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Abstract

This thesis proposes new methods to solve three problems: 1) how to model and solve
decision-making problems, 2) how to translate between a graphical representation of
systems and a matrix representation of systems, and 3) how to cluster single and
multiple Design Structure Matrices (DSM).

To solve the first problem, the thesis provides an approach to model decision-
making problems as multi-objective Constraint Optimization Problems (COP) based
on their common structures. A set of new algorithms to find Pareto front of multi-
objective COP is developed by generalizing upon the Conflict-directed A* (CDA*)
algorithm for single-objective COPs. Two case studies - Apollo mission mode study
and earth science decadal survey study - are provided to demonstrate the effectiveness
of the modelling approach and the set of algorithms when they are applied to real-
world problems.

For the second problem, the thesis first extends classical DSMs to incorporate
different relations between components in a system. The Markov property of the
extended DSM is then revealed. Furthermore, the thesis introduces the concept of
"projection", which maps and condenses a system graph to a DSM based on the
Markov property of DSM.

For the last problem, an integer programming model is developed to encode the
single DSM clustering problem. The thesis tests the effectiveness of the model by
applying it to a part of a real-world jet engine design project. The model is further
extended to solve the multiple DSM clustering problems.

Thesis Supervisor: Edward F. Crawley
Title: Ford Professor of Engineering
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Chapter 1

Overview

1.1 Motivations and Objectives

People make decisions everyday. The decisions could be as simple as choosing which

brand of clothes to buy, and could be as intertwined as choosing the mission mode

for the Apollo project in 1960s. People mostly view decision making as an art, but

actually, in many decision making scenarios, people can use quantitative skills to help

make better choices during a part of the decision-making process, if not through all of

it. Especially, when people are facing a large-scale and/or complex system and getting

lost in numerous possible options, the decision making "science" can effectively help

them narrow down the choices to a manageable range and even to a small set of

options that are near optimal.

In this section, I first explain why decision making in complex systems is hard,

which explains why we need aiding tools for decision making. I then discuss the

difficulty of solving large-scale decision-making problems, and the concern of uncer-

tainties when solving the problems. I also discuss two categories of tools for modeling

complex systems and the need of building a bridge between them. Finally, I discuss

the need of decomposing and reintegrating the complex systems, and the tools that

are needed in such a process.



1.1.1 Difficulties in Decision Making

Think of yourself as the chief engineer of designing the mission mode of Apollo. The

goal is to land man on the moon and send them back to the earth safely. To achieve

this ambitious goal, you need to choose the type of the rocket, whether to send

the spaceship into the lunar orbit or directly to the lunar surface, how many crew

members should be on the command module and the lunar module, etc.. You also

have to consider how to increase the reliability of the mission, how to control the

expense within the budget, and many more. A large number of dazzling alternatives

would pour into your mind and might easily flood your analysis ability.

Such a decision making process is hard, because so many decisions have to be

made, so many constraints have to be considered, and so many goals have to be

achieved. Certainly, different problems may involve different difficulties, but generally,

there are three basic sources of difficulties [7]:

First, the system itself is very complex. For example, to make a choice of the

Apollo mission mode, one has to consider tens of major processes and hundreds of

detailed processes. Many of these processes involves a few different options, and

choices of the options are bounded by engineering constraints. Similar situations

exist in almost all large-scale system design - a large number of decisions to make,

many possible options for the decisions, a large number of constraints that limit the

possible combinations of the options chosen for the decisions, a set of objectives that

had better be optimized when making the choices. Thus, the complexity is one of the

most important sources of difficulty in decision making.

Second, the decision making often involves two or more objectives that are conflict

with each other to some extent. For example, when considering the mission of Apollo,

the reliability and cost are two of the most important things that should be considered.

However, the two objectives could not be both optimized at the same time: the

improvement of the reliability might drive up the cost significantly, and on the other

hand, saving some money might compromise the overall reliability of the mission. As

said by Mencius, "One cannot get fish and bear's paw at the same time." How to



balance the gains and losses between different objectives is another source of difficulty

in decision making.

Last but not least, decision making is usually affected by uncertainties. Some

critical data like the failure rate of a mission mode could be just an estimation, or

could change with the the environment on the launching day. Other than the best

option, decision makers usually need to examine the alternatives that are not the

best, but is good enough and less risky, or in other words, robust enough to sustain

a certain degree of fluctuation.

All the issues, of course, could be addressed by human brains, but it will be faster

and less error-prone to let computers carry out the works, and leave the precious

manpower to refine a relatively small number of results. The need of designing,

implementing and improving such decision-aid tools is the main motivation of my

work.

1.1.2 Solving Large-Scale Decision Making Problems

As mentioned in the last section, one of the main goal of the decision-aid tools is to

help people find the good decisions in a complex system. This is not an easy task for

the computer though. In a complex system in the real world, there could be hundreds

of decisions to be made, and each of them has several options. A straightforward

method of finding the good solutions is to enumerate all of the possible solutions,

filter the ones that do not satisfy the constraints, and sort the results based on our

objectives. This approach, however, does not work well in practice because of the

large amount of computational time and storage space it needs: The total number of

possible combinations is so large that it will take the computer a long time to find all

the solutions and a large space to store them. For example, if there are twenty main

parts in a car, and we have three options for each of the parts, the total number of

possible combination of the twenty parts is 32, which is about 3.5 billion! One can

argue that solving such a problem might just take a day, but what if 1) the number of

parts is not twenty, but fifty or a hundred? 2) the engineer has to modify the model

frequently? The time spent on solving this problem is too long to be afforded by any



manufacturer.

One might have noticed that not all of the enumerated solutions are used. In most

of the cases, even if we enumerate billions of solutions, we probably just need the best

twenty of them, if no less. This observation sets one of the objectives for designing

the decision-aid tools: to develop an algorithm to search and store only the "good"

solutions.

Another important functionality that the decision makers need is to identify the

trade-offs between different objectives, especially when the objectives have conflicts

with each other. The "good" results are the options that are not worse than some

other option in every aspect. For example, when buying a computer, people will

compare the price and performance. There could be hundreds of different computers

in the market, but people would not be interested in those that are expensive but

running slow. Or in other words, the options whose objective values are all worse

than another option are not what we need. The decision makers need the tool that

could help them filter the options and leave only the "good" ones.

In addition, a decision process is often divided into two stages: the first is to

focus on the factors that are critical to the system and temporarily ignore the less

important details. When the key decisions are made, the details ignored in the first

stage will then be considered in the second stage. In such a decision making mode,

it is important that in the first stage, not only the optimal one is preserved, but the

best several as well. Because even if an option is not the best, it might have potential

benefits in the second stage and that could make it a better option than the one that

was optimal in the first stage. Under such a circumstance, decision makers need the

solutions that are "almost the best".

In sum, when decision makers face the real world problems, they need 1) to get

the good options at a cost of limited time and computer storage space, 2) to consider

several objectives and their trade-offs, and 3) to obtain the solutions that are poten-

tially good. To provide tools for the demands is the main goal I would like to achieve

in my work.



1.1.3 Representation of System Architectures

When analyzing a complex system, the decision makers cannot study the system as

a whole due to its complexity. They need to decompose the system into manageable

parts and then study the connections and interactions between them. Thus, they

need the tools to represent relations between parts and to study the structures of

the system. This is the goal of the analysis of system architectures, which is defined

by E.F.Crawley as "the allocation of physical/informational function to elements of

form, and the definition of interfaces among the elements and with the surrounding

context" [10].

There are two main categories of such representation. One is to represent the sys-

tems in graphs, the other is to represent them in matrices. The graph representation

of a simple system is shown in Figure 1-1, and a matrix representation of the same

system is shown in Table 1.1.

a/ 2 b
C

33 e

ff g
4

Figure 1-1: An example of system graph.

1 2 3 4 5

2 / /
3 v/
4 v/

Table 1.1: Matrix representation of the system architecture shown in Figure 1-1

In Figure 1-1, we can see that the system could be decomposed into 5 major parts.

Part 1 is connected to parts 2, 3, and 4 with relations a, d, and f, respectively. From

the graph, decision makers can easily identify the relations between two parts, and

could further infer some valuable information, for example that part 2 needs the input



from part 3, and thus the relation d is better to be analyzed before a.

The matrix representation shown in Table 1.1 is a clear table of the relations

between different parts. The check mark indicates the connection between two parts.

Although it looks less straightforward than Figure 1-1, it is more clear when the

system is so large that the graph representation extends to pages, especially when the

different components of the system is highly correlated. The matrix representation is

also more convenient when computational analysis of the system is required. A more

detailed discussion will be provided in Section 4.1.

Since the two representations of the systems are widely used in system architecture

analysis and have complementary advantages and disadvantages, decision makers need

theories and methods to bridge the two kinds of representations, so that people can

go back and forth and communicate with other system architects. Another goal of

this thesis is to establish such a connection and enable people to translate the two

representations with ease.

1.1.4 Decomposing and Clustering Complex Systems

A typical process of analyzing a complex system is to first decompose it into small

parts that are manageable and analyze them separately, and finally study the integra-

tion of all the parts. The question, however, is how to appropriately decompose the

system. A widely used approach is to first thoroughly decompose the whole system

into "atoms", and then group them into clusters. The analysis will be based on the

clusters instead of the atoms. To do such a clustering, matrix representation of the

system is advantageous. Figure 1-2 shows a simple example.

When we want to analyze the structure of a bicycle, we first thoroughly decompose

it into the simple mechanical parts, i.e., pedals, chain, wheels, etc.. Then we can put

a check mark (the number "1" in the matrix) in the entry if the two parts are related.

Based on the matrix, we can cluster the parts. There are some rules to follow: 1)

we want the parts in a cluster to be closely related, 2) the parts in different clusters

should not have a strong connection, and 3) the number of total clusters should be

sufficiently large, so that the decomposition is effective. The thick borders in Figure



Pedals Chain Gear Shift Gears Wheels Brake Brake String Handlebars Odomete
Pedals 1 1
Chain 1 1 1
Gear Shift 1 1 1
Gears 1 1 1 1
Wheels 1 1 1 1

Brake 1 1 1
Brake String 1 1
Handlebars 1 1 1

dometer 1 1

Figure 1-2: An example of DSM clustering [31]. The thick lines indicate the clusters.

1-2 indicates a "good" clustering.
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Figure 1-3: An example of
problem [37].
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real-world DSM clustering problem - A jet engine design

The system could be as simple as the one shown in Figure 1-2, where there are only

9 components, and could be as complex as the one shown in Figure 1-3 (refer to [37] for

details), where 37 components are included in the DSM. Analysts of complex systems

need theories and automatic tools that can help them cluster the parts effectively

and efficiently. Thus, another goal I would like to achieve is to provide an effective

method for system architects to decompose and cluster complex systems in practice.

M

,



1.1.5 A Brief Summary of Motivations and Objectives

In sum, there are three main objectives corresponding to three main motivations in

this thesis:

1. Find the good options in complex and large-scale systems for decision makers

based on multiple objectives in limited time and storage space.

2. Establish a bridge between the two main representation methods in system

architecture: the graph representation and matrix representation. Reveal the

inherent relationship between the two representations.

3. Develop a method that can effectively cluster the elemental parts in complex

systems.

The first problem is in the domain of optimal decision making and the second and

third requires optimization methods for system architectures. Accordingly, the first

problem is considered in Chapter 2, with case studies in Chapter 3, and the last two

are discussed in Chapter 4.

1.2 Background

In this section, I will introduce the background knowledge needed in or related to my

discussion in this thesis. There are three main topics: first is about how to encode the

decision making problem and how to solve it, the second is how to solve a problem

that is multi-objective, the last one is about the Design Structure Matrix (DSM) and

Object Process Diagram (OPD).

1.2.1 Modeling and Solving Decision-Making Problems as

Single-Objective Constraint Optimization Problems (COP)

This subsection discusses two important issues of solving decision-making problems:

how to model the decision-making problems and how to get the solutions from the



model. The approach I use is to treat the decision-making problems as Constraint

Optimization Problems (COP). The reason is that there are several key things that

are common in the decision making problems which matches the COPs very well.

I will first give the definition of COP with an example, and then explain why the

decision-making problems are similar to COPs.

COP is composed by four fundamental parts:

1. A set of decision variables.

2. A set of options for each decision variable.

3. A set of constraints restricting the options for the decision variables.

4. A set of objective functions expressed by the decision variables.

Table 1.2 shows an example of COP. There are 3 decision variables, A, B and C.

Decision variable A has three options, 2, 4, and 7. Similarly, decision variable B has

2 options and C has 4 options. There is a constraint |B - C1 ;> 2, restricting the

freedom of choosing B and C at will. There is a single objective: to maximize the

function -A + 10B + 2C.

Decision Variables A, B, C
Options A = {2, 4, 7}

B = {3, 8}
C = {2, 5, 6, 9}

Constraint |B - Cl > 2
Objective max -A + 10B + 2C

Table 1.2: An example of Constraint Optimization Problem (COP)

Most of the decision-making problems have the same elemental parts as COP: The

decision makers have to make a series of decisions, which correspond to the decision

variables; for each decision, there are several options, which correspond to the options

for decision variables; there are constraints that limit the choice of the options, and

it corresponds to the constraints in COP; and there are always some kinds of goals to

achieve or objectives to be optimized, which corresponds to the objective functions.



From the discussion above, we can see that COP is a perfect match with many

decision-making problems. I provide two case studies in Chapter 3. The two decision

problems are both extracted from practical decision-making problems. It verifies such

a claim in some degree.

To solve the COPs, we need to address two main issues, which leads to two classes

of algorithms: one is to find the solutions that do not violate the constraints, and

the other is to find the best solution. For the first problem, we only need to consider

the constraints, without objectives. This class of problems is called Constraint Satis-

faction Problems (CSP)[33]. CSP is intensively studied in the Artificial Intelligence

(AI) community. The main goal of CSP is to find one solution that satisfies all the

constraints, without considering any objective. For the second problem, on the other

hand, we search for the best solution, and use the constraints to test the validity of

the solutions. Now I will briefly introduce one classical algorithm for each of the two

problems. The two algorithms are closely related to the algorithm that I introduce in

Chapter 2. A systematical introduction of the algorithms and ideas could be found

in [33] and [13].

1. The backtracking algorithm for solving CSPs.

The basic idea of backtracking algorithm is to assign an option to one decision

variable once at a time. Every newly assigned option, however, should not

violate any constraint based on the assigned set of variables. When none of the

options of the decision variable could satisfy all the constraints, we backtrack,

i.e., change the assignment of the last decision variable, and then continue the

process until we find one full assignment that satisfies all the constraints, or no

assignment could be found.

To better illustrate the process, let us consider the problem described in Table

1.2 (disregard the objective function). A partial process of assigning options to

decision variables is shown in Figure 1-4. (The graph is called a search tree.)

We first assign one option for decision variable A, i.e., let A = 2. Then we assign

a value to B. Notice that this assignment should not violate any constraints



given A = 2. Since all the options are valid, we arbitrarily assign 3 to B. In the

next step, we need to pick a value for variable C. Assume we first let C = 2,

however, this assignment violates the constraint lB - C1 > 2. Thus, value 2

cannot be assigned to C. We pick another value 5 for C, and we get a valid set

of assignment, A = 2, B = 3, C = 5.

A = 2

2

B= 3 B=8

3 8

C=2 /\\C9 C=2/ "/ C zs6\
C5

Figure 1-4: Backtracking algorithm for solving single-objective COPs.

To further demonstrate how the backtracking works, assume we have another

constraint |A - C| < 1. Now all the values 5, 6 and 9 for variable C will violate

the constraint |A - C1 < 1. Thus, we know the previous partial assignment

A = 2, B = 3 is not valid, and we have to backtrack. Now we assign value 8 to

B and come to node 8. When we try to assign 2 to C, we can see that both

constraints lB - Cj > 2, A - C1 < 1 are satisfied. Thus, the full assignment

A = 2, B = 8, C = 2 is a feasible solution.

This is the basic algorithm that is widely used to solve CSPs. There are many

techniques such as backtracking with forward tracking, back jumping, etc. that

are based on the same thought and improve the overall search efficiency in

practice.

Among the techniques, I would like to mention the dynamic ordering of the

decision variables. One might have noticed that the sequence of the decision

variables that are assigned options is arbitrary in the example. The sequence in

the example is A, B then C, but it could also well be C, B then A. In practice,

this sequence may affect the efficiency of the algorithm. The dynamic ordering



technique is developed to change such a sequence to reduce the options that are

needed to examine. There are different criteria that are adopted. One of them

is to assign the one that has the widest connections to other decision variables

in the constraints. For example, C is involved in both constraints in the case

studied in Figure 1-4, thus, we might want to assign a value to it first to reduce

the possible number of options of other decision variables. Another idea is that

we can assign an option to the one that is least restricted. It might lead to

a feasible solution more quickly. The criterion I use in Chapter 2 is another

one which assigns a value to the decision variable that has the least number

of options first. The rationale is that if we can eliminate one of the options, a

large number of offsprings in that branch will also be eliminated.

In this part, I introduce the background of using backtracking algorithm to

solve CSP problems. The algorithm assigns an option to the decision variables

while keeping track of the constraints. It backtracks when no feasible option

exists for a decision variable. The algorithm seeks only a feasible solution, i.e.,

it does not consider any objective function. One can always find all feasible

solutions and calculate the objective values to pick the best one, but it is not

a good strategy. We need an approach that can use the information implied in

the objective functions to guide the search. That is, we should be "smarter"

when choosing the options for the variables. Therefore, we need algorithms like

A*.

2. A* search for COPs

The goal of the A* algorithm for COPs is to find a best solution according to the

objective function. There are three important functions in the the algorithm,

the function g(-) is the value related to the decisions that have been made, while

the function h(-) is the value of the heuristics, which is the "approximating"

function of the unassigned decision variables, and function f(-) = g(-) + h(-)

is the value that is used as a criterion to choose which option to assign to the

next decision variable first. The heuristic function h(-) is the key to the search



efficiency. The closer the value of the function h(-) is to the real value of the

unassigned decision variables, the faster the search could reach the best solution.

Let us consider the example shown in Table 1.2 and Figure 1-4 again. The

objective function is: max -A + lOB + 2C. Assume we are at step 2 (node 2 in

Figure 1-4). Since A = 2, if we assign 8 to B, we have g(-) = -A + lOB = 78,

while if we assign 3 to B, we have g(-) = -A + 10B = 28. Let h(-) be the

maximum possible value of the unassigned variables. Then we have h(-) =

2Cmax = 2 - 9 18. Thus, the function f (-) = g(-) + h(.) = 78 + 18 = 96 for

the option B 8, and f (-) = g(-) + h(-) = 28 + 18 = 46 for the option B = 3.

Notice that the f value of B = 8 is greater than B = 3, it means that if we use

the heuristic function described above, the assignment B = 8 is more promising

than B = 3 (since we are maximizing the objective value). Thus, we should

assign B = 8 first. Notice that it does not mean that we will not check B = 3,

it just means that we will check B = 8 first. If it turns out that B = 8 is not a

valid option, we will backtrack and assign 3 to B again.

In summary, the A* algorithm uses the heuristic function to decide which option

to assign to the decision variable first. It keeps track of the values for each node

in a tree like the one shown in Figure 1-4, and store them in a queue. The one

with the maximum f value will always be checked first.

Theoretically, as long the heuristic function is admissible (the value of the func-

tion f(-) is guaranteed to be greater than or equal to the value of the full assign-

ment), the result is optimal. Refer to [14] or [33] for the detailed explanation

and proof.

I briefly introduce the algorithms of solving single-objective COPs in this subsec-

tion. To solve multi-objective COPs, however, we need more techniques. In the next

subsection, I will introduce several widely used multi-objective optimization methods.



1.2.2 Multi-objective Optimization Methods

The multi-objective optimization methods are mainly researched in the operations

research community. The book [20] and papers [16] [42] provide comprehensive review

of the main theories and approaches. Here I would like to introduce only the algo-

rithms that are related to this thesis, including the ones that are used in my work

and the ones that are very popular and widely used.

A class of multi-objective optimization methods are based on single-objective

optimization approaches. They transform the multi-objective problems into single-

objective problems, and then use the single-objective optimization methods to solve

them. Two general approaches are adopted to manipulate the multiple objectives:

1) put weights on different objectives, and 2) change the objectives into constraints.

The basic idea of the first approach is to put different weights on different objectives

(intuitively, give heavy weights to the objectives that people think are more impor-

tant), and sum the objectives to form a new single objective. There are a variety

of extensions of this method under different names like goal programming[41], vector

optimization [1] [28], etc.. The basic idea of the second approach is to set a tolerance

level for all but one objectives, (for example, restrict all but one objectives to be

greater than or equal to 0), and optimize the only objective that is left. The first

approach is demonstrated in detail in Section 2.3.1, and the second in Section 2.3.2.

Before I introduce the second and third classes of methods, I need to explain

the concept of Pareto front. In the multi-objective optimization method I introduce

above, only one solution will be obtained. However, most of the time, decision makers

need a variety of solutions that are "good" against some objectives. For example,

assume that we try to maximize two objectives (oi, 02). If the objective values of

solution 1 is (2, 5), and the objective values of solution 2 is (3, 10), it is obvious that

solution 2 is better. If, however, the objective values of solution 1 is (3, 5), and the

objective values of solution 2 is (2, 10), we cannot assert that either solution is better

than the other since they have at least one objective value that is greater. Thus, we

call one solution dominated by another if and only if all of its objective values are



not better than another. If a solution is not dominated by any other solutions, we

call it undominated. All the undominated solutions form the Pareto front. The goal

of the following two algorithms is to identify the Pareto front, i.e., to find all the

undominated solutions, or so-called Pareto optimal solutions.

The second multi-objective optimization method I want to introduce is very pop-

ular in recent years. It is called Evolutionary Multi-Objective (EMO) algorithm[8].

The goal of the EMO algorithm is not to only find one solution, but the whole Pareto

front. The algorithm is derived from the general genetic algorithm[27], whose basic

idea is to keep a population of solutions and evolve them by the crossover and mu-

tation. The idea of keeping a set of solutions fits in the framework of finding a set of

solutions on the Pareto front, and turns out to be effective.

The first effort of extending the genetic algorithm into the multi-objective area is

made by Schaffer [34] in 1984. The basic idea is just to keep a population, evaluate

each objective of them, then generate the next generation by shuffling the popula-

tion. The shortcoming is noticed by many researchers and the author himself. The

algorithm tends to converge to a single point or an area on the Pareto front instead

of the whole Pareto front.

The idea of "sharing" is brought up by Goldberg et. al. in [23]. Since the

method developed by Schaffer tends to converge into a single point, we want to avoid

the assimilation of the solutions and keep the diversity on the Pareto front. They

introduced a parameter o-sharing, and use an degradation approach to reduce the fitness

value of the individuals in a crowded area. For example, in Figure 1-5, the candidate

1 is in a crowded neighbourhood, thus, to maintain the diversity, candidate 2 has a

better chance to be kept into the next generation.

There are two different implementation of this suggestion: Fonseca and Fleming[21]

used the ranking method. A point's ranking is determined by rank(xi, t) = 1 + pi(,

meaning 1 plus the number of points dominating the point xi in the t'th generation.

Figure 1-6 shows an example.

Then the best fitness value is assigned to different points by the different levels.

They also have a technical way of choosing the parameter osharing. Refer to [21] for



Figure 1-5: The idea of "sharing" used in Evolutionary Multi-Objective (EMO) al-
gorithms.
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Figure 1-6: Multi-objective ranking. The value of each solution is determined by the
solutions it dominates (including the solution itself). The solutions with greater value
have better chances to survive the selection in the Genetic Algorithm.

details.

Another approach called "Pareto domination tournaments" is proposed by Horn

etc. in [24]. The basic idea is that when choosing the next generation of population,

we do not compare two individuals directly, but compare them with a randomly

chosen group, say 10%, from the whole population. If one is dominated by the group

and the other is not, then the undominated one is chosen. If both dominated or

both undominated, the number of the individuals near the candidates are calculated:

mi =Eje:PZlation Sh(d[i,j]), where Sh(d) is a decreasing function of d[i,jJ], such

that Sh(0) = 1, and Sh(d Ushare) = 0. Then there could be several different ways

of determining Sh(d) where d E [Ushare, 1], like Sh(d) =1 - d/Ushare proposed by [24]



or Sh(d) = 1 - (d/Ushare) 2 proposed by [38]. The fitness function is then degraded to

fi/mi, which means the individual in a crowd gets slimmer odds to survive.

The paper [38] provides general comments on the methods mentioned above and

gave simulation results. Another recent paper [8] provides updates in the recent EMO

research: Elitism, the use of an external population (secondary population) is used

in the next generation of EMO.

The last multi-objective optimization method I want to introduce is the multi-

objective A* algorithm[40]. It is a multi-objective version of the generic A* algorithm.

The idea of the multi-objective A* algorithm is that instead of choosing the option

that has the best objective value and expand that branch first in the search tree, we

expand all the branches that have the undominated objective values. Let us consider

the shortest path searching problem shown in Figure 1-7 as example.
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Figure 1-7: Multi-objective A* algorithm [40]. The algorithm examines and expands
the nodes with undominated heuristic values first.

There are two numbers on each of the arcs, representing the two objective values

of choosing the next node. The goal of this problem is to find the path with the

minimum cost from s to 71 - 73. Assume the heuristic function is the costs on the

arc. At the first step, we start from node s and have 3 options - nodes 1 to 3.

Notice that the option 3 with cost (1,3) is dominated by option 1, (1,2). Thus, we

first examine nodes 1 and 2. With the cost from s to node 4 being (3.3), to node

5 through node 1 being (2,4), to node 5 through node 2 being (5,2), and to node 6



being (5,2), we should check the paths s-2-5, s-2-6 and s-3 first, since the cost from

s to 3 is (1,3) which dominates costs (3,3) and (2,4). We can keep expanding the

search tree in the same way until we reach one of the -y nodes.

Stewart, B.S. and White III proved that the algorithm is sound and complete in

[40], and gave a few more examples in their paper. The algorithm can find all the

solutions that are undominated.

In sum, I introduce three multi-objective optimization techniques above, including

1) changing multi-objective problems into single-objective ones, 2) evolutionary multi-

objective algorithm, and 3) multi-objective A*. In Chapter 2, I develop an algorithm

based on the weighted sum approach and compare it with the multi-objective A*

algorithm.

1.2.3 Design Structure Matrix (DSM) and Object Process

Diagram (OPD)

As mentioned in Section 1.1.3, there are two representations that are mainly used

in system architecture design. One is the matrix representation, and another is the

graph representation. The most widely used matrix representation is Design Structure

Matrix (DSM), while an important graph representation is Object Process Diagram

(OPD). In this subsection, I briefly introduce the two representation methods.

DSM is developed to manage the product development process, which was a new

ground for competitive advantage in manufacture firms back in 1980s [3]. Steward

developed the Design Structure Matrix (DSM) as a tool to identify the dependencies

between the tasks and to sequence the development process [39]. In this matrix, a

task is assigned to a row and a corresponding column. Reading down a column reveals

which tasks receive information from the task corresponding to the column. Reading

across a row reveals all the tasks whose information is required to perform the task

corresponding to the row. Figure 1-8 shows an example of DSM.

The use of DSMs in both research and industrial practice increased greatly in the

1990s. DSMs have been applied to the building construction, semiconductor, automo-



A B C DIE F G HI
A
B X

C X X
D X
E X X X
F X X X
G X X X X X X
H X X X X X

SX X

Figure 1-8: An example of Design Structure Matrix (DSM) [3]

tive, photographic, aerospace, telecom, small-scale manufacturing, factory equipment,

and electronics industries, etc.[2]. System engineers use it to represent architectural

components and interfaces. Organization designers use it to document communication

networks. Economists summarize the effects of a change in one product's attributes

on other products in a matrix. In decision making processes, DSM is useful when the

decision maker need to analyze the constraint relationships between the components.

OPD, on the other hand, is a graphical representation of systems. It is mainly

developed by Dov Dori [15] as an important part of the object-process methodology.

OPD includes a clear and concise set of symbols that form a language enabling the

expression of the system's building blocks and how they relate to each other. It is a

symbolic representation of the objects in a system and the processes they enable.

OPD represents the two things that are inherent in a system: the objects and the

processes. This duality is recognized throughout the community that studies systems,

and sometimes goes by labels such as form/function, structure/function, and func-

tional requirements/design parameters. Objects are what a system or product is, and

processes are what a system does. Having the two elemental components in a system,

OPD allows a clear representation of many important features of a system: its topo-

logical connections, its decomposition into elements and sub-elements, the interfaces

among elements, and the emergence of function from elements. OPD also enables

decision makers or system analysts to mark the special relations between objects and

processes, which is absent from the traditional network-like graphs. Figure 1-9 shows



an example of OPD.

Figure 1-9: An example of Object-Process Diagram (OPD). The rectangles represent
objects, and the oval represents a process.

