRICTION ON THE SIGNS OF
THE PARAMETERSe IF «GTe Uy THE SIGNS MUST REMAIN THE
SAME AS THOSE OF THE INITIAL GUESS.

REAL CUONSTANT WHICH IS THE SuUM OF SQUARES CONVERGENCE
CRITERIONe 2F EPSL = 0 , THIS FEATIJRE IS DISABLEDe

A REAL CONSTANT WHICH IS THE PARAMTEK CONVERENCE
CRITERICNe IF EPS2 = 0, THIS FEATURE IS DIABLED.
MAXIMUM NUMBER OF ITERATIONS,

STARTING VALUE FOR LAMCA. (o0l USUALLY WORKS WELL)
STARTING VALUE FOR NUe IT MUST BE «GTal

A WURKING VECTORe IT MUST BE LARGER THAN:
SENP+2ENP®R¥242%NJB+NP#NOB

IF THERE ARE ANY QUESTIONS, SEE KIM DAVID SAUNDERS

54-1310¢
EXT 5938

33 A0 A 2 2 b 0 o A ol o R e e o N R N R A i R e R o R A S R R R ko ek

DIMENSICN
DIMENSICN
DIMENSICN
DIMENSICN
DIMENSICN

A(l0U+10)+D(1C410),DELZ(330,10)
LLOLC1U),LLOM(1D)

Axxx(109)

TH(10) sDIFZ{10),SIGNS{10),Y(50)
VECTR(590)

COMPLEX AAA(10,10G),PPP(10)

45T



17
18
19

19

50

COMMUN Q(10)4PL1U)2E(LI0),PHI(1D),TB(10)
CUMMUN F(300),R(300)

CUMMCN /BLK1/X

DATA DET/1./

CATA LP/e/

NP=NQ

NPRUB=NPRBO

NOB=NB8J

EPS1=EP1S

EPS2=EP2S

ARITE(LP,1080) NPRIB,NOB,NP

WRITE(LP,100U1)

CALL GAUS6U (14NPsTHyTEMP,TEMP)
WRITE(LP,10D2)

CALL GAUSSK0 (1 4NPyDIFZ,TEMP,TEMP)
IFINPeLTel oeORe NPeGTe50 o¢0ORe NOBsLTeNP) GO TO 99
IF(MITelTel eORe MITeG6Te999 «JRe FNU oLTe 1) GI TO 99
DO 19 I=1,NP

TeEMP = DIFZ(I)

[F(TeMP) 17,99,18

TEMP = —-TEMP

IF(TEMP oCEe 1 o0ORe THII) <EQe O) GI TO 99

CONTINUE
GA = FLAM
NIT =1

ASSIGN 225 T3 IRAN
ASSIGN 265 TJ JORDAN
ASSIGN 187 TC KUWAIT
[F(EPS]1 «GEe C) GO TG 10
EPS1 = O

IF(EPS2 +GTe 0) GO TO 30
IF{EPS]1 «GTe €) GO TO 50
ASSIGN 270 TO IRAN

GJ T0 70

ASSIGN 265 TO IRAN

Gu T0O 70

GAUSLU4U
GAUSGI5U

GAUSGOTY
~AUSGJ80

GAUSD)I92
GAUSQO1UG

GAUSDL1Z0

GAUSG 140
GAUSU153
GAUSO1690
GAUSDL1 70
GAUS(180
GAUSGLSC
GAUSL20%
GAUSO210
GAUSH 229
GAUS(D230
GAUSU 240
GAUSU250
GAUSU269
GAUSL2T0
GAUSD280
GAUSV29D
GAUS( 399
GAUSO3190
GAUS0 320
GAUSL 339
GAUS(]340

85T



30

70

160

IF{EPS]L «GTe U) GO TO 790
ASSIGN 270 TG JORDAN

SSQ@ = 0

CALL FOF{NPRUBsTHoF 4NCBNP)
CO 9¢ I=1,NJB

R{I) = Y(I) - F(I)

SSQ = SSQ + R{I)=R(1I)
WRITE(LP,1003) SSQ

Gu TO 1¢S5

BEGIN ITERATICN

WRITE(LP,1004) NIT

GA = GA/FNU

INTCOU =90

CO 130 J=1,NP

TEMP TH(J)

P(J) DIFZ(JI*TH(J)

THCJ) = TH(J) + P(J)

QtJ) = 0

CALL FOF(NPRUB,TFEyVECTR4NCByNP)
DO 5016 I = 1,NOB

DELZ(I,3) VECTR(I)

DO 120 1I=1,N3B

DELZ (I+J) = DELZ(I,LJ) - F(I)
Q(J) Q(J) + DELZ(I,J)*R(I)
Q{J) cly)/py)

