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SEISMICITY AND TECTONICS OF THE PAMIR-HINDU KUSH
REGION OF CENTRAL ASIA

Steven W. Roecker

Submitted to the Department of Earth and Planetary
Sciences on January 15, 1981, in partial fulfillment of the
requirement for the degree of Doctor of Philosophy at the
Massachusetts Institute of Technology.

Abstract

Along the 3000 kilometer suture between India and
Eurasia, only the Pamir-Hindu Kush region of central Asia
frequently experiences intermediate depth earthquakes.
During the years 1967-1968 and during two months in each of
1976 and 1977, Soviet, French, and American- seismologists
carried out microearthquake investigations of the seismic
activity in the Pamir-Hindu Kush and related regions. The
data collected in these investigations is used in this
thesis to determine the spatial distribution of the seismic
activity, as well as the variations of the attenuation
factor (Q) and the velocity in the region.

The locations of events recorded during the 1977
investigation reveal a broad, aseismic region centered at
about 37 N, 71.7 E that separates the seismicity of the
Pamir-Hindu Kush into two zones: a northward-dipping zone in
the south, and a southeastward-dipping zone in the north.
The gap is approximately 50 kilometers wide and curves
laterally with depth. The earthquakes occurring in the
southern zone and at depths shallower than 170 kilometers
are located in a broad (~30 kilometer) zone which dips at
progressively steeper angles from west to east. The fault
plane solutions in this region do not reveal any consistent
pattern. The earthquakes above and below 170 kilometers are
separated by an aseismic region of approximately 30
kilometers thickness. In contrast to the shallow zone, the
seismicity deeper than 170 kilometers occurs in a narrow
(15-20 kilometer) zone, and the associated fault plane
solutions consistently show T axes lying in the plane of
seismicity.

Except for the seismicity associated with surface
faults, the upper 70 kilometers of the Pamir-Hindu Kush is



almost completely aseismic. The seismic zone begins
abruptly below 70 kilometers, which is approximately the
depth of the Moho in this region.

Although the trends of the seismic zone are determined
with data from a short term array, there is evidence that
these trends persist for times longer than one month.
First, the differences in dip and breadth of the seismic
zones on either side of the gaps, as well as the differences
in the associated fault plane solutions,attest to the roles
of the gaps as real discontinuities. Second, the trends in
seismicity inferred from the microearthquake investigations
of 1966-1967 and 1976 mirror those determined by the 1977
investigation, which suggests the longevity of these
features.

Along with other evidence, the earthquake locations
suggest that subduction in the Pamir-Hindu Kush has taken
place in two isolated regions. Subduction in the regions
north of 370 probably occurred along the Darvaz-Karakul
fault, and in the south either along or between the Panjer
and Kunar faults. Seismicity is scattered throughout the
region between the Panjer and Kunar faults and does not
define any singularly active fault. Finally, subduction in
the Pamir-Hindu Kush was probably a relatively recent event,
initiating within the last 20 million years, and perhaps
continuing to the present.

Several tests designed to estimate the accuracy of the
earthquake locations in the Pamir-Hindu Kush resulted in the
formulation of several empirical rules for location
reliability. For instance, it was found that the inclusion
of S wave arrivals significantly stabilizes a location, as
does an arrival at a station within one focal depth of the
event. It can be shown theoretically that such arrivals
have a dramatic effect on the linearly estimated covariance
of the solution, as well as on the impact or "sensitivity"
of a given observation.

Using data from four digital recorders operated as part
of the 1977 investigation, values of Q were determined for
coda (Q ) and for S waves (Q ). Q in the Pamir-Hindu Kush
increases with both froquency and depth. Q is
approximately-equal to Q in the crust, which lends credence
to the basic assumption that coda is primarily composed of
scattered S waves. When compared to the Q of other areas,
the Q in the Pamir-Hindu Kush is found to reflect the
relatively strong heterogeneity of the region.