In the OPD shown in Figure 1-9, the rectangles represent the objects and the oval

represents the process. Object 1 is the input. Going through process A which has 3

as an instrument, object 1 becomes 3, which is an output. This is called a canonical

case, because it matches a natural sentence: 1 is the subject, 2 is the object and A is

the predicate. 3 is the adverb which decorates the predicate.

In this subsection, I briefly go through the two useful representation methods

in system architecture: DSM as a matrix representation and OPD as a graphical

representation. I discuss them in detail in Section 4.1, where I further describe their

characteristics.

1.3 Specific Objectives

In this section, I introduce the specific objectives I want to achieve in this thesis.

There are three main objectives: 1) to model decision-making problems as multi-

objective COPs and to solve them efficiently, 2) to study the projection relation

between OPDs and DSMs, and 3) to develop a method to solve the single and multiple

DSM clustering problem.

1.3.1 Modeling and Solving Decision-making Problems as

Multi-objective COPs

The first objective of my work is to develop a way to model the decision-making

problems as multi-objective COPs. As mentioned in Section 1.2.1, many decision-

making problems have a similar structure as multi-objective COPs, that is, 1) a set



of decisions needed to be made, 2) several options for each decisions, 3) a set of

constraints restricting the relations between the decisions, and 4) a set of objectives

to be optimized. In order to encode the practical problems, I need to develop a

prototype of modeling language that has the four parts.

Having the modeling tool at hand, I have another objective: to solve the problem

described by the modeling language. More specifically, there are two main tasks: the

first is to develop an algorithm that solves the single-objective problems, and the

second is to extend the algorithm so that it also solves the multi-objective COPs.

Also, based on the robustness consideration, I also need to provide an approach that

can find not only the solutions on the Pareto front, but also the ones in an area that

is close to the Pareto front. I also want to make it possible for decision makers to

adjust the size and shape of such an area.

1.3.2 Connections between OPD and DSM

As mentioned in Section 1.1.3, system architects need a bridge between the graph

representation and matrix representation. Since OPD and DSM are two important

tools in each of the representation methods, I will try to reveal the inherent relation

between the two representation methods and establish a mapping from OPD to DSM,

and from DSM to OPD as well. In addition, since we expect such a translation hap-

pens frequently, we need to enhance the overall efficiency of the translation. Another

goal is to fully exploit the features of the two methods and condense the time and

space needed to translate back and forth between them.

1.3.3 Single/Multiple DSM Clustering

Another objective of my work is to develop a method to provide good clusterings for

DSMs. The goal of such clusterings is to divide the components of the DSMs into

several groups which have as little connection with other groups as possible. The

clustering method should also be able to put the components that are closely related

to each other in the same cluster. Moreover, decision makers usually need more



than one possible clusterings and need to choose the one that matches the reality the

best. The DSM clustering method should also be flexible enough to provide different

clusterings according to the different demand of the decision makers.

Under some circumstances, there could be more than one DSMs with the same

set of components. The system architects need to cluster the components while

considering all the DSMs simultaneously. To be more specific, one clustering might

be ideal for one DSM, but awful for another. Thus, when clustering multiple DSMs

at the same time, one need to consider the trade-offs for all the DSMs. As the single

DSM clustering is already a hard task for system architects, one can imagine how

hard it could be to cluster several ones at the same time. Thus, another objective of

my work is to extend the single DSM clustering approach to multiple DSM clustering,

and to offer decision makers the clusterings that achieve a good balance between all

the DSMs.

1.4 Summary and Synopsis

In this chapter, I start with the motivations and general objectives of my work that is

summarized in this thesis. Generally, decision makers and system architects need tools

to model and analyze the complex systems. They also need tools to help them make

decisions based on the model extracted from the real problems. During the process

of analyzing complex systems, they need graphical tools and matrix tools to identify

and represent the connections and interactions between different components in the

system. A translating method between the graphical and matrix tools is necessary

for them to use both tools freely. Another issue that is needed to be addressed is

the decomposition of a large-scale system. Since system architects need to break a

complex system down into several manageable parts, they need tools to help them

decide a reasonable way of such a decomposition. All the demand mentioned above

leads to the general objectives of my work.

I then introduce the background that is either the foundation of my work, or used

as a comparison, or closely related to my work. Corresponding to the motivations



and objectives, the background introduction includes the approach that can be used

to model the decision-making problems, the algorithms that could be used to solve

the problems, and the concept of DSM and OPD.

In the third part, I further explain the specific objectives: to develop a method

that can be used to model the practical problems as COPs, to research sound and

complete algorithms that could solve the multi-objective COPs effectively, to reveal

the relation between DSM and OPD and provide an approach to transform between

the two representations, and to provide an effective way that could cluster single

DSMs as well as multiple DSMs.

The thesis is organized corresponding to the objectives. Chapter 2 is a complete

explanation of the approach of modeling and solving the decision problems as COPs.

Chapter 3 provides two case studies as the application of the modeling technique

introduced in Chapter 2. It also provides the results solved by the newly developed

algorithms. In Chapter 4, I first discuss the connection between DSM and OPD,

and then describe an optimization model that can solve the single DSM clustering

problem. I finally extend the model to solve multiple DSM clustering problems. In

the last Chapter, I summarize the contribution and provide some ideas about the

future work.
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Chapter 2

Theory of Optimal Decision

Making

The main goal of this chapter is to provide an effective way to solve decision-making

problems in complex systems. To solve a decision-making problem in a complex

system, there are generally two major steps: 1) to encode the problem in a model,

and 2) to solve the model and get the good decisions. Corresponding to the two major

steps, this chapter consists of two major parts: how to model the decision-making

problems, and how to solve the model and find the good decisions.

In the first part, I explain why many decision-making problems can be mod-

elled as multi-objective Constraint Optimization Problems (COP), and how to model

decision-making problems as COPs. In the second part, I first introduce the Con-

flict Directed A* (CDA*) algorithm which solves single-objective COP in Section 2.2.

Then in Section 2.3, I introduce three multi-objective optimization methods which

can make use of the algorithm that solves single-objective COPs to find the Pareto

front of the multi-objective COPs. In Section 2.4, which is the core section of this

part, I develop a new algorithm based on CDA* and multi-objective optimization

methods. The new algorithm can find all solutions on the convex Pareto front. Then

I extend it to find solutions in a region that is close to the convex Pareto front. I also

propose an improved algorithm which finds all the solutions on the complete Pareto

front. I close this chapter with a summary of the two major parts.



2.1 Modelling Decision-Making Problems as Multi-

objective COPs

This section explains why we can model decision-making problems as multi-objective

COPs and how to model them as COPs. I first introduce the definition of multi-

objective Constraint Optimization Problem (COP) and illustrate its similarity to

the real-world decision-making problems. Such similarity enables us to encode many

decision-making problems as COPs. In the second subsection, I mainly introduce how

to model the decision-making problems as COPs. I illustrate how to model variables,

domains, constraints and objectives in COPs for decision-making problems. Finally,

I summarize this section with some comments.

2.1.1 Constraint Optimization Problems (COP) and Decision-

making Problems

In this subsection, I introduce what is multi-objective Constraint Optimization Prob-

lem (COP) and why multi-objective COPs are similar to many decision-making prob-

lems. First, I introduce the definition of Constraint Satisfaction Problem (CSP)[33],

and then I introduce the definition of COP on top of CSP. CSP can be expressed

as a triple (x, Dx, C). x is a set of variables xi E x that ranges over finite domain

Di E D,. C, denotes a set of constraints. Formally Cx : x -- {true, false}. The

goal of a CSP is to find a xs that satisfies all the constraints, i.e., Cx(xs) = true.

A multi-objective Constraint Optimization Problem (COP) can be defined as (CSP,

g), or (x, D., C2, g), where g is a set of objective functions consisting of functions

gi : x --+ R.

A solution is defined as a full assignment to x such that all constraints are sat-

isfied, i.e., Cx(x) = true. A solution x is dominated by another solution x' if

Vk, gk(x) _ gk(x') (assume we are maximizing all gi). In other words, a solution

is dominated by another solution if none of its objective value is better than the

other's. A solution that is not dominated by any other solution is called an un-



dominated solution, or a Pareto optimal solution. All the undominated solutions

form the complete Pareto front. A solution that is not dominated by any convex

combination of other solutions is called a.convex undominated solution, or a convex

Pareto optimal solution. Formally, a solution x is convex Pareto optimal if and only if

Vn > 1,VA.., Vx1 ..n, Ek s.t. gk(X) > 1 Aj - gA(x), where E"_1 AZ = 1, A3  0.

All the convex undominated solutions form the convex Pareto front.

The goal of solving a single-objective COP is to find one or several solutions that

have the best objective value. Sometimes we also need the second-best, third-best,

etc. solutions, until a certain number of top solutions are obtained, or the objective

value goes down beyond a threshold. The goal of solving a multi-objective is either

to find the complete Pareto front or to find the convex Pareto front.

In sum, a COP is composed of four parts: a set of variables, a finite domain for

each variable, a set of constraints, and a set of objective functions. Table 2.1 shows

an example of COP.

Variables AB,C
Domains A ={2, 4, 7}

B = {3, 8}
C = {2, 5, 6, 9}

Constraint |B - C1 > 2
Objectives max -A + 10B + 2C

max 7A - 5B - 2C

Table 2.1: An example of multi-objective Constraint Optimization Problem (COP)

There are 3 variables A, B and C, that is, x = {A, B, C}. The domain for variable

A is {2, 4, 7}, or formally, DA= {2, 4, 7}. Similarly, DB= {3, 8} and Dc = {2, 5, 6, 9}.

The only constraint is |B-CI > 2. If A = 4, B = 8, C = 2, we have C-(x) true since

the assignment satisfies the constraint. On the other hand, if A = 4, B = 8, C = 9,

we have C(x) = false, since the assignment violates the constraint. The function

set g consist of two objectives gi = -A + 10B + 2C and g2 = 7A - 5B - 2C.

The assignment A = 4, B = 8, C = 2 is a solution since the constraint is satisfied,

but A = 4, B = 8, C = 9 is not a solution since the constraint is violated. Figure

2-1 shows the objective values of all solutions (the red points). The X axis represents



Figure 2-1: The plot of the solutions of the multi-objective COP shown in Table 2.1.
Points 1 to 10 are Pareto optimal, while Points 1 to 6 are convex Pareto optimal.
The blue line indicates the convex Pareto front.

the value of gi, and the Y axis represents the value of g2. The points 1 to 10 marked

on the figure are undominated by any other solution. These points form the Pareto

front. On the other hand, points 7 to 10 are not convex undominated. Point 8, for

example, is dominated by point A on the line connecting points 1 and 2. It means

that point 8 is dominated by a convex combination of points 1 and 2. The blue line

connecting all the convex undominated points represents the convex Pareto front.

Many decision-making problems are similar to COPs in the sense that they are

composed of the same elemental parts: a set of decision variables, a finite domain for

each variable, a set of constraints that bounds the variables, and several objectives

needed to be optimized. More specifically, people usually need to make a series

of decisions when dealing with a decision-making problem. For each decision, the

decision makers often have several options, and they need to choose one among these

options. These decisions are usually connected with each other, or in other words, a

choice of one decision might make some options for other decisions infeasible. Also,

the decision makers often have several objectives to optimize, and some of these

objectives are conflict with each other in some degree so that the decision makers

need to evaluate the trade-offs between them. Finally, the decision makers might



need all the undominated solutions, or even the ones that are dominated, but close

enough to the Pareto front. They need these solutions to make the final decision that

achieves the best balance between different objectives.

For example, when we want to choose components to assemble a computer, we

need to make a series of decisions like what CPU to choose, what motherboard,

memory chips, graphical card, LCD, etc. to choose. For each of them, we have

finite choices on the market. We also need to consider several constraints like the

motherboard we choose should support the CPU, the graphical card should match

the LCD, etc.. Moreover, we have two objectives to optimized: One is the performance

of the assembled computer, the other is the total cost. We might not need the slowest

computer which might also be the cheapest, and we might not be able to afford to

buy all the best components. A trade-off, or so-called performance/price ratio should

be considered, but just among the Pareto optimal solutions.

Not only the example above, but also many other decision-making problems rang-

ing from simple daily decision-making problems to difficult decision-making in large

projects in the real world, can be divided into the four elements. Chapter 3 provides

two case studies using the multi-objective COP to model difficult decision-making

problems. Since many of the decision-making problems have the same structure as

COPs, we can follow the two steps mentioned in the beginning of this chapter to solve

them: first model them as COPs and then solve the COPs.

In this subsection, I introduce what is multi-objective COP, and then discuss

the structure of real-world decision-making problems and show that they have the

similar structures as multi-objective COPs. The conclusion is that we CAN model

many decision-making problems as COPs. In the next subsection, I will illustrate

HOW to model the decision-making problems as COPs.

2.1.2 Modelling Decision-making Problems as COPs

This subsection discusses how to model decision-making problems in COPs. As men-

tioned in the previous subsection, many real-world decision-making problems have the

similar structure as COPs. They are composed of four parts: decision variables, finite



domain for each variable, constraints and objectives. In this subsection, I illustrate

how to express these four parts of decision-making problems respectively.

1. Domains. We can define the domains in lists. For example, consider the case

shown in Table 2.2 (The table is a duplication of Table 2.2). We can define the

domains as follows:

Da =(2 4 7) Db =(3 8) De = (2 5 6 9)

The three domains are for decision variables A, B and C, respectively.

Variables A, B, C
Domains A = {2, 4, 7}

B = {3, 8}
C = {2, 5, 6, 9}

Constraint |B - C1 > 2
Objectives max -A + 10B + 2C

max 7A - 5B - 2C

Table 2.2: An example of multi-objective COP (copied from Table 2.1).

2. Variables. We can define the variables by their names and link them to their

domains defined above. For example, we can define the decision variables A, B

and C as follows:

A:Da B:Db C:De

The reason that we define domains and variables separately, but not to define

the domains directly with the variables, is that sometimes some of the variables

have the same domain, and these variables can share domain definition. For

instance, if we need to decide the order of doing things 1 to 5, we can have five

decision variables si to 85, representing the order of doing things 1 to 5. The

domains of si to s are all D, = (1 2 3 4 5), which means the five things could

be either of orders 1 to 5. It saves us the trouble defining five same domains

separately for the five decision variables.



3. Constraints. Following the convention of the constraint definition in the Al

community, I adopt the Conjunctive Normal Form (CNF) to express the con-

straints. CNF is a conjunction of clauses, which is a disjunction of literals. A

literal is an assertion like A = 2 or its negation, NOT A = 2. A literal can be

either true or false. A clause is a disjunction (the "OR" relationship) of literals.

For example, (A = 2) OR (NOT C = 2) is a clause. CNF is a conjunction (the

"AND" relationship) of clauses. For example, The constraint lB - C1 > 2 can

be expressed in the following CNF:

((NOT A = 2) OR (NOT C = 2))

AND ((NOT A = 4) OR (NOT C = 5))

AND ((NOT A = 7) OR (NOT C = 6))

The three clauses enumerate all possible combination of B and C that violates

constraint |B - C1 > 2. CNF might not be the most efficient way of express-

ing constraints, but it is always able to encode the constraints in COPs since

the domains for decision variables are finite. We can always enumerate every

possible violation to the constraints and use "AND" to conjunct them together.

CNF is also widely used in the AI community and can be understood and solved

by many COP solvers.

4. Objective functions. I use valued constraints to model the objective functions

in COPs. To illustrate how to model the objective functions with valued con-

straints, I 1) explain what is a Mutual Preferential Independence (MPI) prop-

erty of an objective function, 2) explain what is valued constraint and show how

to use the valued constraints to model an objective function with MPI property,

and 3) show how to use value tuples to model an objective function without

MPI property.

An objective function g has MPI property when for any variable x that appears

in function g, the preference between the assignments to x is independent of

the other variables that appear in function g. More precisely, let x be the



other variables that appear in function g, let x(') and x(A be any two possible

assignments to the variable x, and assume we want to maximize the value of

function g. If for one assignment x(k) to R, we have g(x(0), I(k)) > gx(j) k(k))

then for a function g that has the MPI property, we have: for any assignment

RO) to X-, g(x(i), Rm) > g(xj),I Rm3)

The two objective functions shown in Table 2.2 both have MPI property. For

example, the preference of the assignment to variable A is independent of the

assignments to variables B and C. More specifically, the function value of

gi = -A + lOB +2C is gi = -2+ lOB +2C when 2 is assigned to A, and g' =

-7+10B+2C when 7 is assigned to A. Since -2+1OB+2C > -7+1OB+2C no

matter what are the assignments to variables B and C, we know that assigning

value 2 to A is always preferred to assigning 7 to A, or in other words, the

preference of assignment to A is independent of the assignments to B and C.

Now I can illustrate what are valued constraints and how to use valued con-

straints to model objective functions with MPI property. A valued constraint

f : x -+ R is a mapping from an assignment of a variable to a value. An objec-

tive function is the sum of the values of the variables, i.e., g(x) = K, f(Xi).

For example, in the objective function -A + lOB + 2C, assigning 2 to A makes

the only term that is related to A, that is, -A, to be -2. Thus, the mapping

from the assignment of A to the value is fA(A) = -A. Similarly, the valued

constraints for B and C are fB(B) = lOB and fc(C) = 2C, respectively, and

the objective function gi = fA + fB + fc.

The mapping of the valued constraints can be expressed in pairs (Assignment,

Value). For example, there are three pairs for the valued constraints correspond-

ing to variables A are (A = 2, -2), (A = 4, -4) and (A = 7, -7), which means

when 2 is assigned to A, its corresponding value is -2, and when 4 and 7 are

assigned to A, the values are -4 and -7, respectively. Then the complete list of

valued constraints for variable A is ((A = 2, -2) (A = 4, -4) (A = 7, -7)).

Similarly, the valued constraints for variable B and C are ((B = 3, 30) (B =



8, 80)) and ((C = 2, 4) (C = 5, 10) (C = 6, 12) (C = 9, 18)), respectively.

The valued constraints might not be the most efficient way of modeling objective

functions, but is always feasible because COP has a finite number of variables

and a finite domain for each variable. It is also very flexible because the ob-

jective function could be very complex, or could be a function of non-numeric

decision variables. For example, if one of the decision variables has three op-

tions high, medium and low, the corresponding values in the objective function

could be, for example, 7, 16 and 43. This might not be easily expressed in a

quantitative function, but can be easily expressed as valued constraints. The

objective functions with MPI property can be either purely a sum or a product

of functions of a single variable. For example, 3A + B2 + ec is a valid function

for decision variables A, B and C, since each term involves only one decision

variable. But A x B + C is not, because two variables are involved in the first

term. Also, for the pure product forms, (A + 2) x v'5 x log (C - 1) is valid,

while (A + B) x C is not.

Some real-world problems, however, do not have MPI property, and now I

will introduce how to model the objective functions without MPI property. In

many cases, the decision making problems that do not have MPI property can

more or less be decomposed into several independent parts that do have MPI

property. As an example, the objective function: max {A x B + C} could be

decomposed into two independent parts, A x B and C. The two parts are

mutually independent, that is, if we substitute A x B for an artificial variable

D and let the domain of D be all the possible values of A x B, the function

becomes a standard MPI form D + C, yet this substitution does not change

the mapping relations of the original function. This motivates us to define the

value tuples to bind variables like (A, B) together.

Formally, a value tuple is defined as a mapping f : y ->-+ R, where y C x. Let's

consider the example shown in Table 2.3. Notice that MPI property does not

hold for the (A, B) combination: the maximum value 3 actually comes from a



minimum combination (A = -3, B = -1) of A and B. But MPI holds for the

tuples (A, B) and (C). Since we have A = {-3, 2} and B = {-1, 1}, A x B

could be 3, -3, -2 or 2, which means D = {3, -3, -2, 2}. We call the combination

(A, B) a value tuple. Using the concept of value tuple, we have [(A = -3, B =

-1), 3], [(A = -3, B = 1), -3], [(A = 2, B = -1), -2], [(A = 2, B = 1), 2]. The

value tuples corresponding to the objective function are:

[(A = -3, B = -1), 3], [(A = -3, B = 1), -3], [(A = 2, B -1), -2], [(A = 2, B = 1), 2]

[(A = -3, C = 0), 0], [(A = 2, C = 0), 0], [(A = -3, C = 6),-2], [(A = 2, C = 6), 3]

for tuples (A, B) and (A, C), respectively.

* Decision variables: 9 Constraints:

(a) Decision A = {-3, 2} B x C > 0

(b) Decision B = {-1, 1} C -A <2

(c) Decision C = {0, 6} Objective function:

max {A x B + C / A}

Table 2.3: A single-objective COP example for explaining value tuples.

This subsection describes how to model a decision-making problem as multi-

objective COP, which is defined as (x, DX, CX, g), where x is a set of decision vari-

ables, Dx is a set of domains that correspond to the variables, C, represents a set

of constraints and g denotes a set of objective functions. Corresponding to the four

elements in COP, I show how to encode domains, variables, constraints and objective

functions of a decision-making problem. Two case studies are provided in Chapter 3.

I successfully use the method introduced in this subsection to model two real-world

decision-making problems.

2.1.3 Summary

The definition of COP is introduced with a pedagogical example at the beginning

of this section. The similarity of the structure of COP and many decision-making



problems motivates me to use COP to model real-world decision-making problems.

In the section part, I describe in detail how to model the decision-making problems

as COPs. The method of modelling the real-world problems is verified by the two

case studies shown in Chapter 3.

COP is developed base on the widely studied Constraint Satisfaction Problems

(CSP)[33]. In fact, COP can be expressed as (CSP, g), where g is a set of objective

function. This expression means the COP consists a CSP with several objective func-

tions. This is the main reason I adopt the convention of the CSP modelling approach,

like the Conjunctive Normal Form (CNF) and the valued constraints. The modelling

approach has both strength and weakness. The strength is that it could model most

problems that have finite decision variables and finite domains. The weakness, as

a consequence of the strength, is that the approach might be inefficient when mod-

elling large-scale problems because it might ask decision makers to enumerate the

elements of many sizable domains. The weakness can potentially be overcome by

a more compact expression of the variables, constraints and objectives. For exam-

ple, if we can express the constraint that we want to put things 1 to n in order as

(xi, i = 1..n) -+ seq(1..n), which means x1 to xz should be assigned different values

from 1 to n, it will be very convenient to model some problems. In fact, this is one

of the most frequently used constraints in real-world problems. The development of

an efficient language and it compiler which translates the language to COP is one of

the main goal in the future work.

In the rest of the sections in this chapter, I introduce how to solve COP. As

introduced in the beginning of this chapter, there are two major steps of solving

the real-world decision problems: 1) to model them as COP, and 2) to solve the

COP. Since I have shown how to get the first step done, I will spend the rest of this

chapter introducing the relevant algorithms that solve multi-objective COPs, and

then develop my new algorithm based on them.



2.2 Conflict-directed A* (CDA*) Algorithm

In the last section, I explained why and how to model decision-making problems as

multi-objective COPs. Starting from this section, I will introduce how to solve the

multi-objective COPs. Generally, I use a two-level algorithm to solve multi-objective

COPs: The top level repeatedly generates a single objective based on the objective

function set, and the bottom level takes the single objective and uses an algorithm to

solve the single-objective COP. The series of single objectives generated by the top

level guarantees that all the solutions on the convex Pareto front will be found.

This section introduces the Conflict-directed A* (CDA*) algorithm[43], which effi-

ciently solves single-objective COPs, while the next section introduces multi-objective

optimization methods, which can be used to generate the series of single objectives

which lead to all the convex Pareto front solutions. In the section after the two

mentioned above, I combine the CDA* and multi-objective optimization methods to

develop my algorithm that solves the multi-objective COPs.

I divide this section into two parts: the first introduces the constraint-based A*

algorithm, which could find the best solutions to a single-objective COP. The second

part explains what are "conflicts" and shows how to use the conflicts learned during

the search process to increase the overall search efficiency. In addition, the second

subsection also introduces an extension of CDA* that is useful in the discussions later

in this chapter.

2.2.1 Constraint-based A* Algorithm for Single-objective COPs

To illustrate the constraint-based A* algorithm for single-objective COPs, I use the

single-objective COP in Table 2.4 as an example. After showing the process of solving

the single-objective COP, I provide the pseudo code of the algorithm. Figure 2-2 shows

the search tree corresponding to the single-objective COP in Table 2.4.

Nodes 1 to 4: Using the dynamic ordering technique (refer to Section 1.2.1 for

details), the algorithm assigns a value to B first. The choice is not arbitrary though.

Note the objective function has the MPI property (refer to Section 2.1.2 for details),



Decision Variables A, B, C
Options A = {2, 4, 7}

B = {3, 8}
C {2, 5, 6, 9}

Constraint B - C1 > 2
Objective max -A + 1OB + 2C

Table 2.4: A single-objective COP

1
B3=8 B= 3

f =46

2 5
A=2 A=7

A=4 ,=.94f=9

3 6 9

C=9 C=6 C9 C=6 C =9 C=6

4 7 8 10 11 12

Optimal Value: 90

Figure 2-2: Search tree of the single-objective COP shown in Table 2.4

thus, the best assignment for B that maximizes 10B is picked, that is, branch B 8

is expanded first. Similarly, we expand A = 2 and C = 9 in the following two steps.

When Node 4 is reached, each of the variables is assigned a value. Now we need to

test whether all constraints are satisfied. If they are, this full assignment is consistent,

and the first consistent full assignment found is the optimal solution[43]. If the full

assignment is inconsistent, however, we need to continue searching. In the example,

B = 8, C = 9 violates the constraint |B - C1 < 2, hence we continue searching.

Nodes 5 to 7: The next step is to expand the second best branch for the nodes

that are not fully expanded yet. In the example, nodes 1, 2 and 3 are expanded

and we get Nodes 5, 6 and 7. To decide which of these node gets to be expanded

first, we calculate a bound heuristic on their values (refer to Chapter 1, Section 1.2.1

for details). Because the objective function has the MPI property, a straightfor-

ward admissible heuristic is the best objective value of each node while relaxing all

constraints. For example, for Node 5, after assigning 3 to B, the best solution for

the objective max -A + 10B + 2C is to maximize each term involving unassigned

decision variable, i.e., -A and 2C, respectively. That is, to assign the smallest



value (2) to A and the largest value (9) to C. The corresponding objective value

is -A + 10B + 2C = -2 + 10 x 3 + 2 x 9 = 46. Similarly, for Node 6, after assigning

8 to B and 4 to A, the best choice is to assign 9 to C, which maximizes the term 2C

and leads to the objective value -A + 10B + 2C = -4 + 10 x 8 + 2 x 9 = 94. The

heuristic value for Node 7 is 90, which is also the objective value for Node 7 since all

decision variables are assigned.

Before continuing, note that the heuristic function is admissible. Because the

heuristic value is the best value while relaxing all constraints, the best consistent

solution of that branch could not exceed the heuristic value when the constraints are

enforced. Thus, the first consistent full assignment is guaranteed to be the optimal

solutions by the A* algorithm.

Nodes 8 to 12: Now the algorithm picks the node with the highest heuristic

value to expand first. Expanding node 6, we get node 8, whose objective value is

94. This full assignment, however, is inconsistent. Hence, Nodes 2 and 6 are further

expanded, and Nodes 9 and 10 are obtained. Now Node 9 has the best heuristic value.

Thus, the algorithm expands Node 9 and gets Node 11. Again, Node 11 has the best

objective value but is inconsistent. Node 9 is then expanded again and Node 12 is

obtained. The heuristic value of Node 12 is 85. Now Node 7 has the best heuristic

value 90 and will be examined for consistency. This full assignment is consistent and

it is the optimal solution with A = 2, B = 8, C = 6 and the objective value 90.

In sum, the algorithm keeps choosing an unassigned variable to expand the tree,

until all the variables are assigned. When expanding the tree, the branch with the

best heuristic value is searched first. If the full assignment passes the consistency

test, it is the optimal solution. If it is inconsistent, the algorithm expands the nodes

that are not fully expanded yet, calculates their heuristic values and puts them into

the priority queue sorted by the heuristic values, then expand the node on the top of

the priority queue, i.e, the node with the best heuristic value. Continue until all the

decision variables are assigned while testing the consistency after each assignment.

Loop until the algorithm finds a consistent full assignment, which is the optimal

solution for the single-objective COP, or all assignments are exhausted. The pseudo



code of the algorithm is shown in Algorithm 1.

Algorithm 1 Find the optimal solution for a single-objective COP using the
constraint-based A* algorithm

Input: A single-objective COP
Returns: The optimal solution for the input COP

Priority queue Q <- {} (Nodes in Q are sorted by their heuristic values)
Evaluate the heuristic value of an empty assignment
Add a node of the empty assignment to Q
while Q is not empty do

Take the first node N in Q
if N represents a partial assignment then

Choose an unassigned variable x with the smallest domain size
Working domain D' +- Dx (The domain of x)
repeat

Assign the best value in D' to x and test the consistency
if Pass the consistency test then

Evaluate the heuristic value of the new assignment
Put a new node of the new assignment in Q

else
Take the value just assigned to x out of D'.

end if
until A value is assigned to x or D' is empty

else
The N is a full consistent assignment. Return this solution.

end if
end while
No solution is found. Return null.

