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ABSTRACT

The additional error growth and concomitant decrease in predictability

due to large-scale moisture patterns is examined through the use of

a limited area quasi-geostrophic grid point model.

The exact patterns of latent heat release due to condensation are

studied and it is demonstrated that condensation is a critical factor

to the growth of errors. Predictability of condensation in the

spatial sense is discussed and the dispersion in the certainty of

condensation location is shown to increase with time. The contri-

bution of condensation to imparted error energy is examined and it

is shown that higher wavenumbers receive the most error energy.

The magnitude of the difference in errors between dry and moist model

atmospheres amplifies in time and becomes appreciable after about

three days. A statistical study of 15 pairs of model runs shows that

when initial random errors of the order of .5 m sec-1 are inserted,

"moist" errors, as measured by both error kinetic energy and square

temperature error grow to an order of 20% greater than "dry" errors

within several days.

The effect of various types of initial errors are discussed, in the

mean and shear wind fields and in the humidity field, and it is

determined that for typical errors, errors in the mean wind field

are the most sensitive for predictability. It is observed also

that the higher sea surface temperatures yield more rapid error

growths.

Also, previous studies in the field of atmospheric predictability and

related concepts are reviewed.

Thesis Supervisor: Edward N. Lorenz

Title: Professor of Meteorology
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Chapter 1. General introduction.

The subject of atmospheric predictability is central to the

current study of meteorology. Many researchers in the field are

trying to predict future values of physical quantities by a variety

of techniques, though chiefly by using numerical models of the atmo-

sphere. The question of how far in advance it is possible to predict

states of the atmosphere has been studied for quite some time, and yet

there is far from any definite conclusions at the present.

The problem of weather forecasting can be identified with

discovering the particular solution to a set of differential equations

which describe the physics of the atmosphere and whose initial condi-

tions are the current states of the atmospheric variables. Also, any

method or set of equations used for prediction invariably involves

errors because of either incomplete description of the physical equa-

tions, an inadequate set of initial conditions or numerical reasons.

Though it is often assumed that there is an inherent limit to

deterministic prediction, it is not quite clear which of the physical

processes are relatively more important to the growth of errors in

predicted quatities and what their respective contribution to this

error growth is. One of the physical processes which has definite

influence upon predictability is that of moisture in the atmosphere.

While it is clear that much work has been done in the field in its

incorporation into the physical laws, the direct influence of large-
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scale moisture patterns upon predictability has yet to be investigated.

Various studies have been done in the past in order to assess

the rate of growth of errors of predicted quantities. However, it is

not really clear which is the best means of attacking this problem and

even which measure of errors would be most meaningful.

The method used in this work comes from the idea that the pre-

dictability of the atmosphere can be investigated by using numerical

models of a fluid in order to approximate the motions and physics of

the atmosphere. Two chief models are developed and referred to as the

dry and moist models. For each of these models, two simultaneous runs

are made starting from two different sets of initial conditions varying

from each other slightly, making four runs in all (moist-A, moist-B,

dry-A, dry-B). In time, the differences in the simultaneously running

models spread apart from each other in both the dry and moist models,

but it is seen that the manner in which the two dry solutions diverge

is different from the way the two moist solutions diverge. If the two

sets of initial conditions for both types of models represent "true"'

initial conditions and also initial conditions with an error, then the

divergence of solutions represents the growth of error in time, and the

different types of divergences represent "dry" and "moist" error growth.

Thus, when the relative contribution to error growths from

large-scale moisturepatterns is obtained,' adid also from future studies,

when the error growths from certain other specified factors are studied,

then it will be known in which direction research in meteorological

predictions should proceed. In this way, the best possible results
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will be obtained from predictions.

It is helpful to look at past studies in the field of pre-

dictability to understand some of the concepts involved and to see the

varied approaches to the problem which have been undertaken.

1.1 Past work and rationale behind current model.

In the past, a number of various approaches have been taken to

examine the problems of atmospheric predictability and inherent growth

of errors in predicting future states of the atmosphere. Some of the

chief areas of interest have been (1) the application of turbulence

theory to discover predictability times of many scales of motion, (2)

the use of large general circulation models in order to discover factors

about the nature of atmospheric predictability, and (3) the different

nature of predictability in barotropic and baroclinic flows.

In general, most of the theoretical studies have dealt with

predictability of a "dry" atmosphere, without the effects of moisture,

while the studies using the general circulation models are attempts

to simulate the atmosphere in as much detail as possible. While the

theoretical turbulence models might not be close enough to the atmo-

sphere to simulate important other physical processes, the studies

using the full general circulation models sometime make a basic under-

standing of atmospheric processes difficult, because of their
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complexity. Therefore, it was decided here to develop a straight-

forward and not too complex model which includes those processes which

are necessary for an investigation of the problem.

1.2 Studies of atmospheric predictability.

Early studies of the error growths in the sense of predicta-

bility were reported by Charney et. al. (1966) relating the success of

the then current versions of general circulation models. In order to

estimate the period of time in which an error pertubs atmospheric

flow, numerical experiments were done by Leith (1964), Mintz (1965),

and Smagorinsky (1963) in which small perturbations were placed in

the temperature fields. Although the models themselves did not agree

with each other, a reasonable conclusion was that the growth in mean

square temperature error was a factor of two in five days. The

general predictability times were limited to two weeks in the general

circulation models.

Smagorinsky (1969) concluded that the deterministic limit of

synoptic scale predictability was three weeks, although the practical

limit of the modeling at the time was no more than one week. This

study was based upon integration of pairs of states in a numerical

model with initial conditions only slightly different from each

other.

More current general circultaion models have been used to study
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predictive error growth and are based upon the primitive equations

of motion. (e.g. Somerville et. al., 1974, Holloway and Manabe, 1971,

Kasahara and Washington, 1971, Mintz, 1968, Arakawa, 1970). The Mintz-

Arakawa model, for one, studied random errors, sinuisoidal errors,

and localized errors. It was found that the localized errors grew

most rapidly. As an example, the winter RMS error in the upper level

grew from 0.2 to 0.9 OK in 10 days, where a random disturbance

caused growth from 1.5 to 4.0 and a sinuisoidal disturbance from

0.4 to 1.0.

The nature of initial conditions in the problem of predicta-

bility of a dry atmosphere was investigated by Thompson (1957). He

studied the growth rates of inherent errors in prediction and their

dependence upon the characteristic scale of initial error fields, the

vertical wind shear, static stability, and various other factors.

Barotropic and baroclinic flows tend to be similar but strongly baro-

clinic initial states are considerably modified by the thermodynamic

processes. The error growth can be expressed in equation form, the

most significant implication from which is that the growth of errors

is sensitive to the scales of the errors, as well as the scales of

fluctuations in the flow patterns. If the scale of the initial error

were appreciably greater than that of the fluctuations in flow, then

error increases even more rapidly. A figure of 7.7 days is obtained

for the growth of errors to the point at which the mean square error

of fluctuations reaches that of two randomstates.
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The concept of predictability is related to the periodic or

non-periodic nature of the atmosphere itself. (see Lorenz, 1963).

By the use of finite systems of ordinary differential equations, it

was found that for systems of equations with bounded solutions, non-

periodic solutions are ordinarily unstable with respect to small

perturbations. Thus, solutions of equations whose initial states were

slightly different would evolve into different states. This line of

thought led to the approach of trying to determine what types of atmo-

spheric states might be analogues of each other (Lorenz, 1969a) as a

means of studying predictability. Two states were taken to be analogues

if their 200-, 500-, and 850-mb height values at certain hemispheric

grid points were close enough in the mean square sense within a five

year period. In that study, no truly good atmospheric analogues were

discovered. However, the smallest error between analogues took 8 days

to double, but an extrapolation revealed that very small errors would

take 2.5 days to double.

As a followup study (Lorenz, 1973), it was found that atmo-

spheric states within 12 days of each other were found to be closer

to each other than two randomly selected states, in the values of

the three height fields and so this was proof that there is at least

some predictability within 12 days, however small.

Lorenz (1965), using a three wave model, did experiments to

deduce the predictability of flows in a low-order model. Using a

linear method to discover the growth of errors, amplification rates

of errors for a 64-day forecast were determined. The errors grew at
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different rates in different periods and there were even some in

which they diminished.

Fleming (1971) investigated the predictability of barotropic

and baroclinic flows in a study using a method known as stochastic

dynamic prediction and the spectral set of equations in a dry model.

He found that error growths were essentially independent of the initial

conditions. The predictability of wave number 12, which was used as

a reference point and a minimum requirement for useful synoptic fore-

casts, had a predictability value of 1.5 days. However, these were

lengthened in the large scale by addition of forcing and dissipation

terms.

Perhaps the most pioneering and remarkable study of predicta-

bility was performed by Lorenz (1969b) in which the intrinsic range

of atmospheric predictability for each scale was derived. This was

based upon a spectral analysis of the barotropic vorticity equation

and the use of a turbulence closure assumption that quadratic functions

of the error and flow fields are independent. From these equations,

an equation whose dependent variables are ensemble averages of error

energy in separate scales of motion are derived. Resulting maximum

predictability times of several scales are as follows: The cumulus

scales in this study have a range of a few days, and the largest

scale has some predictability until 16.8 days. Furthermore, this

study seems to indicate by extrapolation that even with an arbitrarily

small error in an arbitrarily small scale, the range of predictability

is not significantly lengthened and is still about 16.8 days.
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In addition, errors confined to any scale lead in a short

period of time to errcrsin the smallest scales even if they were not

present initially, and these errors behave as if they were there

initially and amplify accordingly.

Some of the more recent studies of atmospheric turbulence have

been applied to the study of instability and predictability. Leith

(1971) used a model known as the eddy-damped Markovian model of two-

dimensional turbulence to investigate error growth. This study was

based upon the recognition that the atmosphere on the largest scale

behaves somewhat like a two-dimensional incompressible fluid, and

that the energy contained in this system obeys a -3 power law.

Error growth calculations of Leith show that the predictability

of the atmosphere would lengthen by about one day for each factor of

two increase in the resolution of observations. However, an uncer-

tainty would seem to be dependent upon a dimensionless coefficient

which is added to match observations.

Kraichnan (1970) used the statistical methods of turbulence and

an approximation in order to determine a spectrum of error growth, that

is, a deviation of two statistically similar flows. Numerical solutions

of equations were obtained for the deviation spectrum D (k,t), which

represents error growth, where k is the wavenumber and t is time, in

order to determine whether the spectrum D (k,t) would grow or damp in

time. For a very low Reynolds number (high viscosity), D (k,t) did

damp, and for a higher Reynolds number the growth and decay depended

upon specific input and output integrals from various wavenumbers for
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the case considered. He concluded that at larger wavenumbers for

steady state, with D (kt) > 0, D (k,t) would grow until it reached

the total kinetic energy of the spectrum, called E (kt).

Leith and Kraichnan (1972) did a further study trying to deter-

mine the predictability of turbulent flows in both two and three

dimension. It was found that using a closure approximation known as

the test-field model, for two- and three-dimensional turbulence, errors

initially confined to high wavenumbers spread into the lower wave-

number range in a well-defined manner.

Robinson (1971) expanded upon the studies of predictability by

considering the additional effects of dissipation upon flows. His

results were dependent as well upon scale size, because the hypo-

thesis was made that dissipation can be described by a virtual coeffi-

cient of viscosity K, which is a function of the scale.

The predictability times were similar to those of Lorenz (1969b),

although the means of obtaining the results were quite different.

Robinson concludes that the method of Lorenz, including many scales

of motion through the imposition of an energy spectrum, actually

contains the dissipation which otherwise is inserted parameterically.

For two particular flow fields, a simple one (s)

and a more complex one (C)

1,,,
Z C 0S il
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are considered. Robinson studied a predictability time in two

different manners, (1) that of the average time taken for matter at

the center of a circle of radius of the scale to diffuse to the bound-

ary in terms of the virtual diffusion coefficient K appropriate to

the scale, and that of (2) the average time for 50 per cent dilution

of the matter within the boundary of such a circle based upon

dissipation. The estimates for his two flow fields and the results of

the Lorenz study are shown in Table 1-1, and it can be seen that the

second definition (2) of predictability time yields a more similar

estimate to that of Lorenz.

Table 1-1

Predictability times of Robinson and Lorenz.

1~1 (km) S-1 C-1 S-2 C-2 Lorenz

10 7 hours 5 hours 1.5 hours 1 hour 1 hour

100 1.5 hours 1.5 hours 6 hours 6 hours 4 hours

1000 7 days 6 days 1.5 days 1 day 1 day

10,000 50 days 42 days 9 days 8 days 5.5 days
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The techniques of modeling itself and the use of acquired

data play a large role in the errors of predicted quantities, and

this is a separate issue within the general predictability question.

In a primitive equation model, for example, Blumen (1976)

has used a divergent barotropic model to study atmospheric predicta-

bility. He found that a major cause of the decay of predictability

was the utilization of initialization schemes with errors, although

error growth was essentially independent of which type of initiali-

zation scheme was employed. This study also attempted to show that

improper initialization leads to exchange in energy between geostrophic

and ageostrophic modes.

