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ABSTRACT

Tumor development is a multi-step process driven by the collective action of gain-of-
function mutations in oncogenes and loss-of-function alterations in tumor suppressor genes. The
particular spectrum of mutations in a given cancer is rarely the result of random chance but
instead derives from the intimate connections between proliferative networks and those
suppressing growth and transformation. Specifically, hyper-active oncogenes directly engage
tumor suppressor programs, such that cells harboring oncogenic lesions frequently must acquire
secondary mutations that disable these anti-proliferative responses before progressing to overt
transformation. This tight coupling represents a critical checkpoint protecting against tumor
formation. Whether different cell types exhibit variability in the extent and/or timing of this
oncogene-induced tumor suppression is largely unknown.

The ability of oncogenic Ras to induce the tumor suppressive p1 9 Arf-p5.3 pathway and
cause irreversible cell cycle arrest typifies this phenomenon. Using this-well established
interaction as model, we investigated the cell-type specificity of oncogene-induced tumor
suppression. By combining K-rasL mice with a reporter for p19Arf expression (Ar FP), we
identify a tissue-specific, onocogenic K-ras-dependent expression pattern of 19 Arfin lung
tumors and sarcomas that correlates with each tissue's genetic requirements for tumorigenesis.
Lung tumors, which can arise in the presence of p19Arf and show modest increases in tumor
progression in its absence, exhibit very minimal p19 Arf induction. Conversely, sarcomas, which
depend on p19^f-p53 mutation for tumor formation, display robust p 1 9 Af up-regulation. While
previous studies proposed oncogene levels as the main determinant of p19A induction, we find
equivalent signaling levels and instead highlight tissue-specific differences in the epigenetic
regulation of Ink4a/Arf Using in vivo RNAi, we implicate Polycomb group (PcG) protein-
mediated repression in lung tumors and SWI/SNF-dependent activation in sarcomas as being
critically important for each tissue's unique expression pattern of p1 9 Arf

During normal tumor progression, mutations in oncogenes and tumor suppressors occur
in a sequential fashion, although whether unique orders of mutations dictate distinct phenotypes
is unknown. The requirement for complete p53 pathway abrogation during oncogenic K-ras-
dependent sarcomagenesis suggested that tumor development in the muscle critically depends on
early p53 mutation. To test this we generated a Flp-inducible allele of K-rasG12D (K-rasFSF-G12D)
that when combined with established reagents for Cre-dependent p53 deletion permits the
separate regulation of K-ras activation and p53 loss. Strikingly, although simultaneous mutation
results in robust tumor formation, delaying p53 deletion relative to oncogenic K-ras expression



significantly diminishes tumor penetrance. This indicates that the tumorigenic capacity of K-
rasG12D mutant muscle cells is rapidly and severely compromised by a strong p53-dependent
response, which is entirely different from the mode of action of p53 during lung tumorigenesis.
Further genetic analysis implicates the p53 target gene p21 in this suppression, implying that p53
irreversibly constrains sarcoma development through cell cycle arrest mechanisms.

Together, these results highlight tissue-specific variability in the relationship of
oncogenic K-ras and the p53 pathway. Robust pathway up-regulation, as seen in muscle cells,
affords potent inhibition of tumor initiation, while modest induction, such as in lung cells,
permits tumor development and only hinders more advanced stages of progression. These
differences might help explain the spectrum of tumors associated with K-Ras mutations as well
as the overall frequency of difference cancer types.
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CHAPTER 1: INTRODUCTION



Cancer is a genetic disease in which normal tissue homeostasis is compromised due to the

acquisition of various traits by effected cells, including excessive proliferation, immortalization,

and resistance to apoptosis (Hanahan and Weinberg 2000). These traits are largely obtained

through the sequential accumulation of two broad classes of mutations: activating, gain-of-

function alterations in pro-proliferative oncogenes, and inactivating, loss-of-function disruptions

in growth inhibitory tumor suppressor genes. The co-occurrence of these types of mutations

underscores an intimate association between networks that antagonistically regulate cellular

proliferation and survival (Lowe et al. 2004). This thesis is largely devoted to such a relationship

between oncogenic K-ras and the p19Arf-p53 tumor suppressor pathway, uncovering important

tissue specificity in the nature of this connection. Using a variety of mouse genetics tools,

including a novel system for sequential mutagenesis, this thesis describes how such variability

can directly affect the ability of different cell types to be transformed by particular mutations.

A. The p1 9 Afp 53 tumor suppressor pathway

To protect against aberrant cellular expansion, normal cells employ a variety of

mechanisms that potently inhibit proliferation (Hanahan and Weinberg 2000; Sherr 2004). The

precise regulation and functioning of these checkpoints ensures controlled growth only in the

appropriate settings. Accordingly, these anti-growth pathways respond to a wide variety of

cellular stresses indicative of abnormal environmental conditions and execute downstream

effector functions such as cell cycle arrest or cell death if properly engaged. Many of these

pathways comprise canonical tumor suppressor pathways, and not surprisingly, their functional

inactivation represents one of the critical steps for tumor initiation and progression. The



following section introduces two components of one of the most important of these pathways,

the p19 Arf-p 5 3 tumor suppressor axis, which plays a central role in Chapters 2 and 3.

i. p 9 rf

a. Discovery

The story of p1 9 Arf begins with the initial discovery and characterization of the CDKN2

locus. This genomic region was originally shown to encode two small proteins, p16 nk4a and

p15Ink4b , both novel binding partners and inhibitors of cyclin-dependent kinase 4 (CDK4), a

critical component of the cell cycle machinery that inactivates the Rb tumor suppressor and helps

drive the Gl/S transition (Serrano et al. 1993; Hannon and Beach 1994; Weinberg 1995). As

normal cell cycle progression was known to require CDK-dependent phosphorylation of Rb to

promote E2F-dependent transcriptional activation of key proliferative genes, the CDK inhibitory

functions of these newly discovered proteins implicated this locus as an upstream activator of

Rb, ultimately functioning to inhibit the cell cycle (Weinberg 1995). Interestingly, p161k4a was

initially thought to have two transcripts that differed in their first exon (Duro et al. 1995; Mao et

al. 1995; Stone et al. 1995). Upon closer inspection it was determined that despite splicing into

the same second exon the resulting mRNAs would be in different reading frames and thus

encode two distinct polypeptides. While exon El a usage resulted in p 16nk4a, this new 19-

kilodalton (kd) protein initiating from the upstream exon El P was named p1 9 Af (Alternate

reading frame) (p14Af in humans) (Quelle et al. 1995).

Given that Rb was an established tumor suppressor, the functions ascribed to p161nk4a and

p 15 nk4b immediately suggested a role for this genomic region in tumor suppression as well.

Mutational analyses supported this idea, as a variety of tumor types, including melanoma,



pancreatic cancer, and non-small cell lung cancer harbored mutations in this locus (Hussussian et

al. 1994; Nobori et al. 1994; Goldstein et al. 1995; Okamoto et al. 1995; Walker et al. 1995).

Many different types of mutations were found, including large-scale deletions, point mutations,

and promoter hypermethylation (Hussussian et al. 1994; Cairns et al. 1995; Herman et al. 1995).

In light of the physical overlap of Ink4a and Arf, the distribution of some of these mutations

potentially implicated p19 Arf as a critical tumor suppressor as well. In addition, initial

experiments in NIH 3T3 fibroblasts demonstrated p1 9 Arf,s ability to cause cell cycle arrest

(Kamijo et al. 1997). Together, these data supported a model in which CDKN2 (CDKN2A or

Ink4a/Arf for the region encompassing only p19Ad and p16 1k4a) encoded genetically linked but

structurally distinct tumor suppressor genes.

b. Functional analyses

p53-dependent functions

The GI cell cycle arrest executed by p1 9 Arf overexpression suggested that this newest

member of CDKN2 could also be a CDK inhibitor. However, unlike p1 6 1nk4a and p 15 "Ink4b

immunoprecipitates of a variety of cyclins and CDKs did not contain p19Ad, and in vitro CDK

assays were unaffected by its presence (Kamijo et al. 1997). Moreover, the protein was

predominantly localized to the nucleolus, unlike known CDK inhibitors. These results argued for

a novel mechanism for p19Af function independent of the regulation of cyclin/CDKs.

In the search for molecular determinants of p 9 Arf function, a number of observations

implicated the well-known tumor suppressor p53. First, the ability of p1 9A to arrest rodent cells

was abrogated in the absence of functional p53 (Kamijo et al. 1997). This p53-dependence was

also noted in standard transformation assays in which p1 9 ArfS transformation-suppressing



functions were lost in the presence of p53-neutralizing agents (Pomerantz et al. 1998). Together

with studies showing a mutually exclusive pattern of mutation in either Arf or p53 during

spontaneous immortalization of primary mouse cells, these data suggested that p1 9 Arf acted

upstream of p53 in a linear pathway (Kamijo et al. 1997).

Subsequent biochemical analysis confirmed this genetic model when it was discovered

that p1 9 Af physically interacted with Mdm2, a known inhibitor of p53 (Pomerantz et al. 1998;

Zhang et al. 1998). Previous work had shown that through its activity as an E3 ubiquitin ligase,

Mdm2 was able to bind to p53 and promote the proteosomal degradation of this tumor

suppressor (Haupt et al. 1997; Honda et al. 1997; Kubbutat et al. 1997). However, binding of

pI9Arf to Mdm2 resulted in the degradation of Mdm2 itself, thus freeing p53 from this negative

regulation. In addition to its effect on Mdm2 protein stability, p19 A could also sequester Mdm2

in the nucleolus, preventing further interaction with p53 (Weber et al. 1999). These data led to a

model attributing p19A's growth suppressive function to its ability to indirectly increase p53

protein levels, which once stabilized can initiate one a variety growth-inhibitory transcriptional

programs. Details of these effector pathways downstream of p53 will be discussed further in

Section A ii b.

Together with studies of p16Ink4a, these results implicated the Ink4/Arf locus as a critical

regulatory node in two of the most important tumor suppressor pathways, p53 and Rb (Figure 1).

p16 1nk4a, through its inhibition of cyclinD/CDK4 complexes, maintains Rb in a

hypophosphorylated state and thus competent to repress target genes required for normal cell

cycle progression. In parallel, p19 Adpotently up-regulates p53, leading to the induction of

various cytostatic or cytotoxic gene expression programs.



p53-independent functions

In addition to the large body of work showing that p1 9 Arf acts in a p53-dependent

manner, there is growing evidence that it can also have growth inhibitory activity in the absence

of p53. The first insight into potential p53-independent functions came from experiments

demonstrating that exogenous expression of p1 9 Af in Trp53--; Mdm2-/- MEFs caused a

significant GI cell cycle arrest (Weber et al. 2000). Interestingly, Mdm2 deletion was required

for this effect, suggesting that it normally suppresses this function of p19 Arf. Additional

biochemical studies have generated a long list of binding partners of p1 9Arf, many of which could

be involved in these p53-independent functions (reviewed in (Sherr 2006). For example, p1 9 Arf

interacts with and potentially sequesters nucleophosmin (NPM), a gene important for the

increased ribosomal RNA synthesis required in proliferating cells (Itahana et al. 2003).

Furthermore, p1 9Af has been shown to bind to and inhibit transactivation capabilities of several

transcription factors important in cell cycle progression, such as E2F 1 and c-myc (Martelli et al.

2001; Qi et al. 2004). Finally, a smaller form of pl 9 Arf derived from an internal start codon,

named smArf, preferentially localizes to mitochondria and regulates autophagy (Reef et al.

2006). Clearly, despite the strong connections between p19Arf and the p53 pathway, p1 9 Arf also

possesses additional functions apart from regulating p53. Defining the contexts in which these

newly appreciated roles are important is an area of active investigation.

c. Regulation

Transcriptional repression

Expression from the entire CDKN2A locus is not readily detectable in most mouse tissues

or early passage mouse embryonic fibroblasts (MEFs). Studies involving the Polycomb group
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Figure 1: The Ink4a/Arf locus is an important regulatory node in the p53 and Rb tumor
suppressor pathways.
The overlapping genomic arrangement of p19'r (red) and p161k 4a (blue) coding regions is
shown, as are the major upstream regulatory signals mediating both transcriptional induction and
repression of the locus. See text for details of this regulation. Once induced, this locus can
indirectly activate the Rb tumor suppressor through p16Ink4a-mediated inhibition of cyclin/CDK
complexes. In addition, pl9A up-regulation can induce the p53 tumor suppressor pathway by
interfering with Mdm2's ability to destabilize p53.



(PcG) protein Bmi- 1 provided the first evidence that this lack of expression was largely due to

PcG-mediated transcriptional repression of Ink4a/Arf by showing that Bmi-1-- MEFs and tissues

displayed elevated levels of p1 9 Arf and p1 6 "k4a (Jacobs et al. 1999). PcG proteins are found in

one of two main Polycomb repressive complexes (PRC). PRC2 contains a histone

methyltransferase named Ezh2, that along with binding partners including Eed and Su(z)12,

methylates lysine 27 on histone H3 (H3K27me3). This mark serves as a docking site for another

complex, PRCl (including Bmi-1), which binds H3K27me3 and mediates gene repression. The

exact mechanism of this repression is still under investigation but could involve the physical

blockade of transcription factor binding by the generation of a compact chromatin environment

that limits the accessibility of DNA binding sites (reviewed in Schuettengruber et al. 2007)).

Since the initial experiments with Bmi-1, numerous studies have reported H3K27me3 as

well as both PRC2 and PRC I complexes binding throughout Ink4a/Arf in a variety of cell types

in vitro and in vivo (Bracken et al. 2007; Dietrich et al. 2007; Miyazaki et al. 2008; Chen et al.

2009; Dhawan et al. 2009). Along with Bmi-1, the PRC1 components CBX7 and CBX8 have

been shown to directly bind the locus (Maertens et al. 2009), and genetic studies have validated a

functional role for many PcG proteins in repressing Ink4a/Arf(Gil et al. 2004; Chen et al. 2009).

In fact, several defects resulting from genetic disruption of particular PcG members are rescued

by simultaneously deleting Ink4a/Arf, suggesting that one of the main physiological roles of PcG

is to prevent aberrant expression from this locus (Jacobs et al. 1999; Molofsky et al. 2005).

Interestingly, the cell-type specificity of this mode of repression seems to vary across tissues. In

the hematopoietic and central nervous systems, this regulation appears to be especially important

in stem cells for the maintenance of self-renewal capabilities (Molofsky et al. 2003; Park et al.



2003). In other settings PcG controls Ink4a/Arfexpression throughout entire tissues (Dovey et al.

2008; Dhawan et al. 2009).

Aside from the coordinated, Ink4a/Arf-wide regulation by PcG proteins, a number of

other transcriptional repressors specific for p19Af exist. Zbtb7, a transcription factor with diverse

roles in cellular differentiation, was shown to inhibit p19Af transcription in MEFs by directly

binding its promoter (Maeda et al. 2005). Similar observations have been made with the

repressive E2F family member E2F3b (Aslanian et al. 2004). Additional regulators have been

identified through functional cDNA screens attempting to bypass the strong growth inhibitory

functions of the p19A -p5 3 pathway in vitro. Multiple transcription factors, including two

members of the T-box family, TBX2 and TBX3, as well as bHLH-containing Twist and Twist2,

were isolated in this manner and subsequently shown to repress p19Arf transcription (Maestro et

al. 1999; Jacobs et al. 2000). The functional relevance of many of these non-PcG regulators in

controlling p19Arf expression in vivo remains to be determined.

Transcriptional Activation

While levels of p1 9 Arf are low in most settings, its expression can be induced under

several conditions. Prolonged passaging of primary cells in vitro leads to up-regulation of p1 9 Arf

(and/or p1 6 1nk4a, depending on the cell type), which activates p53 and causes irreversible growth

arrest, a process known as replicative senescence (Sherr and DePinho 2000). Accordingly,

functional inactivation of the p19Arf-p53 pathway is the main route to immortalization of MEFs

(Kamijo et al. 1997). The factors responsible for this activation are unknown, although hypoxia

and/or sustained growth factor signaling may play a role (Parrinello et al. 2003).



The predominant stimulus eliciting p1 9A up-regulation both in vitro and in vivo is

expression of oncogenes such as, ElA, Ras, and c-myc (de Stanchina et al. 1998; Palmero et al.

1998; Zindy et al. 1998). Loss of tumor suppressor genes such as PTEN and Rb family members

can also promote pI9Ad activation (Dannenberg et al. 2000; Chen et al. 2005). The common link

between these alterations is the excessive nature of downstream proliferative signals that denote

abnormal mitogenic pathway flux. This hyperactivity ultimately turns on transcriptional

regulators that directly engage the p19Af promoter, and at times, the entire Ink4a/Arf locus

(reviewed in Gil and Peters 2006).

Several studies have implicated specific transcription factors with particular oncogenic

insults. For example, increased abundance of activating E2Fs (E2F1-3a) underlies a number of

oncogenic states, and their ability to directly bind and activate the p1 9 Af promoter suggests a

central role in p1 9 Af induction (Bates et al. 1998; Aslanian et al. 2004; laquinta et al. 2005).

However, redundancy of family members has complicated functional analyses (Palmero et al.

2002). In contrast, genetic studies with the transcriptional activator Dmp1 have convincingly

demonstrated its importance in relaying signals from both c-myc and Ras to p19Ad under certain

conditions, including myc-induced lymphomas (Inoue et al. 2000; Inoue et al. 2001). Other

factors have been shown to have stimulatory effects in distinct settings, such as c-Jun, p-catenin,

Runx1 and FOXO3 (Gil and Peters 2006). p1 9 ArfS role as a detector of hyperproliferative stimuli

has led to the concept that its main function is to serve as a checkpoint, limiting the outgrowth of

cells harboring oncogenic insults.

Given the repressive chromatin state of Ink4a/Arfunder non-stressed conditions, the

activation of this locus must involve chromatin-remodeling activities. Genetic screens performed

in D. melanogaster identified SWI/SNF chromatin-remodeling complexes as critical for the



activation of PcG-regulated genes during development (Tamkun et al. 1992; Gebuhr et al. 2000).

This class of ATPase -dependent chromatin modifiers alters nucleosome occupancy around

specific genomic regions, which exposes distinct stretches of DNA and allows for transcription

factor binding (Gebuhr et al. 2000). Interestingly, recent studies have demonstrated a role for the

SWI/SNF member Snf5 during Ink4a/Arf activation, suggesting that nucleosomal remodeling is

an important component of this process (Kia et al. 2008). Moreover, the H3K27me3 demethylase

Jmjd3, which effectively erases PcG histone marks, has been shown to be required for maximal

induction of p19A' and p 16 nk4a in response to oncogenic H-ras (Agger et al. 2009; Barradas et al.

2009). Finally, MLL 1, a histone methyltransferase responsible for the generation of

transcriptionally active chromatin configurations, has also been implicated in directly modifying

the Ink4a/Arf locus and regulating its expression during oncogenic stress (Kotake et al. 2009).

Clearly, alteration of the local chromatin state represents a critical component to p1 9 Arf

activation.

Post-translational control

Although most well studied at the transcriptional level, p19^ regulation also occurs post-

translationally. One of the most abundant binding partners of p1 9 Af is the nucleolar-localized

protein NPM (Sherr 2006). NPM' MEFs display a dramatic reduction in the half-life of p19A9

suggesting that NPM regulates p1 9 Af protein stability (Colombo et al. 2005). This most likely

results from NPM's ability to block a unique N-terminal polyubiquitination of p1 9 Arf, which

normally leads to its proteosomal-mediated degradation (Kuo et al. 2004; Colombo et al. 2005).

Notably, removing this regulation significantly hindered p1 9 Arfs ability to inhibit Ras and myc-

dependent transformation, as NPM<-; Trp53-/- MEFs were more susceptible to colony formation



than Trp53- MEFs (Colombo et al. 2005). While NPM is mutated in human cancers, it is unclear

if this p19A -associated function is involved in its tumor suppressor activity.

d. Mouse models

The first mouse model involving p19Arf was a knockout of exons 2 and 3 in Ink4a/Arf,

which removed the function of both p161nk4a and p19Ad. These mice were highly susceptible to

tumorigenesis, with homozygous mutants (Ink4a/Arf') presenting with both spontaneous and

carcinogen-induced lymphomas and sarcomas (Serrano et al. 1996). In addition, knockout MEFs

were immortalized and readily transformed by oncogenic H-ras, directly implicating the

endogenous locus in cell cycle control and transformation. While these initial studies

functionally validated this genomic region as a tumor suppressor locus, it didn't distinguish

between p19 p16 Ik4a, or both as the critical player(s). Soon thereafter, exon 11P was targeted,

thus creating a knockout of p1 9 Arf specifically. Interestingly, Arf* mice and cells closely

phenocopied their Ink4a/Arf' counterparts, especially in in vitro assays, suggesting that p19Ad

alone was the predominant tumor suppressor, at least in mice (Kamijo et al. 1997). However,

analysis of Ink4a-/- mice indicated tumor suppressor activity for p161nk4a alone, and careful

studies of ArfA, Ink4a-/-, and Ink4a/Arf" on the same genetic background revealed that in vivo,

both p16 1nk4a and pl9^ exhibit tumor suppressor functions in mice (Sharpless et al. 2004).

Subsequent analyses with pl9Af knockout animals have provided in vivo validation for

many of its characteristics described in previous sections. For example, introducing Arf- onto a

Trp53-1- background fails to increase tumor predisposition, underscoring a largely p53-dependent

role for p19A' in tumor suppression (Weber et al. 2000). However, differential effects of Arf or

p53 mutations have been reported in some contexts, suggesting that p19A can act in a p53-



independent manner in vivo (Tsai et al. 2002; Ha et al. 2007). Most importantly, the exacerbation

of tumor phenotypes upon inclusion of Arf- in a variety of tumor-prone models has conclusively

demonstrated its role as a checkpoint limiting the outgrowth of tumorigenic clones in vivo in

diverse settings (Eischen et al. 1999; Kelly-Spratt 2004; Williams et al. 2006). To complement

these loss-of-function approaches, transgenic mice containing an extra copy of the entire CDKN2

locus have been described. These mice are more tumor resistant than their wild-type counterparts

when treated with carcinogens, suggesting that members of this locus act as dose-dependent

tumor suppressors (Matheu et al. 2004).

In light of the difficulties in detecting p1 9 Arf expression in vivo, the Sherr group recently

constructed a reporter allele, ArfF' in which GFP was placed in-frame into exon 1p , thus

knocking out p1 9 Arf and putting GFP under control of the endogenous pl9Af promoter (Zindy et

al. 2003). In the large majority of cells within these mice, GFP is undetectable. However, during

spontaneous or c-myc-induced tumorigenesis, GFP expression is induced in the tumor cells,

supporting the notion that the p19' promoter is a sensor of hyperproliferative signals. To

achieve more sensitivity of detection, as well as possibly identify transient expression of p19Ad

the same group created a Cre knock-in allele, Arf re which also deleted exon 1p (Gromley et al.

2009). By crossing in a Cre-dependent YFP reporter, they were able to permanently mark cells

that expressed p19A, owing to the genomic recombination event mediated by Cre. Using this

system, they documented p1 9 Arf expression in spermatogonia and the mural components of

hyaloid vascular system in the eye (HVS). HVS-specific expression of p19Ar, which normally

leads to the involution of the HVS and proper eye function, is one of the only non-tumor

suppressive functions ascribed to p19Af (McKeller et al. 2002). In addition to being a very



sensitive reporter, use of this strain will allow for other Cre-controlled genetic events to be

targeted specifically to p19A-expressing cells in the future.

e. mouse vs. human differences in Ink4a/Arf tumor suppressive functions

The initial genetic analyses of Ink4a/Arf- mice and cells implicating p19" as the more

critical tumor suppressor compared to p161,k4a was surprising given the mutational data from

humans. A number of alterations from human tumors, including promoter hypermethylation and

exon 1 a-specific point mutations, selectively affect p 16nk4a while sparing p14" (Holland et al.

1995; Walker et al. 1995). Furthermore, functional studies in human cell lines have questioned

the role of pl4"d in mediating p53-dependent effects downstream of oncogenic insults

(Voorhoeve and Agami 2003). The reasons for these discrepancies are currently unknown, but

could relate to the greater importance of other upstream activating signals for p53 in some

human cells (further discussed in Section A ii c below). While these observations led some to

speculate that Ink4a/Arf function varies across species, it could also be explained by intraspecies

cell-type specificity, as the relative roles of p19 versus p161nk4a vary among different cell types

within the mouse as well. For example, while MEFs and pre-B cells require only p19" loss for

immortalization, macrophages must disable p16 nk4a as well (Randle et al. 2001). Moreover, Arfl

and Ink4a-/- animals have unique tumor spectra, suggesting that different cells types are more

susceptible to removal of a particular gene (Sharpless et al. 2004). Finally, p14 Arf-specific

mutations have been documented in human tumors, indicating that some human cells rely on this

component of Ink4a/Arf for tumor suppression (Gazzeri et al. 1998).



ii. p5 3

a. Discovery

p53 was originally identified as a cellular protein interacting with the large T antigen in

cells transformed by SV-40 T-Ag (Lane and Crawford 1979; Linzer and Levine 1979). Initial

functional experiments suggested an active role for p53 in transformation, as it was shown that

expression of its cDNA could cooperate with H-ras in cellular transformation (Eliyahu et al.

1984; Parada et al. 1984). Only a few years later was it discovered that the original cDNAs used

in these experiments actually contained point mutations (Hinds et al. 1989). In contrast to these

earlier studies, introduction of wild-type p53 into rodent cells suppressed transformation,

suggesting its normal function was to constrain tumorigenesis (Finlay et al. 1989).

Subsequent mutational analyses uncovered mutations in the Trp53 gene in the cancer-

predisposing Li-Fraumeni syndrome (Malkin et al. 1990; Srivastava et al. 1990). Further

profiling of a variety of spontaneous tumors indicated an array of somatic mutations in Trp53,

firmly establishing its role as a tumor suppressor (Hollstein et al. 1991; Greenblatt et al. 1994;

Vogelstein et al. 2000). It is estimated that more than half of all human tumors mutate p53, with

perhaps all maligancies inactivating its associated pathways at some level, making it one of the

most important tumor suppressors in all of cancer biology.

b. Functional analysis

Initial studies with wild-type p53 demonstrated its ability to suppress transformation by

oncogenic Ras, suggesting a role in growth inhibitory pathways. Insights into the manner in

which p53 exerted this function came from multiple lines of evidence indicating that p53 was a

transcription factor. First, its N-terminus was shown to contain transactivation capabilities in

Gal4 fusion studies (Fields and Jang 1990; Raycroft et al. 1990). Secondly, a consensus DNA



binding site was revealed and subsequently shown to be in an internal segment of the protein (el-

Deiry et al. 1992; Bargonetti et al. 1993; Pavletich et al. 1993; Wang et al. 1993). Other studies

indicated that p53 formed a homotetramer to perform these functions (Sturzbecher et al. 1992;

Hainaut et al. 1994). Importantly, cancer associated mutations abrogated some of these functions

(Kern et al. 1992; Bargonetti et al. 1993). Together, these results suggested that p53 engaged

transcriptional programs to inhibit transformation. As described below, additional work further

refined this model and illustrated a general role for p53 in mediating cell cycle arrest or cell

death downstream of various stresses (Fig 2).

Cell cycle arrest

One of the earliest documented effects of p53 expression was the induction of GI cell

cycle arrest. This was seen both in the context of a cellular response to irradiation (IR), as well as

after exogenous expression of p53 (Kastan et al. 1991; Kuerbitz et al. 1992; Agarwal et al. 1995).

The defective IR-induced arrest in Trp53"~ MEFs conclusively demonstrated a functional role for

endogenous p53 in this process (Kastan et al. 1992). Given p53's suspected activity as a

transcription factor, a number of groups performed gene expression studies to identify p53-

responsive genes that potentially mediated these effects. Using such a strategy, p2 1 WAF/CIP (p21)

a potent inhibitor of GI cyclin/CDK complexes, was identified (el-Deiry et al. 1993). Indeed,

p211~ MEFs displayed defects similar to Trp53-1 cells following IR treatment, suggesting a

functional link between p53 and p21 in mediating cell cycle arrest (Brugarolas et al. 1995; Deng

et al. 1995). However, in other settings this connection is not as clear, indicating the presence of

additional p53-dependent factors. p53 can also induce a G2/M arrest, which is mediated by its

transcriptional activation of factors such as 14-3-3a, cdc25c, and Gadd45, all of which impinge
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on the cyclinB/CDK1 complex important in the transition into mitosis (reviewed in Taylor and

Stark 2001)). By arresting cells after various stresses such as DNA damage, these checkpoint

functions of p53 ensure that cells respond to these insults before continuing through the cell

cycle, thus limiting the propagation of potential damage. Accordingly, a prominent feature of

Trp53-/- cells is the accumulation of various kinds of DNA alterations (Harvey et al. 1993;

Tarapore and Fukasawa 2002).

Senescence

In some instances, the arrest executed by p53 falls into a unique category called

senescence. Numerous stimuli, such as continued passage in vitro, dysfunctional telomeres,

DNA damaging agents, and oncogene expression can bring about this response (reviewed in

Collado and Serrano 2006). Of the defining characteristics, such as an enlarged, flattened cell

morphology and a poorly understood senescence associated p-galactosidase (SA-pgal) activity

(Dimri et al. 1995), the most functionally relevant feature is the presumed irreversibility of the

arrest. While the role of p53 in senescence has been validated from studies with Trp53-/~ cells and

mice, the factors controlling induction of senescence versus a more canonical cell cycle arrest are

not well defined. While p21 levels increase in both settings, recent work has highlighted

cytokines and extracellular matrix-degrading enzymes as potential senescence-specific p53 target

genes. These factors are important for innate immune cell recognition and clearance of senescing

cells, a phenomenon seen in multiple models in vivo (Xue et al. 2007; Krizhanovsky et al. 2008).

It is possible that the p161nk4 a-Rb pathway plays a critical role in selecting the senescence

program. p16 1nk4a is frequently up-regulated during senescence and might contribute to Rb's

senescence-specific function of stable heterochromatin formation in the vicinity of cell cycle

genes (Narita et al. 2003). Senescence is discussed further in Part C of the introduction.



Apoptosis

As p53 was investigated in more cell types, it was soon discovered that it had functions apart

from cell-cycle arrest. Interestingly, IR treatment of thymocytes elicited a strong p53-dependent

cell death response, as opposed to the cell cycle arrest seen in MEFs under the same conditions

(Lowe et al. 1993b). Other stimuli, such as chemotherapeutic agents and particular oncogenic

insults, were shown to cause p53-dependent apoptosis as well (Lowe and Ruley 1993; Lowe et

al. 1993a). Once again, mechanistic insight was provided by studies identifying known apoptosis

regulators as p53-responsive genes, such as members of the mitochondrial death pathway like

Bax and Puma, as well as some mediators of the extrinsic death pathway such as Fas (Miyashita

and Reed 1995; Owen-Schaub et al. 1995; Nakano and Vousden 2001).

Apparently, under certain conditions and in particular cell types, p53 functions to

eliminate cells rather than simply arresting them. Given the drastic differences in potential fates

downstream of activating p53, a critical question concerns how the decision between arrest and

apoptosis is made. Intriguingly, early studies demonstrated that the p53-dependent, IR-mediated

GI arrest in MEFs could be shifted to apoptosis in the presence of the E1A oncogene, suggesting

some plasticity in p53 function (Lowe et al. 1993a). An emerging model implicates specific post-

translational modifications of p53, such as acetylation and phosphorylation, in the choice of p53

effector functions (Oda et al. 2000; Tang et al. 2006). Such modifications are hypothesized to

affect co-factor binding and potential target gene selection (Murray-Zmijewski et al. 2008).