One might have noticed that some subsets of assignments are the source of in-

consistency, yet the same sets of assignments are not eliminated in the subsequent

search. For example. B = 8, C = 9 is the source of inconsistency for Node 4, while

it happens again at Node 8. If the algorithm can record the subsets that cause the

inconsistency and avoid them after they happen for the first time, we can expect the

efficiency of the algorithm to be enhanced. The sets of inconsistent assignments are

defined as "conflicts", and the next subsection briefly introduces the way of using

them to guide the search.



2.2.2 Conflict Learning and an Extension of CDA*

This subsection explains what are conflicts, how to record the conflicts during the

process of expanding the search tree, and how to reuse them to guide the subsequent

search. In addition, I introduce an extension of CDA* that is useful in our future

discussion.

The last subsection introduces the CDA* algorithm, and shows that some common

partial assignments like B = 8, C = 9 make several full assignments infeasible. Such

a partial assignment is defined as a conflict. More precisely, a conflict is a partial

assignment that is inconsistent. Any partial or full assignment that is a super set

of any conflict is inconsistent as well. Since a conflict could appear in many full

assignments, the overall efficiency could be improved by learning the conflicts from

the consistency tests and avoiding them in the future search.

As an example, in Figure 2-3 (a duplication of Figure 2-2, for reader convenience),

when the consistency of Node 4 is tested, the conflict B = 8, C = 9 is found and

recorded. During future tree expansion, when 8 is already assigned to B, there are

only three options left for C: {2, 5, 6}. Thus, when expanding node 6, the best branch

is C = 6 instead of C = 9, and we save time and space by not checking and storing

Node 8. The time saving effect probably isn't significant in this simple example;

however, if there are still hundreds of decision variables waiting to be assigned after

A, B, C, the cut of branch C = 9 will save much time.

1
B =8 B= 3

f= 46

2 5
A=2 A= 7

A=4 f9 =9

3 6 9

C=9 C=6 C9 C=6 C=9 C=6

f=-90
4 7 8 10 11 12

Optimal Value: 90

Figure 2-3: Search tree of the single-objective COP shown in Table 2.1

The details of learning and using conflicts to direct the search can be found in



Section 5 of [43]. The conflict learning plays an important role in promoting overall

search efficiency in practice. During the execution of my algorithm, the top level

generates different single objective functions, and call CDA* to solve the COP with

the same set of variables, domains and constraints (only the objective function is

altered). Thus, the conflicts learned in previous executions could be reused and will

save us a great amount of time. The pseudo code of CDA* shown in Algorithm 2 is

revised from constraint-based A* shown in Algorithm 1.

Algorithm 2 Find the optimal solution for a single-objective COP using CDA*

Input: A single-objective COP; Optional: initial conflict set C
Returns: The optimal solution for the input COP; Conflict set C

Priority queue Q <- {} (Nodes in Q are sorted by their heuristic values)
Evaluate the heuristic value of an empty assignment
Add a node of the empty assignment to Q
if No initial conflict set C then

C +-- {}I
end if
while Q is not empty do

Take the first node N in Q
if N represents a partial assignment then

repeat
Based on the partial assignment N, choose the next best set of assignments
that resolves the conflicts in C
if The new assignment is consistent then

Evaluate the heuristic value of the new assignment
Put a new node of the new assignment in Q

else
Add the conflict that causes the inconsistency to the set C

end if
until A new node is added to Q or no assignment can resolve all the conflicts
in C

else
The N is a full consistent assignment. Return this solution and the conflict
set C.

end if
end while
No solution is found. Return null, and the conflict set C.

An important generalization of CDA* deserves our attention. If we do not stop



when the optimal solution is found, we can continue to find the second best solution,

the third best solution, etc, until a certain number of solutions are obtained, or an

objective lower bound is reached. Figure 2-4 shows an example of this generalization

for the simple optimal CSP. As discussed later, this generalization will enable us to

enumerate the best design to a user.

B=8 B=3
f =46

2 5
A=7

A=2
A=4 f = 4 f9

3 6 9

C=9 C=2 C=6 C=2 C=6
C=6 C 5C5

4 7 11 12 8 13 14 10
inconsistent f=90 f=88 f=82 f=88 f=86 f=80 f=85

Figure 2-4: Search tree of the single-objective COP shown in Table 2.1 using the
generalized CDA* algorithm

Let us assume the cutoff value is 4, or in other words, the minimum acceptable

objective value is 90 - 4 = 86. After getting Node 7 as the optimal solution, we

continue to explore the tree for the second best solution. At this stage, Nodes 1 to 10

are expanded but Nodes 8 and 10 are not examined yet. Now the algorithm expands

Node 3, since its children could have better objective values than Node 8. It turns out

that Node 11 has the same objective value as Node 8. Passing the consistency test,

these two solutions are the second best. Because the objective values hasn't dropped

beyond the lower bound, the process continues: Nodes 3 and 6 are expanded and

Nodes 12 and 13 are obtained. Now Node 13 has the best heuristic value. Since the

full assignment corresponding to Node 13 is consistent, it is the third best solution.

Next, because the objective value of Node 12 is smaller than the lower bound, this

node will not be visited any more. Now Node 13 is the best consistent solution which

still stays above the lower bound. Hence, we need to examine Node 13. It is also

consistent, and is therefore the fourth best. Now the objective value has dropped to

86, which is still in the acceptable range. Hence, we need to continue. Since expanding



Node 6 could possibly give us a node with a heuristic value that is greater than 85,

we have to expand Node 6 now. Node 14 is obtained but has the value 80, which is

smaller than 86. Now all the unexpanded or unexamined nodes are with the heuristic

values smaller than 86. Thus, we can assert that all solutions with objective values

better than or equal to 86 are found and sorted in descending order. The solutions

correspond to Nodes 7, 8, 11, and 13. The pseudo code of this generalization is shown

in Algorithm 3.

The ability to find "good" solutions other than the optimal one is often important

for decision makers. The reason is that when considering a complex decision-making

problem, it is ofter not realistic to consider ten objectives at the same time. People

focus on two or three most important objectives first, and evaluate the others based

on the solutions obtained by optimizing the most important ones. Thus, the best

solution to one or two objectives are not necessarily global optimal. Some of the

"good" solutions might be better on other objectives and preferred when all the

objectives are considered.

This section first briefly introduces how to use conflicts to guide the search. Then

an important generalization that enables CDA* to find top solutions other than the

optimal one is introduced. The CDA* is used as the bottom-level algorithm in my

two-level algorithm introduced in the beginning of this whole section. The next

section introduces the multi-objective methods that are useful to build the top-level

algorithm.

2.3 Multi-objective Optimization Methods

This section introduces several multi-objective optimization methods that are useful

to build my own algorithm. As mentioned in Section 2.2, I use a two-level algorithm

to solve the multi-objective COPs: The top level generates a single objective based on

the objective function set repeatedly, and the bottom level takes the single objective

and uses CDA* (introduced in Section 2.2) to solve the COP. The series of single

objectives generated by the top level guarantees that all the solutions on the convex



Algorithm 3 Find top solutions of a single-objective COP using generalized CDA*

Input: A single-objective COP, a cutoff value c; Optional: initial conflict set C
Returns: The top solutions whose objective values are better than the lower bound;

The conflict set C

Priority queue Q <- {} (Nodes in Q are sorted by their heuristic values)
Evaluate the heuristic value of an empty assignment
Add a node of the empty assignment to Q
Solution set S +- {}
Lower bound bleftarrow - oo
if No initial conflict set C then

C <- {}
end if
while Q is not empty do

Take the first node N in Q
if N represents a partial assignment then

repeat
Based on the partial assignment N, choose the next best set of assignments
that resolves the conflicts in C
if The new assignment is consistent then

Evaluate the heuristic value of the new assignment
if The heuristic value is no less than the bound b then

Put a new node of the new assignment in Q
end if

else
Add the conflict that causes the inconsistency to the set C

end if
until A new node is added to Q, or the heuristic value is lower than the bound
b, or no assignment can resolve all the conflicts in C

else
if The solution set S is empty then

Assume the objective value of the solution is v.
Update the lower bound b <- v - c

end if
Add N to the solution set S

end if
end while
Return the solution set S and the conflict set C.



Pareto front will be found. In the last section, I introduce the CDA* algorithm

which is used in the bottom level. In this section, I introduce several multi-objective

optimization methods that will be helpful when I introduce the top-level algorithm

and the whole two-level algorithm in the next section.

As discussed in Section 1.1.1, making difficult decisions always involves addressing

several objectives that are conflict with each other. Our goal is to help decision

makers sift out the "good" solutions. But what kind of solutions are "good"? Let

us take buying a computer as an example. An important criterion people always

consider is the price. Another is often the performance and quality. A computer

with higher price and lower quality than another could not be a "good" one. The

good computers should not be both more expensive and more inferior, or in other

words, a good computer should not be worse than another computer on every single

criterion. Such intuition coincides with the definition of the Pareto front, which was

introduced in Section 2.1.1. Here is a recap of the concept of Pareto front: Assume

g represents the set of objective functions. A solution x is dominated by another

solution x' if Vk, gk(x) gk(x') (assume we are maximizing all gi). In other words,

a solution is dominated by another solution if none of its objective value is better

than the other. A solution that is not dominated by any other solution is called an

undominated solution, or Pareto optimal solution. All the undominated solutions

form the complete Pareto front. A solution that is not dominated by any convex

combination of other solutions is called an convex undominated solution, or convex

Pareto optimal solutions. Formally, a solution x is convex Pareto optimal if and only

if Vn > 1, VA.., Vx 1.. , ] k s.t. gk(x) > ,>A -gk(x), where E" 1 Aj = 1, Aj > 0.

All the convex undominated optimal solutions form the convex Pareto front. Figure 2-

5 shows a two-dimensional Pareto front. Figure 2-6 shows the corresponding convex

Pareto front. Point 1, for example, is on the Pareto front, but not on the convex

Pareto front, since it is dominated by some points on the line connecting points 2 and

3.

The main goal of most multi-objective optimization methods is to reveal the com-

plete Pareto front. Although the complete Pareto front would be an ideal result,
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Figure 2-5: An example of Pareto front.
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Figure 2-6: An example of convex Pareto front.

finding all the Pareto optimal solutions could be very time-consuming, especially

when the number of solutions on the Pareto front is very large. It is sometimes more

efficient to first approximate the shape of the complete Pareto front using the convex

Pareto front and then focus on the area of interest identified by the user. For exam-

ple, the convex Pareto front shown in Figure 2-6 has a similar shape as the complete

Pareto front shown in Figure 2-6, yet only 4 points are on the convex Pareto front,

compared to 6 points on the complete Pareto front. Potentially, we can save about

1/3 time by finding only the convex Pareto front.

This section introduces three multi-objective optimization methods. The first is

the weighted sum approach, which can be used to find one solution on the convex

Pareto front. The second is changing the objectives into constraints. The last are

two close related algorithms: the Guided Improvement Algorithm (GIA) and the

Opportunistic Improvement Algorithm (OIA).



2.3.1 Weighted Sum Approach

The weighted sum approach is probably the most straightforward idea for finding a

Pareto optimal solution, given that a single-objective optimization tool is standing by:

we put a weight on each objective and sum them into a single objective. For instance,

if we have two objectives max {-A + 10B + 2C} and max {7A - 5B - 2C}, and the

weights are 0.4 and 0.6 respectively, the new objective is:

max {0.4 x (-A + 10B + 2C) + 0.6 x (7A - 5B - 2C) = 3.6A + B - 0.4C}

More precisely, suppose there are n objective functions gi, g2,... g, the problem

can be expressed as follows:

n

max Ai gi

n

s.t. Ai = 1
i=1

Ai>0, Vi =1,2, -- n

The optimal solution given by the weighted sum approach is guaranteed to be

Pareto optimal [17]. Intuitively, if a solution x is dominated by another solution

x', the weighted sum of the objective values of x could no be better than x', and

hence cannot be the optimal solution of single-objective COP with the weighted

objective. Not all Pareto optimal solutions, however, could be found by the weighted

sum approach. Only the solutions that are on the CONVEX Pareto front could be

found [18].

The next goal is to find all the solutions on the convex Pareto front using the

weighted sum approach. A straightforward idea is to enumerate every possible set

of weights. i.e., all the possible combination of A, . .. lambdan. However, this idea is

not realist ic because the weights Ai are continuous. Fortunately, using the recursive

knee algorithm (introduced in Section 2.4.1), we can identify the sets of weights that

are needed to find all the solutions on the convex Pareto front. I will discuss the



approach in detail in Section 2.4.

Before shifting to the next subsection, I would like to mention that the weighted

sum approach is quite flexible for finding representative solutions that are evenly

spread out on the front. By simply changing the weights, which could be viewed as

the importance factor of each objective, the weighted sum approach can give decision

makers the solution in different areas on the Pareto front.

2.3.2 Changing Objectives into Constraints

Although the weighted sum approach is straightforward, other ideas are needed to

find the complete Pareto front. A widely used approach is to change objectives into

constraints. For example, in a two-objective maximization problem, if we have a

Pareto optimal solution whose objective values are (10, 20), to find another Pareto

optimal solution, we can solve a new problem: max{fi}, s.t. f2 > 20, or max{f 2},

s.t. fi > 10. Generally, by solving the new problem with all but one objectives as

constraints, we can find another Pareto optimal optimal solution. Figure 2-7 shows

a more concrete example.

22 +2
3

0
X X

X X

0,

Figure 2-7: An illustration of how the "changing objectives into constraints" algo-
rithm works.

In the example, we can solve the single objective problem that maximizes objective

2. Then we will have point 1 (assume the objective values are (v1 , v2 )). By adding the

constraint fi > vi to the model, geometrically, we ask for the solution with maximum

value of objective 2 among the ones that are on the right side of point 1, as indicated

by the vertical line passing point 1 and the arrow in the graph. Then we solve the

new problem and get point 2. Assume the objective values are (v'i, v). Again, by



adding the constraint fi > v' and solving the problem, we get the point with the

maximum value of objective 2 on the right side of the line crossing point 2. Continue

the procedure and finally we can get all the solutions on the Pareto front (Proved in

[4]).

Essentially, the approach optimizes one objective, while setting thresholds for

all the others. The most significant advantage of this approach is that it finds the

complete Pareto, rather than the convex Pareto front only. However, there are also

some shortcomings. The most undesirable one is that if the objective function is in

a complicated form, for instance, involving nonlinear or functions like logarithm, it

is hard to be encoded and used as a normal constraint. Of course we can always

check the consistency when we have a full assignment, but we lose the edge of using

conflict learning and other constraint processing techniques like forward and backward

checking. Moreover, the approach essentially uses one objective to iteratively block

an area in which the solutions are eliminated and limits the search in the unblocked

areas. We can combine several objectives to block a larger area to reduce the search

space. The new approach is discussed in the next subsection.

2.3.3 Guided Improvement Algorithm (GIA) and Opportunis-

tic Improvement Algorithm (OIA)

In this subsection, I introduce two similar algorithms that solve multi-objective COP

by repeatedly transforming multi-objective COP into Constraint Satisfaction Prob-

lems (CSP). The two algorithms are Guided Improvement Algorithm (GIA) and Op-

portunistic Improvement Algorithm (OIA) [30].

The basic idea of GIA is that it finds a Pareto optimal solution (refer to Section

2.1.1 for definitions) by solving a series of CSPs at each stage. After each stage, the

area that is dominated by the newly found Pareto optimal point is forbidden in the

subsequent search by adding constraints to the CSPs. The process of GIA is shown in

Figure 2-8. The corresponding pseudo codes are shown in Algorithm 4 and Algorithm

5.



Algorithm 4 The Guided Improvement Algorithm (GIA)

Input: A COP = (CSP, g)
Returns: All solutions on the complete Pareto front

Solution set S <- {}
repeat

Call Algorithm 5 to find a Pareto optimal solution
if A solution sne, is returned then

Update solution set S - S + Snew

Assume the solution corresponds to point p = (PiP2,- ,Pn)
Add a constraint ((gi > pi) OR (g2 2 P2) OR ... OR (gn pa)) into the CSP
constraint set

end if
until No more solution can be found
Return the solution set S

Algorithm 5 Find one Pareto optimal solution (subroutine of Algorithm 4)

Input: A COP = (CSP, g)
Returns: A Pareto optimal solution

A working CSP' <- CSP
Solution s <- null
repeat

Call a CSP solver to solve the working CSP'
if A solution is returned then

s +- solution returned by the CSP solver
Assume solution s corresponds to point p = (pi,p2, - - , pn)
Add constraints (gi > pi) AND (92  P2) AND - AND (gn > pn) into the
constraint set of CSP'

end if
until No more solution can be found
Return solution s
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Figure 2-8: An illustration of the Guided Improvement Algorithm (GIA).

Recall that COP can be expressed as COP = (CSP, g), where gi E g, i = 1,-- , n

are n objective functions (refer to Section 2.1.1 for definitions). At the beginning of

the first stage, GIA ignores the objective functions and solves the CSP only. After

finding a solution x 1 , n constraints are temporarily added to the CSP, restricting

the search space in the area in which the points dominate the point corresponding

to x1 . For example, in Figure 2-8, point pi is found at the first step. Assume its

objective values are (gi, 92 ) =(10, 12), then two constraints g1 > 10 and92 ;> 12 are

temporarily added to the constraint set. The effect is shown in sub-figure b): the

solutions in the shaded area are no longer feasible. In the next step, the algorithm

solves a new CSP with the n extra constraints again. If it finds a new solution, add two

new constraints into the constraint set again and continue the process until no more

solution can be found. Sub-figures a) to e) in Figure 2-8 show such a process. When

no more feasible solution can be found as shown in sub-figure f), it means no other

solution dominates the last found solution, or in other words, we find a Pareto optimal

solution. Now remove all the temporary constraints that are added to the constraint

set in the previous steps. Add a permanent constraint which reduces the search space

by eliminating the area that is dominated by the Pareto optimal solution we just

found. For example, if the last found solution corresponds to (g1 , 92 ) = (40, 50), add

a permanent constraint: (gi > 40) OR (g2 > 50) into the constraint set. We call the

process stated above as a stage. In one stage, GIA repeatedly generates CSPs which



translate the result obtained from last CSP as temporary constraints, and finally

reach a point on the Pareto front. Then GIA add a permanent constraint into the

constraint set, and start the next stage. The stages continue until no more Pareto

optimal solution can be found, when all the solutions on the Pareto front are collected.

OIA uses a similar idea as the one used in GIA, but rather than restricting the

feasible space in the area that dominates the last found solution, it continuously

eliminates the areas that are dominated by the newly found solutions. The basic idea

is shown in Figure 2-9. The pseudo code is shown in Algorithm 6.
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Figure 2-9: An illustration of the Opportunistic Improvement Algorithm (OIA)

Algorithm 6 The Opportunistic Improvement Algorithm (OIA)

Input: A COP = (CSP, g)
Returns: All solutions on the complete Pareto front

Solution set S +- {}
repeat

Call a solver to solve the CSP
if A solution sew is returned then

Update solution set S <- S + snew

Assume the solution corresponds to point p = (Pi, P2, , Pn)
Add a constraint ((gi > pi) OR (92  P2) OR- - OR (g ;> pa)) into the CSP
constraint set

end if
until No more solution can be found
Return the solution set S



At the first step, OIA solves the CSP problem without considering any objective

function. A solution is found (point 1). Assume the solution corresponds to point

(Pi, P2, - , pn), a constraint ((gi 2 pi) OR (g2 2 P2) OR - - - OR (g > p,)) is added

to the constraint set of the CSP. Geometrically, the new constraint reduces the search

area by eliminating the shaded area shown in sub-figure b). The algorithm repeats

such a process, and adds more constraints, as shown in sub-figures c) to g), until no

more solution can be found in the remaining search space. It means no other solution

dominates the current set of solutions, i.e., all the undominated solutions are found,

as we can see in sub-figure h).

GIA and OIA have two significant advantages. First, they obtain the complete

Pareto front, rather than the convex Pareto front only. Second, they eliminate an

area in search space after solving each CSP. It helps to accelerate the search in the

subsequent steps. These good features are complementary to the ones of the weighted

sum approach and the algorithm that changes objectives into constraints. In Section

2.4.3, I propose an algorithm that improves my algorithm by mixing it with OIA.

In this section, I introduce three methods that are helpful to solve multi-objective

COPs. The first approach I introduce is the weighted sum approach. It gives each

objective a weight and generate a new objective that is a sum of the weighted objective

functions. The approach can be used to find one solution on the convex Pareto front.

The second method is changing objective functions into constraints. It optimizes only

one objective function and sets a threshold for all the other objective functions. The

last algorithms are GIA and OIA. They transform the multi-objective COPs into

a series of CSPs which lead to the complete Pareto front. The ideas of the three

methods will be used in the next section, where I develop my algorithm that solves

multi-objective COPs.

2.4 Solving Multi-objective COPs

This section introduces several novel algorithms for solving multi-objective COs.

As mentioned in the last two sections, I use a two-level algorithm to solve the multi-



objective COP: The top level generates a single objective based on the objective

function set repeatedly, and the bottom level takes the single objective and uses

CDA* (introduced in Section 2.2) to solve the COP. The series of single objectives

generated by the top level guarantees that all the solutions on the convex Pareto front

will be found.

The first algorithm I develop in this section is called "recursive knee algorithm".

The recursive knee algorithm is an algorithm that is used to approximate continuous

convex Pareto front[32]. It has never been used to solve multi-objective COPs which

have discrete solutions. I introduce the algorithm into the discrete domain and develop

the recursive knee algorithm that works with CDA* to solve multi-objective COPs.

In general, the discrete recursive knee algorithm generates a series of single-objectives

that are weighted sums of the original objective functions. By solving the COPs with

these single-objective functions using CDA*, all the solutions on the convex Pareto

front can be found. After introducing the discrete recursive knee algorithm, I extend

it to find all solutions in a region close to the convex Pareto front. The shape and

size of the region can be controlled by a set of parameters. Finally, I introduce an

algorithm that combines the discrete recursive knee algorithm and the Opportunistic

Improvement Algorithm (OIA) introduced in Section 2.3.3. The mixed algorithm can

find all solutions on the complete Pareto front, instead of only the convex Pareto

front.

2.4.1 The Discrete Recursive Knee Algorithm

This subsection introduces the discrete recursive knee algorithm and shows how to

use the algorithm to solve multi-objective COPs. I first explain the concept of a

"knee" solution, and then briefly introduce the idea of the recursive knee algorithm.

After providing the pseudo code, I elaborate the algorithm with an example of multi-

objective COP.

A "knee" solution on a continues Pareto front is defined by I. Das in [12]. Figure

2-10 shows a knee point on a continuous two-objective Pareto front (maximizing both

objectives). As shown in the figure, at the knee point, a small improvement in one



objective will cause a large deterioration in the other, which might make decision

makers reluctant to move in either direction.
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Figure 2-10: An example of the knee point.
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Figure 2-11: A geometric illustration of the discrete recursive knee algorithm.

I develop an algorithm that combines the recursive knee algorithm and CDA* to

solve multi-objective COPs. Figure 2-11 illustrates the algorithm when solving a two-

objective COP. In this figure, both objectives are maximized. The discrete recursive

knee algorithm adopts a recursive procedure that repeatedly finds knee solutions on

the convex Pareto front. As shown in Figure 2-11, the algorithm starts with opti-

mizing each individual objective in the objective function set. More precisely, for the

multi-objective COP (x, D., C, g) (refer to Section 2.1.1 for the detailed definition

of the multi-objective COP), optimize the single-objective COPs (x, D., C., gi), for

every gi E g. In the two-dimensional example, the algorithm takes each of the two



objectives gi, 92 and optimize each of them as a single-objective COP with the original

variables, domains and constraints. In Figure 2-11, points 1 and 2 correspond to the

optimal solutions for objective 1 and objective 2, respectively. These two points are

called base solutions because the next single objective function is calculated based on

the two points.

The next step is to calculate the weight vector A = (A, , An). The new single-

objective function will be g = 1 Ai - gi. In order to calculate the weight vector

A, we need to calculate the direction vector A' of the line connecting the two base

solutions in the graph first. The weight vector A represents the direction that is

orthogonal to direction A'. For example, assume that point 1 is (g1 , 92)= (35, 10) and

point 2 is (g', g) = (5,25). The direction vector of the line connecting the two points

is A' = (91 - gi, 92 - g2) = (35 - 5,10 - 25) = (30, -15). Then we have A = (1, 2),

which is orthogonal to A' since lambda' -lambdaT = 0. Use A1 , --- , An as the weights

for each of the objectives, and we can get a new single objective that is a weighted

sum of all the objective functions. In the example, the new objective function is

g = A -g 9i + 292.

Generally, for n-objective COPs, there are n base solutions. The n base solutions

form a n - 1 dimensional hyperplane and the weight vector represents the orthogonal

direction of this hyperplane. For example, Figure 2-12 shows a 3-objective case. The

points bi, b2 and b3 are three base points. The arrow indicates the direction that is

orthogonal to the 2-dimensional plane of bi, b2 , b3. Generally, the weight vector A is

orthogonal to any line that connects two base solutions like the lines b1b2, b1b3 and

b2b3. More precisely, assume the n base solutions are b1 = (b11 , b22 , - - , bin)T, b2 =

(b21, b22, , b2 n)T', - - On = (Oni on2, - , Ono) T , respectively. Since weight vector A

should be orthogonal to the line connecting any two base solutions, the inner product

of A and b - bj (V i f j) should be 0. Let matrix A = [b1 - b2 bi - b3 - - b1 - bj.

We have AT - A - 0, i.e., the weight vector A is the null vector of matrix A. Hence,

simply using Gaussian elimination, we can determine the weight vector A based on

the matrix A.

Back to Figure 2-11, geometrically, maximizing this new objective is equivalent to
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Figure 2-12: A geometric illustration of a 3-objective weight vector. A represents the
weight vector, which is orthogonal to the plane connecting the three base solutions
bi, b2 and b3-

pushing the line connecting points 1 and 2 in the direction that is orthogonal to the

line (indicated by the arrow) until the farest point is reached. In the example, point

3 is the farest point in this direction. By definition, this is the knee point. The graph

is then divided into two intervals by the knee point 3. Points 1 and 3 form a new set

of base solutions, so do points 2 and 3. The procedure is then recursively executed on

both intervals. It stops when the knee solution is no better than the base solutions

when the new objective is optimized. It geometrically means no points that is farer

in the direction that is orthogonal to the line connecting the two base solutions can

be found. For example, when we try to push the line connecting points 2 and 4 in

the direction indicated by the arrow, we can find no more points in that direction.

In sum, the discrete recursive knee algorithm repeatedly calculates a set of weights

according to the direction that is orthogonal to the line connecting the base solutions.

Using the weighted sum approach introduced in Section 2.3.1, the algorithm generates

a new objective that is a weighted sum of all the objective functions and use CDA*

to get the optimal solution to the new function. The pseudo code of the discrete

recursive knee algorithm is shown in Algorithm 7 and Algorithm 8.

The discrete recursive knee algorithm has pros and cons. One of the pros is that,

analytically, it could be run efficiently because the recursive steps only rely on the

number of solutions on the convex Pareto front, rather than the solution space. We

shall see this in the time complexity analysis (Section 2.5.1), using multi-objective



Algorithm 7 Find convex Pareto optimal solutions of a multi-objective COP using
the discrete recursive knee algorithm

Input: A multi-objective COP = (CSP, g), where CSP = (x, Dx, C2.), and the ob-
jective function set g = (gi,--- , gn). Refer to Section 2.1.1 for definitions.

Returns: The solutions on the convex Pareto front

Solution set S +- {}
Base solutions B +- {}
Conflict set C <- {}. This is a global variable.
for i= 1 to n do

Use CDA* (Algorithm 2) to solve the single-objective COP = (CSP, gi) with
initial conflict set C.
Assume the solution sne, and the conflict set Cne, are returned.
Add solution snew into solution set S
Add solution sne, into base solution set B
Update conflict set C - COne,

end for
Call Algorithm 8 with the multi-objective COP and base solution set B. C is used
as a global variable.
Assume solution set S' is returned
Update solution set S <-- S + S'
Return solution set S

Algorithm 8 The recursive process of finding knee solutions.

Input: A multi-objective COP = (CSP, g); Base solution set B = (bi,- , bn)
Returns: Solution set S

Solution set S <- {}
Calculate the weights A =(A1 -- , An) using the objective values of base solutions
New objective function g +- Ai
Call CDA* (Algorithm 2) to solve the single-objective COP = (CSP, g) with the
initial conflict set C (C is a global variable).
Assume solution snew (the knee solution) and conflict set Cne, are returned
Update conflict set C <- Cnew
Update solution set S - S + snew
if g(snew) > g(bi) then

for i = 1 to n do
New base solution set B' - B - bi + snew
Call Algorithm 8 recursively with the COP and the new base solution set B'
Add the returned solutions into solution set S

end for
end if
Return solution set S



A* as a comparison. Another pro is that we can limit the depth of the recursive

procedure and still get a satisfactory result. I. Das studied the properties of the knee

points and pointed out that several knee points on the continuous Pareto front would

be enough to approximate the shape of the convex Pareto front [111. It means that if

there is a large amount of convex Pareto optimal solutions, we can limit the depth to

shortens the running time yet we can still approximate the shape of the convex Pareto

front effectively. The downside of the algorithm is that it cannot find all solutions on

the complete Pareto front, but only the convex Pareto front. It is because that we

use the weighted sum approach which is unable to find the solutions that are Pareto

optimal but not CONVEX Pareto optimal. An improved approach that can recover

the complete Pareto front is proposed in Section 2.4.3.