The use of constant observing systems to "update" observations

can certainly reduce error growth and there have been several studies

with the hope of finding maximum predictability times and error growth

rates in more real situations. Some studies have been made using GCM's

to determine error growth in predictions with a view towards more

practical uses of observing systems. Jastrow and Halem (1970), in

calculations for the first CARP Global Experiment, used the Mintz-

Arakawa model to study the effect of constant insertion of global

temperature data from a satellite. From the model, it was found that

the average errors in the wind field which start at 0.5 m sec~1 grow

to 6 m sec~1 within 10 days, but with continuous updating of tempera-

tures from simulated satellite data, the wind errors level off at

-1
2 m sec , and this is a factor of only 4 times as great. In a further

report, Jastrow and Halem (1973) tried to determine predictive errors
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based upon a more full observing system.

Kasahara (1972) and Williamson and Kasahara (1971) describe

predictability experiments with the NCAR General Circulation Model;

they found a two to three day doubling time of small errors. They

did updating experiments by constant insertion of temperatures or

winds and found that the rms error fields are reduced in both cases.

While predictability of atmospheric motions and variables

in the present context does seem to be limited, there is at present

work being done on prediction of statistical quantities in order to

see how long term atmospheric quantities might respond to changes

in parameters. As an example, Warshaw and Rapp (1973) discussed error

growth in numerical models and tried to determine whether changes in

boundary conditions affect longer term average conditions of a

model. Despite the fact that small errors destroyed the predictive

capacity for each of the two cases of boundary conditions (which was

presence and absence of ice), the difference of the longer term

(30 day) solutions between the two boundary condition cases was

statistically noticeable. This and other studies show that the tra-

ditional connotation of "predictability" might not hold on the

average for longer term and climatic periods.

Thus there are many complex issues to be studied in the

theory of predictions on the short and long term. These must be

resolved in order to bring the predictions upon to their potential.
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Chapter 2. The dry and moist models.

2.1 Approach to model formulation

The model which has been constructed is used for the purposes

of a predictability study. In this method of studying predictability,

two initial states are composed which are very similar to each other,

and differing by only a small quantity in some of the variables. The

model is then advanced in time by numerical means starting with both

states as initial conditions.

For each time step, it is possible to compare the different

states of the model with each other. If the models are far apart from

each other in some measure, it is said that the predictability at this

time is small, but if the models are relatively close to each other,

the model is still considered predictable.

Since the chief purpose of this study is to assess the effects

of large scale moisture patterns upon the growth of errors and the

range of predictability of a quasi-geostrophic grid point model, as

many factors which are important for the description of the phenomena

should be included, but it would not be desirable to further introduce

ef& zts or approximations which could overshadow the actual phenomena

to be studied.

Both a dry and moist model have been developed for this predicta-

bility study. In each of these two cases, two simultaneous runs are

made starting from similar initial conditions in order to obtain
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estimates of "dry" and "moist" predictability.

Let it be assumed that the inclusion of a certain factor is

essentially independent with respect to the phenomenon of large

scale condensation. Although it might introduce greater amounts of

unpredictability, presumably it would introduce similar quantities

of this unpredictability in both the dry and moist models. However,

there is a chance that the inclusion of this factor might actually

cause some spurious growths of unpredictability because the modeling

of each factor is not quite exact. Thus, if a certain factor is not

actually necessary to a description of general large scale dynamics,

thermodynamics, and water vapor phase change and motions, it is

best that it be omitted.

For reasons to be discussed later, it is believed that the role

of condensation is instrumental to the growth of additional errors in

the moist model. This actual condensation phenomenon is modeled at

grid points when conditions are appropriate, and furthermore, this is

done in the large scale only. Since the effects of smaller scale

phenomena, for example, that of cumulus clouds, cannot be directly

calculated, except in the case of an extremely fine grid, they would

have to be approximated by means of parameterizations. Since all

methods of cumulus parameterization are certainly inexact, their

inclusion could overshadow that which it is wished to study;

the result could be that a parameterized type of predictability study

is less valuable than a large scale one.
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2.2 The basic model equations.

The model which has been developed for the purpose of this

predictability study is a two-layer quasi-geostrophic model with a

variable number of horizontal grid points. The model is based chiefly

on Lorenz (1960). The two-layer version of this model integrates in

time the sums and differences of both the streamfunction and potential

temperatures in the upper and lower layers. The model has variable

static stability, in that the difference between the potential temper-

atures of two vertical levels is a variable.

The original set of dry equations is as follows:

__j t7-k& -T-Vo- (2.1)

~= T sjT z O 7V (2.2)

-V-+' -Th , ( '-* ).Tt V (2.3)

V'~z -}(~ v #)1721~ (2.4)

b C C. Q(2.5)

The boundaries between the layers are pressure surfaces p , p2'

and p4 , and the centers of the lower and upper layers are p1 and p3'

respectively. The pressures are defined as

Pi, = \0/ 0 - 25~0 min Mb
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The variables used in equations (2.1) - (2.5) are the mean

potential temperature, 0 , the static stability, 7' , the stream-

function for the mean flow, 3 , the streamfunction for the shear

flow, T , and the velocity potential of the lower layer, Y. In

this case, the potential temperatures in the upper and lower layers

are , = 9+(r and 91=G -0~ respectively, and the streamfunctions

in the upper and lower layers are and

(See Figure 2-1).

Here J refers to the Jacobian function

and the factor b is

7e pJ.p X 3 0.124

where X is the ratio (c -c )/c g2/7.
p v p

If the Coriolis parameter is considered to be a constant

(an f-plane approximation), equation (2.5) becomes

b V= (2.6)

otherwise known as the thermal wind relationship.

If the V operator is applied to equation (2.1) and if this

is tai a with equations (2.4) and (2.6) with fixed f, the following

diagnostic "6j-equation" results:
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Level

4 p=0 mb

03 (4 - 3 p=250 mb

Wz 2 p=500 mb

1 p=750 mb

0 p=1000 mb

- (9,- 0 / 2

Variables in the moist model.

4/=0

(WO

Figure 2-1.
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JJ T-)

Equation (2.7) can be used as an identity for the solution of

X~ when all the other variables are known.

The approximation

is made in order to reduce the left hand side of equation (2.7) to

V L 7 )-- V 1
X) b Ce

This enables one to solve for in two distinct steps first by

solving for V and subsequently by determining the 3 field

from 7VjX. The validity of this approximation is discussed in

Appendix 1.

Before the method of solution of equations (2.1) - (2.7) will

be used, it is desired that they be placed into a non-dimensional

form, and this is illustrated below.
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The following are considered

variables. For convenience, these

powers of 10.

to be characteristic values for the

characteristic values are chosen only as

x,y (=D) 100 km

p 103 mb

t 103 sec

1 km2 sec~1

7', Vz 10~4 sec~1

7 1K

10-2 k2 sec-

f 10 km sec
f 104 sec -

c 10 cm2 sec-2 (K) 1

b 10-1

and in this manner, the non-dimensional form of the equations become

Iv P-N ( N'IN)Js - N) N N N(2.)

N IC-N [T7 ) 71"4 JN (T)7(2.10)

rc N JN (Ta, V. YTN) IU~~~
zN 

T Nj . 6 N v7 VY
(2.11)

(2.12)
NC N N N IN rN
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bN CrN V

p 2

where the N subscript, to be dropped later denotes non-dimensional form.

2.3 Inclusion of moisture in model equations.

Moisture is added to the set of dry equations by in

q1 and q3 for specific humidity 
in the lower and upper la

The equations for the rate of change of q and q3 with ti

5Lp

13

clusion of terms

yers, respectively.

me are as follows:

(2.14)

(2.15)

Here the term Q refers to the loss of q1 due to condensation and E refers

to the addition of q1 into the lower layer resulting from evaporation from the

bottom surface, and o, and c are vertical velocity values at levels 1 and 3.

The vertical transport terms are rather difficult to model because the

numerical form of the vertical derivative is not straightforward, One can

assume that the hum'dity follows several types of profiles in the vertical.

Two possible profiles, both of which are tried in the modeling scheme are

linear and logarithmic in pressure. In the linear scheme

PI-P.,
and - pS

(2.13)

~ 63
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while in the logarithmic case,

33 + 1 - P3and 0 4 I -P
Pr P3

Both these profiles were tried and led to insignificant differences in

predictability error results. Since the true profile is usually somewhere

in between, the more straightforward linear profile is used in the model

equations.

In non-dimensional terms, where the q's are in units of grams of

water vapor per kilogram of dry air and 6 is in units of 10-3 mb sec 1

the equations appear as follows

N )10 .ij'(N4+JJ e-e. (2.16)

S~ p (2.17)

The presence of water vapor and its role in condensation also influences

the forms of the other equations because of the liberation of heat during

the condensation process, and this is added to the equations as follows.

Haltiner (1971) gives as a formulation the following form for the in-

crease of saturated specific humidity qs

(2.18)

atCPP

where s. ) +I

this is derived from the Clausius-Clapeyron relation in Appendix 4, assuming

that condensation occurs as a result of saturated adiabatic expansion.
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Furthermore, it is assumed that upward motion must occur at the same

time during which the humidity is almost at saturation. Thus, the following

condition determines when the on-off g factor is 1 or 0 (condensation does

or does not occur):

I Or <0 cnd >

0 for 4>,0 or

In this study i is a critical relative humidity factor which is

taken to be .8 following Krishnamurti et. al. (1971) and others. Requiring

that condensation occur at a 100% relative humidity would lead to too little

condensation. Since the grid point is only one point in the center of a

square, it is quite possible that condensation is occurring within the

square, although the relative humidity is less than 100% at the central

point. A factor of .8 is chosen as a threshold necessary for condensation.

However, a functional form for P as a function of the actual relative

humidity qrel, as qrel varies from 0 to 1 could also be proposed.

If latent heat H is being released at level i the following relationship

shows that the temperature is being raised accordingly

and furthermore, since V - , from the equation of continuity, the

quantities . 3 / are expressed as %, j, -z V2 /4 . Adding and

subtracting expressions for , it is found that the right side of the

expression for and contain the additional terms
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a (OK) F

-69

-68

-67

-66

-65

-64

-63

-62

-61

-60

-59

-58

-57

-56

-55

-54

-53

-52

-51

-50

-49

-48

303.1

304.6

306.1

307.6

309.0

310.5

312.0

313.6

315.0

316.5

319.5

320.9

322.4

323.9

325.4

326.9

328.4

329.9

331.4

332.8

334.3

335.8

Temp (0C) e (OK) F

.000074

.000085

.000097

.000112

.000128

.000146

.000167

.000191

.000217

.000247

.000281

.000319

.000361

.000408

.000461

.000520

.000586

.000659

.000740

.000829

.000928

.001038

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

285.5

286.6

287.7

288.8

289.9

291.0

292.0

293.1

294.2

295.3

296.4

297.5

298.6

299.6

300.7

301.8

302.9

304.0

305.1

306.2

307.2

308.3

Table 2-1. The value F as a function of temperature and potential

temperature at two diffe'-rert levels.

Temp (0C)

.0066

.0070

.0073

.0077

.0081

.0085

.0089

.0093

.0097

.0102

.0106

.0110

.0115

.0119

.0123

.0128

.0132

.0136

.0140

.0145

.0149

.0153
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LrF V
-C P83

L3 SF iL
21- C r P3

c-p,

L I r K

f{ n -- ,then in non-dimensionalI on ( and(. bo

equation (2.8) and (2.9) become

-I - If 3'

~10~ k 3 2 *O L (1r)(r)+1 [ [V1 'i72J
4- 317C-4.

91- fl& 7~

- Lo7 /y, ~? -kF s,3 7 -

and the equation (2.13) is modified so that

V - --

-( -

terms,

(2.19)

(2.20)

(2.21)

v 1 zQ

I-J(T122-V)I

where o X - (k F3 S3 t k, F j, )

Thus, when condensation occurs in either layer one or layer three,

it implies the heating of the center layer, which is the average of the

6-
rh

'0 F(O, L) + J (r,)- IVY/
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other two. This influences the factor which multiplies the quantity

72 'in equation (2.21). In this manner, whenever heating occurs,

the magnitude of the term containing the Laplacian of is reduced.

The quantity L. refers to latent heat released in layer i. It

will be assumed that water vapor is condensing to liquid water in the

lower layer and sublimating to ice in the upper layer. The heats of

condensation and sublimation are 2520 erg/gm and 2862 erg/gm respec-

tively. The corresponding values for k and k3 are 454.2 0K and

2118 0K .

Table 2-1 demonstrates the factor F at both lower and upper

layers taking into account the temperature ranges associated with

the two levels. F in this table is the value associated with a

condensation threshold of .8 qs.

In order to obtain an estimate as to the reduction r..g- ,

it is noted that for F ' .01 and for F 1V .0002, it is found

that k F 4.5 and k3F ^ .42 compared with the variable tr',
11 3"

which is of the order of 10. Thus the influence of the release of

latent heat at the upper layer is roughily a factor of 10 less than

that of the lower layer.

2.4 Conditions on .)

The upper layer is considered to end at p=O. Since this is the

top of the atmosphere, the quantity WL;: vanishes. At the bottom

of the lower layer, at p=1.0, the vertical velocity can be considered
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to be either zero or finite. A vanishing lower velocity implies

that the bottom of the layer is at a solid surface, from which no air

can rise. The finite case arises from the association with a bound-

ary layer below the bottom level. One approximation which

will be tried for the vertical veloctiy is the Ekman pumping

dz
relationship. In this case, the vertical velocity w = _

dt

is proportional to the geostrophic vorticity at the top of the

Ekman layer (Holton, 1972). The relationship is

~- -fj Y (k/2 F ) (2.22)

where K = 105 cm2 sec 1  and Thus, in units of 10-3

mb sec~1 the Ekman value for a) is on the order of 3.0.