Perhaps in certain cell types or following distinct types of stress, particular modifying enzymes

are sufficiently expressed such that p53 activation is accompanied by specific modifications,

leading to stereotypic downstream function. An entirely separate possibility is that cell-type

specific chromatin states surrounding potential target genes affect the accessibility of p53 to



these loci. Finally, the presence of other factors (ie- excess survival signals) could bias a cell

towards one fate or the other given a particular gene expression program.

c. Regulation

Under normal conditions, p53 levels are extremely low. This is largely due to a variety of

processes imparting a short half-life on the protein, the most well-established being

polyubiquitination and subsequent proteosomal-mediated degradation. The E3 ubiquitin ligase

Mdm2 is the predominant enzyme controlling this mode of regulation of p53 (Haupt et al. 1997;

Honda et al. 1997; Kubbutat et al. 1997). In addition to affecting protein levels, Mdm2 also

inhibits the transactivation capabilities of p53 (Momand et al. 1992). Supporting its critical

function in p53 regulation, Mdm2-~ animals normally die early in embryogenesis but can be

rescued on a Trp53-- background (Jones et al. 1995; Montes de Oca Luna et al. 1995).

Conversely, high levels of Mdm2 have been observed in cancers, where its overexpression is

sufficient to functionally inactivate the p53 pathway and thus obviates the need for p53

mutations (Leach et al. 1993).

In response to numerous cellular stresses, such as DNA damage, hyperproliferative

signaling, hypoxia, and nucleotide depletion, p53 protein levels increase rapidly while its mRNA

remains relatively constant (Vousden and Lu 2002). Most stimuli mediate this up-regulation by

interfering with Mdm2's ability to bind to and regulate p53. Interestingly, Mdm2 is itself a p53

target gene, which creates a negative feedback loop to control p53 levels (Wu et al. 1993). While

the list of potential upstream activating signals continues to grow, below I review two of the

most well-known examples of such stresses regulating p53 abundance and activity.

DNA damage



The first known treatment to induce p53 protein levels was UV irradiation (Maltzman

and Czyzyk 1984). Subsequent studies using genotoxic agents showed similar effects (Lowe et

al. 1993a). The DNA damage generated by these various treatments is thought to underlie their

ability to up-regulate p53. Through different mechanisms, distinct forms of damage activate

specific DNA damage responses (DDR) made up of kinase signaling cascades, some of which

eventually impinge on the p53 protein (reviewed in (Kastan and Bartek 2004). For example, IR

treatment creates double stranded breaks in DNA that activate a signaling pathway consisting of

the serine/threonine kinases ATM and Chk2. Both of these kinases can directly phosphorylate

p53 on particular residues in its N-terminus, such as S20 for Chk2, and this disrupts binding of

Mdm2 to p53 (Canman et al. 1998; Hirao et al. 2000). Additional DDR-dependent

phosphorylations and other post-translational modifications, including acetylation and

methylation, have been reported and can have diverse effects on p53 abundance and

transactivation functions (Huang et al. 2006; Tang et al. 2006). While varying according to the

specific form of DNA damage, the totality of these events results in increased p53 levels and

activity and allows p53 to orchestrate downstream gene expression programs.

Excessive mitogenic signaling

Another important route to p53 stabilization and increased activity is the expression of

oncogenes such as c-myc, E1A, and Ras (Lowe and Ruley 1993; Hermeking and Eick 1994;

Wagner et al. 1994; Serrano et al. 1997). As described in Section A i c., many of these same

genes activate p19Af owing to the excessive nature of their downstream hyperproliferative

signals. Following its induction, p1 9 Arf directly binds and inhibits Mdm2, resulting in p53 up-

regulation (see Section A.i.b.). Studies showing dampened p53 responses to a variety of

oncogenes in Arf cells and tissues support a critical role for p19Arf in oncogene-dependent p53



induction (de Stanchina et al. 1998; Palmero et al. 1998; Eischen et al. 1999; Schmitt et al.

1999). In some contexts, oncogenic signaling may also affect p53 through post-translational

modifications. For example, oncogenic Ras was shown to promote the relocalization and

subsequent p300-dependent acetylation of p53 through the up-regulation of the PML, a tumor

suppressor gene (Ferbeyre et al. 2000; Pearson et al. 2000). Moreover, oncogenic Ras-induced

p38 MAPK pathway activation can lead to direct phosphorylation of p53 at S37, which is

necessary for its transactivation function (Sun et al. 2007).

To add additional complexity, recent work has shown that oncogene-induced p53

activation is largely due to a DDR caused by unregulated cell proliferation. In these studies

oncogene expression was shown to generate a significant DDR, and removing core components

of the DDR such as ATM or Chk2 blocked oncogene-induced p53 up-regulation (Bartkova et al.

2006; Di Micco et al. 2006). A potential reconciliation of the conflicting evidence that both

p1 9 Af-dependent (hyperproliferative stimuli) and DDR-dependent factors up-regulate p53

following oncogenic insults might be found in mouse versus human differences (Efeyan et al.

2009). Studies implicating p19Arf were largely from mice, where p19Af may play a more

predominant role, and those implicating the DDR were mostly performed in human cells, which

might have unique circuitry connecting oncogenes to p53 (Voorhoeve and Agami 2003).

Alternatively, the DDR and p19Af (p14) could be important in both settings through partially

overlapping pathways, as there is limited evidence of bidirectional cross-talk between DNA

damage and Arf regulation (Khan et al. 2000; Eymin et al. 2006).



d. Mouse models

p53 was the first tumor suppressor gene to be targeted for inactivation in the mouse.

While development appeared to be relatively normal in Trp53- mice, they were extremely

tumor-prone and succumbed mostly to T-cell lymphomas and soft-tissue sarcomas within a few

months of life (Donehower et al. 1992; Jacks et al. 1994). Cooperation with numerous other

models of cancer, both genetically engineered and carcinogen-induced, highlighted a broad

tumor suppressive role for p53 beyond the tissues affected in Trp53f- mice. Generation of an

allele affording Cre-regulated p53 deletion, Trp53l"o, allowed for cell-type specific knockouts

and was instrumental in expanding the tissues in which p53 was studied (reviewed in

(Donehower and Lozano 2009).

Given the diverse functions ascribed to p53 from cell culture studies, a critical question

became which of these roles were important for its tumor suppression activities in vivo.

Introducing Trp53~1 into a mouse model of T-antigen-driven brain tumors suppressed apoptosis

and accelerated tumor progression, implicating p53's promotion of cell death as a critical tumor

suppressive mechanism (Symonds et al. 1994). On the other hand, a point mutant allele of p53

incapable of inducing apoptosis but competent for cell cycle arrest, Trp53JSC, still retained

significant tumor suppressor activities, suggesting that cell cycle arrest is also important in

particular contexts (Liu et al. 2004). As with in vitro studies, the choice between effector

functions appears to be cell-type specific. However, it has been recently shown that incipient

lymphomas, which normally undergo p53-dependent apoptosis, can undergo senescence if cell

death programs are inhibited, suggesting that there is some plasticity in this decision (Post et al.

Feldser and Greider 2007).

Deciphering which of the many potential upstream signaling events are necessary for

p53-dependent tumor suppression has also been addressed in mouse models. In some settings,



p53 function appears to be p19Af-independent (Tolbert et al. 2002), while other studies strongly

implicate this pathway. For example, Evans and colleagues constructed a knock-in allele of p53

expressing a tamoxifen-regulated version of the p53 protein (p5 3 ER), allowing them switch p53

function on and off (Christophorou et al. 2005). By adjusting the time at which p53 was active

following IR treatment, they were able to separate p53-dependent lymphoma suppression from

the DDR associated with IR. Moreover, this suppression was abolished in the absence of p19 Arf

suggesting that oncogenic signals were the critical inducer in this setting (Christophorou et al.

2006). Further work with this system, along with two others that allowed for p53 reactivation in

established tumors, demonstrated that p53 deficiency was required for tumor maintenance and

also provided additional evidence for cell-type specific modes of p53-dependent tumor

suppression, including apoptosis for lymphomas and senescence in sarcomas (Martins et al.

2006; Ventura et al. 2007; Xue et al. 2007).

While most of these studies dissected tumor-associated p53 properties with complete

gene inactivation, they did not faithfully recapitulate the situation in human tumors. Most

mutations found in human cancer are point mutations in so-called hotspot regions that interfere

with normal function but maintain or even increase expression of p53 (reviewed in Petitjean et

al. 2007). Based on in vitro studies it has been proposed that these point mutant versions have

dominant negative or gain-of-function attributes, including the ability to bind and inhibit related

family members p63 and p73 (Strano et al. 2000; Gaiddon et al. 2001). Therefore, several groups

generated mice containing these mutations and compared them to Trp53-/- strains (Lang et al.

2004; Olive et al. 2004). While overall survival was not affected, there was a shift in tumor

spectrum to more epithelial cancers in one study, potentially implicating novel functions for

these mutated versions of p53 in certain cell types (Olive et al. 2004).



B. The Ras oncogenes
Proper organismal growth and development relies on substantial cellular proliferation.

Normally, this expansion requires extracelluar signals to be received and propagated through

intracellular pathways, ultimately leading to activation of the cell cycle machinery (Hanahan and

Weinberg 2000). Such a tightly controlled system ensures that cells divide only under the right

conditions. Tumors invariably overcome this mode of regulation, leading to the excessive

proliferation often associated with cancer cells. One of the most common ways cancers acquire

this trait is through mutations in mitogenic signaling pathways, which result in the uncoupling of

cell cycle progression from proper environmental cues. Activating mutations in the Ras family of

proto-oncogenes are prime examples of this type of alteration and represent one of the most

common genomic events in cancer. This section introduces Ras biology, as the tumor models

used throughout this thesis are driven by oncogenic K-ras.

a. Discovery

The Ras genes were first described as transforming segments within the genomes of the

Harvey and Kirsten rat sarcoma viruses (Chien et al. 1979; DeFeo et al. 1981; Ellis et al. 1981).

Interestingly, their relationship to human cancer was revealed from an entirely separate line of

studies involving the transformation of NIH 3T3 cells with transfected human DNA from

chemically treated cells (Shih et al. 1979a). Using the unique patterns of human DNA-derived

Alu sequences within transformed clones, it was determined that defined genetic elements from

the transferred human DNA were causing the transformation (Perucho et al. 1981; Shih et al.

1981). Soon thereafter these specific genetic regions were cloned from a variety of cancer cells

(Goldfarb et al. 1982; Pulciani et al. 1982; Shih and Weinberg 1982) and subsequently shown to

be homologous to the previously identified viral Ras genes (Chang et al. 1982; Parada et al.



1982). A few years after the identification of cellular H-ras and K-ras2 (hereafter referred to as

K-ras), N-ras was discovered (Shimizu et al. 1983). Subsequent work indicated that in most

cases there was only a single missense mutation that distinguished the wild-type and oncogenic

versions (Reddy et al. 1982; Tabin et al. 1982; Taparowsky et al. 1982; Capon et al. 1983).

Further sequencing efforts have found these mutations in a variety of cancers, with K-ras being

the most frequent target, especially in tumors from the lung, colon and pancreas (Bos 1989). As

such, Ras genes represent some of the most frequent mutational targets in cancer.

b. Regulation

Initial characterization of the Ras proteins offered several insights into their normal

cellular function and modes of regulation. Early studies indicated they were 21 kd membrane-

localized proteins that bound guanine nucleotides and contained GTPase activity (Shih et al.

1979b; Shih et al. 1980; Willingham et al. 1980; Gibbs et al. 1984; Sweet et al. 1984). These

features were reminiscent of small G-proteins (Hurley et al. 1984), a class of proteins known to

be involved in transduction of signals across the plasma membrane and regulated by their

binding of either GTP (active state) or GDP (inactive state). The finding that EGF induced GTP

binding indicated that Ras activity was regulated by mitogenic signaling (Kamata and Feramisco

1984). A large number of genetic and biochemical studies identified additional factors linking

growth factor receptor signaling to Ras-GTP binding, culminating in a model in which activated

growth factor receptors bind adaptor proteins (such as GRB2) which then recruit guanine

nucleotide exchange factors (GEFs, such as SOS) to the plasma membrane, bringing them in

close proximity to Ras. These GEFs interact with Ras and stimulate its release of GDP, allowing

for binding of the more abundant GTP, resulting in Ras activation (reviewed in (McCormick

1993). The subsequent hydrolysis of GTP to GDP, which inactivates Ras, is greatly stimulated



by additional cellular factors called GTPase-activating proteins (GAPs) such as p21OGAP and

the tumor suppressor NF1 (Trahey and McCormick 1987; Gibbs et al. 1988; Ballester et al.

1990; Cawthon et al. 1990; Martin et al. 1990). Thus, Ras activity is regulated by a GTP-GDP

cycle. Consequently, most oncogenic point mutations in Ras genes, comprising those in codons

12, 13, and 61, disrupt this mode of regulation, either by reducing its intrinsic GTPase activity or

by inhibiting interactions with GAPs (Gibbs et al. 1984; Sweet et al. 1984; Der et al. 1986;

Trahey and McCormick 1987). This results in its constitutive binding to GTP, leading to

activation even in the absence of appropriate upstream signals.

c. Ras signaling and effector mechanisms

The connection between EGF stimulation and Ras-GTP binding and suggested a role for

Ras proteins in mitogenic signaling. A functional link was soon demonstrated by studies in

which inhibition of Ras through microinjected antibodies blocked serum-induced growth of NIH

3T3 cells (Mulcahy et al. 1985). Work in a number of other systems went on to document roles

for Ras in other processes such as differentiation and response to cytokines (Samid et al. 1985a;

Samid et al. 1985b; Hagag et al. 1986). Together, these studies indicated that Ras proteins were

critical for transducing signals from the extracellular environment to intracellular networks in

order to generate appropriate responses (Figure 3). Consequently, an important question became

how Ras executed these diverse downstream functions. Over the years a number of groups have

identified binding partners of Ras that specifically interact with active Ras-GTP,
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Figure 3: Overview of Ras signaling.
Ras activity is normally controlled by a GTP-GDP cycle. In wild-type cells, receptor binding to
an extracellular growth factor (purple oval) leads to phosphorylation of cytoplasmic residues on
the receptor (orange ovals), which serve as docking sites for adaptor proteins like Grb2 (green
structure). Through separate domains these adaptor proteins also bind guanine nucleotide
exchange factors (GEF-red square) such as SOS, which brings them in close proximity to
membrane localized Ras (grey circle). GEFs stimulate the release of GDP from Ras, allowing the
more abundant GTP to bind and activate Ras (yellow). This creates a confirmation change in
Ras, giving it the ability to interact with a number of proteins that serve as upstream signaling
nodes in an array of intracellular pathways, a few of which are shown. The activation of these
pathways mediates the large number of output functions ascribed to Ras, such as proliferation,
survival, and cytoskeletal rearrangements. Normally, Ras activity is terminated by GTPase
activating proteins (GAPs-light blue oval) that bind Ras-GTP and enhance its intrinsic GTPase
activity. Oncogenic point mutations disrupt this interaction, thus keeping Ras in its active, GTP
bound state and able to constitutively signal to downstream pathways.



implicating them as potential Ras effectors. Below is an overview of some of the most well-

established examples.

MAPK

The first Ras effectors to be identified were Raf family members, which were themselves

previously identified oncogenes (Vojtek et al. 1993; Wame et al. 1993; Zhang et al. 1993). This

interaction localizes Raf to the plasma membrane and initiates the mitogen activated protein

kinase (MAPK) signaling cascade in which Raf phosphorylates MEK family members

(MEK1/2), which then phosphorylate and activate ERK1/2 kinases (Hagemann and Blank 2001).

While targets of the ERKs vary widely among cell types, canonical examples include the Ets

family of transcription factors and members of the AP- 1 complex (reviewed in Yordy and

Muise-Helmericks 2000). These factors subsequently induce a number of genes involved in the

cell cycle, such as cyclin D1, providing a direct link between Ras signaling and cell cycle

progression (Hitomi and Stacey 1999). Additional MAPK subfamilies, including the c-Jun N-

terminal kinase (JNK) and p38 pathways (reviewed in Wagner and Nebreda 2009), also signal

downstream of Ras. Generally associated with stress responses, these kinase cascades have

unique and overlapping targets with the Raf-MAPK pathway, indicating that Ras can direct

distinct outputs depending on which MAPK pathways it activates.

P13K

Another important Ras effector arm is the class I phosphoinositide 3-kinase (PI3K)

pathway, first shown by the interaction between Ras-GTP and the p110 catalytic subunit of PI3K

(Rodriguez-Viciana et al. 1994). Upon binding to Ras this lipid kinase localizes to the plasma

membrane, allowing it to phosphorylate position 3 on the inositol ring, which results in increased

phosphatidylinostiol 3,4,5 triphosphate (PIP 3) on the intracellular surface of the cell membrane



(Vivanco and Sawyers 2002). PIP3 serves as a docking site for the serine/threonine kinase Akt,

whose membrane localization leads to its activation and subsequent ability to phosphorylate

numerous proteins (Franke et al. 1997). Through its phosphorylation and inactivation of the pro-

apoptotic protein Bad, Akt can promote cell survival (Datta et al. 1997), while substrates such as

glycogen synthase kinase 3 (GSK3) and the Forkhead family of transcription factors (FOXOs)

link this kinase to cell cycle progression (Medema et al. 2000; Hill and Hemmings 2002). In

addition, Akt can activate the mTOR pathway, which has pleiotropic effects on proliferation, cell

size, metabolism, and protein translation (reviewed in Shaw and Cantley 2006). Clearly, by

activating the PI3K/Akt pathway, Ras is able to generate diverse signaling outputs.

Other pathways

A number of other Ras-GTP interacting partners have been described over the years. For

example, RalGDS and RalGRL, two GEFs for RalA and RalB small GTPases, bind activated

Ras, implicating this class of proteins as Ras effectors (Kikuchi et al. 1994; Spaargaren and

Bischoff 1994). Most well known for their role in vesicle trafficking and receptor recycling, Ral

proteins (specifically RalB) have recently been shown to have important roles in cell survival

through their activation of the IKK-related kinase TBK1 (Bodemann and White 2008).

An additional group of Ras effectors comprise the Rho family of small GTPases. Initially

thought to be only indirectly affected by Ras signaling, an interaction between Ras-GTP and

Tiaml, a GEF for Rac GTPases, suggested a more direct relationship (Lambert et al. 2002). Rho-

GTPases play important roles in cytoskeletal reorganization and can mediate the formation of

stress fibers, lamellipodia, and membrane ruffling, depending on the context (Ridley and Hall

1992; Ridley et al. 1992). Moreover, by activating other pathways such as NFKB, this family can

also impact cell proliferation and survival (Joyce et al. 1999). As research continues, an



increasing number of binding partners for Ras are found, and their varied functions implicate Ras

signaling in more and more biological processes.

Identifying effectors important in tumorigenesis

Given that Ras has a direct role in cellular transformation, a long-standing question has

been which of its downstream signaling pathways are critical for its tumorigenic functions. Early

studies overexpressing dominant negative or constitutively active cDNAs showed that members

of the Raf-MAPK pathway were necessary and sufficient for Ras-induced transformation of NIH

3T3 cells (Schaap et al. 1993; Cowley et al. 1994). Dominant negative versions of Rho family

members proteins similarly blocked Ras-dependent transformation (Qiu et al. 1995a; Qiu et al.

1995b). A set of very informative studies relied on a collection of Ras mutants that differed in

their ability to bind various effectors owing to effector-binding domain point mutations (White et

al. 1995). For example, an oncogenic H-ras mutant unable to bind Raf proteins (G12V, E37G)

lacked transformation capabilities, further demonstrating the importance of this pathway.

Subsequently, the Downward group generated additional mutants that bound only Raf, only

P13K, or only RalGDS and showed that all failed to individually transform NIH 3T3 cells but

had partial activity when used in various combinations. These results, along with others

indicating that constitutively active effector proteins (ie- Raf-CAAX or p11 O-CAAX, which are

targeted to the membrane) could only transform cells when expressed together, suggested that

multiple effector pathways were necessary to completely recapitulate Ras function (Rodriguez-

Viciana et al. 1997). More recently, multiple groups have interrogated Ras effectors using

shRNA-mediated knockdown of pathway components. A benefit of this approach is that one can

implicate specific family members, as has been done with b-Raf/c-Raf and RalA/RalB in

different tumor cell lines (Dumaz et al. 2006; Lim et al. 2006). Additionally, RNAi systems can



be readily applied to large-scale screens. Several of these types of screens have been carried out

and have revealed important pathway dependencies of sensitivities of Ras-mutant cells (Barbie et

al. 2009; Luo et al. 2009; Scholl et al. 2009).

Both cell-type and species dependent effects have been observed in Ras effector studies.

While MEFs require only Raf to phenocopy Ras-transforming functions, human fibroblasts

depend on both Raf and RalGEF activities. Among human cells, further differences have been

noted between fibroblasts and epithelial cell types such as kidney cells, which require P13K and

RalGEF, and mammory cells, which rely on Raf, P13K, and RalGEF pathways (Rangarajan et al.

2004). Although the reasons for these discrepancies are unknown, they highlight the complexity

of Ras signaling and underscore the importance of considering cell type when studying Ras

effector pathways.

d. Ras family members

The Ras family consists of the closely related H-ras, N-ras, and K-ras (4A or 4B-

determined by alternative splicing to its last exon (Capon et al. 1983; McGrath et al. 1983))

genes. While often referred to collectively, important differences exist between these family

members. Interestingly, H-ras-1- and N-ras- mice are viable while K-ras- embryos die in utero

(Umanoff et al. 1995; Johnson et al. 1997). In addition, different tumor types specifically harbor

mutations in a particular family members (Karnoub and Weinberg 2008). Unique expression

patterns have been proposed as one possible explanation for these differences, but other factors

may play a role as well. While a majority of their primary amino acid sequence is very similar,

there are substantial differences in the C-terminal portion of these proteins, which allows for

different modifications and thus might lead to distinct subcellular localizations (Apolloni et al.



2000). Interestingly, when studied side-by-side in the same overexpression systems, the different

family members have shown unique effects on transformation (Voice et al. 1999; Quinlan et al.

2008). Therefore, it is most likely that distinct biological properties of the Ras proteins also

influence the tumor spectrums associated with their mutations.

e. Mouse models

Even before Ras genes were targeted in animal studies, oncogenic point mutations in H-

ras were identified in benign papillomas from mice treated with chemical carcinogens (Balmain

et al. 1984). A more causal role in tumor initiation was provided by transgenic mice expressing

oncogenic H-ras driven by the MMTV promoter, which formed mammory hyperplasias (Sinn et

al. 1987). Subsequently, several transgenics have been made in a variety of tissues, highlighting

the potency of Ras oncogenes in initiating tumors.

More recently, sophisticated mouse models have illustrated important concepts in Ras

tumor biology. For example, using reversible systems in which oncogenic Ras could be shut off

after tumors developed, several groups showed that tumor maintenance required the continued

expression of oncogenic Ras (Chin et al. 1999; Fisher et al. 2001). In addition, mice harboring a

"latent" allele of K-rasG12D (K-rasLA), which presumably can spontaneously activate endogenous

K-rasG12D in any cell type following an intrachromosomal recombination event that removes an

engineered exon duplication, showed a very limited tumor spectrum, with 100 percent of mice

presenting with lung tumors (Johnson et al. 2001). While this could be due to cell type variability

in recombination efficiency, these results might also suggest that only certain cell are responsive

to endogenous oncogenic K-ras signaling (See Chapter 2). Finally, Cre-inducible alleles of

endogenous K-raSG12D, such as K-raSLSL-G12D, have permitted the targeting of endogenous



oncogenic K-ras to specific cell types, as well as highlighted differences between endogenous

and over-expressed oncogenic Ras (Tuveson et al. 2004) (see Section C of the Introduction).

Many of these models have been used to investigate the importance of different effector

pathways in Ras-mediated tumor development. In one study, deletion of RacI strongly inhibited

K-rasGl 2D-induced lung tumor formation, while another demonstrated a critical role for RalGDS

in H-Ras-driven skin tumor initiation (Gonzalez-Garcia et al. 2005; Kissil et al. 2007).

Furthermore, disrupting the ability of pil10a to interact with Ras-GTP dramatically blocked lung

tumor formation in K-rasLA animals (Gupta et al. 2007). The use of specific pathway inhibitors in

tumor-bearing animals has allowed for studies on established tumors as well. For example,

combined administration of drugs inhibiting MAPK and P13K pathways led to regression in K-

ras G1 2D-initated lung tumors (Engelman et al. 2008). The ability to perform these types of

pathway analyses in mouse models that closely recapitulate human cancers will hopefully inform

therapeutic strategies in the future.

C. Oncogene-induced tumor suppression
Tumorigenesis is driven by multiple mutations, including those that activate growth-

promoting oncogenes, such as Ras (Section B) and others that disable anti-proliferative tumor

suppressors such as p1 9 Arf or p53 (Section A). This mutational spectrum endows cancer cells

with the ability to expand uncontrollably and progress towards malignancy. The co-occurrence

of these different classes of mutations is not merely a coincidence but instead underscores an

intimate connection between pathways regulating cell proliferation and those with growth

inhibitory properties (Lowe et al. 2004). Surveillance systems that are intertwined with



proliferative networks sense and respond to inappropriate signals by impeding growth or

executing cell death. Paradoxically, this means that oncogenic mutations directly engage the

tumor suppressor pathways that constrain cancer progression. Therefore, the full potential of

oncogenic lesions is unleashed only after inactivation of these anti-growth programs (Figure 4).

Such tight coupling of oncogenes and tumor suppressors represents a critical checkpoint

guarding against tumor formation. This section highlights the main types of oncogene-induced

tumor suppression and ends with a discussion of potential causes of variability in these

responses.

a. Early insights - oncogene cooperativity for transformation ofprimary cells

The cellular Ras genes were functionally cloned by their ability to transform

immortalized NIH 3T3 cells (Perucho et al. 1981; Shih et al. 1981). This initially suggested that

oncogenic Ras was sufficient for transformation. However, when similar experiments were

conducted in primary rodent fibroblasts, Ras lacked transforming capabilities. Only introduction

of additional oncogenes, such as ElA or c-myc, elicited overt transformation (Land et al. 1983;

Newbold and Overell 1983; Ruley 1983). This provided the first evidence that multiple

oncogenic events were necessary for tumor formation. Subsequent work expanded the list of

secondary events that cooperated with Ras in transformation, including deletion of Trp53 or

Ink4a/Arf (Tanaka et al. 1994; Serrano et al. 1996). As many of these cooperating events were

known to immortalize cells, preventing the eventual growth arrest, or replicative senescence,

observed after prolonged passage in tissue culture, it was suggested that oncogenic Ras could

transform cells only after they underwent immortalization, further refining the model of

multistep tumorigenesis (Ruley 1990). These in vitro studies nicely aligned with mutational data

No.
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Figure 4: Oncogene-induced tumor suppression.
A. The activation of oncogenes not only induces pathways that promote proliferation and
survival but also directly engages tumor suppressor programs that inhibit these processes.
Because of this intrinsic coupling of oncogenes and tumor suppressors, cells that acquire
oncogenic mutations (orange circle) usually undergo either irreversible cell cycle arrest (blue
circle) or cell death (red circle), depending on the cell type and/or oncogenic stimulus. This
effectively inhibits transformation. B. If the same oncogenic insult occurs in a cell that has
disabled these tumor suppressor programs (green circle), perhaps through a secondary mutation,
the oncogenic pathways controlling proliferation and enhanced survival can promote
transformation (yellow shapes). This phenomenon helps to rationalize the multi-step nature of
tumorigenesis, as additional mutations are required to unleash the full potential of oncogenes.
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from human cancers which indicated that established tumors harbored multiple mutations

(Kinzler and Vogelstein 1996).

b. Oncogene-induced senescence

While the general principle of oncogene cooperativity had been appreciated for many

years, a mechanistic explanation was still lacking. To gain insight into why Ras required

additional events to transform primary cells, Serrano and colleagues investigated the response of

primary mouse and human fibroblasts to sustained expression of oncogenic H-ras. Interestingly,

H-rasG12V -expressing cells rapidly up-regulated the tumor suppressors p16 nk4a and p53,

underwent a robust and irreversible GI cell cycle arrest, and presented with additional

characteristics of the well-established phenomenom of replicative senescence (Serrano et al.

1997). Cooperating events already known to combine with Ras in transformation, such as

dominant negative p53 and ElA expression, completely inhibited the appearance of these

senescence markers, suggesting that their true function in oncogene cooperativity might be to

subvert this senescent phenotype. This newly identified program of premature senescence,

named oncogene-induced senescence (OIS), was hypothesized to be a failsafe mechanism

preventing the outgrowth of incipient tumor cells harboring oncogenic mutations.

Numerous studies have since implicated the p19 -p5 3 and p16 Ink4a-Rb tumor suppressor

pathways as the main mediators of OIS, with the relative importance of each being dependent on

the species and cell type (reviewed in Dimri 2005). One of the main mechanisms linking

oncogenes to senescence induction is the excessive mitogenic signaling associated with activated

oncogenes, which then transcriptionally engages the Ink4a/Arf locus (see Section A i c), resulting

in p53 and Rb pathway activation (Collado and Serrano 2010). In the case of oncogenic Ras,



hyper-active Raf-MEK-ERK signaling has been shown to be necessary and sufficient for p1 9 Arf

and p1 6 1nk4a up-regulation (Lin et al. 1998; Zhu et al. 1998; Sreeramaneni et al. 2005).

Interestingly, activation of p38MAPK, either by Raf or reactive oxygen species (ROS), might be

critical for this effect in certain contexts (McCubrey et al. 2006). High levels of activating E2Fs

associated with many oncogenic insults could also play a role, as overexpression of E2Fs can

activate Ink4a/Arf and induce senescence on their own (Dimri et al. 2000; Lazzerini Denchi et al.

2005). In contrast to models invoking increased flux through pathways, others have highlighted

the importance of negative feedback mechanisms in controlling induction of p53 and Rb during

OIS. In one study, simply inhibiting the P13K pathway generated a senescent phenotype,

although the role of Ink4a/Arfwas not addressed (Courtois-Cox et al. 2006). As discussed

earlier, oncogenes can also activate p53 through a DDR, and several groups have demonstrated

the requirement for these pathways in OIS (Bartkova et al. 2006; Di Micco et al. 2006).

Moving downstream of p53/Rb activation, little is known about the mechanism of OIS,

although p21 might be involved in some contexts (Brown et al. 1997). Gene expression studies

recently identified a number of markers expressed specifically in cells undergoing OIS, including

DecI and DcR2, although their functional role is unclear (Collado et al. 2005). Interestingly,

unique chromatin patterns called senescence associated heterochromatic foci (SAHF) have been

observed specifically in senescent cells compared to those undergoing more traditional cell cycle

arrest. These condensed chromatin structures, which are dependent on p161nk4a-Rb activity,

encompass genes important in cell-cycle progression and could be critical in directing the

irreversible cell cycle arrest associated with senescence (Narita et al. 2003).

Despite the wealth of in vitro data, evidence for OIS as a tumor suppressive mechanism

in vivo remained elusive for some time. However, a recent spate of papers, using the newly

OVA,



identified markers, reported widespread OIS in a number of mouse tumor models including those

of the lung, prostate, hematopoietic, mammory, thyroid, and skin (Braig et al. 2005; Chen et al.