Q=XT*R (STEEPEST DESCENT)

TH{J) = TEMP

DO 150 I=1,NP

B0 151 J=1.1

SUM = 0.0

DO 1680 K=1,N0O8B

SUM = SUM + DELZ(K,I)%DELZ(K,J)

GAUSU350
GAUSU36uy
GAUSQO379
GAUSU38J
GAUS(39C
GAUS( 4G
GAUSU 41
GAUSO42u
GAUSV430
GAUSG440
GAUSU454
GAUSV 46U
GAUSU4TO
GAUS0 480

GAUSO52Y
GAUSL510
GAUSU520
GAUSO53w
GAUSD54u

GAUSU56uU
GAUSO570
GAUSD 584
GAUSO530
GAUSL 60U
GAUSU61Y
GAUJSV620
GAUSU63y
GAUSO640
GAUSUS5G
GAUSD 66D
GAUSUb6TY
GAUSG 680

65T
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e aXe!

. TEMP = SUM/(P(I)=P(J))

151

*x

150

%

180

290

5GQ3

5C04

5000

5001

* R

D(J,1)
BlI,J)

TEwM#P
TEMP

D=XT*X (MCMENT MATRIX)

E(I) = SQRTIC(I,I))
GO TU KUWAIT,(180,666)

ITERATICN 1 CNLY

DU 200 I=1,NP
DU 2060 J=1,1
SUM = DI(1,4)
AlJd,I) = SuUM
A{I,J) = SUM

WRITE(6,5C03)

WRITE(645C04) (( A(I4J),yI=1,NP),J=1,NP)
WRITE(6,5003)

FGRMAT(1H1)

FORMAT( E20.8)

DO 5GO0 IKX = 1,NP

DO 5000 JKX = 1,NP

PPPIIKX) = PLIKX)

AAA(IKXyJKX) = A(IKXyJKX)

CALL ALLMAT(AAA,PPP NP,10,NCALL)
DO 5001 IKX = 1,NP

DO 5001 IKJ = 1,NP

PLIKX) = REAL(PPP(IKX))
A(CIKX,IKJ) = REAL(AAALIKX,IKJ) )
WRITE(LP,1006)

WRITE(LP,20U1) (P{I1)s1=1,NP)
WRITE(LP,1004) NIT

ASSIGN 6€6 TO KUWAIT

ENC ITERATICN 1 CNLY

GAUSOB69¢
GAUSJTO0
GAUSOT1O
GAUSQT720
GAUSOT3¢
GAUSCT40
GAUSO750

GAUSCT7V
GAUSOT780
GAUSGT79¢
GAUSG3GD
GAUS03810
GAUSO82¢C
GAUSC83D
GAUS0O844)

GAUSO860
GAUSO8TVD
GAUSLB88)
GAUSU39Y
GAUSO9320
GAUSG910

09t



155

233

DJd 153 I=1,NP

DO 153 J=1,1

AlIsJ) = DUIyJI/(ELTL)®E(Y))
AlJos1) = A(1,J)

A = SCALED MOMENT MATRIX

DO 155 1I=1,NP
P{I) = QUIN/ECD)

PHI(I) = P(I)

A(I,I) = A(I,I) + GA
I =1

IKK = ¢

DO 800D I = 1,NP

Cu 8GUGC J = 14NP

IKK = IKK + 1
AXXX{IKK) = A(I,J)
CONTINUE

CALL SIMQ{AXXXsPyNP,KKS)

P/E = CCRRECTICN VECTCR

STEP = 1.0

SUM1 = G.0

SUM2 = 040

SUM3 = 0.0

DO 251 1I=1,NP

SUM1 = P(I)*PHI(I) + SuMl
SUM2 = PLI)*P(]) + SUM2
SUM3 = PRI(I)*PHI(I) + SUMS3
TEMP = SUML/SQRT(SUM2%SUM3)

IF(TEMP oLEes 1e0) GO TG 233
TEMP = le0

TEMP = 574,255% COS({TEMP)
WRITE(LP,1041) TEMP

GAUSU920
GAUSD93
GAUSV94D
GAUSO95v
GAUSQ9I60
GAUSU9TL
GAUSO98Y
GAUSDI390
GAUS 19U
GAUS191v
GAUS1920
GAUS193u
GAUS1V4L

GAUS1N6C
GAUS197D
GAUS108G
GAUS1129

GAuslilzan
GAUS1139
GAUS1140
GAUS115u
GAUS116¢0
GAUS1170
GAUS118D

GAUS1200

9t



170
<2y

7CC

2401

230

663

664

662

669

225
240
250

265
260

DU 2¢0  I=1,nNP

TB(I) = P(I)*STEP/E(L) + THI(I)

WRITE(LP,T70CG)

