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Abstract

Carbon nanotubes (CNTs), in particular the vertically-aligned variety grown through a
plasma enhanced chemical vapor deposition (PECVD)-based process, are highly versatile
nanostructures that can be used in a variety of nanomanufacturing applications. However,
process and material compatibility issues have prevented the nanotubes from becoming
more fully integrated into various micro- and nanomanufacturing applications. In this
thesis, the integration of in situ CNT growth with a 3-D nanomanufacturing platform,
namely the Nanostructured Origami TM process, will be shown. Due to the high tem-
peratures involved in CNT growth, a new origami membrane material, titanium nitride
(TiN), is introduced. This new origami membrane serves as an excellent diffusion barrier
layer throughout the CNT growth process while promoting consistent nanotube growth
and maintaining electrical conductivity to the CNTs. Various further modifications are
made to the origami process, for example in metallization techniques, to accommodate
the addition of CNTs to origami devices. Based on the presented CNT-origami process,
a functioning microscale supercapacitor is also fabricated and tested. The integration of
high surface area CNT electrodes with a unique 3-D device geometry results in a fab-
friendly, high-performance supercapacitor that can easily be integrated as an onboard
power source in self-powered microsystem applications. Finally, the magnetic proper-
ties of our in situ grown CNTs, derived from their naturally occurring, tip-encapsulated
catalyst particles, will be characterized. Furthermore, these properties will be used to
magnetically actuate, align, and latch individual as well as large arrays of CNTs and the
entire membranes on which they are grown. The magnetic behaviors of CNTs and their
underlying membranes will be investigated through computer simulation and experimen-
tal verification.

Thesis Supervisor: George Barbastathis
Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

In recent years, tremendous advancements have been made in the area of micro- and

nanoscale fabrication technology. Not surprisingly, much of these efforts have been

undertaken at a feverish pace thanks largely in part to the semiconductor industry and

Dr. Moore's enduring law [1]. Intel's latest product offering, for example, crams over 1.9

trillion transistors onto a single chip using their 32 nm complementary metal-oxide-

semiconductor (CMOS) technology [2].

In addition to the semiconductor industry, an army of nanotechnology visionaries,

scientists, and engineers have created an impressive portfolio of "bottom-up" and "top-

down" techniques for fabricating virtually anything at the nanoscale with atomic

precision. The innumerable types of currently available nanostructures and nanofabrica-

tion methods, ranging anywhere from atomic force microscope nanolithography [3] to

zinc oxide nanowire arrays [4], have subsequently enabled the creation of ground-

breaking applications in the fields of biomedicine, chemical/biological sensing, computa-

tion, energy, and optoelectronics, just to name a few.

One major drawback of current nanofabrication techniques, however, is that they are

still largely constrained to planar, or two-dimensional (2-D), geometries. While planar

fabrication is sufficient for most applications and enables highly reliable and low cost

production by leveraging tools and techniques perfected by the semiconductor industry,

there is a growing number of application areas that require or can benefit immensely

from a three-dimensional (3-D) device architecture. Ultra high density memory devices

[5], 3-D integrated circuits (ICs) [6], 3-D photonic crystals [7], 3-D scaffolds for tissue



engineering [8], and 3-D energy storage devices [9] are just a few of the many growing

application areas that utilize micro- and nanostructured features within an overall 3-D

device architecture. While reasons for employing a 3-D geometry are varied, two of the

most common reasons reported in literature are: (1) small areal footprint and (2) short

transport lengths (for electrons, ions, photons, etc.).

1.1 3-D Nanomanufacturing

As the name suggests, "3-D nanomanufacturing" refers to a set of production-capable

tools and techniques for fabricating and assembling nanoscale components in a 3-D

configuration. Previously in my master's thesis [10], various types of 3-D nanofabrica-

tion techniques, for both "bottom-up" and "top-down" schemes, were described in

detail. While many of the delineated techniques were quite innovative and successful in

creating unique, truly 3-D nanostructures, the concept of 3-D nanomanufacturing

further carries with it the possibility of massively parallel and reliable batch fabrication

at production levels, a point missing from most current 3-D nanofabrication approaches.

While production level manufacturability is not a requirement in typical research

settings, the inherently exorbitant costs associated with micro- and nanoscale fabrica-

tion necessitate it from a practical standpoint if widespread application of the particular

innovation is ever intended.

To satisfy this growing niche of 3-D nanomanufacturing, the Nanostructured Ori-

gamitm' process, shown in Figure 1-1, was proposed and demonstrated [11-13]. The

origami process, inspired by the traditional art of paper folding, is a two-step fabrication

approach that combines well-established microfabrication tools with state-of-the-art

nanofabrication techniques in creating 3-D devices with nanostructured surfaces.

In the first step of the process, existing planar fabrication tools and techniques are

utilized to create micro- and nanopatterned 2-D membranes. The membrane can be

thought of as the analog of "paper" used in conventional origami and, in addition to

being patterned directly, can provide a base on which to grow or deposit nanostructured

materials such as nanotube and nanowires. Thus far, our group has demonstrated the

integration of various nanoscale structures such as: (1) sub-micrometer gratings and



magnets patterned through e-beam lithography [12, 14]; (2) high surface area amor-

phous carbon deposited through micromanipulators [13]; and (3) carbon nanotubes

grown in situ on the membrane, as will be discussed in further detail in Chapter 2.

During this stage, the membrane is also patterned with features that will allow it to fold,

such as creases, hinges, and various actuation mechanisms. Selecting the right material

for the membrane is extremely important and must take into consideration a huge

assortment of parameters such as stiffness, electrical conductivity, residual stress, etch

resistance, material and processing compatibility, coefficient of thermal expansion,

melting temperature, and chemical stability, among others. Thus far, origami devices

have been made using membranes made of silicon [15], silicon nitride [12, 14], and SU-8

[11, 13, 16], a type of robust and chemically resistant photo-imageable epoxy used

regularly in MEMS-type applications. Recent work involving the use of titanium nitride

(TiN) membranes [17] will be discussed in detail in the following chapter.

2-D membrane

2-D nanopatteming

Nanostucures
Hinges and wires

3-D folding

Final device

Figure 1-1: Schematic overview of the Nanostructured OrigamiM process.

........................................................................ ............................



The second step of the origami process consists of automatically folding the pat-

terned membranes into the desired 3-D configuration. Such autonomous, parallel folding

of the patterned membranes, an important feature of the origami process that enables

batch fabrication, has been accomplished previously through the use of Lorentz force [10,

15, 16], residual stress [12], ion implantation [18], and magnetic torque arising from

slender nanomagnets patterned through electron-beam (e-beam) lithography [14].

Additionally, actuation through the use of ferromagnetic materials embedded inside

carbon nanotubes [19] will be discussed in Chapter 4.

1.2 Carbon nanotubes

Carbon nanotubes (CNTs), the rolled up sheets of graphene first discovered by Iijima in

1991 [20], have been the at the center of an intense global research effort focused on

understanding their properties, growth mechanisms, and possible applications. Without

question, CNTs, with their highly unique electronic, mechanical, optical, and chemical

properties, have been one of the most actively studied materials in recent history, and

tremendous advancements have indeed been made particularly in the area of efficient,

high-yield growth methods. Even after almost twenty years since their discovery, there

is yet no end in sight for CNT-related research. However, there is still, after nearly

twenty years, much controversy surrounding its exact growth mechanism, and the

transition towards commercial applications has been extremely limited thus far.

1.2.1 Growth theory and techniques

As mentioned previously, exact carbon nanotube growth mechanisms are still subject to

much speculation. For example, the precise role of catalysts necessary for CNT growth

remains highly controversial [21]. Nevertheless, researchers have become highly skilled at

growing and purifying both single-walled [22] and multi-walled carbon nanotubes [23].

Currently used approaches for growing single-walled CNTs (SWCNTs) and multi-

walled CNTs (MWCNTs) can be largely categorized into arc-discharge, laser ablation,

and chemical vapor deposition (CVD) methods. Both arc-discharge and laser ablation

methods, explained in much greater detail in [21, 24, 25], involve the evaporation and



condensation of solid carbon sources at extremely high temperatures approaching the

melting temperature of graphite (3000 ~ 40000C). For the arc-discharge method, the

carbon atoms are evaporated through the ignition of a plasma between opposing carbon

anode and cathode, whereas in the laser ablation method, an intense laser pulse is used

to vaporize a carbon target. In both case, the resulting CNTs must be carefully collected

and purified. The arc-discharge method, while it has lower yield than the laser-ablation

method, is used most often in industrial applications to create high-quality, defect-free

CNTs because the laser ablation technique is not amenable to being scaled up to

production volumes [23].

Nanotube growth based on CVD has been used most often in recent years because it

allows for the direct growth of CNTs on patterned surfaces [26] thereby eliminating the

arduous task of collecting and purifying the nanotubes. Although the precise CNT

growth mechanism and kinetics is still under intense investigation [27-29], the general

growth process is as follows: (1) a hydrocarbon, such as acetylene, is adsorbed onto the

surface of a catalytic particle; (2) carbon is released upon decomposition of the gas and

dissolves and diffuses into the catalyst; and (3) the carbon precipitates out of the

catalytic particle in tubular, crystalline form upon supersaturation of the catalyst. As

the carbon network grows out of the catalytic particle, the particle itself can remain

anchored to the substrate (base-growth mode) or detach completely from the substrate

(tip-growth mode), as seen in Figure 1-2.

C.M.,

Catalyst SuppOrt

Figure 1-2: Two different growth modes for CNTs during chemical vapor deposition:
base growth (left) and tip growth (right) [21].



Most recently, much research has focused on a particular type of CVD-type nano-

tube growth process based on the use of a DC [30-32], microwave [33], or RF plasma

[34]. The CNT growth mechanism and process in such plasma enhanced chemical vapor

deposition (PECVD) methods remain similar to those of more traditional CVD meth-

ods; however, there are some noteworthy differences between the two methods.

The primary difference between the two methods is that CNTs grown via the

PECVD method exhibit extreme vertical alignment and straightness. Such behavior of

PECVD-grown CNTs has been demonstrated by dozens of groups and is believed to be

a result of the CNTs' preference to align with the applied field or to the electrical self-

bias field created by the plasma environment during growth [35], although the precise

mechanism of this phenomenon is not known. Vertically aligned CNTs can be grown

via the CVD method as well where a physical constraint (e.g. the porous growth

template) or the van der Waals interaction between neighboring CNTs can keep the

nanotubes relatively straight during growth [33, 36]. However, as seen in Figure 1-3,

PECVD-grown CNTs exhibit unparalleled straightness and vertical alignment. In fact,

the CNTs align themselves so well to the field created by the plasma environment that

the CNTs can be grown into a zigzag morphology by simply altering the field direction

during growth [35]. For many nanomanufacturing applications, for example in creating

field emission devices, the ability to grow very straight CNTs with controllable orienta-

tions can be advantageous.

Another potential benefit of PECVD-grown CNTs is the much lower temperature

required for nanotube growth. CVD-based growth methods can require temperatures in

excess of 1000*C, whereas growth temperatures as low as 120*C has been reported for

PECVD-based methods [38]. It is believed that the lower growth temperature is a result

of the plasma ionizing the hydrocarbon gas while locally heating the catalyst surface to

promote more efficient adsorption and diffusion of the carbon atoms [38]. However, one

caveat of the lower growth temperature appears to be an increase in the number of

defects in the CNT structure as well as the increased tendency for the nanotubes to

grow in a less crystalline carbon nanofiber (CNF) morphology [38, 39]. In addition, most

of the nanotubes grown via the PECVD-based method are MWCNTs, and the reliable

growth of SWCNTs has not yet been reported. For many nanomanufacturing applica-



tions where the still highly favorable physical and mechanical properties of less than

perfect MWCNTs should be sufficient, the lower growth temperature and the resulting

improvements in compatibility with existing materials and devices enabled by PECVD-

based CNT growth will be highly desirable.

(a) (b)

Figure 1-3: Vertically aligned carbon nanotubes grown via (a) PECVD [30] and (b)
CVD-based [37] methods.

One last distinction of the PECVD-grown CNTs is that they tend to almost always

grow in tip-growth mode shown earlier in Fig 1-2 [30, 32], while CNTs grown through

CVD methods grow predominantly in base-growth mode. While the exact reason for

this occurrence is unclear, it is indicative of a weak interaction between the catalyst and

the substrate [40]. While CNTs grown in base-growth mode exhibit higher yield and

purity [40], Chapter 4 will discuss the importance of catalyst particles found at the tips

of CNTs grown in tip-growth mode.

1.2.2 Device integration methods

As mentioned before, commercial applications of CNT-enabled devices have significantly

lagged behind the great strides made in fundamental CNT-related research. One main

reason for this deficiency lies in the inherent difficulty of efficiently and precisely inte-



grating a massive quantity of nanotubes with other micro-meso-macro-scale structures

and devices. For many applications, the location (for one or both ends of the tube),

orientation (in three dimensions), and shape (e.g. size or curvature) of the CNTs must

be precisely controlled during the integration process. Perhaps most importantly, in

order to satisfy the tenets of nanomanufacturing and remain viable for production, all

this must be accomplished in a time-saving, cost-effective, and massively parallel fashion.

Currently proposed and used methods for CNT integration can be largely divided

into three categories: (1) solution-based; (2) pick-and-place; and (3) direct growth. Most

of these methods are applicable not only to CNTs but other types of nanowire and

nanofibers as well. In solution-based methods, CNTs are typically dispersed in solvent,

such as ethanol, and passed over the desired areas of CNT integration. As the solution

dries, the CNTs are directed towards designated areas on the device and aligned due to

fluidic forces [411, magnetic forces [42, 43), or dielectrophoretic forces [44, 45], among

others. Generally, such methods are limited to in-plane alignment of the nanotubes, and

further steps, such as metal evaporation and lithography, must be taken to address the

inherently high contact resistance between the CNTs and their corresponding contacts

[45]. However, the parallel nature of this integration method lends itself well to high-

volume production.

Pick-and-place methods involve the use of micro- and nanoscale probes and manipu-

lators in literally picking up individual nanotubes from one substrate and placing them

at the desired locations on another [46, 47]. While such methods are highly reliable and

accurate, they are exceedingly slow and inefficient. Furthermore, actions must be taken

to permanently affix the displaced nanotubes while reducing contact resistance. Accord-

ingly, the pick-and-place method is ideal for research settings where only a handful of

CNTs need to be integrated.

Direct growth methods for CNT integration involve the use of existing micro- and

nanofabrication tools to directly pattern the catalyst sites prior to either CVD or

PECVD-based CNT growth. This method is well-suited for nanomanufacturing applica-

tions since precise, wafer-scale positioning and growth of large quantities of CNTs can

be integrated with the rest of the device fabrication process. As seen in Figure 1-4,

single strands of CNTs can be controllably grown on the device by using e-beam



lithography to pattern the catalysts [48, 49], while larger CNT forests can be grown at

desired locations by using standard optical lithography [50] to pattern larger catalyst

patches. In both cases, CNT length, orientation, and quality can be controlled through

the growth parameters. For the e-beam lithography approach, the precise location and

diameter of each nanotube can further be defined. The e-beam approach, however,

requires each growth site to be individually patterned making it unsuitable for applica-

tions involving large arrays of CNTs.