2005; Collado et al. 2005; Sarkisian et al. 2007; Shamma et al. 2009). There is also mounting

evidence for senescence in human tumors (Collado and Serrano 2010). Importantly, many of

these studies correlated more advanced tumor stages with a loss of OIS markers. Moreover, in

several mouse models, directly disabling the senescence program resulted in enhanced tumor

progression, providing causal relationship between senescence and tumor suppression. Most

notably, deletion of suv39hl, a histone methyltransferase that physically and functionally

interacts with Rb, was shown to have such an effect, providing in vivo evidence that chromatin

modifications mediate the senescent program (Braig et al. 2005; Shamma et al. 2009). In many

of these studies, senescent cells were found in small, pre-malignant lesions, suggesting that

oncogene expression allowed for some cellular expansion but eventually engaged the senescence

program, which limited subsequent tumor growth. Given that senescence is potentially

irreversible yet many tumors ultimately progress to more advanced stages, an intriguing question

concerns the origins of these malignant clones. One possibility is that they derive from cells that

undergo senescence but somehow eventually bypass this checkpoint, possibly through secondary

mutations. Alternatively, they could represent cells that never fully engaged the program and

therefore might still be susceptible to senescence. As intact senescence programs might represent

an important chemotherapeutic target in established tumors (Schmitt et al. 2002b), this question

needs to be addressed.



c. Oncogene-induced apoptosis

Studying additional oncogenes in primary cells demonstrated a paradoxical role for some

in mediating apoptosis in certain contexts. For example, under a variety of conditions the viral

oncogene El A elicited a robust apoptotic response in rat embryonic fibroblasts (Lowe and Ruley

1993). Likewise, ectopic expression of c-myc in primary cells deprived of nutrients or arrested

by other means resulted in widespread cell death (Evan et al. 1992). Given the established role

for p53 in mediating apoptosis, a connection was quickly made between the aberrant expression

of these oncogenes and p53 up-regulation, and p53 deletion was shown to severely hinder this

oncogene-induced apoptosis (OIA) (Hermeking and Eick 1994; Wagner et al. 1994). Further

genetic dissection of the p53 pathway in cells undergoing OIA implicated pl9Arf as a critical

upstream regulator of p53 in many settings (de Stanchina et al. 1998; Eischen et al. 1999). As

with OIS, inappropriate mitogenic signaling downstream of oncogene expression is thought to

underlie p19Ad transcriptional activation. For both ElA and c-myc, their ability to directly or

indirectly activate E2F transcription factors has been proposed as a mechanism to explain p1 9 Arf

induction (Lowe et al. 2004), although redundancy in the E2F family has made it difficult to

definitively prove this model. Whatever the mechanism of p53 induction, its subsequent

stabilization results in the transcriptional activation of a number of pro-apoptotic genes (see

Section A ii b). Additionally, c-myc and ElA can directly impinge on apoptotic cascades, further

connecting these oncogenes with apoptosis (Klefstrom et al. 2002; Perez and White 2003). The

relative importance of p53-dependent and independent routes to apoptosis most likely varies

between different cell types.

The dual functions of oncogenes such as c-myc in cell cycle progression as well as

apoptosis induction led to the speculation that the oncogenicity of such genes would be

uncovered only when cell death was inhibited. Indeed, in numerous in vivo models driven by



exogenous c-myc expression, including those directing pre-B cell or pancreatic p-cell-specific

expression, massive apoptosis has been documented, correlating with a relatively weak tumor

phenotype (Eischen et al. 1999; Pelengaris et al. 2002). However, disabling the cell death

machinery suppressed this high apoptotic index and led to extensive c-myc driven tumorigenesis.

This has been accomplished both through inactivation of pro-apoptotic genes such as BH3-only

killer protein Bim, as well as with overexpression of cell death inhibitors such as Bc1-2 or Bcl-xl

(Pelengaris et al. 2002; Schmitt et al. 2002a; Egle et al. 2004). These results strongly implicate

OIA as a critical tumor suppressor mechanism downstream of c-myc overexpression.

d Determinants of OIS and OIA

The tight coupling of oncogenic signaling to tumor suppressor pathways makes it

difficult to envision oncogenic mutations as drivers of tumor initiation, instead placing their

mutation later in disease progression. This contrasts with studies implicating some oncogenic

lesions as initiating, or at least early events (Moskaluk et al. 1997; Shet et al. 2002; Kemp 2005).

Given the model that hyperactive signaling underlies engagement of growth-inhibitory

checkpoints, it is conceivable that intermediate levels of signaling, closer to those seen within the

normal functioning range of mitogenic signaling pathways, could drive proliferation while

minimally inducing tumor suppressors. Support for such a model has been documented in a

number of experimental settings, as described below.

Most early studies of oncogenic Ras function relied on overexpression. To investigate the

most frequently mutated Ras family member under more physiological settings, a Cre-inducible

allele of endogenous K-rasG12D was generated (K-rasLSL-G12D) (Tuveson et al. 2004). Initial

characterization of MEFs expressing endogenous K-rasG12D (K-raSLox-G12D MEFs) revealed



dramatic differences compared to cells with ectopic oncogenic Ras expression. In contrast to the

traditional OIS response, K-rasLx-G2D MEFs appeared immortalized and even partially

transformed. This phenotypic difference was attributed to relatively low p1 9 Arf-p 5 3 pathway

activation, possibly due to attenuated signaling through Ras effector pathways seen with

endogenous K-ras G12D. Furthermore, directing physiological K-rasG12D expression to multiple

tissues resulted in hyperproliferation without any signs of senescence. Together, these data

suggested that oncogene-induced tumor suppression relied on oncogene overexpression. In

contrast to these results, work with another knock-in model of oncogenic K-ras (K-rasLSLG12 V

IRESGeo) reported senescence in pre-malignant lesions of the lung and pancreas (Collado et al.

2005). Importantly, inserting the pGeo into the 3' UTR of K-ras could increase K-ras expression

levels in this model, providing a possible explanation for phenotypic differences between these

alleles.

To more directly test the relationship between oncogenic Ras expression levels and

functional outputs in vivo, Chodosh and colleagues generated a doxycycline-regulated allele of

H-rasG12v (Sarkisian et al. 2007). With this system, they could carefully manipulate H-ras levels

and assess downstream consequences. While moderate induction of H-rasG12V elicited modest

proliferation and no Ink4a/Arf or p53 expression, high levels of the oncogene led to a burst of

cell cycle entry followed by robust tumor suppressor induction and cellular senescence. Deleting

Ink4a/Arf or Trp53 blunted the senescence response and permitted tumor formation.

Similar observations have been reported for c-myc. MycERT2, a fusion protein of c-myc

and a fragment of the estrogen receptor (ER) that affords tamoxifen-regulated control of c-myc

activity, was targeted to the R26 locus (Murphy et al. 2008). Despite only modest expression,

activation of mycER T 2 was able to induce proliferation in a number of tissues. Interestingly, this

Oft,



was not accompanied by significant p19Af induction or cell death, which required c-myc over-

expression via a different transgene. The ability of mycERT2 to cooperate with endogenous K-

ras G12D in lung tumor progression suggested that this low level of c-myc activity, which escaped

p19Aa-mediated surveillance, could still contribute to tumorigenesis.

Together, these studies indicate that the dual nature of oncogenic signaling can be

uncoupled by adjusting expression levels. Moderate oncogene expression, perhaps corresponding

to more physiological levels associated with normal cellular functions, allows for proliferative

responses without appreciable tumor suppressor induction. In contrast, inducing higher levels of

oncogenes engages anti-proliferative networks that constrain growth and tumorigenesis. An

attractive model to explain these observations is that early in tumor development, initiating

oncogenic lesions lie below the detection of tumor suppressor programs, allowing for cell

proliferation. As these lesions advance, increased signaling, perhaps through gene amplification

or loss of negative regulators, could potentially induce checkpoints. This would limit tumor

progression but also provide selective pressure for clones in which these anti-tumor pathways

have been inactivated. Once these secondary mutations occur, high oncogene levels can drive

cancer cells towards full malignancy.

Aside from oncogene expression levels, whether there are additional factors that might

control the decision to proliferate or induce tumor suppressors downstream of oncogenic insults

are unknown. As mentioned in Section A I c, cell types differ in their extent of PcG repression of

Ink4a/Arf, and this could set different thresholds for gene activation. A few studies have

suggested that such differences between hematopoietic progenitors and more differentiated T and

B cells might affect their tumorigenic potential. Specifically, while expression of the Bcr-Abl or

Notch-IC oncogenes in bone-marrow derived (more progenitor-like) cells did not require Arf



deletion, equivalent tumor formation when using or pre-B or pre-T-cell (more differentiated) was

only seen in Arf/- backgrounds. While differential PcG-repression of p19 Arf was proposed as an

explanation, this was not tested (Williams et al. 2006; Volanakis et al. 2009). In Chapter 2, I

describe a functionally relevant, tissue-specific p19" expression pattern in the context of

similar, endogenous K-rasG12D levels. Furthermore, I implicate distinct chromatin remodeling

activities in the control of this response, providing additional support that inherent differences in

p19'f transcriptional regulation among cell types can affect oncogene-induced tumor

suppression.

D. Genetic tools for modeling cancer in the mouse
Cancer is a highly complex disease that arises within intact organisms and therefore has

multiple interactions with both local and systemic factors that significantly affect tumor

initiation, progression, and treatment responses. While tissue culture studies have undoubtedly

contributed to our understanding of tumorigenesis, they do not recapitulate an endogenous in

vivo environment and as such limit our ability to interrogate certain aspects of the disease. The

advent of genetic engineering in the mouse has generated experimental platforms allowing for

the modeling and careful study of cancer within a more physiological context. From validating

causal and cooperative roles for various oncogenes and tumor suppressors in tumor initiation and

maintenance in a variety of tissues, to providing controlled systems for mechanistic and

therapeutic studies, as well as highlighting the importance of tumor cell-microenvironment

interactions, these models have been and continue to be highly informative. In this section I give

an overview of the technology that has made this possible and end with a discussion of

sequential mutagenesis (Figure 5).
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a. Transgenics

Pioneering work in the late 1970s and early 80s demonstrated that foreign plasmid DNA

could be introduced into mouse oocytes which could then be used to generate intact animals that

carried the DNA in their germline (reviewed in (Jaenisch 1988). In an early tumor-related study,

mice harboring SV40 T-antigen DNA were shown to efficiently generate brain tumors,

validating the technique (Brinster et al. 1984). In subsequent work, specific regulatory sequences

were placed upstream of the gene of interest to more carefully control gene expression. Using the

mouse mammory tumor virus (MMTV) LTR as a promoter, c-myc and v-H-ras transgenes were

generated and shown to cooperate with each other in mammory tumorigenesis, validating the

oncogene cooperativity observed in vitro (Sinn et al. 1987). Since these initial studies numerous

transgenic mice have been constructed, most of which use cell-type specific promoters to drive

expression of various oncogenes in distinct cellular compartments (Frese and Tuveson 2007).

Such a strategy can also be applied to the functional inactivation of multiple family members

through the use of dominant negative constructs (Pikarsky et al. 2004).

While very useful, transgenics have multiple drawbacks, most notable being the difficulty

in directing proper expression patterns and levels. Tissue-specific expression relies on the careful

selection and construction of regulatory elements, usually taken from proximal promoters.

However, important regulatory sequences are often located far away from the transcription start

site and therefore might be difficult to identify and include in the transgene. In addition, the

random insertion of the introduced DNA could place it in local chromatin environments that

inhibit or inappropriately activate expression, so careful screening of founders must be done.

Finally, because the genes are not under control of their endogenous loci, selected transgenic



founders can drive supraphysiological expression levels, which depending on the study, could

lead to experimental artifacts.

b. Gene targeting

A major breakthrough in mouse modeling came with technological advancements

allowing for targeting of specific loci in the mouse genome. Techniques were developed in

embryonic stem (ES cells) in which homologous recombination events of introduced DNA could

be preferentially selected over random insertion (Mansour et al. 1988). Correctly targeted clones

could ultimately be propagated to the germline of mice. Using this technique, endogenous genes

could now be manipulated, allowing for reverse genetic analysis in mice. Typically, gene

function is removed in so-called "knock-outs" by replacing segments of their coding region with

foreign DNA. Many tumor suppressor genes, such as p53, Rb and PTEN, have been validated as

such in knockout models in which animals deficient in these genes are tumor prone (Jacks et al.

1992; Jacks et al. 1994; Di Cristofano et al. 1998). Recently, more sophisticated alleles of

different genes have been constructed. For example, in vivo structure-function analyses of

proteins can be performed if specific residues or regions of proteins, such as phosphoacceptor

sites or binding domains, are mutated and associated with particular phenotypic consequences

(MacPherson et al. 2004; Gupta et al. 2007). In addition, targeting genes to loci with desired

expression patterns, such as the ubiquitously expressed R26 locus, can give more control

compared to traditional transgenic techniques. A similar strategy can also be used to place

reporter genes within specific regulatory segments, creating accurate reporter strains (Zindy et al.

2003).



c. Spatiotemporal control

Gene targeting has been instrumental in demonstrating many important functions of

cancer-relevant genes. Despite these advances, the inability to control the time and place of the

manipulations proved to be a hindrance in some cases. For example, both Rb-'- and PTEN"

animals died during embryogenesis, precluding the study of tumor formation. While

heterozygous animals eventually succumbed to cancer usually due to loss of heterozygosity

(LOH), the long latency and lack of control over where LOH took place limited the scope of

these studies. To circumvent these issues, site-specific recombinase (SSR) systems, most notably

Cre-LoxP from bacteriophage P1, have been introduced into mouse models (Orban et al. 1992).

In this system, the Cre enzyme catalyzes the recombination between two specific DNA

sequences, called LoxP sites (Kilby et al. 1993). If two LoxP sites are in the same orientation and

flank a segment of DNA, Cre expression will remove the intervening DNA. In this way, removal

of particular regions of DNA can be regulated by controlling Cre expression. For example, by

flanking a critical segment of Rb with two LoxP sites , one can delete this gene only in cells

expressing Cre, leaving other cells unaffected. Such a strategy has been used to inactivate a

variety of tumor suppressor genes in distinct tissues by combining floxed alleles with cell-type

specific Cre transgenes, knock-ins, or virally-administered Cre (reviewed in (Frese and Tuveson

2007). In addition to these loss-of-function approaches, Cre-LoxP can also be utilized to activate

genes. In this strategy, a Lox-STOP-Lox (LSL) cassette, which is a LoxP-flanked stretch of

polyA sequences that prevent transcriptional read-through, is targeted to a gene to block its

transcription. Introduction of Cre removes the STOP cassette, allowing the targeted gene to be

expressed. LSL has been used to activate a number of oncogenes, such as K-ras (K-raSLSL-G 2D)

(Tuveson et al. 2004). Additional SSR systems, such as Flp-Frt, have also been used to control

gene expression in the mouse (Vooijs et al. 1998; Awatramani et al. 2001). In Chapter 3 I show



how combining multiple SSRs into one mouse model permits distinct regulation of two different

genetic events.

While both transgenic and SSR/gene targeting systems afford cell-type specific gene

manipulation, the strategies discussed above do not allow for temporal control. This additional

layer of regulation could be important if one is interested in the kinetics or developmental stage-

specificity of responses to gene activation/inactivation events. Such control has been introduced

into SSR technology through the fusion of a modified ligand-binding domain of the estrogen

receptor (ER) to Cre, creating CreER proteins (Indra et al. 1999). Under normal conditions,

CreER is retained in the cytoplasm owing to heat shock protein-mediated ER regulation. Upon

addition of the estrogen analog tamoxifen, this regulation is relieved and CreER translocates into

the nucleus to mediate recombination. Showing the utility of CreER systems, a recent study

activated oncogenic K-ras in the pancreas of mice of different ages and documented a decrease

in tumorigenic potential with age, possibly reflecting a decline in stem cell number or function

(Gidekel Friedlander et al. 2009). Interestingly, other proteins relying on nuclear translocation

for proper function, such as p53 and c-myc, have been tightly controlled using ER technology as

well (see A ii d and C d).

Transgene expression can also be temporally controlled using the tetracycline (tet)

system. This transcription-based system has two parts: the gene of interest (such as an oncogene)

placed under the control of a promoter containing regulatory sequences of the tet operator (tetO),

and a tet-responsive transactivator (tTA), encoding a fusion protein of the VP 16 transcriptional

co-activator with the tet-repressor protein that binds tetO sequences in a doxycycline (dox - an

analog of tet) - dependent manner (Gossen and Bujard 1992; Kistner et al. 1996). Depending on

which of two tTAs are used (tTA or rtTA), addition of dox either represses or activates



transcription of the tetO-controlled gene, allowing one to carefully manipulate gene expression

in a reversible manner (reviewed in (Branda and Dymecki 2004). Putting Cre under the control

of tetO is another way to temporally regulate this recombinase. Highlighting the benefits of the

tet system, multiple groups have de-activated expression of initiating oncogenic lesions and

shown that tumor maintenance requires their continued expression (Chin et al. 1999; Fisher et al.

2001). These types of experiments provide insight into potential therapeutic targets.

d. RNAiplatforms

The discovery of RNA interference (RNAi) has revolutionized mammalian genetics. This

endogenous gene regulatory system can be harnessed to silence any gene by introducing small,

double-stranded RNA that is complementary to a target gene of interest. If properly designed,

this RNA species is incorporated into the normal cellular machinery and ultimately directs target

gene repression (Sandy et al. 2005). This technology has rapidly accelerated the pace of loss-of-

function studies in mammalian systems, obviating the need to use gene targeting in many cases.

While primarily used in cell culture studies, RNAi technology has recently transitioned into in

vivo settings as well. Initial studies introduced short hairpin RNA (shRNA)-containing

lentiviruses into mouse ES cells and subsequently generated mice that displayed partial gene

knockdown (Rubinson et al. 2003). An improved version of this vector produced an observable

diabetes-associated phenotype in vivo (Kissler et al. 2006).

In regards to in vivo cancer biology, RNAi has been most widely used in systems

involving ex vivo manipulation of cells followed by their re-introduction into endogenous

environments. The Ept-myc lymphoma model has been extremely successful in substituting

traditional gene targeting strategies with shRNA modalities. In this system, hematopoetic stem-



and progenitor cells are isolated from fetal livers, infected with shRNA-containing viruses and

re-introduced into recipient mice. Knockdown of known tumor suppressors has been shown to

promote lymphomagenesis, validating this approach (Hemann et al. 2003; Hemann et al. 2004).

The potential to generate pools of shRNA libraries targeting thousands of genes creates the

possibility for in vivo screens, including those for tumor suppressors as well as drivers of

oncogenesis. To date, both positive and negative selection screens in the lymphoma model have

reported novel hits in both classes of genes (Bric et al. 2009; Meacham et al. 2009). For an

additional layer of control, multiple groups have incorporated spatiotemporal components into

these viral-based RNAi systems. These include a Cre-controlled lentiviral system, as well as

versions of tet-regulated shRNAs (Ventura et al. 2004; Dickins et al. 2005)

To further the potential uses of in vivo RNAi beyond infection and transplantation

systems, traditional mouse genetics techniques have merged with shRNA platforms. For

example, tet-regulated shRNA expression systems have been made into transgenics. In one

report, crossing in different tTA/rtTA systems with a tetO-shp53 transgene afforded reversible

and tissue-specific p53 knockdown (Dickins et al. 2007). Although reliant on finding extremely

efficient shRNAs, such a system represents a fast and powerful approach to loss-of-function

mouse genetics that will hopefully make in vivo studies more efficient in the future.

e. Sequential mutagenesis

Tumorigenesis is a multi-step process driven by numerous mutations in oncogenes and

tumor suppressor genes that occur in a sequential manner (Hanahan and Weinberg 2000;

Vogelstein and Kinzler 2004). However, the large majority of mouse models incorporating

multiple mutations rely on strategies that require simultaneous genetic alterations, or at best,



control of only one mutation. As a result, one cannot accurately model stepwise mutations

inherent in tumorigenesis or genetically dissect the relevance of these events in various stages of

cancer.

The sequential nature of accumulated mutations during tumor formation is most well

established in colorectal cancer. Early studies implicated K-ras and APC as frequent mutational

targets, and genotype-phenotype correlations linked specific disease progression states with

distinct combinations of mutations (Jen et al. 1994). Alterations of other genes, such as p53, have

been linked to more advanced stages of colon cancer (Baker et al. 1990). Interestingly, the order

of these mutations has been suggested to be a critical determinant of potential malignant

progression. For example, from an analysis of human colon cancer samples, it appeared that

lesions with an initiating mutation in APC were more likely to progress to a malignant state than

their counterparts with initiating K-ras mutations. Interestingly, these early K-ras alterations

seemed to steer cells down an alternate, less malignant state (Jen et al. 1994). Similar

observations have been made in mouse studies. In a model of pancreatic cancer involving

oncogenic K-ras activation and deletion of both p53 and Smad4, the timing of Smad4 loss

relative to the other mutations was suggested to affect overall invasiveness of the end-stage

disease, although this was not definitively shown (Izeradjene et al. 2007). Having temporal

control of multiple mutations in mouse models would provide the opportunity to directly test

these hypotheses concerning the importance of mutational order.

In addition to creating more accurate models of human cancer, sequential mutagenesis

would also allow for more advanced mechanistic studies. By separating tumor-initiating

mutations from other genetic perturbations, one could study the effects of gene inhibition or

activation at distinct stages of tumor progression. While a number of groups have used genetics



to document robust inhibition of tumorigenesis in a variety of models, most studies have been

focused on effects in tumor initiation (Gonzalez-Garcia et al. 2005; Gupta et al. 2007; Kissil et

al. 2007). This experimental set-up not only limits tumor material available for further

mechanistic analysis, it also precludes an assessment of the relevant gene in tumor maintenance,

which is more important when considering it as a potential therapeutic target.

In Chapter 3 I describe the generation and characterization of a Flp-inducible allele of

oncogenic K-ras that can be combined with Cre-LoxP reagents to perform sequential

mutagenesis.
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ABSTRACT

The ability of oncogenes to engage tumor suppressor pathways represents a key

checkpoint limiting the outgrowth of incipient tumor cells. For example, in a number of settings

oncogenic Ras strongly activates the Ink4a/Arf locus, resulting in cell cycle arrest or senescence

The capacity of different cell types to execute tumor suppressor programs following expression

of endogenous K-rasG12D has not been examined. Using compound mutant mice containing the

ArfFP reporter and the spontaneously activating K-rasLA2 allele, we have uncovered dramatic

tissue-specificity of K-rasG 2D-dependent p1 9 Af up-regulation. Lung tumors, which can arise in

the presence of functional p19 Ar, rarely display p19^ induction. In contrast, sarcomas always

show robust activation, which correlates with genetic evidence suggesting that loss of the p1I9 Arf_

p53 pathway is a requisite event for sarcomagenesis. Using constitutive and inducible RNAi

systems in vivo, we highlight cell-type specific chromatin regulation of Ink4a/Arf as a critical

determinant of cellular responses to oncogenic K-ras. Polycomb-group complexes repress the

locus in lung tumors while the SWI/SNF family member Snf5 acts as an important mediator of

p19Af induction in sarcomas. This variation in tumor suppressor induction might explain the

inherent differences between tissues in their sensitivity to Ras-mediated transformation.



INTRODUCTION

An emerging paradigm in cancer biology is the duality of oncogenic signaling. Through

their ability to activate a number of pro-growth and pro-survival pathways, oncogenes potently

promote tumor initiation and progression. However, oncogenes also can engage tumor

suppressor pathways, which results in a permanent cell cycle arrest (termed senescence) and/or

cell death. These findings have led to the concepts of oncogene-induced senescence (OIS) and

oncogene-induced apoptosis (OIA) as two crucial tumor suppressor checkpoints functioning to

restrain tumor growth (Lowe et al. 2004; Collado et al. 2005; Collado and Serrano 2006; Mooi

and Peeper 2006).

Two of the main mediators of these anti-oncogenic programs are encoded by the

Ink4a/Arf locus, which contains two overlapping but structurally distinct tumor suppressors:

p19Arf (pl4Arf in humans) and p161"k4a pI9Arf is a nucleolar protein whose most well-established

role is to indirectly activate the p53 transcription factor by interfering with the function of its

inhibitor Mdm2. p16 nk4a functions as a cyclin-dependent kinase inhibitor that promotes cell

cycle arrest by binding cyclin D/CDK4/6 complexes and preventing RB phosphorylation (Sherr

and McCormick 2002; Lowe and Sherr 2003). Underscoring the importance of this locus in

tumor suppression, knockout studies in mice have revealed increased tumor predisposition, while

human data implicates both genes as frequent mutational targets in various malignancies

(Serrano et al. 1996; Kamijo et al. 1997; Ruas and Peters 1998; Sharpless 2005). In response to a

variety of hyper-proliferative stimuli, including oncogene activation, these genes are

coordinately up-regulated (Gil and Peters 2006). For example, enhanced signaling downstream

of oncogenic Ras has been shown to strongly induce p1 9Af and p16 Ink4a through a variety of

transcription factors, such as cJun and DMP1 (Inoue et al. 2000; Ameyar-Zazoua et al. 2005). As



a result, both p53 and Rb pathways are activated, and cells usually undergo OIS by executing an

irreversible cell cycle arrest (Serrano et al. 1997; Collado et al. 2005). Therefore, Ink4a/Arfup-

regulation serves as a critical node linking upstream signals to downstream effector pathways in

many types of oncogene-induced tumor suppression.

Whether or not various cell types in distinct tissues have different inherent abilities to

engage these programs downstream of oncogenic insults remains largely unknown. Any such

variability could have a profound influence on tumor susceptibility in different tissues and cell

types, with cells responding either by proliferating as a result of low tumor suppressor induction

or robustly up-regulating checkpoints and halting tumor initiation. We have explored this by

question utilizing the "latent" K-rasG12D (K-rasmLA) mouse model (Johnson et al. 2001). In this

model, an oncogenic allele of K-ras was engineered such that a duplication of exon 1 prevents its

expression. Following a spontaneous recombination event, which in theory can occur in any cell

type, the duplication is resolved and K-raSG12D is expressed at endogenous levels. Despite the

presumed random nature of oncogenic K-ras expression, these mice predominantly succumb to

lung tumors; a subset also develops thymic lymphomas (Johnson et al. 2001). A potential

explanation for this strong lung tumor phenotype is that certain lung cells are sensitive to

oncogenic K-ras-mediated transformation because they fail to effectively induce p19Axf and

p16 nk4 a and, therefore, hyper-proliferate. In contrast, numerous other cell types in these animals

could strongly activate Ink4a/Arf following K-raSG12D expression, which would block tumor

formation.

Previous studies have shown that oncogene levels can determine whether a cell

undergoes proliferation or cell cycle arrest/death. For example, novel alleles of oncogenic K-ras

allowing for Cre-dependent expression of endogenous K-rasG12D (one being K-rasLSL-G12D)



immortalized primary mouse embryonic fibroblasts, as opposed to inducing OIS, as was seen

with retroviral-mediated over-expression of K-rasG12 D (Tuveson et al. 2004). This concept has

also been validated in vivo (Sarkisian et al. 2007; Murphy et al. 2008). For example, Sarkisian et

al. have used doxycycline-inducible K-ras to alter oncogene levels and shift the response from

hyper-proliferation (low K-ras) to growth suppression (high K-ras). These data provide support

for a model of oncogene levels dictating OIS or OIA versus proliferation in a given cell type, and

could also explain any different responses across tissues if oncogene levels varied accordingly.

An alternative explanation for variable Ink4a/Arf induction in response to oncogenic

signaling is underlying cell type-specific locus regulation that sets different thresholds for gene

activation. A growing number of positive and negative regulators of p1 9 Arfand p1 6 Ink4 a have

roles in regulating chromatin configuration, thus allowing them to confer upon the locus a

particular chromatin confirmation and affect the accessibility of other transcription factors

following oncogene activation. Polycomb-group (PcG) proteins repress the Ink4a/Arf locus in a

number of cell types through direct binding of the histone methyltransferase complex PRC2

(including Ezh2 and Suzl2) and the repressive PRC1 complex (including Bmi-1 and CBX8)

(Bracken et al. 2007; Miyazaki et al. 2008; Chen et al. 2009; Dhawan et al. 2009). This mode of

regulation seems to be especially important in multiple types of stem cells compared to their

differentiated progeny (Valk-Lingbeek et al. 2004). Distinct chromatin patterns within certain

lineages have been proposed to explain the inherent differences in transformation capabilities of

progenitor-like hematopoietic cells versus B and T cells (Williams and Sherr 2007; Volanakis et

al. 2009). Presumably, the loss of repressive chromatin domains within differentiated cells

allows for greater ease of Ink4a/Arf induction when positive regulators are recruited following

oncogene expression, although this has not been directly tested. In other systems, it is



conceivable that across cell types with similar chromatin-bound PcG complexes, oncogene

activation could result in cell type-specific chromatin remodeling and Ink4a/Arf expression. For

example, the proper up-regulation of genes normally repressed by PcG involves additional

chromatin modifiers, including the SWI/SNF family of nucleosome remodelers (Tamkun et al.

1992; Gebuhr et al. 2000). This complex might have tissue-specific functions that allow it to

exert influence over PcG regulation only in some settings. Overall, the balance between classes

of chromatin regulators could have a large influence on the ability of cells to engage the

Ink4a/Arf locus in response to oncogenic signaling.

In order to explore potential tissue-specific interactions involving oncogenic K-ras and

the p1 9 Arf tumor suppressor pathway, we have examined the effects on tumor predisposition in

compound mutant mice. Specifically, using the K-rasm 2 model, absence of p19" function

promoted sarcoma development while only modestly affecting lung tumor progression. By

utilizing a reporter for p19" transcriptional activity, we were able to show a striking tumor-type

specific expression pattern from this locus in lung tumors and sarcomas. Importantly, this

expression pattern correlated with the different genetic requirements for transformation in lung

versus muscle cells. While oncogene levels and signaling outputs appeared similar between the

tumor types, we identified and functionally validated direct chromatin regulators of Ink4a/Arf in

both lung tumors and sarcomas, suggesting that tissue-specific chromatin remodeling controls

the engagement of this tumor suppressor locus. Cell-type specificity in the degree of tumor

suppressor induction in response to oncogenic K-ras provides an explanation for the different

inherent sensitivities of various tissues to K-ras mediated transformation.



RESULTS

Lung tumors expressing endogenous levels of K-rasG12D weakly induce Ink4a/Arf

To determine if K-rasG12D expressed at endogenous levels can effectively engage tumor

suppressor checkpoints in different tissues in vivo, we began by monitoring the expression of

both 1 9 Arfand p 1 Ink4a in lung tumors isolated from aged K-rasLA2 mice. As shown in Figure 1A,

neither gene product was robustly up-regulated at the protein level, with p1 9 Arf detectable in only

one of seven tumors examined. As a positive control for our ability to detect induction of these

proteins, we generated K-raSLSL-G12D; Trp531
4lox tumors (which also have endogenous levels of

K-ras G12D) as it is known that loss of p53 leads to up-regulation of both p19 and p16 Ink4a (Stott

et al. 1998). Indeed, in the context of p53 deficiency, both proteins were significantly induced

(Fig IB). These data suggest that the K-rasLA2 lung tumors in Fig 1A maintain functional p53. To

achieve more sensitivity of detection, we also measured mRNA levels by qRT-PCR. Across a

panel of tumors, p 16Ink4a was only slightly induced, and p19Af levels varied from very low to

moderate (Fig 1 C). Importantly, all tumors showed some induction from Ink4a/Arf,

demonstrating that this locus is neither silenced nor deleted tumor lung tumor progression.