FURMAT('OTEST POINT PARAMETER VALUES!')
WRITE(LP,2CC6) (T8(I),I=1,NP)

DU 2401 1I=1,NP

IF(SIGNS(I)e5Te0e0 oANDe THI(IN#TB(I)eLEsUeuU) GO Tu 663
CONTINUE ‘
SUMB = U.0

CALL FOF(NPRCB,TB,yFsNCB4NP)

DO 230 I=1,N0OB

R(I) = Y(I) - F(I)

SUMB = SUMB + R(I)*®*R(1])

WRITE(LP,1043) SuMB

IF{ SUMB/SSQ-1e0 oLEe EPS1 ) GO TO 662

IF(TEMP oGTe 30.0) GO TO 664
STEP = STEP/2,.0

INTCUU = INTCOU +1

IFCINTCOU = 36) 173,27¢G,2720
GA = GAXFNU

INTCOU = INTCOU +1

IFCINTCOU = 36) 6€64270GC,2720
WRITE{LP,1LI7)

DO 669 I=1,4NP

TH(I) = TE(I)

CALL GAUS6T (1 4NPyTH,TEMP,TEMP)
ARITE(LP,1040) GA,SUMB

GU TO IRAN,(225,265,270)

DO 240 I=1,NP
IFCABS(PUI)*STEP/E(I))/(1e0E-20+ABS{TH(I)))-EPS2) 240,240,250
CONTINUE

WRITE(LP,1CC9) EPS2

GUu TO 28¢

GO TG JORCAN,(265,270)

IFCABS((SUMB-SSQ)/SSQ) «GTe EPSL) GO TO 270
WRITE(LP,1D10) EPS1

GAUS121Y
GAUS1220
GAUS123U
GAUS1240
GAUS1250
GAUS1260
GAUS127u
GAUS1280
GAUS129¢
GAUS1309
GAUS131%
GAUS1329
GAUS1330
GAUS1340
GAUS1350
GAUS 1360
GAUS1370

GAUS14U9

GAUS1430
GAUS 14406
GAUS1450

GAUS1479

GAUS1499
GAUS15Ch
GAUS1510
GAJS1520
GAUS153¢

GAUS155¢C
GAUS156¢

o9t



GO TO 28¢C
270 SSQ = SuMB
NIT = NIT+1
IF(NIT - MIT)
2700 WRITE(LP,2710)

1€0,1GG,280

GAUS1570
GAUS158G
GAUS1590
GAUS16GU
GAUS161Y

2710 FORMAT(//*Q»¥%% THE SUM OF SQUARES CANNOT BE REDUCED TO THE SUM OFGAUS162u

1 SQUARES AT THE END
*% END ITERATICN

280 WRITE(LP,1011)
WRITE(LP,2CC1)
WRITE(LP,1012)
WRITE(LP,2001)
$SQ = SUMB
IDF = NCB-NP
WRITE(LP,1015)

OF THE LAST ITERATION -

(F(I)vl=11NDB)

(R{I)yI=1,N0OB)

CALL MINV(UAXXX NPy DEToLLOL,LLCM)

I =20

IKK = @ ‘

DU B8CGL I = 1.NP

CU BUG1l J = 14NP

IKK = IKK + 1

AXXXUIKK) = D{1I44J)
8G01 CJUNTINUE

IKK = 0

DO 80G2 I = 1l,NP

DO 8002 J = 1, NP

IKK = IKK + 1

D(Iyd) = AXXX(IKK)
8002 CUNTINUE

DO 7692 I=1,NP
7652 E(I) = SQRTI(C(I,I))

DU 340 I=1,4NP

DJ 340 J=1,NP

A(JoI) = CUJWIV/(ECTII*E(J))

ITERATING

STOPS!

/)

GAUS163w
GAUS1640
GAUS165%
GAUS166U
GAUS1679
GAUS1683
GAUS169%
GAUS1700
GAUS1T719
GAUS1720
GAUS1739
GAUS1740

GAUS176y
GAUS177%
GAUS1780
GAUS179v
GAUS180U

€91



340

1057

351

420

415

420
435
425
410

59

1600

D(J,1)
D(I+J)
A{l,J)

CALL GAUS6U

DEJy IV/UDIFZAI)*THII)*DIFZ(J)%TH(J))
DCJdy 1)

A(d, 1)

(3,NP, TEMP,TEMP,A)

WRITE(LP,1016)

CALL GAUSS6C

{1,NPLE,TEMP,TEMP)

IF(IDF oLEe v} GJ TO 410

SDEV = SSQ/IDF

WRITE(LP,1014) SOEV,IDF

SDEV = SQRT(SDEV)

