AN EXPERIMENTAL STUDY OF THE SPIN-UP OF A

STRATIFIED FLUID

Kim David Saunders
B.S., Rose Polytechnic Institute (1966)

SUBMITTED IN PARTIAL FULFILUMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION
June, 1971

Signature of Author
Joint program in Oceanography, Massachusetts Institute of Technology Woods Hole Oceanographic Institution, and Department of Earth and Planetary Sciences, and Department of Meteorology, Massachusetts Institute of Technology, .Inna - 1971

Accepted by.
Chairman, Joint Océanography Committee in the Earth Sciences, Massachusetts Institute of Technology - Woods Hole Oceanographic Institution

Archives

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable fiaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Page 67 does not exist. A mis-numbering error by the author.

AN EXPERTNENTAL STUDY OF THE SPIN-UP OF A STRATIFIED FLUID
Kim David Saunders
Submitted to the Department of Meteorology on June 7, 1971 in partial fulfillment of the requirements for the degree of Doctor of Philosophy

A simple model of the spin-up of a continuously stratified fluid is examined both theoretically and experimentally. The geometry of the system is a right circular cylinder, bounded on the top and bottom by planes. A linearly stratified fluid is contained between the planes, rotating at an angular velocity $\Omega(I-\varepsilon)$. At $t=0$, the rate of rotation is changed to Ω. The problem is to determine the way in which the fluid adjusts to the new angular velocity and how this differs from homogeneous spin-up. The theory is studied for the cases where the Rossby number is small, the Froude number is small, the Burger number is $O(I)$ and the side walls partially conducting. The results of previous investigators are compared and it is shown that Holton's theory for the interior flow is a special case of partially conducting side walls.

Experiments testing the validity of the linear theory were conducted. The Froude number was small, the Rossby number $O\left(E^{\frac{1}{2}}\right)$, and the Burger number was $O(1)$. The side wall conditions were found to be effectively insulating. The experiments confirmed the qualitative aspect of the theory, showing that the fluid attains a quasimsteady state after a time of $0\left(\Omega^{-1} E^{-\frac{1}{2}}\right)$, but not reaching a state of solid body rotation on that time scale. Quantitatively, it was shown that the first modal spin-up times are smaller than predicted, the discrepancy depending on the local Rossby number (the Rossby number based on the $E^{\frac{1}{2}} \mathrm{~L}$ length scale). This suggests non-linear effects in boundary layers of that length scale.

Thesis supervisor: Professor Robert C. Beardsley
Title page 1
Abstract 2
Table of contents 4
List of tables 6
List of figures 7
List of plates 9
Acknowledgements 10
Dedication 12
Biographical note 13

1. Introduction 14
1.1 Geophysical motivation 14
1.2 Purpose of the thesis and description of the problem 14
1.3 Discussion of previous theory 16
1.4 Previous experiments 17
1.5 Outline for the remainder of the thesis 18
2. The linear theory 20
2.1 Formulation of the problem 20
3. 2 Conventions 23
2.3 The linear problem 24
2.4 Solution of the interior problem 27
2.4.1 The quasi-steady Ekman layer condition 27
2.4.2 The $E^{\frac{1}{2}}$ buoyancy layer conditions on the interior flow 28
2.4.3 The form of the interior solutions 31
4. Description of the experiments 33
3.1 Description of the apparatus 33
3.2 The experimental method 37
3.3 Data analysis 38
5. Experimental results 41
4.1 Experimental parameters 41
4.2 Detailed description of one experiment (No.24) 42
4.3 General discussion of the temperature data 45
4.4 Conclusions and recormendations 48
Bibliography 51
Tables 54
Figures 60
Plates 102
Appendix I 110
Appendix II 116
Appendix III 124
Appendix IV 130

6

LIST OF TABLES

Table No.

1 Experimental Parameters
2 Data Usage 56
3 Temperature Perturbation Data for
Experiment 2457
4 Experimental Parameters which do not
vary from experiment to experiment 59

7

LIST OF FIGURES

LIST OF PLATES

Plate No.	Description	page
1	Photograph of the apparatus	102
2	Detail of the test section	103
3	Detail of the table drive	104
4	The mercury slip rings	105
5	Photograph of the camera interface	106
6	Photograph of the camera trigger	107
7	Photograph of the frequency changer	108
8	Photograph of the filter board	109

ACKNOWLEDGEMENTS

I would like to thank Professor Robert C. Beardsley for his support and encouragement over the past few years. His availability and the many discussions we had were greatly appreciated. I would also like to thank the other members of my committee: Professors MBll8-Christensen and Howard and Dr. McKee for their help and advice. I also found discussions with Professors Greenspan, Barcilon and Malkus very helpful. The nine months spent in Professor Baker's laboratory were invaluable. Professor Edmond was kind enough to give me the use of GAUSHA.

Dr. J.C. Van Leer taught me a great deal about practical engineering design, and Al Bradley and Dave Nergaard taught me almost all I know about electronics. Their help was inestimable and I thank them all.

I would like to acknowledge the work done by the Athbro company of Sturbridge in building the turntable and the fine jobs of building equipment by Ed Bean of the Meteorology Department machine shop and the people of the Earth and Planetary Sciences Department machine shop.

Discussions with Drs. Cacchione and Knox and Bruce Magnell, Chris Welch and John Festa were useful and appreciated.

My wife, Barbara, is especially to be thanked for her help and patience with my thesis work while she was working on her own. My dog, Schnapps, is also thanked for her encouragement every evening when I came home.

This work was supported under National Science Foundation Grant GP 5053. Their support is gratefully acknowledged.

This thesis is dedicated to the memory of my grandfather, Hugh Keough and to my mother and father. They gave me a thirst for knowledge which I hope will never be quenched.

The author was born in Chicago, Illinois on January 21, 1945. He attended the Flossmoor Public Schools, the HomewoodFlossmoor High School and Rose Polytechnic Institute, from which he received his B.S. degree in 1966. He married Barbara Breidenbach in 1968.

1. INTRODUCTION

1.1 Geophysical motivation

The process where a rotating fluid changes from one state of rotation to another is known as "spin-up". Recently, this has been of interest in an astrophysical problem: Is the interior of the sun rotating at a faster rate than the surface? The answer to this question is of vital importance in determining the validity of the Brans-Dicke (1964) scalar-tensor theory of general relativity. This is a spin-down problem with the entire sun initially rotating rapidly and being slowed down by the torque of the solar wind.(See also Dicke,1970)The spin-up process is of geophysical interest in problems relating to the time response of the oceans, the atmosphere and the earth's core to external forcing.

1.2 Purpose of the thesis and description of the problem

The purpose of this thesis is two-fold:

1. to provide experimental results which describe the time
dependent motion of a rotating, continuously stratified fluid for a simple set of initial and boundary conditions, and
2. to compare the results with a simple linear theory, indicating the limits of validity of the model.

As mentioned in 1.1, stratified, rotating, time dependent fluid motions are of major concern in any study of the oceans or atmospheres. In order to apply mathematical models to these systems, it is necessary to determine the limits of the theory. one useful method is the laboratory experiment. Heretofore, most problems of the stratified, rotating, time dependent type have been studied theoretically as a two layer system with viscosity or a continuously stratified system without viscosity. The problem considered in this thesis incorporates both viscosity and continuous stratification.

The geometry of the problem consists of a right circular cylinder, bounded by two planes at right angles to the axis of symmetry of the cylinder, rotating at an angular velocity $\Omega(l-\varepsilon)$ coincident with the axis of the cylinder and antiparallel to the gravity vector. This is illustrated in figure l. A stably, linearly stratified, viscous fluid is contained in the cylinder. At some time, the angular velocity of the container is changed by a small amount from $\underline{\Omega}(l-\epsilon)$ to $\underline{\Omega}$. The problem is to determine the temporal and spatial structure of the flow which this change of rotation causes.

1.3 Discussion of previous theory

Greenspan and Howard (1963) were the first to carefully study the problem of homogeneous spin-up. They found the adjustment time for a homogeneous fluid to reach a new state of solid body rotation was $0\left(\Omega^{-1} E^{-\frac{1}{2}}\right)$. The spin-up is accomplished by the conservation of angular momentum in the interior as fluid from greater radii replaces fluid removed from the interior by the Ekman suction. Greenspan and Weinbaum (1965) studied the non-linear theory for the homogeneous case. They found the spin-up times were not greatly affected by Rossby number below 0.5 and that the sign of the deviation of the non-linear spin-up time was opposite the sign of the Rossby number.

The stratified problem was first studied by Holton (1965), who derived the correct interior equations and Ekman layer conditions for the linear problem. He chose unrealistic boundary conditions at the side walls for the interior variables, though these are consistent with a special case of partially conducting side walls.

Pedlosky (1967) next published a model for stratified spinup with an insulating side wall. He rederived the interior equations and obtained the same Ekman layer equations as Holton. He analyzed the $E^{\frac{1}{2}}$ buoyancy layer equations and correctly concluded that the insulating condition prevented this side wall layer from carrying any fluid from the Ekman layers to the interior. From this, he concluded that the Ekman layers could not exist and that the
spin-up must occur on the longer diffusive time scale $\Omega^{-1} E^{-1}$. He was wrong (Holton and Stone,1968) in the sense that a spin-up process does take place near the horizontal boundaries by a return flow through the interior. He was right in that the full spin-up to a new state of solid body rotation does occur on the diffusive time scale and that on the homogeneous spin-up time scale, any constant height level of fluid conserves its circulation. A part of this problem is the need for a precise definition of what is meant by " spin-up time " for a stratified fluid. This will be discussed at the end of chapter 2.

Walin (1969) and Sakurai (1970) published careful treatments of the linear, insulated wall spin-up problem on the homogeneous spin-up time scale. Their results were identical with the earlier, unpublished results of Siegmann (1967). Their solutions use the same Ekman layer conditions on the interior as Holton and Pedlosky and the same buoyancy layer conditions as Pedlosky. They applied both boundary conditions to the interior and obtained a result similar to Holton's, but differing in detail. This linear theory will be referred to henceforth as the "Walin" theory (as he published the result first) to avoid confusion.

1.4 Previous experiments

Holton (1965), MacDonald and Dicke (1967), and Modisette and Novotny (1969) conducted experiments on the stratified spin-up problem. These experiments were not carefully performed and will
not be discussed here. (See Buzyna and Veronis, 1971, for more discussion.)

The only careful experiments to date have been those of Buzyna and Veronis (1971). They studied the problem using salt stratification and dye-wire techniques to measure the azimuthal velocity at four levels. The salt stratification ensured a perfectly insulating condition and a high Schmidt number. They found some apparently paradoxical results. Near the mid-plane of the cylinder, they found the angular velocity agreed well with that predicted by Walin's theory, and near the bottom, the angular measurements showed a more rapid adjustment than predicted, but a derived "spin-up" time showed the opposite results at both levels. They explained the faster response as a possible effect of a non-linear interaction in the " corner " regions where the Ekman transport is returned (or removed for spin-down) to (from) the interior.

1. 5 Outline for the remainder of the thesis

The second chapter discusses the linear theory. This is not presented in chronological order of publication, but in a form unifying all the previous theory in a common notation. In a real experiment, perfectly insulating walls cannot exist for thermally stratified fluids. Therefore, the previous theory was enlarged to include the case of partially insulating walls to determine the proper theory for the experiment. It was found that

19
the experiments presented in this thesis were in good approximation to the insulating side wall, and it was shown that Holton's boundary condition on the interior flow at the side wall was a special case of a partially conducting side wall. The extension of the theory also reproduced Pedlosky's boundary condition for a perfectly conducting side wall. Chapter 3 discusses the experimental apparatus, method and technique of data analysis. The results of the experiments are discussed in chapter 4. One experiment is considered in detail and the rest are discussed in relation to this experiment.

In the text to follow, the parameter, B, is called a Burger number. This is not quite correct, as the aspect ratio also enters into the definition of the Burger number in its usual meaning.

2. THE LINEAR THEORY

2.1 Formulation of the problem

Most of this chapter is concerned with a presentation of the linear theory, parts of which have been discussed by Holton (1965), Siegmann (1967), Pedlosky (1967), Walin (1969), and Sakurai (1970). Each of these authors has used different conventions concerning the scaling parameters and basic variables. The scaling has been chosen to be consistent with Walin's in order that the solutions derived in this chapter may be compared to his and the basic variable has been chosen to be the stream function to reduce the order of the equation governing the interior field.

The basic equations used are the Navier-Stokes equations for an incompressible fluid. The Boussinesq approximation has been made and axial symmetry is assumed. The scaling, as mentioned above, is consistent with Walin's. It should be noted that the time scaling is $\frac{1}{2} \Omega^{-1} E^{-\frac{1}{2}}$ rather than $\Omega^{-1} E^{-\frac{1}{2}}$, and that L is the half-height of the container.

The variables are scaled as follows:

$$
\left(r_{*}, z_{*}\right)=L(r, z),
$$

$t_{*}=(2 \Omega)^{-1} E^{-\frac{1}{2}} t$,
$\left(u_{*}, v_{*}, w_{*}\right)=\epsilon \Omega \mathcal{L}(u, v, w)$,
$p_{*}=2 \Omega^{2} L^{2} \varepsilon \rho_{0} p$,
$\rho_{*}=2 \Omega^{2} L_{\epsilon \rho_{0}} g^{-1} \rho$,
$\rho_{s_{*}}=Q_{s} \rho_{s}$,
where
$P_{*}=$ real, total pressure $=p_{s_{*}}\left(r_{*}, z_{*}\right)+p_{*}\left(r_{*}, z_{*}, t_{*}\right)$,
$p_{s_{*}}=$ real, static pressure $=\rho_{0}\left(-g z_{*}+\frac{1}{2} \Omega^{2} r_{*}^{2}\right)$,
$\rho_{\text {total }}^{*}=$ real, total density $=\rho_{S_{*}}\left(z_{*}\right)+\rho_{*}\left(r_{*}, z_{*}, t_{*}\right)$,
and
$Q_{s}=\alpha \Delta T$.
Other parameters used in the analysis are
$\varepsilon=$ the Rossby number $=\Delta \Omega / \Omega$,
$\Omega=$ the final angular velocity of the system,
$\Delta \Omega=$ the change in angular velocity,
$L=\frac{1}{2}$ the height of the cylinder,
$\rho_{0}=$ the average density of the fluid,
$\Delta T=$ the temperature difference between the upper and lower boundaries,
$\nu=$ the average kinematic viscosity,
$x=$ the average thermometric conductivity,
$E=$ the Ekman number $=\nu / 2 \Omega L^{2}$,
$F=$ the Froude number $=\Omega^{2} \mathrm{~L} / \mathrm{g}$,
$B=$ the Burger number $=N / 2 \Omega$,
$N=$ the Brunt-VHisala frequency $=Q_{s} g / 2 L$,
$\sigma=$ the Prandtl number $=v / n$,

$$
\alpha=\text { the coefficient of thermal expansion. }
$$

If we define the operator

$$
\mathscr{L}=\nabla^{2}-\frac{1}{r^{2}}=\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial}{\partial r} r+\frac{\partial^{2}}{\partial z^{2}}
$$

the scaled equations of motion, heat and continuity are

$$
\begin{aligned}
& E^{\frac{1}{2}} u_{t}+\frac{1}{2} \epsilon\left(\underline{u} \cdot \nabla u-v^{2} / r\right)-v=-p_{r}+E \mathscr{L} u+\frac{1}{2} F r\left(\rho+B_{\rho_{s}}^{2}\right), \\
& E^{\frac{1}{2}} \nabla_{t}+\frac{1}{2} \epsilon(\underline{u} \cdot \nabla v+u v / r)+u=\quad E \mathscr{L} v \\
& E^{\frac{1}{2}} w_{t}+\frac{1}{2} \epsilon(\underline{u} \cdot \nabla \mathrm{w}) \quad=-p_{z}+E \nabla^{2} w-\rho \\
& E^{\frac{1}{2}} \rho_{t}+\frac{1}{2} \epsilon(\underline{u} \cdot \nabla \rho)+w \frac{\partial \rho_{s}}{\partial z} B^{2}=\frac{E}{\sigma} \nabla^{2} \rho,
\end{aligned}
$$

and,

$$
\nabla \cdot \underline{u}=0 .
$$

The incompressibility condition allows the introduction of a stream function ψ such that $(u, w)=\left(\psi_{z},-(r \psi)_{r} / r\right)$.

In the theory to follow, the Rossby number and the Froude number will be neglected. Although the existence of an initial state of solid body rotation is precluded in any rotating, stratified fluid whose Froude number is not identically zero (see Barcilon and Pedlosky, 1967), such a state will be assumed, arguing that the superposed Sweet-Eddington flow can be separated from the spin-up in the linear theory. The further assumption of a linear basic density gradient will be made: $\frac{\partial \rho_{s}}{\partial z}=-1$. The full equations, after eliminating the pressure field, are

23

$$
\begin{aligned}
& \left(E^{\frac{1}{2}} \frac{\partial}{\partial t} \mathcal{L}-E \mathcal{L}^{2}\right) \psi-v_{z}-\rho_{r}=\frac{1}{2} \epsilon\left(\psi_{z}\left((\mathcal{L})_{r}-\frac{1}{r} \mathcal{L} \psi\right)-\right. \\
& \frac{I}{r} \frac{\partial}{\partial z}(\mathcal{L} \psi)(r \psi)_{r}-2 v v_{z} / r+ \\
& \frac{1}{2} F r\left(\rho_{z}-B^{2}\right) \text {, } \\
& \left(E^{\frac{1}{2}} \frac{\partial}{\partial t}-E \mathcal{L}\right) v+\psi_{z}=\frac{1}{2} \frac{\epsilon}{r}\left(v_{z}\left(r_{\psi}\right)_{r}-\psi_{z}(r v)_{r}\right), \\
& \left(E^{\frac{1}{2}} \frac{\partial}{\partial t}-\frac{E}{\sigma} \nabla^{2}\right) \rho+B^{2}(r \psi)_{r} / r=\frac{1}{2} \epsilon\left(\left((r \psi)_{r} / r\right)_{\rho_{z}}-\rho_{r} \psi_{z}\right) .
\end{aligned}
$$

The initial condition for the problem is $v=r$ at $t=0$, and the boundary conditions are $\underline{u}=0$ on all boundaries, and

$$
\frac{\partial \rho}{\partial n}=\Gamma_{n}\left(\rho-\rho_{n}\right),
$$

where
$\frac{\partial}{\partial n}$ is the derivative normal to a boundary
and Γ_{n} and ρ_{n} depend on the boundary and the specific case under study. Physically, this condition is an approximation to partial heat conduction through a thin wall. See appendix II for the derivation of this condition.

2.2 Conventions

The convention used in the perturbation expansion follows. Let Y be any dependent variable. Then

$$
Y=Y^{(0)}+E^{\frac{1}{4}} Y^{(1)}+E^{\frac{1}{2}} Y^{(2)}+\ldots
$$

No expansion in powers of $E^{1 / 3}$ are needed for the problem when B is $O(1)$. See appendix II for details.

The boundary layer variables will be denoted by diacritical marks above the dependent variable. The stretched coordinates will be represented by lower case Greek letters and "x".

The conventions for the boundary layer independent and dependent variables are

Ekman layer, $\zeta=E^{-\frac{1}{2}}\left(1+(-1)^{j} z\right), j=0$ on the bottom $j=1$ on the top, $\mathrm{Y} \rightarrow \overline{\mathrm{Y}}$,
$E^{\frac{1}{4}}$ horizontal layer, $\eta=E^{-\frac{1}{4}}\left(1+(-1)^{j} z\right), Y \rightarrow \overline{\bar{Y}}$, $E^{\frac{1}{2}}$ buoyancy layer, $\quad \xi=E^{-\frac{1}{2}}\left(r_{0}-r\right), \quad Y \rightarrow \hat{Y}$, $E^{\frac{1}{2}}$ Stewartson layer, $x=E^{-\frac{1}{4}}\left(r_{0}-r\right), \quad Y \rightarrow$ 全. Other conventions will be introduced as needed.