Additionally, while several tumors appeared to significantly up-regulate p 19Arf, it should be

noted that none displayed the high levels seen in endogenous K-rasG12V-driven lung tumors

reported by Serrano and colleagues (Guerra et al. 2003), further highlighting differences between

this allele and those from our lab (Tuveson et al. 2004). Finally, we also utilized an ArfGFP

reporter mouse, in which GFP has been knocked into the endogenous p19 A locus such that

p19A' function is abolished and GFP is under the control of the endogenous promoter (Zindy et

al. 2003). By crossing this mouse with the K-raSLA2 strain, we hoped to monitor p 19 Af promoter

activity independently of any selective pressure to keep this tumor suppressor locus inactive
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Figure 1: Characterization of p 1 9 Arf and p16'' expression and activity in lung tumor
models driven by endogenous K-rasG12 D

(A. and B.) Western blot analysis of p19^f and p161nk 4a in wild-type lungs and lung tumors. All
tumors are from 5-8 month old K-ras mice except for those from K-ras L-G12D; Trp3lox/flox

mice, which were harvested 16 weeks post adeno-Cre delivery into the lungs. (C.) qRT-PCR of

p19 and p16Ink4a mRNA levels in K-rasLA tumors similar to those in A. p-actin was used as a

standard and relative expression was calculated by normalized to wt lungs (N = 2).
(D.) GFP western blot on lungs and lung tumors taken from K-rasLA2 ; ArfGFP compound mutant
mice. (E.) qRT-PCR analysis of the senescence-associated genes DecI and DcR2 in lung tumors.

Relative expression was calculated as in C. (F.) Senescence-associated p-galactosidase (SA-
pgal) assay on frozen sections of K-rasLA2 ; ArGFP/+ mice. Panels i. and ii. are 4X and iii. and iv.

are 20X magnification. Scale bars represent 200 [tm. The lack of SA-pgal activity, as shown in

these images, is representative of results seen with a number of lung tumors (>50). The tuft of

blue cells in the upper left panel and those scattered in the bottom right are most likely
macrophages. For qRT-PCR, error bars indicate standard deviation.



during K-ras G1 2D-driven tumor progression. Analyzing GFP levels in lung tumors from

compound mutant mice revealed variability in the degree of induction, with a majority of tumors

showing little signal (Fig ID). Taken together, these data suggest that K-rasLA2 lung tumors only

moderately activate the p1 9Arf16 Ink4a locus, if at all.

One of the main functional outputs of pl 9 Arf and plI6nk4a expression is senescence

(Collado and Serrano 2006). To examine whether the low levels of induction discussed above

could still be engaging this program, we tested for well-established markers of senescence. As

shown in Figure 1 E, qRT-PCR analysis revealed only a slight increase in expression of Dec 1 and

DcR2 in K-rasLA2 lung tumors over normal lung tissue. In addition, we never detected

senescence-associated beta-galactosidase activity (SA-pgal) in tumors, irrespective of their size

or grade (Fig IF and data not shown). These data indicate that lung tumors from the K-rasLA2

model fail to undergo senescence, perhaps because the two main upstream activators, p19" and

p16 nk4a, are only weakly induced.

p191rf-deficiency mildly affects lung tumor progression

The low levels of p19" and p16 1nk4a induction during the course of lung tumor

progression predict that deletion of these genes will have a minimal effect on tumorigenesis. To

test this, we made use of the fact that the ArfGFP allele eliminates p1 9A function. We generated

cohorts of K-rasLA2 animals that were either ArfGFP/+ or ArFP/GFP and compared tumors at two

different timepoints. At an early timepoint (6 weeks of age) the two genotypes were

indistinguishable from one another in terms of tumor number, average tumor size, and

histopathological grade (Fig 2A-C). By 12 weeks of age, while tumor number tumor did not

change among genotypes, ArfFP/GFP mice tended to have slightly larger tumors, although this
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Figure 2: Effects of p1 9 Arf deficiency on K-ras"t 2 lung tumors.

K-rasLA2; ArfFP/+ (yellow bars, A and B) and K-rasLA2; ArfFP/GFP (green bars, A and B)

littermates were aged either 6 or 12 weeks, at which point their lungs were processed for
histological examination. One representative section per mouse was analyzed to calculate
average tumor number (A), average tumor size (B), and each individual tumor's
histopathological grade (C). For (C), G/+ = K-rasL 2 ; ArfFP/+ and G/G = ArfFP/GFP . For A and

B, P > .05 for comparison between genotypes within one age group (Students T-test). For C., * =
P< .001 (Fisher's Exact Test). N = 7 (ArfFP/+ and ArfFP/GFP at 6 weeks). N = 12 (ArfFP/+) and
N = 10 (ArfFP/GFP) at 12 weeks. Error bars indicate standard deviation. (D.) PCR analysis of the
Arf locus on LCM-captured genomic DNA from a panel of tumors from 7 month old K-ras 2

ArfFP/+ animals.

101



was not statistically significant due to high variability (Fig 2A, B). Moreover, a significant subset

of tumors in ArfFP/GFP animals presented with a more advanced histopathological grade

compared to their ArfFP/+ counterparts (Fig 2C). Finally, genomic PCR analysis of advanced

lesions from aged K-rasLA2 ; ArfFP+ animals indicated that several tumors had undergone loss-of-

heterozygosity (LOH) of the wild-type Arf allele during tumor progression (Fig 2D). Together,

these studies suggest that p19" acts to impair the progression of K-rasLA2 lung tumors, as

opposed to blocking the earliest stages of tumor initiation. This is consistent with the low level of

p1 9 Af induction observed in most of the tumors.

Expansion of the tumor spectrum in K-rasLA2; ArfFP/GFP mice

Despite the modest effect on lung tumor development in compound mutant mice, a

striking difference in median survival was noted between K-rasLA2; ArfFP/+ and K-rasLA 2 .

ArfFP/GFP littermates (Fig 3A). Upon close examination of aged K-ras;LA2 ArfFP/GFP mice, it

became evident that a number of animals had grossly detectable masses before death. Through

histological examination, we determined that these masses represented two broad types of novel

tumors. About 35% of mice had muscle-derived sarcomas that contained mostly spindle-shaped

cells, with varying degrees of differentiation. A quarter of compound mutant mice displayed

enlarged spleens and livers that contained large cells with irregular nuclei and abundant

cytoplasm, features reminiscent of histiocytic sarcomas (Fig 3B, C). Given that p19"rfknockout

mice alone are susceptible to muscle-derived sarcomas (Kamijo et al. 1999), it was important to

determine if this novel tumor spectrum in K-rasLA2 ; ArfFP/GFP animals was due to cooperation

between oncogenic K-ras and p19" loss. Evidence for genetic cooperation includes the shorter

latency for sarcoma formation in K-rasLA2 ; ArfFP/GFP versus p1 9 Arf knockout mice
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Figure 3: Expanded tumor spectrum in K-ras"A2; ArfFGFP mice.

(A.) Kaplan-Meier plot showing the differential survival of K-rasLA2 ; ArfFP/+ (yellow line) and
K-rasu 2; ArfF/GFP (green line) mice. (P <.0001) (B.) Representative hematoxylin and eosin
(HE) pictures of novel tumors in K-ras 2; ArF mice. i. muscle-derived sarcomas. ii.

histiocytic sarcomas. Scale bar is 200 [tm.(C.) Percentage of K-rasLA2; ArfFP/+ and K-rasu2
ArfFP/GFP animals presenting with macroscopic muscle-derived sarcomas (red bars) or
histiocytic sarcomas after 7 weeks of age. (D.) Ras-GTP assay demonstrating activated Ras in
muscle-derived sarcomas from K-rasLA2 ; ArfFP/GFP compound mutant mice. For a negative
control, tumors induced by IR irradiation of ArFP/GFP mice do not show activated Ras.
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(Kamijo et al. 1999) as well as the fact that we could readily detect hyper-activated Ras in lysates

from K-rasLA2; ArFP/GFP tumors compared with control ArfFP/GFP sarcomas (Fig 3D). One

interpretation of the expanded tumor spectrum in K-rasLA2 mice upon deleting pI9' is that there

are cells in K-rasLA2 animals that express oncogenic K-ras but fail to form tumors due to the

strong induction of the p9 Arf-p53 pathway.

Variation in the degree of Ink4a/Arf activation across tumor types in K-rasL 2; ArfFP/GFP mice

We hypothesized that cells that give rise to tumors in K-rasLA2 mice only when Arf is

deleted should have high levels of p19Arf expression upon K-raSG12D expression. Given that all

the tumors arose in the presence of the ArfFP reporter, we compared GFP induction across the

various tumor types that form in K-rasLA2 ; ArfFP/GFP mice. This analysis revealed dramatic

differences in reporter induction (Fig 4A). As the expression pattern was most striking and

reproducible between lung tumors and muscle-derived sarcomas, we focused on these two tumor

types for further molecular analysis (Fig 4B). To extend these findings beyond the GFP reporter,

we assessed levels of endogenous p1 9 Arf protein in lung tumors and sarcomas from another

mouse model in which we were able to control the timing and location of oncogenic K-ras

activation. In the K-rasLSL-G12D; Trp53f"l'fl0" mouse model lung tumors and sarcomas can be

induced through administration of recombinant adenovirus expressing Cre recombinase (Ad-Cre)

either to the lung or the muscle (Jackson et al. 2001; Kirsch et al. 2007). As shown in Figure 4C,

even though both tumor types developed in the absence of p53 and so might have been expected

to both up-regulate p1 9 Arf, steady-state levels of the protein were much higher in sarcomas than

lung tumors. Additionally, the expression pattern of p16 nk4a, which shares its locus with p1 9 Arf

and is often co-regulated, was identical to that of GFP, while an unrelated tumor suppressor,
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Figure 4: Differential p1 9 Arf expression in K-rasG12D-induced lung tumors and sarcomas.

(A.) Western blot analysis of GFP from multiple tumor types originating in K-rasA2; ArfFP/GFP

animals, including thymic lymphomas, lung tumors, histiocytic sarcomas, and muscle-derived
sarcomas. (B.) GFP western blots on lung tumors and muscle-derived sarcomas from K-ras'L2 ;

ArfFP/GFP mice. (C.) Comparison of endogenous p 19 protein levels in lung tumors and
sarcomas generated from K-raSLSL-G12D; Trp53ox/flox mice infected with Ad-Cre either
intratracheally (for lung tumors) or intramuscularly (for sarcoma formation). (D.) Western blots
of GFP as well as additional tumor suppressor genes, p 161nka and p2 7 iP, from lung tumors and

.sarcomas taken from K-rasA2 ; Ar mice. The pattern of tumor suppressor induction in
lung tumors and sarcomas appears to be specific to Ink4a/Arf, as p27, an unrelated tumor
suppressor, shows the opposite correlation.
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p27 ipl, showed the opposite pattern (Fig 4D). In summary, although both tumors are driven by

the same oncogene, sarcomas induce Ink4a/Arf expression much more strongly than lung tumors.

Different levels ofp1 9Arf activation lead to differences in the nature of tumor suppression

Having established a differential expression pattern of p19 Arf and p1 6Ink4a between lung

tumors and sarcomas, we wished to determine if this had any functional significance. As the

activation of the Ink4a/Arf locus engages two potent tumor suppressor pathways, p53 and Rb, it

is conceivable that differences in the magnitude of induction could significantly affect the ability

of cells harboring oncogenic mutations to form early lesions. As shown in Figures 1 and 2, lung

tumors in K-rasLA2 mice display very modest levels of p19Arfand p 1 Ink4a, and this correlated with

the ability of oncogenic K-ras alone to promote tumor formation in the lung. Conversely, in K-

ras G12D-mutant sarcomas, the Ink4a/Arf locus was robustly activated (Fig 4), leading us to

hypothesize that in those target cells the tumorigenic process is inhibited at a much earlier stage,

perhaps even at initiation. To test this, we again utilized the sarcoma model based on Ad-Cre

delivery into the limbs of K-rasLSL-G1 2D. xTrpS3lflox mice. We have previously shown that

sarcomas formed in this model only when both alleles of p53 were inactivated (Kirsch et al.

2007). Substituting homozygous ArfGFP alleles for Trp53fl" also supported sarcoma formation

(data not shown). When leg muscles of both Trp53fl"+ and ArfGFP/+ (both K-raSLSL-G12D) animals

were subjected to systematic histological examination 4-7 months post Cre delivery there was no

sign of any preneoplastic lesions in the region of Ad-Cre delivery (data not shown). This

suggests that K-rasG12 D mutant cells are completely blocked at a very early stage of tumor

initiation when even one copy of p19 Arf or p53 is present, most likely because of rapid and robust
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pathway activation. Therefore, we conclude that the expression pattern of p1 9 Arf between lung

tumors and sarcomas leads to dramatically different functional outputs of the p19"-p53 pathway

in cells expressing oncogenic K-ras in the two tissues.

Neither oncogenic signaling levels nor canonical transcriptional activators explain tumor-
specific p] 9rf and pl 6 1nk4a induction

We next sought to understand the mechanistic basis of the tissue-specific expression

pattern of Ink4a/Arf The regulation of p19" and p161k4a expression is largely controlled by the

intensity of signaling pathways downstream of oncogenic K-ras, which are themselves directly

regulated by overall oncogene levels (Lowe and Sherr 2003; Tuveson et al. 2004; Gil and Peters

2006). Our initial hypothesis was that sarcomas have increased oncogenic signaling compared to

lung tumors, which drives higher tumor suppressor induction. Therefore, we analyzed steady-

state levels of K-ras and some of the relevant downstream signaling outputs, including the Erk-

MAPK, P13K, and p38MAPK pathways, between lung tumors and sarcomas from K-rasLA2 ;

ArfFP/GFP mice. This analysis did not reveal any correlations between oncogene or signaling

pathway levels and GFP induction across the two tumor types (Fig 5A). Furthermore, similar

analyses across a panel of lung tumors with differing GFP levels failed to link increased GFP

with elevated signaling (Fig 5B).

As the Ink4a/Arf locus is more proximately controlled at the level of transcriptional

induction (Gil and Peters 2006), we next measured the levels of known transcriptional activators

including E2F1, E2F3, cJun, and DMP-1 across the tumor types. Interestingly, all of these genes

were more highly expressed in sarcomas compared to lung tumors, potentially implicating them

in p19" and p161nk4 regulation (Fig 6).
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Fieure 5: Levels of K-ras and downstream signaling pathways in lung tumors and
sarcomas from K-rasLA; ArfGFP/GFP mice do not correlate with GFP expression.

(A.) Western blot analysis of oncogenic signaling in lung tumors and sarcomas from K-ras'-2 ;

Ar mice. Erk-MAPK (P-Erk) P13K (P-Akt), and p38MAPK signaling pathways were
analyzed, as was total K-ras levels. (B.) Erk-MAPK signaling was assessed in a panel of lung
tumors showing differential GFP expression.
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Figure 6: A number of putative activators of Ink4a/Arf are up-regulated in
sarcomas compared to lung tumors in K-ras"; Arf /GFPmice.

Immunoblot (A.) and qRT-PCR (B. and C.) analysis of activators of pI9Ad and/or p16 nk4ain

lung tumors and sarcomas from K-ras ; ArfFP tumors. cJun (A), DMP-1 (B), and E2F1
and E2F3 (C) all show up-regulation in sarcomas compared to lung tumors. For qRT-PCR
analyses, N = 3 for each tumor type, and P < .05 for gene expression differences between lung
tumors and sarcomas (Student's T-test). Error bars indicate standard deviation.
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To investigate if any of these genes contribute to the positive regulation of Ink4a/Arf in

sarcoma development, we devised a functional assay using lentivirus-mediated RNAi in the

muscle (Fig 7A and B). It was necessary to perform these experiments on a Rag2-/~ background

to achieve adequate tumor initiation following lentiviral infection. Infection of K-raLSL-G12D).

ArfGFP/+; Rag2-/- mice with lentiviruses containing just Cre failed to induce tumor formation,

presumably due to the remaining functional allele of p19'. However, lentiviruses that contained

both Cre and a shRNA targeting both p19 and p16 were able to efficiently generate sarcomas

(Fig 7C and D). To assess knockdown efficiency of a panel of shRNAs targeting p 1 9 Arf

activators, we infected K-raSLSL-G 2D ;ArFP/GFP; Rag2-- mice. While a number of shRNAs

appeared to silence their target genes in the resulting sarcomas (including those targeting E2F 1,

E2F3, and DMP-1; data not shown), infection of K-rasLSL-G1 2D; Arf FP/+; Rag2- animals with

these viruses failed to induce sarcomas (data not shown). While we cannot rule out the

possibility of functional redundancy of multiple activators or insufficient knockdown, these

results may indicate that these genes do not play a significant role in K-rasG12 D-dependent pI 9 Arf

up-regulation in the muscle.

Tumor type-specific Polycomb-group (PcG) occupancy at Ink4a/Arf

Chromatin structure has a major influence on the ability of upstream signals to execute

transcriptional programs at target loci. Therefore, we decided to monitor chromatin regulators as

well as the chromatin composition of the Ink4a/Arf locus in lung tumors and sarcomas. Given

their established role in Ink4a/Arf chromatin regulation in a number of settings, we began by

investigating PcG proteins (Bracken et al. 2007; Miyazaki et al. 2008; Chen et al. 2009; Dhawan

et al. 2009). Chromatin immunoprecipitation (ChIP) experiments revealed a striking difference
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Figure 7: Use of bifunctional lentiviruses to identify functionally significant activators of
p19Arfduring sarcomagenesis.

(A.) A bifunctional lentivirus expressing Cre and a shRNA is used to infect the muscles of K-
ra/SL-G2D ; Rag2I mice that are either heterozygous (ArfFP/+) or homozygous null (ArfFP/GFP
for pl 9 Af (B.) Sarcoma formation is completely inhibited by the presence of an activated,
functional copy of pI9Af. Therefore, sarcomas form only when infecting ArfFP/GFP animals with
Cre alone or infecting ArfFP/+ mice with a shRNA to p19Arf We hoped identify the critical
activator(s) of p19 Arf by using the system in A to knock down putative regulators in ArfFP/+

mice and screening for sarcoma induction. (C.) Kaplan-Meier graph of sarcoma-free survival of
K-rasL-G12D ; Rag2-- mice that are either heterozygous (ArfFP/+-red bar) or homozygous null
(ArfFP/GFP-green bar) for p19Af. Both groups of mice were infected intramuscularly with
lentiviruses containing Cre and a shRNA to a shared exon of p19 Arf and p1 Ilk4a. (D.) Western
blot analysis of tumors from animals in C as well as a negative control for p19Ad (K-rasG12D.

Arf FPGFP; Rag2-/- sarcoma; left-most lane) and a positive control for p1 9 A (K-rasG12D.
Trp53fl4"x" sarcoma; right-most lane). The knockdown tumors show reduced levels of pl 9 Af and
p1 6 1nk4a
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in PcG occupancy at Ink4a/Arfbetween lung tumors and sarcomas from K-ras ; ArfGFP/GFP

animals. Lung tumors consistently showed an enrichment of the PcG-associated histone mark,

H3K27me3, at the promoters of both p1 9 Arf and p1 6 Ink4a compared with sarcomas (Fig 8A and

B). In addition, the binding of the PRC1 component Bmi-1 was much more robust in lung tumors

(Fig 8A and B). We next assessed if tumor type-specific expression of PcG components could

explain these differences in Ink4a/Arf occupancy. However, neither Bmi-1 nor the H3K27

methyltransferase Ezh2 displayed significantly different mRNA levels among the tumor types

(Fig 8C). Furthermore, while the H3K27 de-methylase Jmjd3 was differentially expressed, it

showed the opposite correlation than one would expect, with higher abundance in lung tumors

compared to sarcomas (Fig 8D). Despite these inclusive expression data, the ChIP analysis

suggests that there is lung tumor-specific PcG-mediated gene silencing of Ink4a/Arf

The abundant PcG binding across Ink4a/Arf in established lung tumors was surprising

given that these cells harbor significant oncogenic stress, which should remove this form of

chromatin regulation. Recent studies have implicated Jmjd3 in the eviction of PcG from

Ink4a/Arf downstream of oncogenic Ras (Agger et al. 2009; Barradas et al. 2009), so we

wondered if the continued PcG occupancy could be explained by insufficient Jmjd3 induction

following K-rasG1D expression in lung cells. Indeed, an assessment of Jmjd3 mRNA abundance

revealed equivalent levels between normal lung tissue and lung tumors (Fig 9A). In addition,

ChIP analysis indicated a very similar enrichment of H3K27me3 at Ink4a/Arf in normal and

tumor tissue from the lung (Fig 9B). Together, these data might suggest that significant PcG

binding of Ink4a/Arf in lung tumors results from the inability of oncogenic signaling to induce

programs that normally remove PcG under stress conditions.
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Figure 8: Differential PcG occupancy at Ink4a/Arf in lung tumors and sarcomas

(A. and B.) presentative ChIP analyses of PcG markers in lung tumors and sarcomas from K-
ras"; Ar/FR F mice. AcH3 = acetylated histone H3; H3-K4 = trimethylated histone lysine 4

of histone H3, both marks of transcriptionally active promoters. H3K27me3 = tri-methylated
lysine 27 on histone H3, the PcG-associated chromatin mark. IgG corresponds to a control IP
with rabbit IgG. Immunoprecipated DNA was amplified with primers specific to the promoters
of p1 9" , p1 6I1k4a, cdc2, and/or p107. (C and D.) qRT-PCR of selected PRC2 (Ezh2) and PRC1
(Bmi-1) components (C) as well as Jmjd3 (D) from K-rasL2 ; ArfF/GFP derived tumors. The Y-
axis denotes fold induction of lung tumors vs. sarcomas. N = 3 for each tumor type. P > .05 for
both genes in C, while P < .05 in D (Student's T-test). Error bars indicate standard deviation.
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Fiaure 9: Similar Jmjd3 levels and PcG enrichment in normal lung and lung tumors.

(A.) qRT-PCR of Jmjd3 from ArfFP/GFP lungs (N = 2) and K-ras 2; ArfFP/GFP lung tumors (N =

3). (B.) ChIP on ArfIFP/GFP lungs ("Lungs") and K-rasLA 2; ArfFP/GFP lung tumors ("Lung
tumors". Labels are the same as in Figure 8. Except for the slight increase in AcH3 enrichment in
the tumors, normal lung tissue looks very similar to lung tumors in terms of PcG occupancy at
Ink4a/Arf The increase in AcH3 at p107 is a mark of actively dividing cells, and is therefore
seen in the tumors only.
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Bmi-] actively represses Ink4a/Arf in established lung tumors

To address if the observed histone methylation pattern and binding of Bmi-1 actively

repressed p1 9A in established lung tumors, we combined the ArfGFP reporter with a novel

system for inducible RNAi in vivo. We crossed mice carrying a Flp recombinase-inducible K-

ras G12D allele (K-rasFSF-G12D; see Chapter 3) with those carrying a widely expressed tamoxifen-

inducible allele of Cre, R26 creER-T2 (Ventura et al. 2007). To initiate tumors, bifunctional

lentiviruses containing Flpo (Raymond and Soriano 2007) were administered intratracheally into

these mice. These viruses also contained a Cre-inducible shRNA cassette for expression of

shRNAs to luciferase or Bmi-1. 12-16 weeks after tumor initiation, shRNAs were induced by

activating CreER via injection with tamoxifen. One week after tamoxifen treatment, lung tumors

were harvested and analyzed for Bmi- 1 knockdown and GFP expression (see scheme in Fig

10A). As shown in Figure lOB, this system achieved reliable knockdown of Bmi-1, to levels

about one-third observed in control hairpin tumors. Importantly, Bmi-1 knockdown tumors

displayed increased GFP levels compared to controls (Fig 10C), and p16 1nk4a was up-regulated as

well (Fig 1 OD). These data are consistent with a model in which PcG proteins function to

maintain a closed chromatin state of Ink4a/Arf in lung tumors, leading to partial repression of

pl 9 Arf and p16nk4 a

The SWI/SNF family member Snf5 links K-rasG12D activation to p19^'f induction in sarcomas

The presence of the PcG histone mark in sarcomas suggested that this chromatin

remodeling complex had some residual function at Ink4a/Arf, even in the context of the robust

transcriptional activation taking place. As PcG is known to repress this locus in a number of

wild-type tissues, it was possible that the observed pattern reflected the activity of PcG in the
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Figure 10: PcG proteins repress the Ink4a/Arf locus in established lung tumors.

(A.) Schematic of inducible RNAi strategy. See text for details. (B.) qRT-PCR of Bmi- 1 in
tumors in which Luc (shLuc) (N= 6) or Bmi-1 (shBmi-1) (N = 6) shRNAs had been induced. *,
p< .0001 (Student's T-test) Error bars indicate standard deviation (C.) Western blot of GFP in
shLuc and shBmil tumors. The two sides of the image (separated by a vertical line) are from the
same exposure of the same blot, but the samples were not adjacent to each other. (D.) p161nk4a

western blot in additional tumors from inducible knockdown experiments.
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cell-of-origin of the sarcomas. We hypothesized that following K-rasG12D expression, the locus

might get remodeled such that PcG is mostly evicted and replaced by a distinct chromatin

structure more conducive to gene activation. Studies in other model systems have implicated the

SWI/SNF chromatin remodeling complex as a critical player in this sort of antagonism of PcG-

controlled gene repression (Tamkun et al. 1992; Gebuhr et al. 2000). Intriguingly, one member

of SWI/SNF, Snf5, has recently been shown to directly bind and activate the Ink4a/Arf locus

(Kia et al. 2008). Therefore, we investigated the requirement for Snf5 in the activation of p1 9 Af

in K-rasG12 D-driven sarcomas. Importantly, Snf5 was detectable by ChIP at Ink4a/Arf in multiple

K-raSLSL-G2D ; ArP cell lines derived from sarcomas (Fig 11 A). Furthermore, acute

knockdown of Snf5 in these cell lines resulted in diminished GFP levels, suggesting a functional

role for this chromatin modifier in p1 9Arf regulation (Fig 1 IB).

To test the significance of these findings in vivo, we utilized lentiviral RNAi (Fig 7A).

Strikingly, Snf5 knockdown in K-rasLSLG 2D ArFP/+; Rag2- animals led to reproducible

sarcoma formation with stable repression of Snf5 levels in the resulting tumors (Fig 1 IC, E).

Histological analysis revealed very similar histopathologies between Snf5 knockdown tumors

and those originating from control infections of K-rasLSL-G12D. ArFP /GFP; Rag2~ animals. Both

groups had tumors with areas of both large epithelioid cells as well as more spindle-shaped cells

(Fig 1 ID). Importantly, genomic PCR analysis showed retention of the wild-type allele of Arf,

indicating there was no selective pressure to further inactivate the p1 9 Arf-p53 pathway during

tumor progression (Fig 11 E). Together, these in vitro and in vivo studies suggest that Snf5

functions as a critical link between oncogenic K-ras expression and induction of the tumor

suppressor pathway controlled by p19Arf.
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Figure 11: The chromatin remodeler Snf5 contributes to the activation of p19Arr following
oncogenic K-ras induction in the muscle.

(A.) Representative ChIP analysis of Snf5 on sarcoma-derived cell lines. i. and ii. Cell lines
derived from K-raSLSL-G12D. FP/GFP sarcomas induced with Ade-Cre infection. iii. A cell line
from a K-rasLSL-G12D; ArFP/GFP; Rag2-1- animal infected with a Cre-shSnf5 lentivirus. Snf5
enrichment at Ink4a/Arf is absent in the knockdown cell lines. The p107 locus serves as a
negative control for Snf5 binding. (B.) Immunoblot analysis following in vitro knockdown of
Snf5 in cell lines i. and ii. from A. (C.) Kaplan-Meier graph of sarcoma-free survival for a cohort
of K-rasLSL-GJ2D; Rag2~; ArfFP/'+(black and green lines) or ArfFP/GFP (red and yellow lines)
mice infected intramuscularly with Cre-shLuc (red and black lines) or Cre-shSnf5 (yellow and

reen lines) lentiviruses. (D.) HE pictures of sarcomas from lenti-Cre; shLuc infected K-rasLSL-

12D; Rag2~ ; ArfFP/GFP (i. and iii) or lenti-Cre; shSnf5 infected K-ras LSL-G2D; Rag2~ ; AfF+
(ii. and iv) animals. Panels i. and ii. show regions containing, circular epithelioid cells while iii.
and iv. are from areas comprised of more spindle-shaped cells. Scale bar is 200 [tm. (E.) Western

blot and genomic PCR analysis on a panel of sarcomas from K-rasLSL-G 2 D; Rag2-'~; Ar FP/+

animals derived from lentiviruses expressing Cre and hairpins to Snf5 or p1 9 Arf/P 6 Ink4a.
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Snf5 expression is similar between lung tumors and sarcomas

The important functional role of Snf5 in K-ras G1 2D-dependent p1 9 Af induction in the

muscle prompted us to investigate whether differential expression of this chromatin remodeler

could explain the tissue-specific levels of p1 9 Af in lung tumors and sarcomas. To this end, we

assessed Snf5 levels at both the mRNA and protein levels in a panel of K-rasLA ; ArfFP/GFP lung

tumors and sarcomas. Interestingly, both analyses revealed a very similar expression pattern

between the tumor types (Fig 12), arguing against tumor type-specific Snf5 levels as the

mechanism behind differential p1 9 Arf expression.
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Figure 12: Similar Snf5 expression in lung tumors and sarcomas

qRT-PCR (A.) and western blot (B.) analyses of Snf5 in lung tumors and sarcomas from K-
rasLA2; ArfFP/GFP mice. Snf5 expression is equivalent at both the mRNA and protein level. N = 3
for each tumor type, and error bars indicate standard deviation in A.
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DISCUSSION

The ability of oncogenic signaling to directly engage tumor suppressor pathways prevents

the outgrowth of incipient tumor cells harboring initiating oncogenic mutations. Any variability

in the nature or strength of any such tumor suppressor induction could have a profound influence

on the potential tumorigenicity of mutated cells. While a number of earlier studies have shown

that oncogene levels play a critical role in determining whether cells become transformed or

arrested, they have generally relied on experimentally manipulating the oncogene expression in a

given cell type. In the present study, we identified naturally occurring variability in the degree of

p 1 9 Arf and p 16 nk4a induction following endogenous expression of K-rasG12 D in different cell

types. Lung tumors display relatively low levels of these tumor suppressors, and this correlates

with the ability of these cells to start the tumorigenic process with K-ras mutation alone.

Introducing a p19Arf mutant allele into these models moderately affects the tumor phenotype, and

the loss of this pathway is still most likely a requisite event for development of advanced tumors

(Jackson et al. 2005). In contrast, sarcomas originating from K-ras G12D-mutant cells robustly up-

regulate the Ink4a/Arf locus. This strong induction effectively blocks the transformation of K-

ras G12D-expressing muscle cells, such that the p19 Arf-p53 pathway must be completely abolished

for tumor initiation to occur at all. Thus, it appears that resistance to oncogenic K-ras directly

correlates with the strength of tumor suppressor induction.