The outstanding result of the inversion for three-
dimensional velocity structures in the Pamir-Hindu Kush is
the revelation of a low velocity region enveloping the
seismic zone. The low velocity region has 85 to 10% lower
velocities than the surrounding regions and extends from the
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lower crust down to at least 150 kilometers depth. This
result suggests that a substantial amount of continental
crust has been subducted in the Pamir-Hindu Kush, and
therefore that continental, rather than only oceanic,
lithosphere has been subducted. Oceanic lithosphere may
exist at approximately 160 to 200 kilometers depth.

Thesis Supervisor: Peter H. Molnar
Title: Associate Professor of Geophysics
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Preface

Approximately 40 million years ago, the last remnant of

the Tethys sea between India and Eurasia disappeared into

the mantle, and the collision of the two continents ensued.

In addition to building a mountain range which has become a

haven for Buddhist monks, starstruck geophysicists, and

other seekers of the good life, the India-Eurasia collision

has created fodder for a considerable amount of scientific

research. Several fundamental aspects of this archtypical

collision remain an enigma, however, largely because of the

hardships involved in gathering data. Seismologists, in

particular, are faced with a relative paucity of data from

large earthquakes in the region, and must brave the

inevitable contact metamorphism associated with the operation

of delicate instruments in a harsh environment.

Along the ca. 3000 km length of the collision, the only

region with an exceptionally high level of seismic activity

is the Pamir-Hindu Kush region of central Asia. Located at

the western edge of the collison zone, the Pamir-Hindu Kush

region was probably the Tethys' closing scene, the final

stage of eons of subduction of oceanic lithosphere.

The six papers which make up the chapters of this

thesis generally concern the seismicity and tectonics of the

Pamir-Hindu Kush. Chapter 1 uses 600 of the best located

earthquakes recorded by short term arrays in 1976 and 1977

to describe the seismic zone and, with fault plane

solutions, its state of stress. Chapter 2 addresses similar
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questions with arrival time data from an array managed by

Soviet scientists' in 1966-1967, and with fault plane

solutions accumulated over a number of years by O.V.

Soboleva. Chapter 3 examines the shallow seismicity to the

south of the Hindu Kush, defining the activity on several

faults in the area.

A great deal of effort was spent in trying to estimate

the reliability of the locations of the events discussed in

the first three chapters. This effort inspired a search for

a more theoretical approach to the problem of evaluating

location accuracy, the fruits of which appear in Chapter 4.

While this chapter has no direct bearing on the tectonics of

the Pamir-Hindu Kush, the results of this analysis verify

many of the suggestions put forward in Chapter 1 concerning

the factors governing the accuracy of earthquake locations.

Four digital recorders were operated during the 1977

investigation, and in Chapter 5 this data is used to deduce

the average Q structure for central Asia. Finally, all of

the data in Chapter 1 which could not be explained by

earthquake locations are used in Chapter 6 to deduce one-

and three-dimensional velocity structures of the Pamir-Hindu

Kush region.

Only one name appears on the cover of this anthology of

multi-authored papers. Since these works are presented in

the context of a Ph.D. thesis, it is necessary to give some

account of how much effort was spent by the candidate. In

the following the contributions of the various authors of



the papers are discussed primarily. The contributions of

other persons are mentioned in the acknowledgements at the

end of each paper.

Chapter 1. The organization and operation of the field

programs in which the data was gathered involved many

persons from M.I.T. and I.R.I.G.M. in Grenoble. The reading

of the arrival times, the location of the events, and the

initial evaluation of the results were performed by J.L.

Chatelain and S.W. Roecker. J.L. Chatelain and D. Hatzfeld

drew most of the illustrations. S.W. Roecker wrote most of

the article.

Chapter 2. The data was gathered by Soviet workers and

the arrival times were read by A.A. Lukk and I.L. Nersesov.

O.V. Soboleva contributed the fault plane solutions. S.W.

Roecker located the events and shared the writing with P.