2.3 The linear problem

For the linear problem, $\varepsilon=0$ and $F=0$. The variables are expanded in a perturbation expansion in powers of $\mathrm{E}^{\frac{1}{4}}$.

Interior equations
O(1)

$$
\begin{aligned}
& v_{z}^{(0)}+\rho_{r}^{(0)}=0 \\
& \psi_{z}^{(0)}=0 \\
& \left(r_{\psi}^{(0)}\right) r=0
\end{aligned}
$$

$O\left(E^{\frac{1}{4}}\right)$
The equations for the $E^{\frac{1}{4}}$ terms are the same as the $O(1)$ equations.
$O\left(E^{\frac{1}{2}}\right)$

$$
\begin{aligned}
& v_{z}^{(2)}+\rho_{r}^{(2)}=0 \\
& v_{t}^{(0)}+\psi_{z}^{(2)}=0 \\
& \rho_{t}^{(0)}+\frac{B^{2}}{r}\left(r_{\psi}^{(2)}\right)_{r}=0
\end{aligned}
$$

Ekman layer equations

O(1)

$$
\frac{\left.\bar{\psi}^{\frac{1}{4}}\right)}{}(0)=\bar{\rho}^{(0)}=0
$$

$$
\bar{\psi}^{(I)}=\bar{\rho}^{(I)}=0
$$

$$
O\left(E^{\frac{1}{2}}\right)
$$

$$
\begin{aligned}
& \bar{\psi}_{\zeta \zeta \zeta \zeta}^{(2)}+(-1)^{j} \bar{v}_{\zeta}^{(0)}=0 \\
& \bar{v}_{\zeta \zeta}^{(0)}-(-1)^{j} \bar{\psi}_{\zeta}^{(2)}=0 \\
& B^{2}\left(r \bar{\phi}^{(2)}\right)_{r} / r-\sigma^{-1} \bar{\rho}_{\zeta \zeta}^{(2)}=0
\end{aligned}
$$

$\mathrm{E}^{\frac{1}{4}}$ horizontal thermal boundary layer equations
0 (1)

$$
\left(\frac{\partial}{\partial t}-\sigma^{-1} \frac{\partial^{2}}{\partial \eta^{2}}\right) \frac{\bar{\rho}}{=(0)}=0
$$

The same equations hold to this order.

$$
\begin{aligned}
& \frac{E^{\frac{1}{2}} \text { buoyancy layer equations }}{O(1)} \\
& \hat{\psi}^{\hat{\psi}}(0)=0 \\
& 0\left(E^{\frac{1}{4}}\right) \\
& \hat{\psi}^{(1)}=0 \\
& 0\left(E^{\frac{1}{2}}\right) \\
& \hat{\psi}_{\xi \xi \xi \xi}^{(2)}-\hat{\rho}_{\xi}^{(0)}=0 \\
& \quad \hat{\rho}_{\xi \xi}^{(0)} \quad+\sigma B^{2} \hat{\psi}_{\xi}^{(2)}=0
\end{aligned}
$$

$\underline{E}^{\frac{1}{4}}$ Stewartson layer equations
O(1)

$$
\begin{aligned}
& \hat{\hat{\psi}}(0)=0 \\
& \hat{\hat{\rho}}^{(0)}=0
\end{aligned}
$$

$$
O\left(E^{\frac{1}{4}}\right)
$$

$$
\hat{\psi}^{(1)}=0
$$

$$
\hat{\rho}^{(1)}=0
$$

$$
O\left(E^{\frac{1}{2}}\right)
$$

$$
\begin{aligned}
& \hat{\hat{\psi}}^{(2)}=0 \\
& \hat{\hat{v}}_{t}^{(0)}-\hat{\hat{v}}_{x x}(0)=0 \\
& \hat{\rho}_{x}^{(2)}-\hat{\hat{v}}_{z}(1)=0
\end{aligned}
$$

2.4 Solution of the interior problem

From the interior equations, a single equation may be obtained for $\psi^{(2)}$:

$$
\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial}{\partial r} r_{\psi}(2)+B^{-2} \psi_{Z Z}^{(2)}=0 .
$$

This is clearly separable for the geometry of the problem and solutions obtained in terms of Bessel and hyperbolic functions. The boundary conditions on the interior fields must be derived from the boundary layer equations.

2.4.1 The quasi-steady Ekman layer condition

The quasi-steady Ekman layer conditions are used as the Ekman layers do not change rapidly with time after the initial spin-up on the $O(1)$ time scale. This condition is consistent with the scaling on the $\mathrm{E}^{-\frac{1}{2}}$ time scale.

The nonslip conditions at the top and bottom demand
$\bar{\psi}_{\sigma}^{(2)}=0, \bar{\psi}^{(2)} \psi^{(2)}=0$, and $\bar{v}^{(0)}+v^{(0)}=0$ on $z= \pm 1$ and $\zeta=0$.

From the Ekman layer equations, the Ekman layer azimuthal velocity and stream function are found to be

$$
\begin{aligned}
& \bar{v}^{(0)}=-v_{B} \exp \left(-2^{-\frac{1}{2}} \zeta\right) \cos 2^{-\frac{1}{2}} \zeta, \\
& \bar{\psi}^{(2)}=(-1)^{j} 2^{-\frac{1}{2}} v_{B} \exp \left(-2^{-\frac{1}{2}} \zeta\right)\left(\cos 2^{-\frac{1}{2}} \zeta+\sin 2^{-\frac{1}{2}} \zeta\right),
\end{aligned}
$$

where $v_{B}=v^{(0)}(z= \pm 1)$. From these equations, we have

$$
\bar{\psi}^{(2)}(\zeta=0)=(-1)^{j} 2^{-\frac{1}{2}} v_{B}=-\psi^{(2)}(z= \pm 1) .
$$

These conditions, with the interior equations give

$$
\psi_{t}^{(2)}-(-1)^{j} 2^{-\frac{1}{2}} \psi_{z}^{(2)}=0 \text { at } z= \pm 1
$$

as the boundary conditions on the interior flow at the horizontal boundaries.
2.4.2 The $\mathrm{E}^{\frac{1}{2}}$ buoyancy layer conditions on the interior flow

The nonslip and thermal boundary conditions give

$$
\begin{aligned}
& \psi^{(2)}+\hat{\psi}^{(2)}=0, \\
& \underset{\xi}{\psi_{\xi}(2)}=0, \\
& \hat{\rho}_{\xi}^{(0)}=-\Gamma^{\prime}\left(\hat{\rho}^{(0)}+\rho^{(0)}\right) \text { at } r=r_{0}, \xi=0,
\end{aligned}
$$

where

$$
\begin{aligned}
& \Gamma^{1}=E^{\frac{1}{2}} \Gamma, \\
& \rho_{n}=0 .
\end{aligned}
$$

After the tangential velocity condition is applied, it is
found that

$$
\begin{aligned}
& \hat{\rho}^{(0)}=b \exp (-h \xi) \cos h \xi \\
& \hat{\psi}(2)=\frac{h b}{\sigma B^{2}} \exp (-h \xi)(\sin h \xi+\cos h \xi),
\end{aligned}
$$

where

$$
h=\left(\frac{1}{2} B\right)^{\frac{1}{2}} \sigma^{\frac{1}{4}}:
$$

From the thermal boundary condition

$$
\left(\Gamma^{\prime}-h\right) b=-\Gamma^{\prime} \rho^{(0)} \quad \text { at } r=r_{0} \text {, }
$$

and hence

$$
\frac{\sigma B^{2}\left(\Gamma^{\prime}-h\right)}{\Gamma^{\prime} h} \hat{\psi}^{(2)}(\xi=0)=-\rho^{(0)}
$$

As $\psi^{(2)}+\hat{\psi}(2)=0$ at $r=r_{0}, \xi=0$, we have

$$
\frac{\sigma B^{2}\left(\Gamma^{\prime}-h\right)}{\Gamma^{\prime} h} \psi^{(2)}=\rho^{(0)}
$$

or

$$
\frac{\sigma B^{2}\left(\Gamma^{\prime}-h\right)}{\Gamma^{\prime} h} \psi_{t}^{(2)}=\rho_{t}^{(0)}
$$

and 2 s

$$
\rho_{t}^{(0)}=-\frac{B^{2}}{r}\left(r_{\psi}^{(2)}\right)_{r,}
$$

the boundary condition on $\psi^{(2)}$ at $r=r_{0}$ is

$$
\psi_{t}^{(2)}+\frac{\Gamma^{\prime} h}{\sigma\left(\Gamma^{\prime}-h\right)} \frac{1}{r}\left(r \psi^{(2)}\right)_{r}=0 .
$$

This condition, the Ekman conditions, and the requirement that all fields remain finite at $r=0$, define the boundary value problem. The side wall boundary condition may be studied in a number of cases. In the first case, where the coefficient $K=h \Gamma^{\prime} / \sigma\left(\Gamma^{\prime}-h\right)$ is $O\left(E^{\frac{1}{2}}\right)$, the side wall boundary condition reduces to $\psi^{(2)}=0$ at $r=r_{0}$ (as ${ }^{(2)}$ goes to zero as t increases without bound). This is just the insulating condition $\rho_{r}=0$ at $r=r_{0}$. When this condition is used, it should be noted that the buoyancy layer ceases to exist and thus cannot transport fluid from the Ekman layers to the interior. This condition may be created by either an insulating wall or a large Prandtl number.

The next interesting case occurs when $\Gamma^{\prime}=h$. This requires that $\left(r_{\psi}{ }^{(2)}\right)_{r}=0$ at $r=r_{0}$. This is the equivalent of Holton's boundary condition, expressed in terms of the stream function.

The last special case of interest occurs as Γ^{\prime} becomes infinite. This corresponds to a side wall held at constant temperature, or a perfectly conducting side wall. This gives a boundary condition which is equivalent to Pedlosky's side wall sondition, expressed in terms of the stream function. Both Holton's and Pedlosky's boundary conditions would be very difficult and expensive to produce in a laboratory experiment. This is mostly due to problems in constructing side walls of

31

sufficient conductivity and maintenance of the outer wall temperature.

2.4.3 The form of the interior solutions

The initial condition for the interior fields is $\mathrm{v}^{(0)}=-\mathrm{r}, \mathrm{p}^{(0)}=0$, at $t=0$. The solution of the problem is then quite straightforward (see appendix II) and is given by
${ }_{\phi}(2)=\sum_{n}-2^{-\frac{1}{2}} r_{0} C_{n} e^{-\beta} n^{t} \frac{\sinh m_{n}{ }^{z}}{\sinh m_{n}} J_{1}\left(\alpha_{n} r / r_{0}\right)$,
$v^{(0)}=-r+\sum_{n} r_{0} C_{n}\left(1-e^{-\beta_{n} t}\right) \frac{\cosh m_{n} z}{\cosh m_{n}} J_{1}\left(\alpha_{n} r / r_{0}\right)$,
$\rho^{(0)}=\sum_{n} r_{0} B \epsilon_{n}\left(I-e^{-\beta_{n} t}\right) \frac{\sinh m_{n}{ }_{n}}{\cosh m_{n}} J_{0}\left(\alpha_{n} r / r_{0}\right)$,
where

$$
m_{n}=B a_{n} / r_{0} \quad, \quad \beta=2^{-\frac{1}{2}} m_{n} \operatorname{coth} m_{n}
$$

and the a_{n} satisfy the equation

$$
\frac{J_{1}\left(\alpha_{n}\right)}{J_{0}\left(\alpha_{n}\right)}+\frac{2^{\frac{1}{2}} h \Gamma^{\prime}}{B 0\left(\Gamma^{\prime}-h\right)} \tanh \frac{B \alpha_{n}}{r_{0}}=0
$$

The C_{n} are defined by

$$
r=\sum_{n} C_{n} J_{1}\left(\alpha_{n} r\right)
$$

For the insulating case, $c_{n}=\frac{2}{\alpha_{n} J_{0}\left(\alpha_{n}\right)}$. For the non-insulating
cases, the solutions for the C_{n} are obtained by numerical methods (see appendix II).

From these solutions, we can now define a precise "spin-up time ". The modal coefficients, β_{n}, are of the form of reciprocal times. The n-th modal spin-up time will be defined as $1 / \beta_{n}$. It should be noted that these spin-up times are independent of position or time.

For the experiments described in this thesis, the coefficient in the second term of the eigenvalue equation is $O\left(E^{\frac{1}{2}}\right)$ and thus, the theory that will be used for comparison with the experiments will be the insulating side wall walin theory.

3. DESCRIPTION OF THE EXPERINENTS

3.1 Description of the apparatus

The apparatus was designed to test the theory discussed in the previous chapter. The basic geometry of the test section was a right circular cylinder, made of plexiglass, 8.89 cm high, 10.03 cm inner radius, with all walls approximately 1 cm thick. This cylinder was bounded on the top and bottom by 0.6 cm thick glass plates, flat to better than 0.002 cm . Glass was chosen for its relatively high thermal conductivity, clarity and mechanical strength. The walls and the glass plates were made rather thick for reasons of rigidity. The cylinder and the glass plates were sealed inside a large plexiglass box. Spaces were provided above and below the glass plates for the heating and cooling water. The interior of the cylinder was filled with Dow-Corning 200 silicone oil, l cs viscosity grade. This was chosen as the working fluid for its large coefficient of thermal expansion and high resistivity. The low surface tension of the oil made removal of air bubbles particularly easy. The space around the cylinder, between the glass plates was filled with Dow-Corning 200 silicone
oil, 500 cs viscosity grade. The surrounding oil served the purpose of providing a thermal isolation from the room and a medium for viewing the interior of the cylinder from the side with little distortion. The high viscosity was used to ensure that the spin-up by side wall diffusion would be at least as important as the Ekman pumping mechanism. The purpose was to preserve the temperature field outside the cylinder as much as possible. An even higher viscosity would have been used, but the problems involved in working with such high viscosity oils prevented this.

The plastic box was mounted on a three point leveling system on the turntable and provided with clamps which allowed leveling and centering of the test section. Before the experiments were performed, the tank was leveled to better than $30^{\prime \prime}$ of arc and centered to within $\pm 0.02 \mathrm{~cm}$ of the rotation axis of the turntable. The centering was needed to make the flow axisymmetric and to avoid problems of variation of the centrifugal acceleration on the fluid. The centrifugal effect could be neglected for a homogeneous fluid, but not for a stratified fluid. When the turntable's rate of rotation is changed to give the initial condition, the centering must be accurate.

The turntable was the MIT/GFDL Air Bearing Turntable. The details of construction of this turntable are described in Saunders (1970). The axis of rotation of the table was adjusted to within $3^{\prime \prime}$ of the vertical. (This is the same order as the tilt of the building due to differential heating at the 6th floor. See Simon and Strong, 1968) The rate of rotation of the turntable was
very stable. Under very good conditions, stabilities of several parts in a million have been obtained. For most experiments, however, the stability was of the order of a few parts in 10^{4}.

The density gradient in the test section was maintained by heating the upper plate and cooling the lower plate by running hot and cold water through the spaces above and below the plates, respectively. Temperature was used instead of salt to maintain the density field because of diffusive problems near the boundaries with salt and the ease of monitoring the density field when temperature was used. The temperature of the water was controlled by two water temperature controlless to better than $0.05^{\circ} \mathrm{C}$. The temperature on the top and bottom plates varied by less than $0.02^{\circ} \mathrm{C}$ during the experiments.

The density field was measured by sensing the temperature at a number of thermistors placed in the interior of the cylinder. Twenty thermistors were originally available for determining the temperature field, but two ceased to function, leaving eighteen. The location and numbering system of the thermistors is shown in figure 2. The locations of the thermistors were chosen to increase the density of thermistors near the boundaries where the temperature field would be changing most rapidly. The arrangement of putting the thermistors at half the distance from the wall as the previous thermistors made the data reduction easy. The temperature sensing was done by measuring the out of null voltage of a Wheatstone bridge in which the thermistors constituted one of the resistors. Thirty bridges were available, but not all
were used. A stepping switch from a guidance system testing computer was used to sequence the bridge's output. This was amplified by a high input impedance amplifier before the signal left the turntable. Mercury slip rings were used for electrically connecting the turntable to the stationary laboratory reference frame to keep slip ring noise low. The signal was then filtered to remove 60 Hz hum and higher frequency noise. The voltage was then converted into a digital format and read into the memory of a computer. The computer used in these experiments was a Digital Equipment Corporation P.D.P. 8/S computer. All the sequencing and data sampling operations in the experiments were performed under the control of this computer.

The sequence of operations in a typical experiment began with starting the computer. This was followed by a five second wait state for the operator to set a series of switches which could not be set before the run, due to possible accidental triggering of some of the circuitry. After the five second wait period was over, the stepping switch was set to the first position and the speed changed. A photograph was taken and the stepping switch sequenced and the temperature taken for all the thermistors. The photograph-thermistor sequencing cycle tod about 4.5 seconds to sample all the thermistors. About twenty five pictures were taken and fifty full cycles of thermistor readings taken for each experiment.

The velocity field data was measured by photographing neutrally buoyant particles at the mid-plane of the cylinder. The particles
were polystyrene spheres, about 0.05 cm in diameter. The camera used was an automatic Nikon $F(35 \mathrm{~mm})$, The film used was Kodak Tri-X, developed in Diafine. The light source was a G.E. projector lamp and the beam was collimated by two slits. The thickness of the beam at the mid-plane was about 1 cm , approximately 10% of the cylinder height.

The apparatus is described in more detail in appendix I.

3.2 The experimental method

A typical experiment began by turning on the water temperature controllers and the pumps on the table and letting the system equilibrate for two to three hours. This time was necessary for the system to reach thermal equilibrium and to make sure the flow rates and pressures were balanced to avoid breaking the apparatus. During this time, the equipment was checked and the computer tested. The camera was loaded and the experiment number and date photographed. The turntable was then turned on and the speed checked. If the rate was constant to better than one part in 10^{4}, the system was left to settle for another two hours. This allowed the large initial spin-up transients to die out and the temperature field to adjust by diffusion. The temperature was measured during this time to determine when it had reached steady state and linearity. These measurements were performed at a lower amplification than used during the actual experiments. This allowed checking the absolute temperature field. After these measurements were made,
the amplification was increased to allow the use of differential measurements of higher precision. The experimental parameters were set into the computer and the apparatus readied for the run.

The sampling during the run was conducted in the sequence described in the previous section. The sampling time usually covered two to five homogeneous spin-up times.

3.3 Data analysis

The temperature data from the thermistors were taken sequentially. In order to analyze the time dependence of the temperature field, it was necessary to interpolate the output of each thermistor to the beginning of the sampling sequence. A linear interpolating routine was used, as the temperature data seemed smooth enough to warrant it.

After the data were synchronized, the initial readings were subtracted from the later readings to give the perturbation temperatures. This put the data into a form which could be readily compared to the theory. As the Sweet-Eddington flow is essentially 2 steady phenonmenon, this subtraction of the initial readings from the time-dependent readings eliminated the effect of this superposed circulation to $O(\epsilon)$.