DO 391 I=1.NP

P{I) = TH(I) + 2,0%*E(I)*SDEV
TB(I) = TH(I) = 2 0%E(I)*SDEV

WRITE(LP,1G29)

CALL GAUS6Q

DG 415

TEMP

oot n

{2yNP;s TByPLTEMP)
K=1,NCB
Cel
I=1,NP
J=1,NP
TEMP + DELZ{KyI)®DELZ(KyJ)*D(I,4)
2¢0*SQRT(TEMP)*SDEV
FIK) + TEMP
F{K) - TEMP

WRITE(LP,1C%8)

IE =

v

Dy 425

IE =

IF(NLB=IE)

1€

WRITE(LP,2001)
WRITE(LP,2ul6)
A ITE(LP,1033)

[

RETURN
WRITE(LP,1034)
GO 10 410

FORMAT (* INON-LINEAR ESTIMATION,

I=1,NCB,10
E + 1C
43044354435
NOB
(R(J)yd=1,1E)
(F{J)yd=I,1E)
NPRU8B

PROBLEM NUMBER

Y9137/ 15,

GAUS1810
GAUS18320
GAUS1330

GAUS185v

GAUS18Tu
GAUS 1383
GAUS13890
GAUS1900
GAUS 1910
GAUS1920
GAUS1930
GAUS1349

GAUS 1964
GAUS197v
GAUS1938U
GAUS199¢:
GAUS2D0uU
GAUS2310
GAUS2d2.
GAUS20L30
GAUS 2040
GAUS29250
GAUS216¢
GAUS 237y
GAUS2u8Uy

" GAUS2)9v

GAUS214.)
GAUS2110C
GAUS212y
GAUS2130
GAUS2140
GAUS 2150
GAUS2166



1 * OBSERVATICANS ',15,' PARAMETERS')
1C01 FORMAT(/'OINITIAL PARAMETER VALUES')
1602 FURMAT(/'GPRCOPORTIONS USED IN CALCULATING DIFFERENCE QUOTIENTS*)
1603 FURMAT(/'DINITIAL SUM OF SQUARES = ',ElZ2e4%)
1604 FORMAT(//77/745Xy*ITERATION Nde 'y14)
10C5 FORMAT('CDETERMINANT = ' ,E1244)
1006 FURMAT(/'OEIGENVALUES CF MOMENT MATRIX - PRELIMINARY ANALYSIS?!)
1007 FURMAT(/'OPARAMETER VALUES VIA REGRESSION?')

GAUS21T7L
GAUS2184
GAUS2199
GAUS 220y
GAUS2219
GAUS222D
GAUS2230
GAUS224U

1008 FORMATI(////'GAPPROXIMATE CONFIDENCE LIMITS FOR EACH FUNCTION VALUEGAUS22590

1 ')

GAUS 226U

1009 FORMAT{/'OITERATION STOPS - RELATIVE CHANGE IN EACH PARAMETER LESSGAUS227v

1 THAN ' ,E1244)

GAUS228u

1010 FURMAT(/'UITERATICN STOPS — RELATIVE CHANGE IN SUM OF SQUARES LESSGAUS2290

1 THAN ',El2e4)

1011 FORMAT('1FINAL FUNCTICN VALUES ')

1012 FURMAT(////*ORESIDUALS?)

1014 FORMAT(//*DVARIANCE OF RESIDUALS = '",El2e49 %y %y 14,
' ' DEGREES OF FREEDCM')

1015 FOURMAT(////'OCORRELATICN MATRIX')

1C16 FURMAT(////'ONCRMALIZING ELEMENTS®)

1033 FORMAT(//'0END OF PROBLEM NJe ',13)

1C34 FURMAT(/'OPARAMETER ERRQR')

GAUS230D
GAUS2319
GAUS2321
GAUS 2330
GAUS234)
GAUS2359
GAUS2360
GAUS2374
GAUS2389)

1039 FORMAT(/'OINDIVIDUAL CCNFIDENCE LIMITS FOR EACH PARAMETER (ON LINEGAUS239

1AR HYPOTHESIS)?)

GAUS2420

1640 FORMAT(/*OLAMBLCA = ',E1C+3,40X,"SUM OF SQUARES AFTER REGRESSION ='GAUS2417

1 E17.7)
1641 FORMAT('QANGLE IN SCALED COORDe = ',F542y ' DEGREES?)
1043 FORMAT(*CTEST POINT SUM OF SQUARES = *,El2.4)
2001 FORMAT(/10E1244)
2CC6 FURMAT(1CELl2e4)
END