(d)t

(a) (b)

Figure 1-4: Examples of (a) single [48] and (b) multiple strands [50] of CNTs grown
directly on functioning microstructures.

Lastly, a transplanting-based assembly method [51, 52], outlined in Figure 1-5, is

another interesting CNT integration technique that possess elements of all three types

of methods mentioned above. In this approach, single strands [51] or bundles [52] of

CNTs are partially encapsulated in micropatterend polymer carrier blocks and trans-

planted to their final locations using pick-and-place or self-assembly-based methods.

Similar to the transplanting assembly method for CNT integration, future nanomanu-

facturing processes must possess speed, precision, and batch fabrication capabilities.

WOOD
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Figure 1-5: Overview of the transplanting assembly method for creating CNT-tipped
AFM probes [51].

1.3 Outline of thesis

The general objective of this thesis is to demonstrate the feasibility as well as the

advantages of a fabrication technique that combines origami-based 3-D fabrication

methods with existing CNT growth techniques. Most importantly, all this will be

accomplished while adhering to tenets of the Nanostructured OrigamiM process, namely

the use of non-exotic fabrication equipment and techniques in a manner compatible

with massively-parallel batch fabrication schemes.

In keeping with the theme of nanomanufacturing, this thesis will exclusively deal

with PECVD-grown, vertically-aligned CNTs. As mentioned, the PECVD-grown CNTs

can be grown at relatively low temperatures, and their density, geometry, shape, and

precise locations can be pre-defined through various lithographic techniques. Such

features of PECVD-grown CNTs will facilitate efficient integration with the origami

process while maximizing potential nanomanufacturing applications. While CNTs

possess many highly unique and interesting characteristics that can be taken advantage

of by origami devices, their physical and magnetic properties will primarily be explored

and utilized.

Chapter 2 will be devoted to the various fabrication challenges that can arise in the

process of integrating high-temperature CNT growth with origami-based devices.

Specifically, a new CNT-compatible origami membrane material will be introduced and

integrated into the overall origarni fabrication scheme. Additionally, a new type of

.......... ... ...................................... ....... .



metallization method, designed to accommodate vertically-aligned CNTs, will be

demonstrated. Various fabrication tips and tricks involved in the integration of in situ

grown CNTs will further be discussed.

Chapter 3 will discuss the fabrication and electrochemical testing of an origami-based,

3-D supercapacitor with CNT-based electrodes. The CNT electrodes are grown directly

on the origami supercapacitor based on techniques mentioned in Chapter 2. Additional

fabrication complications arising from this particular application of the CNT-origami

process will be mentioned, and the various advantages of creating this particular type of

supercapacitor will be discussed.

Chapter 4 will introduce a new origami membrane manipulation scheme involving

the use of magnetic catalyst particles naturally encapsulated inside the tip regions of

PECVD-grown CNTs. The magnetic behaviors of these tips, and consequently the

entire nanotube and supporting membrane, will be investigated through theory, simula-

tion, and experiment. Magnetic rotation of CNT-covered membranes will be explored in

depth while initial results involving magnetic CNT latching will also be shown.

Chapter 5 will summarize the various new findings and contributions of this thesis as

well as suggest related future works that will further expand upon the scope of this

research.
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Chapter 2

Origami fabrication of carbon

nanotube devices

As mentioned previously in Chapter 1, the Nanostructured Origamit m process is a 3-D

nanomanufacturing approach based on the concept of membrane folding. The origami

process itself is quite versatile and can readily be applied to a wide variety of processes

and materials with minimal variation while accommodating many different types of

state-of-the-art nanostructures. The integration of carbon nanotubes, however, requires

some noteworthy changes to the original origami method due mainly to the high

processing temperatures associated with growing CNTs. In this chapter, particular

challenges and process modifications associated with the origami integration of CNTs

will be discussed.

2.1 Origami membrane

The membrane, or the "paper," of the origami process is a highly critical element that

serves several vital functions. One of its main functions is to serve as a releasable and

foldable substrate for the various nanostructures. For the case of integration with in situ

grown CNTs, the membrane must serve as a reliable surface on which the nanotubes

can grow while withstanding the high temperatures of the CNT growth process.



2.1.1 Membrane selection

Although carbon nanotube growth on silicon or silicon nitride, two of the materials used

in the past for origami membranes, is well-documented and has been successfully

repeated in our laboratory, the low electrical conductivity of those materials make them

unsuitable for many CNT-integrated device applications in which direct electrical

connections must be made through the membrane and into the nanotubes. Other

origami membrane materials used in the past, such as gold, are very conductive but

cannot be used as a base for directly growing CNTs as will be discussed in later sections.

Since providing electrical connections to CNTs is critical for many device applications,

researchers often overcome this problem by first growing the CNTs on a non-conducting

substrate, such as silicon or quartz, and then transferring the entire array to a conduct-

ing surface [53] or going through highly complex post-CNT processing steps to individu-

ally connect each nanotube via metal lines [54]. These types of approaches, however, are

not well-suited for 3-D nanomanufacturing applications and were not considered for

integrating CNTs with origami fabrication.

Consequently, a new origami membrane material, suitable for direct growth of CNTs,

was needed. The new membrane had to satisfy the following requirements:

(1) It must not be damaged by high temperatures encountered during the

PECVD-based CNT growth process (typically >600*C).

(2) It must not impede catalyst nucleation and CNT growth.

(3) It must exhibit sufficient electrical conductivity.

(4) It must withstand XeF 2 etching for the sacrificial release step.

(5) It must be available within MIT's fabrication facilities.

The last requirement, availability within MIT's fabrication facilities, was essential

since one of the main premises of the Nanostructured Origami' process is the exclusive

use of widely available and compatible materials and processes. Availability within

Microsystems Technology Laboratories (MTL), the main fabrication facility at MIT,

would definitely attest to this fact. Candidate materials for the CNT-origami membrane

are summarized below in Table 2-1.



Table 2-1: Summary of candidate materials for CNT integration with some of the key
parameters required for origami fabrication.

Membrane High-Temperature Documented Electrically Resistant to Available

Material Processing CNT Growth Conductive XeF 2 Etch at MIT

Silicon [48] Yes Yes No No Yes

Polysilicon [50] Yes Yes No No Yes

Silicon Dioxide [54] Yes Yes No Yes Yes

Silicon Nitride Yes Yes No Yes Yes

Gold [13] No No Yes Yes Yes

Inconel [55] Yes Yes Yes No No

Tungsten [56] Yes Yes Yes No Yes

Molybdenum [57,58] Yes Yes Yes No Yes

Titanium Nitride [17,59] Yes Yes Yes Yes Yes

Based on Table 2-1, titanium nitride (TiN), used commonly in semiconductor

applications as a diffusion barrier layer, seems to be the only suitable material for CNT-

origami integration. Therefore, TiN was chosen as the new membrane material, and its

several advantages as well as disadvantages will be discussed in the following sections. It

should be noted, however, that certain metals that have very high melting points, such

as tungsten (W) and molybdenum (Mo), would have also served as excellent membrane

materials save for their etching in XeF 2 (they also show little etch resistance to most

etchants that attack silicon). In future origami devices that employ different release

methods or sacrificial layers, metals such as W and Mo, which actually possess higher

electrical conductivities compared to TiN, may be considered.

2.1.2 Stress annealing

Applied Materials Endura 5500 deposition tool was used to deposit TiN layers with

thicknesses ranging from 100 um to 2 pm on a <100> silicon substrate. Figure 2-1

shows sample images of a patterned TiN layer that has been partially released from the

substrate. As can be seen, TiN layers, as they are deposited in the MTL, inherently

possess some residual compressive stress that can cause the released device to warp and



crack; for origami membranes, it is imperative that they be stress-free so as to remain

flat after release. Typically, thinner TiN layers resulted in greater residual stress, but a

very thin 100 nm TiN layer was predominantly used to promote greater flexibility of

the origami membranes during subsequent folding. In order to minimize compressive

stress, an annealing step, similar to the one outlined in [62], was initially performed by

heating the samples under nitrogen flow. The annealing conditions and results are

summarized in Table 2-2.

Figure 2-1: Severely warped and distorted devices consisting of an unannealed TiN layer
after partial XeF 2release.

Table 2-2: Compressive
annealing.

stress levels in a 100 nm thick TiN layer before and after

Stress after TiN Stress after Stress after % Reduction
Deposition 4 hours @ 500*C 20 hours @ 5000C in Stress
1168 MPa 469 MPa n/a -59.8%
1167 MPa 388 MPa n/a -66.8%
793 MPa n/a 102 MPa -87.1%
693 MPa n/a 113 MPa -83.7%

As shown in Table 2-2, various annealing steps were shown to be highly effective in

reducing the residual stress of TiN. As expected, longer annealing times produced

greater stress reductions, although further reductions in stress were not observed beyond

20 hours of annealing.



Figure 2-2(a) shows an annealed (thus stress-free) and patterned TiN layer with

some gold (Au) and CNT structures above it (whose depositions methods will be

discussed in subsequent sections). However, after about 10 minutes of exposure to XeF2

etching at room temperature, almost all of the TiN layer had disappeared as clearly

seen in Figure 2-2(b). This was highly unexpected since TiN used by Seneviratne et a.

[62] was deposited using identical equipment at MIT's MTL yet exhibited etch resis-

tance to XeF 2. Additionally, Chan et al. reported that XeF 2 did not etch TiN [63], while

Wu et al. later reported that TiN was resistant to XeF 2 etching at temperatures below

1000C [64]. Although room temperature etching of TiN using XeF 2 has not been re-

ported in literature, we hypothesized that the TiN layer had oxidized during the anneal-

ing process, which takes place in essentially an open-air chamber, and that oxidized TiN

is somehow more susceptible to XeF2 etching. Significant oxidation of TiN at tempera-

tures above 5000C has been reported previously [65]. It is also possible that titanium

silicides, easily formed during temperature treatments of titanium rich TiN [62], is more

easily attacked by XeF 2-

In order to eliminate the potential problem with oxidation, the TiN samples were

instead annealed in vacuum inside the CNT growth chamber as part of the CNT

growth process, which already included a short pre-growth annealing step (see Section

2.2.1). Simply extending this high-temperature heating step was effective in removing

most of the stress from the TiN layer. As seen in Figure 2-3, devices that had been

annealed in this manner were largely unaffected by the subsequent XeF 2release step and

were free from warps and cracks caused by stress in the TiN layer. In later samples,

even the extended annealing step was abandoned as the heat treatment occurring

naturally from the CNT growth process, without further modifications, was sufficient in

removing most of the residual stress. Section 2.4.1 will discuss the TiN oxidation issue in

greater detail. On an interesting note, the cantilever shown in Figure 2-3 had been

designed with small chromium strip at the base for the purpose of stress-induced folding

[12]. However, cantilever folding did not occur as the annealing process had uninten-

tionally removed all of the stress from the chromium layer as well.



(a) (b)

Figure 2-2: (a) an unreleased origami device consisting of TiN, Au, and in situ grown
CNTs on a silicon substrate; (b) same device after 10 minutes of etching in XeF 2. All of
the TiN layer has been etched away along with the silicon.

Figure 2-3: A released TiN cantilever covered with in situ grown CNTs. The device was
annealed naturally during the CNT growth process.

2.1.3 Electrical resistivity

As mentioned before, electrical conductivity is one of the most important reasons for

choosing TiN as an origami membrane material. Although nowhere near as conductive

as gold, the benchmark of conductive materials, whose resistivity is approximately 2.2

pQ-cm [66], titanium nitride, with its lowest reported resistivity value of 20 pQ-cm [67],

is sufficiently conductive for most device applications. However, the reported values of

resistivity for TiN ranges anywhere from 20 IQ-cm to 25 me-cm [59, 62, 67]. Creemer



et a]. reported that TiN resistivity is actually highly dependent on stress and was able

to increase the resistivity of TiN from 57 pQ-cm to 3.6 me-cm by simply relieving the

stress in the material [68]. In our own devices, the resistivity, as measured through a

four-point probe, was 61 pd-cm prior to CNT growth and 113 pdQ-cm afterwards,

indicating stress reduction in the TiN layer upon CNT growth as expected.

2.2 In situ growth of carbon nanotubes

Although a great deal of research has focused on understanding the mechanism and

kinetics of PECVD-based growth of CNTs, there is still much uncertainty associated

with the actual growth process. As a result, successful PECVD growth of CNTs, even

on commercially available machines, usually involves a long trial and error period to

correctly adjust the dozens of variable growth parameters. Even worse is the fact that a

correctly adjusted CNT growth system does not always yield consistent results. Various

findings regarding the PECVD growth of vertically aligned CNTs at MIT's MTL

facilities will be discussed in the following sections.

2.2.1 Growth process and results

Carbon nanotubes were initially grown in the MTL using a PECVD-based CNT growth

chamber built in-house by Professor Sang-Gook Kim's research group (Micro & Nano

Systems Laboratory). Although the machine allowed complete manual control over a

multitude of growth parameters and consistently grew fantastic CNTs, it was not

optimized at the time for uniform growth over large areas. Since we wanted to pursue

wafer-scale processing, the more recently acquired and commercially available Black

Magic CNT deposition system produced by Nanoinstruments, Ltd. (see Figure 2-4) was

used to produce all the CNT results shown below. The main advantages of the Black

Magic system include fully-automated operation and 6-inch wafer processing capabilities.

For most growth processes, the "TwoStepAC" recipe was used with a 30 second

"catalyst annealing time" and 1200 second "CNT growth time."
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Figure 2-4: The commercially available Black Magic CNT deposition system produced
by Nanoinstruments, Ltd. located inside the MTL.

For either machine, the PECVD-based growth of CNTs takes place in two stages. In

the first stage, the sample's temperature is ramped up, in vacuum, to the final growth

temperature of between 600*C and 700*C. During this time, the surface of the catalyst

layer, typically a 20-30 nm thick layer of nickel (Ni) or cobalt (Co), forms round nuclea-

tion sites from which the CNTs will later grow. Figure 2-5 shows the surface of a Ni

catalyst which has started to form small, round islands with diameters on the order of

the eventual CNT diameter. This diameter is largely a function of the initial catalyst

thickness. Near the end of this heating stage, ammonia gas is flown into the chamber to

further etch away the catalyst surface [30]. Carefully controlling the time and amount of

ammonia flow at this stage can further create variations in CNT diameter and density.

Additionally, the catalyst layer can be nanopatterned prior to the CNT growth through

e-beam lithography as shown in Figure 2-6. In this case, only a single strand of CNT

with a diameter approximately equal to that of the pre-patterned catalyst will grow

from each site; however, the slow and serial nature of the e-beam lithography process

precludes this method from being used in creating larger arrays of CNTs.



Figure 2-5: An unpatterned Ni layer following pre-growth annealing. The initially
smooth catalyst film has nucleated into spherical CNT growth sites.