In order to analyze the temperature field, it was first necessary to obtain a representation of the field from the measurements at specific points in space and time. A least squares technique, using Bessel function in the radial direction
was found to be inadequate, due to the large oscillations produced in the fit. The representation of the field finally decided upon was a double polynomial expansion in the radial and vertical coordinates. If $\mathrm{T}^{\prime}(\mathrm{r}, \mathrm{z} ; \mathrm{t})$ is the fitted field, then
$j=\mathrm{N}-1$
$\mathrm{i}=\mathrm{N}$

$$
T^{\prime}(r, z ; t)=\sum_{\substack{i=1 \\ j=1}}^{1-1} a_{i j} r^{2(i-1)} z^{2 j-1}
$$

In the actual analyses, N was taken as either 3 or 4. This polynomial was fitted to the data by a standard least squares technique. The fitted field was computed and contoured. If the contours indicated a bad fit, the standard deviation of the fit was checked. This was usually more than 15 digitizing intervals (one digitizing interval $=0.0026^{\circ} \mathrm{C}$). If the contour plot indicated a good fit, the standard deviation was usually no more than 2 to 4 digitizing intervals. There was never any question whether the fit was good or bad. The fits which were not reliable were not used. This fitting program is listed in appendix IV.

In order to compare the observed results with the theory, it was decided to try to analyze the modal behavior of the temperature field. This was accomplished by decomposing the polynomial into its Bessel modes in the radial direction, based on $J_{0}\left(\alpha_{n} r\right)$ where the α_{n} are the eigenvalues of the previous chapter. This is quite easy to do, as the even powers of r are easily Fourier-Bessel analyzed by recursion methods. These are discussed in appendix II. Once these have been found, the modal structure of the flow is known at any time.

According to the linear theory, the modal structure of the temperature field has the general form $A_{n}(z)\left(1-e^{-\beta_{n}}{ }^{t}\right)$, where the $\beta^{\prime \prime}$ s are the reciprocal spin-up times. The fitted field, after the Fourier-Bessel decomposition, was fitted to this functional form with a non-linear fitting routine, GAUSHA, which is listed in appendix IV. The $A_{n}(z)$ and β_{n} were determined for sixteen equally spaced values of z and $n=1$, and for the field integrated in z from 0 to -1 . Only the first mode was computed.

The accuracy of the analysis procedure was checked by generating theoretical data according to the linear theory and analyzing them in the same manner as the observed data. The first mode was reproduced to within a few percent, but the second mode was in error by more than twenty percent. Because of this, the second mode was not used.

An attempt was made to determine the modal spin-up times by fitting the observed angular positions of the particles with the theoretical form. It was found that this method was not feasible, as it was too sensitive to random errors in the data. This will be discussed in more detail in the nexi chapter.

4. EXPERIMENTAL RESULTS

4.1 Experimental parameters

One of the original purposes of this thesis was to study the stratified spin-up problem over a wide range of parameter space. The way in which the experiment was constructed limited the number of parameters which could be varied. The length and height scales, the viscosity, coefficient of thermal expansion and the thermometric conductivity were all held constant for all the experiments. In order to avoid changing the settings of the thermistor bridges and to keep the effect of the viscosity stratification constant, the temperature difference between the top and bottom plates was kept approximately constant. This required that changes in the Burger number could be produced only by changing the rotation rate, hence making the Burger number proportional to the Ekman number and to the square root of the reciprocal of the Froude number. The Rossby number was independent of the other nondimensional parameters of the system. The values of the non-dimensional parameters and some of the mora important dimensional parameters are given in table 1.

Not all the data were used. Some were not reliable due to errors committed during the runs. The temperature data from the first nine experiments could not be used as the electrical noise from the pumps on the turntable was too large. After that experiment, electronic filters were introduced to remove this noise. The data usage is given in table 2.
4.2 Detailed description of one experiment (No. 24)

Before looking at the data from all the experiments, it is worthwhile to consider one experiment in detail. Experiment 24 was chosen because it was representative of the stratified spin-up experiments, lying in the mid-range in both the Burger and Rossby numbers, and being rather free from noise.

The velocity data for experiment 24 had the least noise of any of the velocity data. The angular position of one particle at an average non-dimensional radius of 1.08 is plotted in figure 23. The non-dimensionalized angular velocity for the same particle is plotted in figure 24. The solid lines in both figures are the theoretical curves predicted by the Walin theory with insulating side walls. At first glance, it appears that the agreement of the data with the theory is good. It would be easy to conclude that the experiment agrees well with the theory for the mid-plane. This is actually not warranted. If the spin-up time for the first mode is determined by fitting the angular position with the theoretical functional form, it is
found that the precision of the experiment is not great enough to determine the spin-up time to any reasonable degree of accuracy. With ten points, a value of 2.0 is found instead of the theoretical value of about 1.2. If eight points are used, the value changes to 1.6. If the data were reliable, there would have been no significant change when two points out of ten were deleted. Another indication of the precision needed is that the large deviations occured even though the positions agree with the theory to within a few thousandths of a radian. Unfortunately, this is the limit of resolution for these experiments. The fitting procedure has shown that the spin-up time is shorter than predicted, even though the exact value is in doubt. The other experiments were more subject to noise and this procedure was not used for them. The causes of the noise were mostly in the copying and digitizing of the photographs.

The temperature data offer much better hope for experimentally determining the modal spin-up times. The interpolated temperature perturbations, in terms of absolute digitizing intervals are presented in figures 5-22 versus time. It may be seen that the actual results show the same trends as the theory, but exact agreement is not very good. In most cases, the perturbation temperatures start out with larger amplitudes than the theoretical temperatures and have a greater curvature. In some cases, they cross the theoretical curves, and in others, they show a tendency to cross outside the time range. Another feature is the values of the perturbation temperatures at the mid-plane (i.e., thermistors
whose numbers are even multiples of four) are not exactly zero, as predicted. This is especially evident in figures 14, 18, and 22.

In all cases, the perturbation temperature was lower than predicted. The experiment was a spin-down, and therefore, the Ekman pumping would have been upward for fluid near the lower boundary. The viscosity of the fluid is greater there, due to the lower temperature, resulting in a larger local Ekman number than assumed for the whole flow. This would have resulted in a larger Ikman pumping for the bottom than for the top. The fluid below the mid-plane would have been expected to penetrate some distance above the mid-plane and cool the thermistors there. This is exactly what was observed. The thermistors were observed to be warmer for the cases where the fluid was spunmup.

The temperature data from this experiment were analyzed by the method discussed in 3.3. A typical fit of the temperature field is shown in figure 41. (For a qualitative comparison with contoured data from a numerical model of stratified spin-up, see figure 40.) The fits are generally good, the standard deviation being one or two digitizing intervals. The Fourier-Bessel decomposition and fitting the time dependent functional form was carried out for seven levels in z and for the vertically integrated polynomial. The reciprocal spin-up time for the first mode are shown in figure 25 as a function of depth. The nonlinear fitting routine computes the confidence limits assuming a linear hypothesis on the other variables for the input data. These are
the error bars indicated in the figure. At the 95% confidence level, the reciprocal spin-up times are not significantly different from being constant with depth. They are all slightly greater than the integrated result, but this is probably a result of the fitting procedure. The integrated results and the results at the different heights do not differ on the 95% confidence level. Both the value from the vertically integrated data and the values at the various levels are significantly greater than the values predicted by the linear theory. This feature has been found in all the experiments which have been analyzed. The asymptotic coefficient for the first Bessel mode are plotted in figure 26 as a function of depth.

4.3 General discussion of the temperature data

The temporal coefficients for the first mode are plotted in figure 28 versus the Burger number. It may be seen that as the Burger number increases, the coefficients also increase, about as rapidly as predicted by the theory. However, the values of the computed coefficients are all greater than those predicted by the linear theory. This means that for all the experiments considered, the spin-up times are smaller than predicted.

A smaller spin-up time would be expected for several reasons. The wires which support the thermistors exert a certain amount of drag on the interior flow. This drag would cause the interior to spin-up more rapidly than predicted and must be considered in
any explanation of the increase in the reciprocal spin-up time. Another possible cause is the increased Ekman pumping near the bottom boundary which would increase the value of the coefficient in the bottom half of the tank, where the thermistors are located. Non-linear effects could be another possible cause.

The effect of the wires may be estimated by comparing the rates of energy dissipation of the wire drag to that of the spin-up process. The simple case where the wires are all on diameters of the cylinder and the spin-up is homogeneous is discussed in appendix II. It is found that the rate of dissipation is less than 5\% of the spin-up process. This eliminates the effect of the wire drag as a major source of the smaller spin-up times. (The case where the fluid is stratified has also been studied and the same result found.)

The viscosity varies by about 10% from the bottom to the top of the tank. The difference in viscosity, and hence the Ekman number, from the average value is about 5\%. The implied difference in the Ekman suction and hence, the decrease in the spin-up time for the lower half of the cylinder would be about $2 \frac{1}{2} \%$, which is less than the effect of the wire drag .

There remains the possibility of non-linear interactions. These could occur anywhere in the fluid, but could appear in the lowest order solution in the boundary layers when the local Rossby number (based on the length scale $E^{\frac{1}{2}} \mathrm{~L}$) becomes $0(1)$, even though the interior Rossby number is small. This effect can be seen when the percentage deviation in the spin-up coefficients
are plotted against the local Rossby nunber. The magnitude of the discrepancies increases with increasing local Rossby number, though there is a great deal of scatter. The scatter is the same order as the 95% confidence limits determined by the fitting routine. These results are plotted in figure 29. The graph indicates that the effect may be taking place where the length scale is $O\left(E^{\frac{1}{2}}\right)$. These regions are the Ekman layers, the $E^{\frac{1}{2}}$ buoyancy layer and the $E^{\frac{1}{2}} \times \mathrm{E}^{\frac{1}{2}}$ "corner " regions.

The buoyancy layer may be ruled out if it is argued that the non-linear terms are identically zero for the first order, thus the equations for the first non-linear interaction are the same as the linear equations and ther is no correction.

The Eknan layers may be ruled out by arguing that the non-linear stratified Ekman layers are not qualitatively different from the non-linear homogeneous Ekman layers. In the homogeneous case, the sign of the deviation from the linear theory depends on the sign of the Rossby number. In these experiments, it does not.

The only regions left are the "corner" regions where the Ekman transport is returned to the interior. This is a singular region in the analytic theory, and it may be expected that the scaling arguments do not hold there. Unfortunately, the solution of the problem in that region requires the solving of the full non-linear Navier-Stokes equations. This is not very tractable analytically, but may be numerically.

The asymptotic oefficients agree well with the linear theory and are presented in figure 27.

4.4 Conclusions and recormendations

From the experiments it may be concluded that the experiment and the theory are in qualitative agreement. The first modal spin-up times are smaller for the stratified fluid than for the homogeneous fluid. The order of magnitude of the temperature and velocity fields are consistent for the theory and experiment. The fluid does not attain a solid body rotation on the $E^{-\frac{1}{2}}$ time scale, but does reach a new quasi-steady state. The insulating wall condition is a good approximation for the experiments.

There is some disagreement with the linear theory. In all cases, the spinmp times are shorter for the first mode than predicted by the linear theory. The discrepancy between the theoretical and observed values increases with increasing local Rossby number. The discrepancy cannot be accounted for by wire drag or viscosity stratification, though they affect it,or by non-linear effects in the Ekman or buoyancy layers. The effect of the corner regions cannot be ruled out.

Buzyna and Veronis (1971) have studied the problem of stratified spinmp in a similar geometry, using salt stratification to obtain the density gradient. They measured the azimuthal velocities at four levels using the Thymol blue dye line technique (Baker, 1966). They compared their results with the theory at the mid-plane and near the lower boundary, above the Ekman layer. The insulating side wall condition was the proper side wall boundary condition for their problem and their Schmidt number
was very large.
From the comparison of the azimuthal positions of the dye lines with the theory, they found that the spin-up was more rapid near the horizontal boundaries, reproducing the qualitative aspects of the theory. This is in agreement with the observation in this thesis.

They also computed some 'spin-up times" at two levels. These were defined as the time at which the azimuthal velocity had fallen to within e^{-1} of its final value. Therefore, each point in the fluid las a different "spin-up" time as defined by Buzyna and Veronis. They found that these"spin-up times" were smaller than predicted at the mid-plane and agreed with the "spin-up times" computed from the theory (within the error bounds) for $z=-0.8$ and $r / r_{0}=0.5$. This form of measuring spin-up times is not well suited to a comparison with theory, but for higher values of the Burger number and large time, it approximates the behavior of the first modal spin-up time. At the mid-plane their result is in qualitative agreement with the experiments in this thesis, but it disagrees with the measurements at $z=-0.8$. One of the authors (Buzyna, private communication) has suggested that this discrepancy may be due to the diffusion of the salt near the lower boundary over the time from when the stratification was produced and the time when the experiment was conducted. This would allow greater penetration of the effects of the Ekman layers and tend to result in a larger spin-up time than would be expected for a linear gradient. The observed spin-up time
was that expected from a linear gradient. Thus, if the stratification had been linear, the spin-up time would have been smaller. Therefore, the results of the experiments of Buzyna and Veronis are qualitatively consistent with the results presented here. Further experimental work should be performed to study the effects of non-lineartity, viscosity and stratification on the deviations from the linear theory. This can be done most easily for the larger Rossby numbers and intermediate stratifications. Small Rossby numbers and small stratifications cannot yield accurate results as the temperature perturbations are too small to resolve.

Baker, D.J., " A Technique for the Precise Measurement of Small Fluid Velocities ", J. Fluid Mech 26 (3), 573-575 (1966)
 Buzyna and Veronis, " Spin-up of a Stratified Fluid: Theory and Experiment ", to be published

Dicke, R.H., "The Sun's Rotation and Relativity ", Nature, 2 May 1964

Dicke, R.F., " The Solar Oblateness and the Gravitational Quadrupole Moment", Ap.J. 152 , 1-24 (1970)

Greenspan, H.P., The Theory of Rotating Fluids, Cambridge University Press, Cambridge, 1968

Greenspan H.P., and Howard, L.N.," On the Time-dependent Motion of a Rotating Fluid", J.Fluid Mech. 17 (3), 385-404 (1963)

Greenspan,H.P. and Weinbaum,S.," On non-linear Spin-up of a Rotating Fluid", J. Math. and Phys. 44, 66-85 (1965)

Holton, J.R.," The Influence of Viscous Boundary Layers on Transient Motions in a Stratified Rotating Fluid", J.Atmos. Sci. 22 (4), 402-411 (1965)

Holton, J.R., and Stone, P.H.," A Note on the Spin-up of a Stratified Fluid", J.Fluid Mech.

Lamb,H., Hydrodynamics Dover reprint of the 6th edition, 1932

Pedlosky, J.," The Spin-up of a Stratified Fluid", J.Fluid Mech. 28 (3), 463-479 (1957)

Sakurai,T.," Spin-down of a Rotating Stratified Fluid in Thermally Insulated cylinders", J.Fluid Mech. 37 (4),689-699 (1970)

Saunders, K. D. . The Design and Construction of the MIT Air-bearing Turntable, Report GFD/70-3, July 1970

Siegmann, W.Le, Spin-up of a Continuously Stratified Fluid, M.S. Thesis, MIT, 1967

Simon,I., and Strong, P.F.," Measurement of Static and Dynamic Response of the Green Building at the MIT Campus to Insolation and Wind ", Bull. Sois. Soc. Amer. 58 (5) 1631-1638 (1968)

Walin,G., " Some Aspects of Time-dependent Motion of a Stratified Rotating Fluid". J. Fluid Mech. 36 (2), 289-307 (1969)

Walin, G.," Contained Inhomogeneous Flow Under Gravity, or How to Produce a Stratified Fluid System", to be published

McDonald and Dicke, Science 158 , 1562 (1967)

Modisette and Novotny, Science 166, 872 (1969)

Table 1

Table 1 (continued)

Experiment	$/ \epsilon /$	S	B	ExI 0^{4}	$\mathrm{Fx} 10^{4}$	t spin	$\Delta \mathrm{T}$	Ω	$\Delta \Omega$
30	0.057	18.87	2.172	11.90	2.82	58.15	7.95	0.250	+0.014
31	0.055	22.41	2.367	12.9	2.42	60.43	8.09	0.231	+0.013
32	0.098	12.779	1.787	9.70	4.24	52.51	8.09	0.306	+0.030
33	0.083	17.323	2.081	11.2	3.16	56.53	8.17	0.264	+0.022
34	0.047	9.202	1.517	8.3	5.87	48.41	8.07	0.360	+0.017
35	0.048	9.956	1.577	8.52	5.50	49.21	8.17	0.348	+0.017
36	0.090	9.800	1.565	8.53	5.48	49.25	8.02	0.348	+0.031
37	0.056	11.754	1.714	9.28	4.64	51.35	8.14	0.320	+0.018
38	0.032	11.759	1.715	9.28	4.64	51.35	8.14	0.320	+0.010

Table 2
Data Usage

Experiment	Temperature Data	Photographic Data
1	N*	N
2	N*	N
3	N*	N
4	N*	-
5	N*	-
6	N*	-
7	N*	N
8	N^{*}	-
9	-	-
10	N	N
11	-	N
12	-	N
13	-	N
14	N	N
15	+B	N
16	-	+
17	+G	N
18	+G	N
19	+3	+
20	+3	+
21	+G	+
22	+G	N
23	+D	+
24	+G	+
25	+G	N
26	+B	N
27	+G	+
28	+B	N
29	+G	N
30	+B	+
31	+G	+
32	+	+
33	+G	+
34	+G	+
35	+B	+
36	+G	+
37	+G	N
38	N	+
Key:		
+	taken and reduced	* no filtering
-	not taken	B too large fitting error
N	taken but not reduced	D result of doubtful quality
		G fit seems reliable

TABLE 3
Temperature Perturbation Data for Experiment 24

Series	t	1	2	4	$\begin{aligned} & \text { Therm: } \\ & 5 \end{aligned}$	$\underset{6}{\text { stor }}$	7	8	10	11	12
0	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.042	-1.0	-2.2	0.0	-0.5	-2.3	-1.4	1.0	1.6	2.5	3.0
2	0.180	-19.0	-12.3	0.0	-5.6	-5.6	-4.6	1.0	4.2	4.0	3.5
3	0.318	-25.0	-26.1	0.0	-11.6	-10.5	-8.6	1.0	5.0	4.0	4.7
4	0.456	-34.0	-32.1	0.0	-17.6	-14.2	-12.3	1.0	5.0	4.0	4.0
5	0.504	-39.0	-38.1	-0.1	-24.5	-16.5	-14.8	0.8	4.8	3.8	4.0
6	0.732	43.0	-42.0	-1.9	-29.4	-20.3	-20.0	0.0	3.6	3.0	4.0
7	0.870	+6.0	-43.1	-0.1	-33.2	-23.2	-20.4	0.0	1.8	2.5	4.0
8	1.008	-52.0	46.0	-0.9	-35.4	-26.0	-23.1	0.0	0.6	0.8	4.0
9	1.246	-53.0	-46.0	-0.1	-39.1	-26.2	-24.4	0.0	-1.4	0.0	4.0
10	1.284	-53.0	48.0	-0.9	-40.1	-28.2	-27.0	0.0	-3.2	-0.2	3.3
11	1.422	-53.0	-48.0	-0.0	-41.1	-29.9	-27.1	0.0	-4.4	-1.0	3.7
12	1.560	-53.0	+7.0	-0.1	-42.0	-29.1	-28.0	0.0	-6.0	-1.2	3.3

TABIE 3 (continued)