GAUS 2424
GAUS243y
GAUS 244,
GAUS 245D
GAUS 2469
GAUS 2472

Gt



10
15
20
30

40
60
80
S0

S5
100

50C
600
729

SUBRUUTINE GAUSHU(ITYPESNGyAy3,C)
DIMENSICN A(NQ),8(NQ),CINQ,NQ)
CATA LP/€E/

NP = NQ

NR = NP/10

LOW = 1

LUP = 10

IF(NR) -15,20,30
RETURN

LUP = NP

ARITE(LP500)(J,yJ=LOW,LUP)

GU TO (40,6C+80),ITYPE
WRITE(LP,€6CC)(A(J) s J=LCHW,LUP)

Gu TO 100
WRITE(LP,6CCI(B(J)yJ=LCW,yLUP)

G3 TO 4y

DU 96 I = LCW,LUP

WRITE(LP72C) I,(CUJ51)4J=L0W,LUP)
LOWZ2 = LUP + 1

B3O S5 I = LCwW2,NP
WRITE(LP»72C)I(C(J,1)4J=L0OW,LUP)
LUW LOW + 10

Luyp LUP + 1G

NR = NR -1

GJ T0 10

FORMAT(/18,5112)

FORMAT(1CE1244)
FORMAT(1HD I3 41XyFT7e499F12e4)

END



SUBRUUTINE BESJ(XyNBJyD,IER)
IER = 0
L = X/3.
IF(NeEQel) GO TO 1
IF(NsEQel) GU TO 2
IER = 5
GU TO 74C49
1 IF{ZsGEele) G3 TO 3
B = le = 2624599G97%I%7 + 1,2656208%1%%4 ~ ,3163866*L%%6
1l + oU44447G#L%%¥8 — 40039444 %k10 4+ JLGC2100%7Ix%]2
GG TO 7uCH
371 = 1.71
FU = (({({0,00014476%7 - oD0072805)%7 + 4301372371 %2-.00(09512)
1 2 = J00E5274C)%7 - J2DOOODTT)I*XL + 479788456
THETO=X-o78£33816 + ((((( o00ON13558%7 — oN0029333)%7 =-4uDd354125)
1 %7 + 00262573 )1%7 - L00003954)%7L - o04166397)%7
BJ = FO*COS(THETO)/SQRT(X)
GO TO 7009
2 IF(lsGEele) GC T 4
L = 1%
BU=X®{({((({eU0001109%Z - oU2031761)%7 + 4{0443319)%7 - .0394289)
1 ¥ + «21093573)%7 —45624985)%7 + .5 )
GO TO 706CO
4 L = leo/1
FL=({({(-e00020033%7Z+,00113653)%7 - o0U249511)%7+ 400017195)%7
1 + oU1655667)%7 + L0C000156)%2 + 79788456
THETL = X+{{{((-e0CD29166%7+,00079824)*2+,00074345)*1 -
1l ¢0DE3TETIIHL + o(D00565)%L+412499612)%72 — 2435619449
BJ=F1*CCS({TFETL1)/SQRT(X)

7600 RETURN

END

KBOO2
KB82G3
KBOL4
KBDUGS
KBON6
KBOG7T

K8008
KB929

K301l
KBU12
KBO13

KBU15
KBU16

KBO13
KB8419
KB229

KBn22
KBD23
KBu24

KBO26
KBG27

KBO29

49T
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10
100

200

1000

1604
201

TEMPERATURE INTERPULATICN PROGRAM FOR DATA COLLECTED ON THE PDP/8S

KIM LAVILC SAUNDBERS MIT 54-131D

VERSION 2 / 13 JANUARY 1971

DIMENSICN THETA(30,20)+TEMP(30,20)

DIMENSICN T(30)

CATA T/723C*0,4/

DATA THETA/60040e0/ s TEMP/60N*0eD/4LP4LU/S5,6/

INPUT TEMPERTURE DATA

READ(541C0) NSyNT»THETA(NSNT),1QQQ
FORMAT( 2154F10e5458X,12)
IF(IQUQeEQeD) GO TU 10

NMAX = NS

ReDUCE T+E LATA TO DIFFERENCE FORM

NOT: NS = 1 CORRESPONDS TO TIME = 0.0

PAGE 2

WRITE(LC,20C0)
FURMAT(1H1)
DO 1000 1
DO 16GO J
K=1-+-1
THETA(I »J) = THETA(I,J) - THETA(1l,J)
WRITE(LO,201) KyJdyTHETA(I ,J)

Cu 1004 J = 1,20

THETA(1+J) = 0.0

FORMAT (' SERIES NOe = *,15,5Xs* THERMISTOR NJ.