The equations will determine a value for the vertical velocity

of the middle level, & . The values for 6,J at levels 1 and 3 will

be assumed to be averages of their values at the levels directly above

and below the one in question, and so ) and 43 -J

2.5 Temperature and moisture conditions on the lower surface.

In this model, it is assumed that the bottom of the lower layer

is an air-sea surface. Furthermore, the temperature of the sea surface

is laterally prescribed and it is with this fixed sea surface-temper-
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ature that the lower layer of air interacts. Since the period of

time during which the model runs is only on the order of days and

not of seasons, variations in sea surface temperatures are not an

important part of the problem. The diurnal variation of sea surface

temperatures is small and on the order of magnitude of .2 0C day~1

(Defaint, 1961) and which furthermore decreases with latitude in

the middle latitudes.

Evaporation from the sea surface will be assumed to be propor-

tional to the difference between the saturation vapor pressure at

the surface of the water and the vapor pressure of the moisture

in the air over the water and proportional as well to the wind speed.

The constant of proportionality is computed from Richards (1970).

The relation is given in this manner by

= 0,Cc) C(e, -e) V
(2.23)

where e and e are in mb and V L L

The vapor pressure of the water vapor in the air, e is calcu-

lated by assuming that the relative humidity of the lower layer is

a fixed quantity at each grid point and by extrapolating the potential

temperature down to the surface linearly by means of the two variables

0 and

Thus e = e (T )r J
s surf
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2.6 Lateral boundary conditions

The conditions placed upon the lateral boundaries are as

follows. The domain is a rectangular set of M x N grid points which

is periodic in the x-direction. The point (x1 ,y ) is considered to

be the next point to the east of (xM'yi) for each y .

At the northern and southern boundaries there are walls. Since

there is to be no flow permitted across these walls for either

vertical level, the streamfunctions ' and C must be fixed and

constant for the north and south set of grid points. Furthermore,

there is an imposed temperature boundary condition on the two walls, the

northern on the order of 5 degrees colder than the southern.

In this manner, a somewhat realistic north-south temperature

gradient is achieved.

Whenever any point outside the domain is needed for computation

purposes, the value of a quantity at that point is extrapolated

from its values at the two nearest points of the same x-component.

This is necessary for evaluation of tha Jacobian and Laplacian

functions near the boundary. Thus for a field

and
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2.7 Numerical scheme

After the initial values for the model at a time step have

been determined, the field for 0 is computed from equation (2.12).

Afterwards, the fields V' and V are computed from the values

of 1A and t , using the five-point finite difference formula which

approximates the Laplacian function

, -j / _- Y (2.24)

The next step in the procedure is to use equation (2.13) in the

dry case and equation (2.21) in the moist case to evaluate the field

but prior to this, the values of j must be determined at

each grid point in the moist model. In order to do this, it must be

determined whether the conditions for the occurrence of condensation

at each model grid point have been satisfied, that is, whether the

appropriate fraction of saturation has been exceeded and whether

there was ascending motion. When this has been determined,

equation (2.21) can be written in the form

S ( V-,x) = R H s

where is an operator which varies at each time step due to

the changes in Q . f is defined to be

2-L
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Because 0 varies horizontally, standard procedures of

matrix inversion for evaluating a Helmholtz equation will not

work exactly but they can be used in order to obtain a first

approximation for an iterative scheme. A modified Gauss-Seidel

iterative scheme is employed to find the solution to this equation

(Hildebrand, 1956).

For the first iterative guess, in the Gauss-Seidel scheme,

the average value of C' is computed from all the M x N grid pointsM

and is referred to as If c is approximated by arh , the

equation then reduces to the form

(~)- C1, ('?t ) J(x,/) (2.25)

The Helmholtz equation

(2.26)

is solved where and c 3 n, by means of the NCAR

routine PWSCRT, which is an algorithm by R. Sweet (1974), and which

uses a means of cyclic reduction.

This solution is used as a first iterative guess for the Gauss-

Seidel iteration which is described below. If N, W, S, and E refer

to the surrounding points, and 0 refers to the center point, the

following equation must hold for each grid point

W
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where . The set of M x N equations can be conveniently

placed in the following form for each equation

In this manner a value for at the central point is deter-

mined from its current values at the surrounding set of points and

then the value for 0 is modified as soon as it is calculated. This

type of method is a sequential relaxation scheme. The order of

choosing the central points is preselected in this case to be that

of "reading order" from upper left to lower right if the grid points

were placed in a physical array. The N+l st approximation is

obtained by using the values of the 2 's on the right hand side

in either the N th or N+l st approximation depending upon whether or

not that grid point has been "relaxed" yet. The process continues

until the right and left hand side of equation (2.27) are within a

preselected 2' of each other for each . The question of deter-

mining a suitable value for g- which is small enough to be used in

order to look at error growths is treated in a later chapter.

When the values have been determined, it is then necessary

to find up to an additive constant and this is obtained from

inversion of the V by means of PWSCRT, as discussed above. Then

the values for W and W at each grid point are obtained fromY3

the relation LO, : 3

The next step in the running of the model is the integration

of equations (2.10), (2.16), (2.17), (2.19), and (2.20). This is
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accomplished by the use of the method of N-cycles as proposed by

Lorenz (1971). This method is of higher order than the standard

uncentered difference integration scheme.

A 4-cycle is used in this model. The method is a second-

order integration scheme for non-linear terms. It breaks up a large

step into four smaller time steps and repeats a procedure four times

in order to be of higher order.

In the case N = 4, where ', an algorithm derived by

Lorenz is used in order to solve the set of linear equations

F1i

where h:(x) is a set of functions of x which can be computed.

After the values for and P are determined, the

quantities f and T are obtained by means of matrix inversion

using PWSCRT, as described above. After this takes place, the

other variables must be found again for the next time step, and

the process continues.

All Jacobians are evaluated by the method proposed by Arakawa

(1966). This scheme involves values of the two fields at the central

point and eight surrounding points. Since the Jacobian is a formu-

lation of the advection term in the equations, it is desirable to

use this fomu'of the Jacobian which maintaines the integral con-

straints of conservation of mean square vorticity and mean kinetic

energy.
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Chapter 3. Results of error growth in representative model runs.

Runs of the model described in Chapter 2 were made on grids of

various sizes on a domain which is 3200 km x 3200 km. Initial test runs of

the model on a small grid (8 x 9 points) with grid point spacing of

400 km were made with satisfactory results; however, this preliminary

model was used only as a basis for the development of larger grid point

models.

Two finer grids of 16 x 17 and 32 x 33 grid points and spacings

of 200 km and 100 km respectively were employed for further study and

they are referred to as the L and G grids respectively.

In order to determine the magni-tude of difference between the two

simultaneously running models in phase space, a measure of error was needed.

This measure is called the "error kinetic energy" which is defined in the

following form

The vectors are wind error vectors, with the subscripts 1 and 3

referring to the 750 mb and 250 mb levels repectively. The error winds are

the difference winds between those of model A and those of model B

(3.1)

Since / j - 7 and a k x 7 and also Y-) and

i (3-Y ) , one can obtain the following expression for error kinetic

energy (to be abbreviated EKE henceforth) for each grid point
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The individual grid point values of the error kinetic energies are

summed together to obtain a total measure of error kinetic energy.

The model is a dry model of 16 x 17 grid points where the

grid point spacing in both directions is 200 km. Thus, the total

area covered is 10.24 x 106 km 2, or an area of the magnitude of the

size of the United States.

Originally, initial data were placed to simulate one large

scale wave pattern in the -* field and a 0 field was chosen to be

warmer in the southern region than in the northern region by 50C,

and .- was taken to be a constant (100 C). The model was permitted

to be run to a time equivalent of 1000 x 103 sec, after which its

final conditions were taken to be used as a new set of initial

conditions.

The initial state is pictured in Figures 3-1 to 3-4, which

represent the four quantities I$', 6, 6', and W. is measured

in units of 1 km sec 1, 9 and 6~ are in units of 1 K, and the

value for Wo , which is obtained from the quasi-geostrophic set of

-3 -1
equations, is in units of 10 mb sec~. It can be seen that the

field still retains the wave-like nature which moves across the

domain. The characteristic velocity of wave motions, which is

approximately 10 m sec1 , can be noted by observing the position of

the ridges which move across the domain in approximately 300 x 103 sec.
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2 -1
Figure 3-1. Initial state of V field. Values are in km sec.
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Figure 3-2. Initial state of 9 field. Values are in 0K.
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Figure 3-3. Initial state of 6" field. Values are in
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&>

-37%371

-3 -1..
Figure 3-4. Initial state of &) field. Values are in 10 mb sec.
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The fields for 9 , v", and 60 are all rather complex at the

new initial state because they evolved as a result of the set of

equations in 1000 x 103 sec. Because of the constant Coriolis parameter

in the model, the -r field is linearly related to the & field.
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3.1 Determination of a relaxation constant for examination of

error kinetic energy growth.

In the Gauss-Seidel iteration scheme which is employed in

order to solve the X equation (Equation 2.21) the values of the

right and left hand side of the equation must agree to within a

certain quantity E . This maximum allowable C must be determined

for stability of the model and so that it is sufficient for the

determination of error kinetic energies. With this in mind, several

experiments were performed by running the 16 x 17 model with various

values for F , and the resultant EKE values were noted. The EKE

values which are generated by the model corresponding to E = .0002,

.0001, .00005, and .000025 are in Table 3-1 for time steps between

0 and 600 x 103 sec.

If an additionally smaller value of . causes no change in the

value of EKE for a desired accuracy, it is reasonable to assume that

this F is sufficiently small enough to be used as a sensitivity

constant in this study. It can be seen from Table 3-1 for & =.0002

to E =.000025, the EKE values are the same to 3 decimal places until

t = 200 x 103 sec, that they are the same to 2 decimal places until

3
t = 550, and that until t = 600 x 10 sec, they agree to one

decimal place. Thus t = .0002 appears to be small enough for a

sensitivity constant so that there is agreement of both sides of the

-equation for the purpose of measuring the resultant EKE value to

within .1

In addition, the computer time in seconds required to run the
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model to t = 600 x 103 sec real time on NCAR's Control Data Corp-

oration 7600 is shown for the various values of S . It can be seen

that the difference between the smallest and largest F is a factor

of 7% greater. This additional fraction might not seem like signifi-

cantly greater computer time for an order of magnitude improvement,

and its smallness can be explained for the following reasons: (a)

the solution to this one equation is only a small part of the total

computer time required, (b) the first guess of the iteration scheme

is relatively close to the solution, and (c) the number of iterations

varies with the logarithm of the desired accuracy.

In order to look more closely at the convergence of this Gauss-

Seidel solution, succeeding approximations of the values for

in the iteration scheme can be observed. For a particular run of the

16 x 17 grid point model, at a particular time step (t = 300 x 103

sec), the sequential guesses which are derived from the first 50

iterations are displayed in Table 3-2 for five representative

points of the domain. They are calculated to six decimal places.

First, it can be seen that the initial guess (iteration 0), which

forms the solution to equation (2.25) is close to the solution to

which the iterations converge, and agrees with it generally to

one decimal place. Furthermore, after only 10 iterations, the guess

agrees with the final solution with an accuracy of three decimal

places.