As discussed above, one of the major determinants of oncogene-induced tumor

suppression is thought to be the relative expression level of the oncogene. This does not appear

to be the explanation for the cell-type specific responses described here. A comparative analysis

of K-ras expression as well as downstream signaling pathways failed to identify significant

differences between established lung tumors and sarcomas. Instead, we found that dynamic
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chromatin regulation plays an important role in tissue-specific Ink4a/Arfregulation. For

example, we provide evidence for active repression of the locus in established lung tumors

mediated by PcG. ChIP analysis indicated a strong local enrichment of PcG proteins and histone

marks in lung tumors compared with sarcomas. The significant PcG occupancy in lung tumors

could be due to the fact that Jmjd3, a H3K27me3 demethylase implicated in Ras-induced

Ink4a/Arf activation, is not elevated in lung tumors compared to normal lung tissue. Importantly,

knockdown of Bmi-1 in established lung tumors using inducible RNAi in vivo confirmed PcG-

mediated gene repression. This active silencing of the Ink4a/Arf locus most likely contributes to

the observed low levels of pl 9Af and p16Ink4a and relative susceptibility of lung cells to

transformation by oncogenic K-ras. These results are in agreement with a previous study that

investigated lung tumor formation in Bmi-l-/- mice (Dovey et al. 2008), although we also

demonstrate a role for PcG in established lung tumors.

The observation that sarcomas maintained some PcG-associated marks at Ink4a/Arf

suggested that perhaps the initiating cell did repress the locus, but then further remodeled the

local chromatin to allow for robust transcription in response to K-rasG12D. As SWI/SNF

remodeling complexes have been shown to be important for induction of PcG-regulated genes,

we examined this class of genes as a possible link between oncogenic K-ras activation and

Ink4a/Arf induction. Knockdown of Snf5 led to efficient sarcoma formation in a background

normally completely resistant to tumor formation owing to robust p1I9 Af-p53 pathway activation.

Importantly, additional studies in vitro involving ChIP and acute knockdown suggested that Snf5

directly binds to and activates the Ink4a/Arf locus. Thus, in the muscle SWI/SNF complexes play

a critical role in oncogene-induced tumor suppression.
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One current model to explain tissue-specific p 1 9 Arf/ 1 Ink4a induction presumes that under

normal conditions PcG represses Ink4a/Arf in the cell-of-origin of both lung tumors and

sarcomas. However, following oncogene activation only lung tumors retain functional PcG

repression. One possibility to account for this tissue-specific difference is that Snf5's main role

in sarcomagenesis is to evict PcG from Ink4a/Arf in sarcomas, as it does in malignant rhabdoid

tumors (Kia et al. 2008). It would appear that a similar effect does not occur in the cell-of-origin

of lung tumors. While the expression level of Snf5 is similar between the two tumor types, it is

still unclear if tissue-specific activity or localization of SWI/SNF complexes could be the

explanation for this difference. Another factor mediating PcG loss from chromatin is enhanced

p38 MAPK activity (Voncken et al. 2005; Wong et al. 2009). However, we have been unable to

observe differences in the activation status of this pathway between the two tumors types.

An alternative model for the different levels of PcG regulation in the established tumors

is that they represent the relative amount or activity state in the respective cells-of-origin. Having

a lower degree of PcG-bound chromatin initially could reduce the requirements for gene

activation in the muscle following oncogenic K-ras induction. Such a scenario has been

suggested to explain the cell-type specific requirements for p1 9 Arf loss in the transformation of

progenitor versus more differentiated B and T-cells in the hematopoietic system, where PcG is

thought to repress Ink4a/Arf mainly in stem cells (Williams and Sherr 2008). The precise identity

of the respective cell-of-origins for lung tumors and sarcomas is currently unknown, thus

precluding a meaningful analysis of PcG recruitment pre-K-ras activation.

Cell-type specificity in the activation threshold for the Ink4a/Arf locus might relate to the

basal proliferative rate of the tissues in question. The lung epithelium constantly receives damage

from irritants in the environment, thus requiring significant repair in the form of cellular
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regeneration. To allow for this constant potential for repair, perhaps certain cells in the lung

stably silence p19Af and p16 1nk4a via PcG. In the context of oncogenic K-ras expression, the low

level of expression at the locus allows cells to proliferate and form tumors. In contrast, muscles

require minimal proliferative capacity and, therefore, the Ink4a/Arf locus is kept in a chromatin

state that allows for easier engagement of the p 1 9 Ar and p16Ink4 a tumor suppressor pathways. If

these cells acquire an oncogenic Ras mutation, they robustly induce p 1 9 Arf and p 16 nk4a and

effectively block tumor formation.

Lung tumors, as well as a variety of other epithelial cancers that originate from cells with

a relatively high turn-over rate, are much more common than soft-tissue sarcomas. The inherent

differences in oncogene-induced tumor suppression across cell types could be the mechanistic

basis for these observations. In addition, the fact that early lesions in some tissues have key

tumor suppressor pathways intact might have profound clinical implications if such anti-growth

and pro-cell death pathways could be mobilized therapeutically.
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MATERIALS AND METHODS

Mice. ArfFP mice were kindly provided by C. Sherr (St. Jude Children's Hospital, Memphis,

TN), Trp53/l" were provided by A. Berns (The Netherlands Cancer Institute, Amsterdam, the

Netherlands), and Rag2- mice were purchased from The Jackson Laboratory. K-rasLA2 , K-rasLSL-

G12D, R 2 6CreER and K-rasFSF-G12D mice were generated in our laboratory. All animals were

maintained on a mixed background comprising 129S4/SvJae and C57BL/6 strains. Lung tumors

in K-rasLSL-G12D and K-rasFSF-G2 D were induced by intratracheal instillation of either Ad-Cre or

Lenti-Flpo as previously described (DuPage et al. 2009). To induce sarcomas mice were infected

intramuscularly with either Ad-Cre or Lenti-Cre as shown previously (Kirsch et al. 2007).

Tamoxifen (Sigma) was dissolved in corn-oil at 15 mg/ml and injected intraperitoneally every

LA2 FP mtn iewr
other day for 5 days. For lung tumor studies, K-ras ; Arf compound mutant mice were

sacrificed at 6 or 12 weeks of age, and their lungs were processed as previously described

(Jackson et al. 2001). Bioquant Image Analysis was used to quantitate tumor burden. Aged

cohorts of K-rasA2 ; ArfFP mice as well as those used for sarcoma generation were monitored

for visible masses or until they became moribund. Masses were processed similarly to the lungs.

Animal studies were approved by Massachusetts Institute of Technology's (MIT) Committee for

Animal Care and conducted in compliance with Animal Welfare Act Regulations and other

federal statutes relating to animals and experiments involving animals, and adheres to the

principles set forth in the 1996 National Research Council Guide for Care and Use of Laboratory

Animals (institutional animal welfare assurance number, A-3125-01).
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Senescence-associated p-galactosidase assay. At necropsy, lungs were inflated with 70% OCT

(in PBS), then allowed to equilibrate in 100% OCT on ice for 15 minutes. Individual lobes were

placed in cassettes and frozen in OCT. 10-15 [m sections were cut, and the resulting slides were

fixed in .5% glutaraldehyde for 15 minutes, followed by two washes in PBS. Staining was

performed at 37*C for 12 hours in PBS (pH 5.5) with 5mM each of potassium ferrocyanide and

potassium ferricyanide along with 1 mM MgCl 2 and 1 mg/ml X-gal. Sections were

counterstained in nuclear fast red.

Cell lines and in vitro experiments. Cell lines were generated from sarcomas by mincing

freshly extracted tissue with a razor blade followed by digesting with trypsin for 15 minutes at

370 C. Dissociated tissue was resuspended in DMEM (DME, 10% FBS, 2 mM glutamine) and

resulting cell lines were subsequently passaged in this media. For lentivirus experiments target

cells were selected in 5 ug/mL of puromyocin for 3 days following supernatant transfer. 2-4 days

later cells were collected for analysis. 293T cells for virus production were grown in DMEM.

Lentiviral vectors and shRNA cloning. In vitro knockdown studies utilized a modified version

of pSICO-Puro (Ventura et al. 2004), Puro- sh2.0, in which both 5' and 3' tata-lox sites were

removed from pSICO-Puro, replacing the 5' site with a U6-shRNA cassette. For sarcoma

induction in K-rasLSL-G2D mice a lentivirus containing pgkCre and a U6-shRNA cassette was

used (a gift from M. Kumar and K. Lane, Massachusetts Institute of Technology KI, Cambridge,

MA). Lung tumor formation in K-rasFSF-G12D relied on pSICO-Flpo, which was generated by

amplifying pgkFlpo from pgkFlpobpA (Addgene) and cloning it into pSICO-Puro that had been

digested previously to remove pgkPuro. Cloning details are available upon request. Target
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sequences for shRNA knockdown were identified using pSICO Oligomaker V 1.5 (A. Ventura,

Memorial Sloan Kettering Cancer Center, New York, NY). Cloning of DNA oligos into the U6-

shRNA cassette in the above vectors was done as described previously (Ventura et al. 2004).

shRNA sequences:

Gene: Target sequence:
Luciferase GAGCTGTTTCTGAGGAGCC

p1 9 Arf/p 16 nk4a GCTGGGTGGTCTTTGTGTA
Bmi-1 GTGATGACCTGGATTTGAA
Snf5 GGAAGAGGTGAATGATAAA

Lentivirus production and knockdown studies. For in vitro experiments 8.5 x 10 5̂ 293T cells

were plated onto 6 cm plates and the viral vector, HIV-1 packaging vector A8.2, and VSV-G

encoding vector were co-transfected using Mirus transfection reagent (Mirus Bio LLC). 48 hours

later the supernatant was filtered, supplemented with polybrene (to 10 jtg/ml), and placed

directly onto the target cells. To prepare virus for in vivo infections, 7.5 x 1 0A6 293T cells were

seeded onto 15 cm plates, and the amounts of transfection reagent and plasmids were scaled up

accordingly. Viral supernatants were collected and filtered at 48 and 72 hours post-transfection,

and pooled collections were spun at 25,000 rpm for 1.5 hr at 4*C in an ultracentrifuge. Viral

pellets were resuspended in 1X HBSS pH 7.4. 50-100 [d was administered either intratracheally

or intramuscularly.

Protein extraction and immunoblots. Cell lines were lysed in RIPA buffer (10 mM Tris, pH

7.5, 150 mM NaCl, 1 mM EDTA, 1% Tx-100, .1% SDS, .5% sodium deoxycholate, 1 mM DTT)

plus mini complete protease inhibitors (Roche) and phosphatase inhibitors (cocktails 1 and 2)

(Sigma) for 10 minutes on ice. Snap-frozen tissue was finely minced with a razor blade on ice in

TNE buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 2 mM EDTA, supplemented with 1% Tx-100,
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.1 %SDS, 1mM DTT, and the same inhibitors mentioned above) and then rotated for 15 minutes

at 4*C. Both in vitro and in vivo samples were centrifuged to remove insolubles and quantitated

using a Bradford Assay (Bio-rad). Samples were then diluted in loading buffer and separated on

10-15% SDS-PAGE gels. Following transfer to PVDF membranes, the following antibodies

were used: p-tubulin (#2146), Erk 1/2 (#9102), phospho-Erk 1/2 (#9101), Akt (#9272), phospho-

Akt473 (#9271), cJun (#9162), phospho-cJun (#9261), phospho-p38 (#9211), p3 8 (#9212) (all

from Cell Signaling Technology); actin (sc-1616), p 16Ink4a (sc-1207), p19" (sc-32748), p2 7 K'P

(sc-528), Runx2 (sc-10758), K-ras (sc-30) (all from Santa Cruz Biotechnology); Snf5 (abl2167-

Abcam); Hsp90 (610418-BD Biosciences); GAPDH (MAB374-Chemicon International); and

GFP (NB 600-303-Novus Biologicals). HRP-conjugated secondary antibodies were used in

conjunction with ECL+ detection systems (Amersham). Levels of Ras-GTP were determined

with the Ras activation kit (Millipore).

mRNA isolation and qRT-PCR analysis. For some experiments, RNA was extracted using

RNeasy kits (Qiagen). Briefly, tumor tissue was minced with razor blades and further

homogenized using Qiashredder columns (Qiagen) before continuing with the manufacturer's

instructions. In other experiments tumor tissue was homogenized with a dounce homogenizer in

Trizol (Gibco), followed by RNA extraction according to the manufacturer's instructions. Once

RNA was isolated, cDNA synthesis was performed on 1 [tg of RNA using oligo dT primers and

Superscript III (Invitrogen). cDNAs were analyzed by qPCR using either SYBR Green or

Taqman detection systems in an ABI PRISM 7000 Sequence Detection System Thermo Cycler

(Applied Biosystems). Relative mRNA levels were calculated using cycle threshold difference

(ACT) to control mRNAs (p-actin for SYBR Green and TBP for Taqman). In some instances

normal lung tissue served as an additional baseline (AACT method).
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Primers for

Locus:

SYBR Green:

Forward primer: Reverse primer:
p19 GCCGCACCGGAATCCT TTGAGCAGAAGAGCTGCTACGT

p16Ink4a AACTCTTTCGGTCGTACCCC GCGTGCTTGAGCTGAAGCTA
Dec1 GGCGGGGAATAAAACGGAGCGA CCTCACGGGCACAAGTCTGGAA
DcR2 AGCTAACCCAGCCCATAATCGTC AGTTCCCTTCTGACAGGTACTGGC
p-actin GGCACCACACCTTCTACAATG GTGGTGGTGAAGCTGTAGCC

Gene: Taqman probe:
E2F1 Mm00432936 ml
E2F3 Mm1138833 ml
Bmi-l Mm00776122 gH
Ezh2 Mm00468449 ml

DMP1 Mm00516203 gl
TBP Mm00446973 ml
Snf5 Mm00448776 ml
Jmjd3 Mm1332680 ml

PCR analysis on tumor DNA: Lung tumor DNA was prepared by Laser Capture Microscopy

(LCM) as described previously (Gidekel Friedlander et al. 2009), while sarcoma DNA was

prepared according to standard procedures. Both samples were then subjected to standard PCR

analysis. PCR primers were as follows: Arf-1: AGTACAGCAGCGGGAGCATGG; Arf-2:

TTGAGGAGGACCGTGAAGCCG; Neo-2: ACCACACTGCTCGACATTGGG.

Chromatin Immunoprecipiation (ChIP). For the in vivo ChIP, tumor tissue was cut up with

razor blades in PBS, formaldehyde was added to 1%, and samples were incubated for 15 minutes

at RT. Cross-linking was stopped by incubating with .125M glycine for 5 minutes, samples were

washed once with cold PBS, pellets were resuspended in cell lysis buffer (5 mM PIPES pH 8.0,

85 mM KCL, .5% Igepal), homogenized in a dounce homogenizer, and incubated at 4*C for 10

minutes. After centrifugation pellets were resuspended in nuclear lysis buffer (50 mM Tris, pH

8.1, 10 mM EDTA, 1% SDS) for 15 minutes on ice. Sonication was then done in a Branson 250
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Sonifier to the appropriate shear length, debris was removed by centrifugation, and sheared

chromatin was diluted 6X in Dilution Buffer (16.7 Tris, pH 8.1, 167 mM NaCl, 1.2 mM EDTA,

1.1% Tx- 100, .01% SDS) before incubating with Protein A beads (Sigma) to pre-clear. Samples

were evenly split for overnight immunoprecipitations with 1-3 [g of the appropriate antibodies:

Histone H3 tri-methyl K27 (ab6002-Abcam), Histone H3 tri-methyl K4 (04-745-Millipore),

acetylated histone H3, (06-599-Millipore), Bmi-1 (supernatant provided by J. Lees, MIT KI,

Cambridge, MA), and control IgGs (Santa Cruz). Inputs were taken from IgG samples before

addition of Protein A beads the following day. Following incubation with beads for 1 hr at 4*C,

beads were washed twice with Low Salt Immune Complex Wash Buffer (20 mM Tris, pH 8.1,

150 mM NaCl, 2mM EDTA, 1% Tx-100, .1% SDS), twice with LiCl Immune Complex Wash

Buffer (10 mM Tris, pH 8.1, 1mM EDTA, 1% NP-40, 1% Na deoxycholate, .25 M LiCl), and

twice with IX TE, pH 8. DNA was eluted in IX TE, 1% SDS, 150 mM NaCl, 5 mM DTT at

65*C, and cross-links were reversed overnight at 65*C. Proteinase K was added and samples

were incubated at 55*C for 2hrs before purifying DNA with Qiagen PCR purification columns.

For in vitro ChIP analyses, cells in 15 cm plates were fixed in 1% formaldehyde for 10 min at

RT, followed by quenching in .125M glycine. Samples were washed twice in ice-cold PBS and

lysed directly in nuclear lysis buffer before continuing with the protocol above. Snf5 (A301-

087A- 1 -Bethyl Laboratories) was used for the indicated IPs.

Primers used for ChIP analysis:

Locus: Forward primer: Reverse primer:
p19 r, AAAGGGCGCAGCTACTGCTA TCTTTGCTCCACGCCCATCT

p16Ink4a TTAGCGCTGTTTCAACGCCC GCCACACTCTGCTCCTGACCT
p107 TTAGAGTCCGAGGTCCATCTTCT GGGCTCGTCCTCGAACATATCC
cdc2 ACAGAGCTCAAGAGTCAGTTGGC CGCCAATCCGATTGCACGTAGA
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ABSTRACT
The development of cancer is a multi-step process largely driven by the accumulation of

mutations in both oncogenes and tumor suppressors. While these alterations are thought to occur

in a sequential manner, whether the specific order of events is important for tumor initiation

and/or progression remains unknown. Here, we describe a mouse model for sequential

mutagenesis that utilizes both Flp-Frt and Cre-LoxP recombination systems. By integrating a

novel Flp-inducible allele of oncogenic K-ras with established methods for Cre-mediated p53

deletion, we are able to separately regulate these two commonly associated cancer genes in vitro

and in vivo. Using this approach, we show that efficient tumor formation in a mouse model of

soft-tissue sarcoma driven by K-rasG12D activation and p53 loss is highly dependent on the order

of these events. Interestingly, delaying p53 deletion relative to oncogenic K-ras induction

reduces tumor burden, suggesting that p53 strongly inhibits very early steps in K-ras-dependent

transformation in the muscle. Furthermore, using in vivo RNAi we implicate the p53 target gene

p21 as a critical mediator in this process, highlighting cell-cycle arrest as an extremely potent

tumor suppressor mechanism in muscle cells.
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INTRODUCTION
Tumorigenesis is a multi-step process driven by the accumulation of both genetic and

epigenetic alterations in oncogenes and tumor suppressor genes (Hanahan and Weinberg 2000;

Vogelstein and Kinzler 2004). These individual changes occur in a sequential manner and are

thought to drive distinct steps in the progression of normal cells to full malignancy (Kinzler and

Vogelstein 1996). Although it is generally believed that the actions of these mutations combine

to effect full transformation, it remains unclear if the order of events is important in this process.

In addition, how specific oncogenic events dictate the transition from early to intermediate to

late-stage disease states is largely unknown.

While mutations in the tumor suppressor gene p53 comprise one of the most common

occurrences in human cancer, the relative timing of these alterations seems to vary across tumor

types (Baker et al. 1990; Blondal and Benchimol 1994; Greenblatt et al. 1994). In many cancers,

such as those of the lung, colon, and pancreas, p53 alterations have been documented in more

advanced stages of tumor development, suggesting that p53 constrains progression of established

tumors (Baker et al. 1990; Kohno et al. 1999; Yamasaki et al. 2000; Hezel et al. 2006). In

contrast, the early onset of several cancer types in Li-Fraumeni patients, who inherit a germ-line

mutation in p53, argues for a potential role of this tumor suppressor in inhibiting the first steps of

transformation in some cell types (Kleihues et al. 1997). While these studies clearly illustrate that

p53 is mutated at particular stages of tumor development, whether these differences underlie

specific temporal requirements for p53 loss in distinct tissues remains to be determined.

p53's central role in tumor suppression derives from its ability to respond to oncogenic

stress by inducing cell cycle arrest or apoptosis (Lowe et al. 2004; Zilfou and Lowe 2009). For
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example, heterologous expression of oncogenic Ras leads to p53 stabilization and the induction

of a permanent cell cycle arrest termed senescence (Serrano et al. 1997; Collado et al. 2005).

Presumably, such a strong p53 response to oncogene Ras expression would block any incipient

tumor cell growth and thus require a pre-exisitng mutation in p53 for transformation. Indeed,

using a Cre-inducible allele of oncogenic K-ras (K-raSLSL-G12D) in a mouse model of soft-tissue

sarcoma, we demonstrated that tumor formation occurred only if accompanied by the

simultaneous loss of p53 or its upstream activator p19 Ar (Kirsch et al. 2007). However, many

other cell types and tissues that express oncogenic K-ras at physiological levels are able to

hyper-proliferate without p53 pathway abrogation, progressing to early or intermediate stages of

tumor development (Tuveson et al. 2004; Collado et al. 2005). Therefore, both in humans and

mice, p53 appears to play tissue-specific tumor suppressive roles. In some settings it inhibits the

earliest stages of tumor initiation, whereas in other cases it slows the progression of established

lesions. It is possible that depending on it's stage-specific function, the order and/or timing of

p53 mutations relative to other oncogenic events, such as K-raSG12 D activation, might be an

important determinant of tumor development in distinct cellular contexts.

Despite many advances in genetically engineered mouse models of cancer, most current

models that involve multiple cancer-associated mutations are not designed to perform sequential

mutagenesis and thus cannot directly test the importance of mutation timing or order. For

example, the use of the conditional Cre-LoxP site-specific recombinase (SSR) system allows

precise control of multiple gene activation or inactivation events, but these alterations occur

simultaneously at the time of tumor initiation (Frese and Tuveson 2007). Additional SSR

modalities, such as S. cerivisae-derived Flp-Frt, exist but have been used in a more limited

fashion in mouse models (Vooijs et al. 1998; Awatramani et al. 2001). However, recent
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improvements have increased its recombination efficiency in mammalian systems (Raymond and

Soriano 2007). By combining different SSR systems within the same model one could achieve

spatiotemporal control of distinct genetic events provided the recombinases are independently

regulated (Branda and Dymecki 2004).

To establish a system for sequentially mutating the commonly-associated cancer genes K-

ras and p53, we have developed a Flp-inducible allele of oncogenic K-ras expressed from its

endogenous promoter. By combining this allele with an already well-established Cre-regulated

p53 deletion allele (Jonkers et al. 2001), we could separately regulate these mutations, both in

cells and in mice. Using this dual SSR strategy, we uncover new insights into the nature of p53-

mediated tumor suppression by determining the temporal requirements of K-ras and p53

mutation necessary for the development of soft-tissue sarcoma. We provide evidence that

oncogenic K-ras rapidly induces robust p53 activity that limits the capacity of mutated cells to

respond to subsequent p53 loss. Furthermore, using RNAi we show that the p53 target gene p21

is important for this response, implicating p53's canonical role in mediating cell cycle as a potent

tumor suppression mechanism in vivo. Our data suggest that the particular order of two

commonly-associated mutations can affect their ability to promote tumorigenesis.

RESULTS

Generation and Initial Characterization of K-rasFSF-G2D allele

In order to create an in vivo sequential mutagenesis model, we set out to combine the Flp-

frt mediated mutagenesis system with already available tools from Cre-loxP systems. To this

end, we first generated a Flp-recombinase inducible allele of oncogenic K-ras (K-raSFSF-G12D),

following a very similar strategy used to construct the well-studied Cre-inducible K-rasLSL-G12D

allele (Tuveson et al. 2004). Specifically, we targeted the endogenous locus of Kras2 in ES cells
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with a construct containing a transcriptional stop cassette flanked by Frt sites in intron 1 and an

oncogenic point mutation in codon 12, such that expression of Flp would remove the stop

cassette and permit expression of oncogenic K-ras at endogenous levels (Fig 1A). Southern blot

analysis of ES cells identified correctly targeted clones (Fig IB), one of which was used for

chimera generation and subsequent germline transmission. To characterize the activity of this

allele, we first generated mouse embryonic fibroblasts (MEFs) from K-ras FSF-G12D+ embryos.

Introduction of an engineered thermostable version of Flp (Flpe) (Buchholz et al. 1998) but not

Cre led to removal of the stop cassette, as demonstrated by PCR analysis (Fig IC). In addition,

Flpe expression in K-rasFSF-G12D MEFs induced high levels of active Ras-GTP, along with

appropriate downstream signaling events, such as up-regulation of cyclin D1 (Fig ID). Various

functional attributes of MEFs expressing endogenous levels of K-rasG12D have been reported

from work with the similar Cre-inducible K-rasLSL-G1 2D allele. These include a spindle-like

morphology and the ability to form colonies in soft agar when combined with p53 deficiency

(Tuveson et al. 2004). We were able to reproduce these phenotypes with the K-rafSF-G12D/+

MEFs in a Flpe-dependent manner (data not shown).

We next tested the activity of the K-rasFSF-G12D allele in vivo, which was of particular

importance given the evidence that Flpe is much less efficient than Cre in mammalian systems

(Raymond and Soriano 2007). While introduction of adenoviruses or lentiviruses expressing Cre

(Ad-Cre or LV-Cre) into the lungs of K-raSLSL-G12D mice results in significant lung tumor

formation (Jackson et al. 2001; DuPage et al. 2009), infection with Ade-Flpe and LV-Flpe failed

to generate lung tumors in K-rasFSF-G12D animals (data not shown). However, using a mammalian

codon-optimized version of Flp, termed Flpo (Raymond and Soriano 2007), we were able to

initiate numerous lung tumors in K-rasFSF-G12D mice with intratracheal instillation of Ad-Flpo
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Figure 1: Construction and initial characterization of K-rasFSF-GI2D

A. Schematic of the targeting strategy for K-raSFSF-G12D, including the (i.) endogenous K-ras

locus, (ii.) targeting vector, (iii.) correctly targeted K-rasFSF-G12D locus, and (iv.) recombined K-
rasrt-G12D following Flp expression. Green boxes = exons; thick black bars = probes for
Southern blot; star = oncogenic point mutation G12D; B = BamHI; K = KpnI. B. Southern blot
of non-targeted (K-ras*/*) and correctly targeted (K-rasFSF-G12D/+) ES cell clones following
BamHI/KpnI double digestion and hybridization with an external 5' probe. C. PCR analysis of
genomic DNA isolated from K-rasFSF-G2D/+ MEFs infected with lentiviruses expressing Cre
(Lenti-Cre) or Flpe (Lenti-Flpe). D. Western blot of K-ras*/* and K-rasFSF-G12D+ MEFs either
uninfected or infected with Lenti-Flpe showing up-regulation of Ras-GTP and cyclin DI, two
hallmarks of Ras activation, in K-rasFSF-G12D/+ MEFs in a Flpe-dependent manner. E.
Representative hematoxylin and eosin (H&E)-stained section of a lung lobe from a K-rasFSF-
G12D/+ mouse 16 weeks post Ad-Flpo infection. Multiple lung tumors are evident. 4X
magnification.
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and LV-Flpo (Fig 1E and data not shown). Together, these data indicate that K-raSFSF-G12D is the

functional equivalent of the K-rasLSL-G12D allele.

Sequential mutagenesis of K-ras and p53 in MEFs in vitro and in vivo

Given the well-known genetic interaction between K-ras and p53 in cellular

transformation, we chose to combine mutations in these two genes for initial sequential

mutagenesis experiments in MEFs. Previous work has demonstrated that while primary MEFs

expressing endogenous K-rasG12 D have some characteristics of transformation, they are not fully

transformed and require p53 deletion to form tumors in immunocompromised mice (Tuveson et

al. 2004). With the ability to separate K-ras and p53 mutations in time, we set out to examine the

consequences of delayed p53 mutation in K-raSG12 D-expressing cells following transplantation

into immunocompromised mice.

We constructed MEFs containing K-rasFSF-G12D and Trp5ox alleles, as well as the

R26 CreER-T2 allele, a tamoxifen-regulated version of Cre knocked into the ubiquitously expressed

Rosa26 locus (Ventura et al. 2007). Compound mutant MEFs of the following genotypes were

used in these experiments: K-ras FSF-G2D; R2 6 creER-T2/+. flox/flox (FKCP) and K-ra/SF-G2.

R26 creER-T2/+; Trp53IOx/* (FKC). Infection of these cells with Ad-Flpo led to activation of the K-

raSFS-G2D allele in vitro (designated FK*). FK*CP cells were injected subcutaneously into

nu/nu mice and p53 deletion was induced by i.p. tamoxifen injection at different time points

thereafter. As a positive control, we included cells that had been treated with 4-

hydroxytamoxifen (4-OHT) to inactivate p53 one week prior to injection.

As shown in Figure 2A, when mice injected with FK*CP cells started receiving

tamoxifen on the same day of injection, efficient tumor formation was observed, similar to the

positive control group. As expected, the resulting tumors showed complete recombination of
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both Trp53fl" alleles (Fig 2B). Importantly, this system showed no leakiness, as mice injected

with FK*CP cells and treated with vehicle (corn-oil) failed to form tumors (Fig 2A).

Additionally, the ability of tamoxifen treatment to promote tumor development depended on

complete loss of p53, as shown by the lack of tumorigenecity of FK*C cells following tamoxifen

administration (Fig 2A).

We next set out to investigate the fate of partially transformed FK*CP cells in vivo by

addressing how long after the injection of cells could tamoxifen treatment still result in tumor

formation. FK*CP cells were introduced into different groups of mice that varied in their

tamoxifen treatment schedule: beginning 1 day (Group A), 1 week (Group B), or 3 weeks (Group

C) following injection of the cells (Fig 2C). Strikingly, while tumor development was efficient in

Groups A and B, almost no tumors formed in Group C (Fig 2D). These results suggest that

injected FK*CP cells were either removed in a p53-dependent manner or became resistant to p53

loss sometime between one and three weeks following their introduction into the animal. Given

the recent evidence that innate immune cells can clear other cells undergoing p53-dependent cell

cycle arrest/senescence (Xue et al. 2007; Krizhanovsky et al. 2008), we wondered if FK*CP cells

failed to form tumors in Group C because they were removed in such a manner. Therefore, we

repeated these experiments in NOD/SCID mice, which are more immunocomprised than the

nu/nu strain, lacking the cell populations implicated in senescent-cell clearance. The results of

the time-course experiment in NOD/SCID were very similar to those in nu/nu mice (Fig 2E).

This suggests that innate immune cell-mediated clearance of senescing cells does not explain the

failure of the partially transformed FK*CP cells to remain responsive to p53 deletion and form

tumors following prolonged times in vivo. In summary, although primary MEFs expressing
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Figure 2: Sequential mutagenesis of K-ras and p53 in MEFs
A. Results of initial transplant experiments, represented as the number of injection sites
presenting with tumors following introduction of different MEF lines and various treatment
conditions (corn-oil or tamoxifen in vivo; 4-OHT in vitro). See text for experimental details. The
system was sufficiently inducible and not leaky, as tumors formed only when tamoxifen was
administered in the presence of two copies of Trf53fl*. FK*CP = K-rasFSF-G12 D/+; R2 6 CreER-T2/+

Trp53flox'"lox; FK*C = K-rasFSF-G12 D/+; R 2 6 creER-T +; Trp53ox/+, * denotes activated K-raSG12 D B.

Recombination analysis of Trp53flox alleles in resultant FKCP MEF tumors or the parental MEFs
before injection into the animals. C. Schematic of sequential mutagenesis of K-ras and p53. See
text for details. D. and E. Growth kinetics and overall incidence of tumors in which p53 was
deleted 0 weeks (Group A-red square), 1 week (Group B-blue triangle), or 3 weeks (Group C-
yellow X) post subQ injection of the cells into nu/nu (D.) or NOD/SCID (E.) mice. Delaying p53
loss until three weeks after injection severely inhibited the ability of partially transformed K-
ras G12D-expressing MEFs to subsequently form tumors.
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endogenous levels of oncogenic K-ras proliferate continuously in cell culture conditions, transfer

into an in vivo environment leads rapidly to engagement of the p53 pathway and irreversible

tumor suppression.