Figure 2-6: A Ni catalyst layer that has been patterned via e-beam lithography prior to
CNT growth. Each dot is approximately 200 nm in diameter. A single CNT strand will
subsequently grow from each site.

During the second stage of growth, the gaseous hydrocarbon, in our case acetylene, is

added to the ammonia flow to provide the necessary carbon. A 4:1 flow ratio of ammo-

nia to acetylene was typically maintained as is the convention. It is widely thought that

ammonia acts to etch away the buildup of excess carbon on the top surface of the

catalyst tip to allow continued adsorption of the gas species and therefore catalytic

growth. At this point, the DC plasma is also switched on for reasons mentioned in

Chapter 1. Under typical conditions, CNTs grew at a rate of approximately 250 nm /
minute to a maximum length of approximately 10 pm. The typical CNT diameter and

density were 150 nm and 9 CNTs/pm2 , respectively. Figure 2-7 shows SEM images of

-10 pM-



such CNTs grown from a patterned Ni catalyst layer deposited through lift-off on a

patterned TiN layer. Figure 2-7(c) clearly shows that CNT patches can be precisely

shaped by micro-patterning the catalyst layer. All SEM images shown, unless otherwise

noted, were taken at a tilt angle of approximately 30 with respect to the vertical,

meaning that all images appear compressed by a factor of around two in the vertical

direction. The CNTs in Figure 2-7(b), for example, are around 4 pm in length despite

appearing to be about the same size as the horizontal scale bar of 2 pm. Figure 2-8

shows a top-down view of the same sample after all the CNTs have been physically

flattened using a razor blade. Due to the difficulty of obtaining a side view of the CNT

array in an SEM, the razor-flattening technique was often used to determine the true

size and shape of the CNTs grown.

Figure 2-9 shows the result of CNT growth using the e-beam pre-patterned catalyst

layer shown Figure 2-6. For single-strand growth, the previously mentioned heating and

ammonia etching steps prior to plasma-enhanced growth must be reduced to ensure

that the nano-patterned catalysts are not completely etched away. The missing nano-

tubes in the period array shown in Figure 2-9 are likely a result of such overetch.



(b)

(c)

Figure 2-7: SEM images of CNTs grown directly on TiN using a Ni catalyst layer. The
desired shape of the CNT forest (a-c) can be controlled through appropriate lift-off
patterning of the catalyst layer prior to growth.
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Figure 2-8: Top-down SEM image of a razor-flattened CNT array, showing the exact
side profile of the nanotubes and the embedded catalyst.

Figure 2-9: Single
beam lithography.

strands of CNTs grown from catalyst sites pre-patterned through e-

As mentioned before, the PECVD growth of CNTs is not a perfect science, and even

with a fully-automated CNT growth equipment, much CNT variation exists across

batches. One of the main reasons for this, for both the home-built and commercial

machines, is that there is constant carbon buildup inside the growth chamber. Excess

carbon buildup greatly affects the quality of the plasma, and if severe, can lead to arcing

between the anode and the sample. Figure 2-10 shows a sample that has been com-



pletely destroyed by the arcing of the plasma. To minimize plasma variation, the

chamber should ideally be cleaned before each run, although due to practical reasons, it

is only done once per every ten runs or so in the MTL. As a result, there is a marked

degradation in plasma and CNT quality as excess carbon builds up inside the chamber.

One of the reasons that the home-built CNT machine more consistently produced

higher quality CNTs might be due to the fact that it was rigorously cleaned before each

run.

Figure 2-10: CNT and Au sample severely destroyed by unstable plasma conditions
during the growth process.

Besides variations in the plasma due to carbon buildup, slight variations in gas flow

was found to greatly affect the resulting CNTs. Although a 4:1 flow ratio of ammonia to

acetylene was typically used, minor variations had to be made, through trial and error,

to account for different catalyst material, catalyst thickness, plasma condition, and etc.

The plasma condition, which affects gas ionization, is believed to be the main factor

contributing to the necessity of slight gas flow adjustments. Figure 2-11 shows CNTs

that were grown in a slightly carbon-deficient environment (around 4.1:1 flow ratio).

Upon closer inspection, the CNT bodies show a noticeable lack of structural integrity.

For such cases, the carbon content of the gases is increased by increasing acetylene flow,

decreasing ammonia flow, or both. Figure 2-12 shows the opposite case in with the



CNTs were grown in a slightly carbon-rich environment (around 3.8:1 flow ratio). The

conical shape is a result of lateral growth due to the precipitation of excess carbon [69].

The mechanism is shown graphically in Figure 2-13. In such a case, the acetylene

content must be decreased, the ammonia content increased, or both. Although the CNT

samples shown in Figures 2-11 and 2-12 were intentionally grown in carbon deficient or

rich environments, there were many instances when similar CNT growth was inexplica-

bly exhibited for previously-proven gas ratios. During such times, the gas flow should be

adjusted accordingly, gas tank levels checked, and/or the growth chamber cleaned.

Figure 2-11: CNTs grown in a carbon-deficient environment.

Figure 2-12: CNTs grown in a carbon-rich environment.
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On a final note, a Ni catalyst layer was predominantly used throughout our study for

CNT growth as is also the overwhelming case in literature. However, CNTs grown from

Co possess certain additional benefits, as will be shown in Chapter 4, and were grown as

shown in Figure 2-14. Figure 2-14(a) shows the typical growth result. It appears that

the catalyst nucleation process for Co is different from that of Ni, and as a result, the

controlled and consistent nanotube growth observed with Ni catalysts could not be

replicated with Co catalysts. Additionally, the Co CNTs tended to be less vertically

aligned compared to their Ni counterparts. The exact reason for this is yet unknown as

is the precise mechanism behind plasma-aligned CNTs. Still, well-aligned and relatively

uniform growth of Co CNTs should be possible with further optimizations in the

catalyst deposition and CNT growth steps as it was observed one time for a single

mystery batch of Co CNTs shown in Figure 2-14(b). Unfortunately, such results could

not be repeated in subsequent processes using similar samples and recipes.

C due to
catalytic growth

Precipitation
of C from

glow discharge

direction

Figure 2-13: Growth mechanism schematic of a CNF [69].



(b)

Figure 2-14: (a) typical Co CNT growth and (b) one time-achieved Co CNT growth.

2.2.2 Effect of membrane on CNT growth

It was previously mentioned that the origami membrane should not inhibit catalytic

growth of CNTs on its surface. One of the reasons that TiN was selected as the mem-

brane material was that it has the added benefit of improving catalytic efficiency during

CNT growth by eliminating the formation of silicides [70] and preventing the diffusion

of catalyst materials into the substrate [71]. When CNTs are grown on a Si substrate

using a PECVD-based method, the catalyst material invariably forms silicides under the

high temperature growth conditions. Titanium nitride, an excellent diffusion barrier

material, prevents this from happening. Silicide formation and catalyst diffusion can

significantly affect the catalytic efficiency of the catalyst material and impact CNT

growth in ways that are not entirely clear at this time. Figure 2-15 demonstrates the

difference between CNT growth on TiN and Si. In Figure 2-15(a), a typical 30-second



heating and ammonia etching step preceded the plasma-enhanced growth step. The

SEM image clearly shows that CNTs grown on top of TiN are much longer and more

uniform compared to CNTs grown on Si. In fact, the thick and oddly shaped growth on

top of Si indicate that sufficient nucleation of catalytic growth sites had not occurred.

On the other hand, CNTs resulting from an unusually long 4-minute pre-growth

heating and etching step are shown in Figure 2-15(b). Here, it is seen that CNTs grown

on Si look much more pronounced that those on TiN. The thin, hair-like shape of CNTs

grown on TiN is indicative of an overly etched catalyst nucleation site. From these

images, it can be seen that catalyst layer deposited on top of TiN quickly and consis-

tently nucleates into CNT growth site while catalyst deposited on top of Si requires

further heat treatment and ammonia etching to transform into suitable CNT growth

sites.

(b)

Figure 2-15: SEM images showing the difference between CNTs grown on TiN and Si.
(a) short ammonia pre-etching time and (b) long ammonia pre-etching time.
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2.2.3 Nanotubes vs. Nanofibers

Thus far, we have not differentiated between (CNTs) and carbon nanofibers (CNFs).

However, it is widely thought that true CNTs, namely the nanoscale tubes consisting of

perfectly rolled up sheets of graphene, cannot be grown via PECVD methods. This is

mostly attributed to the low growth temperatures associated with PECVD-based

growth [39]. Rather, many researchers refer to the PECVD-based, deterministic growth

of carbon nanostructures as CNFs as such structures lack single crystal grains in the

direction of the aligned fibers [39, 69].Others, nevertheless, still refer to them as CNTs

since they have a hollow core [30, 32]. The typical structure, as shown in Figure 2-16,

consists of graphene walls that are not perfectly parallel with each other as they are in

true CNTs. Wen et a]. [32] hypothesizes that this behavior might be a function of the

catalyst particle's size and shape; large catalyst particles with a pointed shape as shown

Figure 2-16(a) result in structures with slanted sidewalls while smaller, tubular particles

as shown in Figure 2-16(b) result in perfectly parallel sidewalls. The CNTs grown in our

facilities resemble that of Figure 2-16(a) with the characteristic hollow core and slanted

graphene sidewalls as shown in the TEM images in Figures 2-17 and 2-18. While the

non-crystalline CNFs cannot replace CNTs in applications that rely on their semicon-

ducting or optoelectronic properties, the CNFs' still excellent mechanical and electrical

properties make them suitable substitutes for CNTs in most other application fields.
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(a)

Figure 2-16: CNT growth
cal catalyst tips [32].
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(b)

modes for large, faceted catalyst tips (a), and small, cylindri-

Figure 2-17: TEM image showing (indicated by arrows) the hollow core of our PECVD-
grown CNTs.



Figure 2-18: TEM image showing (indicated by lines and arrows) the slightly slanted
graphene walls of our PECVD-grown CNTs.

2.3 Metallization methods

Past origami devices have relied on a patterned gold layer for metallization. This metal

layer served the critical dual purpose of providing electrical connections to the various

parts of the device while acting as a ductile hinge that connected the different folding

parts of the origami device [11, 13, 16]. However, the gold layer, which was typically

deposited right on top of the silicon substrate, is not amenable to high-temperature

processing associated with CNT integration. Figure 2-19 shows an example of what can

happen to a gold-on-silicon structure after undergoing a high-temperature CNT growth

cycle. The images show deep cavities and various other distortions that have appeared

on the gold surface due to the diffusion of Au and the formation of Au-Si alloys. In fact,

Cheng et a]. have utilized this silicon-to-gold eutectic bonding effect to create lasting

bonds for MEMS packaging applications [72]. Similar results were also observed for

other commonly used metals such as aluminum (Al) and chromium (Cr).



(a) (b)

Figure 2-19: (a) Gold-on-silicon structure after undergoing a high-temperature CNT
growth cycle. (b) zoom-in image.

2.3.1 Pre-CNT metallization

In order to prevent the unwanted diffusion of gold into silicon as well as other undesir-

able deformations of the metal layer, the TiN layer, already used as a base for CNT

growth, was placed below the gold as well to act as a diffusion barrier layer. The general

processing steps are outlined in Figure 2-20.

Figure 2-20: Overview of pre-CNT metallization technique: (a) TiN layer is depos-
ited/patterned; (b) catalyst layer as well as other metal layers are deposited/patterned
through separate lift-off processes; (c) CNTs are grown on the catalyst sites.



As can be seen in Figure 2-21, the TiN layer did indeed prevent the gold from

diffusing into silicon. However, it can also be seen that the gold layer has been severely

distorted and has actually peeled off in certain areas. This is likely explained by a

combination of: (1) high local temperatures approaching the melting point of gold; (2)

changes to the thin (20 nm) Cr adhesion layer sandwiched between Au and TiN; and

(3) coefficient of thermal expansion mismatch between Au and TiN. Subsequent meas-

urements also indicated that the electrical resistivity of the gold layer had risen signifi-

cantly. Although it was not tested, the mechanical behavior of the Au hinges most

likely changed considerably as well. The pre-CNT metallization technique is not entirely

without merit, however. By increasing the Cr adhesion layer thickness, increasing

heating ramp-up and ramp-down times, and lowering the growth temperature, gold

layer distortion can be kept to a minimum as seen in Figure 2-22. However, slight

discoloration and surface roughening of the gold layer as well as an increase in resistivity

is still observed.

Figure 2-21: Severe distortion and peeling-off of Au on TiN following CNT growth.



Figure 2-22: Minimally distorted and well-adhered Au on TiN following CNT growth.
Resulting CNTs are shown in the inset.

2.3.2 Post-CNT metallization

The post-CNT metallization method altogether bypasses having to place metals into the

high temperature CNT growth chamber. In this approach, all of the metal deposition

and patterning steps are performed subsequent to CNT growth using a revolutionary

triple-coating lift-off patterning technique. The general process for this lift-off process is

outlined in Figure 2-23, and the exact recipe is given in Appendix A.1.

In short, an image reversal photoresist is used to cover the entire wafer, including the

CNTs. During this process, it is crucial for the tips of all CNTs to be completely cov-

ered by the photoresist. In the MTL with AZ 5214 photoresist, this typically occurred

when the photoresist thickness reached approximately 75% of CNT length. At this

point, the photoresist is opened up, using optical lithography, in areas where we want

metal deposition to occur. After the subsequent metal deposition step, the wafer is

placed in an acetone bath where all of the photoresist, along with the unwanted metal,

is removed.



Figure 2-23: Overview of post-CNT metallization technique: (a) CNTs are grown on
TiN; (b) Entire device, including CNTs, is covered by photoresist and selectively
exposed; (c) Desired metal layer is deposited over the entire device; (d) Acetone soak
removes all photoresist and the metal layer on top of them leaving only the desired
metal features.

One initial concern for this technique was whether or not the CNTs would be able to

withstand the photoresist deposition and removal process without incurring structural

damage or sticking to each other due to capillary forces. Consequently, a simple test

was performed by soaking a photoresist-covered CNT array in acetone. To accelerate

the photoresist removal process, the acetone bath was further subjected to up to five

minutes of ultrasonic sonication. After the soak, the samples were simply rinsed with

isopropyl alcohol (IPA) and dried with a nitrogen gun. A test sample with partial

photoresist removal is shown in Figure 2-24. The dark region indicates areas where

some photoresist is still remaining while the bright region indicates areas in which all of

the photoresist has been removed. The CNT array does not seem to have been affected

in any way following the test.
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Figure 2-24: SEM image of partially washed off photoresist on CNT. The photoresist-
free and thus more conductive region CNT appears brighter in the SEM and looks
damage-free.

A final device, consisting of patterned gold and CNT layers on top of a TiN layer,

that was fabricated using the post-CNT metallization technique is shown in Figure 2-25.

Unlike the distorted gold layer seen earlier following pre-CNT metallization, the gold

layer here appears quite smooth and undamaged. The CNT array seems to be intact as

well. This technique is compatible with all materials that can be evaporated or sput-

tered safely on top of a photoresist and is an excellent method for providing patterned

metal layers to CNT-origami devices, as long as the CNTs can be completely covered

by photoresist. Figure 2-26 shows an example of a failed lift-off attempt in which the

photoresist had not entirely covered the CNT and the gold has thus irreversibly been

deposited on top of the CNTs.