An extension of the Gauss-Seidel method which is called

"successive overrelaxation" can be used in order to speed the conver-
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Table 3-1. EKE values for selected values of

time 3
(x 10 sec)

0

50

100

150

200

250

300

350

400

450

500

550

600

.0002

.1167

.1182

.1430

.2230

.4223

.7279

1.2579

1.9022

2.7488

4.9311

9.1957

17.8175

38.6120

.0001

.1167

.1182

.1430

.2230

.4223

.7279

1.2596

1.9019

2.7487

4.9323

9.1974

17.8212

38.6227

.00005

.1167

.1182

.1430

.2230

.4223

.7279

1.2597

1.9019

2.7486

4.9324

9.1965

17.8179

38.6141

computer time

in sec to reach

t = 600 x 103 sec

193.9 197.2 201.8 207.1

.000025

.1167

.1182

.1430

.2330

.4223

.7279

1.2597

1.9018

2.7486

4.9326

9.1968

17.8188

38.6173
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Table 3-2. (Next page) Successive approximations of at

five representative grid points in a Gauss-Seidel iteration scheme.
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GRID POINTS

ITE-

RATION

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

(1,3)

-5.648512
-5.561310
-5.559991
-5.554533
-5.566178
-5.566791
-5.567169
-5.567412
-5.567554
-5.567626
-5.567652
-5.567647
-5.567624
-5.567591
-5.567552
-5.567511
-5.567471
-5.567431
-5.567394
-5.567360
-5.567328
-5.567299
-5.569272
-5.567248
-5.567227
-5.567208
-5.567191
-5.567176
-5.567162
-5.567150
-5.567139
-5.567130
-5.567121
-5.567114
-5.567107
-5.567101
-5.567096
-5.567091
-5.567087
-5.567n83
-5.566 S0
-5.567077
-5.567074
-5.567072
-5.567070
-5.567068
-5.567066
-5.567065
-5.567063
-5.567062

(5,5)

-. 289005
-. 297183
-. 296860
-. 302332

-. 302506
-. 301857
-. 301482
-. 301066
-. 300648
-. 300268
-. 299933
-. 299646
-. 299402
-. 299198
-. 299028
-. 298885
-. 298766
-. 298666
-. 298581
-. 298509
-. 298447
-. 298393
-. 298347
-. 298306
-. 298271
-. 298239
-. 298212
-. 298188
-. 298166
-. 298147
-. 298130
-. 298115
-. 298102
-. 298090
-. 298079
-. 298070
-. 298062
-. 298054
-. 298048
-. 298042
-. 298037
-. 298032
-. 298028
-. 298024
-. 298021
-. 298018
-. 298016
-. 298014
-. 298012
-. 298010

(2,6)

-. 151360
-. 143804
-. 165521
-. 164012
-. 156500
-. 155162
-. 154831
-. 154906
-. 155104
-. 155299
-. 155457
-. 155565
-. 155625
-. 155645
-. 155636
-. 155607
-. 155565
-. 155518
-. 155468
-. 155418
-. 155371
-. 155326
-. 155285
-. 155248
-. 155214
-. 155184
-. 155157
-. 155133
-. 155111
-. 155092
-. 155075
-. 155060
-. 155046
-. 155034
-. 155024
-. 155014
-. 155006
-. 154998
-. 154992
-. 154986
-. 154980
-. 154976
-. 154972
-. 154968
-. 154965
-. 154962
-. 154959
-. 154957
-. 154955
-. 154953

(7,4)

4.840213
4.910203
4.937216
4.944949
4.950691
4.954068
4.956013
4.957398
4.958250
4.958827
4.959228
4.959515
4.959727
4.959888
4.960015
4.960117
4.960201
4.960272
4.960333
4.960386
4.960432
4.960473
4.960509
4.960541
4.960569
4.960595
4.960617
4.960637
4.960655
4.960671
4.960685
4.960698
4.960709
4.960719
4.960728
4.960735
4.960742
4.960749
4.960754
4.960759
4.960763
4.960767
4.960771
4.960774
4.960777
4.960779
4.960781
4.960783
4.960785
4.960786

(4,5)

-4.135060
-4.155047
-4.167580
-4.170573
-4.173897
-4.175550
-4.176361
-4.176855
-4.177091
-4.177157
-4.177123
-4.177036
-4.176924
-4.176805
-4.176689
-4.176581
-4.176483
-4.176395
-4.176317
-4.176249
-4.176189
-4.176137
-4.176091
-4.176050
-4.176015
-4.175983
-4.175956
-4.175931
-4.175910
-4.175891
-4.175874
-4.175859
-4.175845
-4.175833
-4.175823
-4.175814
-4.175805
-4.175798
-4.175791
-4.175786
-4.175780
-4.175776
-4.175772
-4.175768
-4.175765
-4.175762
-4.175759
-4.175757
-4.175755
-4.175753
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gence of the scheme (see Walsh, 1967). The n+1 st and n th guesses

are and A respectively, and their difference, which is

determined from equation (2.21) is termed the residual Rn:

where R /Joc n

(3.3)

A more rapid iterative scheme involves an additional multiplicative

factor of the residual, usually between 1 and 2

In this manner the n+l st guess would be more in the direction of

the solution. Further study would warrant the use of such an improved

solution.

3.2 Error growth rates from initial random errors.

A set of normal random numbers which are multiplied by an

amplitude factor of .05 was added to each grid point value of the

I/

field in model A in order to determine .e initial conditions in

model B, thereby creating an initial quantity of error kinetic

energy (EKE). The set of normal random numbers was generated by

the computer routine known as GGNOF which is resident in the

IMSL (International Mathematical and Statistical Libraries).
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The results of the representative runs using this particular

set of random numbers as initial errors in both the coarse (16 x

17) and fine (32 x 33) models and in the dry and moist cases is the

subject of this chapter. It is instrumental to observe the type

of behavior of error growth in particular cases as well as in

statistics of a set of cases, as will be discussed in a later

chapter.
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3.3 Error growth in the coarse mesh model

In this case of 16 x 17 grid points, the initial EKE

value was 0.1167 units. During the course of the running of

the models, the value for EKE was observed. By t = 300 x 103

sec, the EKE grew to 1.2596 units, which is a growth factor of

10.8, and by t = 600 x 103 sec, the EKE amplified to 38.6227 units,

or a factor of 331.0 over the initial value.

In the moist case, with equations taken from section 2.3, the

identical set of initial conditions were used except for the addi-

tion of a lower-level (750 mb) moisture field. A typical moisture

field is represented in Figure 3-5. The same initial perturbation

of the J/ field as was placed in the B model in the dry case

was placed in the B model in the moist case.

For the moist case, it is important to specify other condi-

tions in addition to those of the dry case, and an important one is

the underlying sea-surface temperature. It was found that higher

values of sea-surface temperature led to greater magnitudes of

EKE growth. For each of the moist values, though, the initial

EKE was the same as that in the dry case (0.1167 units).

For the underlying sea-surface temperature for the whole

domain at T = 292 0K, for example, the value for EKE grew to

1.4173 units at t = 300 x 103 sec, and 40.3344 units at t = 600

x 103 sec, or factors of 12.1 and 345.6 respectively over the
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4.98

6.45

Figure 3-5. Typical moisture field. Values are in gm kg .
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initial state. At a higher sea surface temperature, T = 297

oK, the quantities were 1.4916 and 47.5675 or factors of 12.8 and

407.6 at t = 300 x 103 sec and 600 x 103 sec, respectively.

The growth of EKE for the above dry and moist models is

plotted on a logarithmic plot in Figure 3-6. The sold line

represents error levels in the dry case, the broken line in the

moist T = 297 case, and the circles are EKE values of the moist

T = 292 case. It can be seen that the growth rates are very close

to exponential after t = 100 x 103 sec, or about one day, and

appear almost as straight lines in this logarithmic plot. After

about t = 200 x 103 sec, the dry and moist values for EKE begin

to diverge. The fractional difference of the moist (297K) EKE value

over that of the dry KE value is plotted in Figure 3-7. It can

be seen that at the outset, the fractional difference is negli-

gible but grows to 19% by t = 300 x 103 sec, and by 550 x 103

sec, it is up to 27%, although it drops back down to 23% by

t = 600 x 103 sec.

Very long integrations of thi- model (to t = 1800 x 103 sec)

were carried out in both dry and moist(292) cases in order to observe

the long term behavior of the error growth rate, and the results

are represented in Figure 3-8. From this figure, it can be seen

that the EKE value exhibits a leveling-off behavior at approximately

t = 1400 x 103 sec in the dry case, and at t = 1200 x 103 sec in

the moist case. Thus the dry model reaches its maximum level of

error growth at 16.3 days and the moist model at 13.8 days.
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Figure 3-6. Growth rates of error kinetic energy in the 16 x 17

grid for dry case (solid), moist T=297 case (broken) and T=292
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Figure 3-7. Fractional difference in error kinetic energy of the

moist case over the dry case (16 x 17 grid).



-61-
1000

800

0 400 800 1200 1600 2000

TIME IN 103 SEC

Figure 3-8. Long term levels of error kinetic energy in the dry

case (solid line) and moist case (broken line).
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It can be assumed that the level-off point of EKE growth is

related to the time limit of predictability, because statistically,

the errors reach 100% of their ultimate value at the level-off

(quasi-stationary) point. The values obtained as a result of

the models described here are in general agreement with those

estimates of atmospheric error growth rate, which find that there

is a two-week limit of predictability. Lorenz (1969b) found

that the predictability of the largest (and most predictable for

the longest period of time) scale he considered in his experiments

was limited to 16.8 days when a very small error was placed

initially in the smallest scale of motion in the dry model. This

is close to the estimate of 16.3 days in the dry model considered

here.

Furthermore, the time at which the two models reach a

stationary level of error energy growth differs by 2.5 days,

implying that this is the difference between the time limits of

predictability of the dry and moist cases.
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3.4 Error growth in the fine mesh model.

In numerical prediction of fluid motions, one can make the

grid points close together in order to create a finer grid. There

have been studies investigating the optimum grid length (Knighting,

1959), and the grid lengths in both the quasi-geostrophic set of

equations (Howcraft, 1966) and the primitive equation models of

general circulation models (Wellck, et. at., 1971 for the NCAR

model and Manabe, et. al., 1970 and Miyakoda et. al., 1971for the GFDL.)

Some results of increased resolution are as follows: The NCAR

model finds a 10 latitude and longitude mesh ( 1100 km at the equa-

tor) too coarse. A 50 mesh was acceptable but did not treat trans-

ports of momentum, heat and water vapor accurately, and a 2 1/2 0

mesh (equivalent to 270 km at the equator and 200 km in middle lati-

tudes) more accurately treated these transports.

Similarly in the GFDL model, a finer grid resolution (500 to

250 km grid point model improved the features, especially being

more successful in the simulation of the evolution of fronts.

With the above in mind, a finer mesh model was developed in

this study. This finer mesh model (which is referred to in this

work as (G)), covers the same domain as the L model, however, with

32 x 33 grid points spaced on the domain at 100 km apart, instead

of 200 km apart as in the 16 x 17 grid. The number of grid points

is thus increased by close to a factor of 4.

Phillips (1973) states the criterion necessary for convergence
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of a numerical equation

(1 J (3.5)

where U is a representative velocity and 4 and dX are the time

and space differences. Since the G grid halves the grid spacings,

in order to maintain the same value for 0' , a halving of the

time step is required as well. Thus the amount of computation for

the time integration increases by a factor of 8 in the finer G model.

Additionally, a finer mesh increases the number of successive

iterations required for convergence of the Gauss-Seidel scheme

which is used to solve the Helmholtz equation (2.26). Young (1954)

has analyzed the effect of decreased mesh size and has determined

that if the grid size is reduced by a factor of h, then the number

of iterations is increased on the average by a factor of h 2, and

that the time required for computations is increased by a factor

42
of h because the number of grid points is increased as well by h

2

The initial conditions for the finer grid are identical to

those of the coarser grid with the exception of interpolations be-

tween the grid points of each of the fields involved.

NW A/ N E

wde t o e

If NW, NE, SW, and SE are the points in the 16 x 17 model, then

the value of a field at the other points are taken as
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Using the finer G model, the total EKE growth can be examined.

If an initial normal random error with amplitude .05 is applied to

the field of model A and used as initial Y in model B, then

the initial value for the EKE in this case is 2.2334 units. The

growth of EKE in both the dry and moist model cases is plotted in

Figure 3-9 on a logarithmic scale. Since these curves are also

approximately straight lines, it can be seen that the error growth is

close to exponential after t = 100 x 103 sec. Within 300 x 103 sec,

the value for EKE of the dry model reached 19.01 units or a growth

factor of 8.51 and that of the moist model (sea surface temperature

2920K) reached 20.9120 units or a factor of 9.36. By t = 500 x 103

sec, the EKE of the dry and moist cases had grown by factors of

52.8 and 36.4 respectively.

If one compares the finer and coarser grids, one can determine

a similar relationship in the dry and moist cases. Table 3-3 shows

the growth of EKE over its initial value for both the G and L grids.

One can see for example that the EKE growth in the 16 x 17 coarse

mesh model does not exceed that in the fine mesh model until t =

250 x 10 3, in both the dry and moist cases, and by t = 500 x 103

sec, the EKE growth of the coarse mesh is a factor of two greater



-66-
100.0

/x

200 300
I I I

400 500 600

TIME IN 103 SEC

Figure 3-9. Growth rates of error kinetic energy in the fine

(32 x 33) grid for the dry case (solid line) and the moist case

(broken line).
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Table 3-3. Growth of error

time (103 sec) 32 x 33 dry

0

50

100

150

200

250

300

350

400

450

500

1.000

1.205

1.660

2.601

4.114

5.519

8.513

12.747

18.513

25.761

36.371

-67-
kinetic energy

16 x 17 dry

1.000

1.118

1.225

1.996

3.619

6.252

10.793

16.297

23.553

42.264

78.812

over its initial value.

32 x 33 moist 16 x 17 moist

1.000

1.206

1.666

2.671

4.451

6.005

9.364

13.410

22.742

35.878

52.819

1.000

1.118

1.234

1.983

3.820

6.902

12.781

20.059

29.415

51.408

100.30
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than in the fine mesh case for both the dry and moist models.

If h is the distance between grid points and if Ed (h,t) and

E (h,t) are the dry and moist factors of EKE growth from an

initial state, the values from the table suggest that the same

relationship holds for both the moist and dry cases

Ea (t 1 0 > ) E ,( A,, i) _ - '

Ea (h , ) Em E )2, 1 )
(3.6)

and the function E() is represented in Figure 3-10.
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Figure 3-10. The average function E(t), the error growth of the

moist case over the dry case, averaged for both the coarse and

fine grids.
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3.5 Initial errors in the 1C field.

As one additional type of error which can be inserted into the

system, initial errors in the - field are applied in the 16 x 17 grid

point model in the same magnitude as those in the ' field, which

were discussed earlier (with amplitude .05). The results of EKE

growths are presented in Figure 3-llfor the dry and moist cases.