Sequential mutagenesis of K-ras and p53 in a model of soft-tissue sarcoma

Having validated the dual SSR technology as means to perform sequential mutagenesis,

we next applied the system to an endogenous tumor model. Previous work had shown that

intramuscular infection of Ade-Cre into the limbs of K-rasLSL-G12D; Trp53flox/flox animal resulted in

efficient sarcomagenesis (Kirsch et al. 2007). However, the presence of just one wild-type allele

ofp53 completely inhibited tumor formation. Furthermore, careful histological analysis of non-

tumor bearing muscles of K-raSL-G12 D; Trp53flo/+ animals several months after Ad-Cre

infection failed to identify any microscopic lesions (data not shown). These results suggest that

activation of endogenous K-rasG12D in the muscle leads to rapid p53-dependent tumor

suppression.

Despite these initial observations, the exact nature of the tumor suppression, and thus the

fate of K-rasG12D-expressing cells in the Trp53lO/background, remained unknown. One

possibility was that oncogenic K-ras-positive cells persisted in the muscle, but were limited in

their proliferative capacity due to p53-dependent growth arrest. In this case a secondary mutation

in the p53 pathway could potentially unleash the oncogenicity of these latent cells. Another

possible scenario was that K-rasG12D activation resulted in a p53-dependent removal or

irreversible alteration of the cells, such that subsequent p53 mutations would be ineffective in

promoting full transformation of the initially targeted cells.

To distinguish between these two possibilities, we used a sequential mutagenesis

strategy. Compound mutant mice of the genotype K-rasFSF-G12 D; Trp53floxflox; R 26 CreER-T2/CreER-T2
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were generated and separated into three groups. All three groups received simultaneous

intramuscular Ad-Flpo infections to activate oncogenic K-ras, and then were separated based on

their tamoxifen treatment schedule, and thus, time to p53 deletion. Tamoxifen was administered

on the same day of Ad-Flpo infection for Group A, on day 10 post infection (Group B), or day

21 post infection (Group C) (Fig 3A). If oncogenic K-ras expressing cells persisted and remained

capable to respond to p53 loss, then all three groups would be expected to efficiently form

sarcomas. In contrast, if mutant K-raSG12 D positive cells were somehow rendered refractory to

delayed p53 deletion, sarcomagenesis would be inhibited in Groups B and C. Remarkably,

sarcoma formation varied greatly between three groups. While all mice in Group A presented

with sarcomas, the percentage of effected mice was significantly lower in Group B (56%) and

Group C (40%) (Fig 3B). Additionally, in separate experiments in which p53 loss was delayed

until 5 weeks after K-ras activation, even fewer mice developed sarcomas (data not shown).

Importantly, tumors from all groups displayed the expected recombination patterns at both K-

rasFSF-G12D and Trp53ox loci (Fig 3E). Of the sarcomas that did form in Group C, some appeared

with delayed kinetics (time to tumor appearance after p53 loss) compared to Group A (Fig 3D).

Taken together, these results suggest that the available pool of K-rasG12D expressing cells in the

muscle is significantly diminished over time, either in number or function, by a strong p53

response. Therefore, a mutation in K-ras must be soon followed by disengagement of the p53

pathway for efficient tumorigenesis to occur in the muscle. Alternatively, the inhibition of the

p53 pathway would have to occur first in this cell type in order to render the cells sensitive to

subsequent oncogene activation.
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Figure 3: Delaying p53 loss relative to K-rasG12D activation reduces tumor formation in a
mouse model of soft-tissue sarcoma
A. Experimental outline of sequential mutagenesis strategy, showing the genotype of the
compound mutant mice and the treatment regimen. See text for details. B. Bar graph illustrating
tumor incidence in mice in which tamoxifen treatment began on day 0 (black bar), day 10 (red
bar), or day 21 (green bar) following Ad-Flpo infection. C. Dot plot indicating the kinetics of
sarcomagenesis as measured by the time to tumor formation post-p53 loss (tamoxifen treatment).
Color scheme is same as in (B) D. PCR analysis of K-ras and Trp53 loci. Tumors showed
recombination at both loci while non-tumor bearing muscle from the same animals lack
detectable recombination.
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Genetic analysis ofp53 response in K-ras G12D-expressing cells in the muscle

We next sought to understand the mechanism of p53-mediated tumor suppression in the

muscle. Through its ability to transcriptionally up-regulate a number of different genes under

various stress conditions, p53 can induce distinct cell fates, such as apoptosis, cell cycle arrest, or

senescence (Vousden and Lu 2002). Given that the sequential mutagenesis experiments did not

distinguish between the clearance or retention of K-ras G12D-positive cells, we considered all of

these possibilities. In previous attempts to determine the mechanism of p53 action in the muscle,

we studied mice of the genotype K-rasLSL-G12D; Bak1~'~; Baxlo"~, and showed that deletion of the

intrinsic pathway of apoptosis could not substitute for p53 deletion in sarcoma development

(Kirsch et al. 2007). This suggested that p53 is not functioning through the induction of

apoptosis in this setting. Of note, deletion of Arf, an upstream regulator of p53, was as efficient

as p53 loss in cooperation with oncogenic K-ras.

To address if p53 was acting through cell cycle arrest and/or senescence, we used a

RNAi-mediated gene silencing method involving a lentiviral-based system for in vivo expression

of Cre and a shRNA. In these experiments, it was necessary to use immunocompromised (Rag2~

) mice to avoid immune responses to lentiviral infection. Also, we employed mice heterozygous

for a mutant Arf allele (ArfGFP- see Chapter 2) to sensitize them to shRNA mediated p19Arf

inhibition. Accordingly, intramuscular lentiviral infection of K-rasLSL-G12D; ArFP/+; Rag2~-

animals did not result in tumors unless a shRNA to p19Ad was included (Chapter 2). With this

system, we could determine whether knockdown of core components of the senescence and/or

cell cycle arrest machinery downstream of p53 was sufficient for sarcoma formation. To this end,

we tested hairpins directed against the histone methyltransferase suv39hl. Despite not being a

known p53 target gene, suv39hl is one of the only factors known to play a direct role in
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senescence in in vivo mouse models (Braig et al. 2005; Shamma et al. 2009). Infection of K-

rasLSL-G12D ArfFP/+ ; Rag2-/~ animals with multiple shRNAs to suv39hl failed to generate

sarcomas, despite significant knockdown as assessed in control K-rasLSL-G] 2 D. FP/GFP ; Rag2- -

sarcomas produced with the same vectors (Fig 4A and B). Therefore, if p53 is inducing

senescence in this context, it is most likely suv39hl -independent.

One of the most well established p53 target genes is the cyclin dependent kinase inhibitor

p21, which has been shown to be critical for the GI cell cycle arrest elicited by p53 in a number

of settings (Brugarolas et al. 1995; Deng et al. 1995; Efeyan et al. 2007). However, other studies

using p21-/- cells have called into question the importance of p21 in p53-mediated arrest

downstream of oncogenic stress (Pantoja and Serrano 1999). To determine if p21 is important for

p53-dependent tumor suppression in the muscle, we introduced a shRNA targeting p21 into the

bifunctional lentiviral vector and infected K-rasLSL-G2D ArfFP/+ ; Rag2- mice. Interestingly,

knockdown of p21 was able to promote sarcoma formation (Fig 4C). Molecular analysis

confirmed significant knockdown of p21 in the resulting tumors (Fig 4D). In addition, PCR

analysis of tumor DNA indicated retention of the wild-type allele of Arf, suggesting no

additional selective pressure for p53 pathway inactivation during tumor formation (data not

shown). Together, these data indicate that p21 is required for the strong tumor suppressor activity

of p53 in the muscle following expression of oncogenic K-ras. This suggests that the primary

function of p53 in this context is the induction cell cycle arrest, and possibly, senescence.

Further characterization ofp53-andp2l-dependent tumor suppression in the muscle

As described above, delaying p53 loss relative to K-rasG12 D activation hinders sarcoma

formation, which implies that cells initially expressing oncogenic K-ras are either removed or
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Fieure 4: Genetic analysis implicates p21 as a critical component of p53-dependent tumor
suppression in the muscle.
A. Kaplan-Meier graph showing sarcoma-free survival in a cohort of K-rasLSL-G12 D ArfFP/GFP.

Rag2-'~ (black and yellow lines) and K-rasLSL-G 2 D; ArFP/+; Rag2~/~ (solid red and dotted green
lines ) mice infected with lentiviruses expressing Cre and a shRNA targeting either luciferase
(solid black and red lines) or one of two shRNAs to suv39hl (dotted yellow and green lines). For
black bar, N = 2, yellow bar N = 4, red bar N = 4, green bar N = 8. B. qRT-PCR of suv39hl
mRNA levels in sarcomas from K-ras LSL-G2D; Ar ; Rag2-1 animals infected with
lentiviruses expressing Cre and a shRNA to luciferase (blue bar) or one of two shRNAs to
suv39hl (green bar). N = 2 tumors for each group. *, P < .005. Error bars denote standard

deviation. C. Kaplan-Meier graph showing sarcoma-free survival in a cohort of K-raLSL-G2D;

Ar' ; Rag2~ (red and black lines) and K-rasLSL-G12D FP/+; Rag2-~ (yellow and green

lines) mice infected with lentiviruses expressing Cre and a shRNA targeting either luciferase
(black and green lines) or p21 (red and yellow lines). For black line, N = 4, red line N = 3, green
line N = 4, and yellow line N = 5. B. Western blot analysis of p16Ink4a and p21 on a panel of
sarcomas arising from infection of K-rasLSL-G12 D ;ArFP/+; Rag2-- animals with either Cre-shp21
(shp2 1) or Cre-shp 19/p 16 (shp 19/p 16) lentiviruses.
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become refractory to subsequent p53 deletion. While previous genetic data indicated that

apoptosis is not likely to be the mechanism of tumor suppression, affected cells could still be

cleared from the body, perhaps through innate immune cell scavenging as has been shown for

senescent cells (Xue et al. 2007). Alternatively, the cells could persist in a state of irreversible

growth inhibition. Whether p53 can direct this type of permanent arrest in vivo, and if the

continued presence of p53 is required, is unknown. To gain insight into the fate of K-raSG12D_

expressing cells, we pursued a cell marking strategy. Administering lentiviruses encoding Cre

and GFP allowed us to mark infected cells using immunohistochemistry (IHC) for GFP. As a

control, lentiviral infection of K-rasLSL-G12D. TrpS3flox/fox; Rag2~- animals efficiently generated

sarcomas that stained for GFP (Fig 5A iii). Interestingly, an examination of infected muscles

before macroscopic tumor formation revealed regions of GFP+ cells that increased in size over

time, most likely corresponding to incipient tumor lesions (Fig 5A). However, while we could

readily detect infected cells in K-rasLSL-G 2D. Trp53flox/+; Rag2-/- mice, they never appeared to

expand and frequently were seen scattered throughout the muscle (Fig 5B). This pattern was very

similar to what was observed in mice with wild-type K-ras (Fig 5C). These data provide further

evidence that p53 suppresses the very earliest events of K-rasG12D-mediated transformation in

muscle cells. So far, we have been unable to detect markers of senescence in any infected cells in

K-rasLSL-G2D. Trp53flox+; Rag2~/- animals (data not shown). Although we cannot rule out the

possibility that some cells senesce and are cleared, the continued presence of GFP+ cells in K-

rasLSL-G12D; Trp53floxl±; Rag2~-f animals indicates that some K-rasG12D-positive cells remain in the

muscle at time points at which p53 deletion is unable to efficiently promote sarcomagenesis.

This might suggest that p53 engages an irreversible cell cycle arrest in those cells.
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Fieure 5: Identification of GFP labeled cells in both tumor bearing and non-tumor bearing
muscles at multiple time points after infection.
GFP IHC on formalin-fixed muscle tissue from K-raSL-G2D;. Trp53flOX/flox; Rag2~ (A), K-rasLSL-
G12D. Trp53flox/+; Rag2~/ (B), and K-ras*/*; Trp53flox'flox (orflox'/+); Rag2~/ animals at the indicated
times post infection (p.i.). GFP staining is brown, and India Ink, which was used to mark the
injection site, stains as black. While tufts of cells appear to grow into incipient tumors in K-
raLSL-G12D. ox/fox; Rag2-/~ animals (A), non-tumor bearing animals contain dispersed cells
either near the injection site (B i and ii, C i) or in isolated parts of the muscle (B Hiii, C ii and iii).
Arrows indicate single GFP+ cells.
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DISCUSSION

In the progression from normalcy to full malignancy, cells must overcome a number of

restraints on growth and survival. It is generally accepted that the sequential accumulation of

multiple mutations drives different parts of this process. While the cooperative nature of sets of

mutations has been validated in a variety of experimental systems, the importance of their

temporal relationship to one another has been largely unexplored, especially in vivo.

In the present study, we combined Flp-Frt and Cre-LoxP technologies in order to control

different genetic events in a temporal fashion. Through the development of a Flp-inducible allele

of endogenous oncogenic K-ras, we could then take advantage of already available tools for Cre-

controlled p53 manipulation. This dual system allowed for the temporal separation of K-ras

activation and p53 mutation. Using this strategy we gained new insights into the relationship

between these commonly co-mutated genes. First, while escaping p53-mediated growth arrest

during passage in cell culture, transfer into an in vivo environment rendered partially transformed

K-rasG12D -expressing MEFs susceptible to irreversible p53 tumor suppression. The signals

converging on p53 specifically after in vivo transfer are unknown but this MEF system could be

a useful model for understanding how p53 inhibits later stages of tumor progression, such as

metastasis.

We next used sequential mutagenesis of K-ras and p53 to understand the absolute

requirement for both mutations in a mouse model of soft-tissue sarcoma. As shown previously,

simultaneous mutation of both genes resulted in robust sarcomagenesis. Intriguingly, by delaying

p53 deletion relative to K-ras activation, we observed a decrease in the efficiency of sarcoma

formation. This suggests that oncogenic K-ras induces a strong p53 response that compromises

the tumorigenic potential of initially targeted cells, even when p53 is subsequently inactivated.
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This immediate and severe p53-dependent response of muscle cells harboring an oncogenic Ras

mutation might at least partially explain the low frequency of soft-tissue sarcomas compared to

many other malignancies. Indeed, the incidence of soft-tissue sarcomas is dramatically elevated

in Li-Fraumani patients inheriting a germ-line mutation ofp53 (Kleihues et al. 1997), indicating

that pre-existing deficiencies in p53 function allow for muscle cell transformation, which is

otherwise a rare occurrence. Moreover, somatic p53 mutations have been proposed to be

relatively early events in other forms of sarcomas (Taubert et al. 1998), further suggesting that

muscle cells must overcome an early p53-dependent blockade during tumor initiation. As a result

of this potent p53-dependent tumor suppression, spontaneous sarcomagenesis most likely selects

for a particular sequence of events in which mutation ofp53 occurs very early. Because p53

alterations are rarely thought to be an initiating event (Hinkal et al. 2009), sarcoma development

is limited.

Genetic dissection of pathways downstream of p53 implicated p21 in mediating this

strong response, arguing that cell cycle arrest rather than apoptosis is the predominant route of

tumor suppression in this context. Given that eventual p53 loss did not fully rescue the ability of

K-ras mutant cells to form tumors, this arrest must be irreversible and/or lead to the clearance of

affected cells. Currently, we cannot rule out either of these mechanisms. At later time points after

K-rasG12D activation in p53-proficient animals, we were still able to locate scattered infected

cells, suggesting that at least some cells persist but cannot efficiently go on to form tumors.

While we have not been unable to identify senescence markers, a further investigation of these

cells is warranted.

Sequential mutagenesis of K-raSG12D and p53 provided evidence that acute activity of p53

at tumor initiation was sufficient for significant tumor suppression. Similarly, Evans and
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colleagues have demonstrated robust tumor suppression after a small window of p53 activity

occurring shortly after irradiation (IR)-induced tumor initiation (Christophorou et al. 2006).

Conversely, in a separate study, deleting p53 at different time points after IR revealed that the

continued presence of p53 was required to prevent IR-induced tumorigenesis (Hinkal et al.

2009). In fact, once p53 was removed, tumor formation occurred with the same kinetics as seen

in IR-treated Trp53-* animals. Apparently, in this context p53 maintained pre-neoplastic cells in

a reversible cell cycle arrest that was completely abrogated once p53 was deleted. This is in stark

contrast to what we observed in K-rasG12D-expressing muscle cells, where subsequent p53

deletion failed to fully recover the tumorigenic capacity of mutated cells.

p53 mutation has been shown to exacerbate tumor phenotypes in a number of mouse

models, validating its role as a critical tumor suppressor (Donehower and Lozano 2009). The

precise stages of cancer development at which p53 function is most important are less clear.

Some studies have suggested that p53 constrains the progression of already present lesions to

more advanced states (Chen et al. 2005; Jackson et al. 2005; Hinkal et al. 2009). Consistent with

a role in established tumors, restoration of p53 function has been shown to lead to robust tumor

regression (Martins et al. 2006; Ventura et al. 2007; Xue et al. 2007). It is possible that in some

settings sufficient p53 pathway activation requires additional stimuli apart from the initiating

oncogenic lesion, resulting in delayed p53 function. In contrast, we found that even a relatively

short time window of p53 activity soon after oncogenic K-ras expression in the muscle

significantly reduced tumor burden, implying suppression of tumor initiation. This suggests that

endogenous levels of K-rasG12D are sufficient for functionally relevant p53 induction in this

tissue. Interestingly, the same allele of K-ras fails to elicit significant p53 activity in the lung

epithelium until much later during tumorigenesis. Accordingly, delaying p53 mutation relative to
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K-ras activation during lung tumor initiation generates tumors largely resembling those seen with

a simultaneous mutagenesis strategy (data not shown). One explanation for this tissue-specific

response could be differential regulation of p19 Arf, a major inducer of p53, in lung and muscle

cells (Chapter 2). A further understanding of the factors governing p53's potent tumor

suppression in the muscle might guide therapeutic strategies aimed at generating such a response

in more resistant tissues.

Future studies using the sequential mutagenesis technology presented here will be able to

address fundamental questions in tumor biology that have been difficult or impossible to

accomplish using other systems. The ability to accurately model stepwise mutations inherent in

tumorigenesis will allow one to test the functional relevance of particular orders of commonly

co-mutated genes in a number of different tumor types. Additionally, the genetic dissection of

pathways at different stages of tumor progression will yield insights that will be useful for

tailoring therapeutic regimens to distinct stages of disease.
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MATERIALS AND METHODS

Construction of K-ras FSF-G12D targeting vector

To construct the Frt-STOP-Frt (FSF) element, two separate Frt sites were individually inserted

into pBluescript (pBS, Stratagene) by ligating annealed oligos encoding Frt sequences into

digested pBS. Specifically, the 1 st Frt site was placed into XhoI-KpnI digested pBS. lFrt-pBS

was then digested with XhoI and NotI and the 2nd Frt was inserted. A linker sequence containing

unique PstI and HpaI sites was then placed in between the two Frt sites after digestion of 2Frt-

pBS with XhoI. The resulting Frt-linker-Frt-pBS vector was cut with PstI and Hpal sites and

ligated with the STOP element from LoxP-STOP-loxP (LSL-Tuv ref) that had been digested

with Pst and Scal, generating FSF-pBS. The FSF cassette was then subcloned into a TOPO

vector (Invitrogen) creating FSF-TOPO. Finally, the FSF was removed from FSF-TOPO with a

SalI digest and inserted into the previously generated, SalI-digested, pBS-DTA-K-raG12D, which

contained the G12D point mutation and homolgy arms for targeting the K-ras2 locus (Tuv ref).

Correct orientation was checked by PCR. Additional details are available upon request.

Generation of K-rasFSF-G12 D mice

The targeting vector was linearized by Sfi1 digest and electroporated into V26.2 C57BL/6 ES

cells and puromycin-resistant clones were selected. Homologous recombination was assayed by

Southern blot analysis on BamHI/KpnI doubly digested ES cell DNA, using both 5' and 3'

probes lying outside of the targeting arms. A correctly targeted clone was injected into BALB/c

derived blastocysts, which were then transplanted into a pseudopregnant female, and resulting

black/white chimeras were crossed to C57BL/6 mice to monitor for germline transmission.
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Genomic PCR was performed on black pups to ensure inheritance of the targeted allele.

Genotyping details are available by request.

Mouse studies. Trp53f" mice were provided by A. Berns (The Netherlands Cancer Institute,

Amsterdam, the Netherlands), Arf/FP mice were provided by C. Sherr (St. Jude Children's

Hospital, Memphis, TN), and Rag2~'~, nu/nu, and NOD/SCID mice were purchased from The

Jackson Laboratory. K-raSL-G2 D and R 26 reER were previously generated in our laboratory

(refs). All animals (except for nu/nu and NOD/SCID) were maintained on a mixed background

comprising 129S4/SvJae and C57BL/6 strains. Lung tumors were generated and processed as

previously described (ref), substituting Ad-Flpo (University of Iowa, Gene Transfer Vector

Core) for Ade-Cre. Intramuscular viral infections were done as previously shown (ref). For GFP

marking experiments, needles were dipped in India Ink before injection in order to mark the

needle track. Tamoxifen (Sigma) was dissolved in corn-oil at 10 mg/ml and injected

intraperitoneally every other day for 5 days where applicable. Once masses were visible on the

legs, tumors were processed for histology and molecular analysis as described below. For MEF

tumor experiments, 1.5 x 10^6 cells were resuspended in 200 ul of PBS and injected

subcutaneously. Mice were monitored every few days for tumor formation. Animal studies were

approved by Massachusetts Institute of Technology's (MIT) Committee for Animal Care and

conducted in compliance with Animal Welfare Act Regulations and other federal statutes

relating to animals and experiments involving animals, and adheres to the principles set forth in

the 1996 National Research Council Guide for Care and Use of Laboratory Animals

(institutional animal welfare assurance number, A-3125-01).
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Cell Culture. Primary MEFs of the indicated genotypes were isolated from E13.5 embryos and

propagated in DMEM supplemented with 10% IFS, 5mM glutamine and penicillin/streptomycin.

Where applicable 4-hydroxytamoxifen (Sigma) was added to the media at 1 00nM. Lentiviral

infections were performed by directly transferring viral supernatant. For adenovirus infection in

vitro Ad-Flpo was added to the media at an MOI of 10.

Genomic PCR analysis: DNA was prepared from MEFs or tumors and subjected to standard

PCR analysis. PCR primers were as follows:

PCR name forward primer reverse primer
p53 2-lox CACAAAAACAGGTTAAACCCA GAAGACAGAAAAGGGGAGGG
p53 1-lox AAGGGGTATGAGGGACAAGG Same as above
Multiplex GGGTAGGTGTTGGGATAGCTG TCCGAATTCAGTGACTACAGATGTAC

K-ras

Protein extraction and immunoblots. MEFs were lysed in RIPA buffer (10 mM Tris, pH 7.5,

150 mM NaCl, 1 mM EDTA, 1% Tx-100, .1% SDS, .5% sodium deoxycholate, 1 mM DTT)

plus mini complete protease inhibitors (Roche) and phosphatase inhibitors (cocktails 1 and 2)

(Sigma) for 10 minutes on ice. Snap-frozen tissue was finely minced with a razor blade on ice in

TNE buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 2 mM EDTA, supplemented with 1% Tx-100,

.1%SDS, 1mM DTT, and the same inhibitors mentioned above) and then rotated for 15 minutes

at 4*C. Both in vitro and in vivo samples were centrifuged to remove insolubles and quantitated

using a Bradford Assay (Bio-rad). Samples were then diluted in loading buffer and separated on

10-15% SDS-PAGE gels. Following transfer to PVDF membranes, the following antibodies

were used: anti-Pan Ras (#05-516), anti-cyclin D1 (#05-815-Millipore); anti-p-tubulin (#2146 -

Cell Signaling Technology (CST)); anti-p21 (sc-6246), anti-p16nk4 a (sc-1207- SantaCruz
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Biotechnology). HRP-conjugated secondary antibodies were used in conjunction with ECL+

detection systems (Amersham). Levels of Ras-GTP were determined with the Ras activation kit

(Millipore).

mRNA analysis mRNA isolation and qRT-PCR analysis. RNA was extracted using RNeasy

kits (Qiagen). Briefly, tumor tissue was minced with razor blades and further homogenized using

Qiashredder columns (Qiagen) before continuing with the manufacturer's instruction. cDNA

synthesis was performed on 1 [tg of RNA using oligo dT primers and Superscript III

(Invitrogen). cDNAs were analyzed by qPCR using Taqman detection systems in an ABI PRISM

7000 Sequence Detection System Thermo Cycler (Applied Biosystems). Relative mRNA levels

were calculated using cycle threshold difference (ACT) comparing to TBP. The following

Taqman probes were used: suv39hl - Mm01347696_gl; TBP - Mm00446973_ml.

Lentiviral vectors and shRNA cloning. The lentivirus containing pgkCre and a U6-shRNA

cassette was provided by from M. Kumar and K. Lane (Massachusetts Institute of Technology

KI, Cambridge, MA), and the GFP-Cre lentivirus (Ubc-GFP; pgk-Cre) was provided by M.

DuPage (Massachusetts Institute of Technology KI, Cambridge, MA). Cloning details are

available on request. Target sequences for shRNA knockdown were identified using pSICO

Oligomaker V 1.5 (A. Ventura, Memorial Sloan Kettering Cancer Center, New York, NY).

Cloning of DNA oligos into the U6-shRNA cassette was done as described previously (ref).

shRNA sequences were as follows: luciferase: 5'-GAGCTGTTTCTGAGGAGCC-3';

p21: 5'-GGAAGGGAATGTATATGCA-3'; suv39hl-1: 5'-GGATCACCGTGGAGAATGA-3';

suv39hl -2: 5'-GAACCAAGATCTAGGTATT-3'.
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Lentiviral production. Lentivirus was produced as described previously (Rubinson et al 2003).

Histology and Immunohistochemistry. Tissues were fixed in 10% formalin for 6-8 hrs and

further processed for histology as previously described (Johnson et al 1997). For

immunohistochemistry, parraffin-embedded sections were dewaxed, followed by antigen

retrieval in 10 mM citrate buffer (pH 6.0) in a pressure cooker. Slides were quenched in 3%

hydrogen peroxide and washed in TBST. After blocking in TBST/5% goat serum for 1 hr, the

primary antibody (rabbit mAb anti-GFP, #2956- CST) was diluted 1:100 in SignalStain

Antibody diluent (#8112, CST) and incubated on slides overnight at 4*C. Detection was

performed using a biotinylated goat anti-rabbit secondary antibody followed by the Vectastain

ABC kit with diaminobenzadine (DAB) (Vector Labs). Slides were counterstained with

haematoxylin before coverslipping.
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CHAPTER 4:

Discussion and Future Directions
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Overview
The elaborate connectivity between pathways that promote cell growth and

transformation with those that actively constrain tumorigenesis comprises a critical checkpoint

system to protect against cancer. This oncogene-induced tumor suppression is typified by the

activation of the potent p19Arf-p53 tumor suppressor pathway by oncogenic Ras. The work

presented in this thesis reveals novel insights into the relationship between these two highly

relevant cancer pathways. I describe a tumor-type specific expression pattern of p 1 9Af in

endogenous K-rasG12D-driven lung tumors and sarcomas that is determined by inherent

differences in chromatin regulation of the Ink4/Arf locus. Furthermore, the differential p19 Arf

expression correlates with the strength of tumor suppression enforced by the p53 pathway in lung

and muscle cells. To illustrate this, I construct a new mouse model allowing for sequential

mutagenesis and show that p53 robustly inhibits tumor initiation following oncogenic K-ras

expression in the muscle, in contrast to its role in impeding later stages of lung tumor

progression. These results demonstrate that distinct cell types vary in their engagement of tumor

suppressors downstream of oncogenic insults. This has a profound influence on the susceptibility

of different tissues to transformation by particular mutations, and also provides an example of

how specific sequences of genomic alterations can dictate the tumor phenotype.

Tissue-specific p1 9 Arf regulation
The concept of oncogene-induced tumor suppression originated from studies in which

various oncogenes were retrovirally over-expressed in tissue culture (Serrano et al. 1997). As

tumor suppressor induction was thought to be linked to hyperactivity of mitogenic signaling

networks, it was possible that this phenomenon was the result of oncogene overexpression.

Construction of endogenous alleles of oncogenes, most notably K-rasG12D, permitted a direct

comparison of physiological versus supraphysiological oncogenic signaling. Interestingly, the
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extent of p19Ad-p53 activation directly correlated with levels of oncogenic Ras (Tuveson et al.

2004). Additional studies manipulating both H-rasG2 1V and c-myc in vivo came to the same

conclusion that oncogene levels determine tumor suppressor pathway (specifically Ink4a/Ar)

engagement (Sarkisian et al. 2007; Murphy et al. 2008). Accordingly, these data led some to

argue that endogenous K-rasG12 D failed to effectively induce the p1 9 Af-p 5 3 pathway, allowing it

to readily transform a variety of tissues (Tuveson et al. 2004).

Considering the highly specific tumor spectrum of K-rasLA2 animals (Johnson et al.

2001), I speculated that endogenous oncogenic K-ras could in fact engage p19 ̂ -p53, albeit in a

cell-type dependent manner. While the frequent lung tumors in K-rasLA2 animals suggested a lack

of tumor suppressor up-regulation in this tissue, perhaps many more cell types undergo

recombination and express endogenous K-rasG12D, but preferentially activate p19Arf-p53 and thus

do not form tumors. To address this I crossed a p1 9 Arf reporter, ArfFP with the K-rasLA2 model,

reasoning that removing p 19 Af function would allow any strongly suppressed cells to develop

into tumors in which I could then compare p19A activation to that seen in the lung tumors. In

Chapter 2, I describe such an expansion of the tumor spectrum in K-rasLA 2; ArfGFP/GFP mice and

report a striking difference in p19 Arf levels between lung tumors and sarcomas, with sarcomas

inducing p19Ad to a much greater extent than lung tumors.

Oncogenic signaling levels

Given the previous data regarding oncogene levels and p19Ad activation, I assessed both

oncogenic K-ras levels as well as the associated signaling pathways linking K-ras to the

Ink4a/Arf locus (Chapter 2). Despite the drastic difference in p19Arfactivation, these two tumor

types expressed similar levels of K-ras. Signaling pathway analysis indicated similar levels of

MAPK and P13K activity as well. Interestingly, although signaling appeared equivalent, direct
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activators of p19 Arf, such as E2F1/3 and cJun, were up-regulated in sarcomas. However, I was

unable to functionally validate their role in p1 9 Arf induction, although redundancy and/or the

importance of these genes in cellular proliferation could confound functional studies. Despite

these uncertainties, the tumor-type specific p1 9 Af induction in lung tumors and sarcomas cannot

currently be explained by existing models implicating oncogene levels in the control of this

locus.