Molnar. J.L. Chatelain and D. Hatzfeld drew most of the

illustrations.

Chapter 3. R. Prevot did most of the work, and P.

Molnar wrote the English version of the paper. S.W. Roecker

relocated the events using a master event technique, the

results of which appear in R. Prevot's thesis. This paper

is included strictly for completeness.

Chapter 4. The original idea of investigating the

sensitivity matrix was W.L. Ellsworth's. S.W. Roecker

developed most of the analytical forms used in the approach.
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Each did an equal share of the writing and illustrating.

Chapter 5. B. Tucker, J. King and D. Hatzfeld were

instrumental in the design and maintenance of the digital

equipment as well as in the organization of the

investigation. In addition, B. Tucker sacrificed many hours

in the initial processing of the digital data, and carefully

reviewed the manuscript. S.;W. Roecker did the rest.

Chapter 6. S.W. Roecker is the only author listed on

this paper, but J.L. Chatelain must again be credited with

sharing in the reading of arrival times and analysing the

initial locations, both of which represent asignificant

percentage of the total work involved.



CHAPTER I

the field is the only reality.

- Albert Einstein

Quoted in "The Philosophical Impact

of Contemporary Physics" by

M. Capek
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MICROEARTHQUAKE SEISMICITY AND FAULT PLANE SOLUTIONS IN THE HINDU KUSH REGION
AND THEIR TECTONIC IMPLICATIONS

J. L. Chatelain,l S. W. Roecker,2 D. Hatzfeld,
1 and P. Molnar2

Abstract. The nature of the Hindu Kush
intermediate seismic zone was studied in two

microearthquake investigations in 1976 and 1977.
By testing several sources of uncertainty the

precision of about 600 earthquake locations was
estimated to be about 5 km in epicenter and 10
km in depth. Projections of the earthquake
locations from several perspectives reveal
several regions of aseismicity as well as a

Ughly contorted nature of the active regions.
Very little seismicity was recorded in the crust
from 0- to 70-km depth. The part of the zone
southwest of about 37*N, Tl.5*E and shallower
than about 160 km is broad and seems to dip
north at progressively steeper angles from west
to east. Fault plane solutions for this region
do not reveal a simple consistent pattern. This

region is separated from another active region
to the northeast by a curved gap that is
nearly 50 km wide. Northeast of this gap the
zone dips to the southeast. In the western
portion there is an aseismic region around
160-km depth that separates the contorted
shallower zone from a narrow (15-20 km wide),
consistently steep, deeper zone. As in island
arcs, the fault plane solutions for the deeper
events show T axes generally lying within the

plane of seismicity and P axes perpendicular to
the plane. In contrast to island arcs the T
axes in general are not parallel to the dip
direction, and there seems to be greater
variation in the orientation of these axes.
The entire western zone plunges to the west at

about 200, and most of the T axes plunge
steeply to the west. In detail, the earthquakes
tend to occur in clusters that leave aseismic
gaps between the clusters. There is a distinct
gap of about 15-km width near 70.7*E. This gap
seems to -separate events with fault planes
solutions that in the west have westward

tplunging T axes and in the east have eastward
or vertically plunging T axes. Although many
of these features were not detected in Previous
studies of this region, the data from those
studies are consistent with the dips, changes
in idip, gaps, and breadth of the seismic zone.
Both the variations in dip and breadth of the
active zones and, for one gap, the difference in
fault plane solutions of earthquakes on either
side of it, make the role of the gaps as
boundaries clear and suggest their long-term
existence. We infer that the configuration of
the Hindu Kush seismic zone could possibly be
the result of the subduction of oceanic litho-

1Laboratoire de Geophysique Interne, Institute
de Recherches Interdisciplinaires de Geologie
et de Mechanique, B.P. 53, 38041 Grenoble,
France.
De artment of Earth and Planetary Sciences,
Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139.