It can be seen that the moist and dry EKE values are very

close until t = 150 x 103 sec, and after that they diverge. By 400 x

103 sec, that of the moist case is 23% higher than that of the dry

case, and by 600 x 103 sec, the moist case has 49% higher errors than

the dry case. This is a more significant s ource of additional error

due to moisture than was observed when initial errors were placed into

the ' field, although the total levei of errors were lower. It is

understandable because initial errors in 1Z lead more directly to

errors in the 0 field. Afterwards, the interaction with the moisture

field comes into play with the release of latent heat. At this point,

disagreements in condensation lead to further errors in the temperature

field which are transferred to the wind field through the vorticity

equations. A s6hematic diagram of this process appears in Figure 3-12.

Initial errors were also placed in the humidity field at

different levels. The results of this study will be discussed in

Chapter 4 after the analysis of condensation regions is examined.
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Growth of error kinetic energy for initial errors in

the T field for the dry case (solid line) and moist case (broken line).
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Initial error source

Error kinetic energy

Figure 3-12. Schematic diagram of transfers of error energy.
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3.6 Ekman layer effect.

Furthermore, an additional investigation was carried out

in order to determine whether the omission of bottom vertical

velocities wo-:d be considered a significant factor in additional

error growth. To achieve this end, a vertical velocity was

added to the bottom boundary of the model which would come from

an Ekman layer, that is, which is proportional to the geostrophic

vorticity at the top of the bottom boundary (see equation

2.22). The resultant error kinetic energy growth in both the

dry and moist cases was almost identical to the growth without

the Ekman term. In each case, the difference of the EKE level

was only a factor of 1-2% greater.

Admittedly, an Ekman layer is not a completely realistic

bottom boundary condition, especially for small scale patterns of

vertical velocity. However, since this study is trying to relate

the effects of large-scale moisture patterns and the effect is

small on the scales treated here, it appears satisfactory for it

to be eliminated from the model equations.

I ----------
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3.7 Dependence of EKE growth upon initial error magnitude.

The initial error perturbation placed upon the system of

equations must naturally be of finite size, and so its growth

might be considered dependent upon the magnitude of the error. Since

the error kinetic energy can at a maximum be the total average

kinetic energy of the system, there is definitely a limit to the

size of the errors themselves. If the errors are considered small

enough, their self-interacting terms are small compared with all

the other terms in the equations and the error growth remains linear.

For example, Lorenz (1969b) considered the simple barotropic

vorticity equation for a streamfunction with and without time

dependent error g (that is to say, for ) and

?_ ( V (3.7)

The difference of the two solutions is then governed by the equation

J (9~& 17- T J(( j ~ (7~ (3.,8)

So long as /2/<.< 31/ , the growth of the errors is linear because

the last Jacobian term can be disregarded. In the present, more

complicated system, the same linear approximation is valid for

small errors.

This is borne out by experiments using the 16 x 17 grid point

model. Several sets of initial errorswere chosen from random number

sets of differing magnitudes and were added to the V' field. -
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At this point, it is important to determine the type of error

in the initial wind field which results from random errors in the

streamfunction field. An error E is chosen from a unit normal

probability distribution with amplitude A:

p(s) A e- (3.9)

Since the wind error is dependent upon the difference between

two neighboring streamfunction values:

one can determine the standard deviation of wind errors from this

equation. Let i, and E, be two adjacent values for the error

and D the distance between the grid points. Also let the expected

value of a quantity q, denoted by c.J2 be f .
-co

The standard deviation of wind magnitudes becomes

Since the probability distribution of E and E are independent

of one another, and their expected values

e 0 and <o> b td <>

we obtain

< U e- -
-OD0

(3.10)
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Equation (3.10) reduces to

- ~ ~ ~ ~ z Adz~7111~ z
D ~

2 -1
For an amplitude A = .05 x 1 km sec , and D = 100 km, the standard

deviation of initial wind errors is ..42 m sec . Since the average

winds are on the order of 10 m sec , then

I W I

Runs were made with probability distributions of three

different amplitudes

2 -1
A = .025 A =.05 A = 1 (in km sec )

12 3

and their resultant EKE growths are shown in Table 3-5.

A comparison of two runs with amplitudes A and A2 shows that

the EKE growth in case 2 remains a constant multiple of that in

case 1. Since the initial errcrswere chosen from amplitudes differ-

ing by a factor of 2, the EKE remains linear and grows by a factor

of 4, the square of 2.

However, when the third case is compared with either of the

two others, it can be seen that the error growth is linear so

long as the total errors do not exceed a critical factor. The

quantities EKE (A3) / EKE (A1) remains near the value 1600 or the

square of A3 / A= 40, for quite some time, (until t = 250 x 103

sec), at which point the error growth becomes non-linear for

EKE >, 300. The error growth of the third case slows down as soon
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or initial errors of varying magnitudes.

t

0

50

100

150

200

250

300

350

400

450

500

550

600

EKE (A1)

.0292

.0296

.0357

.0557

.1050

.1797

.3096

.4637

.6777

1.2376

2.3276

4.4775

9.5575

EKE (A2)

.1167

.1182

.1430

.2330

.4223

.7296

1.2596

1.9019

2.7487

4.9323

9.1974

17.8212

38.6227

EKE (A3)

46.69

47.37

59.82

91.83

178.99

309.26

375.83

421.80

485.22

512.83

527.62

589.60

635.06

EKE (A2) /EKE (A )

3.996

3.993

4.006

4.183

4.022

4.060

4.068

4.102

4.056

3.985

3.951

3.980

4.041

EKE (A3) /EKE (A )

1598

1600

1675

1648

1704

1720

1213

909

715

414

226

131

66
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as it approaches a maximum.

If N is the number of grid points, E the error kinetic energy

value, and U is the dimensional quantity 10 m sec~1, then the aver-

age wind deviation is

(E- X (3.11)

and in this case, for E = 300, N = 272, then

Q, = 7.1 m sec'

and so the non-linear phase of growth can be said to begin at the

point where the average error velocity is near this critical value.

3.8 Dependence of error kinetic energy growth rate on sea surface

temperatures.

As was mentioned previously, the error growth in the moist

model investigated here is strongly dependent upon the underlying

sea surface temperatures (SST). This is partially because of the

controlling factor that the sea surface temperature has upon the

amount of water vapor in the moist system. A greater quantity of

moisture which evaporates from the sea surface will in turn

condense at a greater rate. It is the uncertainty of condensation

which causes additional EKE growth, and more opportunities for

condensation will cause greater uncertainty.
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It has been found that additional growth in the large scale

moist case is most apparent with higher sea surface temperatures

(T > 287), below which the error growths have only a small

difference from the dry model.

Several experiments were performed using the model equations.

Earlier in this chapter details of EKE growth were presented repre-

senting the differences between T = 292 and T = 297. In these

cases, the entire bottom boundary was an isothermal surface. How-

ever, the question of a non-isothermal distribution of sea surface

temperatures becomes an important consideration.

Regions of high sea surface temperature were placed as bottom

boundaries in two different forms. At first, a small region consis-

ting of 9 grid point was set at 297 K. This was placed in the

domain, the rest of which was at 292 K. This is referred to as

experiment Sl.

The error growth remained at a level entirely between the EKE

levels of the two isothermal cases 292 and 297 throughout most of

the integration. However, the error Frowth level for most of the

integration time was much nearer that of the isothermal 297 K case

than would be expected since only 3% of the surface was at 297 K while

97% was at 292 K. Table 3-6 shows the EKE growths in the T = 292

and T = 297 isothermal cases as well as experiment Sl. If 100% is

the total difference between the two isothermal cases EKE values,

column 5 shows how much of this 100% is achieved in the EKE growth

of experiment S1 above the T = 292 value.



time

0
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500

550

600

Table 3-5 Error kinetic energy (EKE) growths

T=292,T=297, and experiment S1 (see text).

for sea surface temperatures

T=292

.1167

.1182

.1447

.2315

.4451

.7874

1.4173

2.1865

3.2565

5.6224

9.6163

18.8517

40.3344

T=297

.1167

.1182

.1440

.2314

.4458

.8055

1.4916

2.3409

3.4327

5.9994

11.1495

22.6468

44.5675

-80-
Exp. Si

.1167

.1182

.1448

.2315

.4565

.8148

1.4600

2.2588

3.4177

5.9065

9.9677

19.6753

42.7850

(S1-292 )/(297-292)

1.628

1.5138

.3055

.4682

.9149

.7536

.2292

.2170

.3388
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This might indicate that the highest value of temperature in

the domain is an important factor in error growth rather than the

average value of the surface temperature.

In a further experiment, S2, the sea surface temperature was

distributed so that a high spot of temperature, SH = 298 was at the

center and that the temperature gradually tapered off to the sides

proportionally to its distance away from the center. This proportion

was at an appropriate amount so that the temperature at the furthest

edge was a desired low value of temperature, SL =290. This was

achieved using the formula

c FaC ~ z (3.12)

It was found that the resultant EKE growth of experiment S2, as well

as its disagreement fraction of condensation points, was similar

to the values in S1.

As a further investigation, it was decided to see what would

happen if the temperature of the bottom boundary were not Uxed as

in the previous cases, but were allowed to adjust to the air temper-

ature above. Several different adjustment parameters were used.

At each time step of 2 x 103 sec, the value of surface temperature

was adjusted according to the formula

S (3.13)

where T is the temperatuere of the air extrapolated to the ground,

and S is the sea surface temperature.
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-4 -3
Three values of U were investigated, namely 10 , 10- , and

10-. To each of these corresponds a time constant-2. , which is

defined as the length of time it takes for the difference between

the sea surface temperature and the air temperature to be halved,

and this is calculated from

O'se (3.14)

The following table shows time constants corresponding to

different values for the quantity

TT

.1 1.8 hours

.01 19.9 hours

.001 8.0 days

.0001 80.2 days

From the values for ':P , it would appear that the adjustment para-

meter is somewhere within the range .31-.001. Error kinetic energy

values were observed using the adjustment parameters and it was seen

that for T = 292 K, initially the EKE value grew to 40.3344 without

adjustment, to 38.8140 corresponding to 24=.001, and to 42.0167

corresponding to =.0l. It can be seen that tl. ,moist error

growth is damped with a small adjustment but grows even greater with

the larger adjustment process than without it. This is understand-
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able becuase the larger adjustment might be thought of as an addi-

tional feedback to the system which leads to error growths.

It is possible that all the runs of the models could have

been made using a temperature adjustment similar to the one here.

Seemingly, this is a type of computational procedure which is an

approximation. So, as a class of parameters which is inexact,

this adjustment parameter is eliminated in the general case.
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Chapter 4. Condensation regions.

The exact physical nature of the condensation regions is of

interest in this study of the predictability of a moist atmosphere.

Although one might not determine an exact cause and effect relationship,

the fact that general levels of additional unpredictability due to

moisture processes, as measured by error kinetic energies, are

associated with the less precise location of the condensation regions

is an observation which is important to investigate.

In order to begin this discussion, it is important to remind the

reader that in the moist case, two simultaneous models, which are

referred to as the A and B models, are running and they start out with

a small initial departure from each other in the fields of the stream-

function. Each time condensation occurs in the lower level at a

grid point in either model at any time step, the fact is noted. The

condensation regions are then analyzed with respect to what is

occurring in the other model.

In order to illustrate the methods used, the fine model of

32 x 33 grid points is studied. For the particular run with random

numbers as initial errors, which was discussed in Chapter 3, the

spatial fields of condensation are represented in Figures 4-1 to 44a for

time steps T = 8 x 103 sec, 108, 208, 308, 408, and 500 x 103 sec.

At a given time step and grid point, the values 0,1,2, and 3 denote

the following:
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0 condensation not occurring in either model

1 condensation occurring in first model (A) only

2 condensation occurring in second model (B) only

3 condensation occurring in both first and second models

In this manner, it is possible to observe the large-scale patterns of

condensation for both the simultaneously running models.

Of interest is the determination of how patterns of condensation

of the two models spread apart from each other in tinge. Near the

start of the model run, the prevailing type of condensation is the

3 pattern. At t = 8 x 103 sec, several large regions of condensation

are seen distributed throughout the whole domain. There are small

patches of 1 and 2 types of condensation primarily adjacent to the

larger patches of type 3. This means that the condensation regions of

the two models closely coincide initially. For example, the region in

the upper left corner of the domain has condensation in both models,

but that in model A also occurs slightly to the west of the regions

of 2's and 3's, and that of B also occurs slightly to the east of l's

and 3's.

In time, the condensation of the two models tends not to agree

quite as well as it did in the earlier times, although, generally

speaking, regions of 1 and 2 condensation tend to be associated with

condensation in the other model.

At t = 108 x 103 sec, a general break-up of large regions of

condensation that occurred at former times is seen. In general, the

streamfunctions are associated with westerly winds, and regions of
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condensation tend to stay in the same latitude belt in the model. The

two regions of largely 3 type of condensation in the northern part of

the domain are associated with the past 3 region in the northwest-

erly part of the domain at t = 8 x 103 sec. It can be seen that there

are more l's and 2's in the patterns and that they again fall adjacent

to the other model's type of condensation.

NBy t = 208 x 103 sec, some of the condensation regions are chang-

ing their shape more radically. It should be remembered that, accor-

ding to the model, condensation is occurring only in the cases where

80% of the saturation water vapor levels is reached as well as where

the vertical velocities are upwards. Thus condensation reflects the

interaction of several fields, that is the streamfunction, temper-

ature and absolute humidity fields, which then determine the relative

humidity and vertical motion fields.