To better demonstrate the whole process of using the discrete recursive knee algo-

rithm with CDA* to solve multi-objective COPs, I will illustrate every step of solving

the two-objective COP shown in Figure 2-13. There are 3 decision variables with 3,

2, and 4 options respectively. A single constraint limits the difference between B and

C to be no less than 2. There are two objectives that are conflict with each other:

objective 1 wants to minimize A, while maximizing B and C, and objective 2 wants

to maximize A and minimize B and C. To provide a global view of the search space,

I enumerate all feasible solutions and plot the convex Pareto front in Figure 2-14.



* Decision variables:

1. Decision A = {2, 4, 7}

2. Decision B = {3, 8}

3. Decision C = {2, 5, 6, 9}

* Constraint: 4

lB-C >2 C

" Objectives:

1. max -A + 10B+ 2C

2. max 7A-5B-2C

Figure 2-13: An example of two-objective COP, used for demonstration of

the discrete recursive knee algorithm.

Ilas

Figure 2-14: All solutions of the two-objective COP shown in Figure 2-13

First, the algorithm optimizes Objective 1: max -A + 10B + 2C. The search

tree is shown in Figure 2-15. We have already seen the process in Section 2.2.1,

but it is reviewed again as a recap. According to the dynamic ordering rule used in

CDA*, the algorithm expands the variable with the smallest domain size first. Notice

that the objective function has the MPI property. The B = 8 branch is expanded



first and Node 2 is obtained. Similarly, the algorithm expands A = 2 branch and

gets Node 3. Next, the branch C = 9 is expanded and a leaf Node 4 is reached.

However, the constraint |B - C 1 < 2 is violated because of the partial assignment

(B = 8, C = 9). Therefore, the conflict (B = 8 and C = 9) is recorded. Next, the

algorithm expands Nodes 1, 2 and 3 again and gets Nodes 5, 6 and 7, with their

heuristic values shown next to the nodes. Now we choose Node 6 (the one with the

largest heuristic value) to expand. The best branch without the known conflicts is

C = 6, but this node has a smaller heuristic value than node 7. Notice that we can

still get a better solution by expanding Node 2 again. Thus, Node 2 is expanded

and Node 9 is obtained. The heuristic value of Node 9 is 91, which is higher than

the heuristic value of Node 7. But when expanding Node 9, the algorithm gets Node

10 with the heuristic value smaller than Node 7. Thus, Node 7 is examined and it

is consistent. Hence, Node 7 is the best solution for this objective function. The

corresponding objective value pair is (90, -38).

1 1
B=8 B=3 B=3 B=8

f =46 f=5

2 5 2 5
A=2 A=7 C=2 C=5

A=4 ,= 94 f = 91=24

3693 6

C=9 C=6 C=6 C=6 A=71 A=7
f-=90 f=88 f=85

4 7 8 10 4 7

(90, -38) (33, 24)

Figure 2-15: Search tree of objective 1 Figure 2-16: Search tree of objective 2

Similarly, Figure 2-16 shows the search tree of objective 2: max 7A - 5B - 2C.

Note that the sequence of assigning decision variables has been changed. The dif-

ference is caused by the conflict that we got from the first optimization step. Since

B = 9 and C = 8 is a known conflict, the algorithm assigns B and C at the beginning

to avoid this conflict. When the leaf Node 4 is reached, the algorithm finds it incon-

sistent because of violating the constraint B - C ;> 2. Thus, only Nodes 1 and 2 are

expanded. By calculating the heuristic values, the algorithm chooses to expand Node



6 and obtains the best feasible solution, Node 7. The corresponding objective value

pair is (33, 24). Also, the algorithm captures another conflict (B = 3 and C = 2).

Now we need to calculate the weight for each objective. In the example, the

objective values of point 1 is (gi, g2) = (90, -38), and let the objective values of

point 2 is (g', g') (33, 24). The direction vector of the line connecting the two

points is (gi - gi, 92 - g2) = (57, -62). Then the vector of the direction that is

orthogonal to the (57, -62) is (62, 57), or (0.52,0.48) if normalized. That is, we have

(A1, A2 ) = (0.52, 0.48). This is the weight vector for the new objective. Numerically,

the new objective is: g = Ag 1 + A2 9 2 = 0.52 x (-A + 10B + 2C) + 0.48 x (7A - 5B -

2C) = 2.83A + 2.81B + 0.84C. This is the objective 3.

Thanks to the conflicts that we got from the first two phases, the search is now

more efficient. Figure 2-17 shows the expanding tree of the new objective. Only three

nodes are expanded before the optimal solution is reached. The conflict directed

search becomes smarter because of the information it preserved in the previous steps.

This learning process helps the single objective solver to stay away from inconsistent

solutions in the future searches. The effect shall become more and more obvious as

the search continues.
1 1

B=8 B=8

2 2

C=6 C=2

3 3

A=7 A=7

4 4

(85, -3) (77,5)

Figure 2-17: Search tree of objective 3 Figure 2-18: Search tree of objective 4

Figure 2-18 presents the search tree of objective 4. which uses solutions of objective

2 and objective 3 as base solutions. The weights for the objectives are 0.34 and 0.66

respectively. Figure 2-19 shows the solutions we have got until now.

A new phenomenon shows up in the next step. Geometrically, one might have
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Figure 2-19: The four Pareto optimal points that are found until step 4.

noticed that a solution (88, -24) lies on the line connecting the solution for objective 1

(80, -38) and the solution for objective 3 (85, -3). Solving the problem with objective

4, therefore, should bring us this new point (88, -24) as well as the two base solutions.

This phenomenon also reflects on objective 4: OA+8.125B+ 1.5C. GA means as long

as the solution does not violate the constraint, A could be assigned any value without

changing the objective value. In Figure 2-20, we can see that three nodes turn out

to be optimal, which is in line with the geometric and algebraic analyses. Since we

also get the two base solutions at this step, we know there is no more convex Pareto

optimal solutions can be found within this interval. Thus, we stop the recursion

within this interval.
1 1

B=8 B=8

2 2

C=6 A=7

3 3

A=7 A 4 A= 2 5C=6A=2 C=2

4 5 6 4 5 6

(85, -3) (88, -24) (90, -38) (77, 5) (83, -1) (85, -3)

Figure 2-20: Search tree of objective 5 Figure 2-21: Search tree of objective 6

Similarly, when it comes to the interval between points (77, 5) and (85, -3), the

weights are (0.5, 0.5) and the objective function is 3A + 2.5B + OC. In this case,



decision variable C could be assigned any value without influencing the objective

value. The expanding tree is shown in Figure 2-21. We find another solution (83, -1)

along with the two base solutions. With the base solutions being found, we are also

done with this interval.

Finally, we have to search within the interval between points (33, 24) and (77, 5).

The coefficients are (0.3, 0.7) and the last objective is 4.6A - 0.48B - 0.79C. The

expanding tree is shown in Figure 2-22. We get nothing new but the base solutions.

The search in this interval stops. There are no more intervals to be explored now.

After 7 steps, we establish the convex Pareto front.

B=3 B=8

2 5

C=5 C=2

3 6

A=7 A=7

4 8

(33, 24) (77, 5)

Figure 2-22: Search tree of objective 7

In sum, I develop the discrete version of recursive knee algorithm in this subsection.

The algorithm works with CDA* to find all the solutions on the convex Pareto front.

The next subsection extends the algorithm so that it finds all solutions in a region

that are close to the convex Pareto front. The size and shape of the region can be

adjusted by a set of parameters.

Moreover, a shortcoming of the discrete recursive knee algorithm is that the al-

gorithm is unable to find all the solutions on the Pareto front. That is, the Pareto

optimal solutions hiding in the convex hull is unreachable. This shortcoming origi-

nates from the limitation of the weighted sum approach introduced in Section 2.3.1. I

will propose an improved algorithm that can find the complete Pareto front in Section

2.4.3.



2.4.2 Finding Solutions in an Area Close to the Convex Pareto

Front

This subsection extends the discrete recursive knee algorithm introduced in the last

subsection to obtain not only the solutions exactly on the convex Pareto front, but

also the ones that are in an area that is close to the convex Pareto front. The size

and shape of the area can be adjusted by a set of parameters.

In many decision making scenarios, the decision maker needs not only the solutions

on the Pareto front, but also the ones near the Pareto front. There are two important

reasons. The first concern is the possible inaccuracy of the data. Either rounding

error or random sampling could cause bias in the data. It implies that the solutions

on the Pareto front might not actually be as good as some other ones that are close

enough to the front if the bias dominates the distance between the solutions and

the Pareto front. Furthermore, consider a multi-phase decision-making problem in

which the data are is computed approximately or estimated in the first phase, and the

relatively good solutions are then extracted and reconsidered in the following phases.

In this case, getting solutions that are close to the Pareto front is almost as important

as getting solutions that are exactly on the Pareto front under such circumstances.

On the other hand, when the data is not numerical, it also makes sense to consider

solutions close to the front. For instance, when one needs to evaluate the importance

of different factors that could impact a project, an expert might be invited to give

a score to each factor. The scores are not precise at all and are very likely to be an

over or under estimate. Hence, a small score difference might not correctly reflect a

preference over different solutions. Sometimes it is important to have those solutions

under considerations as well.

The other concern is the robustness of the solutions. For example, when designing

a spaceship, one architecture might be Pareto optimal for exploring the lunar surface,

but is awful for a Mars mission, while another architecture, although it is not Pareto

optimal, is very close to the Pareto front in both missions. The latter architecture

is preferred most of the time, since it saves a large amount of effort that would be



spent on designing and manufacturing different types of components for two different

systems. Under this circumstance, a decision maker might want to compare the

Pareto front regions and pick common solutions, rather than focusing on the Pareto

front only.

Now I show how to extend the discrete recursive knee algorithm to find solutions

close to the Pareto front. First I introduce the notations that are needed to describe

the algorithm. Assume there are n objective functions, then there are n base solutions

at each step. Further assume that the objective values of the i'th base solution are

bi1, bi2 ,-- , bin, i = 1, - , n, that is, bij represents the j'th objective value of the

i'th base solution. Point bi = (bil, bi2 ,- , bin)T is called the i'th base point. Let

the weight vector for the set of base solutions be w = (wI, w 2 , - - , wn), where wi is

the weight for the i'th objective. Then the new objective g = w - g = - gi.

Note that the new objective value for the i'th base solution is w -bi. Also, since the

weight vector is perpendicular to the hyperplane determined by all the base points,

we have w - (bi - bj) = 0, Vi # j, or equivalently, w -bi = w -bj, which means the

new objective values of all the base solutions are the same. Denote this value Vb.

To find the solutions in an area close to the Pareto front, we need decision maker

to set a set of cutoff values c = (ci, c2 ,.- , c )T, where ci sets the tolerance level

for objective i when objective i is being optimized without considering any other

objectives. For example, if the optimal value of objective 1 is 90 and c1 = 10, when

optimizing objective 1, all the solutions whose objective values are greater than 90 -

10 = 80 will be returned. The tolerance level for the new objective is Cnew = W - C.

In other words, all the solutions with the new objective value greater than Vb - cnew

will be returned.

Recall that in addition to the optimal solution, the CDA* algorithm can also find

the second best solution, third best solution, etc., until a certain number of solutions

are found or a tolerance level is reached. Combining this feature of CDA* and the

discrete recursive knee algorithm, we can extend the recursive knee algorithm to

achieve our goal. The basic idea is shown in Figure 2-23. Generally, when a recursive

step finds no better solution than the base solutions, we ask CDA* not to stop but



to return all the solutions within a tolerance level. Geometrically, we pull back the

line connecting the base solutions in the direction indicated by the arrows shown in

sub-figure b) of Figure 2-23 and collect all the solutions between the pulled-back line

and the original line. These solutions are circled in Figure 2-23. The shape and size

of the area between the convex Pareto front and pulled back lines can be controlled

by the cutoff value set c = (ci, c2 , - -- , cn)T. To be more specific, if the cutoff values

are large, the area will be large, while if they are small, the area will be slim. Also,

the shape can be controlled by adjusting the relations between the cutoff values. The

pseudo code of the extended algorithm is shown in Algorithm 9 and Algorithm 10.
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Figure 2-23: A geometric illustration of how to find solutions in an area close to the
Pareto front.

Decision Variables A, B, C
Options A = {2, 4, 7}

B = {3, 8}
C = {2, 5, 6, 9}

Constraint |B - Cj > 2
Objective max -A + 10B + 2C

max 7A - 5B - 2C

Table 2.5: A two-objective COP, used for illustration of the algorithm that finds
solutions close to the convex Pareto front.

To better illustrate the idea, I use the two-objective COP shown in Figure 2-13

again. The COP is shown in Figure 2.5 again for reader convenience. Recall that when

we search in the interval between points (85, -3) and (90, -38) (objective 5, Figure

2-20), the weight vector is (0.875, 0.125), the objective function is 0A+8.125B+1.5C,

and we stop when we find the three optimal solutions (85, -3), (88, -24) and (90, -38).



Algorithm 9 Find the solutions in an area close to the convex Pareto front using
the discrete recursive knee algorithm

Input: A multi-objective COP = (CSP, g); A cutoff value set c = (ci, c2 , - ,c)

Returns: The solutions on the convex Pareto front

Solution set S <- {}
Base solutions B <- {}
Conflict set C +- {}. This is a global variable.
for i = 1 to n do

Use generalized CDA* (Algorithm 3) to solve the single-objective COP = (CSP,
gj) with initial conflict set C and cutoff value ci.
Assume solution set Sne, and conflict set Cew are returned.
Update solution set S = S + Snew
Add the best solution in Snew into the base solution set B
Update conflict set C -- Cew

end for
Call Algorithm 10 with the multi-objective COP, base solution set B and cutoff
value set c. C is used as a global variable.
Assume solution set S' is returned
Update solution set S <- S + S'
Return solutions set S

Assume the cutoff for objective 1 is 8, and the cutoff for objective 2 is 16, then the

cutoff value for objective 5 should be 8 x 0.875 + 16 x 0.125 = 9. Thus, we keep

searching until the objective value decreases by 9. Figure 2-24 shows the extended

search tree.

(85, -3) (88, -24) (90, -38) (83, -1) (86, -22)
f=74 f=74 f=74 f=72.5 f=72.5

(88, -36) (77,5) (80, -16) (82, -30)
f=72.5 f=68 f=68 f=68

Figure 2-24: Extended search tree of objective 5

In Figure 2-20, we can see that the search stops when it expands node 6. Since

we have a cutoff value 9, the algorithrn continues the search until the objective value



Algorithm 10 The extended recursive process of finding solutions close to the convex
Pareto front

Input: A multi-objective COP = (CSP, g); Base solution set B = (b1, - , b,,); Cutoff

value set c = (ci, - - - , c,)
Returns: Solution set S

Solution set S +- {}
Calculate the weights A = (A, , A,) using the objective values of base solutions
New objective function g +- E1 Ai -gi
Call CDA* (Algorithm 2) to solve the single-objective COP = (CSP, g) with initial
conflict set C.
Assume solution sne (the knee solution) and conflict set Cem are returned
Update conflict set C <- One.
Update solution set S+- S + Snew

if g(snew) > g(bi) then
for i = 1 to n do

New base solution set B' +- B - bi + snew
Call Algorithm 10 recursively with the COP, the new base solution set B' and
the cutoff value set c
Add the returned solutions into solution set S

end for
else

Calculate the cutoff value c +- En Ai - ci
Call generalized CDA* (Algorithm 3) to solve the single-objective COP = (CSP,
g) with initial conflict set C and cutoff value c,
Assume solution set Snew and conflict set Cnew are returned
Update conflict set C +- Cnew
Update solution set S +- S + Snem

end if
Return solution set S



drops to 74 - 9 = 65. Now nodes 1 and 2 are expanded again. The heuristic value

of node 7 is 37.875, which is smaller than 65. Hence, we discard this node. On the

other hand, the heuristic value of node 8 is 72.5, which is greater than 68, thus, node

8 is expanded. When it comes to node 12, the heuristic value equals 68, which is

still greater than 65, so node 12 is also expanded. At this stage, we stop as we have

exhausted all consistent solutions whose objective value is greater than 65. Four new

solutions, (86, -22), (88, -36), (80, 16) and (82, -30) are the ones that are not convex

Pareto optimal, but are close enough to the Pareto front. The points are circled at the

bottom-right corner in Figure 2-25. When the same search is performed on objectives

6 and 7, all the points circled in Figure 2-25 are found. Those are the points that are

close to the Pareto front.

T-S - -(77, 5)

(83, -1
(85,i:

.AS

(8E -24)

A(E ) -38)

Figure 2-25: Finding solutions in an area close to the Pareto front. The solutions on
and between the two blue lines are the solutions found by Algorithm 9. The circled
solutions are the ones that are not on the convex Pareto front but are close to the
convex Pareto front. The shape and size of the area between the two blue lines can
be controlled by adjusting the cutoff values of each objective.

The cutoff vector provides substantial flexibility for decision makers. For instance,

if one of the objectives is obtained from precise computation, like weight or cost, while

the other is a subjective estimate, like importance or risk, the decision maker could

simply set a tight cutoff for the precise objective value and a loose bound for the

estimated one. By adjusting the tolerance level for different objectives, the decision

makers cai restrict the search in an area of interest and reduce the number of returned



solutions.

In this subsection, I extend the discrete recursive knee algorithm introduced in

the last subsection. The extended algorithm can help decision makers to identify the

solutions that are not exactly on the convex Pareto front, but are close enough to the

convex Pareto front. In the next subsection, I propose an algorithm that combines

the discrete recursive knee algorithm and the Opportunistic Improvement Algorithm

(OIA) introduced in Section 2.3.3. The new algorithm can find the solutions on the

COMPLETE Pareto front, rather than the solutions on the convex Pareto front only.

2.4.3 A Mixed Algorithm Combining the Discrete Recursive

Knee Algorithm and the Opportunistic Improvement

Algorithm (OIA)

I develop a mixed algorithm combining the discrete recursive knee algorithm intro-

duced in Section 2.4.1 and the Opportunistic Improvement Algorithm (OIA) intro-

duced in Section 2.3.3. The main goal of developing this algorithm is to overcome the

shortcoming of the discrete recursive knee algorithm which cannot find all solutions

on the COMPLETE Pareto front, but only the CONVEX Pareto front.

As mentioned in Section 2.3.3, OIA repeatedly generates new constraints that

eliminate an area that is dominated by a point in the search space. It uses the

objective functions as constraints, but does not use them to guide the search. Its

advantage is that it finds the complete Pareto front, rather than the convex Pareto

front only. The recursive knee algorithm on top of the CDA* algorithm, on the other

hand, fully exploits the information that is implied by the objective functions and

use it to guide the search all the way to the Pareto optimal solutions. However, it

could only reach the convex Pareto front. As analyzed above, the advantages of the

two algorithms are complementary. It motivates us to mix the two algorithms to

develop a new approach that use the objective functions to guide the search and finds

all solutions on the complete Pareto front. Figure 2-26 demonstrates the basic idea

of the mixed algorithm. Algorithm 11 and Algorithm 12 provide the corresponding



pseudo code.
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Figure 2-26: A geometric illustration of the improved discrete recursive knee algo-
rithm. It combines the discrete recursive knee algorithm with the Opportunistic
Improvement Algorithm (OIA) which eliminates the area dominated by the newly
found solution by adding a new constraint to the multi-objective COP.

Similar to the discrete recursive knee algorithm, the algorithm starts with opti-

mizing each objective. Points 1 and 2 are found, as shown in sub-figure a). Assume

point 1 and 2 correspond to b1 = (bu1, b12) and b2 = (b21, b22), respectively, then

the algorithm adds two constraints ((91 > bu) OR (g2 > b12)) and ((g1 > bni) OR

(g2 > b22)) to the constraint set. Geometrically, the two constraints shade the region

that is dominated by points 1 and 2. Since the points in the shaded region could not

be Pareto optimal (they are dominated by points 1 and 2), the algorithm will not

search these areas in the future. Next, the algorithm calculates a weight for every

objective using the approach described in Section 2.4.1. Using the new weighted sum

of objective functions to search the unshaded region, the algorithm reaches point 3,

as shown in sub-figure c). Again, the algorithm shades the region that is dominated

by point 3 by adding a constraint ((91 > b31) OR (92 > b32)) to the CSP, assuming

point 3 is b3 = (b31, b32).

The process is then executed recursively on both the interval between points 1

and 3 and the one between points 2 and 3. As a result, point 4 and 5 are found in

the unshaded zone, as shown in sub-figure d). Note that point 5 is NOT CONVEX



Algorithm 11 Find solutions on the COMPLETE Pareto front combining the dis-
crete recursive knee algorithm and OIA

Input: A multi-objective COP = (CSP, g)
Returns: The solutions on the COMPLETE Pareto front

Solution set S <- {}
Base solutions B <- {}
Conflict set C <- {}. This is a global variable.
for i = 1 to n do

Use CDA* (Algorithm 2) to solve the single-objective COP = (CSP, gi) with
initial conflict set C.
Assume the solution s, and the conflict set Cne, are returned. Further assume
the objective values of solution Snew are (bi, b2 , ... , b)
Add solution sew into solution set S
Add solution seew into base solution set B
Update conflict set C <-- Cnew
Add a constraint ((91 > Pi) OR (92 > P2) OR - OR (g, > pa)) into the CSP
constraint set

end for
Call Algorithm 12 with the multi-objective COP and base solution set B. C is
used as a global variable.
Assume solution set S' is returned
Update solution set S <- S + S'
Return solution set S



Algorithm 12 The recursive process of finding knee solutions on the COMPLETE
Pareto front

Input: A multi-objective COP = (CSP, g); Base solution set B = (bi, ... , bn)
Returns: Solution set S

Solution set S <- {}
Calculate the weights A = (A1, - , An) using the objective values of base solutions
New objective function g <- Ai-
Call CDA* (Algorithm 2) to solve the single-objective COP = (CSP, g) with the
initial conflict set C (C is a global variable).
if A solution is found then

Assume the solution snee and the conflict set Ce, are returned. Further assume
the objective values of solution ne are (bi, b2, ... , bn)
Update conflict set C <- Cnew
Update solution set S<- S + snew
Add a constraint ((gi > pi) OR (g2 > P2) OR - OR (g > pa)) into the CSP
constraint set
for i = 1 to n do

New base solution set B' <- B - bi + s-1-
Call Algorithm 12 recursively with the COP and the new base solution set B'
Add the returned solutions into solution set S

end for
end if
Return solution set S



Pareto optimal, but only Pareto optimal. Geometrically, the point is on the inner side

of the line connecting points 2 and 3. If no constraint were added to eliminate the

dominated area (the shaded area), points 2 and 3 would have a better objective value

than point 5. However, because points 2 and 3 are in the areas that are eliminated by

the algorithm in the previous steps, point 5 becomes the best. In other words, points

2 and 3 become inconsistent because of the constraints added in the previous steps.

The same situation occurs when the algorithm searches in the interval between

points 3 and 5, as shown in sub-figure e). Point 6, which is not convex Pareto optimal,

but only Pareto optimal, is found. This is the last step. There is no more solution

found in all the intervals, thus the procedure terminates. The final result is shown

in sub-figure f). Note that the algorithm successfully obtains the solutions on the

COMPLETE Pareto front.

This subsection introduces a mixed algorithm combining the discrete recursive

knee algorithm and OIA. The mixed algorithm uses the objective function to guide

the search, and finds all the solutions on the COMPLETE Pareto front. Till now, I

have introduced all the three algorithms I develop to solve multi-objective COPs. The

algorithms take a multi-objective COP which is defined in Section 2.1.1, and solve it

combining the CDA* algorithm introduced in Section 2.2 and several multi-objective

optimization methods introduced in Section 2.3. In the next section, I analyze the

time and space complexity of the discrete recursive knee algorithm which works with

CDA*.

2.5 Complexity Analysis for Multi-objective CDA*

In this section, I analyze the time and space complexity of the combination of the

discrete recursive knee algorithm and CDA*. I also analyze the complexities of the

mixed algorithm described in Section 2.4.3. As a comparison, I analyze the time and

space complexity of the multi-objective A* algorithm [40 as well.



2.5.1 Time Complexity Analysis

I analyze the time complexity in this subsection. Let us consider the discrete recursive

knee algorithm first. I need some notations for the analysis before I start:

n - The number of decision variables.

m - The maximum number of options for the decision variables.

k - The number of objective functions.

p - The number of solutions on the convex Pareto front.

Since the recursive knee algorithm calls a single-objective solver at each step,

we need to first analyze the time complexity of single-objective CDA* and then the

maximum possible number of steps. In the worst case, at each step, CDA* has to

visit every possible assignment of decision variables, that is, it has to expand the

whole search tree. The worst time complexity for each step is therefore O(m').

Next, let us consider the number of steps. At each step, when the recursive knee

algorithm calls the single objective solver, one of two possible results will be returned:

either at least one new solution is returned, or the base solutions are returned. For

the former case, since there are at most p solutions on the convex Pareto front, the

number of total steps is bounded by p. For the latter case, because every solution on

the convex Pareto front could only be a base solution for k times, the total number

of such steps should not exceed kp. For example, when there are two objectives, a

convex Pareto optimal solution could at most be a base solution twice: for the interval

on its left and the one on its right. Thus, the total number of steps is bounded by

(k + 1)p, or O(kp).

In sum, the worst case time complexity for the recursive knee algorithm is 0 (kpm").

It means that the time complexity of the recursive knee algorithm is linear of the

number of objectives and the number of solutions on the convex Pareto front, but is

exponential of the number of decision variables and the maximum number of options

for the decision variables.

The time complexity analysis of the mixed algorithm is the same as above, except

the notation p does not nean the number of the solutions on the convex Pareto front,

but the number of solutions on the complete Pareto front.



As a comparison, the worst case time analysis for the multi-objective A* is pro-

vided here. In the worst case, which happens when the last node expanded in the

tree dominates all other solutions, all possible combinations of decision variables are

enumerated. Thus, in the last level, there are 0(m") nodes. To determine whether

a node is dominated by another, all the objective values have to be compared, which

costs O(k) time. According to the algorithm, a node has to be compared to all other

leaf nodes to test Pareto optimality. Thus, it takes 0(kmn) time to test the Pareto

optimality for one node. Further, since all m" nodes have to be checked, the total

time complexity is O(m" - kmn) = 0(km2n). It is linear of the number of objectives,

but exponential of the number of decision variables and the square of the maximum

possible options.

Let us briefly compare the two algorithms. The recursive knee algorithm takes

time 0(kpm") and the multi-objective A* takes time 0(kmnm"). The only difference

is that the second factor is p for the recursive knee algorithm while it is m" for the

multi-objective A*. Notice that m" is the total number of solutions in the entire

search space, while p is just the number of solutions on the convex Pareto front.

In almost all problems in practice, p << m". Thus, the recursive knee algorithm

outperforms the multi-objective A* algorithm in the time complexity analysis.

2.5.2 Space Complexity Analysis

The space complexity of the discrete recursive knee algorithm is easy to analyze.

Since it calls the single objective solver in every step and not keeping the search

tree, the space complexity of the algorithm is the same as the space complexity of the

single-objective CDA*. In the worst case, the tree will be fully expanded, which takes

O(mn) space. The space complexity of the mixed algorithm is exactly the same as

the recursive knee algorithm. Notice that it is irrelevant to the number of objective

functions.

As a comparison, the multi-objective A* takes O(m") space to store tree nodes in

the worst case. However, it has to keep all the objective values in each node, which

makes its space complexity 0(km") in total.



Recursive knee Multi-objective A*
Time complexity O(kpm") O(kmm")
Space complexity O(m) O(km")

Table 2.6: The comparison of time and space complexity between the multi-objective
A* algorithm and the discrete recursive knee algorithm.

As shown in Table 2.6, the discrete recursive knee algorithm and the mixed al-

gorithm introduced in Section 2.4 outperform the multi-objective A* algorithm both

in time complexity and space complexity analysis. The analysis also shows that the

recursive knee algorithm is a relatively good algorithm since it linearly depends on

the number of solutions on the convex Pareto front. Intuitively, no matter what an

algorithm does, it always has to reach all the convex Pareto solutions, which should

at least take a linear time of p.

This subsection provides the time and space complexity analysis for the algorithms

I develop in Section 2.4. The results show that my algorithm is theoretically advanced

and might outperform the multi-objective A* algorithm when solving multi-objective

COPs. I summarize this chapter in the next section.

2.6 Summary

To solve real-world decision problems, a two-step scheme is adopted in this chapter.