Chromatin-modifying complexes

Chromatin-modifying complexes have recently been shown to play a critical role in

Ink4a/Arfregulation. Most notable among these are members of PcG, which have been

implicated in maintaining repression of this locus in a number of different cell types (Gil and

Peters 2006). Considering the relatively low levels of p1 9 Arf and pI6Ink4 a in lung tumors, I

hypothesized that PcG was inhibiting expression from this locus. Indeed, ChIP analysis showed

the PcG histone mark as well as Bmi-1 binding throughout Ink4/Arf in established lung tumors,

and shRNA-mediated knockdown of Bmi- 1 partially activated both p19 Arf and p 16 nk4a

expression (Chapter 2). Intriguingly, sarcomas displayed much less PcG at Ink4a/Arf, providing

a potential explanation for the differential expression of p1 9 Arf and p16 nk4a between the two

tumor types.

The importance of PcG in mediating Ink4a/Arfrepression in lung tumors led me to search

for additional chromatin modifiers that might mediate the activation of the locus in sarcomas. I

speculated that this activation might rely on an antagonism of PcG, as the low level of PcG

observed at Ink4a/Arf in sarcomas could be a remnant of the original regulation of this locus in

the cell-origin of sarcomas, most of which is removed upon K-ras activation. Snf5, a member of

the SWI/SNF nucleosomal remodeling complex, was recently shown to induce Ink4a/Arf by
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evicting PcG (Kia et al. 2008). Interestingly, sarcoma cell lines displayed direct binding of Snf5

at Ink4a/Arf as well as reduced Arf-GFP levels after Snf5 knockdown. Most importantly,

depletion of Snf5 in vivo caused tumor formation in a genetic background otherwise completely

resistant to tumorigenesis owing to robust p1 9A-p53 activation (Chapter 2). These results

strongly implicated Snf5 as a critical factor linking oncogenic K-ras to p19Arf activation and

further highlighted the importance of chromatin modifying factors in the regulation of this locus.

Differential activation thresholds

The observation that sarcomas and lung tumors exhibit distinct p1 9 Arf induction despite

similar oncogenic signaling patterns suggests that these two tissues have inherent differences in

their activation threshold for Ink4a/Arf The ability of comparable upstream signals to mediate

such different gene expression programs could be due to unique chromatin configurations of this

locus in lung and muscle cells both before and after oncogenic K-ras expression. Below I discuss

two potential models regarding tissue-specific epigenetic regulation of Ink4a/Arf (Fig 4.1).

In Model 1, the respective cells-of-origin (COs) of lung tumors and sarcomas have a

substantially different chromatin state under normal conditions. In this scenario, the different

levels of PcG occupancy observed between lung tumors and sarcomas closely mirror the relative

binding pattern present in a normal lung or muscle cell. Having less of a repressive state in a

normal muscle cell might reduce the requirements for gene induction once the proper activation

177



A. Mode 1

Lung Muscle

V- W

I+K-MaG1
2D

'IL

i. StiogtMWO"..... I.........
Lung Muscle

Model 2

Lung Muscle

-I+ 
-r=i2

.......... ......... W .....

wppI..a

Lung Muscle

Pro K-ras Post K-ras

Fizure 4.1: Two models to explain differential Ink4a/Arf activation in response to K-rasG12D
A. Model 1, in which the cells-of-origin (CO) for lung tumors and sarcomas have drastically
different levels of PcG occupancy before oncogenic K-ras expression. Both cell types have
equivalent responses to oncogenic stress, which is consistent with Ras effector pathway analysis,
but since the muscle cell started out with less repression, it activates Ink4a/Arf to a greater
extent. B. Model 2 posits that both COs have similar levels of PcG repression pre-K-rasG12D, but
in response to the oncogenic insult muscle cells displace a large proportion of PcG, leading to
robust activation of Ink4a/Arf. Since proximal signaling levels of canonical pathways
downstream of oncogenic K-ras are equivalent in lung tumors and sarcomas, any differential

response post-K-rasGD must be due to cell-type specificity in how oncogenic signals are
interpreted, which could be dependent on the presence and/or activity of additional factors, such
as SWI/SNF. The increased levels of E2Fs, c-Jun, and DMP-l in sarcomas despite similar
oncogenic pathway levels suggests that there can be such a disconnect between proximal and
distal pathway components. Green circles = PcG. The genomic structure is the Ink4a/Arf locus.
Black and orange bars represent the relative promoter activity at p1 9' pre and post-K-ras,
respectively.
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signals are received. Conversely, more tightly packaged, PcG-dense chromatin in lung cells

might be at least partially resistant to comparable signals converging on the locus following K-

rasG12D activation.

Such a model has been proposed to explain the different transforming capabilities of

hematopoietic stem cells and/or progenitors compared to their more differentiated progeny

(Williams and Sherr 2008). For example, introduction of the Notch-IC oncogene into bone

marrow progenitors results in efficient transformation, while more committed T-cells progenitors

require the additional deletion of Arf for leukemia development (Volanakis et al. 2009). As these

cell types differ in the extent of PcG-mediated Ink4a/Arfrepression (Valk-Lingbeek et al. 2004),

a differential ability to activate p1 9 Arf following oncogene expression has been proposed as a

mechanism, although this has not been tested.

Similarly, the differentiation status of lung tumor and sarcoma COs could explain a

difference in basal levels of Ink4/Arf-localized PcG and hence ease of transformation by

oncogenic K-ras. Bronchioalveolar stem cells (BASCs), a candidate CO for lung tumors, have

been shown to depend on Bmi- 1-mediated Ink4a/Arf repression for self-renewal (Dovey et al.

2008). While the identity of the cells that give rise to the sarcomas is completely unknown, they

might be a more differentiated cell that lacks sufficient PcG-mediated repression of the locus to

maintain low expression during oncogenic stress. In contrast to this differentiation status model,

it could be that in general, PcG plays a more important role in Ink4a/Arfregulation in lung cells

compared to muscle cells, which is supported by my observation of Ink4a/Arf-associated PcG

marks in whole lung samples (Chapter 2). Moreover, Bmi-1 mice display p1 9 Arf up-regulation

throughout the entire lung, suggesting that a large majority of lung cells rely on PcG for proper

p1 9 Arf regulation (Dovey et al. 2008; Sacco et al. 2008). Similar experiments in the muscle have
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yet to be performed due to technical limitations but most likely would be hard to interpret in the

context of sarcoma COs as these cells are probably exceedingly rare in the whole muscle.

In an effort to make a meaningful comparison of lung cells versus muscles cells, one

could use the newly discovered muscle stem cells (MSCs) as potential sarcoma COs (Sacco et al.

2008). To test their tumorigenic potential, one could isolate these cells from K-rasLSL-G12DI.

Trp53fl" animals, infect them with Ad-Cre, and transplant them back into recipients to see if

they form tumors. If these initial experiments were promising, one could perform various PcG-

associated ChIPs on early passage BASCs and MSCs to compare relative PcG occupancy to see

if BASCs have enhanced PcG-mediated repression of Ink4a/Arf This system would also allow

for extensive ChIP analysis of a variety of other chromatin regulators both pre-and post-K-

raSG12D activation, which would provide further insight into the mechanism of differential K-

ras G1 2D-induced p19Arf activation in these two tissues.

An alternative model to explain distinct pI9 Arf activation in the context of similar

oncogenic signaling levels is that both lung tumor and sarcoma COs have very similar chromatin

structures within Ink4a/Arfprior to oncongene activation but once K-rasG12D is expressed, the

cell types undergo distinct chromatin remodeling, which results in different p1 9 Arf expression

(Fig 4.1). In other words, Model 2 postulates that both normal lung and muscle cells repress

Ink4a/Arf via PcG, but following an oncogenic insult PcG is removed specifically from the

muscle cells. Since proximal oncogenic signaling is similar, this tissue-specific response must

derive from how the absolute signaling levels are interpreted and/or the presence of tissue-

specific factors that cooperate with those signals to mediate PcG eviction in one cell type and not

the other.
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During normal development as well as under stress conditions, PcG is removed from

genomic loci by several mechanisms (Schuettengruber et al. 2007). Identifying differences

among lung tumors and sarcomas in any one of the factors contributing to PcG displacement

would provide support for Model 2 as a mechanism for tissue-specific p19" expression. The

simplest explanation for tumor-type specific PcG occupancy is differential expression of PcG

components, but this was not observed (Chapter 2). Therefore, other mechanisms of PcG

removal were investigated. The p38MAPK pathway, through the ability of its downstream kinase

MAPKAP3 to directly phosphorylate Bmi-1, has been implicated in mediating chromatin

dissociation of PcG (Voncken et al. 2005), most notably in a recent study showing that inhibition

of p3 8MAPK activity partially blocked the age-associated decline in Bmi- 1 occupancy at

Ink4a/Arf in vivo (Wong et al. 2009). As mentioned previously, I have been unable to detect

differences in oncogenic signaling pathways, including p38MAPK, in lung tumors versus

sarcomas, arguing against this mechanism. Nonetheless, it still might be informative to

immunoprecipitate (IP) Bmi- 1 from lung tumors and sarcomas to see if there is a difference in its

phosphorylation status. In addition, IP'ing PcG would allow for a comparison of subunit

composition across tumor types, as inclusion or exclusion of different factors might affect overall

complex function. Another critical process during PcG eviction is the removal of the H3K27me3

mark, mediated by the recently discovered histone demethylases, Jmjd3 and Utx, with Jmjd3

playing a key role in many settings of Ras-induced Ink4/Arf activation (Agger et al. 2009;

Barradas et al. 2009). To explore this mechanism I assessed Jmjd3 levels in sarcomas and lung

tumors, expecting to see higher levels in sarcomas. However, this expression pattern was not

observed. Interestingly, Jmjd3 levels were equivalent in normal lung and lung tumors, providing
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a possible explanation as to why lung tumors retain extensive PcG regulation of Ink4a/Arf in the

context of oncogenic Ras.

A final class of potential PcG-displacing factors is the SWI/SNF family of chromatin

remodelers, known to be important in the antagonism of PcG-mediated gene repression in fruit

fly development (Tamkun et al. 1992; Gebuhr et al. 2000). In Chapter 2, I directly implicate Snf5

in p19Arf activation in sarcomas. As Snf5 has been shown to evict PcG from Ink4a/Arf in

malignant rhabdoid tumors (Kia et al. 2008), it is conceivable that a similar mechanism occurs in

sarcomas, with sarcoma COs initially repressing p19Ad but then activating Snf5, removing PcG,

and inducing the locus. An experiment to test this model would be to compare PcG binding at

Ink4a/Arf in Snf5 knockdown and control tumors. Enhanced PcG occupancy at Ink4a/Arf in

knockdown tumors would be expected of there is Snf5-dependent PcG removal. Additional work

should also clarify the relationship between oncogenic K-ras signaling and Snf5 recruitment to

Ink4a/Arf, as very little is known about how SWI/SNF components localize to their targets. To

determine if K-raSG12D directly affects Snf5 localization, initial studies could examine whether

acute oncogenic signaling pathway perturbations (using chemical inhibitors or shRNA-mediated

knockdown) are sufficient to remove Snf5 from Ink4a/Arf in sarcoma cell lines.

If Snf5 is a critical factor mediating p1 9 Af induction in sarcomas, could it explain the

tumor-type specific p1 9 Arf expression pattern? While Snf5 expression is identical in the two

tumor types, it is possible that expression differences in another critical SWI/SNF component or

overall SWI/SNF activity/chromatin localization could account for sarcoma-specific function.

Technical difficulties with in vivo ChIP of Snf5 have precluded the ability to obtain definitive

results with respect to its Ink4a/Arf localization in lung tumors versus sarcomas. To investigate

any potential tissue-specific SWI/SNF components and/or function, one could IP the SWI/SNF
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complex from both tumor types to identify differences in subunit composition and post-

translational modifications, as multiple subunits are regulated by phosphorylation (Sif et al.

1998; Simone et al. 2004). Moreover, the activity of lung tumor and sarcoma-derived SWI/SNF

complexes could be compared using in vitro nucleosome remodeling assays.

Regardless of any tissue-specific differences seen with these biochemical approaches, the

function of Snf5 in lung tumorigenesis should be assessed. To this end, K-rasLSL-G1 2D animals

could be infected with the Cre-shSnf5 lentiviral vector used for sarcoma formation. If Snf5 plays

a role in the modest p19A induction and tumor suppression observed during lung tumor

progression, then Snf5 knockdown would be expected to lead to larger, more advanced tumors

compared to control shRNA infections. Parallel infections of K-rasLSL-G12D. Trp3flOxflx animals

could be used as additional controls to check if any observed differences between Snf5 and

control shRNAs were dependent on the p53 pathway.

Aside from SWI/SNF and PcG, it is possible that the differential p1 9 Arf expression

described here is mediated by unidentified factors. An unbiased approach to search for such

regulators would be to use a technique called promoter trapping (Jiang et al. 2006). This would

involve incubating nuclear extracts from lung tumors and sarcomas with a synthesized fragment

of the p1 9 Arf promoter and then purifying protein-DNA complexes on columns that specifically

bind the introduced DNA fragment. Using mass spectrometry to compare promoter-bound

proteins from the two extracts might identify tissue-specific factors that could then be

functionally tested for roles in p19 Arf regulation.

Models 1 and 2 need not be mutually exclusive. In fact, given the drastic differences

between lung and muscle cells (and most likely, COs for lung tumors and sarcomas), it is highly
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probable that a combination of both models underlies the distinct expression pattern of p19^f

downstream of oncogenic K-ras in these two tumor types.

p1 9Arf activation in the lung

Genetic analysis of Arf deficient lung tumors in Chapter 2 indicated that the p1 9 Arf-p 5 3

pathway inhibits progression of established tumors, suggesting that these tumors eventually do

up-regulate this pathway to some extent. In support of this notion, a subset of lung lesions

display elevated levels of GFP expression, and a significant proportion of tumors in aged K-

ras"; ArfGFP/+ animals show LOH of the wild-type allele of Arf Defining the secondary events

that ultimately lead to lung tumor induction of p19 Aff and comparing it to the factors imparting

high expression in sarcomas is an important future direction. In addition, determining the stage

of disease progression in which this happens will further our understanding of lung tumor

development. While a cursory examination of signaling pathways between GFPhi and GFP"w

failed to reveal any correlations, this should be done on a larger panel of tumors of different

histological grades using immunohistochemistry (IHC), in which signaling pathways, direct

transcriptional regulators, and p1 9 Arf expression changes could be readily associated with

particular stages of lung tumorigenesis. Given the presumed importance of chromatin regulation

in p1 9 Arf expression, it would be ideal to assess PcG and SWI/SNF in GFPhi versus GFP'W lung

tumors as well, but sorting out the GFP status prior to ChIP would be technically challenging.

Tissue-specific Ink4a/Arf regulation and tissue homeostasis

The inability of lung cells to fully engage the Ink4a/Arf locus during oncogenic stress

might explain the relative sensitivity of this tissue to K-rasG12D-driven tumorigenesis.

Conversely, the robust up-regulation of p1 9 Af in muscle cells following oncogenic K-ras
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expression affords significant tumor suppression and might underscore the rarity of soft-tissue

sarcomas. As Ink4a/Arfregulation appears to be a major determinant of tumor susceptibility, a

critical question is why different cell types would vary in their inherent ability to induce this

locus. I propose that differential requirements for the maintenance of proper tissue homeostasis

critically influence the activation threshold of Ink4a/Arf in different cell types. Lung cells are

constantly exposed to harsh environmental stimuli due to their role in respiration and therefore

have the potential to undergo extensive damage and possible cell death. Accordingly, cells in the

lung must be able to readily proliferate in order to counteract this damage, which is ensured by

strong negative regulation of the growth inhibitory Ink4a/Arf locus. Indeed, such a homeostatic

role for PcG-mediated repression of Ink4a/Arfhas been documented in both BASCs of the lung

as well as islet cells of the pancreas (Dovey et al. 2008; Chen et al. 2009; Dhawan et al. 2009). In

both cases, Bmi-1-dependent silencing of p1 9"f and p16 1nk4a was shown to be important for

cellular regeneration following injury. In contrast to these epithelial tissues, muscles normally

undergo much less regeneration and therefore do not require a high proliferative potential.

Consequently, Ink4a/Arf is not subject to the same constraints and can be more readily activated

under stress conditions. This model suggests that increased proliferative potential might come at

the cost of enhanced susceptibility to oncogenic insults.

Stage-specific p53-dependent tumor suppression occurs in different
tissues

Although mutations in the p53 pathway are thought to occur in most, if not all, human

tumors, the precise role of this tumor suppressor axis in different cancer types is relatively

unknown. Mutational data from human tumors indicates that p53 alterations can occur in both

early and more advanced stages of tumor progression depending on the tumor type (Greenblatt et

al. 1994), although the functional significance of this variability is unknown. In numerous
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contexts, these mutations represent a relatively late event in the multi-step process to full

malignancy. For example, in colon cancer, p53 disruptions have been linked to the transition

from adenoma to carcinoma (Baker et al. 1990). Moreover, many mouse models of cancer

incorporating p53 mutations have documented equivalent tumor initiation but enhanced

progression of lesions, further supporting a role for p53 in constraining later phases of

tumorigenesis. These observations have been reported in tumor models of the lung, pancreas, and

skin, among many others (Kemp et al. 1993; Hingorani et al. 2005; Jackson et al. 2005).

In contrast to these studies, in a mouse model of soft-tissue sarcoma driven by

endogenous K-rasG12D, p53 can have a strong suppressive role very early in tumor evolution.

Initial generation of this model indicated that biallelic deletion of Trp53 was required for

oncogenic K-ras-driven tumor formation (Kirsch et al. 2007). Furthermore, as described in

Chapters 2 and 3 of this thesis, careful analysis of animals in which was K-raSG12D was induced

in a p53-profient background suggested that p53 inhibits of the earliest steps of sarcomagenesis.

This is most convincingly demonstrated in Chapter 3, when I delayeded p53 loss relative to

oncogenic K-ras induction. Intriguingly, a short window of p53 activity severely limited the

tumorigenicity of initially mutated cells, such that even after subsequent p53 deletion tumor

burden was significantly reduced. These data indicate that p53 function is rapidly induced

following an oncogenic insult in the muscle, which results in strong suppression of tumor

initiation. Conversely, previous work on lung tumors initiated with the same oncogene (Jackson

et al. 2005), as well as data presented in Chapter 2, suggest that the p53 pathway inhibits lung

tumor progression. Thus, it appears that the timing and nature of p53-dependent tumor

suppression varies across tumor types (Figure 4.2).
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Strength ofp53 function correlates with level ofpathway activation

The simplest mechanistic explanation for the robust function of the p53 pathway in the

muscle is that it is rapidly activated to a higher degree compared to those settings in which it has

a weaker suppressive role (ie-the lung). Enhanced functional outputs of the p53 pathway have

been linked to increased p53 levels previously. For example, Serrano and colleagues generated

"super-p53" mice containing one extra copy of the p53 locus (Garcia-Cao et al. 2002). Following

IR, thymocytes with three copies of p53 underwent more apoptosis than cells with two copies,

indicating that higher levels of p53 allowed more cells to cross the threshold for induction of cell

death. Importantly, super-p53 mice were also more resistant to two types of carcinogen-induced

tumors, showing that cells with increased p53 can more effectively inhibit tumorigenesis in vivo.

The sensitivity of output function to p53 levels was further highlighted by studies of endogenous

versus overexpressed oncogenic Ras in MEFs. Despite the drastic phenotypic difference with

respect to their growth properties, levels of p53 were only slightly altered between cells with

different levels of Ras (Tuveson et al. 2004), implying that only small changes in pathway

activation underlie the decision to senesce or proliferate.

The differential induction of p1 9 Af described in Chapter 2 and discussed in the previous

section conveniently aligns with the hypothesis that sarcomas engage the p53 pathway to a
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Figure 4.2: The p53 pathway suppresses different stages of lung tumor and sarcoma
development.
A. p53 suppresses lung tumor progression. Following oncogenic K-ras expression, many
hyperplasias and small adenomas form in the lung, and these initial steps towards malignancy are
not appreciably altered in the context of p53 pathway mutations. However, more advanced stages
of the disease, such as carcinoma development, rely on the loss of this pathway. This suggests
that p19A and p53 block the progression of adenomas. This most likely results from their
increased expression during this stage (indicated by the gradient - black triangle), although this
has yet to be proven. B. p53 suppresses the initiation of sarcomagenesis. K-rasG12D activation
must be soon accompanied by p53 loss in order for efficient sarcoma formation to take place,
indicating that rapid and robust p53 pathway activation occurs in muscle cells following an
oncogenic insult. As no lesions of any size can be found without the combined mutation of K-ras

and p53, it appears that the earliest steps of transformation are inhibited by the p53 pathway.

188



greater extent than lung tumors. As p19Af is a critical inducer of p53, it follows that cells with

more pI 9 Arf should have higher p53 levels as well. In support of this, reactivation of p53 in

established lung tumors and sarcomas from K-ras; Trp53LSULSL; R2 6creE eER animals, which

contain a LSL cassette in p53 that creates a null allele but allows for endogenous p53 expression

following tamoxifen injection, led to much higher levels of p53 protein stabilization in sarcomas

compared to lung tumors (D. Feldser, personal communication). Furthermore, reactivation of

p53 in lung tumor cell lines, which contain much higher levels of p19Ad than in vivo lung

tumors, resulted in a robust p53-dependent arrest, suggesting that increasing p19Arf can drive an

enhanced p53 response. Because the p53 pathway strongly inhibits the earliest events of

sarcomagenesis in vivo, high levels of p1 9 Af should be present in muscle cells soon after

oncogenic K-ras induction. While this hypothesis remains untested, it could be examined by

performing p19Arf (or GFP if using ArfFP) IHC on K-rasLSLG12D muscles shortly after Cre

infection. Conversely, as p53 appears to only effectively inhibit the later stages of lung

tumorigenesis, only advanced lesions should be marked by increased p1 9Af-p 5 3 levels. As

explained in the previous section on p1 9 Arf performing IHC on lung tumors of various grades

would address this question.

How increased levels of p53 affect its growth suppressive abilities is unknown. It could

simply be that more p53 results in greater induction of the same target genes, and their increased

abundance more effectively mediates arrest or death. Alternatively, high p53 levels could engage

entirely new genes that promote a more robust functional output. To address this, one would

need a system allowing for careful adjustment of p53 levels that correlate with distinct functional

outcomes. One possibility is the MEF system expressing different levels of oncogenic Ras as

described above. Performing microarrays on cells expressing endogenous versus overexpressed
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Ras (+/- p5 3 to identify p53-dependent changes) would generate a list of genes associated with

high and low levels of p53 activity. Comparing gene sets and well as fold induction of particular

transcripts between the groups would reveal whether levels and/or targets change most

significantly. Regardless of the precise mechanism, it appears that the strength and nature of p53-

dependent tumor suppression directly correlates with the intensity of pathway activation.

Other factors governing tissue-specific p53 functions

Aside from pl 9 Arf driving different levels of activated p53, additional cell-autonomous

and non-cell autonomous differences in p53 function could affect the nature and strength of

tumor suppression. Although I have been unable to observe markers of senescence in the muscle,

this program might still be engaged but below current levels of detection. Recent studies have

shown that during senescence, p53 induces a unique gene expression program consisting of

cytokines and ECM proteins that serve to activate the innate immune system to clear affected

cells (Xue et al. 2007; Krizhanovsky et al. 2008). It is conceivable that muscle cells specifically

induce these programs (cell autonomous), or that the microenvironment in the muscle is more

conducive to immune cell interaction (non-cell autonomous). Microarray studies of K-rasA2;

Trp53 LSLSL,; R 26CreER/CreER lung tumors and sarcomas post-tamoxifen would highlight any gene

expression differences in regards to senescence programs. Apart from different levels of p53

driving distinct gene expression in lung and muscle cells (last section), cell-type specific post-

translational modifications of p53 could also be responsible. This could be studied by applying

mass spectrometry to IP'd p53 in the two cell types. Finally, to address potential non-cell

autonomous factors mediating tissue-specific responses to p53, one could attempt to transplant

K-ras ; Trp53 LSLSL; R 26 reER/CreER lung tumor and sarcoma cell lines into the lung and/or
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muscle, activate p53, and assess the degree of immune cell interaction and/or cell clearance over

time in the two different locations.

Transient p53 activity can provide significant protection through cell cycle arrest

Whether transient p53 activity affords significant tumor suppression, and if such a

response is dependent on the stage of tumorigenesis, is largely unknown. Several recent studies

reactivated p53 in established tumors and witnessed dramatic acute responses, and in some cases,

long lasting tumor suppression through both cell cycle arrest and apoptotic mechanisms (Martins

et al. 2006; Ventura et al. 2007; Xue et al. 2007). While the initiating oncogene was known for

some of these tumors, it is unclear whether oncogene overexpression and/or additional stresses

that accumulated during tumor progression played a role in engaging the robust p53 response.

The sequential mutagenesis experiments in the muscle showed that maintaining p53 activity for

only a week or two following oncogenic K-ras expression dramatically reduced the

tumorigenecity of the initially targeted cells, even if p53 was subsequently removed. This

suggests that in some settings, oncogenic signals downstream of endogenous K-ras G12Dare

sufficient to fully induce strong p53 responses. In contrast, work from an IR-induced

lymphomagenesis model has shown that the complete protection from tumorigenesis afforded by

p53 in this context was entirely abolished if this tumor suppressor was deleted at any time after

IR, indicating that targeted cells retained their tumorigenic potential and persisted within the

animal, perhaps because they lacked the appropriate stimulus for significant p53 activation

(Hinkal et al. 2009).

The ability of transient p53 activity to provide long-lasting protection in the muscle might

relate to its mode of tumor suppression. While clearance of cells through apoptosis is an obvious

route to irreversible tumor suppression, genetic analysis indicated that this is unlikely to be the
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mechanism of p53-dependent protection in the muscle. Instead, p21, a mediator of cell cycle

arrest/senescence, was implicated downstream of p53, suggesting that cell cycle arrest can have

long-term tumor suppressive roles. Senescent cells have recently been shown to be cleared by the

innate immune system in some contexts (Zilfou and Lowe 2009), and such a response could

result in the loss of tumorigenic potential over time, as just a short pulse of p53 activity was

shown to completely eradicate liver tumors through such a mechanism (Xue et al. 2007).

Interestingly, in vivo restoration of p53 in Trp53LS/LSL; R2 reER/CreER sarcomas led to cell cycle

arrest and subsequent tumor regression (Ventura et al. 2007), indicating that clearance of arrested

cells might occur in this tissue as well. More detailed studies following the fate of targeted

muscle cells need to be undertaken to determine if K-rasG12D+ p53+ cells are progressively lost

or maintained. For future experiments performed during tumor initiation, it will be helpful to

separate viral infection from K-rasG12 D activation, as the innate immune system's response to the

infection might make it difficult to interpret immune infiltrates and cell clearance. To this end,

one could use a bifunctional lentivirus encoding GFP and CreER, such that oncogenic K-ras

induction would be controlled by tamoxifen injection, which could take place weeks after the

initial infection.

Although senescent-cell clearance may be important, initial cell fate experiments have

identified infected cells in K-rasLSL-G1 2D. Trp53fl/+ animals at time points in which p53 deletion

failed to promote sarcomagenesis in sequential mutagenesis experiments. This suggests that

some cells persist but are unable to respond to p53 loss. As these cells might represent cells in an

irreversible state of arrest, their further characterization, especially in regards to senescence

markers, is warranted.
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Temporal requirements for p53 pathway mutations might affect cancer prevalence

Simultaneous mutation of K-ras and p53 efficiently promotes sarcomagenesis (Kirsch et

al. 2007). Additionally, K-ras G12D can readily induce sarcomas in a p53-deficient background. In

contrast, delaying p53 loss relative to K-rasG12D activation limits tumorigenesis in the muscle

(Chapter 3). Together, these results suggest that the timing ofp53 mutation influences sarcoma

development, specifically implying that p53 alterations need to occur early during the multi-step

transformation of muscle cells. Does the human data support this claim? While p53 is frequently

mutated in many types of sarcomas, such stage-specific information is lacking (Taubert et al.

1998). Typically, such studies are done by performing mutational or expression analyses in early

versus more advanced tumor samples. Because early sarcoma lesions are rarely found, it is

difficult to carry out these comparisons. However, the relatively high rate of sarcomas observed

in Li-Fraumeni patients, who inherit a germline mutation in p53, does provide evidence that in

the context of a pre-existing p53 alteration, sarcomagenesis is much more prevalent (Kleihues et

al. 1997). This might suggest that p53 mutations are initiating events in sarcomas.

Requiring p53 as an initiating, or at least a very early mutation, might help to explain the

rarity of sarcomas. Owing to its low expression under normal conditions, solely mutating p53

does not provide a growth advantage, so this event is not selected via clonal expansion of cells in

vivo (Kinzler and Vogelstein 1996). In contrast, other mutations that confer immediate

hyperproliferation, like K-raSG12 D, often promote initial cellular expansion, thus creating a larger

pool of cells as potential targets for additional hits and increasing the likelihood of overt

transformation. In the muscle, such a pro-proliferative mutation might have to occur in a cell

already mutant for p53, as targeting a K-ras mutation to a wild-type cell would result in robust

tumor suppression and lack of hyperproliferation, or at least a very slow expansion that would
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limit the possibility of secondary mutations. However, because initiating p53 mutations fail to

cause clonal selection, such a cell represents a very low frequency target for subsequent

oncogene activation. Consequently, the chances of such an event occurring in this particular cell

would be low, and therefore sarcoma development is rare.

This is in contrast to a number of other tissue types in which p53 pathway alterations

comprise later events that control more advanced stages of disease progression, such as in the

lung (Kohno et al. 1999; Yamasaki et al. 2000; Jackson et al. 2005). In these settings, cells can

be targeted with an initiating mutation that provide an immediate growth advantage, such as K-

ras D, even in the presence of p53, presumably because this tumor suppressor is not

significantly induced. This generates increased numbers of partially transformed cells, some of

which might be responsive to secondary mutations and further progression towards malignancy.

In conclusion, the stage at which tumors require p53 mutation relates to how strongly

different cell types engage its associated tumor suppressor pathways at distinct stages during

tumor evolution. Furthermore, specific temporal requirements for p53 pathway alterations might

be one factor affecting the frequency of different cancers.

Next steps with in vivo shRNA technology

The ability to manipulate gene expression with shRNA technology has provided an

efficient way to conduct loss-of-function studies. Additionally, the potential of scaling-up this

approach has afforded the opportunity to carry out large-scale screens, which have been

successfully performed in vitro and in vivo, although in vivo screens have relied on

transplantations thus far (Zender et al. 2008; Bric et al. 2009; Meacham et al. 2009). In Chapters

2 and 3 I demonstrate that a lentiviral-based shRNA approach can promote tumor formation in

194



an autochthonous sarcoma model. This system could be more broadly used as a screening

platform for tumor suppressor genes inhibiting K-ras G12D-driven sarcoma development. Given

the lack of any background with regards to tumor formation, this would be a highly sensitive,

easily assayed screen. Using K-rasLSL-G2 D; Rag2-- animals, one could infect muscles with a pool

of Cre-shRNA lentiviruses and monitor for macroscopic masses. The extent to which one could

pool different viruses could be assessed by diluting a positive control virus (Cre-

shp19/p16 Ink4 a) and determining how dilute one could go while still achieving a reasonable

time to tumor formation. While any number of genes and pathways might be implicated in such a

screen, one could use a sensitized background (K-rasLSL-GJ2D. ArFP/+; Rag2--) to bias the hits

towards those affecting the p19Arf-Mdm2-p53 pathway. Additionally, even more targeted screens

could be performed, for example by focusing solely on putative transcriptional targets of p53

identified in gene expression studies from K-raSLA2 ; Trp53 LSL/LSL; R 2 6CreER/CreER sarcomas in

which p53 has been reactivated. Performing these types of screens could potentially identify

novel genes in the p53 pathway that are specifically important in an in vivo setting.