Series	Thermistor							
	13	14	15	16	17	18	19	20
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	5.4	5.1	3.3	3.3	6.2	6.8	3.7	3.0
2	10.7	11.8	7.0	4.0	12.2	12.6	7.7	3.0
3	16.1	16.9	10.3	4.0	18.2	17.2	11.2	3.0
4	20.4	19.9	13.6	4.0	23.5	22.0	14.2	3.4
5	24.6	22.9	15.3	4.0	27.5	25.8	16.8	3.6
6	26.8	25.9	16.6	4.3	31.1	28.6	18.8	3.0
7	29.6	28.6	18.0	4.7	34.1	31.8	20.8	3.0
8	31.6	30.0	18.6	4.0	37.1	34.6	22.0	3.0
9	33.0	30.6	20.3	4.0	40.1	37.8	23.2	3.0
10	33.3	32.0	20.7	4.0	42.4	39.8	25.4	3.0
11	34.0	32.0	20.3	4.0	43.4	41.8	26.0	3.0
12	33.7	32.3	21.0	3.7	45.1	43.0	26.8	3.0

TABLE 4

Experimental parameters which do not vary from experiment to experiment.

$$
v=0.01172 \mathrm{~cm}^{2} \mathrm{sec}^{-1}
$$

$x=0.000837 \mathrm{~cm}^{2} \mathrm{sec}^{-1}$
$L=4.445 \mathrm{~cm}$
$\alpha=0.00134{ }^{\circ} \mathrm{C}^{-1}$
$\sigma=14.0$
$\rho_{0}=0.818 \mathrm{gm} \mathrm{cm}^{-3}$

GEOMETRY OF THE PROBLEM

FIGURE I

THERMISTOR LOCATIONS

FIGURE 2

LOCATION OF THE EXPERIMENTS IN ROSSEY NUMBER - BURGER NUMBER SPACE

FIGURE 3

FIGURE A

FIGURE 5

THERMISTOR 2

FIGURE 6

THERMISTOR 4

FIGURE 7

THERMISTOR 5

FIGURE 8

THERMISTOR 6

FIGURE 9

FIGURE 10

THERMISTOR 8

FIGURE II

THERMISTOR 10

figure 12

THERMISTOR II

FIGURE 13

THERMISTOR 12

FIGURE 14

THERMISTOR 13

FIGURE 15

THERMISTOR 14

FIGURE 16

THERMISTOR 15

FIGURE 17

THERMISTOR 16

FIGURE 18

THERMISTOR 17

FIGURE IO

THERMISTOR 18

FIGURE 20

THERMISTOR 19

FIGURE 21

THERMISTOR 20

FIGURE 22

FIGURE 23

FIGURE 24

VERTICAL STRUCTURE OF THE RECIPROCAL SPIN-UP TIMES EXPERIMENT 24

FIGURE 25

FIGURE 26

FIGURE 27

RECIPROCAL SPIN-UP TIMES

FIGURE 28

FIOURE 29

Schematic Diagram of Test Cell
(Dimensions in cm)

FIGURE 30

Schematic Diagram of Temperature Control System

FIGURE 31

CAMERA CONTROL

COMPUTER CONTROL

FIGURE 32

FIGURE 33

TYPICAL INTERFACE CIRCUIT

BIAS AND IMPEDANCE MATCHING CIRCUITRY

FIGURE 35

FIGURE 36

GO HZ BAND REJECT FILTER

FIG URE 37

FIGURE 38

CAMERA DRIVING CIRCUITRY

FIGURE 39

```
PERTURBATION DENSITY FIELD AT AN EARLY
STAGE OF SPIN-UP. COMPUTED FROM A
NUMERICAL MODEL
```


FIGURE 40

FIGURE 41

PLATE I

PLATE 2

PLATE 3

PLATE 4

PLATE 5

PLATE 6

PLATE 7
华

APPENDIX I

DETAIIS OF THE APPARATUS

Test cell configuration
The test section consists of a right circular cylinder, made from plexiglass, 8.89 cm high and 10.03 cm inner radius. The wall thickness of the cylinder is about 1 cm . The cylinder is mounted between two 0.6 cm thick glass plates. This assembly is mounted inside a large plexiglass box. (See figure 30). The space above and below the glass plates is used for heating and cooling water to maintain the temperature gradient in the cylinder.

The large box is mounted on a three point leveling system independent from the leveling system of the turntable. The mounting system also has a provision for centering the test section with that of the turntable and clamping the outer box.

The interior of the test section is filled with Dow-Corning 200 Silicone oil, l cs nominal viscosity grade. The region between the test section and the outer box wall is filled with Dow-Corning 200 Silicone oil, 500 cs nominal viscosity grade.

Twenty thermistors (VECO \# 61A5) are located in a vertical plane along one radius in the cylinder. (See figure 2). Two thermistors are mounted on the glass plate on either side of the cylinder and two thermistors are mounted on either side of the cylinder wall.

Thermistor circuitry

All temperatures in the stratified spin-up experiments are measured by the out of null voltages of Wheatstone bridges with a thermistor in one of the arms of the bridge. There are thirty available bridges, of which twenty four are used. Twenty thermistors , two of which are broken, are mounted in the interior of the fluid. Two thermistors are mounted on either side of the cell wall and two thermistors are mounted on the upper side of the lower glass plate on either side of the cell.

A stepping switch from an ICBM guidance testing computer is used to sample the output from each of the bridges sequentially. The output is amplified by a Zeltex 132 F.E.T. operational amplifier in an amplifier-follower mode. The gain at this stage is about 240. When operating in this mode, the input impedence is above 10^{12} ohms, thus, the bridge (typical impedence 10^{6} ohms) is not loaded significantly. The signal is amplified on the turntable to minimize slip-ring noise. (See figure 33 for the basic thermistor circuitry.)

The signal is sent through slip-rings and is passed through an active low pass filter and an active notch filter with a notch at 60 Hz . (See figures 36,37 for the filter design.) The signal then passes through another amplifier (used for the actual runs, but by passed when the basic field is to be measured) and a biasing circuit that changes the range from $\pm 15 \mathrm{~V}$ to 0 to +10 V to accomodate the analogue to digital converter. (See figure 35 for the bias circuit.)

The computer interfacing circuitry

The data taking process is under control of a Digital Equipment Corporation PDP 8/S computer. In order for the computer to be able to control the experiment, a number of interfacing circuits had to be built. The basic idea behind the interfaces was to allow an I/O command to set a flipflop to a desired state. The flip-flop's state then controlled other circuitry, such as relays, which performed the tasks involved in the experiments.

As the computer operates on a $-3 V$ logic and the external logic operates on a +5 V logic, an extra inverting step was needed in all the interface logic.

The PDP 8/S does all its I/O logic from a common bus. Six bits are needed to define a device and three bits exist to initiate various functions of the device. The device is selected by a diode gate defining the device and the function of the device is decided by which of the three other bits is anded with the first gate. (See the D.E.C. book The Small Computer Handbook, 1966-67, Maynard, Mass.) The three pulses, I.O.P.'s, are each 1 u sec long and separated by a few u sec. The short time of the pulse causes problems due to the capacitance of the diode gate. This is partially avoided by isolating the slow six bit portion of the gate from the I.O.P. section by a transistor network. If this network is not used, the device selector is very prone to noise. (See figures 34,39 for designs of several typical interfaces.)

Camera trigger
The schematic diagram for the camera trigger is shown in figure 39 and plate 6. The purpose of this circuit is to trigger the camera shutter and film advance motor. The principle of operation is an input signal from a flip-flop is amplified by the transistors and energises a relay which controls the current to the camera. When the input from the flip-flop is high, the camera shutter is triggered. When the level falls to ground, the film is advanced.

Frequency changer
The schematic diagram for the frequency changer is shown in figure 36 and the actual circuit is shown in plate7. The purpose is to change the input frequency to the motor amplifier when an input pulse from a flip-flop is sensed and to lock in that mode until the circuit is manually reset. Input signals of about 5 V rms at two different frequencies are fed in at locations 1 and 2 on the diagram. Initially, the SCR is non-conducting. When a positive level from a flip-flop is sensed, the SCR conducts and continues to conduct until the circuit is broken by the opening of the switch. Before triggering, the frequency fed in at 1 is grounded by the first transistor. This means that the second frequency is output. When the trigger is set, the first transistor ceases to conduct and the first frequency is passed. The capacitor is a bias remover.

Bias and Impedance matching circuitry
The schematic diagram for this circuitry is shown in figure 35. The purpose is to transform the temperature signal from the thermistor bridge to a form acceptable by the analog to digital converter. The output from the bridge is in the range -15 to +15 V . The converter, however, only accepts signals in the range 0 to +10 V . Furthermore, the A-D converter has an input impedance of 1000Ω. The follower circuit provides isolation of the bias circuit from the converter.

APPENDIX II

MATHEMATICAL NOTES

After Walin(1971), a thin wall approximation is assumed. By the continuity of heat flux accross the wall,

$$
\dot{Q}_{\text {fluid }}=\dot{Q}_{\text {wall }} \quad \text { at the boundary of the wall and fluid. }
$$

This is equivalent to:

$$
\mathrm{k}_{\mathrm{fluid}}\left(\mathrm{~T}_{*}^{\mathrm{fluid}}\right)_{\mathrm{n}}=\mathrm{k}_{\text {wall }}\left(\mathrm{T}_{*}^{\mathrm{wall}}\right)_{\mathrm{n}},
$$

where the k's are the thermal conductivities and the T_{*} 's are the temperatures in the wall and fluid. By making a thin wall approximation, the temperature gradient in the wall may be replaced by
($T_{\text {inside }}^{\text {wall }}-T_{\text {outside }}$) $\mathrm{d}_{\mathrm{W}}^{-1}$ where $T_{\text {inside }}^{\text {wall }}$ is the temperature of the wall at the wall-fluid interface, and $T_{\text {outside }}$ is the temperature outside the wall.

After non-dimensionalizing, the heat flux equation at the wall-fluid interface becomes

$$
\rho_{n}=\frac{I k_{\text {wall }}}{d_{w} k_{f l u i d}}\left(\rho-\rho_{0}\right) \text {, }
$$

where $L=$ the length scale of the experiment, $d_{w}=$ the wall thickness, and ρ_{0} is the non-dimensionalized form of $T_{\text {outside }}$. I define $\Gamma=L k_{\text {wall }} / d_{W} k_{f l u i d}$. For the experiments in this thesis, $\Gamma=7.41$.

Fourier-Bessel analysis of the even powers of r

To determine the Fourier-Bessel modes in r, the coefficients of the Fourier-Bessel expansion of the even powers of \mathbf{r} are required:

$$
\mathbf{r}^{2 n-2}=\sum_{k} B_{n, k} J_{0}\left(\alpha_{n} r\right) \quad \text {, where } J_{1}\left(\alpha_{n}\right)=0
$$

The $B_{n, k}$ may be computed by the usual relation:

$$
B_{n, k}=\frac{2}{J_{0}^{2}\left(\alpha_{k}\right)} \int_{0}^{1} r^{2 n-1} J_{0}\left(\alpha_{k} r\right) d r
$$

This integral may be computed by the recursion relation defined below. Let

$$
\int_{0}^{1} r^{2 n+1} J_{0}(\alpha r) d r=u_{n} \text { where } J_{1}(\alpha)=0
$$

The recursion relation is then given by:

$$
\begin{aligned}
& u_{0}=0 \\
& u_{1}=\frac{2}{\alpha^{2}} J_{0}(\alpha) \\
& \ldots \\
& u_{n}=\frac{2 n}{\alpha^{2}} J_{0}(\alpha)-\frac{4 n^{2}}{\alpha^{2}} u_{n-1}
\end{aligned}
$$

Note on the method of determination of the C_{n}

For the case where the eigenvalues of the eigenvalue equation of chapter 2 are not solutions of either $J_{0}\left(\alpha_{n}\right)=0$ or $J_{1}\left(\alpha_{n}\right)=0$, there is no simple inner product of the Bessel function $J_{1}\left(\alpha_{n} r\right)$ on the interval 0,1 which gives an orthogonality relation. Therefore, an approximate method must be used to compute the C_{n}.

The method I have used is to define an inner product

$$
(f, g)=\int_{0}^{1} r f g d r
$$

and form a large number of simultaneous equations

$$
\left(J_{1}\left(\alpha_{m} r\right), r\right)=\sum_{n=1}^{N} c_{n}\left(J_{1}\left(\alpha_{n} r\right), J_{1}\left(\alpha_{m} r\right)\right), m=1, \ldots, N
$$

and solve for the C_{n}. The value of N I have generally used has been about 40 . This seems to give results accurate to about 1%. Two methods for solving the set of equations have been used. The easiest to use has been the MIT program GELB. Another method that I have used involves computing a set of Gram-Schmidt orthogonal functions recursively and using these to solve the set of equations.

Note on the boundary layer scaling

The elimination of all but one dependent variable from

 the equations of motion leaves$$
\begin{aligned}
\frac{\partial}{\partial t}\left(B^{2} \frac{\partial}{\partial r} \frac{1}{r} \frac{\partial}{\partial r} r+\right. & \left.\frac{\partial^{2}}{\partial z^{2}}\right) v=E^{\frac{1}{2}}\left(\frac{1}{\sigma} \nabla^{2} v_{z Z}+\right. \\
& \left.B^{2} \frac{\partial}{\partial r} \frac{1}{r} \frac{\partial}{\partial r} r \Sigma v\right)+E K_{1} K_{2} \alpha K_{2} v
\end{aligned}
$$

where

$$
K_{I}=\partial / \partial t-E^{\frac{1}{2}} / \sigma \nabla^{2},
$$

and

$$
K_{2}=\partial / \partial t-E^{\frac{1}{2}} \mathcal{L} .
$$

To find if the boundary layers can exist, the stretched variables were inserted into the above equation. If no balance existed for the largest term, it was concluded that no boundary layer of that scaling existed. In this way, it was seen that only the $E^{\frac{1}{2}}$ and $E^{\frac{1}{4}}$ boundary layers could be present for B and $\sigma=O(1)$.

Detail of the solution of ${ }_{\phi}^{(2)}$

From the equation $B^{-2}{ }_{z Z}^{(2)}+\frac{\partial}{\partial r} r \frac{\partial}{\partial r} \psi^{(2)}=0$, we have

$$
\psi^{(2)}=\sum K_{n}(z, t) J_{1}\left(\alpha_{n} r / r_{0}\right)
$$

and

$$
\left(K_{n}(z, t)\right)_{z 2}-\frac{\alpha_{n}^{2} B^{2}}{r_{0}^{2}} K_{n}(z, t)=0
$$

which, with the symmetry condition on (2) gives

$$
K_{n}(z, t)=F_{n}(t) \sinh m_{n} z / \sinh m_{n}
$$

where

$$
m_{n}=\alpha_{n} B / r_{0} .
$$

The boundary condition on $z=+1$ requires

$$
F_{n}^{\prime}+2^{-\frac{1}{2}} m_{n} \operatorname{coth} m_{n} F_{n}=0
$$

whence

$$
F_{n}(t)=A_{n} \exp \left(-2^{-\frac{1}{2}} m_{n} \operatorname{coth} m_{n} t\right)
$$

This implies that $\psi 0$ as $t \rightarrow \infty$ or $v^{B} \rightarrow 0$ as $t \rightarrow \infty$. Now, $\quad v_{t}^{(0)}=\psi_{z}^{(2)}$, or

$$
v^{(0)}=v(r, z)+\int_{0}^{t} \frac{\partial}{\partial z}(2)\left(r, z, t^{\prime}\right) d t^{\prime}
$$

The initial condition, $v^{(0)}{ }_{r}$ at $t=0$ requires $V(r, z)=r$, and the condition on $v^{(0)}(z=1)$ as $t \rightarrow \infty$ provides the condition on the A_{n}.

Estimation of the effect of the wire drag on the interior flow
The method for estimating the effect of the wire drag on the interior flow will be to compare the rates of energy dissipation of the spin-up of a homogeneous fluid and the energy dissipation caused by the wire drag.

Let $v=\Omega 2$ where $\Omega=\Delta \Omega e^{-t / t_{s}}$ where t_{s} is the spin-up time. The kinetic energy of the flow is

$$
\begin{aligned}
\text { K.E. } & =\mathrm{pH} \int_{0}^{2 \pi} d \theta \int_{0}^{r_{\max }} \frac{1}{2} r v^{2} \mathrm{~d} \mathbf{r}, \\
& =\pi \mathrm{H} \rho \Omega_{0}^{2} \int_{0}^{r_{\max }} \mathbf{r}^{3} \mathrm{dr}, \\
& =\frac{i}{4} \rho \pi \mathrm{Hr} \mathrm{max}_{\max }^{4} \Omega^{2} .
\end{aligned}
$$

The rate of dissipation is then

$$
\dot{E}=-\frac{\rho \pi H r_{\max }^{4} \Delta n^{2}}{4 t_{s}} e^{-2 t / t_{s}}
$$

The energy dissipation from the wire drag may be computed from Lamb's formula (Lamb, section 343, 6th ed.). The drag per unit length on a cylinder of radius a is given by

$$
D=\frac{4 \pi \rho \nu v}{\ln \left(\frac{1}{2} k a\right)} \quad \text { where } k=\frac{v}{2 \nu} .
$$

The total dissipation produced by N wires is therefore:

$$
\dot{E}_{W}=8 N \pi \rho v \Delta \Omega^{2} \exp \left(-2 t / t_{s}\right) \int_{0}^{r_{\max }} \frac{r^{2}}{-\ln (\sigma r)} \mathrm{d} r
$$

where $\sigma=\frac{\Delta \Omega a e^{-t / t}}{4 v}$.

By a simple substitution the integral may be transformed as

$$
\int_{0}^{r} \frac{r^{2}}{-\ln (\sigma r)} d r=\frac{1}{\sigma^{3}} \int_{-3 \ln (\sigma r)}^{+\infty} \frac{e^{-y}}{y} d y
$$

or, asymptotically for large(-3ln $\sigma r_{\max }=\epsilon$,

The the energy dissipation due to the wire drag is

$$
\dot{E}_{W}=8 N \pi \rho \nu \Delta \Omega^{2} \exp \left(-2 t / t_{s}\right) \frac{r^{3}}{-3 \ln \sigma r_{\max }}\left(1+\frac{1}{-3 \ln \sigma r_{\max }}\right)
$$

The ratio of the dissipation rates, $\quad \dot{E}_{W} / \dot{E} \quad$ is given by

$$
\frac{32 \mathrm{~N} v t_{s}}{-3 H r_{\max } \ln \sigma r_{\max }} \quad\left(1+\frac{1}{-3 \ln \sigma r_{\max }}\right)
$$

This gives for an upper bound on the ratio for $N=10, \Delta \Omega=0.03 \mathrm{sec}^{-1}$:

$$
\dot{E}_{W} / \dot{E} \quad<\quad 0.05
$$

124

APPENDIX III

DISCUSSION OF EXPERIMENTAL ERRORS

Section 1: Limitations of the measuring systems

1.1 Time accuracy

The time measurements for the photographs were made by recording the time each photograph was taken on a strip chart recorder. The absolute accuracy was about $\pm 0.15 \mathrm{sec}$.

The time measurements for the thermistor readings were computed from the stepping switch times and the photograph times measured with an oscilloscope. The absolute accuracy of these time measurements is better than +0.05 sec.

1.2 Accuracy of the positions of the neutrally buoyant floats

The positions of the neutrally buoyant floats were determined by photographing them with an automatic Nikon F, 35 mm camera. The positions were copied onto tracing paper. This was done on a large microfilm reader which advanced each frame to the same approximate position as the previous frame. The positions on the tracing paper were digitized on an automatic digitizer of Professor Gene Simmons. These positions were punched onto cards in terms of Cartesian coordinates. The final step in determining the positions was to transform the Cartesian positions into polar coordinates and correct for the parallax of the camera. Each of these steps contributed to the error in position.

The microfilm reader was supposed to place each frame in the same position as the previous frame. In fact this did not occur. The positions of the frames would often be shifted horizontally
a small amount, about $\frac{1}{4}$ inch on the actual scale of projection. This would amount to about $1 / 3 \mathrm{~cm}$ in the computed position. For large radii where the distance between successive points was large, this would not make much difference. For points near the center, and for points which were close together, these errors could be sizable fractions of the total differential measurement. It is for these reasons that the low Rossby number and small radius measurements are in the most error.