(a)

(b)

Figure 2-25: CNT and Au structures on TiN following post-CNT metallization. Closeup
of (a) is shown in (b).

Figure 2-26: Failed sample following post-CNT metallization.



2.4 XeF 2 etching: The art of the release

Xenon difluoride (XeF2)-based isotropic dry etching of silicon, as mentioned in previous

sections, is commonly used to release the membrane layer of origami devices and

exclusively so for origami devices integrated with CNTs. The use of XeF 2 etching, a

completely dry and room temperature process, is highly advantageous because it does

not require an additional sacrificial layer, exhibits very high etch selectivity towards

silicon, and eliminates various problems associated with wet etch-based release proce-

dures, such as stiction and physical damage during rinsing. A more detailed description

of the etching mechanism, equipment, and procedure for XeF 2 etching can be found in

my master's thesis [10] and will not be repeated here.

This section will instead focus on the particular challenges associated with success-

fully releasing CNT-origami devices built on TiN membranes. A successful release

process essentially boils down to being able to etch away all of the silicon lying under-

neath the release area before any of the other non-silicon structures on the device are

adversely affected by the etching process. As with all selective etches, materials will

rarely exhibit infinite etch resistance to the volatile etchant, in this case XeF 2; eventu-

ally some unintentional structural damage will occur. For the case of TiN membranes,

its lower than expected resistance to XeF 2 etching resulted in several crucial changes

that were made to the overall design as well as the release process as outlined below.

2.4.1 Reducing oxidation

Earlier in Section 2.1.2, it was mentioned that TiN, which had been annealed and

inadvertently oxidized at high temperatures in an open air environment, was highly

susceptible to XeF 2. To overcome this problem, TiN oxidation was minimized by

performing the stress annealing step in vacuo as part of the CNT growth process. As

shown previously in Figure 2-3, there was a marked reduction in TiN damage during

release following this procedure. However, TiN susceptibility during release was not

entirely eliminated as it continued to etch, albeit at a much slower pace, in XeF 2. While

this was not a problem for smaller devices that released quickly from the substrate or

for devices made from thicker TiN membranes, it became problematic for devices like



the one shown in Figures 2-27 that was made from a TiN layer only 100 nm thick and

required a much longer lateral etch of the underlying silicon compared to the device

shown in Figure 2-3 (i.e. required longer etch times). Figure 2-27(b) shows that after a

moderate period of XeF 2 etching, all of the TiN has been completely etched away.

Since unannealed TiN showed excellent etch resistance to XeF2, it was apparent that

the high-temperature annealing/CNT growth steps were somehow responsible for

decreasing TiN's etch resistance. While there are many theories regarding the exact

mechanism behind increased TiN susceptibility to XeF 2 after CNT growth, post-CNT

room temperature oxidation of the TiN layer was determined to be one of the main

causes. While room temperature oxidation of TiN typically does not extend beyond a

thin surface layer measuring only a few nanometers, Logothetidis et a]. reported that

TiN that is not perfectly stoichiometric will oxidize at room temperature as the weakly

bonded nitrogen in the material leads to deep diffusion of oxygen through the grain

boundaries [73]. We further believe that this process is more prevalent in TiN that has

been "activated" through high temperature processing. Figure 2-28 plots the volume

fraction of oxidized TiN as a function of time, as measured by Logothetidis et al. using

a Bruggeman effective medium approximation (EMA) method, and shows that it

increases exponentially upon air exposure. While the exact stoichiometry of our TiN

layer as well as the precise extent of its oxidation are not known, it was quite clear from

experimentation that the TiN layer in samples released with XeF2 immediately follow-

ing CNT growth showed much less damage compared to samples released a few days

following CNT growth. In fact, the badly damaged sample shown in Figure 2-27(b) was

subjected to XeF2 etching about a week after the CNTs had been grown on it. Figure 2-

29 shows an almost identical device that went through the XeF 2 etching process imme-

diately after being removed from the CNT growth chamber; the TiN membrane is fully

released and does not exhibit significant signs of damage.

Through numerous experiments, it was shown that simply minimizing the air

exposure time between the CNT growth step and the XeF 2 etching step proved suffi-

cient in reducing TiN damage during release. However, due to various practical reasons,

the release step could not always be performed directly after CNT growth. In those



instances, it was discovered that simply keeping the samples in a common hand-

pumped vacuum canister was sufficient in achieving similar results.

(b)

Figure 2-27: CNT-on-TiN structures (a) before and (b) after XeF2 etching. The release
step took place several days after the CNT growth step. Almost all of the TiN layer
has been completely etched away in (b).
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Figure 2-29: A fully released CNT-TiN structure showing almost no signs of TiN
damage from the XeF 2. The sample was placed into the XeF2 chamber for release
immediately following the CNT growth step.

2.4.2 Minimizing TiN exposure

Minimizing the actual amount of TiN that is exposed to XeF 2 gases during the release

process is another highly dependable method for reducing TiN damage. For most CNT-

origami devices, such as the supercapacitor that will be presented in Chapter 3, much of

the TiN layer's top surface is covered by other materials that serve various functional

and structural support roles. In the abovementioned supercapacitor device, for example,

NOW-1



the entire top surface of the TiN membrane is covered by a thick polymer layer (SU-8)

for structural support and chemical protection except for a small opening in the layer

that exposes the underlying CNT forest and the TiN membrane on which it is grown.

In this configuration, only the small exposed area of TiN, as seen in Figure 2-30(a), is

attacked by XeF 2. Since most of the XeF2 etching occurs on the top surface, where

much more etchant gases are available, merely covering the top surface of the TiN layer

will stop most of the damage.

In addition to parts of the TiN layer in Figure 2-30(a) that is covered by the thick

layer of SU-8, it can also be seen that parts of the TiN layer covered by the vertically

aligned arrays of CNTs have also been protected from XeF 2 damage. For reasons that

will be explained further in the proceeding section, CNT forests have also been found to

be highly effective in protecting the underlying TiN layer from XeF 2 gases. In fact,

closer inspection of the severely damaged device shown in Figure 2-27(b) shows that the

patches of CNT forest, and thus the underlying TiN layer, are still intact. This fact is

also shown in Figure 2-30(a) where TiN damage is limited to areas that are not covered

by CNTs. Figure 2-30(b) shows how a simple design change, in which the SU-8 opening

is reduced to completely cover the exposed TiN layer, can effectively stop unwanted

TiN damage by XeF 2-

(a) (b)

Figure 2-30: Post-release SEM images of SU-8-covered CNT-TiN layers. Device in (a)
shows the small area of exposed TiN that has been damaged by XeF 2 while the one in
(b) shows no visible damage due to lack of exposed TiN areas.
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2.4.3 Etch holes

Besides reducing TiN oxidation and exposure, another way to minimize unwanted

damage during the release step is to increase the number of etch holes and thereby

reduce the overall etching time. Figure 2-31 shows a TiN device designed for rapid

release with equally distributed Sum etch holes.

Figure 2-31: Released TiN device with equally spaced 5 pm etch holes.

The device shown in Figure 2-31 released successfully within 2 minutes of XeF 2

etching, which was less than one quarter of the time required to release similar devices

without etch holes. Consequently, very little TiN damage was observed. However, in

earlier samples, no silicon etching was observed through the etch holes. It was as though

the etch holes were not there at all. Based on the following equation [74]

= RT , (2.1)

Orrd 2 NAP

where R is the universal gas constant, T is the etching temperature, d is the diameter of

XeF 2 molecules, NA is Avogadro's constant, and P is the etching pressure, the mean free

path, A, of XeF2 during the release process, which takes places at ~2000 mTorr, is found

to be approximately 15 pm. This value of A indicates that the possibility of the XeF 2

molecules hitting the small area silicon exposed by the 5 pm etch holes is very small.



Consequently, very little of the silicon exposed by the etch holes was initially etched

during release. Simply raising the etching pressure to -4000 mTorr, and thus reducing A

to around 7.5 pm, was sufficient in completely eliminating this problem. For all subse-

quent release processes using small etch holes, the starting etch pressure was raised to at

least 3000 mmTorr. A weak vapor pressure of the XeF 2 solid source, however, will make

it difficult to achieve the required etching pressure.

2.4.4 Etching time

In order to prevent excess TiN damage, it is important to terminate XeF 2 etching as

soon as the desired membrane has been released. However, it is difficult to precisely

predict the silicon etch rates during the release process as it is dependent on a multitude

of factors, with its complex dependence on opening geometry being one of the most

difficult to predict. Figure 2-32 indicates, for example, how the etch depth of silicon

depends on the diameter of a circular opening. For this and other reasons, samples

being released must be continually monitored to determine the endpoint. Fortunately,

discoloration of membranes, as seen in Figure 2-33, that are clearly visible under both

optical and SEM observation makes easy to determine when complete membrane

release has occurred.

Hole Diameter (sm)

Figure 2-32: Experimental results showing etch depth of silicon as a function of opening
hole diameter [74].
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(a) (b)

Figure 2-33: Partially released TiN devices where the darker regions (indicated by
arrows in (b)) indicates unreleased areas. Device shown in (a) does not have any
additional etch holes while the one shown in (b) has one rectangular etch hole in the
center.

2.4 Summary of fabrication process

The origami-based fabrication process for the integration of in situ grown CNTs, based

on preceding discussions, is summarized below in Figure 2-34. This represents only a

general overview of the process and certain device-specific variations, as will be outlined

in following chapters, may be necessary. Of course, the various fabrication guidelines

reported throughout this chapter must be followed while creating these types of origami

devices.



I
Figure 2-34: Overview of the CNT-integrated origami process: (a) deposit/pattern TiN
membrane layer; (b) deposit/pattern CNT growth catalyst; (c) grow CNTs; (d-e) use
post-CNT metallization technique to deposit/pattern various metal elements for wiring,
hinges, etc.; (f) release desired membrane through XeF 2 etching of the underlying silicon.
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Chapter 3

Microfabricated supercapacitor

with carbon nanotube electrodes

An electrochemical capacitor, which is now more commonly referred to as a superca-

pacitor, is a type of capacitor in which the energy is stored within an electrochemical

double layer at the electrode/electrolyte interface [75]. Such devices derive their high

capacitance mainly from the large surface area of the extremely porous electrode mate-

rial. Various forms of carbon, including carbon nanotubes (CNTs), make excellent

supercapacitor electrodes largely because of their high conductivity and specific surface

area [76, 77], and they are commonly used in macroscale devices for many research and

commercial applications.

In previous work by the author [10, 13], microfabricated electrochemical capacitors

were made by integrating the Nanostructured Origamim process with a manual carbon-

electrode (consisting of a Super P carbon black paste) deposition step. The use of the

origami process, which enabled the integration of nanoscale features and 3-D architec-

ture, proved ideal for electrochemical capacitor microfabrication, and the nanostruc-

tured electrodes resulted in a 50x increase in capacitance compared to devices without

such electrodes [13].

In this chapter, the origami-based fabrication and testing of a microfabricated

supercapacitor with nanostructured electrodes consisting of in situ grown, vertically-

aligned MWCNTs, as seen in Figure 3-1, is presented. The device consists of a single



CNT electrode flap that flips over to create the top/bottom electrode architecture. The

process reported herein remains compatible with many MEMS-based processes, thus

ensuring integration with pre-existing micro/nano-systems for possible use as an on-chip

power source, and because the CNTs are grown in situ, no additional electrode deposi-

tion or transfer process is necessary. As is the case with macroscale supercapacitors

based on CNT electrodes, the densely packed arrays of vertically-aligned MWCNTs in

the CNT-origami supercapacitor are expected to provide excellent electrical conductiv-

ity, high surface area, and superior electrolyte accessibility due to the presence of larger

pores and conductive paths [53, 78]. Figure 3-2 illustrates how creating electrodes out of

vertically aligned carbon nanotubes can result in, compared to other high surface area

nanomaterials, increased surface area utilization, increased electrical conductivity

throughout the electrode matrix, and increased ion mobility. While macroscale electro-

chemical capacitors based on CNT electrodes have been demonstrated previously [79],

the direct growth of the CNTs on the current collector, as opposed to the post-growth

transfer of CNTs, will help minimize contact resistance between the CNTs and the

substrate while eliminating CNT-to-CNT resistance within the electrode network.

SU-8 flap

gold hinges + wiring

CNTI
elrodes

bond pads

Figure 3-1: Schematic of the CNT-origami supercapacitor before and after the folding
process.
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Figure 3-2: Schematic illustrating how the use of vertically aligned CNT electrodes can
result in higher surface area utilization, increased electrical conductivity through the
electrode, and faster ion mobility [78].

3.1 Fabrication process and results

The fabrication process for the CNT-origami supercapacitor is based closely on the TiN-

based process reported in Chapter 2. However, creating a working supercapacitor

requires some processing modifications mainly due to the addition of a liquid electrolyte.

Fabrication details and results as well as additional processing considerations are

described below. The complete processing recipe can be found in Appendix A.2.

3.1.1 Process flow

As mentioned previously, the direct growth of CNTs requires exposure to temperatures

as high as 700*C; such high temperatures will damage the current collectors if they are

made out of gold, as is customary [10, 13]. Therefore, our CNT-origami process begins

by first depositing and patterning two, 150 nm thick TiN current collectors that will

later form the opposing electrodes of the supercapacitor (Figure 3-3(a)). At this stage, a

thin layer (-20 nm) of nickel (Ni) is deposited on top of the TiN sections to serve as

catalysts for CNT growth (Figure 3-3(b)). The TiN layer should provide sufficient

electrical connectivity to the nanotubes while serving as an excellent diffusion barrier

layer and also enhancing nanotube growth as mentioned in Chapter 2. A densely

packed array of vertically-aligned MWCNTs is then grown out of the catalyst layer

....... ...



following up to 30 minutes of growth in a 4:1 flow of ammonia and acetylene gases

under a 150W DC plasma (Figure 3-3(c)). Under the most ideal growth conditions, 30

minutes of growth yielded CNTs that were approximately 10 pm in length. Greater

lengths could not be achieved, most likely due to the accumulation of excess carbon on

the surface of the catalyst particle. To the best of our knowledge, this is the longest

reported length for PECVD-grown CNTs. While 10 pm was the maximum length

achieved, the CNTs were typically between 6 and 7 pm in length. Minor variations to

the catalyst thickness and other growth parameters yielded nanotubes of different

diameters, densities, and lengths. A typical CNT array used in our experiments had a

density of -9 CNTs/pm 2 with individual CNT diameter of approximately 150 nm. A 20

nm thick layer of silicon nitride (SiN) that covers the entire substrate (not shown in the

drawing) provides electrical isolation between the device and the silicon substrate. In

addition to the use of TiN, direct growth of CNTs on Inconel [55], a type of metallic

alloy, as well as a Mo/Al/Fe metal stack [57] have been recently demonstrated by other

groups for supercapacitor applications. However, thin film deposition of Inconel is not

available in our fabrication facilities, and both materials are incompatible with our

release process.