The first is to model them with multi-objective COPs, and the second is to solve the

multi-objective COPs. Correspondingly, this chapter first introduces the definition of

multi-objective COP. The similarity of the structure of multi-objective COP and real-

world decision-making problems motivates me to use multi-objective COP to model

decision-making problems. I also provide a detailed introduction of how to model

each part of decision-making problems as multi-objective COPs.

In the subsequent sections, I discuss how to solve multi-objective COPs. I use a

two-level algorithm to solve multi-objective COPs: The top level generates a single

objective based on the objective function set repeatedly, and the bottom level takes

the single objective and uses CDA* to solve the COP. The series of single objectives



generated by the top level guarantees that all the solutions on the convex Pareto

front will be found. Corresponding to the two levels, I first introduce the CDA* algo-

rithm and its generalization in Section 2.2, and then introduce three multi-objective

optimization methods in Section 2.3. Finally, I develop three algorithms combining

CDA* and multi-objective optimization methods to find solutions on the CONVEX

Pareto front, in an area close to the convex Pareto front, and on the COMPLETE

Pareto front, respectively.

As shown in the Section 2.5, the algorithms I described in this chapter are efficient

and flexible. With the help of the algorithms, decision-makers can construct a rough

model first and then find the common features of the good solutions. Finally, they

can further polish the model according to the information they exploit from the rough

model to obtain the best solution.

In the next chapter, I provide two case studies of real-world problems. I use the

approach introduced in Section 2.1.2 to model the two problems. The results supports

the claim that we can model real-world decision-making problems as multi-objective

COPs.
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Chapter 3

Applications of Optimal Decision

Making

In the last chapter, I elaborate the similarity between the structures of the multi-

objective Constraint Optimization Problem (COP) and the decision-making prob-

lems. They both consist of four elementary parts: a set of decision variables, a finite

domain for each decision variable, a set of constraints defining the relations between

the decision variables, and a set of objective functions which are conflict with each

other in some degree. Such resemblance motivates me to develop a series of methods

and algorithms to model decision-making problems with multi-objective COPs and

to solve the multi-objective COPs. I first introduced how to model decision-making

problems with multi-objective COPs, and then illustrate how to combine various

single-objective COP-solving algorithms and multi-objective optimization methods

to find the Pareto front of multi-objective COPs.

To show how to use multi-objective COP to encode practical problems, and to

show the effectiveness of the algorithms I develop, I introduce two real-world decision-

making problems and study how to use COP to model and solve them in this chapter.

The first problem is the study of the Apollo lunar exploration[36]. The complex

system structure and the difficulty of choosing the mission mode makes it a good

example of real-world decision-making problem. The second problem is the study of

the NASA decadal survey[9] [35]. The decadal survey aims for identifying the sequence
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of launching a series of satellites which are used for earth observation. It represents

a class of practical decision-making problems which requires to provide an optimal

order of a set of missions. I elaborate how to model the two problems in the COP

framework, and show the results obtained from the COP solver which is developed

based on the algorithms introduced in Chapter 2.

3.1 Apollo Architecture Study

The Apollo lunar exploration program in 1960s is arguably the most ambitious and

unprecedented engineering challenges in human history. The reason to choose this

case is that even in today's perspective, it is still a difficult problem. The most critical

part of the project is to make the decision of the mission mode. Two years were spent

on debating the choice of mission mode before the final decision is made on June,

1962. The goal of the debate is to chose an optimal mission mode by considering

launch complexity and total mission risk. After the stage of choosing the mission

mode, the whole project rapidly proceed with the detailed design and development

of the spacecraft.

This section shows how the decision-making problem of the Apollo mission mode

fits into the COP framework, which consists the four elementary parts: decision vari-

ables, a finite domain for each decision variable, constraints, and objective functions.

Correspondingly, I demonstrate the decision variables and their domains first, then

the constraints between the decision variables, and finally the objectives.

Based on the principle that the most critical decisions of the mission mode should

be made first, a set of nine decision variables were selected for the study [36]. The set

of decision variables includes the ones related to the mission mode, the crew size, and

the rocket fuel types used for Apollo. Table 3.1 shows the decision variables and the

options for each of them. Figure 3-1 is an illustration of the different mission modes.

During the Apollo architecting process that took place in 1960s, three different

classes of inisson modes were under consideration: direct, earth orbit rendezvous,

and lunar orbit rendezvous. The explanation of three mission modes in four of the
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Decision Abbreviation Option 1 Option 2 Option 3 Option 4
Earth Orbit Rendezvous EOR No Yes
Earth Launch Type EL Orbit Direct
Lunar Orbit Rendezvous LOR No Yes
Arrival at Moon AM Orbit Direct
Departure from Moon DM Orbit Direct
Command Module Crew CMC 2 3
Lunar Module Crew LMC 0 1 2 3
Service Module Fuel SMF Cryogenic Storable
Lunar Module Fuel LMF N/A Cryogenic Storable

Table 3.1: A set of nine key decisions for the Apollo study.

Eo o mmoonrrival
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{orbit drectl
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(orbit direct

Figure 3-1: The illustration of Apollo mission modes [36]. If EOR is yes, it means to
rendezvous two modules in the earth orbit, as indicated by the blue arrow pointing
to the earth orbit. If LOR is yes, it means to rendezvous two modules in the lunar
orbit, as indicated by the blue arrow pointing to the lunar orbit.

decisions of Table 3.1 is shown in Table 3.2. For example, for the direct mission mode,

a spacecraft would travel directly to the moon, landing and returning as a unit. This

plan would have required a very powerful booster, the planned Nova rocket. For

the EOR mission mode, multiple rockets would be launched, each carrying various

parts of a direct ascent spacecraft and propulsion units that would have enabled the

spacecraft to escape earth orbit. After a docking in earth orbit, the spacecraft would

have landed on the moon as a unit. For the LOR mission mode, one Saturn V would

launch a spacecraft that was composed of modular parts. A command module would

remain in orbit around the moon, while a lunar module would descend to the moon

and then return to dock with the command module while still in lunar orbit. In
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contrast with the other plans, LOR required only a small part of the spacecraft to

land on the Moon, thereby minimizing the mass to be launched from the moon's

surface for the return trip. Some further discussion and explanation of the decision

variables can be found in [36].

Apollo mission mode Description
Direct mission mode EOR is no, EL is orbit or direct, LOR is no, and MD is orbit

or direct.
EOR mission mode EOR is yes, EL is orbit, MA is orbit or direct, LOR is no or

yes, and MD is orbit or direct.
LOR mission mode EOR is no or yes, EL is orbit or direct, MA is orbit, LOR is

yes, and MD is orbit.

Table 3.2: Historical Apollo mission modes under consideration

The constraints are generated by capturing available knowledge about the system

and the relationships between the decision variables. Table 3.3 shows the constraint

list, followed by a brief explanation of each constraint. The further discussion of each

constraint can be found in [36].

Name Scope Constraint
EOR constraint EOR, EL (BOR no) or (EOR yes and EL orbit)
LOR constraint LOR, MA (LOR = no) or (LOR = yes and MA orbit)
Moon leaving LOR, MD (LOR no) or (LOR yes and MD orbit)
Crew size CMC, LMC CMC > LMC
Lunar module crew LOR, LMC (LOR no and LMC 0) or

(LOR = yes and LMC > 0)
Fuel constraint LOR, LMF (LOR = no and LMF = n/a) or

(LOR = yes and LMF f4 n/a)

Table 3.3: List of constraints between decision variables [36]

* EOR constraint:

must be equal to

earth orbit first.

If there is an earth orbit rendezvous, the earth launch decision

orbit, since it is impossible to rendezvous without entering the

* LOR constraint: If there is a lunar orbit rendezvous in the mission mode, the

moon arrival decision must be equal to orbit, since it is impossible to complete

the rendezvous maneuver without entering lunar orbit before descending to the

lunar surface.
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" Moon departure: If there is a lunar orbit rendezvous in the mission mode,

the moon departure decision must be equal to orbit, since it is impossible to

complete the rendezvous maneuver without entering lunar orbit after ascending

from the lunar surface.

" Crew size: This constraint restricts the crew size of the lunar module to be less

than or equal to the crew size of the command module.

" Lunar module crew: This constraint forces lunar module crew size to be zero if

there is no lunar orbit rendezvous.

" Fuel constraint: This constraint forces the fuel type of the lunar module to be

n/a if there is no lunar orbit rendezvous.

There are many objectives that are needed to be optimized when choosing the

mission mode. Among the most important metrics, the operational risk and the

Initial Mass To Low Earth Orbit (IMLEO) are the two that is especially useful to

predict the success of the Apollo project.

Following common aerospace engineering practice, the rocket equation can be used

to estimate vehicle masses, depending on the velocity increment they must supply[6).

The equation can be defined as:

-AV
mf m2 expMf - Tniexp go -1s,

where AV is the difference in velocity over the entire period of the maneuver, go is

the gravitational constant, Is, is the specific impulse of the propulsion system, mj is

the final mass after the maneuver, and mi is the initial mass before the maneuver.

The two mass terms mf and mi can be broken down as mf = mbo + mP1, mi =

mbo + ml + mprop, where mbo is the burnout mass, m 1, is the payload mass, and

mprop is the propellant mass. For a multi-stage rocket system, the rocket equation

can be applied recursively for each maneuver. If the payload of a stage is actually

another rocket with its own fuel and payload, then mp, becomes the initial mass for

the next application of the equation. In this study, values for constants such as the
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structural mass ratios, propulsion characteristics, and models for crew compartment

sizes are taken from a combination of historic data and the assumptions used in the

contemporary 1961 Houbolt Report [25]. When designing the mission mode, we want

to minimize the IMLEO metric, so that the launch vehicle from the earth surface can

be of "reasonable" size.

Decision Option 1 Option 2 Option 3 Option 4
Earth Orbit Rendezvous No Yes

0.98 0.95
Earth Launch Type Orbit Direct

0.99 0.90
Lunar Orbit Rendezvous No Yes

1 0.95
Arrival at Moon Orbit Direct

0.99 0.95
Departure from Moon Orbit Direct

0.90 0.90
Command Module Crew 2 3

1 1
Lunar Module Crew 0 1 2 3

1 0.90 1 1
Service Module Fuel Cryogenic Storable

0.95b"rns1
Lunar Module Fuel N/A Cryogenic Storable

1 0.952 1

Table 3.4: List of probability of success of each decision

Other than IMLEO, the operational risk is another very important metric for the

mission success. For the computational reason, I adopt the complementary metric

"probability of success" here. A mission mode's probability of success is one minus

the operational risk. The probability of success of the whole mission is the product of

the probability of success of each mode choice. For example, the probability of success

of EOR is 0.95 (1 means successful, 0 means no chance of success), and the probability

of LOR is also 0.95. If EOR and LOR were both adopted, the total probability of

success would reduce to 0.95 x 0.95 = 0.9025. The values of probability of success are

shown in Table 3.4. The risk of using cryogenic fuel in the service module depends

on the number of burns performed by the module's engine. The number of burns
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depends on the LOR decision variable: if LOR is no, the engine of the service module

must fire four times, while if LOR is yes, only twice[36]. When making decisions for

the mission mode, we want to maximize the probability of success.

So far, I have introduced all the four elements of the Apollo study that are needed

in a COP: decision variables, a finite domain for each decision variable, constraints

and objectives. The complete COP model is shown in Appendix A.

The results are shown in Figure 3-2, 3-3, and 3-4. In all the three plots, the X axis

represents the probability of success and the Y axis is the IMLEO metric. Figure 3-2

shows all the feasible mission modes. It is obtained by Willard Simmons[36] (Figure

4-8 in [36]). The convex Pareto front is portrayed by the blue line connecting all the

convex undominated points.

IMLEO
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Probabliity of Success

Figure 3-2: All feasible mission modes. The blue line shows the convex Pareto front.
Point 3 corresponds to the Apollo mission mode that is finally adopted.

Figure 3-3 plots the results obtained by the tool designed base on the discrete

recursive knee algorithm and CDA* that I introduced in Chapter 2. Comparing Figure

3-2 and Figure 3-3, we can see that my algorithm correctly finds all the solutions on

the convex Pareto front. Points 1 to 7 in Figure 3-2 matches the points 1 to 7 in Figure

3-3. Points 1 and 2 correspond to the direct mission mode with 3 crew members and

2 crew members, respectively. As mentioned above, these mission modes send the

spacecraft as a whole from earth directly to the moon. Neither EOR nor LOR is

used. The advantage of these modes is that they avoid the rendezvous, and thus
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reduce the overall mission risk. However, the two modes require a spacecraft with

a high IMLEO. It increases the difficulty of designing and transporting the whole

spacecraft. Points 3 to 7 are architectures which include LOR. As we can see in

Figure 3-3, Point 3 is a "knee point" on the convex Pareto front (refer to Section

2.4.1 for detailed explanation of knee point). More specifically, at a knee point,

a small improvement in one objective causes a relatively large deterioration in the

other. Thus, a knee point is usually of great interest to the decision makers. In the

Apollo project, Point 3 is finally chosen as the mission mode for Apollo. It has three

crew members in the command module, two crew members in the lunar module and

uses storable propellants for both the service module and the lunar module. Point 7

has the minimum mass, but is the most risky. It uses two crew members in a command

module and one crew member in a lander with cryogenic propellants. Point 7 is the

point which most closely models the proposed Soviet lunar mission's architecture.

IMLEO

280,P000

260,000,

240 000

200 0

180,000

16 000

140,0
1120 1000 ,3

80 000 .4

-7, 6.
0.50 0.55 0.60 0.65 0.70 0 5 0_80

Probability of Success

Figure 3-3: The convex Pareto front of the Apollo mission mode study, obtained by
solving the multi-objective COP model.

Figure 3-4 shows all the solutions near the convex Pareto front. The cutoff value

for IMLEO is 20,000, and the cutoff value for the probability of success is 0.05.

Geometrically, the cutoff values of the two objectives determine the shape and size

of the area between the two blue lines. The IMLEO cutoff value determines the

gap between the blue lines in the bottom-left corner, and the cutoff value of the

probability of success determines the width of the blue lines in the top-right corner.
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Figure 3-4: Solutions in an area close to the convex Pareto front. All the solutions
in the region between the two blue lines are found. The bottom-left gap and the
top-right width of the blue lines are determined by the cutoff parameters.

Refer to Section 2.4.2 for the rigorous definition and detailed explanation of the cutoff

values. Figure 3-4 shows us the potentially good mission modes. It also explains why

Point 3 is finally chosen: no other points are close to Point 3, which means when the

area near Point 3 is of interest, the only choice for the decision makers is Point 3.

This section introduces the decision-making case study for the choice of Apollo's

mission mode. I elaborate how to use multi-objective COP to model the decision

variables, domains, constraints and objective functions of the Apollo mission mode.

The results obtained by solving the multi-objective COP model using the algorithms

I develop in Chapter 2 are shown and discussed. They are consistent with the results

obtained in [36], but are obtained in much less time. In the next section, I introduce

another case study, the earth science decadal survey.

3.2 Earth Science Decadal Survey Study

This section introduces another case study, the earth science decadal survey study.

In order to coordinate the earth science space observation missions, the National

Research Council commissioned a decadal survey report in 2004 for earth science to

establish a unified agenda for the next several decades[35]. The long-term agenda
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would promote cost-sharing opportunities and eliminate redundancies while ensuring

the benefits of the earth science research.

The report chose 17 important measurement sets that are of significant value for

the study of earth science. Corresponding to the 17 measurement sets, there are as

many as 26 satellites (also called "missions" throughout this section) needed to be

launched. The goal of the decadal survey is to decide on the relative priority and

urgency of the measurement sets but not the detailed architecture of the missions to

make the measurements. The decadal survey proposed a united set of 17 missions

that they postulated would fit in the NASA budget. However, subsequent study have

indicated that some of the proposed missions might better be devoided of, all are more

expensive than projected and the budget more constrainted. The costs of building

and launching of some of the satellites that are likely to be the earlier ones are shown

in Table 3.5. The goal of this analysis is to find an optimal sequence of these missions,

within a constraint of a budget of 300 million dollars per year. Another factor under

consideration in the choice of mission sequence is the TRL (Technology Readiness

Level) date. The TRL date of a mission (a satellite launch) indicates the earliest

possible date that the mission can be launched. The TRL dates of the possible early

missions are shown in Table 3.5.

In addition to the budget and TRL constraints, two important objectives need

to be optimized: the total benefit derived from the sequence of the missions and the

fairness. Six major research communities get benefits from the missions:

" Human Health and Security (HHS)

e Land-use, Ecosystems and Bio-diversity (LEB)

" Solid Earth hazards, natural resources and dynamics (SE)

" Climate Variability and Change (CVC)

" Weather Science and Applications (WSA)

" Water Resources and the global hydrological cycle (WR)
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For each community, there is a delegating panel in NASA. The benefits for each

panels of launching the satellites that are more likely to be the early ones are shown

in Table 3.5. The benefits, however, depreciate along the years. That is, the later a

satellite is launched, the smaller benefit each panel receives. The benefit depreciation

rate for each panel is also shown in Table 3.5. Another objective is the fairness for

the panels. As we can see in Table 3.5, a mission is beneficial to some of the panels,

but are not helpful at all to some other panels. That is, the benefit received by each

panel is different when a satellite is launched. When determining the sequence of the

missions, a certain degree of fairness has to be achieved. In other words, the benefit

for one panel should not be significantly less than the benefit for another.

No. Mission Name Cost TRL HHS LEB SE CVC WSA WR
1 CLARREO A 300 2013 0.018 0 0 0.144 0.078 0.028
2 CLARREO B 300 2013 0.018 0 0 0.144 0.078 0.028
3 DESDynI B 300 2011 0 0.070 0.169 0.072 0 0.016
4 GPSRO 230 2011 0.037 0.193 0.117 0.112 0 0.029
5 SMAP 450 2010 0.005 0.035 0.021 0.106 0 0.058
6 HYSPIRI A 350 2011 0 0 0.015 0 0 0.019
7 HYSPIRI B 350 2013 0 0 0.015 0 0 0.019
8 GEOCAPE B 400 2014 0.096 0.164 0 0.126 0.066 0.002
9 GEOCAPE C 400 2014 0.056 0.043 0 0 0.066 0

10 ACE B 300 2013 0.107 0.285 0.022 0.129 0.132 0.026
11 LIST A 600 2016 0.014 0 0.063 0.035 0 0.065

Depreciation Rate 0.90 0.90 0.95 0.85 0.90 0.90

Table 3.5: The names, costs, TRL dates and benefits for each panel of the 11 possible
early missions.

Since the benefits depreciate yearly, it does not make much sense to calculate the

solutions for a time span of 40 year because the benefits will diminish after the first

decade. Also, it is not realistic to arrange a mission 30 years ahead of time. Thus,

I only model the problem for the first ten years, i.e., from 2011 to 2020. Moreover,

from the observation of the original data table in [35], we can identify a subset of

11 missions that are most beneficial and are preferable to be launched in the first 10

years. The 10 missions are the ones shown in Table 3.5.

I again illustrate the formulation of the problem based on the four elementary parts

of COPs: decision variables. a finite domain for each decision variable, constraints
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and objectives. The decision variable xi represents the launching year of mission i.

For example, x1 is the launching year of the mission "CLARREO A". Obviously, the

domains for each xi should be from 2011 to 2020. However, because of the TRL

constraint, some options can be discarded at this stage, rather than leaving them

in the constraints. For instance, the options for xu, or mission "LIST A" can be

reduced to 2016, 2017, 2018, 2019, 2020, instead of 2011..2020, because its TRL year

is 2015. In sum, let TRLi denote the TRL date of mission i, we have:

Xi = {TRLi .. 2020}, i = 1,2,1 . ,11

The constraints are all related to the budget. Note that all the missions cost no

more than the total budget for two years. Using this observation, we can cluster two

years together when a mission costs more than 300 million dollars. For example, the

constraints related to "SMAP" (X5 ) are:

x 5 # xi, i = 1,- 4,6, --- ,

X5 7# Xi + 1, i = 1, -. - ,4,6, -. - I-, l1

The first constraint means that mission SMAP needs to use all the budget of the year

it is launched, thus, no other mission should be scheduled to launch in the same year.

The second constraint means that mission SMAP also takes the budget in the year

before it is launched, thus, no mission should be scheduled in that year as well. This

rule applies to missions HYSPIRI A, HYSPIRI B, GEOCAPE B, GEOCAPE C, and

LIST A as well. An exception is that GPSRO and the HYSPIRI A can be launched

in consecutive years, because the total cost of the the two missions is 580 million,

which is less than the budget of two years. The exception is also valid for GPSRO

and HYSPIRI B.

There are two objectives needed to be optimized: one is the total benefits, and the

other is the fairness. When considering benefits, we can use the following formulation
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to calculate the benefits obtained by launching satellite i:

6

Bm =3 bmp - dm-2010), m = 1,2, ... , 11
p=

1

where bmp represents the benefit of launching mission m for panel p, and dp represents

the benefit depreciation rate of panel p. The formulae sums up all the depreciated

benefits in year xm for each panel, which is the total benefit of launching mission m

in year Xm. By summing up the benefits of all the missions, we can obtain the total

benefits, i.e., the total benefit is:

11

B =B( B
m=1

For the fairness objective, on the other hand, we can sum up the maximum gap of

the benefits for each panel when a mission is launched. The unfairness of launching

satellite m can be represented by the following formulae:

Fm = max {bmpi - d -2010) - bmp - m-2010)} m = 1,2,.., 11
P1,2=1---6  pi dP2 b I d

where bmpi represents the benefit of launching mission m for panel pi and bmp2 repre-

sents the benefit of launching mission m for panel P2. The term bmpi dm-2 010) - bmP2

dx -2010) represents the gap of benefits (after depreciation) between panels pi and

P2 if satellite m is launched in year xm. By finding the maximum gap of all possible

combination of pi and P2, we can obtain the maximum gap of of benefits between

any two panels, which is defined as the unfairness of launching satellite m. The total

unfairness is the sum of the unfairness of all the missions, i.e., the total unfairness is:

11

FZ m
m=1

Having all the four elemental parts of an COP in hand, we can integrate them to

form a decadal survey COP and solve it using the algorithms introduced in Chapter
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2. The model described above looks simple because of the compactness of the mathe-

matical symbols. In the real COP model, however, all the terms that are abbreviated

by the dots need to be written down explicitly. For instance, to express x1 # x 2, I

need to write from ((NOT x1 = 2013) OR (NOT x2 = 2013)) to ((NOT x1 = 2020)

OR (NOT x 2 = 2020)), which costs eight lines of codes. The final model spans almost

8000 lines.

The results obtained by solving the decadal COP are shown in Figure 3-5. Seher's

result[35] is also included as a comparison. The Pareto plot is shown in Figure 3-

6. The X axis represents the degree of unfairness and the Y axis represents the

total benefits. Points 1 to 7 correspond to Solutions 1 to 7, respectively. Point

S corresponds to Seher's result (We call it Solution S). Since we maximize the total

benefits and minimize the unfairness, the Pareto front is convex pointing to the upper-

left corner.

Seher's Result Solution 1 Solution 2 Solution 3
Launch Date Sequence Launch Date Sequence Launch Date Sequence Launch Date Sequence

Clarreo A 2015 4 2014 4 2015 4 2019 7
Clarreo B 2016 5 2015 5 2014 5 2020 8
DESDynIB 2013 2 2011 1 2011 1 2011 1
GPSRO 2011 1 2012 2 2012 2 2012 2
SMAP 2030 14 - - 2019 8 2018 6
HYSPIRI A 2023 10 - - - - - -

HYSPIRI B 2017 6 2016 6 2016 6 2016 5 1
GEOCAPE B 2020 8 2017 7 2018 7 2015 4
GEOCAPE C 2027 12 - - - - -

ACE B 2014 3 2013 3 2013 3 2013 3
LIST A 2019 7 2019 8 - - - -

Solution 4 Solution 5 Solution 6 Solution 7
Launch Date Sequence Launch Date Sequence Launch Date Sequence Launch Date Sequence

Clarreo A 2020 7 2019 7 2017 5 2017 5
Clarreo B 2019 8 2020 8 2016 6 2016 6
DESDynIB 2011 1 - - - - - -

GPSRO 2012 2 2011 1 2011 1 2012 -2
SMAP 2018 6 2018 6 2019 7 2019 7
HYSPIRIA - - 2012 2 2012 2 2011 1
HYSPIRI B 2016 5 2016 5 2015 4 2015 4
GEOCAPE B - - - - - - - -

GEOCAPE C 2015 4 2015 4 2014 3 2014 3
ACE B 2013 3 2013 3 2020 8 2020 8 

IST A--------

Figure 3-5: Solutions of the decadal survey study. It includes Seher's solution and the
solutions obtain by solving the multi-objective COP model introduced in this section.

From Figure 3-5, we can see that Solution 1 is the closest to Solution S. The

launching years for each satellite are almost the same except the exchange of DESDynI

B and GPSRO, and GEOCAPE B and LIST A. In Figure 3-6, Solution 1 corresponds
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Figure 3-6: Plot of the results on the convex Pareto front. The Y axis represents the
total benefits for all 6 panels by launching the satellites. The X axis represents the
sum of the maximum gaps between panels by launching each satellite.

to Point 1, which has the best total benefits, but is also the most unfair one among

all the solutions. It is also the closest to Point S, which represents Solution S. Point 7

represents the fairest mission sequence, but also has the lowest total benefit. Points

2 to 6 lie in the middle, representing the solutions that have some trade-off between

the total benefit and the fairness concern. The Pareto plot shows that the points

almost lie on a straight line, which means the gain on one objective offsets the loss

on the other. Under such circumstance, points 2, 3 and 4 might be good alternatives,

since they achieves a certain degree of fairness, while not losing too much in the total

benefits.

Solution 1 2 3 4 5 6 7
Year 0.91 2.73 3.36 4.09 4.09 4.27 4.73

Sequence 0.36 1.91 2.27 2.82 3.00 3.18 3.18

Table 3.6: The difference between Seher's solution and Solutions 1 to 7. The value
represents the average year and sequence gap of each mission between solutions.

Table 3.6 shows the average difference of launching year and launching sequence

between Solutions 1 to 7 and Solution S. The average difference of launching year be-

tween Solution 1 and Solution S, for example, is calculated by averaging the absolute
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value of the difference between the launching year of each mission in Solution 1 and

Solution S. More precisely, assuming xm represents the launching year of mission m

in Solution S, while xim represents the launching year of mission m in Solution 1, the

average difference of launching year is calculated by the formulae:

11
Di= E |XSm - X1m|

m=1

Correspondingly, we can calculate Ds2 , D, 3 ,--- , D. The average difference repre-

sents the difference between one solution to another to some extent. From Table 3.6,

we can see that Solution 1 is the closest to Solution S. In average, each satellite is

scheduled to be launched either about a year earlier or a year later in Solution 1 than

planned in Solution S. The difference gradually increases from Solution 2 to Solution

7. Finally in Solution 7, each mission is launched nearly 5 years later or earlier than

scheduled in Solution S. Considering the 10 years horizon, we can see that Solution

7 adopts a very different sequence from Solution S.

In this section, I introduce the background of earth science decadal survey study.

The study involves a decision-making problem in which decision makers need to de-

termine the launching sequence of a series of satellites that help scientists observe the

earth and carry out experiments. I illustrate in detail how to model the problem with

multi-objective COP, and explain the results obtained by solving the COP. I finally

compare my solutions and Seher's result [35].

3.3 Summary

This chapter provides two case studies that use multi-objective COP to model practi-

cal problems. The first case study is the Apollo mission mode design. I adopt nine key

decisions that have direct impact on the mission's success as the decision variables.

I explain the meaning of the options for each decision variable and the constraints

that limit the relationships of the variables. Moreover, I discuss the objectives that

are needed to be optimized and show the final results, which coincide with Simmons'
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results [36]. I also discuss the practical meaning of the points on the convex Pareto

front obtained by solving the multi-objective COP. This case study shows that we

can use multi-objective COP to model practical decision-making problems, and also

shows the capability of the algorithms introduced in Chapter 2 to find the convex

Pareto front as well as the solutions in an area that is close to the convex Pareto

front.

The second case study is the earth science decadal survey study. The goal of the

decadal survey is to decide an optimal sequence of launching a series of satellites that

are used for the research of earth observation. I encode the problem by using a set

of decision variables that denote the years when the satellites are launched. Based

on this set of variables, I demonstrate how to express the budget constraint. I also

explain how to express the two important objectives in multi-objective COP: the

total benefits and the fairness concern. Finally, I show the results of the problem in

addition to a plot of the convex Pareto front, and I compare the results to Seher's

solution [35].