The errors in drawing the positions of the points were no more than about ± 0.05 in. The digitizing errors due to the digitizer alone are $\pm 0.001 \mathrm{in}$. These are sufficiently small that they are entirely masked by the error in the reader.

The errors due to the computing program are negligible, being about one part in 10^{6}.

1. 3 Accuracy of the temperature measuring system

The details of the temperature measuring system have been described in chapter 2 and appendix II . Each part of the system has an inherent error in the temperature measurement. This section will discuss the magnitude of these errors and their effect on the data. The units of temperature used in this section will be degrees Celsius or digitizing units, where one digitizing unit (d.u.) equals $0.0026^{\circ} \mathrm{C}$.

The resolution of the analog to digital converter is about 0.01 V . This corresponds to $0.0026^{\circ} \mathrm{C}$ or $1 \mathrm{~d} . \mathrm{u}$. This is the absolute limit of accuracy possible with the system in the configuration used
in the experiments.
There was always the possibility of signal degradation due to electrical noise, particularly at 60 Hz . The main contribution to the 60 Hz noise was the power to the hot and cold water pumps on the turntable. These could not be eliminated, so the effect of their noise had to be removed after the signal had been contaminated. This was done by placing two active filters, one, a band-reject filter with a sharp notch at 60 Hz , and the other, a low pass filter with the cut-off at 60 Hz . These were very effective in removing any noise at 60 Hz and 120 Hz . The maximum observed error in the output signals after the filters were installed was only 2-3 d.u. The only problem the filters introduced was the requirement of a waiting time to allow the signal transients due to the step response of the filters to die out before sampling. This caused no problem, as the wait time was the same order as the maximum stepping rate of the stepping switch.

The computer, on occasion mistyped the output temperature. This was finally traced to mistriggering of the skip bus. The mistyped temperatures were corrected manually by interpolating the previous value of the thermistor and the following value of the same thermistor. This would have produced an error of no more than about $5 \mathrm{~d} . \mathrm{u}$. at any thermistor or time.

The thermistors, unfortunately, cannot measure temperatures at a mathematical point, but only give an average of the temperature over their surface. Therefore, there could be the possibility
of an error in the temperature at any thermistor equal to the diameter of the thermistor times the temperature gradient across the thermistor. The thermistors used in these experiments were about 0.025 cm in diameter, and the vertical temperature gradient was about $1 \mathrm{deg} / \mathrm{cm}$, giving a maximum error of $0.025^{\circ} \mathrm{C}$ or about $10 \mathrm{~d} . \mathrm{u}$. As the maximum error observed was two to three du., it can be concluded that the thermistors can give a much more accurate reading than might be expected.

The time response of the thermistors might cause problems if the processes being investigated were varying too rapidly, but for these experiments that is no problem. The time response of the thermistors used in these experiments is about 10^{-2} sec.

There is the possibility of errors induced by the self heating of the thermistors. For this reason, the resistance of the thermistors was chosen as about 1 M . The ohmic heating, E^{2} / R is thus about 10^{-6} Watt. This corresponds to about $0.001{ }^{\circ} \mathrm{C}$ increase.

The leads of the thermistor can conduct heat away or toward the thermistor and could constitute a source of error. To estimate the magnitude of this error, it will be assumed that the heat conducted away from the thermistor is conducted along the wire, and that the temperature gradient is determined by that of the fluid. If the thermal conductivity is that of platinum and the radius is 0.005 cm , the heat flux is about 4×10^{-7} watt which is less than the ohmic heating.

Another possible source of error is radiative transfer between the thermistor and the walls of the room. The heat flux, assuming
blackbody radiation is given by $\quad Q=k A\left(T_{\text {thermistor }}^{4}-T_{\text {wall }}^{4}\right)$ or approximately $Q=4 \mathrm{kA} \Delta T T_{\text {wall }}^{3}$. If $A=12 \times 10^{-6} \mathrm{~cm}^{2}$, and $T_{\text {Wall }}=300^{\circ} \mathrm{K}, \Delta \mathrm{T}=5^{\circ} \mathrm{K}, \mathrm{k}=5.7 \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$, $Q=12 \times 10^{-8}$ Watt, which is much less than either the ohmic heating or the lead conduction.

The secular variation in the thermistors is not known, but this provides no problem in the differential measurements.

The last possible problem was noise due to the slip-rings.
This was not noticable above 1 or 2 d.u.

130

APPENDIX IV
COMPUTER PROGRAMS

```
TEmPERATURE ANALYSIS PROGRAM VERSICN,6, 17 JANUARY 1971
```

subroutines used:
BESJ
GELB
CONTUR
DEFINITION OF VARIABLES
Z(K) THE K-TH VALUE OF Z
f(k) the k-th value of the feild variable
fob : Tre field formed from the bessel expansiun
FGR : the radial temperature gradient formed from the polynumial
EXPANSION
bB : tre bessel decompositijn terms of the polynumial
bBb tre coefficient terms uf the bessel fit
al pha : the zeroeo of Jl
d(i,j) the coeficient matrix to be inverted
X(I) THE POLYACMIAL COEFICIENT MATRIX
ff(I) the reh. Side of the matrix equation
n the number of data points
in tre degree of the fitting polynomial/ 2

DINENSION VEAR(16,16)
CUMMUN ALPHA(50)
JIMEINSIUN BB(20,20), BLOG(20,20), AAZ $(4,41), \operatorname{BBB}(20,5)$
UIMEINSION $Q(1), S(1), F G R(16,16)$
DIMENSION R(20), Z(20),F(20), FF(20), X(20), D(29, 20$), A(400)$, 1FD(16.16)
DIMENSION BAV(5)
DIMENSION BALG(5)
DIMENSICN TTNC(40)
DIMENSICN QZ(5)
DATA QZ/5*0.0/
DATA BAV/5*0.01
DIMENSIUN XXE(21,17)
DATA VEAR/256*00.0/
DATA Q(1)/ TM /,S(1)/! R!
CATA IZZ/O/
RO $=2.259$
READ EXPERIMENTAL DATA
NUM $=0$

```
N=18
NN = 2
NNN = NN + 1
READ(5,250) NEXPT,SSS,ROSBY,EKNU ,TSPIN
BURG = SQRT(SSS)/2.
WRITE(6,251) NEXPT,BURG,RUSBY,EKNO
B = BURG
FA = 2.
ETA =.0.001
SBAR = 7.41*SQRT(EKNO)
PRAND = 14.0
H=PRAND**C.250*SQRT(B/2.)
CONS = H*B*2.259*SQRT(FA)*SBAR/(SBAR - H)
CALL ALPH(ETA,CONS,SBAR,H,BURG,1.0)
WRITE (6,278)(ALPHA(I),I=1,40)
WRITE(6.200)
```

CALL NORTH(ALPHA,AAZ,NNNI
WRITE (0, 290) (K, AAZ (1, K), AAZ $2, K), A A Z(3, K), K=1,40)$
WRITE $(6,200)$
$R R=0.0$
DO $1701 \mathrm{~K}=1,10$
$R R=R R+0.1$
RSUM $=A A Z(2,1)$
DO $1700 \mathrm{I}=2,40$
$X Y=R R * A L P H A(I-1)$
CALL BESJ(XY,0,BJI,.001,IER)
RSUM $=\operatorname{RSUM}+A A Z(2, I) * B J I$
1700 CONTINUE
$R R R=R R * R R$
WRITE(6,291) RR,RRR,RSUM
CONTINUE
WRITE 6,200$)$
278 FORMATI $8(F 10.4 .4 \times$))
ISW $=0$
6000 CCNTINUE
NUM $=$ NUN +1
DO $5010 \mathrm{KK}=1.5$
5010 BAV $(K K)=0.0$
DO 2 COO II $=1,400$
$2000 \mathrm{~A}(\mathrm{II})=\mathrm{C} .0$
$\mathrm{L}=0$
DU 999 I $=1,20$
D. $999 \mathrm{~J}=1.20$
$D(I, J)=0.0$
$\mathrm{Z}(\mathrm{I})=\mathrm{C} .0$
$R(I)=0.0$
$F(I)=0.0$
$F F(I)=0.0$
$\mathrm{L}=\mathrm{L}+1$
$A(L)=0.0$
sяs Cuntinue

```
C INPUT THE DATA
C
IF(IZZ.NE.0) GO TO 6001
READ(5,101)(R(K),Z(K),F(K),TIME,IZZ,K=1,N)
DO lCll K = l,N
R(K) = R(K) +.00001
Z(K) = Z(K) +.0(JO)
F(K) = F(K) +.0C001
1011 CGNTINUE
C
C PrOduCE THE 'D' MATRIX
C
            LLN = O
            DO lUDI L = 1,NNN
            DO 1001 N = 1,NN
            LLN = LLN + 1
            LLX = 0
            Du 1001 I = 1,NNN
            DO lvOl J = 1,NN
            LLX = LLX + 1
            D(LLN,LLX) = 0.0
            IX = 2*(I+L-2)
            LX = 2**(J+M - 1)
            DO 1001 K = 1,N
1001 D(LLN,LLX) = D(LLN,LLX) + R(K)**IX*Z(K)**LX
C
C
    LLN = 0
    DO LCO2 L = 1,NNN
    DO 1002 M = 1.NN
    LLN = LLN + 1
    FF(LLN) = 0.0
    DO lv02 K = 1,N
1002 FF(LLN) = FF(LLN) + F(K)*R(K)**(2*(L-1))*Z(K)**(2*M-1)
```

```
    UO 1CC8 I=1.16
    DO 1008 J = 1,16
    FD(I,J)=0.U
    1C08 F;R(I,J)=00.0
C
C PUT U INTO FORM FOR USE IN GELB
    LLK = 0
    NNK = NA*ANN
    DJ 1003 I = 1,NNK
    DO 1003 J = 1,NNK
    LLK = LLK + 1
    1003 A(LLK) = C(J,I)
    NNX = NNK - 1
    DJ 1004 I = 1,ANK
    1CO4 X(I) = FF(I)
    CALL GELB(X,A,NNK,I,NNX,NNX,.OL(OOL,IER)
    WRITE( 6,302) IER
C
C OUTPUT CCEFICIENTS
    WRITE(6,201)
    WRITE (6,202)(K,X(K),K=1,NNK)
C COMPUTE THE ERROR FUNCTION AND THE STD DEVIATIUN
C
    E =0.0
    DO 1005 K = 1,N
    P = 0.0
    LLX = 0
    DU 1006 I = 1,NNN
    DJ 1006 J = 1,NN
    LLX=LLX+1
1006 P = P + X(LLX) *R(K)**(2*(I-1))*Z(K)**(2*J-1)
1005E=E + (F(K) - P) **2
    SIGMA = E/(N-1)
```

```
SIGMA = SQRT(SIGMA)
WRITE(6,200)
WRITE(6,203) E,SIGMA
C
C COMPUTE THE FITTED FIELD
IF(TIME.LE.G.OO1) TIME = 1.40 + 4.58%(NUM - 1)
WRITE(6,252) TIME
TIMND = TIME/TSPIN
TTND(NUM) = TIMND
WRITE(6.253) TIMMD
WRITE(6,208)
DR = 2.259/16.
DZ = 1./16.
DO 1009 L = 1,16
DU 1009 M = 1,16
RR = DR*(L-1) +.00001
ZZ = DZ*(M-1) +.00C01
FD(L,M)=0.0
VBAR(L,M) = 0.0
FGR(L,M) = C.O
LLX = O
DO 1007 I = 1,NNN
DU 1UU7 J = 1,NN
LLX = LLX + 1
FD(L,M) = FD(L,M) + X(LLX)*RR**(2*(I-1))*ZZ**(2*J-1)
VBAR(L,M)=VBAR(L,M) + X(LLX)*(I-1)*RR**(2*I-3)*ZZ**(2*J)/J
1007 FGR(L,M) = FGR(L,M) + 2*(I-1)*RR**(2*(I-1) -1)*ZZ**(2*J-1)*X(LLX)
WRITE(6,2C9)L,M,RR,ZZ,FD(L,M),FGR(L,M), VBAR(L,M)
1CO9 CGNTINUE
WRITE{6,2CO)
CALL CGNTUR(FD,16,16)
WRITE (6,200)
CALL CCNTUR(FGR,1t,16)
WRITE(6,200)
CALL CCNTUR(VBAR,16,16)
```

```
    WRITE(0,200)
C
    calculate the bessel coeficients
    DO 5000 NU = 1.5
    NX = NU +1
    DO 5000 IO = 1,10
    ZZ = (10 - 1)*CZ + 0.00001
    BB(NU,IO)=U.O
    LLX = 0
    DO 5003 I = 1,ANN
    DU 5C02 J = 1,NN
    LLX = LLX + L
    ANNO = ALPHA(NX)
    CALL BESJ(ANNO,O,BJO,.OOU1,IEX)
    XINT = AAZ(I,NU)
    BAV(NU) = BAV(NU) + X(LLX)*2. 259**(2*I)*XINT/(2.*J*BJO**2)
    BBB(NUM,NU) = EAV(NU)
    BB(NU,IO)= = B(NU,IO)+X(LLX)*2.25`**(2*(I-I))*XINT/BJO**2*ZZ**(2*
    1J-1)*2.
5002 CONTINUE
50C3 CONTINUE
    BBZ = ABS(BAV(NU) )
    BALG(NU) = ALOG(BBZ)
    XXB(NUM,IO) = BB(1,IC)
    3BX = BB(NU,IO)
    BBX = ABS(BEX)
    BLOG(NU,IO) = ALOG(BBX)
5000 CJNTINUE
    WRITE(6,200)
    WRITE(6,220)
    WRITE(6,221) (( I,J,BB(I,J),BLUG(I,J),I=1,5),J=1,16)
    WRITE(6, 2C0)
    WRITE (6,240)
    WRITE(6,241)(KK,BAV(KK),BALG(KK),KK=1,5)
    WRITE(6,200)
```

```
    DU 5)11 KK = 1.5
    QQ = BURG*ALPHA(KK+1)/RO
    QA = -QU*).7071*TIMND*CJSH(QQ)/SINH(QQ)
    QZ(KK) = 1. - EXP(QA)
5 0 1 1
    WRITE(6,254) (KK,QZ(KK),KK=1,5)
    WRITE(6,2(0)
    Gu TO 6000
6001 CCNTINUE
    WRITE(7,277)( TTNO(K),BBB(K,1),K=1,NUM)
    WRITE(7,279)
    WRITE(7,277)( TTNU(K),BBB(K,2),K = 1,NUM)
    WRITE(6,200)
    WRITE(0,277)( TTND(K),BBB(K,1),K = 1,NUM)
    WRITE(6,279)
    WRITE(6,277)( TTNO(K),BBB(K,2),K = 1,NUM)
    DO 5100 IK = 1.16
    282 FORMAT(///////////
    WRITE(7,282)
    WRITE(6,282)
    WRITE(7,281)( TTND(IN), XXB(IN,IK),IN,IK,NEXPT,IN=1,NUM)
    WRITE(6,281)( TTND(IN),XXB(IN,IK),IN,IK,NEXPT,IN=I,NUM)
    281 FORMAT(2F10.1.3I5)
5lvo CCNTINUE
    100 FORMAT( 3I5)
    101 FORMAT(4F10.5,38X,I2)
    200 FORMAT (1H1)
    201 FURMAT(' POLYNCMIAL COEFICIENTS '/////
202 FJRMAT( 5X,I5,E20.8)
203 FORMAT(///" E(N) = ',E20.8///'% STANDARD DEVIATIUN =',
    1E20.8///)
208 FORMAT(IHL///' L ',' M ',' R ', ','TEMPERATURE'
    1' DT/DR ",BAROCLINIC VELOCITY*////////)
209 FORMAT( 2I5,2F8.5.4F11.5)
220 FORMAT( NU J B(NU,J) LUG(B(NU,J)),//////)
221 FORMAT(I5,6X,I5,2E20.8/1
```

```
240 FURMAT( NU EAVINU LOG(BAV(NU))://///)
241 FORMAT(I5,2E20.8)
250 FURMAT( I5,4F10.7)
251 FORMAT (1H1/' EXPERIMENT NUMBER =',I 3///' BUKGER NUMBER = 'F10.5
    1/' ROSSBY NUMBER =',F10.5/' EKMANN NUMBER =' F1U.7/1HL)
252 FCRMAT( REAL TIME = ,F10.5,'SEC')
253 FÜRMAT(: NJN DIMENSIONAL TIME =',F10.5/1HI)
254 FJRMAT(:NU=',I3,' U E EXP(Q(NU))=, E2U.8)
277 FORMAT( 2F10.2)
279 FURMAT(/////////)
290 FORMAT( I5,3E20.8)
291 FORMAT(* R = ',F10.5,'R**2 = ',F16.8.' SUM = ',F16.8)
300 FORMATI ' MATRIX A 'J
301 FURMAT( E2).8)
302 FURMAT( IER = ',I5)
700 FURMAT( ' TEST POINT'I
701 FURMAT(: TEST PCINT 2 !)
CALL EXIT
ENO
```



```
        KS T=J
        DC 9 K=1,KST
        TB=A(J)
        A(JJ)=TB
        TB=ABS (TB)
        IF(TB-PIV)3,8,7
    7 PIV=TB
    8 J=J-1
    JJ=JJ-1
c
C INSERT ZEROS IN FIRST MU ROWS (NUT NECESSARY IN CASE mZ=0)
    IF(MZ)14,14,10
    10 JJ=1
    J=1+MZ
    IC=1+MUD
    Du 13 I=1,ML
    DO 12 K=1,MC
    \Delta(JJ)=0.
        IF(K-IC)11,11,12
    11 A(JJ)=A(J)
    J= J+1
    | JJ=JJ+1
    13 IC=IC+1
C
    generate test value for singularity
    14 TOL=EPS*PIV
C
C
START DECCMPCSITION LOOP
    KST=1
    IOST=MC
    IC=MC-1
    DO 38 K=1,M
    IF(K-MR-1)16,16,15
15 IUST=IDST-1
16 ID=IDST
```

GELB1050 GELB1360 GELBlU73 GELB1980 GELB1090 GELB1100 GELB1110 GELB1120 GELBI130 GELB1140 GELBl150 GELB1160 GELB1170 GELB1180 GELB1190 GELB12'ر0 GELB1210 GELB1220 GELB1230 GELB1240 GELB1250 GELB1260 Gelbi270 GELB1280 GELB1290 GELB1300 GELB1310 GELB1 320 GELB 1330 GELB1340 GELB1350 GELB1360 GELB1370 GELB1 380 GELB1390 GELB1400

```
        ILR=K+MLD
        IF(ILR-M)18,18,17
        17 ILR=M
        18 II = KS T
C
C
    PIVOT SEARCH IN FIRST COLUMN (ROW INDEXES FROM I=K UP TO I=ILR)
    PIV=0.
    DO 22 I=K,ILR
    TB=ABS(A(II))
    IF(TB-PIV) 20,20,19
    19 PIV=TB
    J=I
    JJ=II
    20 IF(I-MR)22,22,21
    21 ID=ID-1
    22 II=II +ID
C
C
    TEST ON SINGULARITY
        IF(PIV)47,47,23
    23 IF(IER) 26,24,26
    24 IF(PIV-TCL) 25,25,26
    25 IER=K-1
    26 PIV=1./A(JJ)
C
C
    PIVOT ROW REDUCTION AND ROW INTERCHANGE IN RIGHT HAND SIUE R
    ID=J-K
    DO 27 I=K,NM,M
    II = I +ID
    TB=PIV*R(II)
    R(II)=R(I)
    27 R(I)=TB
C
C
PIVOT ROW REDUCTICN AND ROW INTERCHANGE IN COEFFICIENT MATRIX A
II =KST
J=JJ+IC
DU 28 I=JJ.J
```