The remainder of the origami fabrication process takes place after the CNTs have

been grown. In Figure 3-3(d), a 600 nm thick gold layer is deposited using the previ-

ously mentioned post-CNT metallization technique to create the necessary hinge and

wiring elements. As shown in the inset in Figure 3-4, the CNTs remained unchanged

through the metallization steps. In Figure 3-3(e), a SU-8 layer is deposited and photo-

lithographically patterned around the electrodes to provide overall structural support

during and after the folding process. The SU-8 layer is typically -10 pm thick but the

thickness can be adjusted to account for different CNT heights. In the final step of the

fabrication process (Figure 3-3(f)), the folding segment is released from the substrate

through a XeF2 isotropic dry etching of the underlying silicon. The folding process,

outlined in Figure 3-5, is accomplished by applying a small drop (-1 pL) of electrolyte

(IM H2 SO4) to the device using a micropipette, at which point the loose flap instantly

pops up to 900 due to capillary forces [80]. At this point, the same micropipette can be

used to draw some of the electrolyte back in, which sucks down the flap thereby causing



it to fold all the way to 180*. Once flipped over, the SU-8 frame keeps the two CNT-

electrodes from touching each other while containing the electrolyte within the cell.

Additionally, capillary forces keep the folded flap from popping back up. During the

humid summer months, the electrolytes remained inside the cell without drying out for

several weeks at a time. All supercapacitor devices, individually located on a 1 cm x 1

cm die, is wire-bonded to a ceramic chip holder prior to electrochemical testing.

Figure 3-3: Process flow for the CNT-origami electrochemical capacitor. (a) De-
posit/pattern TiN layer. (b) Deposit/pattern catalyst layer. (c) Grow CNTs. (d)
Deposit/pattern Au layer through lift-off. (e) Deposit/pattern SU-8 layer. (f) Release
membrane, deposit electrolyte, and fold over flap.

...............................................................



Figure 3-4: SEM image of a CNT-origami supercapacitor prior to folding. The inset
shows the CNT-covered electrode surface.

p-pipette

Figure 3-5: Schematic overview of the capillary force-based folding procedure.

3.1.2 Etching of CNTs

In order to fully release a supercapacitor device like the one shown in Figure 3-5, up to

30 minutes of etching in XeF 2 was initially required. Although much longer etching

times were performed on previous generation supercapacitor devices without any

difficulty and unwanted etching (i.e. significant etching of any material other than



silicon), the addition of TiN and CNTs in the current device posed a concern. As

mentioned in Chapter 2, however, the thick CNT layer shielded the TiN layer from

most of the XeF 2 gases. Also, initial XeF2 tests performed on CNTs grown with the

home-built machine showed no appreciable nanotube damage whatsoever. Additionally,

etching of CNTs in XeF 2 has not been reported in literature.

However, long XeF 2 etching of completed supercapacitor devices with CNTs grown

with the commercial machine, as seen in Figure 3-6, showed that there was clear

nanotube damage that started to show after around 15 minutes of etching and contin-

ued to progress until most of the nanotubes were significantly damaged after around 23

minutes. It was quite evident that CNTs grown on the commercial machine, which were

clearly of lower quality and had more visible surface defects (imperfections) compared to

those grown on the home-built machine, were significantly more susceptible to XeF2

etching. This is not surprising since XeF 2 was shown to easily etch away the excess

amorphous carbon buildup on the nanotubes; a similar etching mechanism was likely in

effect in the etching of the quasi-crystalline nanotubes. Although some of the variable

growth parameters on the commercial machine were adjusted to improve CNT quality

and thus decrease XeF 2 susceptibility, unwanted CNT etching could not be completely

eliminated. In the end, the issue was resolved by decreasing the total etch time required

for full device release. By reducing the number of samples put into the XeF2chamber at

one time and increasing the number of etch holes in the device, etch times could be

reduced down to less than 15 minutes.

On an interesting note, partial etching of CNTs may actually be beneficial in super-

capacitor applications. Lu et al. [53] reported on the intentional plasma etching of CNTs

in order to introduce further defects and open up their end tips. They showed that

supercapacitors made from such plasma-etched CNTs had higher capacitances due to

the increased surface area of their electrodes. Partially-etched CNTs shown in Figure 3-

6(b) appear to have lost much of their catalyst tips and exhibit rougher sidewalls; total

electrode surface area of future CNT-origami supercapacitors may be increased further

through the partial etching of CNTs.



(a)

(d)

Figure 3-6: SEM images of initial supercapacitor CNTs grown on the commercial
machine after (a) 12 minutes, (b) 15 minutes, (c) 18 minutes, and (d) 23 minutes of
XeF 2 etching.

3.1.3 Wettability of CNTs

Since the CNT-origami supercapacitors use an aqueous electrolyte and CNTs are widely

known to be inherently hydrophobic due to their perfectly crystalline sidewalls, it was

not initially known whether or not the electrolyte would sufficiently wet the CNT

electrodes. In fact, micropatterend areas of vertically aligned CNTs, like the ones found

on the CNT-origami supercapacitor, were reported of possessing even greater hydropho-

bicity than the individual nanotubes [81]. However, simple wetting tests, like the one

shown in Figure 3-7, showed that the electrolyte droplet quickly seeped through our

nanotube forest and appeared to wet the surface quite well. Similar results, which are

clearly the result of surface tension effects arising from the CNT forest's geometry, were

(b)



demonstrated by many other groups [82, 83]. Additionally, the open edge sites associ-

ated with our particular type of nanotubes (see Section 2.2.3) likely contributed to the

significantly reduced hydrophobicity, if not hydrophilicity, of the individual nanotubes

[84]. Even if our CNT electrodes had been hydrophobic, there are many available

surface treatments for reducing hydrophobicity [85] not to mention the fact that the

electric field applied as a result of our capacitor configuration would likely induce

wetting of the electrode areas [86].

(a) (b)

Figure 3-7: Side view of a H2SO, electrolyte droplet (a) immediately and (b) a few
seconds after being placed on the CNT forest. Eventually, the droplet would spread out
even further and completely seep into the CNT forest.

3.1.4 Multi-layer devices

The one-flap CNT-origami supercapacitor mentioned thus far creates one active electro-

chemical cell with a set of electrodes. However, the origami approach allows us to

continually stack our device in the third dimension to achieve increased performance

without sacrificing additional areal footprint. Figure 3-8 shows a partially-folded 5-flap

device that results in two active cells (the blank segments act as buffer layers between

the various electrode pairs). However, the folding process for such a device is extremely

difficult due to the lack of a reliable latching mechanism between the layers. Further-

more, the reduced areal footprint after stacking is negated by the fact that a deep, large

silicon trench occupies the pre-fold real estate. Ongoing and future research in the areas

of face-to-face latching, multiple segment/direction actuation, and substrate-saving

release techniques will allow the creation of similar and even larger devices.



Figure 3-8: SEM image of an unfolded, multi-layer supercapacitor device with the
arrows indicating the membrane folding directions.

3.2 Electrochemical testing

After several electrochemical capacitors with MWCNT electrodes were successfully

fabricated, their performance was characterized through cyclic voltammetry (CV),

galvanostatic charge/discharge, and electrical impedance spectroscopy (EIS). The two-

electrode devices that were tested had a single electrode footprint of around 6.25 x 10-4

cm2 , which was designed to be approximately equal to that of the previously tested

Super P carbon devices [10]. The two CNT electrodes with the as-measured CNT

geometry and density (diameter = 150 nm; length = 6pm; density = 9 CNTspm2 ) had

a combined real surface area of approximately 0.015 cm 2.

3.2.1 Results and discussion

In order to accurately compare the performance of the CNT-origami supercapacitors to

the previously obtained performance of the Super P carbon supercapacitors, the various



electrochemical testing parameters were kept identical to those used previously in [10].

The CV curve was generated at a voltage scan rate of 50 mV/s, and the galvanostatic

charge/discharge was done under a constant current of 0.5 pA. The EIS was performed

over a frequency range of 5 MHz to 100 mHz using a signal amplitude of 10 mV.

Results of the CV and galvanostatic charge/discharge tests are shown in Figures 3-9

and 3-10. Based on the equation

C= (3.1)
dV%

dt

a total system capacitance of approximately 0.4 F was obtained, which, given the

slightly reduced electrode footprint of the new device due to addition of etch holes, is

comparable to the value of 1.0 VF reported previously for the electrochemical capacitor

based on Super P carbon black electrodes [10]. The theoretical charge storage capacity,

the value referred to most often for estimating the theoretical maximum capacitance, is

highly dependent on the precise electrolyte and electrode material and could not be

obtained for our particular electrolyte/electrode material combination. However, Lu et

al. [53] reported of obtaining a charge storage capacity of approximately 110 pF/cm2 for

a single-electrode supercapacitor consisting of aligned CNTs. Applying their storage

capacity value to our supercapacitor results in a theoretical two-electrode capacitance of

0.4125 pF, which is very close to our measured capacitance of 0.4 pF.
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Figure 3-9: Cyclic voltammogram results for the CNT-origami supercapacitor measured
at a scan rate of 50 mV/s.
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Figure 3-10: Galvanostatic charge/discharge profile for the CNT-origami supercapacitor

recorded at ±0.5 pA.

Figure 3-11 shows the results of EIS measurements, which also indicates a total

capacitance of approximately 0.4 pF as shown through earlier tests. The overall shape of

the Nyquist plot shown in Figure 3-11(a), which consists of a small semi-circle followed

by a 45rj Warburg impedance region at higher frequencies and a steep, almost vertical

region at lower frequencies, is consistent with those found in literature for similar, albeit

much larger, devices [87-89]. The Nyquist plot indicates an almost purely capacitive

behavior at low frequencies and shows the frequency dependence of the ion diffusion and

transport process at high frequencies. Furthermore, the relatively constant slope in the

log |Z\ vs log Frequency plot shown in Figure 3-11(b) points to reasonably consistent

performance throughout the frequency spectrum. The equivalent series resistance (ESR),

as determined from the Z'-intercept on the Nyquist plot, was approximately 20 Q. The

significance of this ESR value will be discussed in the following section.
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Figure 3-11: (a) Nyquist and (b) Bode plots of the EIS results shown for frequencies
between 4 MHz and 4Hz.

3.2.2 Comparison to carbon and other CNT electrodes

As mentioned in Section 3.2.1, the CNT-origami supercapacitors exhibited a measured

capacitance of 0.4 pF compared to 1.0 pF of the Super P carbon device. In order to get

a better sense of how these two values compare, several commonly used measurements



for specific capacitances, for both devices, are summarized in Table 3-1.

The two types of supercapacitors show comparable values with subtle differences.

The CNT-based supercapacitor shows a slightly higher capacitance per surface area of

electrode material since most of the CNT-electrode surface should be accessible for the

ions; in the Super P device, some parts of the electrode surface is inaccessible due to the

presence of small nanopores (similar to the case shown in Figure 3-2). For capacitance

per volume and per mass of electrode material, however, the CNT-based supercapacitor

exhibits slightly lower values. This is most likely because only the outer most surfaces of

the CNTs, which were quite thick with a less than optimal surface-area-to-volume ratio,

contribute to charge storage. Modifying the CNT geometry, namely making it thinner,

should increase this value. Capacitance per mass is used predominantly as a measuring

standard in many supercapacitor applications because electrode materials can be quite

costly and comprise bulk of the manufacturing costs; however, it is not as important in

our devices since the electrode materials are directly grown on the supercapacitor and

do not represent a huge cost. Capacitance per areal footprint, or in other words on-chip

area, might be a better measure of value and efficiency for the CNT-origami superca-

pacitors. The measured capacitance per on-chip area for our device compares favorably

to other published values as indicated in Table 3-2. This value is even more impressive

since the CNTs used in our study were only around -7 pm in length.

Table 3-1: Performance metrics for Super P carbon and CNT-based electrochemical
capacitors. All values shown are for the entire two-electrode system (*Mass density of
MWCNTs was taken to be 0.6 - 2 g/cm3 [90, 91]).

Specific Capacitance Super P Carbon CNT-origami

pF/cm2  816 640

(on-chip area)

[F/cm2  13 27
(theoretical surface area)

pF/cm3  8.2x104 4.Ox104
(theoretical volume)

F/g 4 2~7*
(theoretical mass)



Table 3-2: Specific capacitances (in pF/cm2 ) for various supercapacitor devices with
electrodes based on MWCNTs.

CNT-based Supercapacitor Specific Capacitance CNT length
CNT-origami 640 pF/cm 2  -7 pm
Interdigitated CNT [57] 428 Fi/cm 2  ~80 pm
Electrophoretic deposition [92] 93 PF/cm 2  7 pm

Table 3-3 compares the capacitance per mass (F/g) of our devices to some of the

most promising works found in literature with the highest reported performances for

CNT-based supercapacitors. Although it appears that our performance based on this

specific metric seems significantly small compared to other published values, it should

be noted that the total capacitance of an electrochemical double layer capacitor, like in

our device, is given by the equation

1 1 1
= + (3.2)

C dltota C 1  Cdl 3,22

since there are effectively two capacitors connected in series through the electrolyte.

Therefore, a real-world, two-cell setup like the one found in our device exhibits half the

capacitance of the individual electrodes. However, most published performance figures

for supercapacitors are for a three-cell testing setup with a single working electrode,

which actually exhibits twice the capacitance of a two-cell setup while only possessing

half the electrode material; specific capacitances values obtained in this way are thus

typically four times greater than those of our two-cell device. Additionally, all of the

devices shown in Table 3-3 are based on SWCNTs with diameters well over a order of

magnitude smaller than our MWCNTs. Because thinner CNTs have a much more

favorable surface-area-to-volume ratio, the capacitance per mass value naturally suffers.

However, these values suggest that the CNT-origami supercapacitor, with better

optimized CNT geometries, will be able to obtain significantly higher performance.

Lastly, it should be mentioned that only the CNT-origami supercapacitor is designed for

and fully compatible with other microfabrication platforms.



Table 3-3: Specific capacitances (in F/g) for various CNT-based supercapacitors.

CNT-based Supercapacitor Specific Capacitance
CNT-origami 2~7 F/g
Densely packed CNT [93] 20 F/g
Sprayed on CNT film [94] 90-120 F/g
Layer-by-layer assembly [95] 159 ± 10 F/g

Another comparison of the CNT and Super P supercapacitors can made with regards

to their frequency-dependent behaviors. Figures 3-12 and 3-13 show previously obtained

EIS results for the Super P carbon electrodes and plain gold electrodes, respectively. As

expected, the plots in Figure 3-13 show an almost purely capacitive behavior at all

frequencies since the gold electrode is smooth and flat with no porous structure for the

ions to migrate through. The trade-off, of course, is the greatly reduced total capaci-

tance. The plots in Figure 3-12 are also as expected and typical of supercapacitors with

highly porous electrode materials. Comparing the log |Z\ vs log Frequency plot of the

Super P and gold devices to that of the CNT device shown in Figure 3-11(a) reveals

that the CNT-origami supercapacitors behave very similarly to an ideal capacitor for

frequencies below 1MHz. Although this benefit is not hugely important in energy

storage schemes, it could be important in certain high-frequency applications.