Copyright 1980 by the American Geophysical Union.

sphere from two separate, mall basins in
opposite directions. The age of the subducted
lithosphere is probably greater than 70 m.y.,
and subduction probably has occurred over a
relatively short duration. The rate of sub-
duction probably has been between 20 mm/yr and
48 mm/yr. Correlations of seismic trends with
surficial features suggest that in the south
the Hindu Kush suture zone lies along or
somewhere between the Panjer and Kunar faults
and that in the -north the Pamir auture zone lies
near the Darvaz-Karakul fault. Finally, it
seems that the protrusion of India into Eurasia
has been a major factor in developing the
present configuration of the zone.

Introduction

The upper mantle beneath the mountainous
Hindu Kush region of northeastern Afghanistan
is the site of a tectonically complex area.
Although it is not clearly associated with any
island arc system, this region is perhaps the
most active zone of intermediate depth (70-300
km) earthquakes in the world. The region is
therefore interesting, since it provides a
setting forexeamining deep-seated tectonic
processes in a collision zone as well as
allowing a study of intermediate depth
seismicity as a phenomenon in itself.

Because of its proximity to the Eurasian-
Indian plate boundary the Hindu-Kush seismic
zone is believed to be grossly related to the
convergence of the Indian and Eurasian sub-
continents. The scenarios offered by various
authors for the existence of the zone, however,
cover a wide spectrum. Many authors
[Billington et al., 1977; Isacks and Molnar,
1971; Khalturin et al., 1977; Nowroozi, 1971,
1972; Santo, 1969] have suggested that the
zone is evidence of subducted oceanic litho-
sphere, possibly remnants either of the Tethys
Sea or of a marginal interarc basin. Expla-
nations of this type are complicated by the
unusual configuration of the zone, which seems
to be much more contorted than is typical of
island arcs, and other interpretations have
been given. Santo (19691, for example, on the
basis of what he interpreted to be a V-shaped
zone of seismicity, suggested that two litho-
spheric layers had been underthrust from
different directions in the same place.
Alternatively, Vinnik et al. [1977] and Vinnik
and Lukk [1973, 1974] interpret the activity as
the result of a downward extension of a
Paleozoic shieldlike structure. In their
scenario this structure defines a 300-km-thick
tectosphere that is being stressed by compressive
forces somehow associated with the Himalayan
fold belt. The wide range of explanations is
indicative of a lack of conclusive evidence,
such as large numbers of precisely determined
earthquake locations or compatible relations to
surficial geology.
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To help resolve the origin of the intermediate
seismic zone, we carried out investigations of
microearthquakes in the Hindu Kush region in
both 1976 and 1977. Our inrediate objectives
were to define accurately the configuration of
the seismic zone and to determine more fault
plane solutions of earthquakes of the region
over a larger portion than has been possible
using data from the World-Wide Standardized
Seismic network (WWSSN) alone. Despite the
short duration of these studies - 2 weeks in
.1976 and 1 month in 1977, the high activity of
the area (40 locatable events per day) made
these objectives feasible. In order to infer
the long-term nature of some of the features in
the seismicity we compare the results of these
investigations with those from previous studies
made of the Hindu Kush region. These include
the results of a 2-year microearthquake study
by Soviet scientists in 1966-1967 [Roecker et
al., 1980] as well as the teleseismic studies
of Billington et al. [19771 and Santo [19691.

68E* 69 o 70

03 0_

Data

Recording Procedure

-From June 11 to July 13, 1977, we operated
11 Sprengnether IEQ-800 smoked paper recording
systems circling the Hindu Kush in north-
eastern Afghanistan (Figure 1). In addition,
we obtained copies of short-period records from
the Seismic Research Observatory (KBL) in
Kabul. The stations were distributed to allow
precise locations of intermediate depth (70-
300 km) events. However, owing to various
geographical and political limitations (e.g.,
bad roads and proximity to borders with
neighboring countries) we were unable to put
stations further east or north of the zone.
Nevertheless, the wide range of takeoff angles
along with adequate recording of the other
azimuths seems to compensate for lack of
coverage on the north and east.