GELB 1410
GELB1420
GELB1430
GELB1440
GELB1450
GELB 1460
GELB1470
GELB1480
GELB1490
GELB1500
GELB1510
GELB1520
GELB1530
GELB1540
GELB1550
GELB1560
GELB 157 J
GELB1580
GELB1590
GELB1600
GELB1610
GELB152
GELBI63
GELB1 640
GELB1650
GELS166?
GELB1670
GELB168v
GELB1690
GELB1700
GELB1710
GELB1720
GELB 1730
GELB1740
GELB 1750
GELB1760

```
    TB=PIV*A(I)
    A(I)=A(II)
    A(II)=TB
    28 II=II+I
C
C ELEMENT REDUCTION
    IF(K-ILR)29,34,34
    29 ID=KST
    II =K+1
    MU=KST+1
    MZ=KST+IC
    DO 33 I=II.ILR
C
C IN MATRIX A
    IU =ID +MC
    JJ=I-MR-1
            IF(JJ)31,31,3!
    30 1D=10-JJ
    31 PIV =-A(ID)
        J=ID+1
        DO 32 JJ=NU,MZ
        A(J-1)=A(J)+PIV*A(JJ)
    32 J=J+1
    A(J-1)=0.
C
C IN MATRIX R
    J=K
    DO 33 JJ=I,NM,N
    R(JJ)=R(JJ) +PIV*R(J)
    33 J=J+M
    34 KST=KST+MC
    IF(ILR-MR) 36,35,35
    35 IC = IC - 1
    36 ID=K-MR
    IF(ID)38,38,37
    37 KST=KST-ID
```

GELB1779
GELB1780 GELB1790 GELB180 GELB1810 GELB1820 GELB1830 GELB1840 GELB1850 GELB136 GELB187. GELB1880 GELB1890 GELB1900) GELB1910 GELB1920 GELB193.J GELB1940 GELB1953 GELB 1960 GELB1970 GELB1 980 GELB1990 GELB2000 GELB2010 GELB 2020 GELB2)30 GELB2040 GELB2.)50 GELB2060 GELB 2070 GELB2980 GELB2090
GELB2100
GELB2110
GELB2120

38 CJNTINUE

C
c
C
C
C BACK SUBSTITLTICN
IF(MC-1)46,46,39
39 I $C=2$
$K S T=M A+M L-M C+2$
$\mathrm{II}=\mathrm{M}$
Du $45 \mathrm{I}=2, \mathrm{M}$
$K S T=K S T-M C$
$\mathrm{II}=\mathrm{II}-1$
$J=I I-M R$
IF(J)41,41,40
$40 \mathrm{KST}=\mathrm{KST}+\mathrm{J}$
41 Du $43 \mathrm{~J}=\mathrm{II}, \mathrm{NM}, \mathrm{N}$
$T B=R(J)$
$M Z=K S T+I C-2$
$10=\mathrm{J}$
DU $42 \mathrm{JJ}=\mathrm{KST}, \mathrm{MZ}$
$\mathrm{ID}=\mathrm{ID}+1$
$42 T B=T B-A(J J) \neq R(I D)$
$43 R(J)=T B$
IF (IC-MC) $44,45,45$
$44 \mathrm{IC}=\mathrm{IC}+1$
45 Cuntinue
46 RETURN
C
C
C

ERROR RETURN

47 IER=-1
RE TURN
END
FUNCTICN IFAC(N)
I $X=1$
DO $1000 \mathrm{~J}=1, \mathrm{~N}$

GELB2130
GELB2140
GELB2150
GELB2160
GELB217'j
GELB218C
GELR2190
GELB2200
GELB2210
GELB2220
GELB2230
GELB2240
GELB2259
GELB2260
GELB227U
GELB2280
GELB2290
GELB 2300
GELB2310
GELB2 320
GELB2330
GELB2340
GELB2350
GELB2360
GELB2370
GELB2380
GELB2390
GELR2400
GELR2410
GELB2420
GELB2430
GELB2440
GELB245:

1000 I $X=I X * J$

$I F A C=I X$
RETURN
END

```
    SURROUTINE ALPHIETA,CONS,SBAR,H,B,AOI
```

This subroutine will fine the routs of the equatiun for the alphas
OTHER SUBROUTINES USED: ROUT
SEE 'ROUT' FUR FURTHER SUBROUTINES
IMPLICIT REAL* $8(A-H, C-Z)$
REAL* 4 ALPHA
DATA NK/50/
COMMUN ALPHA(50)
DIMENSION BB(6)
$B B(1)=0.0$
$B B(2)=2.40483$
$B B(3)=5.52007$
$\mathrm{BB}(4)=8.65373$
$B B(5)=11.79153$
$E L Z=E / A O$

INTIALIZE ALPHA
$001 I=1,50$
1 ALPHA(I) $=0.0$
$X G Q Q=S E A R-H$
IF(XQQQ.LT.O.O) GO TO 4
START THE SEQUENCE FOR FINDING THE ALPHAS
6 DO $3 \quad I=1,3$
$A C C=B B(I)+.05$
$B 00=B B(I+1)-.05$
ALPHA(I) $=$ ROOT $(A O J, B O O, E T A, C C N S, B Z Z)$
IF (ALPHA(1).LT.0.01) GO TO 4
3 CCNTINUE

```
    AUL = ALFHA(3) + 3.00
    BOO = ALPHA(3) + 3.30
    DO 2 I = 4,50
    ALPHA(I) = RCOT(AOO,BOO,ETA,CONS,BZZ)
    AUU = ALPHA(I) + 3.00
    BJO = ALFHA(I) + 3.30
2 CGNTINUE
    RETURN
4 DO 5 J=1,4
5 BB(J) = RE(J+1)
Gu TO 6
END
```

```
        FUNCTICN ROCT(X,Y,ETA,CONS,B)
C
C SUBROUTINES LSED: BESJ,COSH,SINH
C
C
    IMPLICIT REAL*8(A-H,O-Z)
    REAL*4 ALPHA
    100 C = ( X + Y)/2.
    RUOT = C
3C00 FCRMAT(E20.8)
    IF(DABS(C- x).LE.ETA) GO TC 1000
    CALL BESJ(C,U,BJO,.01,IK)
    CALL BESJ(C,1,BJI,.ni,IJ)
    QF=B家C
    QPK = 1.00COC00000
    IF(QF.LT.100) QPK = CSINH(QF)/DCOSH(QF)
    G = BJI/BJO - CCNS*GPK
    IF(G.GT.C.O) GO TO 2
    x = C
    Y = Y
    Gu TO 100
    2 X = X
        Y = C
    GO TO 130
1COO RETURN
    END
```

```
    SUBROUTINE NORTH(ALPHA,A,MMAX)
    DIMENSION ALPHA(40),A(4,41),Z(41,41),AA(164),ZZ(1681)
    INTEGER P,PP
    Du 1000 P = 1,40
    CALL BESJ(ALPHA(P),1,BJ1,.0001,IE1)
    CALL BESJ(ALPHA(P),0,BJO,.0001,IEG)
    A(1,1) = 0.5
    Z(1,1) = 1.12.
    A(1,P+1)=BJ1/ALPHA(P)
    Z(1,P+1) = EJl/ALPHA(P)
    2(P+1,1)= 2(1,P+1)
    DU 1CO1 M = 2.NMAX
    A(M,1) = 1./(2.*M)
    MM = M - 1
    1001 A(M,P+1)= BJl/ALPHA(P) + ( 2.*MM*BJO - 4.*MM*MM*A(MM,P+1))/ALPHA(P
    1)**2
    PP = P - 1
    IF(PP.EQ.O) GC TC 1103
    DU 1CC2 N = 1,PP
    CALL BESJ(ALPHA(N),1,BJIN,.0001,IE2)
    CALL BESJ(ALPHA(N),0,BJCN,.0:01,IE2)
    Z1 = ALPHA(P)*BJI*BJON - ALPHA(N)*BJO*BJIN
    Z2 = ALPHA(P)**2 - ALPHA(N)**2
    IF(Z2.EQ.0.0) WRITE(6,7000) Z1, Z2 ,N,P
    7COO FURMAT( ' Z1 = ',E20.8,5X,'L2=',E20.8,' N=',I5,' P=',I5////
        Z(N+1,P+1)=21/Z2
        Z(P+1,N+1) = Z(N+1,P+1)
    1002 CUNTINUE
    1103 CONTINUE
        Z(P+1,P+1)= 0.5*(BJO*BJO + BJI*BJ1)
        WRITE(6.70U3)
    7C03 FORMAT(' IEST POINT NUMBER ZERC '।
    1000 CONTINUE
C
C P PUT A AND Z INTO propoer form for use in the routine gelg
```

```
        NN = 0
        DO 1004 M = 1,MMAX
        WKITE(6,7001)
    7COl FJRMAT(' TEST POINT NUMBER ONE, )
        DJ 1004 P = 1,40
        NN = NN + 1
    1004 AA(NN) = A(M,P)
    NN = 0
    Du 1005 N = 1,40
    DJ 10C5 P=1,40
    NN = NN + 1
    10C5 ZL(NN) = Z(N,P)
C
c sulve for tre a's
CALL GELG(AA,ZZ,40,MMAX,.00CO1,IER)
    IF(ItR.NE.O) WRITE(6,200) IER
    200 FURMAT( ERRCR IN SOLUTION OF CJEFFICIENT MATRIX,EKRIJR=',I5I
    WRITE(6,7092)
    7CO2 furmat( ' TEST point NUmber Two ' / lHI)
C
C RECCMPOSE a
    NN = 0
    CO 1006 M = 1,MMAX
    DU 1606 P=1,40
    Niv = NN + 1
1CCG A(N,P) = AA(NN)
    RETURN
    END
```

```
    SUBRJUTINE GELG(R,A,M,N,EPS,IER)
    GELG
    52%
    tre above carc should be placed in proper sequence
        befORE COMPILING THIS UNDER IBM FORTRAN G.
        GELG 10
        GELG 20
        GELG 30
        SUBROUTINE GELG GELG 40
        GELG 50
        PURPOSE GELG 60
        TU SOLVE A GENERAL SYSTEM JF SIMULTANEOUS LINEAR EQUATIUNS. GELG 7U
```



```
        CALL GELG(R,A,M,N,EPS,IER)
        DESCRIPTICN UF PARAMETERS GELG 110
    R - THE M BY N MATRIX UF RIGHT HAND SIDES. (DESTRUYEDIGELG 130
                ON RETURN R CJNTAINS THE SILUTION UF THE EQUATIONS.GELG 14O
    A - THE M BY M COEFFICIENT MATRIX. (DESTRJYED) GELG 150
    M - THE NUMBER OF EQUATIONS IN THE SYSTEM. GELG 16:)
    N - THE NUMBER OF RIGHT HAND SIDE VECTURS. GELG 17U
    EPS - AIN INPUT CONSTANT WHICH IS USED AS RELATIVE GELG 18J
        TULERANCE FOR TEST CN LOSS OF SIGNIFICANCE. GELG 190
    IER - RESULTING ERRJR PARAMETER GODED AS FOLLOWS GELG 200
                IER=9 - NO ERROR. GELG 2lU
                IER=-1 - NO RESULT BECAUSE OF M LESS THAN 1 OR GELG 22O
                    PIVDT ELEMENT AT ANY ELIMINATIUN STEP GELG 230
                    EQUAL TO O, SIOT
                            GELG 230
                            GELG 240
                IER=K - WARNING DUE TU PUSSIBLE LUSS UF SIGNIFI- GELG 250
                    CANCE INOICATED AT ELIMINATION STEP K+1, GELG 260
                    WHERE PIVUT ELEMENT WAS LESS THAN OR GELG 27!
                    EQUAL TO THE INTERNAL TULERANCE EPS TIMES GELG 280
                    ABSOLUTELY GREATEST ELEMENT OF MATRIX A. GELG 290
                            GELG 304
REMARKS GELG 310
    INPUT MATRICES R ANC A ARE ASSUMED TU BE STUREO COLUMNWISE GELG 32U
    IN M*N RESP. M*M SUCCESSIVE STURAGE LOCATIONS. JN RETURN
        GELG 330
```

DIMENSIUN A(1),R(1)
IF (M) $23,23,1$
SEARCH FOR GREATEST ELEMENT IN MATRIX A
1 IER=C
$P I V=0$.
$M M=M * M$
$\Lambda M=N * M$
DO 3 L=1,MM
$T B=A B S(A(L))$
IF (TB-PIV) $3,3,2$
2 PIV=TB
$\mathrm{I}=\mathrm{L}$
3 CUNTINUE
TOL=EPS*PIV
A(I) IS PIVOT ELEMENT. PIV CCNTAINS THE ABSOLUTE VALUE OF A(I).
THE PROCEUURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS GELG 35 O GREATER THAN O AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS GELG 360 ARE DIFFERENT FROM O. HOWEVER WARNING IER=K - IF GIVEN - GELG 370 INEICATES POSSIBLE LOSS UF SIGNIFICANCE. IN CASE OF A WELL GELG 380 SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BE GELG 390 INTERPRETED THAT MATRIX A HAS THE RANK K. NU WARNING IS GELG 4GJ GIVEN IN CASE $M=1$.

SUBROUTINES AND FUNCTION SUBPRUGRAMS REQUIRED NCNE

METHCD
SELUTICN IS DCNE BY MEANS OF GAUSS-ELIMINATIUN WITH CCNPLETE PIVOTING。

GELG 340

GELG 410
GELG 420
GELG 430
GELG 440
GELG 450
GELG 460
GELG 470
GELG 480°
GELG 490
GELG 50.
GELG 510
GELG 530
GELG 540
GELG 550
GELG 561)
GELG 573
GELG 580
GELG 590
GELG 600
GELG 610
GELG 623
GELG 630
GELG 640
GELG 650
GELG 660
GELG 670
GELG 680
GELG 690
GELG 700

```
C
C
    START ELIMINATIEN LUOP
    LST=1
    CJ 17 K=1,M
C TEST ON SINGULARITY
    IF(PIV)23,23,4
    4 IF(IER)7,5,7
    5 IF(PIV-TCL)6,6,7
    6 ~ I E R = K - 1
    7 PIVI=1./A(I)
        J=(I-1)/M
    I=I -J*M-K
    J=J+1-K
    I+K is ROW-InCEX, J+K COLUMN-INDEX OF PIVUT ELEmENT
    PIVOT ROW RELUCTIGN AND ROW INTERCHANGE IN RIGHT HAND SIDE R
    OO & L=K,NM,M
    LL=L+I
    TB=PIVI*R(LL)
        R(LL)=R(L)
        8 R(L)=TB
    C
c IS ELIMINATION TERMINATED
    IF(K-M)9,18,18
C
C
    COLUMN INTERCHANGE IN mATRIX A
    L LEND=LST+N-K
        IF(J)12,12,10
    10 II=J*M
        DU 11 L=LST,LEND
        TB=A(L)
        LL=L+II
        A(L)=A(LL)
    11 A(LL)=TB
```

gelg 71u GELG 720
GELG 730
GELG 740
GELG 750
GELG 760
GELG 770
GELG 780
GELG 790
GELG 300
GELG 810
GELG 820
GELG 830
GELG 840
GELG 850
GELG 860
GELG 870
GELG 880
GELG 390
GELG 900
GELG 91 J
GELG 920
GELG 93.
GELG 940
GELG 950
GELG 960
GELG 970
GELG 980
GELG 990
GELG1700
Gelglulu
GELG1020
GELG1030
GELG1)40
GELG1050
GELG1J63

```
C
G RUW INTERCHANGE AND PIVOT ROW RELUCTION IN MATRIX A
    12 DU 13 L=LST,MM,M
    LL=L+I
    LL=L+I
    A(LL)=A(L)
    13 A(L)=TB
C
C SAVE COLUMN INTERCHANGE INFORMATI IN
    A(LST)=J
C
C ELEMENT REDLCTICN AND NEXT PIVOT SEARCH
    PIV=C.
    LST=LST+1
    J=0
    CO 16 II=LST,LEND
    PIVI=-A(II)
        IST=II I M
        J=J+1
        DO 15 L=IST,MM,M
        LL=L-J
        A(L)=A(L)+PIVI*A(LL)
        TB=ABS(A(L))
        IF(TB-PIV)15,15,14
    14 PIV=TB
    I=L
    15 CONTINUE
        DU 16 L=K,NN,N
        LL=L+J
    16 R(LL)=R(LL)+PIVI*R(L)
    17 LST=LST+M
    END OF ELININATICN LOOP
C
C
C
    GELG1)70
GELG1080
C
    BACK SUBSTITUTION ANC BACK INTERCHANGE
    18 IF(M-1)23,22,19
GELG1090
GELG1090
GELG1100
GELG1110
GELG1120
GELG1130
GELG1140
GELGIL140
GELG116%
GELGL170
GELG1180
GELG1190
GELG120U
GELG1210
GELG1220
GELG1220
GELG1230
\begin{tabular}{|c|c|c|}
\hline 19 & IST \(=M M+M\) & GELG1430 \\
\hline & LST \(=M+1\) & GELG144) \\
\hline & DO \(21 \mathrm{I}=2, \mathrm{M}\) & GELG1450 \\
\hline & \(\mathrm{IL}=\mathrm{LST}-\mathrm{I}\) & GELG1460 \\
\hline & IST \(=\) IST-LST & GELG1470 \\
\hline & \(\mathrm{L}=\mathrm{IST}-\mathrm{M}\) & GELG1480 \\
\hline & \(L=A(L)+.5\) & GELG1490 \\
\hline & DO \(21 \mathrm{~J}=11, \wedge M, M\) & GELG150 \\
\hline & TB=R(J) & GELG1510 \\
\hline & \(L L=J\) & GELG1520 \\
\hline & DO \(20 \mathrm{~K}=15 \mathrm{ST}, \mathrm{MM}, \mathrm{M}\) & GELG1530 \\
\hline & \(L L=L L+1\) & GELG1540 \\
\hline 20 & \(T B=T B-A(K) * R(L L)\) & GELG1550 \\
\hline & \(\mathrm{K}=\mathrm{J}+\mathrm{L}\) & GELG1560 \\
\hline & \(R(J)=R(k)\) & GELG1570 \\
\hline 21 & \(R(K)=T B\) & GELG1580 \\
\hline 22 & RETURN & GELG1590 \\
\hline C & & GELG160) \\
\hline C & & GELG1610 \\
\hline C & ERROR RETURN & GELG1620 \\
\hline 23 & IER=-1 & GELG1630 \\
\hline & RETURN & GELG1640 \\
\hline & END & GELG1650 \\
\hline
\end{tabular}
```