2+ NMAX
1,20

='.15,5X,'

DT

l’F



1641/)
WRITE(LC,»202)

PERFORM THE INTERPOLATICN CN SERIES 1

OO0

DT = le40C

DU 10Ul J = 1,29

TN1 = le4 + (J-1)*%0,106

TEMP({2sJ) = THETA(2,J)%DT/TN1
1001 CONTINUE

C
C PAGE 3
C
c
C CUMPUTE THE REST COF THE INTERPOLATED TEMPERATURES
C
DU 1UL2 I = 2,.NMAX
DO 1002 J = 1,20
TN1 = 4,58

DT = (J-1)*0.100

TEMP(I 4Jd) = (THETA(I+1,J) - THETA(I,J))4DT/TNL + THETA(I,J)
1602 CONTINUE

DU 1603 I = 2,10
1003 T(I) = (I-2)%4,58 + 1440

OUTPUT THE CCRRECTEC FIELD

PAGE 4

OO0

WRITE{LDOs2GC)

WRITE(LC,202)
202 FORMAT(*® SERIES TYIME THERMISTOR CORRECTED TEMPERATUREY//7/77)
203 FURMATH{ 1493XyFT7e393Xy14,20XyF6el/)

WRITE(LO,203)((Iy TUI)yJyTEMP(I ,4J)4J=1,20), I=1,yNMAX)

RO = 24259



2000
204

DO 25090 IC = 1l,ANMAX

LLx = C

DJ 2600 I = 1,5
DO 2000 J = 1.4
LLX = LiXx + 1

R = ROX%(le-1le/2e%¥(5-11))

L = le = le/2e%%(4-J)

IF{LLXeECe3) GO TJ 200C

IFILLXeECL9) GO TO 20920

IPp =10 -1

WRITE(T79204) RyZyTEMP{IOZLLX) »T(IO)IP,LLX
CONTINUE

FOURMAT( 4F1Ce4+215)

CALL EXIT

END

04T
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PROGRAM TO CCNVERT POINT DATA INTU PULAR CJORDINATES AND CALCULATE
RACIAL ANC AZIMUTHAL VELUCITIES FOR THE STRATIFIED SPIN-UP EXPT,
KIM DAVID SAUNDERS '

MIT
OCTOBER 1S7¢

THE MAIN INPUY DATA FOR THE PRJIGRAM IS FRUM THE DIGITIZER

UN THE THIRC FLOUR OF THE EARTH AND PLANETARY SCIENCE BLDG.

DEFINITICN OF OTHER PARAMETERS:

RO IS THE RAUIUS 3F ThHE CYLINDER IN CM

H IS THE RATIO OF THE DISTANCE THE PLANE OF LIGHT IS FR3M THE
TOP JF THE CYLINDER TJ THE TOTAL HEIGHT uF THE CYLINDER.
THIS IS NEEDED FOR PARALLAX CUGRRECTIUN,

PST IS THE PARALLAX CORRECTICN FACTOIR

DIMENSICN R{20¢37),THETA(2C+36)+sDR(20+36)yDTHET(20436),TIME(36) ,
1 X{36),Y(36) +L(20+36),V(2C,36)

CIMENSION TIMP{(36) ,»HEADR(20)

DIMENSICN EU(20+306) 4EVI2C,36)

DIMENSICN RPLT(36),UPLT(36),VPLT(36),UMGPT(36),TIMK(36)
READ(54102) ( HEADRI(I)yI=1,20)

READ(541008) XOsYOeX19Y1leX29Y29HROyN

READ(54112) EXyeET,IDEX

READ(5,113) DCMEG,TSPIN

N = NUMBER OF SERIES IN CURRENT RUN

INITIALIZE EVERYTHING

DO 10 I = 1,20
R{I,37) = QU
DU 10 J=1.36
EUCT,J) = D0
EVIiIsJ) = 00

R{I+J) = DGO
THETA(L,J) = Ue0
DR{IyJ) = Q40
DTHET(I,J) = 00
TIMP(J) = 0.0

Tt



OO0

10

1cg1

3000

1002
1000

‘R11

RPLT(J)
UPLT(J)
VPLT(J)
CMGPT(J) = 0,0

TIMK(J) 5o )

TIME(J) D69

SQRT((X2 = XO)%%2 + ( Y2 - YU)**x2)

SQRT{ (X1 = XO0)**%2 + ( Y1l - YO)*%2)

ROR RO/R11

PSI le + H¥( R11/RCC = 1)

WRITE(6,105)

WRITE(6,102)( HEADR(I)I=1,20)

WRITE(6,104)

DO 100G I=1,N

FIRST CARD IN EACH SERIES MUST HAVE THE FJILLOWING INFJRMATION:
SERIES NOes» NCe OF FIRST PICTURE, NOe OF CARDS IN SERIES IN THE
FORMAT: NSER ' NPNQO NCARD-

READ(5,1C1) NSER,NPNCOsNCARD

NN = NCARD - 1

NNC = NFNDOQ + NN

DO 1901 J = 1,36

X(J) = 0.0

Y(J) = 0.0

READ( 54103)(X(J)yY(J) o J=NFNOT,NNC )