Finally, the ESR of the CNT-origami supercapacitor was around 20 Q as determined

by the Z'-intercept on the Nyquist plot whereas it was approximately 17 Q for the

previously tested Super P carbon device. Typically, lower ESR values are desirable since

that translates into higher power densities. The total impedance of our supercapacitor

system can be approximately described by the equation

Z -R+ -j (3.3)

where R is the total internal resistance of the system, o> is the angular frequency, and C

is the total capacitance. At very high frequencies, the capacitance term disappears, and

the supercapacitor basically behaves as a resistor with resistance indicated by the ESR.

While the CNT device, compared to the Super P device, was expected to exhibit lower



electrolyte and electrode resistance due to its perfectly aligned and completely connected

electrode network, we also expected increased internal resistance from the use of a TiN

current collector, whose electrical resistivity is approximately 60 times higher compared

to the previous device's gold current collector. We believe that the two factors offset

each other resulting in approximately equal final ESR values. The ESR values are well

within reasonable limits, especially considering that we have a completely self-contained

and fully wire-bonded package with micropatterend wiring.
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3.3 Summary of CNT supercapacitor

In summarizing, we have shown that a microscale electrochemical capacitor with

vertically-aligned MWCNT electrodes can be made based on the origami process.

Unlike the previous generation origami supercapacitor that included a manual, time-

intensive electrode deposition step, the CNT-origami supercapacitor was created entirely

using commercially available fabrication equipment. It was further shown that the

CNT-origami supercapacitors exhibit electrochemical performance that is comparable to

those of full-sized devices while exhibiting more favorable high-frequency behaviors

compared to non-CNT origami devices.

The CNT-origami supercapacitor will be able to serve as an integrated, on-chip

power source for various micro/nano-systems applications. We expect further perform-

ance improvements will result from optimizations of CNT geometry and density.



Chapter 4

Membrane manipulation using

magnetic carbon nanotubes

In addition to their unique electrical, mechanical, and optical properties, carbon nano-

tubes additionally possess highly interesting magnetic properties. Such magnetic proper-

ties of CNTs have been studied extensively and utilized in nanotube alignment [96, 97]

and self-assembly [43, 98], magnetic force microscopy [99, 100], recording [101, 102], gas

sensing [101, 103], and even gene delivery [104] applications. Furthermore, the inherent

magnetic properties of CNTs can be enhanced significantly by coating [98, 99] or filling

the nanotubes with ferromagnetic materials such as Ni [102,103], Co [103, 104], and Fe

[108, 109]. Filling of nanotubes with ferromagnetic materials is especially attractive

because the vertically elongated shape of the encapsulated particles leads to a large

perpendicular coercivity [109] while the carbon coating protects the particles from

oxidation [32, 110] and mechanical abrasion [110]. While several methods [105, 108, 111,

112] have been developed for intentionally encapsulating metals inside CNTs, nanotubes

grown via the PECVD method exhibit tip-growth behavior (see Figure 1-2) and thus

naturally contain teardrop-shaped, carbon-encapsulated catalyst particles at the tips

without the need for additional processing steps [32, 104, 109]. Furthermore, it turns out

that such encapsulated particles are ferromagnetic since Ni, Co, and Fe are almost

always used as CNT growth catalysts, as in our case, due to their highest demonstrated

level of catalytic activity [113]. There is some interesting recent work involving the use



of non-ferromagnetic materials for CNT growth, but such growth is still extremely rare

and difficult to achieve [114-116].

For the origami devices, the natural occurrence of tip-embedded nanomagnets in the

CNTs is another facet of CNT-integration that can be taken advantage of for increased

functionality. This chapter will elucidate the properties of such encapsulated nanomag-

nets and explore their usefulness in origami applications.

4.1 Magnetic properties of CNTs

The magnetic properties of our PECVD-grown CNTs, or more specifically that of the

nanoparticles encapsulated inside them, warrant further investigation. While magnetic

properties of bulk Ni and Co, the two materials used for CNT growth in our case, are

well known, the properties of the embedded nanoscale particles, especially after undergo-

ing CNT growth, is unclear. While the magnetic properties of ferromagnetic materials

intentionally encapsulated within nanotube walls have been have been investigated, the

magnetic properties of naturally occurring catalyst particles inside CNT tips have never

been, to the best of our knowledge, been characterized in detail.

An example of a CNT grown in our facilities is shown in Figure 4-1(a). The upside-

down teardrop shape of the embedded Ni catalyst is plainly visible. Additionally, Figure

4-1(b) clearly shows the thin layer of carbon coating around the Ni particle that keeps it

from oxidizing and losing its magnetic properties. The results of energy dispersive x-ray

(EDX) analysis performed on old (> 1 month) CNT tips, shown in Figure 4-2, also

indicate the absence of oxygen, further suggesting that the otherwise expected Ni

oxidation has not taken place due to the thin carbon coating around the nanoparticle.

Oxidation and other material changes of the ferromagnetic catalyst tips should also be

revealed in subsequent magnetic characterizations.
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Figure 4-1: Closeup SEM and TEM images, respectively, of a PECVD-grown CNT
showing (a) the teardrop-shaped Ni catalyst particle embedded in the tip and (b) the
carbon coating surrounding the catalyst.
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Figure 4-2: Results of EDX analysis of the CNT's tip region.



4.1.1 Magnetic measurements

A vibrating sample magnetometer (VSM) was used to measure the saturation

magnetizations and coercivities of the Ni and Co nanoparticles embedded in the CNTs.

Since individual nanotubes cannot be measured with this technique, a well-characterized

forest of CNTs was used in the analysis.

On average, the Ni-filled CNTs tested were approximately 5 Pm in length and 160

nm in diameter (a ~ 14 nm). The teardrop-shaped Ni particle encapsulated at the tip of

each CNT, shown in Figure 4-1(a), was approximately 160 nm wide and 220 nm long.

The approximate CNT density was 5 nanotubes per Pm2. The various nanotube meas-

urements were taken by analyzing top-down, side, and isometric views of the CNTs

under an SEM. A sample top-down image is shown in Figure 4-3; the diameters and

densities of the CNTs can be clearly seen. Due to their highly consistent growth and

excellent CNT uniformity, as explained further in Section 2.2.1, Ni-filled CNTs were

used predominantly throughout the study although Co-filled CNTs were also grown and

studied. Figure 4-4 shows the typical Ni and Co-filled CNT that were used for the

magnetic tests.

Figure 4-3: Top-down view of a CNT forest. Each bright spot corresponds to one
nanotube.
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Figure 4-4: Typical (a) Ni-filled and (b) Co-filled CNTs used for magnetic testing (bar

=2 pm)

Figure 4-5 shows the resulting magnetic hysteresis loops of 5mm L 5mm arrays of

vertically aligned CNTs grown from Ni and Co catalysts as obtained from VSM analy-

sis. Based on the nanoparticle dimensions and nanotube density mentioned above, the

encapsulated Ni nanoparticles were found to have a saturation magnetization, M, N, of

approximately 0.477 x 106 A m-1, which is very close to the theoretical value of 0.48 L

106 A m . Similarly, saturation magnetization of the Co nanoparticles, M, c, was found

to be around 1.21 x 106 A nf, which is slightly smaller than the theoretical value of 1.42

x 10' A m1 . The discrepancy, however, can be accounted for by the difficulty in accu-

rately approximating the total nanoparticle volume of the rather nonuniform Co CNTs

(see Figure 4-4). The hysteresis loops also show the in-plane/perpendicular coercivities

of Ni and Co nanoparticles to be around 100 Oe/180 Oe for Ni and 300 Oe/600 Oe for



Co, respectively, where the perpendicular direction is in-line with the nanotube axis.

The measured coercivity values are in excellent agreement with those found in literature

for similar configurations [101, 105, 109]. While magnetocrystalline anisotropy could also

have an effect if the particles turned out to be single crystalline, consistently higher

coercivities in the axial direction of the nanotubes for both Ni and Co nanoparticles

suggest that the displayed perpendicular magnetic anisotropy is caused solely by the

anisotropic shape of the encapsulated nanoparticles.
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Figure 4-5: Magnetic hysteresis loops for (a) Ni and (b) Co as obtained through VSM
analysis. Red lines correspond to perpendicular (to the substrate) magnetization while
the black lines correspond to magnetization in the in-plane direction.
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4.1.2 Origami applications

The ferromagnetic properties of CNT-encapsulated catalyst particles can be utilized by

origami devices in one of two ways. First, the origami fabrication method can be used to

create CNT-integrated devices intended for applications that require magnetic CNTs,

for example, magnetic force microscopy [99, 1001. The other approach, and the one that

will be investigated further in this chapter, is to use the newly acquired magnetic

properties of the CNTs to aid in the overall origami fabrication and assembly scheme. A

combination of the two methods, in which magnetic CNTs serve to both aid in the

origami process as well as add magnetic functionality to the final device, is another

possible option for future exploration.

The work by Nichol et al. involving the use of nanopatterned magnets on the surface

of origami membranes [14, 117], outlined in Figure 4-6, reveals how magnetic CNTs

may be used to assist in origami fabrication. Figures 3-6(b) shows how a rotating

external magnetic field magnetizes the nanomagnets and creates magnetic torque that

in turn causes the entire membrane segment to actuate and fold. Figure 4-6(c) shows

how the magnetic attraction force between corresponding nanomagnets can cause the

two opposing membranes to attach to each other once they are sufficiently close. In

similar fashion, origami membranes covered with vertically-aligned, nanomagnet-

embedded CNTs should also exhibit rotation and latching action as shown in Figure 4-7.

The remainder of this chapter will be devoted to these two anticipated behaviors.
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Figure 4-6: Magnetic actuation and attachment method based on the use of (a) pat-
terned nanomagnets on a folding membrane segment. (b) A rotating external magnetic
field magnetizes the nanomagnets and cause them, and in turn the membrane, to rotate.
(c) Once the opposing nanomagnets are sufficiently close to each other, magnetic
attraction forces cause the two membranes to attach to each other [117].
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4.2 Membrane rotation

Controlled rotation or folding of origami membranes is crucial for assembly purposes as

well as in dynamic applications where the membranes must actuate back and forth

between predetermined positions. For origami assembly, which we are most interested
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in, the membrane must controllably rotate up to 180 from the initial horizontal state

(downward rotation of up to -180* would also be possible if enough substrate material

has been removed to allow the membrane segment to rotate in that direction). Com-

pared to alternative methods of origami actuation, the CNT-based rotation is particu-

larly attractive because it uses CNTs that are already present on the membrane and

thus requires no further addition of actuation mechanisms on the device itself.

4.2.1 Design and fabrication

Following the general fabrication scheme described in Chapter 2, a simple test device

was made to verify and quantify the magnetic rotation abilities of our CNT arrays. The

device consisted of a rectangular CNT-covered TiN stage connected on either side by

long, flexible torsional hinges. To simplify the fabrication process, the stage and hinge

structures were patterned on a single TiN layer and thus had the same thickness. The

fabrication process is outlined in Figure 4-8. Once the TiN stage and hinges have been

released from the silicon substrate, the entire assembly is free to rotate out of plane. The

detailed recipe for this process can be found in Appendix A.3.

Several variations of the test device, some of which are shown in Figure 4-9, were

successfully fabricated and released. The design variations included etch hole

size/density, hinge type (serpentine vs. bar), hinge length, and stage size (i.e. number of

CNTs). The design shown in Figure 4-9(d) was ultimately chosen because it released

very rapidly due to its many etch holes (~2 minutes of XeF 2 etching), exhibited greater

magnetic torque due to its larger stage size, and remained tight and freely suspended

after release. The other designs, many of which offered even greater torsional flexibility,

tended to sag and stick to the bottom surface making it difficult to later rotate out of

plane.

The device shown in Figure 4-9(d) consists of a TiN stage that measures 100 Pm x

200 pmn and two torsional hinges each of which measures 5 pm x 450 pm. Both struc-

tures are 100 un thick, and the Young's modulus of TiN is taken to be around 600 GPa

[62]. The torsional hinges were designed to provide minimal and uniform torsional

stiffness throughout the intended range of motion and at the given dimensions provide a

combined torsional stiffness S of around 3.06 x 10-" N-m [118]. The maximum principal



strain of the hinge structures were estimated to be around 0.00016% based on finite

element analysis using ABAQUS. With such a small strain value, the hinges are as-

sumed to behave linearly throughout its intended range of motion (0* -180*).

Figure 4-8: Fabrication process for the magnetic testing device. A TiN is layer is patterned to
create the rotating stage and supporting torsional hinges, CNTs are grown on the stage, and
entire structure is released through XeF2 etching.

- - --------------------------------------------- .............
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bar = 100pm

Figure 4-9: (a-d) various designs considered for magnetic testing. The design shown in
(d) was chosen and used throughout all magnetic actuation tests. The long rectangular
patch of CNTs on the fixed substrate is for membrane latching tests that will be
discussed in Section 4.3.

4.2.2 Theory and simulation

Magnetic torque is generated when, in the presence of an external magnetic field, the

magnetization directions of the nanoparticles inside the CNT tips are oriented at an

angle 0 with respect to the direction of the external field. The torque generated, T, is

given by the familiar equation

T =mxB, (4.1)



where m is the magnetic moment associated with the nanoparticle and B is the inten-

sity of the external magnetic field. If the nanoparticles within the CNTs were perfectly

spherical, they would magnetize in a direction parallel to the external field; no magnetic

torque would be generated and thus the origami membrane will not actuate. However,

this is not the case as our encapsulated nanoparticles possess a pointed, elongated shape

that results in increased magnetic anisotropy in the axial direction (see Figure 4-5); in

other words, they possess an axial magnetization preference and consequently generate

varying magnetic torque upon rotation of the external field.

For long slender nanomagnets, like the ones used by Nichol et a/. [14, 117], magnetic

torque generated under a rotating external field could be estimated by replacing the

nanomagnet with an ideal magnetic dipole, where the dipole moment of such an ar-

rangement can be expressed as

m = pl, (4.2)

with p being the strength of the magnetic poles separated by a distance . By combining

Equation 4.1 with Equation 4.2 and using the relationship p = pMA, where A is the

cross sectional area of the nanomagnet and po is the magnetic permeability of free space,

the magnetic torque per nanomagnet can be written as

TM =BM sin(O), (43)

where V is the volume of each nanomagnet. This generalization is possible for the most

part because the long and thin shape of the nanomagnets forces them to maintain a

perfect axial magnetization regardless of the external field angle.

While the dipole approximation works relatively well in circumstances just described,

the complex teardrop shape of the CNT-encapsulated nanoparticles requires a different

approach. This is due to the fact that most of the encapsulated nanoparticle is com-

prised of spherical "nonmagnetic" volume that contributes little to the overall magnetic

torque. In order to obtain a more accurate angular dependence of Tm for the teardrop



shaped nanoparticles, Object-Oriented Micromagnetic Framework (OOMMF) [119]

software was used to simulate the effects of a rotating magnetic field.