 SUBROUTINE GAUSHA (NPRBG,FOF,NBO,Y,NQ,TH,DIFZ,SIGNS,EPIS, GAUSOO1O
 1 EP2S,MIT,FLAN,FNU)


```
    VERSION MIT/L
```

 VERSION MIT/L
 THIS VERSICN OF GAUSHA HAS BEEN CONVERTED FUR USE ON THE YIT-IBM
 THIS VERSICN OF GAUSHA HAS BEEN CONVERTED FUR USE ON THE YIT-IBM
 360/65
 360/65
 KIM UAVIL SAUNDERS DEPARTMENT OF METEORULOGY
 KIM UAVIL SAUNDERS DEPARTMENT OF METEORULOGY
 SUBRUUTINES REGUIRED:
 SUBRUUTINES REGUIRED:
 GAUS6C (SPECIAL)
 GAUS6C (SPECIAL)
 SIMQ (SSP)
 SIMQ (SSP)
 MINV (SSP)
 MINV (SSP)
 AlLMAT (MATHLIB)
 AlLMAT (MATHLIB)
 THE calling sequence IS:
 THE calling sequence IS:
 CALL GAUSHAINPROB,FOF,NOB,Y,NP,TH,DIFF,SIGNS,EPS1,EPS2,MIT,FLAM,
 CALL GAUSHAINPROB,FOF,NOB,Y,NP,TH,DIFF,SIGNS,EPS1,EPS2,MIT,FLAM,
 FNL,SCTRAT)
 FNL,SCTRAT)
 DESCRIPTICN OF THE INPUT PARAMETERS
DESCRIPTICN OF THE INPUT PARAMETERS
NPROB INTEGER CONSTANT GIVING THE PROBLEM NUMBER
NPROB INTEGER CONSTANT GIVING THE PROBLEM NUMBER
FOF THE NAME DF THE USER SUPPLIED SUBRPOGRAM• IT MUST BE
FOF THE NAME DF THE USER SUPPLIED SUBRPOGRAM• IT MUST BE
DECLARED EXTERNAL IN THE MAIN PROGRAM.
DECLARED EXTERNAL IN THE MAIN PROGRAM.
NOB NUMBER OF OBSERVATIONS
NOB NUMBER OF OBSERVATIONS
Y ONE DIMENSIONAL ARRAY CONTAINING THE OBSERVEU

```
    Y ONE DIMENSIONAL ARRAY CONTAINING THE OBSERVEU
```

```
    FUNCTICN VALUES.
    NP NUMBER OF UNKNOWN PARAMETERS.
    TH ONE DIMENSIONAL ARRAY CONTAINING THE PARAMETER VALUES
        BEFORE THE SUBPROGRAM IS EXECTUED, TH MUST CONTAIN
        AN INITIAL GUESS, WHICH MAY HAVE NO ZERO COMPCNENT.
        DIFF
        ONE UIMENSIONAL ARRAY CONTAINING A VECTOR OF
        PROPURTIONS USED IN CALCULATING THE DIFFERENCE QUO-
        IENTS. DIFF(I) MUST BE GT.O AND LT.I
    SIGNS IF SET = O, THERE IS NO RESTRICTION ON THE SIGNS OF
        THE PARAMETERS. IF.GT. U, THE SIGNS MUST REMAIN THE
        SAME AS THOSE OF THE INITIAL GUESS.
    EPS1 REAL CONSTANT WHICH IS THE SUM OF SQUARES CONVERGENCE
        CRITERION. ZF EPSI = O , THIS FEATIJRE IS DISABLED.
    EPS2 A REAL CONSTANT WHICH IS THE PARAMTEK CONVERENCE
        CRITERICN. IF EPS2 = O, THIS FEATURE IS DIABLED.
    MIT MAXIMUM NUMBER OF ITERATIONS.
    FLAM STARTING VALUE FOR LAMCA. (.OL USUALLY WORKS WELL)
    FNU. STARTING VALUE FOR NU. IT MUST BE .GT. I
    SCTRAT A WURKING VECTOR. IT MUST BE LARGER THAN:
        5*NP+2*NP**2+2*NOB+NP*NOB
If THERE ARE ANY QUESTIONS, SEE KIM DAVID SAUNDERS
                        54-1310
                        EXT 5938
```


DIMENSICN A(10,10), D(10,10), DELZ(300,10)
DIMENSICN LLCL(10), LLJM(10)
DIMENSICA $A \times X \times(100)$
DIMENSICN TH(10), DIFZ(10), SIGNS(10),Y(50)
DIMENSICN VECTR(50)
COMPLEX AAA $(10,10), P P P(10)$

```
    COMMCN Q(10),P(1U),E(10),PHI(10),TB(10) GAUSUO4U
    CUMMUN F(300),R(300) GAUSO)50
    CUMMCN /ELKI/X
    DATA DET/l./
    CATA LP/E/
    NP=NQ
    NPRUB=NPRBO
    NOB=NBU
    EPS1=EP1S
    EPS2=EP2S
    WRITE(LP,100U) NPRJB,NOB,NP . GAUSOJ90
    WRITE(LP,1001) GAUSOlOJ
    CALL GAUS6U (1,NP,TH,TEMP,TEMP)
    WRITE(LP,1002)
    CALL GAUS60 (1,NP,DIFZ,TEMP,TEMP)
    IF(NP.LT.1 •OR.NP.GT.50 .OR.NOB.LT.NP) GO TO 94 GAUSO140
    IFIMIT.LT.1 •OR. MIT.GT.999 •JR.FNU •LT. 1) GJ TO 99 GAUSU153
    DO 19 I=1,NP
    TEMP = DIFL(I)
    IF(TEMP) 17,99,18
17 TEMP = -TEMP
18 IF(TEMP •GE. 1 ©OR. THII) \bulletEQ. OI GJ TO 99
19 CONTINUE
    GA = FLAM
    NIT = 1
    ASSIGN 225 TO IRAN
    ASSIGN 265 TO JORDAN
    ASSIGN 180 TC KUWAIT
    IF(EPSI .GE.O) GO TO 10
    EPS1=0
10 IF(EPS2 .GT. OI GO TO 30
    IF(EPS1 •GT. O) GO TO 50
    ASSIGN 270 TO IRAN
    Gu 10 70
5 0 ~ A S S I G N ~ 2 6 5 ~ T O ~ I R A N
GU TO }7
```

GAUSOO40 GAUSO.j50

GAUSOO70
-AUSOJ80

GAUSO)93
GAUSO103

GAUSO1 20

GAUSO 140
GAUSU153
GAUSO160
GAUSO170
GAUSO180
GAUSO190
GAUSU203
GAUSO210
GAUSO220
GAUSO230
GAUSU 240
GAUSO250
GAUSU26:
GAUSO270
GAUSO280
GAUSO290
GAUSO 300
GAUSO310
GAUSO 320
GAUSO330
GAUSO340

```
    30 IF(EPS1 .GT. 0) GU TO 70
        ASSIGN 270 TO JORCAN
    70 SSO = 0
        CALL FOF(NPROB,TH,F,NOB,NP)
        DU 90 I=1,NUB
        R(I)=Y(I) - F(I)
    9U SSQ = SSQ + R(I)*R(I)
        WRITE(LP,1003) SSQ
        GU TO 105
C
C BEGIN ITERATICN
C
    100 WRITE(LP,1004) NIT
    105 GA = GA/FNU
        INTCOU = 0
        DO 130 J=1,NP
        TEMP = TH(J)
        P(J)= DIFZ(J)*TH(J)
        TH(J) = TH(J) + P(J)
        Q(J)=0
        CALL FOF(NPRUB,TH,VECTR,NCB,NP)
        DO 501C I = 1,NOB
5G10 DELZ(I,J) = VECTR(I)
        DO 120 I=1,NOB
        DELZ (I,J) = DELZ(I,J) - F(I)
    120Q(J)=Q(J) + DELZ(I,J)*R(I)
        Q(J)=G(J)/P(J)
C
C ** Q=XT*R (STEEPEST DESCENT)
C
    130 TH(J) = TEMP
    DO 150 I=1,NP
    DO 151 J=1,I
    SUM = 0.0
    DO 160 K=1,NOB
    160 SUM = SUM + DELZ(K,I)*DELZ(K,J)
```

GAUSO 350
GAUSU360) GAUSO37! GAUSU383 GAUSO390 GAUSO400 GAUSU410 GAUSO420 GAUSU430 GAUSO440 GAUS045C GAUSU400 GAUSU470 GAUSO480

GAUSO500 GAUSU510 GAUSU520 GAUSO530 GAUSO540

GAUSU56U GAUSO570 GAUSO580 GAUSO590 GAUSO60: GAUSU61u GA:JSU620 GAUSU630 GAUSO640 GAUSUS50 GAUSO662 GAUSU67v GAUSO680

```
        TEMP = SUM/(P(I)*P(J))
        D(J,I) = TENP
    151 D(I.J) = TEMP
C
C ** D=XT*X (MCMENT MATRIX)
C
    150 E(I) = SGRT(C(I,I))
        GO TU KUWAIT,(180,666)
C
C ** ITERATICN I ENLY
    180 DU 200 I=1,NP
        DU 200 J=1,I
        SUM = D(I,J)
        A(J,I) = SUM
    200 A(I,J) = SUM
        WRITE(6,5c03)
        WRITE(6,5CO4)(( A(I,J),I=1,NP),J=1,NP)
        WRITE(6,5003)
    5003 FCRMAT(1H1)
    5004 FORMAT( E20.8)
        DO 5COO IKX = 1,NP
        DO 5000 JKX = 1,NP
        PPP(IKX) = P(IKX)
    5000 AAA(IKX,JKX) = A(IKX,JKX)
        CALL ALLMAT(AAA,PPP,NP,10,NCALL)
        DO 5001 IKX = 1,NP
        DO 5001 [KJ = 1,NP
        P(IKX) = REAL(PPP(IKX))
    5001 A(IKX,IKJ) = REAL(AAA(IKX,IKJ) )
        WRITE(LP,1006)
        WRITE(LP,2001) (P(I),I=1,NP)
        WRITE(LP,1004) NIT
        ASSIGN 6E6 TO KUWAIT
C
C ** ENC ITERATICN 1 CNLY
```

GAUS0690 GAUSJ700 gaus0710 GAUSO720 GAUS0730 GAUSO740 GAUS0750
gaUS077J GAUSO780 GAUS0790 gaUs0 300 gaus0810 gausos20 GAUSO830 GAUSO840

GAUSO860 gaUSO 870 GAUSO88. gausubio GAUSO900 GAUSO910

```
C
    666 DU 153 I=1,NP
        DO 153 J=1,I
        A(I,J)=D(I,J)/(E(I)*E(J))
    153 A(J,I) = A(I,J)
C
C** A = SCALED NUMENT MATRIX
C
        DO 155 I=1,NP
        P(I)=Q(I)/E(I)
        PHI(I) = P(I)
    155 A(I,I)=A(I,I)+GA
        I = 1
        IKK = C
        DO 8000 I = 1,NP
        Cu 80UO J = 1,NP
        IKK = IKK + I
        AXXX(IKK)=A(I,J)
    8000 CONTINUE
            CALL SIMQ(AXXX,P,NP,KKS)
C
** P/E = CORRECTICN VECTOR
C
    STEP = 1.0
    SUM1 = 0.0
    SUM2 = 0.0
    SUM3 = 0.0
    DO 231 I=1,NP
    SUM1 = P(I)*PHI(I) + SUMI
    SUM2 = P(I)*P(I) + SUM2
231 SUM3 = PHI(I)*PHI(I) + SUM3
    TEMP = SUML/SQRT(SUM2*SUM 3)
    IF(TEMP .LE. 1.O) GO TO 233
    TEMP = 1.0
233 TEMP = 57.255* COS(TEMP)
    WRITE(LP,1041) TEMP
GAUS 1960
GAUS 1970
GAUS 1080
GAUS1100
GAUS 1120
GAUS113i)
GAUS 1140
GAUS1150
GAUS1160
GAUS 1170
GAUS 1180
WRITE(LP,1041) TEMP
GAUS 1200
```

```
170 DU 2<0 I=1.NP
220 TB(I) = P(I)*STEP/E(I) + TH(I)
    WRITE(LP,7000)
7COJ FGRMAT('OTEST POINT PARAMETER VALUES')
    WKITE(LP,2CO6) (TB(I),I=1,NP)
    DU 2401 I=1,NP
    IF(SIGNS(I).GT.0.0 .AND. TH(I)&TB(I).LE.O.O) GO TU 663
2401 CONTINUE
    SUMB = U.O
    CALL FUF(NPROB,TB,F,NCB,NP)
    DO 230 I=1,NOR
    R(I)=Y(I) - F(I)
230 SUMB = SUMB + R(I)*R(I)
    WRITE(LP,1043) SUMB
    IF( SUME/SSQ-1.0 .LE. EPSI ) GO TO }66
663 IF(TEMP .GT. 30.0) GO TO 664
    STEP = STEP/2.0
    INTCUU = INTCOU +1
    IF(INTCOU - 36) 170,2700,2700
6 0 4
    INTCOU = INTCOU +1
    IF(INTCOU - 36) 666,2700,2700
6 6 2 \text { WRITE(LP,1UJ7) GAUS1430}
    DO 569 I=1,NP GAUS144O
669 THIII TE(I)
GAUS144O
    CALL GAUS60 (1,NP,TH,TEMP,TEMP)
    WRITE(LP,1040) GA,SUMB
GAUS1470
    GU TO IRAN, (225,265,270)
225 DO 240 I=1,NP
    IF(ABS(P(I)*STEP/EII))/(1.OE-20+ABS(TH(I)|)-EPS2) 240.24C".250
240 CONTINUE
    WRITE(LP,10C9) EPS2
    Gu TO 280
250 GO TO JURCAN,(265,270)
265 IF(ABS((SUMB-SSQ)/SSQ).GT. EPSI) GO TO 270
GAUS1550
260 WRITEILP,1J1U) EPS1
```

GAUS1210
GAUS1220
GAUS 1230
GAUS 1240
GAUS 1250
GAUS 1260
GAUS1270
GAUS 1289
GAUS1290
GAUS1300
GAUS 1313
GAUS 1320
GAUS 1330
GAUS1340
GAUS1350
GAUS 1360
GAUS1370

GAUS1400

GAUS 1430
GAUS 1440
GAUS 1450
GAUS 1470

GAUS 1490
GAUS 1500
GAUS 1510
GAJS 1520
GAUS 1530
GAUS 1550
GAUS 1560

```
        G0 TO 28C
    270 S50 = SUMB
        NIT = NIT+1
        IF(NIT - MIT) 100,10G,280
2700 WRITE(LP,2710)
2710 FORMATI//'0**** THE SUM OF SQUARES CANNOT BE REDUC
        SO
        1 SQUARES at tre end of the last Iteration - ITERATINg stops' /l gausi630
C
.c ** END ItERATICN
    280 WRITE(LP,1011)
        WRITE(LP,2CCI) (F(I),I=1,NOB)
        WRITE(LP,1012)
        WRITE(LP,2001) (R(I),I=1,NOB)
        SSQ = SUMB
        IDF = NCE-NP
        WRITE(LP,1015)
        I = O
        IKK = 0
        DO 8CO1 1 = 1,NP
        Cu 8001 J = 1,NP
        IKK = IKK + I
        AXXX(IKK) = C(I,J)
8001 Cuntinue
    CALL MINV(AXXX,NP,DET,LLOL,LLCM)
    IKK = O
    DO 8Cü2 I = 1,NP
    DO 8002 J = 1, NP
    IKK = IKK + I
    D(I,J) = AXXX(IKK)
8002 CJNTINUE
    DO }7692 I=1,N
76S2 E(I) = SQRT(C(I,I))
    DU 340 I=1,NP
    DJ 340 J=I,NP
    A(J,I) = [(J,I)/(E(I)*E(J))
    GAUS176*
    GAUS1779
    gaus1780
    GAUS1790
    GAUS1800
```

```
    D(J,I)= D(J,I)/(DIFZ(I)*TH(I)*DIFZ(J)*TH(J)) GAUSI810
    D(I,J)=D(J,I)
340 A(I,J) = A(J,I)
    CALL GAUS60 (3,NP,TEMP,TEMP,A)
7057 WRITE(LP,1016)
    CALL GAUS60 (1,NP,E,TEMP,TEMP)
    IF(IDF •LE. U) GO TO 410
    SDEV = SSQ/IDF 
    WRITE(LP,1014) SOEV,IDF
    SUEV = SQRT (SDEV)
    DO 391 I=1.NP
    P(I) = TH(I) + 2.0*E(I)*SDEV
391 TB(I) = TH(I) - 2.0*E(I)*SDEV
    WRITE (LP,1029)
    CALL GAUS6O (2,NP,TB,P,TEMP)
    DO 415 K=1,NCB
    TEMP = 0.0
    DO 420 I=1,NP
    DO 420 J=1,NP
420 TEMP = TEMP + DELZ(K,I)*DELZ(K,J)*D(I,J)
    TEMP = 2.O*SQRT(TEMP)*SDEV
    R(K) = F(K) + TEMP
415F(K) = F(K) - TEMP
WRITE(LP,ICCB)
    IE = U
    DU 425 I=1,NOB,10
    IE =IE + IC
    IF(NUB-IE) 430.435,435
430 IE = NOB
435 WKITE(LP,2001) (R(J),J=I,IE)
425 WRITE(LP,2U0G) (F(J),J=I,IE)
4 1 0
WKITE(LP,1033) NPROB
RETUKN
    G9 WRITE(LP,1034)
    GO TO 410
lCOO FORMAT(INON-LINEAR ESTIMATIUN, PROBLEM NUMBER 1.I3// I5,
```