Future applications of dual SSR technology

The dual SSR strategy employed in Chapter 3 provided new insights into the interaction

between oncogenic K-ras and the p53 pathway. Combining K-raSFSF-G12D with additional Cre-

loxP regulated genes will allow many more genetic interactions to be investigated in a temporal

fashion. However, due to technical problems regarding the ability to target both Flpo and Cre

activity specifically to the same cells, the list of potential genes to include in such studies is

severely limited. At present, only R 2 6CreER-T2 has been used in conjunction with viral-Flpo,

meaning that the Cre controlled gene is recombined throughout the organism. As a result, floxed
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alleles of genes that are essential in particular adult tissues cannot be used. To circumvent this

problem, one could generate a Flpo-inducible allele of CreER (FSF-CreER) targeted to a

ubiquitously expressed locus, such as R26. In this way, CreER would only be expressed in cells

that had already been exposed to Flpo, so systemic tamoxifen would recombine floxed alleles

only in those cells that express oncogenic K-ras. Such a system for tumor-specific second hits

would open up the possibility of efficiently deleting various K-ras effectors in established

tumors, which is currently only feasible with partial shRNA-mediated knockdown (Appendix A).

Being able to assess acute versus long-term effects of pathway inhibition will provide important

mechanistic insights into Ras signaling in tumor maintenance. Additionally, one could combine

this system with small molecule inhibitors targeting distinct signaling modalities in order to

identify potential interactions among different pathways that could be harnessed therapeutically.

To generate more advanced stages of lung tumorigenesis for these studies, a Frted allele of p53

(Trp53Frt) could be incorporated with K-rasFSFG12D

Some cancer-associated pathways are thought to play distinct roles in tumorigenesis at

different stages of the disease. For example, alterations in the TGFp pathway has been

implicated in both tumor suppressive and oncogenic roles depending on whether they are an

early or late event in tumor progression (Bierie and Moses 2006). Presently, such effects are

difficult to model and must be inferred by assessing different time-points after a gene has been

manipulated at tumor initiation. Now such stage-specific effects can be systematically studied in

a variety of K-ras driven tumor models using K-rasFSF-G12D and already available Cre-LoxP

strains, by initiating tumors and then subsequently deleting the second gene at different times

during tumor development.
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A very important future application of this technology will be to further test the

functional significance of particular sequences of mutations on cancer initiation and progression.

The multi-step nature of human tumorigenesis has been most carefully studied with regards to

mutation of APC and K-ras in colon cancer, and Vogelstein and colleagues have proposed

specific hypotheses relating to the importance of deleting APC prior to oncogenic K-ras

activation (Kinzler and Vogelstein 1996). Combining K-rasFSF-G12D with a Cre-regulated allele of

APC (APC1ox]4) (Colnot et al. 2004) would provide the opportunity to directly test their

predictions. To ensure correct timing of the two mutations in the proper cells, additional mouse

strains would have to be generated. Figure 4.3 contains an experimental outline.

While all of the potential uses of dual SSRs detailed thus far target two genes in the same

cells, one could also spatially separate two events in completely different cell types. As there is

accumulating evidence that mutations occurring in distinct cell types can drive tumor

progression, such an approach will be extremely useful. For example, it has been suggested that

p53 can have tumor suppressive functions outside of the cancer cells themselves (Kurose et al.

2002; Matsumoto et al. 2003). In one study involving a prostate cancer mouse model, a massive

stromal cell response was noted during tumor progression, which was dependent on p53

mutation in the invading cells (Hill et al. 2005). While they performed functional analyses using

germline p53 mutations, a less confounding approach would have been to investigate the specific

contribution of p53 in particular cell types using specific Cre lines in combination with Trp533ox.

At present, such a strategy is feasible only with tumor models not reliant on Cre-LoxP for tumor

initiation, limiting the number of models one could use. With K-raSFSF-G2D one could generate a

variety of tumor types while maintaining the ability to use Cre-LoxP to target separate genes in

non-tumor cells. This system could be very useful in studying tumor cell-immune cell
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Figure 4.3: Experimental outline to test the importance of the order of APC and K-ras
mutations during colon cancer initiation and progression.
A. Strategy for APC loss followed by K-rasG12D activation. To initiate tumors, intracolonic Ad-
Cre could be given to delete the floxed alleles of APC (APC"lox"4) (Hung et al. 2010). R2 6LSL-
FIpoER which would need to be generated, contains a tamoxifen regulated version of Flpo in the
R26 locus, and would initiate expression of Flpo in the same cells following Cre-mediated
removal of the STOP cassette. Subsequent administration of tamoxifen would activate FlpoER in
cells deficient in APC, thus turning on expression of oncogenic K-ras in these cells only. B.
Strategy for K-rasG12D activation followed by APC deletion. The same alleles of APC and K-ras
would be used. For this sequence of events, Ad-Flpo infection would activate K-rasG12 D as well
as induce transcription of R2 6 FSF-CreER by removal of the STOP cassette. Tamoxifen injection
would promote Cre activity in oncogenic K-ras+ cells, leading to the deletion of floxed APC.
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interactions, a subject of growing interest in the context of autochthonous tumor models. One

could envision using K-rasFSF-G12D in conjunction with immune cell-type specific Cre lines to

delete genes implicated in the dynamic interaction between tumor and immune cells. While this

type of study could be done presently by transplanting cells from genetically modified mice, use

of an endogenous immune system would offer important advantages.

Clearly, the ability to spatiotemporally control distinct genetic events creates the

possibility for many applications. Hopefully, this potential will be realized, and these systems

will provide important insights into tumor biology.
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INTRODUCTION

Lung cancer, causing more than 1 million deaths annually, represents the leading cause of

cancer mortality worldwide (Parkin et al. 2005). Among the various subtypes of the disease, one

of the most common is adenocarcinoma, within the broader classification of non-small cell lung

cancer NSCLC (Parkin et al. 2005). Activating mutations in the Kras proto-oncogene occur in

approximately 30% of adenocarcinomas (Rodenhuis et al. 1988). In an attempt to model the

disease in mice, our lab has engineered an inducible allele of the oncogenic K-ras mutation that

when activated in the lung epithelium generates a tumor phenotype closely recapitulating many

aspects of the human disease, including gene expression signature and histopathologic

progression (Jackson et al. 2001; Sweet-Cordero et al. 2005). Introduction of a loss-of-function

allele of the Trp53 gene, another locus frequently mutated in NSCLC, drives tumor progression

to more advanced stages such as metastasis, further validating the mouse model (Jackson et al.

2005).

Most conventional therapeutic strategies for NSCLC, such as platinum-based

chemotherapeutics, have met with only limited success (Provencio et al. 2009). An emerging

paradigm in cancer treatment is the use of targeted therapies, in which information regarding the

underlying molecular genetic defects of the cancer cells informs specific intervention strategies

that show improved efficacy and reduced general toxicity (Murdoch and Sager 2008). In the case

of NSCLC, the high frequency of K-ras mutations makes this particular gene and the pathways it

controls potential targets for new and improved treatments. Although numerous studies, both in

human cells and in the mouse, have shown the therapeutic utility of disabling the driving

oncogenic mutation (Chin et al. 1999; Fisher et al. 2001; Singh et al. 2009), the K-ras protein has
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proven very difficult to target with small molecule compounds. K-ras sits near the top of a very

complex array of overlapping signaling pathways such as MAPK, PI3K, and Ral, and it is

conceivable that any number of these might be critically important for the ability of this

oncogene to initiate and promote tumorigenesis (Downward 2003; Repasky et al. 2004; Karnoub

and Weinberg 2008). Therefore, much of the therapeutic focus has shifted to these major effector

pathways downstream of K-ras.

To date, most studies regarding the role of effector pathways in Ras-driven tumorigenesis

have been impaired due to experimental limitations. Generally, investigators have used poorly

controlled chemically-induced tumor models with germline effector knockouts or combined Cre-

inducible tumor models with floxed alleles of genes of interest (Malliri et al. 2002; Gonzalez-

Garcia et al. 2005; Kissil et al. 2007). While these studies have reported dramatic phenotypic

consequences in the context of specific pathway inhibitions, the results have been restricted to

tumor initiation due to experimental set-up. In contrast, by administering targeted therapies to

established Ras-dependent malignancies, several groups have recently highlighted the benefits of

pathway abrogation in developed tumors (Engelman et al. 2008; Johannessen et al. 2008). First,

these studies have demonstrated a requirement for certain pathways in tumor maintenance, which

is much more clinically relevant than effects on tumor initiation. In addition, they enabled

detailed analyses of the mechanism of tumor inhibition, which are often difficult to perform if

tumorigenesis is completely blocked at the earliest stages.

The sequential mutagenesis technology introduced in Chapters 2 and 3 permits secondary

genetics events to be separated from oncogenic K-ras activation. In this Appendix this system is

applied to the study of Ras effectors in lung tumor maintenance in vivo. Specifically, by

combining the Flp-inducible allele of K-rasG 12D (K-rasFSF-G12D) reported in Chapter 3 with a
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lentiviral-based modality for Cre-regulated RNAi (introduced briefly in Chapter 2), gene

knockdown can be induced after tumors have been established. This new technology has the

potential to be used for the systematic genetic analysis of a large number of putative therapeutic

targets.

RESULTS and DISCUSSION

A novel system to separate K-rasG12D activation from Cre-inducible RNAi

The integration of established Cre-LoxP reagents with K-rasFSF-G12D allows for unique

spatiotemporal control of two distinct genomic alterations. While Chapter 3 highlighted the

utility of this system when using germline floxed alleles as secondary events, this approach is

hindered by the availability of such targeted alleles, as well as by the inability to sequester Cre

activity specifically to tumor cells. We reasoned that substituting a Cre-controlled RNAi

platform for floxed alleles would enable us to overcome these limitations. To this end, we began

by introducing Flpo recombinase into a previously constructed lentiviral system for Cre-

regulated shRNA-mediated knockdown (pSICO), creating pSICO-Flpo. This vector contains a

LSL-shRNA element that prevents shRNA induction until Cre is expressed (Ventura et al. 2004).

In addition, we generated compound mutant mice containing K-rasFSF-G12D and R 2 (reER-T2

(Ventura et al. 2007), an allele which provides inducible Cre activity in vitro and in vivo (see

Chapter 3). As shown in Figure lA, infection of K-rasFSF-G12D; R 2 6 creER-T2 cells and/or animals

with pSICO-Flpo will activate oncogenic K-ras, and the integrated lentivirus would subsequently

express a shRNA following tamoxifen administration, but only in cells originally exposed to

Flpo. In summary, this approach permits the separation of K-rasG12D-dependent tumor initiation

from tumor cell-specific gene knockdown.
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Figure1: A new system for Cre-inducible RNAi following Flpo-mediated activation of K-
ras .
(A.) Overview of the system, showing genotype of mice, the configuration of pSICO-Flpo, and a
schematic of the ordered events in infected cells. See text for details. (B.) Western blot analysis
of cyclin Dl levels in K-raSF-G12D/ and K-rasFSF-G2D/+; R26reER-T2/+ MEFs infected with
pSICO-Flpo without hairpin (empty) or pSICO with a hairpin to cyclin D1 (shD1). After
infection cells were split and either treated with 4-OHT (T) or ethanol (E). Knockdown occurs
with cyclin D1 shRNA in a CreER and 4-OHT-dependent manner.
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To initially test this system, we performed sequential K-rasG12D activation and gene knockdown

experiments in MEFs. We infected K-rasFSF-G12D/+ (FK) and K-rasFSF-G12 D/+; R2 6eER-T2/+ (FKC)

MEFs with either empty pSICO-Flpo or one containing a shRNA to cyclin D1. Following

infection, each was split into two groups that received either 4-hydroxytamoxifen (4-OHT) or

vehicle control (ethanol). All cells up-regulated cyclin D1, indicating that Flpo activated K-

ras G12D (data not shown). Furthermore, as shown in Figure IB, MEFs infected with the cyclin D1

hairpin achieved target knockdown in a CreER and 4-OHT-dependent manner. Together, these

results demonstrate that this dual system for oncogenic K-ras activation and conditional RNAi

system works efficiently in vitro.

Inducible knockdown of cyclin Dl in established lung tumors

We next tested this scheme in the context of lung tumor development in vivo. First, we

ensured that in this setting the system would be highly inducible yet not leaky. As Cre-mediated

induction of shRNA expression relies on recombination of the integrated lentivirus, we used

multiplex PCR to monitor for this irreversible genomic rearrangement under different conditions.

Accordingly, a group of K-ras FSF-G2D/+; R26'reERT2/Cre-T2 mice with pSICO-Flpo-induced lung

tumors were injected intraperitoneally (i.p.) with tamoxifen or vehicle control (corn-oil) for

several days, and one week later tumors were harvested for genomic PCR analysis. While tumors

from tamoxifen-treated mice displayed significant recombination, those in the corn-oil treated

group showed no evidence of this genomic event, indicating that this system afforded

inducibility without noticeable leakiness (Fig 2A).

When considering targets for initial knockdown studies in vivo, we noted that cyclin D1

was consistently induced in K-ras G12D-driven lung tumors (Fig 2B). Given our ability to achieve

robust depletion of cyclin D1 (Fig 1 B), we decided to use this gene in proof-of-principle
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experiments. We infected a cohort of K-rasFSF-G12 D/+; R 2 6CreER-T2/Cre-T2 mice with pSICO-Flpo

containing no hairpin, a control hairpin to luciferase, or one targeting cyclin D1. After 20-24

weeks of tumor development, we administered several doses of tamoxifen to induce shRNA

expression. One week later, one group of animals was sacrificed and tumors were harvested to

assay for acute knockdown. Within this group, many tumors containing the cyclin D1 shRNA

displayed decreased levels of the protein, although some variability was observed (Fig 2C). A

separate group of mice was aged an additional 6 weeks after tamoxifen treatment to assess the

stability of the knockdown. Importantly, these tumors also showed reduced cyclin D1, indicating

that long-term knockdown was possible with this system (Fig 2D).

As cyclin D1 up-regulation is known to be important for the Gl/S transition during cell

cycle progression, we tested if the level of depletion we observed was sufficient to inhibit S-

phase entry. To this end, mice were pulsed with BrdU to monitor for cells entering S-phase.

Immunohistochemical analysis of BrdU+ cells revealed a statistically significant decrease in

cells incorporating BrdU in tumors that had induced the cyclin D1 shRNA (Fig 2E-only short-

term knockdown mice were analyzed). This suggests that the extent of knockdown provided by

pSICO-Flpo can have functional effects in established tumors in vivo.

Targeting K-ras effectors

In light of these results showing that pSICO-Flpo provided inducible knockdown in

established K-rasG12D-driven lung tumors, we applied this technology to the study of Ras

effectors in lung tumor maintenance. To begin, we analyzed the activation status of a variety of

effector pathways in K-rasG12D lung tumor models. Interestingly, both the P13K and Ral
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Figure 2: Inducible knockdown of cyclin D1 in established lung tumors.
(A.) PCR analysis of lentiviral recombination in lung tumors. K-rasFSF-G12D/+; R 2 6 CreER-T2/CreER-T2

(FKC) mice were infected with pSICO-Flpo to induce lung tumors and 20 weeks later were
treated with tamoxifen or corn-oil. One week later tumors genomic DNA was harvested (B.)
cyclin D1 immunoblot in lungs and oncogenic K-ras-driven lung tumors. (C.) Western blot
analysis showing acute knockdown of cyclin DI in established lung tumors. FKC mice were
infected with pSICO-Flpo containing shLuc or sh cyclin D1 (shD 1) and treated with tamoxifen
20 or 24 wks post infection. One week after the last treatment, lung tumors were harvested. The
left panel shows two different areas (separated by the vertical line) of the same exposure of the
same blot and is an example of consistent knockdown. The right panel shows the variability that
sometimes occurred, with one tumor displaying substantial knockdown and another tumor from
the same mouse showing none. (D.) qRT-PCR analysis of cyclin D1 mRNA levels in lung
tumors with long-term shRNA expression. These experiments were performed with a separate
cohort of mice from C., which were aged 6 weeks after the final tamoxifen treatment. N = 2
(shLuc), N = 4 (shD 1). *, P < .05. Error bars = standard deviation. (E.) Quantitation of BrdU+

cells in lung tumors from mice treated as in C. *, P < .05.
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pathways were down-regulated in lung tumors when compared to whole lung lysates, while

MAPK showed more variability (Fig 3). The reasons for this signaling attenuation are unknown

but could be due to the induction of feedback inhibitors such as Sprouty2 or Mkp3, both of

which have been shown to negatively regulate endogenous K-rasG- 2Dassociated signaling in

other settings (Shaw et al. 2007; Haigis et al. 2008).

Despite our inability to detect consistent increases in signaling outputs among any of the

pathways analyzed, we designed hairpins to a number of key components in these networks,

reasoning that the absence of hyperactivation did not preclude the possibility that pathway

inhibition would affect tumor cells. During initial tests, the two most efficient shRNAs targeted

c-Raf and p110Ia, reducing their mRNA levels by more than 75% (Fig 4A and B). To gain

insight into potential phenotypes to assay in vivo, we studied the effects of c-Raf and p11Oa

knockdown on lung tumor cell lines. Biochemical analyses indicated that p1Oa depletion

significantly reduced phospho-Akt levels as well as mTOR signaling, as shown by a strong

reduction in phospho-S6 (Fig 4C). These results suggested that despite expressing both p11Oa

and p1 10p (data not shown), inhibition of just one p110 family member disrupted P13K signaling

in K-rasG12D-driven lung tumors. p1Oa knockdown also inhibited MAPK signaling, highlighting

the extensive cross-talk known to occur among these pathways. Interestingly, although phospho-

MEK decreased, its downstream target Erk remain phosphorylated (Fig 4C). Similar results were

seen with c-Raf knockdown, illustrating that the lung tumor cell line used in these studies signals

through a non-canonical MAPK pathway, which might also occur in vivo. Importantly, both

shRNAs caused cellular phenotypes, including a robust cell cycle arrest (data not shown) as well

as striking changes in cell morphology (Fig 4D). Together, these data indicated that both c-Raf

and p1Oa were good candidates to test in vivo.
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Figure 3: Ras effector pathway analysis in lung tumors
Representative western blot analysis of a MAPK (Erk), PI3K (Akt), and Ral (RalA) pathways in
different types of K-rasG- 2Dinduced lung tumors. Wild-type lungs were used as a negative
control. Despite the decreased signaling flux through these pathways, cyclin Dl is up-regulated
in the lung tumors.
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Figure 4: Characterization of c-Raf and p1l0a knockdown in a lung tumor cell line.
(A. and B.) qRT-PCR analysis of c-Raf (A) or p1Oa (B) in LKRl3 cells infected with pSICO-
PuroR either without a hairpin (blue bars) or with one containing a shRNA to c-Raf (A) or
p110 a (B) (red bars). Error bars = standard deviation. (C.) Western blots of various signaling
pathways in LKR13 cells infected with control pSICO-PuroR (empty) or one containing a
hairpin to c-Raf or p110Ia. (D.) Bright field images of cells used for the analysis in C. Cells in
the "empty" group were split 1:5 before this picture was taken, while "p110a" and c-Raf" cells
remained on their original plate, indicating that a substantial growth arrest had taken place after
knockdown of p1Oa and c-Raf. Additionally, sh-p 11 Oa cells appear to be less refractile, while
sh-c-Raf cells have undergone much more severe morphological changes and seem to have lost
distinct cell boundaries with their neighbors.
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Targeting c-Rafandpl1Oa in established lung tumors

To assess the roles of c-Raf and p1Oa in K-rasG12D-driven lung tumor maintenance, we

intratracheally infected K-rasFSF-G12D/+; R 2 6 CreER-T2/Cre-T2 mice with pSICO-Flpo containing the

relevant shRNAs (sh-c-Raf; sh p1 10a, and a control luciferase shRNA). At 20 weeks post-

infection, tamoxifen was administered to induce shRNA expression, and mice were then aged an

additional one or four weeks. Because most of the tumors were too small for mRNA or western

blot analysis, we could not determine target knockdown in this study. However,

immunohistochemistry (IHC) was performed to assess pathway perturbations. This analysis

revealed that a number of tumors with the c-Raf shRNA had reduced staining for phospho-MEK,

suggesting significant knockdown was occurring in at least some of the tumors (Fig 5A).

Interestingly, this was not seen in sh-p aOc tumors, highlighting a potential difference between

in vitro and in vivo signaling mechanisms (Fig 4B and data not shown). Phospho-Akt was too

low to detect in any of the tumors, precluding an analysis of P13K signaling (data not shown).

To determine if c-Raf or p11Oa shRNA expression had functional effects on established

tumors, we compared the number of hyperplasias and tumors at one week and four weeks post

shRNA induction. While mice with control or c-Raf shRNAs had a relatively similar number of

lesions following prolonged hairpin expression, those with sh-p1 10a dramatically reduced their

tumor burden over the course of four weeks of knockdown (Fig 5B). Additionally, although the

lesion number was similar in the sh-c-Raf group over the time course, the frequency of

hyperplasias compared to more advanced tumors increased substantially, suggesting that c-Raf

knockdown might block tumor progression (Fig 5B). Of the tumors that remained after four

weeks of c-Raf or p11Oa shRNA expression, the largest of these had failed to recombine pSICO-

Flpo (Fig 5C). This was in contrast to the significant recombination observed in tumors after one
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Fihure 5: Effects of c-Raf and p110a knockdown in vivo
(A.) Phospho-MEK (P-MEK) IHC on lung sections from tumor-bearing FKC mice that were
sacrificed one week after the last tamoxifen treatment. While the tumors with the control Luc
shRNA stain for P-MEK, multiple lesions within the sh-c-Raf group display decreased staining
(arrows). However, some tumors in sh-c-Raf animals maintained P-MEK (arrowhead),
suggesting that either different tumors signaling through different Raf family members, or that
not all tumors efficiently knocked down c-Raf. (B.) Quantitation of the number of hyperplasias
and lung tumors in FKC mice infected with sh Luc, sh c-Raf, or sh p1aOct containing pSICO-
Flpo viruses. 20 weeks post infection, shRNAs were induced with tamoxifen and animals were
aged an additional one or four weeks. The number of lesions was determined by counting one
representative section of the lungs from each mouse. N = 1 for each shRNA at each timepoint.
(C.) PCR analysis of lentiviral recombination in representative tumors from B.
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week of induction, indicating that perhaps over time there was selection for cells that did not

induce hairpin expression. Importantly, this selection was not seen in tumors with the control

hairpin (Fig 5C). Together, these data suggest that knockdown of p1 Oa and c-Raf has

deleterious effects on established lung tumors. A more detailed analysis of cell cycle progression

and/or cell death at different time points following shRNA expression is warranted to gain

further mechanistic insight into these effects.

Inefficient knockdown of a variety of K-ras effectors

While these initial experiments were ongoing, we set out to perform a comprehensive

analysis of oncogenic K-rasG12D effectors in lung tumor maintenance. To this end, we targeted a

variety of components in numerous signaling pathways downstream of K-rasG12 D. In addition to

studying other members of MAPK (b-Raf), and P13K (p1 1Op), we also targeted the Ral (RalA,

RalB), mTOR (raptor, rictor), and Rho pathways (Rac 1), as well as K-ras itself. While many

hairpins displayed robust knockdown and produced in vitro effects in tumor cell lines (data not

shown), very few worked efficiently in vivo in terms of knockdown or phenotypic consequences

(Fig 6 and data not shown). Recombination analyses have shown extensive Cre-mediated

removal of the STOP cassette within the tumors, indicating that they should be expressing the

shRNAs (data not shown). However, we have yet to measure shRNA abundance in the tumors.

Aside from technical problems such as inefficient expression or suboptimal design of our

shRNAs, it is possible that many of the genes being targeted are absolutely essential for tumor

cell viability, causing immediate selection against shRNA expression.

Nonetheless, we have achieved acute knockdown in vivo with cyclin D1 (Fig 2), CDK2

(data not shown), and Bmi-1 (Chapter 2). Our ability to target Bmi-1, which is thought to be
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Figure 6: Examples of inefficient knockdown of a variety of K-ras effectors in vivo.
(A. and B.) Western blot analysis of numerous potential targets for shRNA-mediated knockdown
in established tumors. A and B represent two separate cohorts of mice aged 20-24 weeks before
tamoxifen administration. Only RalB showed any consistent decrease in levels, but no biological
effects were observed.
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important for lung tumorigenesis (Dovey et al. 2008), demonstrates that critical genes can be

targeted in established tumors using pSICO-Flpo in combination with K-rasFSF-G12D; R 26 creER-T2

mice.

With further optimization, this system might allow for efficient knockdown of Ras

effectors, which would open up many interesting experimental possibilities. By varying the time

at which shRNA expression is induced post-tumor initiation, one could discover stage-specific

functions of pathways, which would further our understanding of lung tumor progression. In

addition to studying canonical Ras effectors, an important future direction will be to test genes

recently implicated as synthetic lethal interactors with mutant K-ras driven tumors (Barbie et al.

2009; Luo et al. 2009; Scholl et al. 2009). Finally, infection of other tissues will provide the

opportunity to conduct these types of studies in other Ras-dependent malignancies. Comparing

the relative functions of particular pathways in different Ras-driven tumor types will give

important insights into Ras tumor biology as well as inform therapeutic strategies .
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MATERIALS AND METHODS

Mouse studies. R 2 (reER and K-rasFSF-G12D mice were generated in our laboratory. All animals

were maintained on a mixed background comprising 129S4/SvJae and C57BL/6 strains. Lung

tumors were induced by intratracheal instillation of pSICO-Flpo as previously described for Ade-

Cre (DuPage et al. 2009). Tamoxifen (Sigma) was dissolved in corn-oil at 15 mg/ml and injected

intraperitoneally every other day for 5 days. BrdU (Sigma) was dissolved in PBS at a

concentration of 3 mg/ml and administered to mice 24 hours before sacrifice (10 d/gram body

weight). Animal studies were approved by Massachusetts Institute of Technology's (MIT)

Committee for Animal Care and conducted in compliance with Animal Welfare Act Regulations

and other federal statutes relating to animals and experiments involving animals, and adheres to

the principles set forth in the 1996 National Research Council Guide for Care and Use of

Laboratory Animals (institutional animal welfare assurance number, A-3125-01).

mRNA isolation and qRT-PCR analysis. RNA was extracted using Trizol (Gibco) according to

the manufacturer's instructions. Once RNA was isolated, cDNA synthesis was performed on 1

tg of RNA using oligo dT primers and Superscript III (Invitrogen). cDNAs were analyzed by

qPCR using Taqman detection systems in an ABI PRISM 7000 Sequence Detection System

Thermo Cycler (Applied Biosystems). Relative mRNA levels were calculated using cycle

threshold difference (ACT) with TBP as an internal control.

Tagman probes:
cyclin D1 Mm00432360 ml

p11Oca Mm00435673_ml
c-Raf Mm00466513 ml
TBP Mm00446973 ml
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Protein extraction and immunoblots. Cell lines were lysed in RIPA buffer (10 mM Tris, pH

7.5, 150 mM NaCl, 1 mM EDTA, 1% Tx-100, .1% SDS, .5% sodium deoxycholate, 1 mM DTT)

plus mini complete protease inhibitors (Roche) and phosphatase inhibitors (cocktails 1 and 2)

(Sigma) for 10 minutes on ice. Snap-frozen tissue was finely minced with a razor blade on ice in

TNE buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 2 mM EDTA, supplemented with 1% Tx-100,

.1%SDS, 1mM DTT, and the same inhibitors mentioned above) and then rotated for 15 minutes

at 4*C. Both in vitro and in vivo samples were centrifuged to remove insolubles and quantitated

using a Bradford Assay (Bio-rad). Samples were then diluted in loading buffer and separated on

10-15% SDS-PAGE gels. Following transfer to PVDF membranes, we probed with antibodies to

p-tubulin, Erk 1/2, phospho-Erk 1/2, Akt, phospho-Akt473, phospho-S6, S6, raptor (from Cell

Signaling Technology); actin, K-ras (from Santa Cruz Biotechnology); GAPDH (Chemicon

International); RalA, RalB, and cyclin D1 (Millipore). HRP-conjugated secondary antibodies

were used in conjunction with ECL+ detection systems (Amersham). Ral-GTP levels were

assessed using the Ral activation kit according to the manufacturers instructions (Millipore).

Histology and Immunohistochemistry. Tissues were fixed in 10% formalin overnight and

further processed for histology as previously described (Johnson et al. 1997). For

immunohistochemistry, parraffin-embedded sections were dewaxed, followed by antigen

retrieval in 10 mM citrate buffer (pH 6.0) in a pressure cooker. Slides were quenched in 3%

hydrogen peroxide and washed in TBST. After blocking in TBST/5% serum for 1 hr, the primary

antibodies (phospho-MEK, Cell Signaling Technology; BrdU-BD Biosciences) were incubated

on slides overnight at 4*C. Detection was performed using a biotinylated secondary antibodies

followed by the Vectastain ABC kit with diaminobenzadine (DAB) (Vector Labs). BrdU

quantitation was done using Bioquant Image Analysis Software.
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In vitro experiments. MEFs were generated from E13.5 embryos using standard procedures.

Cell lines (LKR13) and MEFs were grown in DMEM (DME, 10% FBS, 2 mM glutamine,

pen/strep). 4-OHT (Sigma) was dissolved in ethanol and added to cells at 100 nM. For lentivirus

experiments, target cells were selected in 5 ug/mL of puromyocin for 3 days following

supernatant transfer. 2-4 days later cells were collected for analysis. 293T cells for virus

production were grown in DMEM.

Lentivirus production and infections. Lentivirus was produced as described previously

(Rubinson et al. 2003). For in vivo infections, viral pellets were resuspended in IX HBSS pH

7.4, and 50-100 [d was administered intratracheally.

Lentiviral vectors and shRNA cloning. pSICO-PuroR was used for most in vitro knockdown

experiments (Ventura et al. 2004). MEF infections and in vivo lung tumor formation in K-rasFSF-

G12D animals relied on pSICO-Flpo, which was generated by amplifying pgkFlpo from

pgkFlpobpA (Addgene) and cloning it into pSICO-Puro that had been digested previously to

remove pgkPuro. Cloning details are available upon request. Target sequences for shRNA

knockdown were identified using pSICO Oligomaker V 1.5 (A. Ventura, Memorial Sloan

Kettering Cancer Center, New York, NY). Cloning of DNA oligos into the U6-shRNA cassette

in the above vectors was done as described previously (Ventura et al. 2004).

shRNA sequences:

Gene: Target sequence:
luciferase GAGCTGTTTCTGAGGAGCC
cyclin D1 GAGCTGTTTCTGAGGAGCC

p110a GGAATGAATGGCTGAATTA
c-Raf GCAGCAGTCTCTACAAACA
b-Raf GAAGAGGTATGGAATATCA
RalA GCCAACGTTGACAAGGTA
RalB GCTGTTCTCTTCATATTTA
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K-ras GAACAGTAGACACGAAACA
raptor GAATCATGAGGTCATATAA

Lentiviral recombination analysis. Tumor DNA was extracted from lung tumors and subjected

to multiplex PCR using the following primers:

pSICO-Flpo F ATCGAGGAGTGGCAGCACATC
Loopout F CTCGCACAGACTTGTGGGAG
Loopout R GCAGCGTATCCACATAGCGTA
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