At this time step, the interactions of the above mentioned

fields lead to more convoluted condensation regions with a higher

proprotion of "disagreement" condensation regions. Additionally, there

are some isolated patches of 1 and 2 type of condensation, which are

spreading away from the main regions. This type of structure is seen

3as well at t=308 xl10 sec..

By t = 408 x 10 sec, whole regions of 1 and 2 type of condensa-

tion have been generated. For example, the 1 region marked P is

adjacent to the 2 region denoted Q. There is as well a separate 1

region denoted by R and a predominently 2 region marked S near each

other. However, there is still one large region of 3 type of conden-

sation which practically disappears by t = 500 x 103 sec. At that time,



-93-

there are several isolated patches throughout the domain of 1 and 2

type of condensation, and the type of condensation regions in models

A and B are considerably different in form from each other.

The proportion of disagreements in condensation points to the

total number of condensation grid points is kept account of. This

fraction is seen in Table 4-1 and Figure 4-7. In the figure,average frac-

tions of disagreements over the time steps 4-48, 28-72,52-100,76-124,

104-148,128-172, etc., (curve a) are plotted at the center of the

above time intervals. They are averaged in this manner because of

the rapid variations in time about the general trend. Near the start

of the runs, the average fraction of disagreements is small, about

.15. This quantity rises to .21 by t= 100, and then begins a more

rapid growth during the interval t = 100-200. Then the disagreement

fraction begins a more gradual growth from .48 until it reaches .85

at t = 500.

The 50% level is obtained at approximately t = 270, or a

period of 3.1 days. If average initial errors are not smaller than

the ones applied here, which are ab6ut .5 m-sec in the wind field,

one can make the implication that after 3 days, a prediction of

condensation using a model such as this one, will not be correct more

than 50% of the time due to the growth of small initial errors. The

fraction will be reduced additionally due to the other faults of the

model itself.
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Table 4-1. Average fractional number of disagreement conden-
sation grid points to total condensation grid points and dispersion
distances D1 and D2 '

Interval

4-24

4-48

28-72

52-100

76-124

104-148

128-172

152-200

176-224

204-248

228-272

252-300

276-324

304-348

328-372

352-400

376-424

404-448

428-472

452-500

476-500

Average fraction

.1556

.1737

.1860

.1882

.2091

.2494

.2959

.3796

.4752

.4818

.5093

.5735

.5774

.6007

.6497

.6891

.7205

.7312

.7614

.8146

.8435

D

1.1436

1.3722

1.5195

1.3440

1.3383

1.2985

1.4155

1.7271

1.6994

1.5828

1.5814

1.5049

1.5522

1.6561

1.7345

1.8118

1.9151

1.9293

' 1.8614

1.9623

2.0205

2

.1822

.2434

.2763

.2521

.2891

.3359

.4252

.6481

.7790

.7686

.7958

.8554.

.8942

.9969

1.1255

1.2604

1.3918

1.4128

1.4180

1.6006

1.7030
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Figure 4-7. (a) Average fractional condensation disagreement points,

(b) dispersion distance D1 (disagreement points only), and (c) disper-

sion distance D2 (all condensation points).
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4.1 Dispersion of condensation regions.

The dispersion between the condensation regions of the two

simultaneous models is measured in the following manner. If con-

densation occurs at a grid point in one model, then it is of inte-

rest to determine the distance to the nearest grid point in

the other model at which condensation occurs. It can be assumed

that when condensation does not occur at the exact location in the

other model, then the nearest location where it does occur is

associated with the condensation point in this model.

The points at which condensation occurs can be described

as a set P. ,which can be ordered so that the distance to

the nearest condensation point in the other model is increasing

with increasing i. The minimum distance for each point P. is

termed d.. At a particular time step t, there are L(t) conden-

sation points, K (t) being the number of agreement points and

K (t) being the number of disagreement points. Therefore, L(t)

= K0 (t) + K (t). For each of the V points, i = (1,K ), d =

0, and for each of the K points, i = ( K +1,L) , d > 0.

The average quantities for d and their behavior in time are

interesting to analyze and are done so in Table 4-1 and Figure

4-7. The third column in the table and curve (b) in the figure

refer to the average distance to the nearest condensation point

in the other model but only for the "disagreement" points, P

i = (K + 1, L). This is di. The minimum possible



-97-

value for this average is 1.0 because the minimum possible dis-

tance to another grid point is 1.0 units.

The average distance away including all condensation points,

for both agreement and disagreement grid points, which is

1227 L , is seen as colum 4 in Table 4-1 and curve (c)

in Figure 4-7. The minimum possible value for i is 0.0, which

would occur if there were only agreement condensation points and

no disagreement ones. In the above table and figure, the value

of D, and Dare averaged over several time steps, those being

the ones described for the average fraction of condensation dis-

agreements.

The quantities D, and are, generally speaking, two in-

creasing functions of time and this indicates that the average

associated distance is increasing with time. The reason that ,

is increasing more steadily than D, is that in J, , a larger

fraction of condensation points are being included in the

average.

By t = 500, the quantity has grown by a factor of 9.3.

In prediction of condensation by this model, the average error

distance in predicting condensation regions will grow by a factor

of 4 in 3 days and by about a factor of 10 in 6 days, due to growth

of small initial errors alone.

The dispersion of condensation regions can be seen even more

so when one observes the distribution in time of d. for i = 1,L.

For each time step, the fraction of values for di which fall in
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the interval J-14 d.< J for J > 1 can be denoted by D (J). In

this manner

D(Tr) =-.0O

Furthermore, this process can be done for all the condensation points

within an interval of time steps. Table 4-2 has the distribution of

D (J) for the time steps 4-48, 52-100, 104-148, 152-200, etc.

The values of this distribution are plotted in Figure 4-8

for every other time interval of Table 4-2. It can be seen that the

fraction of minimum distances which occur in the interval 0 ' d < 1

is a monotonically decreasing function of time. However, the fraction

whose minimum distance is within a certain space interval is a

constantly increasing function of time for each space interval other

than 0 !i d * 1. Again, this shows how the condensation regions are

spreading out in time.

The part of each individual curve which is greater than J =1

during each time interval can be approximated with some accuracy

by both a decaying exponential curve ( be'c ) and by a decaying

square-exponential curve (Gaussian) ( be -'Cx. The procedure for

determining the parameters b and c in each case to best fit the data

with a least-square fit is described in detail in Appendix 2. Table 4-3

represents the parameters which create the best fitting curves for both

b e and be-x, as well as the standard deviation. value

, '/2
C for the Gaussian fit.

The fact that the total area under the curves in not equal

to 1 is explained by the fact that they do not include the first point,
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Table A-2. Distribution of condensation dispersion distances for

time intervals
Distances in 100 km

0-1 1-2 2-3

.8262 .1457 .014

.8127 .1567 .018

.7519 .2201 .009

.6203 .2733 .052

.5197 .3630 .062

.4756 .3811 .094

.4053 .4443,.079

.31121.4669 .102

.2824 .4524 .146

.18981.4938 .21

7

5

3-4

.0096

.0071

.0108

.0217

.0303

.0256

.0303

.0256

time

4-48

52-100

104-148

152-200

204-248

252-300

304-348

352-400

404-448

452-500

4-5

.0039

.0035

.0032

.0145

.0131

.0112

.0151

.0276

.0256

.0220

5-6 6-7___ 7-8

.0000 .0000 .0000

.0012 .0000 .0000

.0033 .0011 .0000

.0021 .0048 .0012

.00811.0010 .0000

.0056 0032 .0016

.0175 .0031 .0039

.0184 1.0073 .0027

.0205 .0091 .0061

.0163 .0068 .0038

18-9

.0000

.0000

.0000

.0000

.0010

.0016

.0007

.0009

.0020

.0029

3 .0542

4E .0719
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Table 4-3. Best fit curves for decaying exponential, square exponen-

tial, and standard deviation (in units of 100 km)

Time b 1 c b2  c2 c2-1/2

4-48 1.2983 2.188 .3102 .7560 1.150

52-100 1.2154 2.049 .3139 .6950 1.200

104-148 4.6240 3.045 .6215 1.038 .982

152-200 1.2804 1.547 .4640 .5310 1.372

204-248 1.8616 1.637 .6365 .5630 1.332

252-300 1.5046 1.374 .5952 .4480 1.494

304-348 2.2683 1.632 .7731 .5550 1.342

352-400 1.7432 1.324 .7366 .4610 1.473

404-448 1.3261 1.079 .6328 .3430 1.707

452-500 1.2216 .900 .6354 .2590 1.965
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that is, all distances greater than or equal to zero and less than

one (that is, only zero distance.) For the total magnitude to be

equivalent for all the time intervals, the value for b should be

divided by the total fraction of non-zero distances.

It is clear that whenever condensation occurs in model A the

distance to the nearest condensation point in B ( and vice versa)

is a distribution which cnanges in time and becomes a flatter

distribution as time tincreases. This distribution would contribute

to a spectrum of error impulses, which is the subject of a later

section.
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4.2 Theoretical spectrum of imparted error impulses.

In the situation where two simultaneous models, with a small

initial departure from each other are running with time, each case

of condensation at a grid point represents an impulse of energy into

the system because of the release of latent heat. If condensation

occurs at the same grid point during the same time step, it will

be assumed that equal quantities of energy are being imparted to

the A and B models and so no error energy is added to the system.

If, however, a condensation impulse occurs in one model and not at

the simultaneous grid point in the other, error energy is then

imparted into the system.

The probability of condensation occurrence is dependent upon

a number of factors. First, it can be assumed that as one of them,

the probability of condensation at a grid point in one model is

dependent upon the distance away from the grid points which are

condensing in the other, simultaneous model. Furthermore, it is

dependent upon a certain non-negative field which multiplies the

first distribution. This field is positive when condensation can

occur (that is, with upward motion and relative humidity above a

necessary threshold) and zero when condensation cannot occur. Its

magnitude when positive is proportional to the value for (0
at

As one reasonable assumption the probability distribution
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with respect to the distance can be thought of as a Gaussian whose

standard deviation is a distance away which varies with the model

type and time. This assumption is related to the statistical

dispersion of condensation regions and their distribution with

time, as described earlier in this chapter.

Appendix 3 describes a procedure to determine how the error

impulses imparted to the system are decomposed to their spectral

components. In both one-dimensional cyclic and two-dimensionally

singly cyclic domains, the resulting spectral components are

determined from various values of standard deviation distance of

the Gaussian distribution and also for various sets of fields

which form the multiplicative factor as described above.

The study of an imparted error energy impulse spectrum is

important so that one can determine in which scales errors appear

first. This can be tied in to other theoretical studies which

describe fluid motions using observed atmospheric energy spectra.

With the addition of an error energy impulse spectrum, a future

study might yield better estimates ot predictability times at

different atmospheric scales.

The form of ,the one dimensional spectral component of

wavenumber n and that of G,,t)y , the two dimensional spectral

component of wavenumber (n n y) from a grand ensemble of condensation

points have expected values (see Appendix 3)
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The second set of conditions represents cell motion of

half rising, half sinking fluid.

Figures 4-9 and 4-10 reveal the spectrum of error impulses

for wavenumbers 1-16 per wavenumber, imparted for each of the above

two cases for N = 32. Wavenumber k represents that scale whose

N
wavelength is N x grid point spacing. In the case where the grid

k

point spacing is 100 km, wavenumber 16 has a scale of 200 km and

wavenumber 2 has a scale of 1600 km.

All values of error impulses are in units of - LF e (see

p

Chapter 2), which is the amount of heat released at condensation

-3 -1
for a value 6J = -10 mb sec . Since L = 2520 erg/gm, F ~

.012, and p 750 mb, the error impulses are in units of 4 x 10-5

erg/gm sec~1

The standard deviation refers to that of the Gaussian proba-

bility distribution. It can be seen that the highest levels of

error energy are imparted to the highest wavenumbers. Though that

is the case, the differences with respect to wavenumber at the

higher wavenumbers (smaller scale.< are not quite as great because

of almost horizontal lines in constant error energy levels in the

figure. In Figure 4-9, for example, a standard deviation of

1.0 (100 km) for disagreement condensation, wavenumber 8 has .025
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Figure 4-9. Error impulses as a function of wavenumber and standard

deviation of Gaussian fit (one-dimensional case) See text.
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units of error energy imparted to it. For a standard deviation '

double that, 2.0, the same wavenumber has an error energy of .263

imparted to it, or an additional factor of 10.5.

In the second case (half ones, half zeros), the distribution

of error energy imparted is similar in structure to that of the

first case, but is approximately half the error energy for corre-

sponding wavenumbers and standard deviation levels, because on the

average, only half of the condensation can occur.

For the two-dimensional case, error energy impulses per

scalar wavenumber were imparted as a distrubion of wavenumber

and standard deviation of the Gaussian fit. These were computed

for (1) a multiplicative factor [,j which are all ones and (2)

for a multiplicative factor which is representative of one of the

&j] fields occurring in the model. These are presented in

Figures 4-11 and 4-12. The two-dimensional error impulse distri-

butions were computed however, for a 16 x 16 grid point domain

where the length was 3200 km. The scalar wavenumbers from 1 to

12 are computed as in the appendix.