For the OOMMF simulations, a fully three-dimensional model of the teardrop shape

was built in AutoCAD and converted into compilable format by dividing into 35 two-

dimensional slices stacked on top of one another as shown in Figure 4-10. In the simula-

tions, a magnetic field rotating from 0* to 180* (around the torsional hinge axis shown

in Figure 4-8) and ranging in intensity from 0.1 T to 0.22 T was applied to the tear-

drop-shaped nanoparticle, which were modeled as either solid Ni or Co.

...... 44.44444444 444444444+......
Figure 4-10: Two-dimensional slices of the 3-D teardrop model used in OOMMF
simulations.

Figure 4-11 shows the OOMMF simulation results for magnetic torque generated per

nanotube as a function of the external field angle (intensity set at 0.2 T). The red

(circle) dots correspond to the Ni nanoparticles while the black (square) dots correspond

to the Co nanoparticles. Since magnetic torque is proportional to the saturation mag-

netization of the material as indicated by Equation 4.3, the torque values for Co

nanoparticles are shown to be approximately three times greater than those of the Ni

nanoparticles as expected (M, , = 0.48 x 106 A m1 compared to Ma, c= 1.42 x 106 A

m-1). Total magnetic torque generated by all the CNTs on the origami membrane is

shown in Figure 4-12 where the horizontal blue line indicates the maximum torque

required to completely flip over the stage (i.e. rotate 180'). With the given stage/hinge

dimensions and CNT size/density, the figure indicates that only membranes covered

with Co-filled CNTs, and not Ni-filled CNTs, will be able to rotate all the way to 180'.

Figure 4-13 shows the OOMMF results for a full 1800 field rotation at varying intensi-

ties (0.1 T to 0.22T) for the Ni nanoparticle. The plots show an almost linear relation-

ship between torque and angle of applied magnetic field at all intensities up to about

65rj, after which the generated torque starts to decrease sharply and eventually reverses



directions at 900. This means that maximum magnetic torque will be obtained when the

external magnetic field is rotated approximately 65* with respect to the nanotube axis.

For comparison purposes, the green (triangle) dots in Figure 4-11, plotted using

Equation 4.3, show what the magnetic torque would be if the Ni nanoparticles were

replaced with equivalent magnetic dipoles. The results could also be interpreted as what

would happen if the nanoparticles maintained their initial magnetization in the axial

direction regardless of the external field angle. Compared to the OOMMF results for Ni,

the dipole approximation model results in magnetic torque that is approximately an

order of magnitude higher. This, again, can be explained by the "nonmagnetic" volume

of the spherical section of the teardrop. A slice of the OOMMF-simulated teardrop is

shown in Figure 4-14 for the instance when a external magnetic field B of 0.2 T is

applied at an angle 0 of 45*. The region to the left, which corresponds to the spherical

section of the teardrop, shows uniform magnetization in the direction of the external

field; thus no torque is generated in this region. The pointed region to the right, how-

ever, remains magnetized mostly in the axial direction due to shape anisotropy; the

generated magnetic torque comes only from this region.
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Figure 4-11: Simulation and dipole approximation results of magnetic torque generated
in one CNT as a function of magnetic field angle.
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to fully rotate the stage by 180*.
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Figure 4-14: Slice of the OOMMF-generated teardrop model showing internal magneti-
zation when an external field of B = 0.2T is applied at 45* with respect to the CNT
axis.

4.2.3 Experimental results

A simple test setup was created to verify the OOMMF findings. First, a released

magnetic CNT test device was placed horizontally under a microscope equipped with a

high-resolution digital camera. Next, a SmCo cube magnet (2cm x 2cm x 2cm) was

attached to a rotating shaft and placed next to the CNT sample. The shaft's axis was

in-line with the torsional hinge axis, and the two poles of the magnet were initially

parallel with the nanotube axis. At the external magnetic field angle of OB= 00, in

other words when the magnetic field lines going through the sample were parallel to the

CNTs, the magnetic field intensity at the center of the CNT device was measured with

a handheld magnetometer to be around 0.2 T ± 10%. At this point, the magnet was

slowly rotated in 10* increments, and a top-down image of the device was taken at each

interval. From such images, the rotation angle Oc of the CNT stage could be easily

estimated through simple trigonometry. The angle of applied magnetic field, OB, and the

CNT state rotation angle, Oc are shown in Figure 4-15. A more precise angle measure-

ment system based on laser beam deflection may be used in the future, but the current

design in which the entire surface of the rotating stage is completely covered by the

CNT array, known to have an extremely high optical absorption [120], made such a

setup impractical. Figure 4-16 shows three images of the device taken at OB= 10', 900,

and 130*, respectively. As seen in the images, the CNT stage rotation angle Oc lags

behind the magnet rotation angle OB, and this difference continues to increase as the

external magnet is rotated further.



In Figure 4-17, the stage rotation angle is plotted as a function of the applied mag-

netic field angle for both OOMMF (red line) and experimental (black line) results. As

expected for the Ni-filled CNTs based on Figure 4-13, the OOMMF-projected stage

rotation angle reaches the maximum of around 55* when OB - C, or the angle of the

external magnetic field with respect to the nanotube axis, is approximately 650. While

the experimental results are quite similar to the simulation results, the maximum stage

rotation angle of 65* is instead achieved when OB - Oc is around 75*. This small discrep-

ancy, however, is sufficiently accounted for by uncertainties in the estimation of CNT

size, number, and uniformity as well as variations in CNT orientation.

Upon further magnetic rotation beyond this angle, the stage quickly snapped back to

its original state, as expected, since the nanoparticle magnetization is reversed. Similar

testing was performed for the Co-filled CNTs as well, but the results were significantly

less consistent and could not easily be matched to simulation results. We strongly

believe this to be mostly the result of the aforementioned considerable lack of consis-

tency and uniformity with the Co-filled CNTs. However, all of the Co-filled CNT

samples consistently achieved full 180* stage rotations as predicted. Our ongoing work

regarding the uniform growth of Co-filled CNTs should resolve this discrepancy in the

future.

B

FnB

Figure 4-15: Definitions of GB and Gc-



Figure 4-16: Top-down images of the magnetic test device at 0 B= 100, 90 , and 1300,
respectively.
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Figure 4-17: Experimental
field angle.

and simulation results of stage rotation angle vs. magnetic

While magnetic simulations based on OOMMF are highly effective, as just shown, in

predicting magnetic rotation behavior of our CNT-covered membranes, the entire

process can be time consuming and computationally intensive. One alternative is to use



information gathered from the OOMMF simulations to modify the dipole approxima-

tion model from Equation 4.3.

For instance, Figure 4-18 gives the OOMMF-generated overall magnetization angle

0 ,1 of the teardrop-shaped nanoparticle as a function of the external magnetization

angle OB- Whereas 0 M should remain at 00 in ideal dipole approximations, Figure 4-18

shows that it increases almost linearly with the external field angle while trailing only

slightly behind it, a manifestation of the torque-neutral spherical region of the nanopar-

ticles mentioned earlier. Based on this information, Equation 4.3 can now be rewritten

as Equation 4.4. Furthermore, this behavior can be easily converted into a dipole

approximation correction factor a that can be used in conjunction with Equation 4.4 to

quickly help determine the rotation behavior of CNT-encapsulated nanoparticles under

various conditions. Figure 4-19 indicates how this correction factor scales, based on

further OOMMF simulations, in relation to the intensity of the externally applied

magnetic field while Equation 4.5 represents shows the new magnetic torque equation

based on this correction factor a.
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Figure 4-18: Average angle of magnetization inside the teardrop-shaped nanoparticle as
a function of external field angle for B = 0.2 T and 0 = 45*.
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Figure 4-19: Dipole approximation correction factor a as a function of external field
strength.
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Based on Figure 4-19 and Equation 4.5, quick approximations can be made of

magnetic rotation behaviors of teardrop-shaped nanoparticles inside CNTs. Figure 4-20

compares this newly acquired approximation value to previous simulation and experi-

mental results for membrane rotation. While the approximation breaks down at ex-

treme field angles not shown in the graph, it nevertheless matches experimental data

quite well.
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Figure 4-20: Experimental, simulation, and corrected approximation results for stage rotation
angle vs. magnetic field angle.

4.3 Membrane latching

For most origami device applications, successfully actuated membranes further need to

be permanently held in place through reliable latching mechanisms. As mentioned at

the beginning of the chapter, magnetic attraction forces arising between nearby CNT

tips could possibly enable magnetic latching between folded origami membranes. While

other forms of membrane latching, such as nanomagnet arrays, meltable polymer, and

mechanical links, have been successfully demonstrated by our group for origani applica-

tions, they typically require large areas of separately patterned structures dedicated for

latching. Achieving latching through the use of CNTs that are already present on the

membranes for device functionality and, as just described, membrane actuation pur-

poses can significantly reduce the overall complexity of the origami device. This section

will report on the initial and ongoing work regarding the use of CNTs for the latching of

folded origami membranes.
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4.3.1 CNT-enabled latching mechanisms

CNT-enabled latching of origami membranes basically boils down to the massively

parallel attachments between CNTs on opposing sides. There are two main ways in

which the CNTs on the origami membranes can latch on to each other. First and

foremost is the just mentioned magnetic attraction force arising from the CNT-

encapsulated nanoparticles. The attraction force F, between two nearby magnets can

be approximated by [117]

Fm = 2 (4.6)
"' 4rpod2

where M is the magnetization of the material, A is the cross-sectional area, and d is the

distance between the two magnets. While the exact equation cannot be directly applied

to the particular dimension and geometry of our nanoparticles, it can be used in con-

junction with OOMMF simulations to find out approximately how much magnetic

attraction force is being generated by our CNT pairs under both saturation and rema-

nent magnetization.

Figure 4-21 shows the OOMMF-generated magnetic attraction forces between arrays

of opposing Ni-filled as well as Co-filled CNTs under both saturation and remanent

magnetization for the device used in Section 4.2 (reproduced below in Figure 4-22). The

magnetic remanence values, which are approximately 32% of the saturation values for

both Ni and Co-filled CNTs, have been obtained from the VSM results shown in Figure

4-5. The blue (diamond) line indicates the attraction force required to overcome the

springback force of the torsional hinges and keep the two membranes latched. As

indicated by Figure 4-21, the magnetic attraction force begins to overcome the me-

chanical springback force (i.e. latches the membranes) as opposing CNT tips start to get

very close to each other (< 400 nm). Although these results assume that the two

membranes are perfectly parallel to each other and that all CNTs (-100,000 of them per

side in this case) are of the exact same height and perfectly paired to a mate on the

opposing side, all factors that would lead to a huge overestimation of the attraction

forces, they nevertheless look promising for latching applications since it has already
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been established that magnetic rotation forces can achieve full 1800 rotation and thus

can get the two membranes very close to each other. These results suggest that even

after the external magnetic field has been removed, the nanomagnets inside the CNTs

can keep the two membranes latched together as long as a large number of CNT pairs

are within a few hundred nanometers of each other.
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Figure 4-21: Simulation results of magnetic attraction force between two opposing CNT-
covered origami membranes as a function of separation distance between CNT tips. The
blue (horizontal) line indicates the required latching force based on torsional hinge
geometry.

Figure 4-22: Test device used for magnetic latching tests. The bright rectangular regions
indicate CNT forests (bar = 100um).
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The second way in which the CNTs can become attached to each other is through

van der Waals forces. Although these forces will only become significant when the

CNTs are in intimate contact, they can be quite considerable. For example, based on

the Derjaguin approximation, the pull-of force between two hemispheres (i.e. two CNT

tips) of radius R and two cylinders (i.e. two CNT bodies) of radius R is given, respec-

tively, by the following equations [121]:

F =cR Wa, (4.7)

F = 27CRWa, (4.8)

where the work of adhesion W, at intimate contact is approximated by

Wa ~ 2yg, (4.9)

and the surface energy of graphite yg is ~165 mJ/m 2 [122]. For our given nanotube

geometry, this means that the theoretical pull-off force between one pair of attached

CNTs is ~100 nN! This alone is equal to the total force required to keep the membranes

latched together. The commonly used Johnson-Kendall-Roberts (JKR) theory also gives

similar results [122]. Although such approximation methods are known to be extremely

ideal upper limits, up to around 10% of such values (approximately 1~15 nN) has been

reported in literature for CNT-to-glass adhesions [122, 123] and can be anticipated for

CNT-CNT interactions. In addition to magnetic attraction forces, the possible presence

of strong van der Waals interaction forces between CNT-covered membranes further

support the possibility of membrane latching via CNTs.

4.3.2 Initial results

The latching abilities of two CNT-covered membranes were clearly evident from the

membrane rotation experiments mentioned in Section 4.2. Once the released membrane

was folded over 1800 and came in contact with the opposing CNT forest, there was clear

latching between the two surfaces as evidenced by a very faint "snapping" action that
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occurred when the two sides came became magnetically attracted to each other. This

snapping action was nowhere as clear as the similar phenomenon demonstrated by

Nichol et al. [14], but the slight warping of the folded membrane as well as the signifi-

cant height nonuniformity of the Co-filled CNTs fully account for this discrepancy. Ni-

filled CNTs, although exhibiting much greater uniformity, could not be used in this case

since full 180* membrane rotations could not be performed as mentioned previously.

While the latching action between opposing CNT arrays occurred consistently in the

presence of an external magnetic field, clearly indicating the large attraction forces

between magnetically saturated nanoparticles in the CNT tips, sustained latching upon

removal of the external field only occurred around 25% of the time. In such cases, there

was clear membrane movement and partial detachment upon field removal indicating a

significant decrease of attraction forces. However, it was not apparent as to which of the

aforementioned CNT-enabled latching mechanisms were responsible, namely magnetic

attraction under remanent magnetization or van der Waals forces between touching

nanotubes, for the continued attachment. A clear SEM image of the latched membranes,

although potentially helpful, was difficult to obtain since a long tumultuous journey

through the MIT campus separated the SEM facility from the magnetic testing facility;

many latched samples became unlatched by the time they reached the SEM. Figure 4-

23 shows one of the few samples that survived the trip. In such images, however, the

CNT-CNT interaction region is not clearly visible due to the large size and slight

curvature of the latched membrane.

Figure 4-23: Side SEM view of a folded and semi-permanently latched CNT membrane.
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By chance, the image shown in Figure 4-24 was taken where a significantly warped

top membrane had become attached to the CNT forest on the bottom through the

same attachment process described above. However, the highly curved shape of the top

membrane allowed us to take a very good look at the small region where the CNT

interactions were taking place. Surprisingly, very few CNTs from both sides were

actually attached to each other and keeping the top membrane from popping back. In

fact, a careful examination of the CNT interaction region (Figure 4-24(b) and inset in

Figure 4-24(a)) revealed that only about 30 or so CNT pairs were in contact with each

other while the rest of the unlatched CNTs were located far beyond the required

separation distance for significant attraction under remanent magnetization. Assuming

that van der Waals forces were solely responsible for keeping this membrane latched,

this translates into around 3 nN of adhesion force per CNT, which is well inline with

the values of between 1~15nN reported by other groups [122, 123]. While magnetic

attraction under remanent magnetization still cannot be eliminated as a source of

prolonged membrane attachment, van der Waals attraction between attached CNTs

presents itself as a very strong primary factor.
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(a)

(b)

Figure 4-24: (a) Isometric and (b) closeup SEM images of the CNT interaction region in
a highly warped device.