From the two case studies, we can see that the modeling skill and the algorithms

introduced in Chapter 2 is applicable to the real-world decision-making problems. It

supports the claim that many problems in the real world can be expressed as multi-

objective COPs and then solved efficiently by the multi-objective COP solver using

the algorithm developed in Chapter 2.
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Chapter 4

Optimization Methods for System

Architecture

This chapter introduces and develops methods for solving two main problems. The

first is how the DSM and OPD are connected and how to translate between the two

system representation methods. The second is how to cluster a single DSM, and

multiple DSMs as well. Section 4.1 introduces the characteristics of DSM and OPD,

as well as the complementary of their characteristics. In Section 4.2, I reveal the

Markov property of the DSM description of OPD, and demonstrate the projection

relation between them. In Section 4.3, I introduce the DSM clustering problem and

describe the specific goals mathematically. Then I provide an optimization model

which encodes the problem and show the clustering results of an pedagogical example

and a practical problem. I also develop an algorithm to solve multiple DSM clustering

in this section. Finally, I summarize the whole section in 4.4.
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4.1 The Complementary Characteristics of DSM

and OPD

4.1.1 Characteristics of DSM

As mentioned in Section 1.1.3, Design Structure Matrix (DSM) provides an effective

approach for designing and managing complex engineering projects and systems. In-

stead of graphical representation used in traditional system modeling tools such as

PERT and CPM, it describes the dependencies and feed-backs between different parts

in systems with a simple and compact matrix. It is also efficient for system decom-

position and integration, as discussed in Section 1.1.3. Because of the advantages of

DSM, it is now becoming more and more popular for various purposes in industrial

design and management such as product development, project planning, project man-

agement, system engineering, organization design, etc[2]. Eppinger provides several

typical applications of DSM in project management[19].

Classical DSMs map directed system graphs to matrices in which the entries (i, j)
are marked by a check sign if there exist edges pointing from node j to node i.

Diagonal entries are either blacked out or used to capture special information of the

corresponding part in the system[44]. Figure 4-1 shows a simple illustration of the

relationship between system graph representation and DSM.

Figure 4-1: An example of the classical Design Structure Matrix (DSM) representation
of a system.

Simple as DSM is, it only represents a restricted class of system relationship. It is

unable to capture miscellaneous relationship between nodes by merely using a check

sign. Information of causal relationship is usually classified into several categories.
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However, a specific DSM is usually created to represent a single type of causal re-

lationship, such as the relationship of processes with other processes. Objects, both

instruments and operands, are ignored or implicit. Moreover, relationships between

nodes in a system are not necessarily causal. For example, transmission itself does

not change speed, while it serves as an instrument of changing speed smoothly. A

more fundamental limitation of the DSM is its difficulty in representing relationships

that are not binary - not just connecting two elements at a time, but linking three

or more elements. These challenges of DSMs are easily solved by a bi-partite graph

representation of Object-Process Diagram (OPD).

4.1.2 Characteristics of OPD

Object-Process Diagram (OPD) provide a bi-partite graphical tool to represent a very

general complex system of operand objects, processes and instrument objects[15].

The OPD representation can be used to explicitly represent all causal or non-causal

relationships within a system. OPDs are built up of objects and processes. Objects

are things that exist or have the potential for existence, and have states. Processes

are transformations that can change the states of objects. Objects are further divided

into instrument objects and operands. The distinction is that the instrument is the

agent of the process, while the operand is the object whose states are affected by the

process.

A simple and generic OPD is shown in Figure 4-2, where each rectangle denotes

an object and each oval denotes a process. In this OPD, the bottom instrument is

an agent of the process (round headed arrow), the left operand creates the process

(single headed arrow leading to the process), and the right operand is created by

the process (single headed arrow leading away from the process). One operand, one

process, and one instrument object is the canonical structure of a system (as it is a

sentence in natural human language), and all complete descriptions of systems must

have these elements and their interrelationships.

Although OPD is a powerful tool to model complex systems, to date, it does not

have a complementary matrix representation that could facilitate the computation.
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Figure 4-2: A generic Object-Process Diagram (OPD)

In the case of modeling large-scale system, OPD will be difficult to be fully compre-

hended since it may be as lengthy as hundreds of pages, especially when it involves

large amount of information exchange across the whole system. In such cases, DSM

would be very helpful to decompose the system and clarify the relationships between

subsystems.

Since the advantages and disadvantages of the two system representations are

complementary, we naturally seek to link the DSM and the OPD together. With the

DSM representation, we can translate OPDs into DSMs and apply computation tools

on them. The DSM representation of OPD also enables us to condense the OPDs to

simplified structures, which is explained in Section 4.2.3.

4.2 Relation between Graph Representation and

Matrix Representation of Systems

In this section, I first illustrate an extension of the classical DSM and show the

correspondence between the general graphical system representation and the DSM.

It is followed with a demonstration of the Markov property of the DSM. Secondly, I

explain the concept of "projection" from the general graphical system representation

to the DSM with several examples. Finally, I derive the DSM representation of OPD

and reveal the special structure of this class of DSM, of which we can take advantage

to promote the computational efficiency. In the summary subsection, the limitations

and possible extensions of the DSM representation are discussed.
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4.2.1 The Extension of DSM and its Markov Property

In the classical DSM, people simply put a check mark in the entries of the matrix.

However, in most of the complex systems, the relationships between different parts

vary from one to another. System architects need to preserve and analyze such

information. Here, I extend the DSM to preserve more information regarding to the

relationship between a pair of nodes. Figure 4-3 defines a new rule of translating from

a system to an extended DSM.

Classical DSM:

1 2 3 4 5
1 /

Extended DSM:

1 2 3 4 5
1 e' c a' d'

Figure 4-3: Comparison of the definitions of the extended DSM and the classical
DSM.

As presented in Figure 4-3, the extended DSM represents the relation between

node 1 and its neighbor nodes. In the traditional DSM convention, the entry (i, j)
represents the relation from node j to i. However, here I define the entry (i, j) to be

the relation from node i to node j. We will see the reason later in this section. If the

relation from i to j is along the direction of the arrow, we put a lowercase letter in

the entry (i, J). If it is in the reverse direction, we add a prime to the letter. Figure

4-4 shows an complete extended DSM for the system in Figure 4-1. Especially, we

assign 0 to the diagonal entries meaning that a node does not have self-loop edges.

Notice that the matrix is analogous to the one-step Markov chain (refer to [22] for

the introduction to Markov chain if not familiar with it), except it is in the symbol

form and the row sum is not necessarily 1. Despite of such a difference, we can still

apply the multi-step transition property of Markov chain. Analogously, if D is a DSM

matrix, Dn represents an n-step Markov transition relationship. I want to emphasize

again that the diagonal entries of the DSMs are assumed to be 0 for now. I will
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Figure 4-4: A complete extended DSM representation of a system.

discuss how to deal with the diagonal entries later. The 2-step transition matrix D 2

corresponding to Figure 4-4 is shown in Table 4.1.

1 2 3 4 5
1 dc ac' ab+ de + fg
2 c'd' a'd + be' a'f + bg' c'e
3 ca' d'a + eb' d'f + eg' cb
4 f'a + gb' f'd + ge'
5 b'a' + e'd' + g'f' e'c b'c'

Table 4.1: A two-step transition DSM corresponding to Figure 4-4. It shows all the
possible two-step paths between each pair of nodes.

This matrix contains all possible 2-step paths between any pair of nodes. For

instance, the entry (1, 5) means there are three paths from node 1 to 5 in 2 steps: ab,

de and hg. From node 3 to 4, there are 2 paths, d'h and eg', respectively. Notice that

the paths include backward flows. The 3-step transition DSM is shown in Table 4.2.

Before I proceed, I would like to explain why I do not adopt the DSM convention

which reads the column first then the row. In the matrix shown in Table 4.1, when

we want to check the path from node 1 to 2, it is ldc2, clearly indicating the path

1-d-3-c-2. If we used the DSM convention, the entry (1, 2) would be d'c'. Naturally,

people will understand it as the case that there is a path 2d'c'1. However, there is no

such a path existing in the graph. Actually, we have to read the content in the entry

reversely, that is, c'd' instead, and a path 2c'd'1 exists in the graph (2-c'-3-d'-1). Due

to this awkwardness, I use the first-row-then-column convention instead throughout

this whole chapter.

One might have noticed that although the matrix Dr represents the n-step transi-

tion relationship between each pair of nodes in the system, it is problematic when the
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1 2 3
T ac'c + (ab+ de + fg)b' dcc' + (ab + de + fg) e'

2 (a'd + be')d' + (a'f + bg')f' c'd'd + c'ee'

3 (d'a + eb')a' + (d'f + eg')f' ca'a + cbb'

4 (f'a + gb')a' + (f'd + ge')d' (f'd + ge')c (f'a + gb')c'

5 e'ca' + b'c'd' (b'a' + e'd' + g'f')a + b'c'c (b'a' + e'd' + g'f')d + e'cc'

4 5
1 (ab + de + fg)g' dcb+ ac'e

2 c'd'f + c'eg' (a'd + be')e + (a'f + bg')g

3 ca'f + cbg' (d'a + eb')b + (d'f + eg')g
4 ( f'a + gb')b + (f'd + ge')e

5 (b'a' + e'd' + g'f')f

Table 4.2: A three-step transition DSM corresponding to Figure 4-4. It shows all the
possible three-step paths between each pair of nodes.

path includes immediate backward flow. For example, the 3-step transition relation-

ship from node 1 and node 2 includes the path ac'c, while obviously, the consecutive

sub-path c'c is redundant. Such redundancy will inflate as the order of Dn increases.

Naturally, we want to discard the c'c sub-path; however, we will end up with a 1-step

path a, which makes D3 a pseudo 3-step transition DSM.

To avoid such ambiguity, we need to revise the original definition of extended DSM

and the concept of n-step transition matrix slightly. We introduce a new concept -

Modified N-Step DSM D , as a representation of all possible paths between each

pair of nodes that linking each other WITHIN n steps. Before discussing the modified

n-step DSM, I need some extra algebraic rules for symbols. In the following rules, I

is either 1 or an identity matrix, depending on the type of the symbols. It potentially

means the node is reached with 0 step.

Rule 1 Vx, X'X=xx'=I. (e.g. c'c = I)

Rule 2 nI = I. (e.g. c'c+aa'= I+I =2I I)

Rule 3 Terms in which a symbol appears twice are eliminated.

Rule 4 Force all diagonal entries equal to I.

The key intention of rules 1 and 2 is to eliminate the duplications in the n-step

DSM. Rule 3 eliminates potential cycles. For example, assume the (i, j) entry of the
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DSM is a23 . When the order of D is high enough, one possible term of the (1, 2) entry

in the DSM is a 12 = a 15 - a5 2 = ab -g'f'a = abg'f'a, in which abg'f' is a cycle that

is redundant. Without rule 3, it will stay in higher order results. But according to

rule 3, since the symbol a appears twice in this term, it will be eliminated, and thus

the cycle will not appear in the modified n-step DSM. Rule 4, which is different from

our original definition of extended DSM, adds a self loop to each node. The modified

1-step to 3-step DSMs are shown in Tables 4.3, 4.4, and 4.5, respectively.

1 2 3 4 5
1i a d f

2 a' I c' b
3 d' c I e
4 f' I g
5 b' e' g' I

Table 4.3: An example of Modified 1-Step DSM. It is the same as the original 1-Step
DSM, except having I in each diagonal entry, representing a self-loop.

1 2 3 4 5
1 I a~dc d+ac' f ab+de+ fg
2 a' +c'd' I c' + a'd + be' a'f + bg' b+c'e
3 d' +ca' c+ d'a+eb' I d'f + eg' e +cb
4 f' f'a + gb' f'd + ge' I g
5 b'a' + e'd' + g'f' b' + e'c e' + b'c' g' I

Table 4.4: An example of Modified 2-Step
node to another within 2 steps.

DSM. It shows all possible paths from one

There is a close relationship between the extended DSM and the modified n-step

DSM. Intuitively, if node A can reach node B within n steps, the corresponding path

will show up in the n-step transition DSM. That is, the path with less than n step

will be present in DnOd. Formally, regarding to the modified n-step DSM, we have

the following theorem:

Theorem 1 A modified n-step DSM equals the sum of all the extended k-step DSMs,

in which 0 < k < n.

Proof: Since the diagonal entries of the extended n-step DSM are all 0, we can write
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1 2 3
T I a + dc + deb'+ fgb' d + ac' + abe' + fge'
2 a' + c'd' + be'd' + bg'f' I c' + a'd' + be'
3 d' + ca' + eb'a' + eg'f' c + d'a + eb' I
4 f' + gb'a' + ge'd' f'a + gb' + f'dc + ge'c f'd + ge' + f'ac' + gb'c'
5 b'a' + e'd' + g'f' + e'ca' + b'c'd' b' + e'c + e'd'a + g'f'a e' + b'c' + b'a'd + g'f'd

4 5
1 f + abg' +deg' ab + de + fg + dcb + ac'e
2 c'd'f + c'eg' b + c'e + a'de + a'fg
3 d'f + eg' + ca'f + cbg' e + cb + d'ab + d'fg
4 I g + f'ab+ f'de
5 g' + b'a'f + e'd'f I

Table 4.5: An example of Modified 3-Step DSM. It shows all possible paths from one
node to another within 3 steps.

the modified 1-step DSM in the form Dmod = (D + I ).

mod

=0 Dn

S ( nD k
k=O

(D + I)"

-Dk

The equality in the third line holds because Vt 6 Z,

t -Dk = tI -Dk = I - Dk = Dk

The second equity holds because of rule 2.

Further, since no symbol can appear twice in a single term, and the number of

symbols in a DSM is finite, we can expect that the when n is large enough, the

modified n-step DSM would reach a fixed point, that is, Dmo = Dd . In this case,

we have enumerated all possible paths between any two nodes in the system. In the

example shown in figure 4-4, the fix point is reached in 4 steps. The modified 4-step

DSM is too lengthy to be shown here, but one can verify that DQ = Dmod, which

127



means within 4 steps, all the nodes can reach every other nodes.

In sum, from the discussions above, we the following conclusion: Under rules 1-4,

the modified n-step DSM, Dh = Dn0  represents all possible paths linking eachmod mo

pair of nodes within n steps. When n is large enough, DSM will reach a fixed point,

i.e., -3 n ;> 1, s9t. DT =nl D (n.mod - mod'

4.2.2 Projection from the Graphical Representation of Sys-

tems to DSM

In this part, I will explain what is a "projection" from a graphical representation to

a DSM and how to project to DSM. In the previous example shown in Figure 4-4, if

we view the node 1 as an input, node 5 as an output, nodes 2, 3 and 4 as the inner

components of a system, sometimes engineers are only interested in the interaction

between the input and output, that is, the interaction between nodes 1 and 5. In

other words, only the small matrix

I ab + de + hg + dcb + ac'e

b'a' + e'd' + gh' + b'c'd' + e'ca' I

which includes all the possible paths from the input to the output, is needed. The

interaction between the other parts are condensed out. The operation that maps a

complete DSM to a sub-DSM is defined as a "Projection", which is derived from the

concept of projection in linear algebra. If the projection maps the original DSM to a

sub-DSM which contains all the paths between several nodes within n steps, we call

the projection an n-step projection.

To implement the n-step projection, I introduce the projector r, (m denotes the

dimension of the matrix):

{ 1 node i should be preserved
FP= diag (a I, a2 , .*am)) ai

0 node i should be condensed out
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Then the projection formula can be written as:

D(") = r-, x D"dxwr

where D (n) denotes the n-step sub-DSM after the projection, and Dmod denotes the

modified 1-step DSM. Assume the number of nodes that we are interested in is k,

and the number of all nodes is m. Instead of getting an k x k matrix, we will still

obtain an m x m matrix, but with only k x k non-zero entries. For instance, the

DSM shown in Figure 4-4 will end up being the matrix shown in Table 4.6 after the

3-step projection to nodes 1 and 5. In the same way, we can also calculate the 2-step

and 4-step projections. One can verify that at step 4, D reaches a fixed point, or

equivalently Di4  = , which means none of the paths from node 1 to node 5

includes more than 3 steps, and we have obtained all the possible paths from node 1

to node 5. Table 4.7 shows another instance where we apply a 2-step projection to

the DSM shown in Figure 4-2 to nodes 1, 3, and 5.

1 2 .. 4 5
1 I ab + de + hg + dcb + ac'e

2 

o

4
5 b'a' + e'd' + g'h' + b'c'd' + e'ca'

Table 4.6: An example of a 3-step projection from the DSM shown in Figure 4-2 to
nodes 1 and 5. It contains the paths linking nodes 1 and 5 within 3 steps.

D(2)""r13

Table 4.7: An example of a 2-step projection from the DSM shown in Figure 4-2 to
nodes 1, 3 and 5. It contains the paths linking nodes 1, 3 and 5 within 3 steps.

If we calculate the n-step transition DSM following the formula strictly, the algo-

rithm will take c - n -[m3 + o(m2)] computational time, in which c is a constant and
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2
3 d'+ca' I e+cb
4
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limmoo "(m 2 0. When implementing the projection, however, we do not need to

go through all the matrix multiplications. First, if we view x' as xT, which implies

y'z' = yTzT = (Xy)T, then the DSM is symmetric, which means we only need to

calculate the upper triangular matrix. This simplification will reduce the constant

c to c/2. Moreover, starting with the left projection, we shall notice that the rows

corresponding to the nodes that are condensed out keep being 0 through the compu-

tational process. Making use of this feature, we can avoid the computation of these

rows in the matrix multiplication. In addition, at the last step, we do not have to

multiply irp, but just discard the unwanted columns and rows, and extract the final

result of the projection. Using the time-saving tricks provided above, we can reduce

the total computational time to ! -n - [km 2 + o(m 2)], where k is the number of nodes

that we need in the DSM after the projection.

4.2.3 Projection from OPD to DSM

As mentioned in Section 4.1, OPD is one of the important graphical representation

tools. It has a characteristic that does not exist in generic system graphs: Since one

can only link objects to processes in OPDs (no object to object or process to process

arc), OPD is a bi-partite graph [15]. (A graph is bi-partite if and only if the nodes

in the graph can be divided into two groups, and the arcs in the graph only exist

between the two graphs, but not within the groups). Obviously, OPD can be divided

into two groups - objects and processes, and the nodes only connect to the nodes in

the other group. The bi-partite property of OPD is very special, because the DSM

corresponding to an OPD has only non-zero entries in entries linking an Object and

a Process. I am therefore able to make use of such property to further simplify and

accelerate the computation. An OPD and its corresponding DSM are shown in Figure

4-5.

As we can see in Figure 4-5, because of the bi-partite property of the OPD, the

corresponding DSM only has non-zero entries on the bottom-left corner and top-

right corner, which are the parts representing the relationship between objects and
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A B C 1 2 3 4 5 6 7
03 07 A d'c

i B 2 Z' 4 i

04 PC 06 1_ z_ Z2'5 _2 3

1 i1 i
d el 2i

PA s 0 PB 3 5
4 d

1 i 2 i3 5 C' i4

0,02 6 ei e 2

7 e3

Figure 4-5: An example of the DSM representation of an OPD. The DSM has a
special structure that only the parts that represents the relation between objects and
processes are not empty.

processes. Generally, the DSMs corresponding to OPDs have the following structure:

0 QT

Q 0

where Q is the matrix representing the relationships between objects and processes.

The matrix Q, which is a part of the complete DSM of the objects and processes,

is also called Multiple Domain Matrix (MDM)[26]. If we assume the numbers of

processes and objects in the OPD are p and q respectively, the dimension of Q is

q x p.

Now, I can show that not only the structure of the DSMs representing OPDs is

special, but also the structures of exponents of D:

Such a result is intuitive: in even steps, only pairs of objects or pairs of processes

can be connected. On the other hand, in odd steps, only pairs of nodes with exactly

one object and one process could be connected.

131

(Q T Q)n 0

0 (QQ T )n

0 (Q T Q)nQ T

(QQ T )nQ 0



In both cases, the main region that we need to compute is the upper triangular

part of (QTQ)n or (QQT)n, since the DSM is symmetric. Which one of the two forms

requires less computational time? It depends on their dimensions. The dimension of

(QTQ)T is p x p, while the dimension of (QQT)n is q x q. Hence, if p < q, we choose the

former one, otherwise the latter one. Then the computation time for n-step transition

DSM is

-n min (p, q)'

The n-step transition DSM calculated in the form of Q is still very complex because of

much redundancy of immediate backward flow. Recall the rules 1-4 and the concept

of modified n-step DSM in the last section. We have the following corollary under

rules 1-4:

Corollary 1 The modified 2n-step DSM of OPD D (2 has the structure D1 D 2

D3 D4

where D1 = "_(QTQ)k, D -1 (QTQ)kQT,

D3 1 (QQ T)Q, D4 (QQ T )k

The corollary brings down the computational time of the modified n-step DSM to

the level of the n-step transition DSM, i.e., 0 ([!!j -min (p, q)3). Instead of computing

the complete D 2n, we can first compute the sum of (Q TQ)k or (QQ T )k from 1 to 2n,

then adjust the result according to the formulas Di to D 4 above, and finally put all

the four parts together.

I shall close this section by showing two projection examples from the OPD in

Figure 4-5 to DSMs. Assume one only care about the 2-step transition relations

between all the objects, which means we shall condense out all the processes. The

approach of solving this problem is straightforward: we only need to extract the D4

part from the modified 2-step DSM, i.e., D4 = E"I(QQT)k, since it represents the

relation between objects. The result is shown in Figure 4-6. One can find all the

2-step paths from one object to another in the table. Similarly, we can also condense

out all the objects and get the 2-step relations between processes as well. The result
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is shown in Figure 4-7.

1 2 3 4 5 6 7
1 I i2 i' i1 d' i1c + i2i' i2e'
2 i3i I ii' i4 e'
3 i5e'2 i5 e'
4 di' I dc
5 c'i' + iai i4i' c'd' I i4e'
6 e1i' e1 '3 e2i's ei I e2e'
7 esi's e3e' I

Figure 4-6:
necting one

A 2-step projection to objects. The tables only contains the paths con-
object to another. No information of processes is maintained.

A B C
A I ci4 + iii2
B i'4c' I e'e 2

C e'2e/ I

Figure 4-7: A 2-step projection to processes. The tables only contains the paths
connecting one process to another. No information of objects is maintained.

4.2.4 Summary

In this section, I first extend the classical DSM to enable it to store different relations

between nodes. Based on the extension, I reveal the Markov property of the DSM

and derive the formulation of n-step transition DSM. However, the n-step transition

DSM is not decently defined if the immediate back-flow is eliminated. To avoid such

confusion, I introduce the modified n-step DSM along with four algebraic rules. The

modified n-step DSM represents all possible paths between the nodes within n steps.

Further, to provide a tool for information condensation, I introduce the concept

of projection. The projection from the graphical representation of systems to the

DSM is a useful way to compress 1)oth the graph and the matrix and let system
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architects concentrate on a part of the matrix that they are interested in. I also show

the evidence that we can accelerate the computation when projection is applied.

After the discussion of the general projection from graphical representation of

systems to DSM, I continue with the discussion of the bi-partite property of OPD,

and illustrate the special structure of the DSM corresponding to the OPD. I also

introduce how to further simplify and accelerate the computation utilizing such a

special structure. I finally demonstrate the projection on OPD with two examples in

which we are only interested in objects or processes.

Since the extended DSM has some good linear-algebraic properties, such as sym-

metry and xx'= x'x = I, we can further develop algorithms to make full use of such

properties. For instance, if we are able to develop a computable eigenvalue decompo-

sition on DSM D = Q*AQ, where Q is unitary matrix and A is diagonal matrix, we

will be able to compute D' = Q*A"Q, which will be a significant promotion on the

overall computational efficiency.

4.3 Optimization Methods for DSM Clustering

As mentioned in Sections 1.2.3 and 4.1, the DSM is very useful in complex sys-

tem design and analysis. DSM allows engineers to decompose complex systems into

manageable clusters, and integrate the clusters after they are analyzed or designed

separately.

The standard process of using DSM to analyze complex systems is as follows.

First, decompose a complex system into indivisible components. These components

correspond to the rows and columns of the DSM. For example, in Figure 4-8, pedals,

chain, gear shift, gears, etc. are the components. Secondly, combine the components

into several clusters, and then design the system or divide the project team according

to the clustering. For example, in Figure 4-8, the thick line divides the components

into four clusters, that is, pedals and chain are in one cluster; gear shift, gears and

wheels are in one cluster; brake and brake string are in one cluster; and handlebars

and odome'ter are in one cluster. Note that there are still connections outside of
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the cluster: that would represent the interface between clusters. For example, chain

and gears are correlated, but they are not in the same cluster, and the connection

between gears and chain is the interface between the padel-chain cluster and the gear

shift-gears-wheels cluster. The final step is to integrate the whole system and analyze

the overall properties.

Pedals Chain Gear Shift Gears Wheels Brake Brake String Handlebars Odomete
Pedals 1 1

Chain 1 1 1
Gear Shift 1 1 1

Gears 1 1 1 1
Wheels 1 1 1 1

Brake 1 1 1
Brake String 1 1

Handlebars 1 1 1

gdometer 61 _ 1 1 _

Figure 4-8: A DSM describing the relations of bicycle components [31]. It also shows
a good clustering result with the thick lines.

Most of the time, the first step is relatively easy, since in many systems, the

basic components are already identified. For example, when designing a bicycle, the

components like pedals, chain, brake, wheels, etc. are either standard components

that could be fetched from other manufacturers directly, or are so small that no further

decomposition is beneficial or necessary. There are, of course, some systems whose

components are still unclear, but I do not intend to discuss such scenarios, since they

vary in different systems. In the following process, I will assume the components are

readily prepared.

The last step is to integrate the clusters together. This analysis is usually system

dependent. Analyzing a rocket system is so different from analyzing an aeroplane

system. Generally, there is no universal approach to analyze all complex systems.

The remaining step is the clustering of components. Fortunately, the clustering

could be solved by universal approaches, regardless of the specific features of different

systems, since it is essentially an optimization analysis on a matrix.

In this section, I will first illustrate the definition and goal of the DSM clustering

problem. Then I will establish an integer programming model for the problem. Fi-

nally, I will demonstrate an approach to cluster multiple DSMs with same components
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but different relations between components.

4.3.1 Optimal DSM Clustering

The goal of DSM clustering is to try to decompose the components into several clusters

which have no or little connections with each other. Specifically, take a DSM with

binary entry values as an example, there are four major objectives: (we say that

components i and j are correlated if the (i,j) entry of the DSM is 1).

1. Maximize the number of l's within the clusters. (Or equivalently, minimize the

l's out of the clusters.)

2. Minimize the number of O's within the clusters. (Or equivalently, maximize the

O's out of the clusters.)

3. Minimize the number of correlated cluster pairs.*

4. Maximize the number of clusters.

* If a component in the i'th cluster is correlated with a component in the j'th cluster,

we call clusters i and j correlated, and clusters i and j form a correlated cluster pair.

In the DSM clustering in Figure 4-8, there are nineteen l's in the clusters, two O's

in the clusters. Cluster 1 (Pedals, Chain) and cluster 2 (Gear Shift, Gears, Wheels)

form a correlated pair because component "Chain" in the first cluster and "Gears"

in the second cluster are correlated. Also, the second and third clusters, second and

fourth clusters are another two correlated pairs. Thus, there are three correlated

(luster pairs in total.

Generally, objectives 1 and 3 are positively related, and objectives 2 and 4 are also

positively related, while the objectives 1,3 and objectives 2,4 are negatively related.

To see such a relation, let's consider two extreme cases as shown in Figure 4-9. Assume

there are n components in total. When all the n components are in one cluster, as

shown in the first DSM in Figure 4-9, the first and third objectives are optimized,

since all the 1's are in the clusters and the number of correlated clusters is 0. But
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objectives 2 and 4 are not optimized at all: all O's are in the cluster, and the number

of clusters is only 1. On the other hand, if every single component forms a cluster, as

shown in the second DSM in Figure 4-9, there are n clusters in total, and objective

2 is optimized since no O's are in the clusters. However, objectives 1 and 3 have the

worst values.

Pedals Chain Gear Shift Gears Wheels Brake Brake Strin Handlebars Odomete.
Pedals 1 1

Chain 1 1 1
Gear Shift 1 1 1
Gears 1 1 1 1
Wheels 1 1 1 1

Brake 1 1 1

Brake Strin 1 1

Handlebars 1_1 1

dome ter __

_edals hai ear Shift ear heels rak rake String andlebars domete
Pedals 1 1
Chain 1 11
Gear Shift 1 1_1

Gears 1_1_1_1

Wheels 1 1_1_1

Brake 1 1 1

Brake String 11

Handlebars 1 1_1

12dometer mol l-______

Figure 4-9: Two extreme cases of DSM clustering. The first DSM clustering puts
all components in one cluster. It maximizes the number of 1's in the cluster, and
minimizes the number of correlated cluster pairs, but also maximized the number of
O's in the cluster. The second DSM clustering puts each component in one cluster. It
minimizes the number of l's in the clusters, and maximizes the number of correlated
cluster pairs, but also minimizes the number of O's in the clusters.

There is no conclusive assertion in the literature about how much attention should

be paid to each of the objectives. In my model, I will use the following scheme: I

will first fixed the number of clusters, and allow users to put different weights on

each of the objectives 1, 2 and 3. The reason for fixing the number of clusters is

that one can always start with a reasonable number of clusters, and then further

decompose each of the clusters into several subgroups if the result is not satisfactory.