As in the one-dimensional case, the error imparted per wave-

number increases with scalar wavenumber for each value of standard

deviation. In Figure 4-11, for example, at wavenumber 8, the

incL 4se from standard deviation 1.0 to 2.0 involves increase in

impulse from 1.3 to 8.6 units, and for the representative E-0)

case, (Figure 4-12) from 1.15 to 7.25, or factors of 6.5 and 6.3

respectively.
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Figure 4-11. Error impulses as a function of wavenumber and standard

deviation of Gaussian fit (two-dimensional case).
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It is not clear whether the representative multiplicative

factor should be included, or whether its influence is actually

already included when the standard deviation distance for the

Gaussian is obtained. In any case, from the start of the model

run to t = 500 x 103 sec, the standard deviation distance increases

from approximately 1.0 to 2.0 units, and so the error impulse is

actually an additional factor of about 6.4.

As a further study, it was decided to use the probability dis-

tribution from Table 4-2 for each time interval for the specific

run cited in the earlier part of this chApter as a factor for

determining p ( x, x 0) ( see Appendix 3) instead of the Gaussian

method. The error impulses for each time interval as a function

of wavenumber from one to 12 are shown in Figure 4-13 from the start

of the model run to t = 500 x 103 sec. It can be seen that at the

start of the run, for example, during the time interval 4-48 x 103

sec, the error impulses are indeed similar to those of the Gaussian

fit of Figure 4-12. However, one chief difference is that for

advanced values of time, the error energy impulses at the smallest

wavenumbers are greater than in the Gaussian case.

Total amounts of error energy which are imparted to the system

can be approximated by the integral

ewhe=rf EEk) er c/k e-

where E (k) is the energy per scalar wavenumnber per time. As an
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example, in the 32 x 33 grid point model, the value for the run

with E (k) as in Figure 4-13 is equivalent to

3 -5 -1 -1
1852 x 50 x 10 sec x 4 x 10 erg gm sec

which, by t = 500 x 103 sec, is applied directly to error energy,

and would be equivalent to a root-mean-square error wind of

.61 m sec . The difference in error kinetic energies between the

dry and moist cases of the model of 36.6 units is equivalent to

1.86 m sec 1, or close to 3 times the imparted equivalent error

wind value. So the error introduced directly from condensation

disagreement is only about 1/6 of the eventual error kinetic

energy. The balance of the error kinetic energy comes from

interactions themselves between the temperature and streamfunction

fields.
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4.3 Effect of initial errors in the humidity field.

Several runs of the 16 x 17 model were made in order to determine

how errors will grow from a case in which initial errors are placed

in the humidity field. As the only initial perturbation, normal

random numbers were added to the q1 field at several amplitudes.

(Amplitudes denote the factor multiplying numbers in a normal (0,1)

distribution.) The level of error kinetic energy is shown in Figure

4-14 for three average perturbation amplitudes: (a) 1 gm kg~ , (b)

-1 -1
2.5 gm kg and (c) 5 gm kg

Since initially there is not error kinetic energy, (no initial

and ' errors), the only EKE is generated by means of interaction

of the humidity and motion fields, which occurs indirectly only as

a result of condensation, and more specifically, "disagreement"

condensation.

The fractional growth rate of EKE in all amplitude cases is

similar. Between t = 100 x 103 sec and 600 x 103 sec, EKE grows from

.0009 units to 1.3548 units in the :::: 1 gm kg 1 case, from .0026

to 5.7751 in the - 2.5 gm kg 1 case, and in the Z 5 gm kg 1

case, or by factors of 1505,2221 and 1577 respectively.

For the various runs, the average fraction of the number of

disagreements in condensation averaged sequentially over each 50 x

103 sec are plotted in Figure 4-15. In both cases the disagreement

fractions exhibit similar behavior except in the order of magnitude,

which differs by a factor of approximately 2.6 between cases (a) and
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Figure 4-14. Error kinetic energy for runs with initial error in the

absolute humidity fields for three different amplitudes.
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(c). All cases have decreasing fractional condensation disagreements

until t = 350 x 103 sec and thereafter increasing levels of dis-

agreements.

Initially, since the fields of relative humidity have the error,

the disagreement is high until enough condensation has occurred to

bring the humidity pattern of the two simultaneous runs more nearly

similar. A higher rate of fractional EKE growth occurs initially

(from all to 350 x 103 sec) than occurs later (350 x 600 x 103 sec)

in all three models (see Table 4-4 below), and this can be identified

with the higher level of fractional disagreements and the condensation

which is occurring in order to reduce the disagreement level.

Table 4-4 . Relative EKE values for 100-350 x 103 see, and

350-600 x 103 sec.

Amplitude of JO- 100-350 350-600

1 gm kg~1  100.2 15.0

2.5 gm kg 1  110.2 20.2

5 gm kg- 122.1 12.9
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Although the fractional growth rate for EKE is greater in the

case with initial errors in the humidity field compared with initial

errors in the wind field, the size of the independent errors in the

humidity field case remains smaller--a maximum factor of .05 for

1 gm kg in the 16 x 17 case; however, the error levels of the

initial humidity errors case becomes comparable to the error in the

wind field at an initial error nearer to amplitude ;t 5 gm kg~
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Chapter 5. Statistics of error growths.

In order to generalize results about error growths in the dry

and moist model cases, it was decided to run a larger number of simul-

taneous pairs in both the dry and moist states. The purpose of this

was to demonstrate that the experiments described earlier were indeed

"representative", and that no unusual behavior occurred by happenstance.

Because computer resources and time were limited, it was not

possible to repeat each type of experiment many times in order to

obtain statistics of error growths for each of the many studies done

in earlier chapters. It is thus done as one experiment here, in order

to observe error growth in general.

For the present study, 15 simultaneous pairs of runs were

attempted in both the dry and moist cases, making 30 pairs in all. The

pairs have initial states differing by a small amount in the wind field,

and the identical state pairs are used as initial states in both the

dry and moist cases. The models used were the 32 x 33 grid point

(G) model without dissipation, and the bottom boundary temperature

was set at T = 297 K. The initial states and their departures from

each other were chosen from the unit normal random number generator

(see Chapter 3). For this study, the followingindices were computed:

(1) Error kinetic energies (EKE) as defined in Chapter 2
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(2) Square errors in potential temperature (labeled STE) for

both the dry and moist states

z., L (6 .a)- 212
3rires

and (3) in the moist model, square errors in the absolute

humidity field value of the lower level (labeled SHE)

Table 5-1 shows, for t = 0 to 600 x 103 sec in 100 x 103 sec

time steps, the 15-pair root mean square wind error, measured in m sec ,

derived from EKE, for the dry run in column 1, and that of the moist

run in column 2. The root. mean square temperature error in

( K) , derived from STE, of the dry run is in column 3, and that of

the moist case is tabulated in column 4. The final column shows the root

mean square error in absolute humidity in (gm kg ) . In this way,

the average root-mean square wind error is .43 m sec at t = 0

for both the dry and moist cases, and 4.69 and 5.17 m sec~1 at

600 x 10 sec for the dry and moist cases, respectively. Likewise, the

root-mean square temperature error grows from 0 to 1.14 and 1.29 0K

respectively for the dry and moist cases at 600 x 103 sec. The root-

mean square humidity error is computed to be .57 gm kg~ at 600 x 103

sec in the moist model, and it has started from zero.

The relative errors for both the EKE and STE in the moist and

dry cases are pictured in Figures 5-1 and 5-2. For each of 15 pairs
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Table 5-1. Average errors from sample of 15 pairs of runs.

Time

(10 3sec)

0

100

200

300

400

500

600

RMS wind
error dry
(m sec-1)

.430

.528

.855

1.468

2.413

3.493

4.698

Growth factors between

EKE-dry

79.0

RMS wind
error moi
(m sec-

.430

.529

.870

1.496

2.524

3.831

5.170

100 and

EKE-moist

95.5

RMS temp.
st error dry

(0K)

.000

.071

.203

.414

.706

.960

1.144

600 x 103 se

STE-dry

263.5

RMS temp.
error moist
( K)

.000

.074

.219

.441

.783

1.062

1.292

c in the valu

STE-moist

304.8

RMS humidity
error -l
(gm kg)

.000

.058

.165

.288

.416

.512

.571

of

SHE-moist

96.6
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Figure 5-1. Relative error kinetic energies of the moist and dry

cases for 15 pairs of runs.
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of cases the error fraction MOIST/DRY level are plotted for EKE

and STE, and their mean values are connected and are the curves in

the figures. Furthermore, a bar is used to denote the standard

deviation values at each particular time step.

It can be seen that the MOIST/DRY fraction of EKE starts

near 1 and grows to 1.20 by 600 x 103 sec. Although the standard

deviation might appear to be large, the error in kinetic energy

remains between 10% and 30% greater in the moist case over the

dry case.

The average temperature error starts near 10% larger and grows

to 28% larger in the moist compared with the dry case. At this point

the standard deviation reveals the fact that 1 2e or about 82%

of the values would fall between 20% and 36% higher.

The results of the statistical study shown in this chapter

would demonstrate that the earlier model state and the corresponding

studies which were executed first, are indeed representative of the

general types of error growths.

One can observe from this study that errors in temperatures

seem to behave in similar fashion as errors in error kinetic energies

in that they both grow to an order of 20% greater in the moist case

over the dry case in the time period examined.

It is interesting to note the overall growth factors of

error types, which are on the bottom line of Table 5-1. While

EKE values are initially non-zero, those of STE and SHE are initially
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zero, because error is inserted in the wind field only in this

experiment. The entire STE and SHE errors are generated from the

model itself, which between 100 and 600 x 103 sec grow in the

factors shown.

The overall level of both temperature and humidity errors

seem small, in comparison to acceptable levels in forecasts, although

even a level of .57 gm kg~1 in error could make a critical difference

between condensation occurring and not occurring.

The reason that this level does not grow too large is that

when the absolute humidity of the two simultaneous runs diverge

greatly, the higher one is bound to approach saturation value and at

this point its growth would be terminated. The error growth would be

transferred to STE and then into EKE growth, first from interactions

between the temperature and humidity fields (release of latent heat),

and then from interactions between the wind and temperature fields.
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Chapter 6. Summary and conclusions.

A study of atmospheric predictability, which is an attempt

to discover the maximum length of time it is possible to predict

the physical properties and dynamics of a fluid, requires an

understanding of the processes chiefly responsible for predictive

error growths. Past investigations have usually set upper bounds

on the order of two weeks for predictability times.

Most of these past theoretical and numerical studies have

either treated the fluid as idealized and dry and subjected it to

analysis of error growth of different scales, or have been exper-

iments with complete versions of the large general circulation

models, which use huge computer resources, and which attempt to be

as complex as the atmosphere itself. Only a more direct and

pointed investigation can lead to a better understanding of the

generation of errors in atmospheric prediction.

Since it has often been concluded from these studies that

there is an inherent limit to the predictability of the atmosphere

due to small perturbations (or errors), and furthermore, that a

reduction in error size, no matt' - how small, would still lead to

the maximum error level within the same limiting time, one might

just consider the problem solved. However, various physical

processes can affect the growth of errors in different ways, in

that the motions of a fluid might be more sensitive to the in-
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correct prescription of certain of the physical processes than

to others. After isolating the most sensitive parameters, then

the future modeling work could be pointed in directions more in

need of improvement, so that predictions might approach the

maximum time possible.

It is hoped here to isolate the additional effects due to

large scale moisture patterns in the equations of motion and thermo-

dynamics of the atmosphere. A comparison with other studies

might yield the relative importance of large scale moisture with

other factors in the prediction problem.

The chief results of the study is that, while moisture creates

additional error growth, and this is apparent after about 2 days,

it is not quite as strong as had been earlier anticipated, being

limited to an additional growth on the order of 20% more in both

error kinetic energies and mean square temperature errors upon

introduction of errors in the wind field.

The conclusions of this investigation were of course dependent

upon the model used-a quasi-geostrophic grid point model of limited

domain (Lorenz, 1960). Unfortunately, the domain limitation was

a factor which it was hoped could be avoided, but the resolution

desired (100 km) made a hemispheric size grid Doint model too

costly in terms of computer time.

The chief asset of this model is the accurate description of

the temperature and wind field in two layers in a model which was

designed for the purpose of conserving energy. It has a static
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stability which can change in location and time, and furthermore,

it can be adapted easily to incorporate effects of latent heat

release.

While many other studies treat models in the spectral

form, it was decided here to use the grid-point form because of

the moisture and the criterion for the process of condensation.

While it is meaningful to describe winds and temperature processes

in spectral form, it is questionable what the meaning of a conden-

sation process would be in such a model type. The significance of

the questions: (1) Is there rising motion? and (2) Is q > .8 x qsat

would be impossible to answer in spectral form because then conden-

sation would end up occurring in regions where the atmospheric

conditions are not at all appropriate.

In general, it was found that both the error kinetic energy

and temperature errors behave in a similar fashion, and so it would

not seem to be that critical which index was used as a measure of

error growth.

In addition, various types of initial errors were inserted

into the model in order to determine those which might cause

greater and lesser growth of errors.