GAUS 1810
GAUS 1320
GAUS 1330
GAUS1850

GAUS187U
GAUS 1880
GAUS1890
GAUS1900
GAUS 1910
GAUS1920
GAUS1930
GAUS1940
GAUS 1960 GAUS 1970 GAUS 1980 GAUS 1990 GAUS200U GAUS2010 GAUS 2723 GAUS2030 GAUS2040 GAJS 2950 GAUS2960 GAUS 237U GAUS2v80 GAUS 2 19, GAUS210. GAUS2110 GAUS 2120 GAUS 2130 GAUS 214 GAUS 2150 GAUS2160

```
    1 ' OBSERVATICNS ',15,' PARAMETERS'') GAUS217U
10O1 FORMAT(/'OINITIAL PARAMETER VALUES') GAUS2180
1002 FURMAT (/OPROPORTIONS USED IN CALCULATING DIFFERENCE QUOTIENTS') GAUS2I9O
1003 FURMAT(/'OINITIAL SUM OF SQUARES = ',E12.4) GAUS22UU
1004 FORMAT(/////45X,'ITERATION NU.',I4) GAUS22lU
IOC5 FORMAT('ODETERNINANT = .E12.4) GAUS222O
1006 FORMAT(/'OEIGENVALUES OF MOMENT MATRIX - PRELIMINARY ANALYSIS') GAUS 223U
1007 FURMAT(/'OPARAMETER VALUES VIA REGRESSION') GAUS224O
1008 FORMAT/////'UAPPROXIMATE CONFIDENCE LIMITS FOR EACH FUNCTION VALUEGAUS225O
    1 ')
GAUS 2260
1009 FORMAT//OITERATION STOPS - RELATIVE CHANGE IN EACH PARAMETER LESSGAUS227U
    1 THAN ',El2.4)
GAUSS2280
1010 FURMAT (/ UITERATICN STOPS - RELATIVE CHANGE IN SUM OF SQUARES LESSGAUS229O
    1 THAN ',El2.4)
GAUS2300
1011 FORMAT('IFINAL FUNCTION VALUES ') GAUS231O
1012 FURMAT(////'ORESIDUALS') GAUS2320
1014 FORMAT (//'OVARIANCE OF RESIOUALS = ',E12.4,*,",I4, GAUS 2330
    - ' DEGREES OF FREEDOM'I
1015 FORMAT(////'OCORRELATICN MATRIX')
1C16 FURMAT(////IONCRMALIZING ELEMENTS') GAUS 2360
1033 FORMAT(//'OEND OF PROBLEM NO. ',I3) GAUS237%
GAUS 2330
1034 FURMAT(/'OPARAMETER ERROR') GAUS238O
1039 FORMATI/'OINDIVIOUAL CCNFIDENCE LIMITS FOR EACH PARAMETER ION LINEGAUS239O
    IAR HYPOTFESISI')
1040 FORMAT(/'OLAMBCA = ',E1O.3.40X,'SUM OF SQUARES AFTER REGRESSIJN = GAUS 241O
    1 E17.7) GAUS2420
1041 FORMAT('0ANGLE IN SCALED COORD. = ',F5.2, DEGREES') GAUS2430
1043 FORMAT("OTEST POINT SUM OF SQUARES = .,E12.4) GAUS 244,J
2001 FURMAT(/10E12.4)
GAUS 2450
2OC6 FURMAT(10E12.4) GAUS246?
END GAUS2473
```

```
    SUBRUUTINE GAUSGU(ITYPE,NG,A,B,C)
    DIMENSION A(NQ),B(NQ),C(NQ,NQ)
    DATA LP/E/
    NP = NQ
    NR = NP/10
    LUW = 1
    LUP = 10
10 IF(NR)\cdot15,20,30
15 RETURN
20 LUP = NP
30 WRITE(LP,5`O)(J,J=LOW,LUP)
    GU TO (40,6C,80), ITYPE
40 WKITE(LP,GOC)(A(J),J=LOW,LUP)
    GU TO 100
60 WRITE(LP,6CC)(B(J),J=LCW,LUP)
    GU TO 40
80 OU 9C I = LCW,LUP
90 WRITE(LP,72C) I,(C(J,I),J=LOW,LUP)
    LOW2 = LUP + 1
    DO G5 I = LCh2,NP
    ¢5 WRITE(LP,72C)I,(C(J,I),J=LOW,LUP)
100 LUW = LOW + 10
    LUP = LLPP + 10
    NR = NR - 1
    GU TO 10
500 FURMAT(/18,9112)
600 FURMAT(ICE12.4)
720 FORMAT(1HO,I3,1X,F7.4,9F12.4)
    END
```

```
    SUBRUUTINE BESJ(X,N,BJ,D,IER)
    IER=0
    Z = X/3.
    IF(N.EQ.O) GO IO 1
    IF(N.EQ.I) GU TO 2
    IER = 5
    GU TO 70C0
    1 IF(Z.GE.1.) GO TO 3
    BJ = 1. - 2.2499S97*Z*Z + 1.2656208*Z**4 - . 3163866*Z**6
```



```
    GO TO 7URO
    3 Z = 1./Z
    FU = ((()(0.00014476*L - .00072805)*Z + .00137237)*L-.00009512)
    1*Z - .0055274C)*Z - . 90000077)*Z +. 79788456
    THETO=X-.78539816 + (()(1 .00013558*Z - .00029333)* Z -.00054125)
    1*Z + .00262573)*Z - .00003954)*z - .041663971*z
    BJ = FO*COS(THETO)/SQRT(X)
    GO TO 7000
2 IF(Z.GE.1.) GC TO 4
    Z = Z*Z
    BJ=X*((()((.00001109*Z - .00031761)*Z +.00443319)*Z - .0394289)
    1*Z + . 21093573)*Z -.5624985)*Z + .5 )
    GO TO 7000 KBO22
    4Z=1./Z KBO23
    FL=((()(-.00020033*Z+.00113653)*Z - .00249511)*Z+.00017105)*Z KBU24
    L+.U1655667)*Z +.00000156)*Z + . 79788456
    THET1 = X+( (()(-.0(029166*Z+.00079824)*Z+.0007434*)*Z - KB026
    1.00637&79)*Z + ( (000565)*Z+.12499612)*Z - 2.35619449 KB027
    BJ=F1*CCS(THET1)/SQRT(X)
7000 RETURN
    KBO29
```

KBOO2
KBOO 3
KBOU4
KBOU5
KBOn6
KBOO7
KBOO 8
KBJ. 9
KBOLI
KB012
KBO13
KBO 15
KBU16
KBO1
KBO19
KBO20
KBO22
KBO23
KBU24
KBO26
KBU27
KBO29

```
C TEMPERATURE INTERPOLATICN PROGRAM FOR DATA COLLECTEO ON THE PDP/8S
C KIM LAVIC SAUNDERS MIT 54-1310
C VERSION 2 , 13 JANUARY 1971
C
C
    DIMENSION THETA(30,20),TEMP(30,20)
    DIMENSICA T(30)
    CATA T/30*0.0/
    DATA THETA/600*U.0/,TEMP/60\cap*O.0/,LP,LU/5,6/
C
C
    10 READ(5,1CO) NS,NT,THETA(NS,NT),IQQQ
    100 FORMAT( 2I5,F10.5,58X,I2)
        IF(IQQQ.EQ.O) GU TU 10
        NMAX = NS
C REDUCE THE CATA TO DIFFERENCE FORM
C
C
C
C
C
    PAGE 2
    WRITE(LC,2CO)
    200 FURMAT(IHI)
        DO 1,00 I = 2,NMAX
        DO 1000 J = 1,20
        K=I-1
        ThETA(I,J) = ThETA(I,J) - theta(1,j)
1000 WRITE(LO,201) K,J,THETA(I,J)
    [J 1004 J = 1,20
1004 THETA(1,J) = 0.0
    201 FORMAT(' SERIES NO. = ',I5,5X,' THERMISTOR NU. =',I5,5X,' DT = ',F
```

```
    16.1/1
    WRITE(LC,200)
C
    PERFORM THE INTERPOLATICN ON SERIES I
    OT = 1.40
    Du 1001 J = 1,20
    TN1 = 1.40 +(J-1)*0.106
        TEMP(2,J) = THETA(2,J)*DT/TN1
1001
    CONTINUE
C
C PAGE 3
C
C
C
    DO LUC2 I = 2,MMAX
    DO 1002 J = 1,20
    TN1 = 4.58
    DT = (J-1)*0.100
    TEMP(I ,J) = (THETA(I+I,J) - THETA(I,J))*DT/TNI + THETA(I,J)
    1002 CONTINUE
    00 1003 I = 2,10
    1003 T(I) = (I-2)*4.58 + 1.40
C
C oltput the ccrrected field
C
C
C
    PAGE 4
    WRITE(LO,20C)
    WRITE(LC,202)
    202 FORMAT(' SERIES TIME THERMISTOR CORRECTED TEMPERATURE'//////
    203 FURMAT( 14,3X,F7.3,3X,14,20X,F6.1/)
    WRITE(LO,203)((I, T(I),J,TEMP(I,J),J=1,20),I=1,NMAX)
    RO = 2.259
```

```
00 2000 10 = 1,NMAX
LLX = C
DU 2000 I = 1,5
DO 2000 J = 1,4
LLX = LLX + 1
R=RO*(1.-1./2.**(5-1))
Z = 1. - 1.12.**(4-J)
IF(LLX.EG.3) GO TO 2000
IF(LLX.EG.9) GO TO 20.00
IP = 10-1
WRITE(7,204) R,Z,TEMP(IO,LLX),T(IO),IP,LLX
2000 CONTINUE
204 FORMAT( 4F10.4.2I5)
CALL EXIT
END
```

```
C PRJGRAM TO CCNVERT POINT DATA INTU POLAR CJORDINATES AND CALCULATE
C RACIAL ANC AZIMUTHAL VELUCITIES FOR THE STRATIFIEL SPIN-UP EXPT.
C KIM DAVID SAUNDERS
    MIT
    OCTOBER 1570
    THE MAIN INPUT DATA FOR THE PRJGRAM IS FRUM THE DIGITIZER
    ON THE THIRC FLOUR OF THE EARTH AND PLANETARY SCIENCE BLDG.
    DEFINITICN OF OTHER PARAMETERS:
    RO IS THE RALIUS JF THE CYLINDER IN CM
    H IS THE RATID OF THE DISTANCE THE PLANE OF LIGHT IS FRJM THE
        TOP JF THE CYLINDER TO THE TOTAL HEIGHT UF THE CYLINDER.
            THIS IS NEEDEC FOR PARALLAX CORRECTIUN.
    PSI IS THE PARALLAX CORRECTICN FACTJR
    DIMENSICN R(20,37),THETA(20,36),DR(20,36),DTHET(20,36),TIME(36),
    1 X(36),Y(36),l(20,36),V(20,36)
    DIMENSION TIMP(30),HEADR(20)
    DIMENSION EU(20,36),EV(2C,36)
    DIMENSICN RPLT(36),UPLT(36),VPLT(36),UMGPT(36),TIMK(36)
    REAC(5,102) ( HEADR(I),I=1,20)
    REAO(5,100) XO,YO,X1,Y1,X2,Y2,H,RO,N
    READ(5,112) EX,ET,IDEX
    READ(5,I13) DCNEG,TSPIN
    N = NUMBER OF SERIES IN CURRENT RUN
    INITIALIZE EVERYTHING
    DO 10 I = 1,20
    R(1.37) = 0.0
    DU 1C J=1.36
    EU(I,J)=0.0
    EV (I,J)=0.0
    R(I,J)=0.0
    THETA(I,J) = U.O
    DR(I,J)=0.0̈
    DTHET(I,J) = 0.0
    TIMP(J) =0.0
```

```
        RPLT(J) = 0.0
        UPLT(J) = 0.0
        VPLT(J) = 0.0
        CMGPT(J) =0.0
        TlMK(J) = 0.0
    10 TIME(J) = 0.0)
    R11 = SQRT((X2 - XO)**2 + ( Y2 - YO)***2)
    ROO = SQRT( (X1 - XO)**2 + (Y1 - YO)**2)
    ROR = RO/RII
    PSI = 1. + H*( RlI/RCC -. 1.)
    WRITE(6,105)
    WRITE(6,102)( HEADR(I),I=1,20)
    WRITE(6,104)
    DO 1000 I=1, N
C FIRST CARD IN EACH SERIES mUST HAVE THE FJLlOWING INFJRMATION:
C SERIES NO.. NC. OF FIRST PICTURE, NO. OF CARDS IN SERIES IN THE
C FORMAT: NSER NPNOO NCARD
    READ(5,1C1) NSER,NPNCO,NCARD
    NN = NCARD - 1
    NNC = NFNOO + NN
    0O l1001 J = 1,36
    X(J) = 0.0
1001 Y(J) = 0.0
    READ( 5,103)(X(J),Y(J),J=NFNOO,NNC )
    DO 1002 J = NPNOC,NNC
    XP = X(J) - XO
    YP = Y(J) - YC
    IF(IDEX.EQ.O) GU TO 3000
    XP = -xp
3000 continue
    R(NSER,J) = ROR*PSI*SQRT(XP*XP + YP*YP)
    THETA(NSER,J) = ATAN2(YP,XP)
1002 IF( THETA(NSER,J).LT.0.0) THETA(NSER,J) = 2.*3.14159+THETA(NSER,J)
1000 CUNTINUE
    DO 1004 I =1,20
    DO 1004 J=1,35
```

```
    IF(R(I,J).LE..I) GO TO 1004
    DK(I,J)=R(I,J+1)-R(I,J)
    DTHET(I,J) = TrETA(I,J+1) - THETA(I,J)
    IF(DTHET(I,J).LT.O.O) UTHET(I,J) = DTHET(I,J) + 2.*3.14159
1004
    REAU(5,110) ( TIME(J),J=1,36)
    DO 10C6 I = 1,20
    DU 1006 J=1,35
    IF( ABS(CR(I,J)). LT. .00001) GO TO 10C6
    DT = TIME(J+1) - TIME(J)
    TIMP(J) = 0.5*(TIME(J) + TIME(J+1))
    U(I,J)= DR(I,J)/DT
    V(I,J) = (DTRET(I,J)/DT)*(R(I,J) + R(I,J+I))/2.
    EU(I,J)=ABS(EX/OT)+ABS(ET*DR(I;J)/(DT*DT))
    EV(I;J) = ABS(EX/DT) + ABS(ET*V(I,J)/DT)
1006
CONTINUE
WRITE(6,1C9)
DO 1007 I=1,20
WRITE(6,111)
DU 1007 J = 1.36
IF(R(I,J).GT..I)WRITE(6,107) I ,J,R(I,J),THETA(I,J),TIME(J)
IF( R(I,J).GT..1.AND.R(I,J+1).GT..1) WRITE(6,108)UR(I,J),DTHET(I,J
1),U(I,J),V(I,J), TIMP(J),EU(I,J), EV(I,J)
1007 CONTINUE
CALL EXIT
100 FURMAT( 3(2F5.3,6X),2F10.5,I 5)
101 FURMAT( 5X,I5,10X,I5,5X,I5)
102 FURMAT(20A4)
103 FORMAT( 5(2F5.3, 6X))
104 FORMAT(1H, ////)
105 FURNAT( 1H1)
107 FORMAT( <I5,3F10.5)
108 FJRMAT( 40X,5F15.5/77X,2F10.6)
```



```
109 FORMAT(' SERIES PN U R THETA V VHETA VIME TIMEO/8OX,' ERRDR
U
```

TIME V

```
WRITE (6,105)
```

```
WRITE (6,105)
```

2IN U ERRCR IN V'////I
110 FORMAT (8F10.5)
111 FGRMAT($1 \mathrm{H}, 1 / /)$
112 FCRMAT (2 F10.5,15)
113 FURMAT(2F10.5)
END

```
    SUBRUUTINE SIMQ(A,B,N,KS)
    SIMQ
    490
THE ABOVE CARD SHOULD BE PLACED IN PROPER SEQUENCE
        BEFORE COMPILING THIS UNDER IBM FORTRAN G.
    SIMQ 10
```



```
    SUBROUTINE SIMQ SIMQ 40
    SIMQ 30
        OBTAIN SQLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS, SIMQ 
        OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS, SIMQ 
        SIMQ 92
    USAGE
        CALL SIMQ(A,B,N,KS)
    DESCRIPTICN OF PARAMETERS
        A - MATRIX DF COEFFICIENTS STORED CULUMNWISE. THESE ARE SIMQ 14O
        DESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS SIMQ 150
        N BY Ne
    B - VECTOR OF ORIGINAL CONSTANTS (LENGTHN). THESE ARE SIMQ ITO
        REPLACED BY FINAL SCLUTICN VALUES, VECTUR X. SIMQ 180
    N - NUMBER UF EQUATIONS AND VARIABLES. N MUST BE .GT. ONE. SIMQ 190
    KS - CUTPUT DIGIT
        SIMQ 20.
            O FCR A NURMAL SOLUTION
        SIMQ 210
        SIMQ 220
        SIMQ 230
    REMARKS
    MATRIX A MUST BE GENERAL. SIMQ 250
SIMQ 240
    IF MATRIX IS SINGULAR , SOLUTION VALUES ARE MEANINGLESS. SIMQ 26U
    AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX SIMQ 27O
    INVERSION (MINV) ANO MATRIX PRODUCT (GMPRD). SIMQ 28U
    SIMQ 28U
    SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED. SIMQ 30C
    NCNE
SIMQ 310
SIMQ 320
METHOC
SIMQ 330
```

METHOD OF SULUTICN IS BY ELIMINATION USING LARGEST PIVUTAL SIMQ 340 DIVISJR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGINGSIMQ 350° ROWS WHEN NECESSARY TO AVOIO DIVISI IN BY ZEKU OR SMALL SIMQ 360 ELEMENTS. SIMQ 370
THE FORWARD SOLUTICN TO DBTAIN VARIABLE N IS DONE IN SIMQ 380
N STAGES. THE BACK SCLUTICN FOR THE UTHER VARIABLES IS SIMQ 390
CALCULATED BY SUCCESSIVE SUBSTITUTIUNS. FINAL SOLUTICN SIMQ 400
VALUES ARE DEVELCPED IN VECTOR B, WITH VARIABLE I IN B(1), SIMQ 410
VARIABLE 2 IN B(2),......... VARIABLE N IN B(N). SIMQ 420
IF NJ PIVOT CAN BE FOUND EXCEEDING A TULERANCE OF C.O, SIMQ 430
THE MATRIX IS CCNSIDERED SINGULAR AND KS IS SET TO 1. THIS SIMQ 440
TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT. SIMQ 450
SIMQ 460
SIMQ 47 C
SIMQ $48{ }^{\circ}$
DIMENSICN A(1).E(1)
SIMQ 500
SIMQ 510
FORWARD SCLUTIUN
SIMQ 520
TOL $=0.0$
SIMQ 530
$T U L=0.0$
$K S=0$
SIMQ 540
$K S=0$
SIMQ 550
$J J=-N$
$\begin{array}{ll}\text { SIMQ } & 560 \\ \text { SIMQ } & 570\end{array}$
DU $65 \mathrm{~J}=1, \mathrm{~N}$
$J Y=J+1$
$J J=J J+N+1$
$\begin{array}{ll}\text { SIMQ } 580 \\ \text { SIMQ } & 590\end{array}$
BIGA=0
SIMQ 5U.
IT $=\mathrm{JJ}-\mathrm{J}$
$\begin{array}{ll}\text { SIMQ } & 50 D \\ \text { SIMQ } 610\end{array}$
Cu $30 I=J, N \quad$ SIMQ 620
SEARCH FOR NAXIMUM COEFFICIENT IN COLUMN
SIMQ 630
$\begin{array}{ll} & \text { SIMQ 650 }\end{array}$
$I J=I T+I$

$I F(A B S(B I G A)-A B S(A(I J)))$	$20,30,30$
$B I G A=A(I J)$	$S I M Q$

20
$B I G A=A(I J)$
$I M A X=I \quad S I M Q 690$
SIMQ 680
30 CONTINUE

```
C
C
    test for pivot less than tulerance (Singular matrix)
    IF(ABS(BIGA)-TOL) 35,35,40
    35 KS=1
    RETURN
C
C INTERCHANGE ROWS IF NECESSARY
    40 I1=J+N*(J-2)
        IT=IMAX-J
        DO 50 K=J,N
        II=II+N
        I2 = I 1 + IT
        SAVE=A(II)
        A(I1)=A(12)
        A(I2)=SAVE
C
C DIVIde equaticN by leading coefficient
C
    50 A(II)=A(II)/BIGA
    SAVE=B(IMAX)
    B(IMAX)=B(J)
    B(J)=SAVE/BIGA
C
C
            eliminate next variable
    IF(J-N) 55,7C,55
    55 IUS=N*(J-1)
    DO 65 I X=JY,N
    IXJ=IQS+IX
    IT=J-IX
    DO GU JX=JY,N
    IX JX=N*(JX-1)+IX
    JJX=I XJX+IT
    60 A(IXJX)=A(IXJX)-(A(IXJ)*A(JJX))
```

SIMQ 710
SIMQ 720
SIMQ 730
SIMQ 740
SIMQ 750
SIMQ 760
SIMQ 770
SIMQ 780
SIMQ 790
SIMQ 8UO
SIMQ 810
SIMQ 820
SIMQ 830
SIMQ 840
SIMQ 853
SIMQ 860
SIMQ 870
SIMQ 880
SIMQ 890
SIMa 900
SIMQ 910
SIMQ 920
SIMQ 930
SIMQ 940
SIMQ 953
SIMQ 96%
SIMQ 970
SIMQ 980°
SIMQ 990
SIMQ1000
SIMQIOLU
SIMQ1:J20
SIMQ1030
SIMQI:J4.
SIMQ1050
SIMQ1066

```
    65B(IX)=B(IX)-(B(J)*A(IXJ)) SIMQ1070
C
BACK SOLUTICN
    70 NY=N-1
        IT}=N*
        DU 80 J=1,NY
        IA=IT-J
        IB=N-J
        IC =N
        CJ 80 K=1.J
        B(IB)=B(IB)-A(IA)*B(IC)
        IA=IA-N
    80 IC=IC-1
    RETURN
    END
```

SIMQ1070
SIMQ1J80
SIMQ1090
SIMQ1100
SIMQ1110
SIMQ1120
SIMQ1130
SIMQ1140
SIMQ1150
SIMQ1160
SIMQ1170
SIMQ1180
SIMQ1190
SIMQ1200
SIMQ1 210
SIMQ1 220