DO 1002 J = NPNOC,NNC

XP = x{J) - XC

YP = Y(J) - YC

[IFUIDEXeEQal) GO TO 3000

XP = =X

CONTINUE

RINSERyJ) = ROR®PSI¥SQRT{XPXXP + YPxYP)

THETA(NSER,J) = ATANZ2(YP,XP)

IF( THETA(NSERs»J)elLToDe0) THETA(NSERJ) = 24%3414159+THETA(NSER,J)
CUGNTINUE

DD 1004 I=1,2¢C

DO 1004 J=1,35

o
[»ReRel
[w vl e

(9]

hon

ROO

2t



IF(R(IyJ)elLEesl) GO TO 1004
DREI,J) = R{I,Jd+41) - R(I,J)
DTHET(I,J) = THETA(IJ+1) - THETA(I,J)
IFIDTHET(TI+J)elTe0e0) DTHET(IJ) = DTHET(I,J) + 24%3,14159
1004 CONTINUE
READ(54+110) ( TIME(J)4d=1,36)
DO 10C6 I = 1,20
Bu 1UC6 J=1,35
IF( ABS(CR{I,J))e LTe o00001) GO TO 10OC6
DT = TIME(J+1) - TIME(J)
TIMP(J) = 0S5%(TIME(J) + TIME(J+1))
U(TsJ) = DR(I,J)/DT
VII,sJ) = (DTHET(I,J)/DT)I%(R(I1,J) + R{I,J+1))/2,
EU(L,Jd) ABS(EX/OT )+ABS(ET*DR(I,J)/7(DT*DT))
EV(I,J) ABS(EX/DT) + ABS(ET=®V(I,J)/DT)
1606 CONTINUE
WRITE(641CG)
D0 16C7 I=1,20
WRITE(6,111)
BU 1007 J = 1.+36
IFAR{I+J) eGTa el IWRITE(6,1C7) I 3 JgRUIJ)STHETA(L,yJ),TIME(J)
IF( RUI9J)eGToela ANDaR{IyJ#1) eGTeel) WRITE(H,LUBIGR(IZJ),OTHET(I 4 U
1)yULI9Jd)oV(IeJd) o TIMP(U)ZEU(LJ) 4 EVI(I,J)
1007 CONTINUE
WRITE(6,105)
CALL EXIT
100 FURMAT( 3(2F543, 6X)42F1045,15)
101 FOURMAT( SXyI5+910X415,5X,15)
102 FURMAT(20A4)
103 FORMATH( 5(2F543, 6X))
104 FORMAT(1lH o, //77)
165 FGRMATU 1H1)
1C7 FORMAT( ZI5,3F1045)
108 FORMAT( 40X45F1545/77X4y2F1046)
109 FURMAT(' SERIES PN R THETA TIME UR
1 DTHETA u v TIME'/80X,* ERROR

€it



1190
111
112
113

2IN U ERRGR IN V*///7)
FURMAT(8F18.5)

FLRMAT( 1H ,//7)

FCRMAT( 2FlUe5+15)

FURMAT( ZF10.5)

END

LA
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SUBROUTINE SIMQUA,B,4NyKS)
THE ABOVE CARD SHOULD BE PLACED IN PROPER SEQUENCE
BEFORE CUMPILING THIS UNDER IBM FORTRAN Ge

(AR A AR ENR A NRNEREEE AR A EE AR R I EE B RN N R E RN E E N N E RN N E R AR R AN N RN RN N EFE N RN RN NN

SUBROUTINE SIMQ

PURPQOSE
OBTAIN SCLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS,
AX=8

LSAGE
CALL SIMQ(A,B8,yN,yKS)

DESCRIPTICN OF PARAMETERS
A - MATRIX OF COEFFICIENTS STORED CULUMNWISE. THESE ARE
DESTROYED IN THE COMPUTATIONe. THE SIZE OF MATRIX A IS
N BY Ne
B = VECTOR OF ORIGINAL CONSTANTS (LENGTH N)e THESE ARE
REPLACED BY FINAL SCLUTICN VALUES, VECTUR Xe
N = NUMBER UF EQUATIONS AND VARIABLESs N MUST Bt +GTe UONEe
KS = CUTPUT DIGIT
0 FCR A NURMAL SOLUTIOCN
1 FOR A SINGULAR SET OF EQUATIONS

REMARKS
MATRIX A MUST BE GENERAL.
IF MATRIX IS SINGULAR , SOLUTION VALUES ARE MEANINGLESS.
AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX
INVERSION (MINV) AND MATRIX PRODUCT (GMPRDI).