The experimental results at the end of Section 4.3.2 shows that such a strategy is

good enough to provide an answer that is not far from optimum.
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Before I explain the DSM clustering method, I would like to mention that there

may exist "bus" components in the DSM. The "bus" components are the ones that

have connections to almost all of the other components. For example, when computers

are assembled, the motherboard has interfaces with CPU, memories, sound cards, etc.

Since the bus components are interfaces, we would like to identify and separate them

before clustering the other components. Chen, L. and Li, S. [5] provide a way of

distinguishing the bus components. In the following parts, I will assume that the bus

components has been identified and excluded.

4.3.2 An Integer Programming Model for DSM Clustering

In this subsection, I will demonstrate the integer programming model for DSM clus-

tering problems. The notation for the optimization model are shown in Table 4.8.

The subscript i, j represents the components and k, 1 represents the clusters.

Xik - A binary decision variable indicating whether to assign component i to cluster k.
Ckl - A binary variable indicating whether clusters k and 1 are correlated.
nij - A binary variable indicating whether components i and j are in different clusters.
zij - A binary variable indicating whether components i and j are in the same cluster

and the entry (i, j) in the DSM is 0.
dij - The value of the entry (i, j) in the DSM.
wi - The weight of the number of correlated cluster pairs (one of the three main goals).

W2 - The weight of the number of l's within clusters (one of the three main goals).
W3 - The weight of the number of O's within clusters (one of the three main goals).
N - The number of components.
G - The number of clusters.

Table 4.8: The notations used in the integer programming model for DSM clustering.

To further clarify the notations, let us take the clustering of the bike assembly

DSM in Figure 4-8 as an example. Assume "Chain" is component 2, "Gear Shift" is

component 3 and "Wheels" is component 5. Assume "Pedals, Chain" are in cluster

1, and "Gear Shift, Gears, Wheels" are in cluster 2. Then we have: x21 =1, X52 = 1,

since "Chain" is assigned to cluster 1, and "Wheels" is assigned to cluster 2. C12 =

since clusters 1 and 2 are correlated because of the correlation between components

"Chain" and "Wheel". n25 = 1 since component "Chain" and "Wheels" are in
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different clusters. z3 5  1 since components "Gear Shift" and "Wheels" are in the

same cluster, but the DSM value d3 5 = 0.

Now we can illustrate the optimization model for the clustering problem. It is

shown in Table 4.9. I will first explain each of the constraints and then go back to

the objective function.

G G N N N N

min w - E ( ckl +w2 - ( dinij+w3 - ( zi
k=1 1=1 i=1i j=1 i=1 j=1

G

SAt. ( Xik= 1, Vi=1---.N
k=1

N

(Xik;>1, V k=1-G
i=1

xik+ xjl+ dij - 2< ck, ViOj = 1---.N, V k)l=1---.Glk #1

Xi + Xyl - 1<5 nij, V i, j= 1- -.- N, V k, 1 = 1- -. -G, k # 1

Xik + Xk +( -- di) - 2 Zij, Vi, j= - ... N, V k = 1 ... G

Table 4.9: The integer programming model for DSM clustering.

The first constraint simply means that each component i should be and can only

be assigned to one cluster.

The second constraint means that each cluster k should contain at least one com-

ponent. This inequality eliminates empty clusters. In other words, the predetermined

number of clusters is enforced.

The third constraint enforces Ckl =1 if clusters k and I are correlated: if Xik, Xjl, di

are all equal to 1, the left hand side of the inequality is 1, and Ckl has to be 1 in order

to satisfy the inequality. When Xik, xsj and dij are all equal to 1, it means component

i is assigned to cluster k, while component j is assigned to cluster 1, and i and j are

correlated. In this case, clusters k and I are correlated as well, that is, ckl should be

one. If any of Xik, xzl, dij is not 1, CH could be either 0 or 1, but since we minimize
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the sum of all CkI in the objective (will be explained later in detail), Ckl automatically

becomes 0 when clusters k and 1 are not correlated.

The fourth constraint makes nij = 1 if components i and j are assigned to different

clusters. The analysis is similar to the one above: nij must be 1 to satisfy the

inequality when Xik and xjl are both 1. Xij = 1, Xk = 1 and k # 1 means that

components i and j are assigned to different clusters. Since we try to minimize the

sum of all nij in the objective as well, nij will be 0 if not both of Xik and xjl are 1.

The purpose of the last constraint is to make zij 1 if components i and j are in

the same cluster and they are uncorrelated. In the inequality, when Xik 1, Xjk = 1

and dij = 0, zij should be 1, zij could be either 0 or 1 otherwise. Xik = 1, Xjk = 1

and dij = 0 means that component i is assigned to cluster k, and component j is

assigned to cluster k as well, but components i and j are uncorrelated. If either of

the conditions above are not satisfied, zij will be 0, since the sum of all zij is minimized

in the objective function.

In sum, the first two constraints establish the mapping between the components

and clusters, while the last three constraints establish the corresponding relation

between variables cj1, nik, zij and xij, dij. The three variables cii, nik and zij play

main roles in the objective function. Next, I will explain the meaning of the objective

function.

The objective function is composed by three terms, each of which corresponds to

one main objective.

The first term is a summation of all cij. Since cij = 1 if cluster i and j are

correlated, this term represents twice of the total number of correlated cluster pairs

when minimized. (It is twice of the total number because cij and cji are equal and

both added to the objective value).

The second term is the total number of l's out of the clusters, because dignij

is nonzero only when dij = l and nij = 1, which means components i and j are

correlated but they are not in the same cluster. Since the total number of l's is a

constant for a DSM, minimizing the total number of 1's out of the clusters is equivalent

to maximizing the total number of l's within the clusters.
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The third term is the total number of the O's that are within the clusters when

minimized, since zij should be 1 if components i and j are uncorrelated but the entry

(i, j) is in one of the clusters.

The weights w1, w 2 and w3 reflect the relative importance of the three objectives

stated above. They can be adjusted to obtain different results.

Now, to show how well the model works, I illustrate the clustering results of the

bicycle DSM shown in Figure 4-8. The weight for each objective is either 1 or 5,

and all weight combinations are examined. More specifically, I use all the 7 weight

combinations (1,1,1), (1,1,5), (1,5,1), (1,5,5), (5,1,1), (5,5,1) in the experiments.

First, we try to divide the components into three clusters. Figure 4-10 to Figure

4-13 show the clustering results. Figure 4-10 corresponds to the objective weights

(wi, w2 , W3 ) = (1,1,1), (5,5,1), (1,5,1), Figure 4-11 corresponds to weights (W1i, w2, to3 )

= (1,1,5), (1,5,5), Figure 4-12 corresponds the weight (wi,w 2 ,w3 ) = (5,1,1), and

Figure 4-12 corresponds weight (w 1 , W2 , w 3 ) = (5,1,5). Table 4.10 summarizes the

values of the three objectives (the number of correlated cluster pairs, the number of

l's out of the clusters, the number of O's within the clusters) corresponding to the 4

clustering results.

Figure Weight combination Correlated pairs l's outside O's inside
4-10 (1,1,1), (5,5,1), (1,5,1) 4 4 10
4-11 (1,1,5), (1,5,5) 6 6 6
4-12 (5,1,1) 4 6 8
4-13 (5,1,5) 4 6 8

Table 4.10: The three objective values corresponding to the results shown in Figures
4-10 to 4-13. The three objectives are: 1) the number of correlated cluster pairs; 2)
the number of 1's outside the clusters; 3) the number of 0's within the clusters.

From Table 4.10, we can see that the result shown in Figure 4-10 minimizes the

number of correlated pairs and the number of l's outside the clusters. However, the

number of O's wihtin the clusters is relatively large. This is because in the weight

sets (1,1,1), (5,5,1), (1,5,1), the third objective is all weighted the least. From Figure

4-10, we can see that it clusters many components into one big cluster (the second

cluster), since it includes more 1's into the clusters, and in the mean time reduces the
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Pedals Chain Gear Shift Gears Wheels Handlebars Odometer Brake Brake String

Pedals 1 1

Chain 1 1 1

Gear Shift 1 1 1

Gears 1 1 1 1

Wheels 1 1 1 1
Handlebars 1 1 1

Odometer

Brake1 

1 1

grake Strino1 a

Figure 4-10: Clustering result 1 of the bicycle DSM. Cluster components into 3 groups.
Objective weights (1,1,1), (5,5,1), (1,5,1)

Pedals Chain Gears Wheels Brake Brake String Gear Shift Handlebars Odometer
Pedals 1 1

Chain 1 1 1

Gears 1 1 1 1

Wheels 1 1 1 1

Brake 1 1 1

Brake String - 1

Gear Shift _1 1 1

Handlebars_1 1 1

dometer 11 1

Figure 4-11: Clustering result 2 of the bicycle DSM. Cluster components into 3 groups.
Objective weights (1,1,5), (1,5,5).

interaction between the small clusters.

The objective values of the result shown in Figure 4-11 are more balanced. Corre-

spondingly, the components are divided into 3 clusters with equal number of compo-

nents. The disadvantage of this clustering, however, is that all clusters are correlated

with each other. It is because that the weight for the first objective value is small,

which means the number of correlated pairs is a relatively minor factor when these

weights are applied in the clustering model.

Comparing to result 1 shown in Figure 4-10, the third and fourth results reduces

the number of O's inside the clusters, while sacrificing the number of 1's outside the

clusters. This generates a more balanced clustering than result 1, although not as

balanced as result 2.

After showing the 3-group clustering results, I now introduce the results of 4-

group clustering. Figure 4-14 to Figure 4-17 shows the 4-group clustering results.

Figure 4-14 corresponds to the objective weight (w1 , w2, W3) = (1,1,1). Note that this

clustering is exactly the same as the one shown in Figure 4-8 (the clustering adopted
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Pedals Chain Gear Shift Gears Brake Brake String Wheels Handlebars Odometer
Pedals 1 1

Chain 1 1 1
Gear Shift 1 1 1
Gears 1 1 1 1
Brake 1 1 1
Brake String 1 1
Wheels 1 1 1 1

Handlebars 1 _11

Qdometer r _ _ _ _ 1 1 01 1 1

Figure 4-12: Clustering result 3 of the bicycle DSM. Cluster components into 3 groups.
Objective weight (5,1,1).

Pedals Chain Gears Wheels Brake Brake String Gear Shift Handlebars Odomete
Pedals 1 1

Chain 1 1 1

Gears 1 1 1 1

Wheels 1 1 1 1

Brake 1 1 1
Brake String 1 1

Gear Shift 1 1 1

Handlebars 1 1_1

gdo meter ma s a

Figure 4-13: Clustering result 4 of the
Objective weight (5,1,5).

bicycle DSM. Cluster components into 3 groups.

in [31]). Figure 4-15 corresponds to weights (wi, w2 , w3 ) = (5,1,5), (5,1,1), Figure

4-16 corresponds weights (wi, W2 , W3 ) = (5,1,1), (1,5,5), and Figure 4-17 corresponds

weights (wi, w2 , w3 ) = (1,5,1), (5,5,1). Table 4.11 summarizes the values of the three

objectives (the number of correlated cluster pairs, the number of 1's out of the clusters,

the number of O's within the clusters) corresponding to the 4 clustering results. Note

that there are only two sets of objective values, which are 6,8,2 and 6,6,10, respectively.

There are, however, several different clusterings corresponding to the objective values

6,8,2.

Figure Weight combination Correlated pairs 1's outside O's inside
4-14 (1,1,1) 6 8 2
4-15 (5,1,5), (5,1,1) 6 8 2
4-16 (1,1,5), (1,5,5) 6 8 2
4-17 (1,5,1), (5,5,1) 6 6 10

Table 4.11: The three objective values corresponding to the results shown in Figures
4-14 to 4-17. The three objectives are: 1) the number of correlated cluster pairs; 2)
the number of 1's outside the clusters; 3) the number of O's within the clusters.
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Pedals Chain Gear Shift Gears Wheels Brake Brake String Handlebars Odometer
Pedals 1 1

Chain 1. 1 1

Gear Shift 1 1 1
Gears 1 1 1 1
Wheels 1 1 1 1
Brake 1 1 1

Brake String 1 1

Handlebars 1 1 1 1

fdomter 1 1 1

Figure 4-14: Clustering result 5 of the bicycle DSM. Cluster components into 4 groups.
Objective weight (1,1,1).

Pedals Chain Gears Wheels Brake Brake String Gear Shift Handlebars Odometer J
Pedals 1 1

Chain 1 1 1

Gears 1 1 1 1
Wheels 1 1 1 1
Brake 1 1 1 ]

Brake String 1 1

Gear Shift i 1
Handlebars 1 1 1

Qdometer -m 1 _ _ _ _ ___ 1 1

Figure 4-15: Clustering result 6 of the bicycle DSM. Cluster components into 4 groups.
Objective weights (5,1,5), (5,1,1), (1,5,5).

Pedals Chain Gears Wheels Odometer Brake Brake String Gear Shift Handlebar!
Pedals 1 1

Chain 1 1 1

Gears 1 1 1 1

Wheels 1 1 1 1
Odometer 1 1 1

Brake 1 1 1
Brake String 1 1

Gear Shift 1 1 1
9landlebars 1 1

Figure 4-16: Clustering result 7 of the bicycle DSM. Cluster components into 4 groups.
Objective weights (1,1,5).

Pedals Chain Brake Brake String Gear Shift Gears Wheels Handlebars Odomete
Pedals 1 1 _____ ________ _____________

Chain 1 1 1

Brake 1 1 1

Brake String 1 1

Gear Shift 1 1 1
Gears 1 1 1 1
Wheels 1 1 1 1

Handlebars 1 1 1
Oromer - 1 1 a 1

Figure 4-17: Clustering result 8 of the bicycle DSM. Cluster components into 4 groups.
Objective weights (1,5,1), (5,5,1).
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Camparing the 4-group clustering results to the 3-group clustering results, we

can see that except the results corresponding to objective weights (1,5,1), (5,5,1)

(shown in Figure 4-17), the number of O's in the clusters is significantly reduced. It

means that under 4-group clustering, the components in one cluster are more closely

related, but on the other hand, the number of 1's outside the clusters and the number

of correlated cluster pairs modestly increase, due to the increase of interfaces between

clusters.

From the results above, we can see that the optimization model gives the decision

makers the flexibility to generate different clusterings. From all the 8 possible clus-

terings (actually, there are more possible weight combinations that could generate

other good clusterings), the decision maker can choose the one that best matches the

practical needs.

In practice, the DSM model also works well. I apply the optimization model to

solve the jet engine design problem demonstrated in [37]. The optimization model is

solved by CPLEX (a mixed integer programming solver). The original problem and

the corresponding clustering is shown in Figure 4-18. All the components are divided

into 6 clusters.

1 2 3 4 5 6 7 8 910 11121314151617181920 2122232425262728 2930 313233 3435363
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1
6 1 1 1 1 1

7 11 1 11

10 1 1 1 1 1 1
11 1 1 1 1 1 1 1
12 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1
14 1 1 1 111111111

1 111 1 21

17 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1

2 1 1 1 1 1 11 1 1 1 1
21 1 1 1 1 1 1
22 1 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1
24 1 1 1 1 1
25
26
27
28
29 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1
31 1 1 1 1 1 1
32 1 1 1 1 1 1
33 1 1 1 1 1
34
35 1
36 1

Figure 4-18: A clustering of the jet engine design problem provided by [37]

In order to compare the results, I also fix the number of clusters to be 6 (I will
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introduce how to rid of the requirement of group number later in this section). I use

four different weight sets. The first is (1, 1, 1), and the result is shown in Figure 4-19.

(As a reminder, the three weights correspond to the number of correlated clusters,

the l's out of the clusters and the O's in the clusters, respectively.) The weight sets

of the second, third and fourth are (1, 2, 5), (1, 5, 5) and (5, 1, 2), respectively. The

clustering results are shown in Figure 4-20, 4-21 and 4-22, respectively. The objective

values of the four results are shown in Table 4.12.

Figure Weight combination Correlated pairs l's outside 0's inside
4-18 Result in [371 18 131 60
4-19 (1,1,1) 18 103 60
4-20 (1,2,5) 16 121 54
4-21 (1 5,5) 18 107 56
4-22 (5,1,2) 16 105 60

Table 4.12: The values of the three objectives

1 1 1232 2 8 9 13 14 116 1718 19 20 3 4 5 6 7 19 21 2729 0 31 35 33 34 3637 22 23242526 25
1 1 1

11 1 1 1 1 1 11.
12 1 1 1 1 1 1
32 1 1 1 1 1js u

28 1 1 111 1 1 11 1

13 1 111 1 11 1 1 1 1
13 1 1 1 1 1 1 3 3. 1 1

16

47 1 1111111111

19 1 1

20 11 1 1 11 1
10 1 11

19 1

311

10 1 1

36 1

22 1
30 1 11 1

25

26

Figure 4-19: Result of solving the jet engine design problem, using weight set (1, 1,
1).

From Table 4.12, we can see that when the the three objectives are considered,

the results obtained by the optimization model dominate the result shown in 1371.
In most of the design problems, however, engineers do not know how many clusters

should the components be divided into. They can always try different numbers, of
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3 4 5 6 7 8 9 10 1 211 1214191315 16 171820 21 2223 24 25 2628 27 2930 313235 33 34 3 3
3 1 1 1 1 1 1 1 1 1 1 1 1 1
31611111 1 1

7 1 1 11 1 1 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1

1
2

14 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 2 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1
15 I I I 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1
22 1 1 1 1 T-1 1
23 1 1 1 1 1 1 1 1 1
24 1 1 1 1 1 1
25 1 1
26 1 1 1 1
28 1 1 1 1 1 1 1
27 1 1 1
29 1 1 1 1 1 1
30 1 1 1
31 1 1 1 1
32 1 1 1 1 1 1 1
35 11 11 1
33 1 1 1111
34 1 111
36 1 11 1 1 1

03 1 1

Figure 4-20: Result of solving the jet engine design problem, using weight set (1, 2,
5).

course, but it is a waste of time to solve the same problem repeatedly. Another issue

is that when the number of components grows, it takes hours to divide them into

several clusters.

Thus, I propose a method here so that one can solve large-scale clustering problems

without prefixing the number of clusters, and in significantly shorter time. The idea

is straightforward: first decompose the components into two clusters. Check the

clustering result and the number of components in each cluster. If there are still too

many components in one cluster, we decompose it into halves again. Keep doing

the decomposition recursively until there are less than a score of components in each

cluster. The clustering should be much easier now. One can try different numbers

of clusters to find the best one. Since when the number of components is large, we

only need to decompose the components into two clusters, the time needed to solve

the large problems is significantly shortened. Also, since the number of components

are reduced exponentially with the number of steps, the time needed to solve the

problems is also shortened as the process goes. Since the method tries to divide the

components into haves in the early stages, I call this approach the binary clustering

method.

I apply the binary clustering method to the jet engine design problem. First,
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1 2 1112 8 9 13 141516 17 1 19 20 3 4 5 6 710 213234 36 37 22 2324 25 26 27 2830 29 31 33 35
1 1 1 1 1 1 1 1 1
2 111111 1 1 1 1 1

11 1 1 1 1 1 1 1
12 1 1 1 1 1 1
8 1.1 11 1 11 11i 11 1 1

13 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 11i1 11111 1
16 1 1 1 1 1 1
17 1 1111111111
18i1 1111111 111 1 11
19 1 1 1 1 1 1 1 1
20

6 11

24

16
27

10
21
32
34
36
37
22
23
241 i 1 1 1-
251 1
26 1
27
28
301 1 1 1 1 1 1 1
2911 1 1 1 1 1
311 1 i 1 1 1 1 1
33-1-1 21 i 1 &

Figure 4-21: Result of solving the jet engine design problem, using weight set (1, 5,
5).

1 2 51112 3 4 6 7 8 9 10 131415 16171819 20 212223 242728 29303125263233 3435 363
1 1 1 1 1 1 1 1 1
2 1 i 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1

1111 1i 1 1
12 1 1 1 1 1 1
3 1 1 1 1 1 111111 11
4 1 1 1 1 1 i 1 1
6 1 1 1 1 1
7 1 1 1111
9 1 1 1 1 1 1 11 1 1 1 1 1
9 1 1 1 1 1111111 11

10 1 1 1 1 1 1 1
141 1 1 1 1 1 1 1 1 111
15 1 1 11111
15 1 1 1 1 1 1 1 1 1 1 1 1116 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1

28110 1 1 1 1 1 1 1 1 1 1 1
191 1 1 1 1 1 1 1
22 1 1 1 1 1I 1 121 1 1 1 1 1 1
22 1 1 1 1 1 1
23 : 1 1 1 1 1 1 i 1
24 1 1 1 1 1 1
27i 1 1 1 1 1 11

29 1 1 1 1 1 1 1 1
30 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1 1
25 
26 1 1 1
32 1 1 1 1 1 1 1
33 1 1 1 1 1 1 1J
34 1 1
35 1 1 1 1 1
36 1 1 1 1 1 1

Figure 4-22: Result of solving the jet engine design problem, using weight set (5, 1,

13-

2).

decompose it into two clusters. The result is shown in Figure 4-23. The first cluster

has 19 components in total and the second has 18. In the next step, I decompose both

of them into three clusters. The final clustering result is shown in Figure 4-24. The

time of solving the original problem directly (divide the components into 6 clusters)

is more than an hour. The time it takes of using the new approach is less than 20

minutes in total. The comparison of the objective values is shown in Table 4.13.
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Applying the binary clustering method to the jet engine design problem,
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1 1 111 1

Figure 4-24:
step 2

Applying the binary clustering method to the jet engine design problem,

Although the clustering shown in Figure 4-24 could be further optimized, it is

already a relatively good result, as shown in Table 4.13. Actually, it is not dominated

by any of the other clusterings. Especially, it also dominates the result shown in [37].

When the number of components grows to fifty or more, the complete optimization

model might not be solvable in limited time, but with the approach introduced above,

one can still obtain a good clustering of a large-scale system.
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Figure Weight combination Correlated pairs 1's outside 0's inside
4-18 Result in [37] 18 131 60
4-19 (1,1,1) 18 103 60
4-20 (1,2,5) 16 121 54
4-21 (1,5,5) 18 107 56
4-22 (5,1,2) 16 105 60
4-24 Binary clustering 16 109 56

Table 4.13: The values of the three objectives

4.3.3 Multiple DSM Clustering

In addition to clustering a single DSM, sometimes we need to cluster two or more

DSMs at the same time. For example, when deciding how to divide the bicycle parts

into several clusters, we might not only care about their assembly features, but also

the dealer information of each parts. Figure 4-25 (the same as Figure 4-8) shows

the assembly features, and Figure 4-26 shows the dealer information. To be specific,

if two components can be purchased as a batch with a discount from a dealer, the

corresponding entry in the DSM is marked by 1. (The dealer information is imaginary,

just for illustration of the method).

Pedals Chain Gear Shift Gears Wheels Brake Brake String Handlebars OdorneterI
Pedals 1 1
Chain 1 1 1
Gear Shift 1 1 1
Gears 1 1 1 1
Wheels 1 1 1 1
Brake 1 1 1
Brake String 1 1
Handlebars 1 1 1
Odometer __ _ _ _ _ 1 _ ____ 1 1

Figure 4-25: Bicycle assembly feature DSM

Our problem now becomes: how to cluster the components to achieve the all the

goal stated in Section 4.3.1 for both the assembly DSM and the dealer DSM? If we

view the optimization goals for the assembly DSM as one objective and the goals for

the dealer DSM as another, we have a two-objective optimization problem. As in

almost all multi-objective optimization problems, there exists trade-offs between the

two objectives. One clustering scheme for assembly DSM might turn out to be a bad

clustering for the dealer DSM, and vice versa. What I will provide is a way to find all
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Pedals Chain Gear Shift Gears Wheels Brake Brake String Handlebars Odometer]
Pedals 1 1 1 1
Chain 1 1 1 1
Gear Shift 1 1 1 _

Gears 1 1
Wheels 1 1 1 1 1 ]

Brake 1 1 1 1
Brake String 1 _ _ _ _ _

Handlebars 1 1 1 1 1 1

-dometer gg ______ 1 NN s E s2

Figure 4-26: Dealer information DSM

the solutions on the convex Pareto front (refer to Section 2.1.1 for the definition of

convex Pareto front), so that the decision maker can pick a most favorable clustering

which is balanced between the two DSMs.

Mathematically, our optimization model becomes the one shown in Table 4.15.

The notations are shown here again in Table 4.14.

.zik - A binary decision variable indicating whether to assign component i to cluster k.

Ckl - A binary variable indicating whether clusters k and 1 are correlated.
nij - A binary variable indicating whether components i and j are in different clusters.
zij - A binary variable indicating whether components i and j are in the same cluster

and the entry (i, j) in the DSM is 0.
dij - The value of the entry (i, j) in the DSM.
wi - The weight of the number of correlated cluster pairs (one of the three main goals).
W2 - The weight of the number of l's within clusters (one of the three main goals).
W3 - The weight of the number of O's within clusters (one of the three main goals).
N - The number of components.
G - The number of clusters.

Table 4.14: The notations used in the integer programming model for DSM clustering.

Everything remains unchanged except the subscripts of c, d, n and z become three

dimensional, with an extra one t representing the t'th DSM. I also assume that there

are T DSMs to be clustered at the same time. Notice that there are T objective

functions in total. In our bicycle example, T = 2, t=1 or 2, and we have a 2-objective

optimization problem.

There are several ways of solving multi-objective optimization problems. In Sec-

tions 2.3 and 2.4, I introduced several efficient ones. The recursive knee algorithm

mentioned in Section 2.4.1, in particular, also fits our need here.
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Table 4.15: Integer programming model for the multiple DSM clustering problem.

Here I will briefly go through the recursive knee algorithm again. More detailed

discussion could be found in Section 2.4.1.

As shown in Figure 4-27, the recursive knee algorithm starts with optimizing

over each single objective. In the 2-dimensional example, the algorithm optimizes

the clustering of each of the two DSMs respectively. The two optimal clusterings

correspond to points 1 and 2. Then the algorithm calculates the gradient of the

line connecting points 1 and 2 and try to push it in the orthogonal direction as

far as possible. Mathematically, the algorithm computes the weights that should

be applied to each DSM and optimize the weighted sum of the objectives with the

original constraints. By solving the new problem, point 3 will be found. The recursive

process then repeat itself between points 1, 3 and 2, 3. Such process stops when no

more points that are further in the orthogonal direction can be found.

Using the optimization algorithm above, we can obtain the convex Pareto front

for the T-objective optimization problem. Figure 4-28 shows the convex Pareto front

(the weights are wi = 1, w 2 = 2,w 3 = 5).

The X axis represents the objective value of the assembly DSM, and the Y axis
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Figure 4-27: An illustration of the recursive knee algorithm. The detailed description
of the algorithm can be found in Section 2.4.1.

represents the objective value of the dealer DSM. The numerical values do not have

practical meanings, but the relative positions of the points convey some information:

Point 1 optimizes the objective value for the assembly DSM, but does not achieve

a satisfactory result for the dealer DSM. It means that the corresponding clustering

provides a good division for the assembly DSM, but is not a good one for the dealer

DSM. Point 2, on the other hand, is a good clustering for the dealer DSM, but not

a good one for the assembly DSM. Point 3, 4 and 5 provide some trade-off between

the two extreme points.

One step further, let's look into the clusterings corresponding to the 5 points. As

what we can see in Figure 4-29, the clustering for the first DSM (the assembly DSM)

is well clustered, but the second (the dealer DSM) is not. This clustering corresponds

to point 1, which optimizes the assembly DSM clustering, but is not a good choice

for the dealer DSM clustering.

In Figure 4-30, on the other hand, the clustering for the first DSM (the assembly

DSM) is not so well clustered, but the second DSM (the dealer DSM) is very well

clustered. This clustering corresponds to point 2, which optimizes the dealer DSM

clustering, but not a good solution for the assembly DSM clustering.

Point 3 gives the decision makers a possible trade-off. Its clustering is shown in

Figure 4-31. As we can see in the figure, neither of the clustering for the first nor
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Figure 4-28: Plot
problem.

of the convex Pareto front of the multiple bicycle DSM clustering

Pedals Chain Gear Shift Gears Brake Brake String Wheels Handlebars Odometer
Pedals 1 1

Chain 1 1 1

Gear Shift 1 1 1
Gears 1 1 1 1

Brake 1 1 1
Brake String 1 1
Wheels_1 1 1 1

Handlebars1 1 1
Odometer1 1 1
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Figure 4-29: The multiple bicycle DSM clustering result corresponding to point 1 in
Figure 4-28.

the second is optimized, but both of the two clusterings are somehow better than the

worst cases in the previous two clusterings.