Figure 4-24(b) reveals another interesting point about CNT latching. While there is

generally a pretty significant variation in CNT lengths, there are occasional pairings

between CNTs that appear to be significantly taller than their neighbors. Additionally,

the overwhelming majority of such pairings take the form shown in Figure 4-25. Such

occurrences are reflective not of unusually long CNTs but actually of CNT pairs where

one or both of the nanotubes have been detached from the substrate, as is often the case

for MWCNTs [122]. The plot of magnetic attraction force versus distance between the
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pointed ends of the encapsulated nanoparticles, shown in Figure 4-26, indicates that the

particular pairing geometry shown in Figure 4-25 is a result of magnetic force equilib-

rium. Furthermore, the tiny magnetic attraction forces involved in such pairings suggest

that at least one of the CNTs in the pair are completely detached and free-floating. This

information can be useful in analyzing images such as the one shown in Figure 4-24(b)

and determining which CNTs are contributing to the overall latching of the membranes

(and which are just loose, detached CNTs).

Figure 4-25: Two CNTs attached to each other in a magnetically stable arrangement.
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Figure 4-26: Simulation results showing magnetic attraction force as a function of
distance between nanoparticle tips. The arrangement shown in Figure 4-25 is the only
stable configuration.
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One final note of interest is the CNT's ability to bend laterally under an external

magnetic field. For instance, when two CNT tips are close to each other in the lateral

direction, a vertical external field creates attraction forces between the two tips as

shown in Figure 4-27. If the two tips are sufficiently close, the magnetic attraction force

between them can actually cause the CNTs to bend towards each other. For CNTs that

are 6 pm long and 100 nm wide with a typical MWCNT Young's modulus of -100 GPa

[124], this occurs when the two tips are approximately -85 nm from each other as

indicated by Figure 4-27. Since significantly defect-laden CNTs can actually exhibit

Young's modulus that are orders of magnitude less [124], it is possible that the type of

behavior shown in Figure 4-28 between CNTs that are actually around 500 nm apart

(>> 85 nm) could be a result of magnetic attraction between the CNT tips. If properly

designed, van der Waals attraction between CNT-covered membranes could potentially

be significantly enhanced by magnetically bending individual CNTs to increase the

number of CNT pairs that come into contact.

1.2- ----- Magnetic attraction force

1.0 -- Required CNT bending force
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Figure 4-27: Lateral magnetic attraction force and required CNT bending force as a
function of lateral distance between CNTs.
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Figure 4-28: A CNT possibly bent due to magnetic attraction force from adjacent CNT.

4.4 Summary of magnetic behavior

In conclusion, we have grown arrays of Ni and Co-filled CNTs on floating TiN stages

and shown that a rotating external magnetic field generates a magnetic torque on the

encapsulated nanoparticles which in turn rotates the entire stage on which the CNTs

are grown. Through 3-D magnetic simulations, we have also demonstrated that this

stage rotation behavior can be accurately modeled based on magnetic properties as well

as size and shape of the encapsulated nanoparticle. Consequently, we can now predict

how an individual or an array of nanomagnet-filled CNTs will behave under a given

external magnetic field. Alternatively, magnetic rotation of CNTs can be used to collect

information about the CNTs themselves or even their surrounding environment. Addi-

tionally, initial work involving the magnetic attraction and latching of CNT tips was

also presented.
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Chapter 5

Conclusion

Without a doubt, the past decade has experienced tremendous progress in the areas of

micro- and nanoscale fabrication. Furthermore, such advancements in fabrication

technologies have spawned and continue to spawn truly novel device applications in far-

reaching areas of science and engineering. Of the many different types of nanoscale

fabrication/engineering/structuring techniques that are currently available, the growth

of carbon nanotubes, the now ubiquitous rolled-up graphene sheets, were of particular

interest. While significant strides have been made in the characterization, growth,

filtering, and even applications of CNTs in certain research and commercial settings, the

use of CNTs in more traditional micro- and nanofabrication platforms is still exceed-

ingly rare due to inherent difficulties that exist with conventional CNT integration

techniques.

In this thesis, a membrane folding approach to 3-D micro- and nanofabrication,

namely the Nanostructured Origami m  process, was combined with in situ, PECVD-

based growth of vertically aligned CNTs. The significance of integration with the

origami process is twofold. First, standardized micro/nanofabrication and CNT integra-

tion, a previously exotic and relatively difficult nanomanufacturing feat, are combined

into a single, fab-friendly platform. In effect, the CNT becomes just another element in

the ever-expanding micro/nanofabrication arsenal and simply an additional processing

step in the origami process. For many, this will open up new possibilities for taking

advantage of the many unique and valuable attributes of CNTs. Second, the usefulness

of integrated CNTs are vastly increased by placing them in a 3-D device environment



provided by the origami process. As the supercapacitor application in Chapter 3 demon-

strated, the newly gained dimensional freedom will allow the CNTs to be used in ways

never before imagined in conventional micro/nanofabrication settings. Another example

of increased CNT utility, enabled by the 3-D origami process, is the magnetic mem-

brane manipulation technique shown in Chapter 4 whereby external magnetic field

manipulation resulted in the rotation and latching of single strands and large arrays of

CNTs.

5.1 Summary

The following achievements were made and discussed throughout the course of this

thesis:

e The PECVD-based CNT growth step was integrated into the origami fabrica-

tion scheme. This was accomplished by using a new membrane material, TiN,

which allowed excellent and uniform growth of CNTs on its surface while main-

taining electrical conductivity into the CNTs. The high temperature growth

process as well as the subsequent presence of CNTs on the origami membranes

were accommodated for by introducing a new post-CNT-growth metallization

method as well as making appropriate modifications to the XeF 2-based mem-

brane release process.

" A fully-functioning microscale supercapacitor with vertically aligned CNT elec-

trodes was fabricated using the CNT-origami process and electrochemically

tested. The device was created from start to finish using standard fabrication

equipment found in the MTL and is designed to allow large-scale batch fabrica-

tion. The CNT-origami supercapacitor's favorable electrochemical performance

and largely MEMS-compatible processing steps make it an excellent choice for

serving as an integrated power supply in self-powered, autonomous microsystem

applications.

112



* Magnetic properties of CNT tip-encapsulated catalyst particles were studied

through theory, magnetic simulation, and experiment. Accordingly, the precise

magnetic rotation behavior of CNT-covered membranes was predicted and veri-

fied through purpose-built CNT-origami magnetic test structures. Membrane

latching behavior, enabled through the magnetic attraction between opposing

CNT tips, was also explored, and preliminary results were shown.

5.2 Future works

While the research presented in this thesis makes unique and varied contributions to the

field of CNT-based nanomanufacturing, further related works, some of which are listed

below, will be highly beneficial:

" In-depth investigation of CNT-to-CNT magnetic and van der Waals interactions.

This can be achieved, for example, by creating folding membranes patterned

with single strands of equally spaced and sized CNTs to better isolate and iden-

tify CNT behavior.

* Further study and demonstration of controllable CNT-to-CNT latching and

unlatching under external magnetic field manipulation. For example, a CNT-

array-based gecko foot with variable attachment and detachment force arising

from CNT-to-CNT magnetic interactions can be built and tested.

" Actual implementation of CNT supercapacitor as a power source in self-

sufficient MEMS device, likely in conjunction with an energy harvesting device

fabricated concurrently on the same chip. Power output and management of the

origami power source will also need to be addressed.

" Demonstration of a biological, chemical, acoustic, and/or magnetic sensing de-

vice based on in situ CNTs on an origami platform.
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Appendix A

Detailed fabrication process

A.1 Lift-off process for post-CNT metallization

A modified lift-off process can be used to pattern many different types of materials,

especially metals, after the in situ growth of carbon nanotubes and is thus ideal for post-

CNT metallization in various origami-based devices. The detailed processing steps, as

performed in the Technology Research Laboratory (TRL) of MIT's Microsystems

Technology Laboratories (MTL), are listed below (laboratory and equipment names are

shown in italics). The following steps will result in a final photoresist thickness of

approximately 6-8 pm and can be used on samples with CNTs that are up to 8 pim in

length.

1. Dispense AZ 5214 image reversal photoresist on the sample and spin for 30 sec-

onds at 1300 RPM (TRL-coater).

2. Bake for 5 minutes at 88*C (TRL-varTemp).

3. Repeat steps 1-2 two more times. During the last cycle, heat for 20 minutes in-

stead of 5 minutes.

4. Expose for 3.0 seconds (TRL-EV1).
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5. Perform a post-exposure bake (PEB) for 30 minutes at 88*C (TRL-varTemp).

6. Flood expose without a mask for 75 seconds. Perform the exposure in 25-second

intervals with a 2-minute rest between steps (TRL-EV1).

7. Develop in AZ 422 for approximately 9 minutes while maintaining a light agita-

tion (TRL-photo-wet).

8. Rinse with DI water and microscope inspect exposed areas.

9. If not properly developed, flood expose for 30 seconds and develop for 2 minutes.

Repeat until desired results are obtained.

10. Deposit desired material to be patterned (TRL-various).

11. Place in airtight container and soak overnight in acetone (TRL-photo-wet).

12. Place container in ultrasonic bath for approximately 3 minutes (TRL-photo-wet).

13. Remove the wafer and immediately clean with acetone followed by isopropyl al-

cohol (TRL-photo-wet).

14. Immediately blow dry sample with N2 gun.
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A.2 Process flow for CNT-origami supercapacitor

The detailed processing steps for the CNT-based supercapacitor, as performed in the

Integrated Circuits Laboratory (ICL) and the Technology Research Laboratory (TRL)

of MIT's Microsystems Technology Laboratories (MTL), are listed below (laboratory

and equipment names are shown in italics).

1. Begin with newly opened or RCA-cleaned 6-inch silicon wafers (ICL-RCA).

2. Deposit 300 nm of silicon nitride (ICL- VTR).

3. Deposit 1 pm of titanium nitride (ICL-endura).

4. Dispense OCG 825 photoresist on the sample and spin for 30 seconds at 1200

RPM (TRL-coater).

5. Bake for 5 minutes at 90*C (TRL-pre-bake).

6. Repeat steps 1-2 two more times. During the last cycle, heat for 30 minutes in-

stead of 5 minutes.

7. Expose for 10.0 seconds (TRL-EV1).

8. Develop in OCG 934 for approximately 5 minutes or until desired areas are

cleared (TRL-photo-wet).

9. Spin, rinse, and dry (TRL-SRD).

10. Perform a hard bake for 30 minutes at 120C (TRL-post-bake).
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11. Etch the titanium nitride layer and the silicon nitride simultaneously using the

"TiN 6-inch" recipe. Set endpoint time to approximately 400 seconds (ICL-

rainbow).

12. Visually inspect sample to make sure that the silicon layer underneath the

etched nitride layers is visible. If not, repeat step 5 in 60-second increments.

13. Remove remaining photoresist (ICL-asherICL).

14. Soak wafers in Nano-Strip for 10 minutes to further remove any photoresist resi-

due (TRL-acid-hood).

15. Spin, rinse, and dry (TRL-SRD).

16. Follow standard MTL recipe to pattern approximately 1.5 pm of AZ 5214 image

reversal photoresist (TRL-various).

17. Deposit 25 nm of nickel (TRL-e-beamFP).

18. Follow standard MTL recipe to remove photoresist and unwanted material

(TRL-various).

19. Grow CNTs using the "Two_StepAC" recipe. Set "catalyst annealing time"

to 30 seconds and "CNT growth time" to 1200 seconds. These times may be ad-

justed as necessary (TRL-CCNT ).

20. Deposit 600 nm of gold (TRL-e-beamFP) using the modified lift-off process from

Appendix A.1 (TRL-various).

21. Directly pour SU-8 2015 onto the sample, making sure to cover as much of the

exposed surface with SU-8 prior to spinning (TRL-SU8spinner).
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22. Ramp from 0 to 500 RPM and hold for 30 seconds (TRL-SU8spinner).

23. Spin at 3100 RPM for 30 seconds (TRL-SU8spinner).

24. Bake at 95*C for 5 minutes (TRL-hotplate).

25. Cool at room temperature for approximately 1 hour.

26. Expose for 10.0 seconds. Perform the exposure in two steps with a 1-minute rest

between steps (TRL-EV).

27. Perform a two-step post-exposure bake (PEB): 3 minutes at 65*C and 1 minute

at 95'C. lInmediately switch off hot plate and cool for 1 hour directly on the hot

plate (TRL-hotplate).

28. Develop in PM acetate for approximately 3 minutes while maintaining a light

agitation. Immediately rinse with isopropyl alcohol (TRL-SU8spinner).

29. Perform a hard bake for 10 minutes at 150*C (TRL-hotplate).

30. Sacrificially etch away silicon and release device in small batches (maximum of 8

dies per run). Run the full automatic etch cycle with one 60-second etching step

(TRL-XeF 2)-

31. Visually inspect sample with microscope after each etch cycle and keep repeating

step 30 until all the devices are released. This step may need to be repeated up

to 20 times depending on various processing conditions and parameters.
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A.3 Process flow for magnetic CNT test structure

The detailed processing steps for the magnetic CNT test structures, as performed in the

Integrated Circuits Laboratory (ICL) and the Technology Research Laboratory (TRL)

of MIT's Microsystems Technology Laboratories (MTL), are listed below (laboratory

and equipment names are shown in italics).

1. Begin with newly opened or RCA-cleaned 6-inch silicon wafers (ICL-RCA).

2. Deposit 100 nm of titanium nitride (ICL-endura).

3. Follow standard MTL recipe to pattern approximately 1.0 pm of OCG 825

photoresist (TRL-various).

4. Etch the titanium nitride layer and the silicon nitride simultaneously using the

"TiN 6-inch" recipe. Set endpoint time to approximately 60 seconds (ICL-

rainbow).

5. Remove remaining photoresist (ICL-asherICL).

6. Soak wafers in Nano-Strip for 10 minutes to further remove any photoresist resi-

due (TRL-acid-hood).

7. Spin, rinse, and dry (TRL-SRD).

8. Follow standard MTL recipe to pattern approximately 1.5 pm of AZ 5214 image

reversal photoresist (TRL-various).

9. Deposit 25 um of nickel (TRL-e-beamFP).
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10. Follow standard MTL recipe to remove photoresist and unwanted material

(TRL-various).

11. Grow CNTs using the "Two_ StepAC" recipe. Set "catalyst annealing time"

to 30 seconds and "CNT growth time" to 1200 seconds. These times may be ad-

justed as necessary (TRL-CCN).

12. Sacrificially etch away silicon and release device in small batches (maximum of 8

dies per run). Run the full automatic etch cycle with one 60-second etching step

(TRL-XeF 2)-

13. Visually inspect sample with microscope after each etch cycle and keep repeating

step 30 until all the devices are released. This step may need to be repeated up

to 5 times depending on various processing conditions and parameters.
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