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NCNE '

METHQC

SIMQ

SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
S IMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMY
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ

SIMQ

SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ

49

19

20

39

443

50

69

70

80

99
109
110
129
130
l4u
159
166
L7vu
184
19D
20D
210
220
239
240
254
264
275
28y
290
304G
310
329
335

T
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OO0

290

30

METHOD OF SULUTICN IS BY ELIMINATION USING LARGEST PIVOTAL SIMQ
ODIVISORe EACH STAGE OF ELIMINATION CONSISTS UOF INTERCHANGINGSIMQ

ROWS WHEN NECESSARY TO AVUOID DIVISIJIN BY ZEKD DR SMALL SIMQ
ELEMENTS, SIAQ

THE FORWARU SOLUTICN TO OBTAIN VARIABLE N IS DONE IN SIMQ

N STAGESe THE BACK SCLUTICN FOR THE OTHER VARIABLES IS SIMQ
CALCULATED BY SUCCESSIVE SUBSTITUTIUNSe FINAL SOLUTICN SIMQ
VALUES ARE DEVELCPED IN VECTOR B, WITH VARIABLE 1 IN B(1l), SIMQ
VARIABLE 2 IN B(2)jseeeeeeees VARIABLE N IN B(N)e SIMQ

IF N3 PIVOT CAN BE FOUND EXCEEDING A TULERANCE OF (.0, SIMQ

THE MATRIX IS CCNSIDERED SINGULAR AND KS IS SET TO le THIS SIMQ
TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT, SIMQ

SIMQ
..‘....'..’.....'.............‘....O'....‘."........O...C......C‘SIMQ
SIMQ

DIMENSICN A(l),B(1) SIMQ
SIMQ

FORWARD SCLUTION SIMQ
SIMQ

TOL=0.0 SIMQ
KS=0 SIMQ
JJd==N SIMQ
BU 65 J=1,N SIMQ
JY=J+1 SIMQ
Jd=JJ+N+1 SIMQ
BIGA=G \ SIMQ
1T=4du~J SIMQ
CU 30 I=J.N SIMQ
SIMQ

SEARCH FOR FMAXIMUM COEFFICIENT IN COLUMN SIMQ
SIMQ

[J=1IT+1 SIMQ
IF(ABSIBIGA)-ABS(A(IJ))) 20,430,330 SIMQ
BIGA=A(1J) SI4Q
IMAX=1 SIMQ

CONTINUE SIMQ

340
35u
364
374
384
390
400
41y
420
4345
440
450
460
474
487
500
510
520
530
5495
550
560
570
58y
5990
50U
510
520
530
640
659
660
679
680
694
T4

94T
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(el aNe!

el aNe]

OO0

35

40

50

55

60

TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)

IF{ABS(BIGA)-TOL) 35,35,40
KS=1
RETURN

INTERCHANGE ROWS IF NECESSARY

I1=J+N*(J-2)
IT=IMAX=-J

DO 50U K=JsN
I1=11+N
[2=11+IT
SAVE=A(I1)
A(Il)=A(12)
A{12)=SAVE

DIVIDE EQUATICN BY LEADING COEFFICIENT

A(IL)=A(1I1)/BIGA
SAVeE=B{ IMAX)
B{IMAX)=B(J)
B{J)=SAVE/BIGA

ELIMINATE NEXT VARIABLE

IF{J-N) &5, 170,55

[dS=N*(J-1)

DO 65 IX=JY.N

IXJ=1QS+1X

IT=Jd-1X

DU 66U JX=JdY N

IXIX=N*{JX-1)+1IX

JIX=IXIX+IT
ALIXIX)I=ALIXIX)=-(ACIXJ)*A(JIX))

SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
S IMQ
SIMQ

715
720
730
140
750
160
770
780
794
8u0
81¢
824
830
840G
353
360
879
380
890
934)
9190
920
930
949
359
964
970
984
99y

SIMQ1000
SIMQ1D1v
SIMQLI2G
SIMQLa3y
SIMQ1J49
SIMQ1050
SIMQ1Y6H

I7AN



C
C
c

65 BUIX)=B(IX)=(B(JI®A(IXJ))

79

80

BACK SCLUTICN

NY=N-1
IT=N*N

DU 8C J=1,NY
[IA=1T-J
IB=N-J

IC=N

CJd 80 K=1,yJ
B(IB)=8{IB)-A(IA}%B(IC)
IA=IA-N
IC=IC-1
RETURN

END

SIMQ1070
SIMQ1)80
SIMQL199y
SIMQL1100U
SIMQ1110
SIMQ1120
SIMQ1130
SIMQll4a0
SIMQL1159
SIMQLl160
SIMQL1179
SIMQ1180
SIMQ1190
SIMQ12CO
SIMQ1210
SIMQ1220

84T