Finally, let's look at the clustering corresponding to point 4, which is shown in

Figure 4-32. This clustering might be the best trade-off for decision makers. It is not

a perfect clustering for either of the DSMs, but is an acceptable clustering for both

of them.
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Pedals Brake Handlebars Chain Gear Shift Wheels Brake String Gears Odometer]
Pedals 1 1
Brake 1 1 1
Handlebars 1 1 1
Chain 1 1 1
Gear Shift 1 1 1
Wheels 1 1 1 1
Brake String 11

Gears1 111

,9dometer111
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Gear Shift 1 1 1
Wheels 1 1_1 1 1
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Gears111

1Odometer:1

Figure 4-30: The multiple bicycle DSM clustering result corresponding to point 2 in
Figure 4-28.

Pedals Brake Strin Chain Gear Shift Wheels Brake Handlebars Gears Odometer]
Pedals 1 1

Brake String 1 1
Chain 1 1 1

Gear Shift1 1 1_1

Wheels11 1 1 1

Brake 1 1A1

Handlebars 1 1
Gears 1 1 11

I dometer 1 1- 1 .
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Brake Strin 1 1 1A
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Figure 4-31: The multiple bicycle DSM clustering
Figure 4-28.

result corresponding to point 3 in

4.3.4 Summary

In this section, I introduced the DSM clustering problem and gave specific mathe-

matical definitions of some critical goals that should be considered in the clustering
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Pedals Brake String Chain Gear Shift Gears Wheels Brake Handlebars Odometer 1
Pedals 1 1
Brake String 1 1

Chain 1 1 1
Gear Shift 1 1 1
Gears 1 1 1 1
Wheels 1 1 1 1 I
Brake 1 1 1

Handlebars 1 1 1
Odometer 11
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Brake String 1 1 1
Chain 1 1 1 1 1
Gear Shift 1 1 1
Gears ___ 1 ___ 1
Wheels 1 1 1 1 1
Brake 1 1 1 1

Handlebars 1 1 1 1 1 1
Odometer _ __ _ ________ , i 1

Figure 4-32: The multiple bicycle DSM clustering result corresponding to point 4 in
Figure 4-28

problems. I then provided an integer programing model based on these goals to

solve the problem. The model is very flexible and could provide the decision makers

different clustering schemes by allowing them to adjust the weights of the different

goals.

I also introduced the new multiple DSM clustering problem and demonstrated

the algorithm that solves the problem. The algorithm is a combination of the integer

programming model introduced in Section 4.3.2 and the recursive knee algorithm

introduced in Section 2.4.1.

In each of the subsection mentioned above, I provided some examples. The results

of the examples show that the optimization model is effective for solving the DSM

clustering problems. Especially, the result of the jet design problem shows that the

model could be used to solve practical problems.

The optimization model provides a new method for clustering DSMs. There are

some other popular methods that could solve the clustering DSMs as well. Refer to

[5], [45], [31], [29] for details. In the analysis in Section 4.3.2, we can see that the

quality of the clustering obtained by solving the optimization model introduced here
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is comparable to, if not better than, the existing methods.

4.4 Summary

In this chapter, I mainly discuss two problems: one is how to bridge the graph repre-

sentation of systems and the matrix representation of systems. The other is how to

effectively cluster the DSMs. For the first problem, after extending the classical DSM,

I reveal the Markov property of the extended DSM and provide examples showing the

connection between the graphical representation of systems and the extended DSM.

Then I explain the concept of projection and show the practical use of projection on

system graphs as well as DSMs. Moreover, I further exploit the bi-partite property

of OPDs, and show that such a special property can be used to further condense the

corresponding DSM and leads to better computational efficiency. I end the discussion

with two examples projecting an OPD to objects only and processes only.

For the DSM clustering, I first clarify the goals we want to achieve and describe

them in formal mathematical form. Secondly, I use an integer programming model

to express the problem. The optimization model leaves the weights on each objective

as parameters and allow the system architects to adjust the combination of values

to attain different results. In addition to the pedagogical example of bicycle parts,

I provide an example of jet engine design, showing that the optimization model is

practically effective. After the demonstration of the single DSM clustering, I introduce

the multiple DSM clustering problem and use the recursive knee algorithm illustrated

in section 2.4.1 to solve it. I apply the method to the extended bicycle parts problem

and explain the result.
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Chapter 5

Contributions and Future Work

5.1 Contributions

In this thesis, I address three problems in two domains: decision making domain and

system architecting domain. The first problem, which is in the decision-making do-

main, is about how to formulate and solve the decision-making problems in complex/large-

scale systems. In Chapter 2, I start with explaining what is Constraint Optimization

Problem (COP) and showing that many decision-making problems have the same

fundamental parts as COPs. Then I demonstrate how to model the decision-making

problems with COPs. Next, to address the issue of solving multi-objective COPs, I

first illustrate an efficient algorithm, the Conflict-directed A* (CDA*), that can solve

the single-objective COPs efficiently. I then combine the recursive knee approach

and the CDA* algorithm to develop a new algorithm that can be used to solve the

multi-objective COPs. The new algorithm is further extended to find solutions that

are in a controllable region close to the convex Pareto front. Finally, I propose an

improved algorithm which incorporates a feature in the Opportunistic Improvement

Algorithm (OIA) that can help find the complete Pareto front.

To further cement the claim that many decision-making problems can be modelled

and solved as COPs, I provide two case studies of practical problems. One is the

Apollo mission design problem, and another is the NASA decadal survey problem.

From the study, we can see that the COP can well encode the practical decision-

159



making problems, and the results obtained by solving the COP models provide good

insights for decision makers.

The second problem, which is in the system architecture domain, is how to trans-

late between the graphical representation of systems and the matrix representation of

systems. To solve this problem, I first extend the classical DSM to make it possible

to store various information of the links between components in a system. After the

extension of DSM, I reveal the Markov property of the extended DSM, and show

how to use the DSM as a computational tool for the system graphs. Furthermore, I

define the concept of projection that maps and condenses system graphs to the DSM.

The projection operation can effectively condense the information of the graphical

representation of systems, and emphasize the parts that are of interest to the system

architects. In addition, I make use of the bi-partite property of the OPDs to further

improve the efficiency of the projection from OPD to DSM.

The last problem, which is also in the system architecture domain, is about how

to cluster the DSMs. I formally define the goal of the clustering problem and develop

an optimization model which captures the critical features of the problem. I use the

jet engine design to show that the optimization model effectively solves the clustering

problems while leaving much flexibility to the system architectures, who can adjust

the parameters of the model to obtain various results. Moreover, I introduce a new

multiple DSM clustering problem, and extend the optimization model for the single

DSM clustering problem to solve the multiple DSM clustering problem.

In sum, the main contributions in this thesis are:

e Develop an approach to model decision-making problems as multi-objective

COPS.

* Develop a new algorithm that finds the convex Pareto front of the multi-

objective COP.

e Extend the previous algorithm to obtain the solutions that are close to the

convex Pareto front.

* Propose an extension of the algorithm to find the complete Pareto front.
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& Extend the classical DSMs and reveal its Markov property.

" Introduce the concept of projection which connects the graphical representation

of systems and the matrix representation of systems.

" Formalize the DSM clustering problems and provide an optimization model that

encodes the problems.

* Introduce multiple DSM clustering problems and extend the previous optimiza-

tion model to solve the problems.

" Provide applications that test all the algorithms, methods and models above.

5.2 Future Work

For each of the three main problems that I discuss in this thesis, there are still some

more important works needed to be done. For the expression of the COPs, we need

to develop a more efficient and compact language and the corresponding compiler

which can describe the practical problems efficiently and translate the descriptions

of the practical problems to large-scale COPs. For example, in the case study of the

decadal survey, when we need to express xi / xj, i / j, we need to expand it to

(NOT xi 74 2010) OR (NOT xo / 2010), (NOT xi / 2011) OR (NOT xg / 2011),

--- ,(NOT xi / 2020) OR (NOT xj / 2020). This becomes even more cumbersome

when we want to prolong the time span to 20 years. Thus, in order to express more

practical problems and to express them more efficiently, we need a better language.

For the problem solving part, we need to implement the improved algorithm proposed

in section 2.4.3, and we also need some benchmark problems other than practical

problems to test the efficiency of the new algorithms.

For the second problem, i.e., the projection from system graphs to DSM, we

might be able to further exploit the eigen space of the symbolic DSM, as mentioned

in section 4.2.4. The computational efficiency of the projection and the calculation of

the transition relationships between components in the systems would be significantly

improved if the structure of the eigen space of DSM is proved to be special.
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For the DSM clustering problem, although treating the weights of different ob-

jectives as parameters provide the system architects much flexibility, sometimes they

need guidance to choose the parameters. An interesting future work might be re-

searching how to optimize the parameters according to people's needs. Another pos-

sible improvement of the model is to cancel the fixed number of clusters and make

it the fourth objective, i.e., to maximize the number of clusters while keeping the

original three objectives. If this could be done, we save the system architects the

trouble of choosing the right number of clusters.
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Appendix A

The Multi-objective Constraint

Optimization Model for Apollo

Mission Mode Study

SYSTEM MODEL NAMED (MPL::VALVE-MODULE MPL::MY-VAVE)

VARIABLE DOMAIN TYPE DEFINITIONS

VARIABLE-DOMAIN-TYPE

VARIABLE-DOMAIN-TYPE

VARIABLE-DOMAIN-TYPE

VARIABLE-DOMAIN-TYPE

VARIABLE-DOMAIN-TYPE

VARIABLE-DOMAIN-TYPE

MPL::CM-CREW-SIZE

(MPL::CM-2 MPL::CM-3)

MPL::LM-CREW-SIZE

(MPL::LM-0 MPL::LM-1 MPL::LM-2 MPL::LM-3)

MPL::LM-FUEL-TYPE

(MPL::LM-CRYOGENIC MPL::LM-STORABLE MPL::LM-NA)

MPL::SM-FUEL-TYPE

(MPL::SM-CRYOGENIC MPL::SM-STORABLE)

MPL: :BINARY-DECISION

(MPL::YES MPL::NO)

MPL::ORBIT-OR-DIRECT

(MPL::ORBIT MPL::DIRECT)
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VARIABLE DEFINITIONS

INSTANCE (MPL::APOLLO-MISSION MPL::APOLL013)

VARIABLE (MPL::MOON-DEPARTURE MPL::APOLL013)

DOMAIN-TYPE MPL::ORBIT-OR-DIRECT

VARIABLE (MPL::MOON-ARRIVAL MPL::APOLL013)

DOMAIN-TYPE MPL::ORBIT-OR-DIRECT

VARIABLE (MPL::EARTH-LAUNCH MPL::APOLL013)

DOMAIN-TYPE MPL::ORBIT-OR-DIRECT

VARIABLE (MPL::EOR MPL::APOLL013)

DOMAIN-TYPE MPL::BINARY-DECISION

VARIABLE (MPL::SM-FUEL MPL::APOLL013)

DOMAIN-TYPE MPL::SM-FUEL-TYPE

VARIABLE (MPL::LM-FUEL MPL::APOLL013)

DOMAIN-TYPE MPL::LM-FUEL-TYPE

VARIABLE (MPL::LM-CREW MPL::APOLL013)

DOMAIN-TYPE MPL::LM-CREW-SIZE

VARIABLE (MPL::CM-CREW MPL::APOLL013)

DOMAIN-TYPE MPL::CM-CREW-SIZE

VARIABLE (MPL::LOR MPL::APOLL013)

DOMAIN-TYPE MPL::BINARY-DECISION

STATE CONSTRAINT DEFINITIONS

INSTANCE (MPL::APOLLO-MISSION MPL::APOLL013)

STATIC-CONSTRAINT (AND (OR (= (MPL::EARTH-LAUNCH MPL::APOLL013) MPL::ORBIT)

(= (MPL::EOR MPL::APOLL013) MPL::NO))

(OR (= (MPL::MOON-ARRIVAL MPL::APOLL013) MPL::ORBIT)

(= (MPL::LOR MPL::APOLL013) MPL::NO))
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(OR (= (MPL:

(NOT (=

(OR ( (MPL:

(= (MPL:

(OR (NOT (=

(NOT (=

(OR ( (MPL:

(= (MPL:

(OR (NOT (=

(NOT (=

(OR ( (MPL:

(= (MPL:

:CM-CREW MPL::APOLL013) MPL::CM-3)

(MPL::LM-CREW MPL::APOLL013) MPL::LM-3)))

:MOON-DEPARTURE MPL::APOLL013) MPL::ORBIT)

:LOR MPL::APOLL013) MPL::NO))

(MPL::LM-CREW MPL::APOLL013) MPL::LM-0))

(MPL::LOR MPL::APOLL013) MPL::YES)))

:LM-CREW MPL::APOLL013) MPL::LM-0)

:LOR MPL::APOLL013) MPL::YES))

(MPL::LM-FUEL MPL::APOLL013) MPL::LM-NA))

(MPL::LOR MPL::APOLL013) MPL::YES)))

:LM-FUEL MPL::APOLL013) MPL::LM-NA)

:LOR MPL::APOLL013) MPL::YES)))

UTILITY FUNCTION DEFINITIONS

INSTANCE (MPL::APOLLO-MISSION MPL::APOLL013)

CRITERIA (MPL::IMLEO MPL::APOLL013)

PREFERENCE MIN

COMPOSITION-OP #'+

UTILITY-RELATION

SCOPE ((MPL::SM-FUEL MPL::APOLL013)

(MPL::LOR MPL::APOLL013)

(MPL::LM-FUEL MPL::APOLL013)

(MPL::LM-CREW MPL::APOLL013))

VALUED-TUPLES

(((NIL MPL::NO NIL NIL) 0)

((NIL NIL NIL MPL::LM-0) 0)

((MPL::SM-CRYOGENIC MPL::YES MPL::LM-CRYOGENIC MPL::LM-1)

5540.534)
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((MPL::SM-STORABLE MPL::YES MPL::LM-CRYOGENIC MPL::LM-1)

7953.0024)

((MPL::SM-CRYOGENIC MPL::YES MPL::LM-STORABLE MPL::LM-1)

9737.675)

((MPL::SM-STORABLE MPL::YES MPL::LM-STORABLE MPL::LM-1)

13977.67)

((MPL::SM-CRYOGENIC MPL::YES MPL::LM-NA MPL::LM-1)

9737.675)

((MPL::SM-STORABLE MPL::YES MPL::LM-NA MPL::LM-1)

13977.67)

((MPL::SM-CRYOGENIC MPL::YES MPL::LM-CRYOGENIC MPL::LM-2)

7387.3784)

((MPL::SM-STORABLE MPL::YES MPL::LM-CRYOGENIC MPL::LM-2)

10604.004)

((MPL::SM-CRYOGENIC MPL::YES MPL::LM-STORABLE MPL::LM-2)

12983.566)

((MPL::SM-STORABLE MPL::YES MPL::LM-STORABLE MPL::LM-2)

18636.895)

((MPL::SM-CRYOGENIC MPL::YES MPL::LM-NA MPL::LM-2)

12983.566)

((MPL::SM-STORABLE MPL::YES MPL::LM-NA MPL::LM-2)

18636.895)

((MPL::SM-CRYOGENIC MPL::YES MPL::LM-CRYOGENIC MPL::LM-3)

9234.223)

((MPL::SM-STORABLE MPL::YES MPL::LM-CRYOGENIC MPL::LM-3 )

13255.004)

((MPL::SM-CRYOGENIC MPL::YES MPL::LM-STORABLE MPL::LM-3)

16229.458)

((MPL::SM-STORABLE MPL::YES MPL::LM-STORABLE MPL::LM-3)

23296.117)
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((MPL::SM-CRYOGENIC MPL::YES MPL::LM-NA MPL::LM-3)

16229.458)

((MPL::SM-STORABLE MPL::YES MPL::LM-NA MPL::LM-3)

23296.117))

UTILITY-RELATION

SCOPE ((MPL::SM-FUEL

VALUED-TUPLES (((NIL

((MPL:

((MPL:

((MPL:

((MPL:

((MPL:

((MPL:

UTILITY-RELATION

SCOPE ((MPL::SM-FUEL

(MPL::LOR

(MPL::CM-CREW

VALUED-TUPLES (((NIL

((MPL:

((MPL:

((MPL:

((MPL:

MPL::APOLL013) (MP

MPL:

:SM-CRYOGENIC MPL:

:SM-STORABLE MPL:

:SM-CRYOGENIC MPL:

:SM-STORABLE MPL:

:SM-CRYOGENIC MPL:

:SM-STORABLE MPL:

MPL::APOLL013)

MPL::APOLLO13)

MPL::APOLL013))

MPL:

:SM-CRYOGENIC MPL:

:SM-STORABLE MPL:

:SM-CRYOGENIC MPL:

:SM-STORABLE MPL:

L::LM-CREW MPL::APOLL013))

:LM-0) 0)

:LM-1) 2612.4048)

:LM-1) 3749.9023)

:LM-2) 3483.206)

:LM-2) 4999.8696)

:LM-3) 4354.008)

:LM-3) 6249.8374))

:YES

:NO

:NO

:NO

:NO

NIL)

MPL:

MPL:

MPL:

MPL:

0)

CM-2)

CM-2)

CM-3)

CM-3)

78119.43)

168699.5)

107414.22)

231961.78))

UTILITY-RELATION

SCOPE ((MPL::SM-FUEL MPL::APOLL013) (MPL::CM-CREW MPL::APOLL013))

VALUED-TUPLES (((MPL::SM-CRYOGENIC MPL::CM-2) 15880.687)

((MPL::SM-STORABLE MPL::CM-2) 24204.219)

((MPL::SM-CRYOGENIC MPL::CM-3) 21835.945)
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((MPL::SM-STORABLE MPL::CM-3) 33280.797))

UTILITY-RELATION

SCOPE ((MPL::LOR MPL::APOLL013)

(MPL::LM-FUEL MPL::APOLL013)

(MPL::LM-CREW MPL::APOLL013))

VALUED-TUPLES (((MPL::NO NIL NIL) 0)

((MPL::YES MPL::LM-CRYOGENIC

((MPL::YES MPL::LM-STORABLE

((MPL::YES MPL::LM-NA

((MPL::YES MPL::LM-CRYOGENIC

((MPL::YES MPL::LM-STORABLE

((MPL::YES MPL::LM-NA

((MPL::YES MPL::LM-CRYOGENIC

((MPL::YES MPL::LM-STORABLE

((MPL::YES MPL::LM-NA

UTILITY-RELATION

SCOPE ((MPL::LM-CREW MPL::APOLL013))

VALUED-TUPLES (((MPL::LM-0) 0)

((MPL::LM-1) 7398.1206)

((MPL::LM-2) 9864.16)

((MPL::LM-3) 12330.201))

UTILITY-RELATION

SCOPE ((MPL::CM-CREW MPL::APOLL013))

VALUED-TUPLES (((MPL::CM-2) 19728.32)

((MPL::CM-3) 27126.441))

MPL:

MPL:

MPL:

MPL:

MPL:

MPL:

MPL:

MPL:

MPL:

:LM- 1)

:LM-1)

:LM- 1)

:LM-2)

:LM-2)

:LM-2)

:LM-3)

:LM-3)

:LM-3)

15690.348)

27576.312)

27576.312)

20920.465)

36768.42)

36768.42)

26150.578)

45960.523)

45960.523))
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CRITERIA (MPL::RISK MPL::APOLL013)

PREFERENCE MAX

COMPOSITION-OP #'*

UTILITY-RELATION

SCOPE ((MPL::EOR MPL::APOLL013))

VALUED-TUPLES (((MPL::YES) 0.9025)

((MPL::NO) 0.98))

UTILITY-RELATION

SCOPE ((MPL::EARTH-LAUNCH MPL::APOLL013))

VALUED-TUPLES (((MPL::DIRECT) 0.90)

((MPL::ORBIT) 0.99))

UTILITY-RELATION

SCOPE ((MPL::LOR MPL::APOLL013))

VALUED-TUPLES (((MPL::YES) 0.95)

((MPL::NO) 1))

UTILITY-RELATION

SCOPE ((MPL::MOON-ARRIVAL MPL::APOLL013))

VALUED-TUPLES (((MPL::DIRECT) 0.90)

((MPL::ORBIT) 0.9405))

UTILITY-RELATION

SCOPE ((MPL::MOON-DEPARTURE MPL::APOLL013))

VALUED-TUPLES (((MPL::DIRECT) 0.855)

((MPL::ORBIT) 0.855))

UTILITY-RELATION
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SCOPE ((MPL::CM-CREW MPL::APOLL013)

(MPL::LM-CREW MPL::APOLL013))

VALUED-TUPLES (((MPL::CM-2 MPL::LM-2) 0.90)

((MPL::CM-3 MPL::LM-2) 1.0)

((MPL::CM-2 MPL::LM-3) 1.0)

((MPL::CM-3 MPL::LM-3) 0.90)

((NIL MPL::LM-0) 1.0)

((NIL MPL::LM-1) 1.0))

UTILITY-RELATION

SCOPE ((MPL::LM-CREW MPL::APOLL013))

VALUED-TUPLES (((MPL::LM-1) 0.90) ((MPL::LM-0) 1.0)

((MPL::LM-2) 1.0) ((MPL::LM-3) 1.0))

UTILITY-RELATION

SCOPE ((MPL::SM-FUEL MPL::APOLL013) (MPL::LOR MPL::APOLL013))

VALUED-TUPLES (((MPL::SM-CRYOGENIC MPL::YES) 0.9025)

((MPL::SM-CRYOGENIC MPL::NO) 0.8145)

((MPL::SM-STORABLE NIL) 1.0))

UTILITY-RELATION

SCOPE ((MPL::LM-FUEL MPL::APOLL013))

VALUED-TUPLES (((MPL::LM-CRYOGENIC) 0.9025)

((MPL::LM-STORABLE) 1.0))

170



Bibliography

[1] JM Borwein. The geometry of Pareto efficiency over cones. Optimization,
11(2):235-248, 1980.

[2] TR Browning, L.M.A. Co, and F. Worth. Applying the design structure matrix
to system decomposition andintegration problems: a review and new directions.
IEEE Transactions on Engineering management, 48(3):292-306, 2001.

[3] M. Carrascosa, S.D. Eppinger, and D.E. Whitney. Using the design structure
matrix to estimate product development time. In Proceedings of ASME Design
Engineering Technical Conference, 1981.

[4] V. Chankong and Y.Y. Haimes. Multiobjective decision making: theory and
methodology. North-Holland Amsterdam, 1983.

[5] L. Chen and S. Li. Analysis of decomposability and complexity for design prob-
lems in the context of decomposition. Journal of Mechanical Design, 127:545,
2005.

[6] V.A. Chobotov. Orbital mechanics. AIAA, 2002.

[7] R.T. Clemen and T. Reilly. Making hard decisions: an introduction to decision
analysis. Duxbury Press Belmont, CA, 1996.

[8] C.A.C. Coello, S. de Computacion, and C.S.P. Zacatenco. Twenty years of evo-
lutionary multi-objective optimization: A historical view of the field. IEEE
Computational Intelligence Magazine, 1(1), 2006.

[9] Justin M. Colson. System architecting of a campaign of earth observing satellites.
Master's thesis, MIT, 2008.

[10] Edward F. Crawley. Esd.34 systems architecting. Lecture notes, MIT Engineer-
ing Systems Division, IAP 2007.

[11] I. Das. A preference ordering among various Pareto optimal alternatives. Struc-
tural and Multidisciplinary Optimization, 18(1):30-35, 1999.

[12] I. Das. On characterizing the "knee" of the Pareto curve based on normal-
boundary intersection. Structural and Multidisciplinary Optimization, 18(2):107 -
115, 1999.

171



[13] R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

[14] R. Dechter and J. Pearl. Generalized best-first search strategies and the opti-
mality of A*. Journal of the ACM (JA CM), 32(3):505-536, 1985.

[15] D. Dori. Object-process methodology: A holistic systems paradigm. Springer,
2002.

[16] J.S. Dyer, P.C. Fishburn, R.E. Steuer, J. Wallenius, and S. Zionts. Multiple
criteria decision making, multiattribute utility theory: the next ten years. Man-
agement Science, pages 645-654, 1992.

[17] P. Efficiency. The Theory of Vector Maximization,". Journal of Mathematical
Analysis and Applications, 22(3):618-630, 1968.

[18] M. Ehrgott. Multiobjective Optimization. Al Magazine, 29(4):47, 2009.

[19] SD Eppinger. Innovation at the speed of information. Harv Bus Rev, 79(1):149-
58, 2001.

[20] J. Figueira, S. Greco, and M. Ehrgott. Multiple criteria decision analysis: state
of the art surveys. Springer Verlag, 2005.

[21] C.M. Fonseca, P.J. Fleming, et al. Genetic algorithms for multiobjective opti-
mization: Formulation, discussion and generalization. In Proceedings of the fifth
international conference on genetic algorithms, volume 423. Citeseer, 1993.

[22] R.G. Gallager. Discrete stochastic processes. Springer, 1996.

[23] D.E. Goldberg and J. Richardson. Genetic algorithms with sharing for multi-
modal function optimization. In Proceedings of the Second International Con-
ference on Genetic Algorithms on Genetic algorithms and their application table
of contents, pages 41-49. L. Erlbaum Associates Inc. Hillsdale, NJ, USA, 1987.

[24] J. Horn, N. Nafpliotis, and DE Goldberg. A niched Pareto genetic algorithm for
multiobjective optimization. In Evolutionary Computation, 1994. IEEE World
Congress on Computational Intelligence., Proceedings of the First IEEE Confer-
ence on Genetic Algorithm, pages 82-87, 1994.

[25] J.C. Houbolt, J.D. Bird, and M.J. Queijo. Guidance and Navigation Aspects
of Space Rendezvous. Control, Guidance, and Navigation of Spacecraft. NASA
SP-17, pages, published by NASA, Washington, DC, December 1962, p. 15, 1962.

[26] U. Lindemann, M. Maurer, and T. Braun. Structural Complexity Management:
An Approach for the Field of Product Design. Springer Verlag, 2008.

[27] M. Mitchell. An introduction to genetic algorithms. The MIT press, 1998.

[28] J. Philip. Algorithms for the vector maximization problem. Mathematical Pro-
gramming, 2(1):207---229, 1972.

172



[29] T.U. Pimmler and S.D. Eppinger. Integration analysis of product decomposi-
tions. In Proceedings of the ASME Design Theory and Methodology Conference,
volume 68, pages 343-351, 1994.

[30] Derek Rayside, H.-Christian Estler, and Daniel Jackson. A Guided Improvement
Algorithm for Exact, General Purpose, Many-Objective Combinatorial Opti-
mization. Technical Report MIT-CSAIL-TR-2009-033, MIT CSAIL, 2009.

[31] J.L. Rogers, S. Aerospace, V. Hampton, J.J. Korte, and V.J. Bilardo Jr. Develop-
ment of a Genetic Algorithm to Automate Clustering of a Dependency Structure
Matrix. Technical report, NASA/TM-2006-214279, February 2006.

[32] G. Rote. The convergence rate of the sandwich algorithm for approximating
convex functions. Computing, 48(3):337-361, 1992.

[33] S.J. Russell, P. Norvig, J.F. Canny, J. Malik, and D.D. Edwards. Artificial
intelligence: a modern approach. Prentice hall Englewood Cliffs, NJ, 1995.

[34] J.D. Schaffer. Some experiments in machine learning using vector evaluated ge-
netic algorithms (artificial intelligence, optimization, adaptation, pattern recog-
nition). PhD Thesis, 1984.

[35] Theodore K. Seher. Campaign-level science traceability for earth observation
system architecting. Master's thesis, MIT, 2009.

[36] Williard L. Simmons. A Framework for Decision Support in Systems Architect-
ing. PhD thesis, MIT, 2008.

[37] M.E. Sosa, S.D. Eppinger, and C.M. Rowles. Designing modular and integrative
systems. In ASME Conference on Design Theory and Methodology, Baltimore,
MD, 2000.

[38] N. Srinivas and K. Deb. Muiltiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary Computation, 2(3):221-248, 1994.

[39] D. Steward. The design structure matrix: A method for managing the design of
complex systems. IEEE Transactions on Engineering Management, 28(3):71-74,
1981.

[40] B.S. Stewart and C.C. White III. Multiobjective a*. Journal of the ACM
(JA CM), 38(4):775-814, 1991.

[41] M. Tamiz, D. Jones, and C. Romero. Goal programming for decision making:
An overview of the current state-of-the-art. European Journal of Operational
Research, 111(3):569-581, 1998.

[42] J. Wallenius, J.S. Dyer, P.C. Fishburn, R.E. Steuer, S. Zionts, and K. Deb.
Multiple criteria decision making, multiattribute utility theory: Recent accom-
plishments and what lies ahead. Management Science, 54(7):1336, 2008.

173



[43] B.C. Williams and R.J. Ragno. Conflict-directed A* and its role in model-based
embedded systems. Discrete Applied Mathematics, 155(12):1562-1595, 2007.

[44] A. Yassine and D. Braha. Complex concurrent engineering and the design struc-
ture matrix method. Concurrent Engineering, 11(3):165, 2003.

[45] T.L. Yu, A. Yassine, and D.E. Goldberg. A genetic algorithm for developing
modular product architectures. In Proceedings of the ASME, pages 2-6, 2003.

174