Initial errors which correspond to about .5 m sec were placed

in both the (1) average streamfunction field of the two levels, ' ,

and (2) the field of the streamfunction difference of the two levels,

(which is related to the average temperature in the quasi-

geostrophic model), and errors were placed in (3) the absolute humid-
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ity field, q, of 1 gm kg~ . The average errors generated into

case (1) was a factor of 4 greater than those of case (2), and

about a factor of 20 greater than those of case (3).

It has been shown that, on the basis of extended model

runs using initial error values as stated in the previous para-

graph, there is a level-off point in errors in the models, which

are 16.3 days and 13.8 days respectively in the dry and moist

models. This difference of 2.5 days represents the additional

period of time which a dry atmosphere is predictable past that of

a moist atmosphere, based upon the veracity of this model. Both

values are near the two-week limit for predictability, though, which

has often been cited in the literature.

Next, the question of whether the atmospheric model included

enough factors within the context of the desire to determine predicta-

bility, without including ones which might mask error growths was

considered. For example, it was concluded that the addition of Ekman

pumping yielded small but similar additional error kinetic

energies to both the dry and moist cases, and it is this type of

process which might be eliminated.

In order to question the accuracy that the representative

pairs of runs described in Chapter 3 had, it was decided to test 15

identical pairs of runs, with each differing by small sets of random

numbers. The additional moist over dry effect was noted, but

again, not in the magnitude which would lead one to believe that
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large-scale moisture has an overwhelming effect on predictability.

It would probably be useful, in a further study, to try to

include the effects of smaller scale moisture either by decreasing

grid size more dramatically, or by actually parameterizing the moisture.

Although it was found that in two different resolution models, the

additional fraction of error growths were similar, the case might occur

that even finer resolutions would lead to a different type of error

growth. It is believed that this model does include all the important

thermodynamic and dynamic effects which give an idea of how large-scale

moisture influences error growths. No attempt, however, was made to

include the radiative effects of water vapor and clouds in this study.

The actual condensation regions were studied, and it was deter-

mined that small initial errors in the wind field lead very rapidly to

an incorrect prescription of the locations of condensation occurrence.

Within 5 days, based upon small initial errors near .5 m sec~ in the

wind field, the regions of condensation in this particular study can be

predicted to only within at least 200 km; however, this error is due

only to the growth of small initial errors in the model itself, and it

does not include the additional uncertainty which would be added if

the errors from other factors were included such as those derived from

the approximate nature of the physics and the simplification arising

from a 2-level effect.

The spatial prediction of condensation grid points was examined

by determining the agreement or disagreement of condensation at a

grid point, and also the distance of a condensation point away from
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the nearest predicted condensation point is studied. The distri-

bution of this distance was examined and it was concluded that it

can be approximated reasonably by a Gaussian form with standard

deviation in distance which increases in time.

A general theory has been developed to calculate the additional

uncertain energy which is transmitted to the system due to the

release of latent heat, and it was noted that error energy is

primarily added to the smallest scales of the spectrum. Since

the highest wavenumber which is resolvable is that whose wavelength

is twice the grid point distance (200 km), errors in still smaller

scales can not be included in this method.

It is hoped that a more general theory can be developed which

treats the generation of error energy in all scales more accurately.

One suggestion for future work in the field is to adapt turbulence

models in order to incorporate a phase-change variable simulating

an inert and conservative quantity (carried along with the flow)

during certain conditions, and its diminution with the release of

heat when a certain threshold is reached. Furthermore, it is

important to compare predictability studies with all types of

additional factors present.

Although the inherent limits to prediction of atmospheric

motions and thermodynamics do seem to exist due to the inevitable

growth of small errors, a full understanding of the type of error

growths is essential. When one is aware of what the best conditions
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are, and the largest sources of predictive errors, then one can

use that knowledge in order to predict with the maximum potential

skill.
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Appendix 1.

Approximation in the -equation.

The approximation 7 i7Zfl< 7'Tr- Y is justified

by an analysis of the error energy introduced by its use. If it

is assumed, one should look at Equation (2.1) to determine the

neglected difference in ? if the term V pI. i k

is omitted. This difference is

The equivalent difference in kinetic energy in a time step is

Z4 K'E -- l 7--V z - Z u -c -,4 7

and with the help of equation (2.5) reduces to

A ~ ~ ~ V k'z Gbcf a 7{r37

(Al.1)

In order to determine assume that the true

solution to the X- equation is XIAPPX4 AX where

A fPROA is the solution to the X-equation without the

term 9 70-- '. The equation is as fol" s

V VCr X - e(Al.2)
bcP

Substituting and into appropriate equations and

setting the results equal to each other, the following is obtained
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f2.

(Al.3)

-~ V, -X =

which, after noting that , 9 +- A , it is found that

V2_

(Al.4)

Now it is desirable to estimate . Since the second term

on the right hand side of (Al.4) is smaller in magnitude than the

first, it will be neglected.

Since O' is the static stability, it is close to a constant

value for the r.egion and departures from its mean are small, i.e.

S -~ 0~+~ , where o([-,) . But values f or vary

comparably to its mean and so % X - where _ 6Yi)

Relation (Al.4) when used to approximate ZSX yields

because if ,-' is after a V sign, it lowers the order of mag-

nitude, tut if X is after a 7 sign, its order of magnitude remains

the same.

Thus relation (Al.1), when evaluated yields

2 Ki . - 6 vZ)
ft (A1.e)

when typical values of the parameters are inserted.
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If the typical flow is represented by for a

perturbation error, the kinetic energy of perturbation is A 7 V, FY

: 2for the perturbation .1 of the flow values, for typical

values an estimation of the kinetic energy of perturbation is

-A KE e (Al.6)

Comparing values (Al.5) and (Al.6), it would take on the order of 107

sec for errors due to the neglect of the second term in the

equation to be comparable to the perturbation kinetic energy.

Since the model will be run only to 106 sec at the maximum, the

above approximation can be made.
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Appendix 2.

The best exponential and square exponential fit for a data set.

It is desired to determine a best least-square fit for a

certain two-parameter function Y{): =( kbcx)for a set of points

. The general least-square condition is that

1.~mz -~e Ar (b ) () kv-- (A2.1)

(see, for example, Hamming, pp. 244-248.)

This minimum condition is satisfied if

(A2.2)

(A2.3)

Thus this problem reduces to the case of two equations in the

two unknowns b and c. In the case where A bcy) is not a

linear function of b and c, the two associated equations are non-

linear and might possibly require numerical techniques to solve.

If it is desired to fit beCK , the two associated

equations become

(A2.4)

Bot4 ad ( c br b(A2.5)

Both Equation (A2.4) and (A2.5) can be solved for b:
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b (A2. 6)

(A2. 7)

where the overbar refers to a summation of i from

1 to N. A table can be produced for successively incremented

values of c within a proscribed range. In this manner, b can

be computed from both Equations (A2.6) and (A2.7). When the two

values for b are equal, the corresponding value for c and that

value for b are used in the two parameter fit.

In order to fit the data to the function A x)

a similar procedure as the above is followed, but using the two

equations

O= ( - be'' )e~'(A2.8)
'=4

At

0 ~ (A2.9)

which lead to two relations for b, similar to (A2.6) and (A2.7)

y__ (A2.10)

(A2.ll)
2-
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Appendix 3

Spectral decomposition of error impulses.

For two simultaneous models, A and B, each case of condensation at a

grid point represents an impulse of energy into the system for either model.

If an impulse occurs in one model and not in the other, error energy is being

imparted into the system. The assumption is made that the condensation

occurrence is a function of distance in model B from a condensing grid point

in model A. The method of determining the decomposition into spectral com-

ponents is the subject of this appendix. First, it is instructive to specify

the method if the domain were a one-dimensional set of grid points, before

discussing the analagous two-dimensional case.

I. One-dimensional cyclic case.

Assume that the domain is of one dimension in the x-direction, cyclic,

and of length N(X and that a grid point m0 occurs at a distance X0 in c AX

If condensation occurs in model A at the point m0, then there is a probability

of condensation occurrence-in model B at the same time at a grid point m

which is related to its distance away from m. The probability of conden-

sation occurring in model B at a grid point m (or at x) where x = 03 AX is

p (x,x ). In the case where the distribution is represented as a Gaussian

function of distance away from m , the probability p (x,x ) can be written as

AX +z

~(X)Xo r (i~%i) x



-140-

Here JK-Xo refers to the smallest distance from x to x taking into

account the cyclic nature of the domain.

If an impulse (condensation) occurs in model A at m0, firstly it will

be considered to be of magnitude one, and thus F = 1. The contribution
0

of this impulse to the nth component of the spectrum of model A is

N-1 17 rrirwi eIN

where G is the spect-ral component of wavenumber n, GR m e
n # P Mg0O

The corresponding impulse to the nth spectral component in model B is

determined in the following manner. Each grid point (L, #-)can have a

condensation impulse according to the probability p(m,m ) and so the expected

contribution from the sum of impulses is

<G2>=9 p(m,rz) e< GM

/1-I z
22 /l dx

7'/N

The brackets < ) around the symbol Gnmo refer to its expected value.

In addition to the probability distribution of condensation points, there

is an additional factor in the magnitude of the impulse. This comes from the

fact that condensation will occur proportionately to the vertical velocity

(actually to 0)), if 6) is of one sign (negative) and that condensation will

not occur at all if ) is of the other sign. The square brackets around 4W

refer to:

L-CQI =

£-cKl=

w(O

w~O
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So to the expected value of the nth spectral component of model B

corresponding to condensation at m , the additional factors are added

G <pm ,) L 'je z Tr5/1/i

For an impulse at m , then there is an nth spectral component for both

model A and B and if the impulse can occur at grid point m with the magnitude

error energy will be imparted to the system's nth component in the

amount IIfra igG where I-- refers to the magnitude of the difference

between the two energies'of models A and B.

Furthermore, a net expected value of the error impulse spectrum is

determined from a grand ensemble in which model A has condensation at points

0 to N-1 at magnitude land for each m in model A, model B has corresponding

expected condensation. The grand ensemble expected value for component n

is noted by G and is computed in the following manner:
n

N-1

II. Two-dimensional singly cyclic case.

The case of a two-dimensional domain, which is an M x N grid point region

cyclic in the x-direction is analagous to that in one-dimension for two

simultaneously running models A and B. At e7 'h point (m,m ) in model A,
oxoy

condensation may occur, and furthermore, considering the occurrence at (m9,m )

the probability of condensation occurrence is a certain distribution I-

p (x,y,x9,y ) which is assumed to be a function of the difference in distance

between (m my) and (m ,m). If yo r, 4X and A07 AX , the distance d is
ox oy y OiOx
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d J(x0, yO) - (x,y)l

which is measured considering the singly cyclic region.

The model A impulse of the two-dimensional case has spectral

component n ,n

-- -A7

a1Xny'

where r).,W, -=

The probability that condensation will occur at a location in model

B is considered to be dependent upon only the distance from the

condensation. If again, the function is considered a Gaussian,

Ph'a2, Kri -)" J1, Y }
f-T

2

T.

AV

v--i-

Thus the n ,n spectral component for model B is computed as follows

for each (m ,m )

fl' ryO

The spectral component of the error impulse is obtained by

means of the difference between the expected values of models A and

B, that is,

1) GA - <cGo)II1

z

C1el_ y

P (X J ' YD ) / ; ) [ - &J. -01 'r /Y7 / i - r-y-f t2mr; M-,h" r,'A,/,Iv)
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Furthermore, a grand ensemble analagous to that in the one-dimen-

sional case is obtained

-. X-. /\/-

GN= O_ {y4 G(h - GfjI
In addition, the average value for the spectral component of a

given scalar wavevector of magnitude ([)-n ) can be obtained

by combining the value of each spectral component to a distri-

bution dependent upon the magnitude of the scalar component's

wavevector. This is known as the expected scalar wavevector of

the grand ensemble 6 .
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Appendix 4

Derivation of the increase of moisture in saturated air.

The following derivation of the time change of water vapor is

adapted from Haltiner (1971).

The equation of continuity of water vapor is as follows

4%- - -- V . J1,V + S
De - 5(A4.1)

where S represents any sources or sinks of water vapor in mass per

unit volume per unit time and is the density of water vapor,

while the equation of continuity of the total mass of air is

Z ) ((A4.2)

and and . are related by where q is the specific

humidity. Combining equations (A4.1) and (A4.2), the following result

is obtained for the increase of specific humidity

±s-~ =2-q-+ VVc S
dt at Y (A4.3)

The decrease of water vapor can be considered to result only

arough condensation. Taking into account the relation between the

saturation specific humidity qs, and the saturation vapor pressure eS'

o. (A2 e4
P (A4.4)
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the following results through differentiation of (A4.4)

s dt
_ des c

es dt p (A4.5)

The Clausius-Clapeyron relationship for the vapor pressure

during phase change is as follows:

de, L dT
pR,. T (A4. 6)

where Pg-is the gas constant of water vapor
and so

dt T-- z. (A4. 7)

The first law of thermodynamics relates the potential temper-

ature change to the latent heat release and the following is obtained

therefrom

L CP 01t: (A. .8)
P

One equation results from (A4.7)
dT.

and (A4.8) when is

eliminated

dct

where

9F CO (A4. 9)

(A4.10)

Included is the additional factor S which is 1 if conden-

sation can occur, that is, if W<0 and >80% of relative humidity

and S is 0 otherwise.

S LT R - c.L
SCf> RV1r I t- jS -L
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