The Sprengnether stations operated

Fig. 1. Arrangement of seismographs and location of epicenters during the 1977
investigation. Station locations are indicated by solid diamonds. The epicenters
are plotted with symbols corresponding to depth (z) intervals as follows: open

circles, 0 < z < 50 kmm; squares, 50 < z < 100 km; triangles, 100 < z < 150 km;

inverted triangles, 150 < z < 200 ki; pluses, 200 < z < 250 km; and y's, z > 250 km.
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Fig 2. Arrangement of seismographs and location of epicenters during the 1976
investigation. Symbols for stations and epicenters are the same as in Figure 1.

continuously throughout the duration of the
investigation. All of the stations were
equipped with 1-Hz L4-C vertical seismometers.
The .filters on the instruments were set to
allow a flat velocity response to frequencies
between 0.3 and 30 Hz, and the amplifier gains
were set ,at either 78 or 84 dB. The amplifi-
cation of the signal from the ground motion to
the trace on the record is about 500,000 at 84
dB and 250,000 at 78 dB. Traces were recorded
by a fine stylus on kerosene smoked paper fixed
to a rotating drum. The drum rotated at 60
mm/min at most stations and 120 mm/min at KUY.
The records were changed every 2 days at all
stations except KUTY (which was maintained daily)
and the clock drift was checked by recording
a time signal transmitted by the ATA station
in New Delhi. Station locations were determined
using topographic naps with a scale of 1:250,000.
The short-period records obtained from KBL were
in ink and were recorded at 120 mm/min. Main-
tenance on these instruments was performed daily
by members of Kabul University. The data
accumulated during this investigation will be
the primary topic in the discussion below.

A preliminary field study for the work in

1977 was made between August 18 and 31, 1976
[Chatelain et al., 19771. During that tine we
operated seven stations in a configuration
similar to that in 1977 (Figure 2). The field
procedure was essentially the same as that in
1977. These data were su-premented by recordings
from short- (,and so';etims long) period
instruments in Kabul and from the Lamont-Doherty
array near Tarbella Dam [Armbruster et al.,
19781.

Analysis of Data

In Appendix Al we give an extended
discussion of the procedures used to analyze the
seismograms, the reasoning behind our estimates
of the uncertainties in the arrival times, a
long discussion of the tests made to evaluate
errors in locating the events, and the logic
behind the criteria used to assign uncertainties

lAppendix is available with entire article on
microfiche. Order from the American Geophysical
Union, 2000 Florida Ave., N. W., Washington, DC
20009. Document J80-002; $01.00. Payment must
accompany order.
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TABLE 1. Velocities of Layered Model Used to-
Locate Events

Depth to Top Velocity of
of Layer, _km P Wave, km/s

0 6.0
45 8.0
85 8.2

110 8.4
150 8.6
200 8.8

to the location. Here we summarize the
results described in Appendix A.

To analyze the 170 seismograms with nearly
45,000 arrivals, we digitized, on a tabletop
digitizer, the phases of interest and relevant
minute marks. A computer program then computed
arrival times. We estimate the uncertainty of
impulsive P arrivals to be about 0.1 s and
emergent ones to be about 0.2 s, after clock
corrections have been added. We used S phases
whenever we could confidently pick the onset
with an uncertainty of less than 1 s.

To evaluate the uncertainties in the
locations, a series of tests were made, using
both synthetic and real data. The first test
was designed to examine whether or not the
program HYPOl [Lee and Lahr, 1975], which
assumes a flat layered structure, could locate
events well in a region as largE as the Hindu
Kush (dimensions 300 km). Travel times to
stations from hypothetical events at different
locations were calculated for a spherical earth,
and the events were relocated with HYP071.
Epicenter had errors less than 0.5 km, and
depths were wrong by about 1 km (Table Al). We
conclude that the dimensions of the Hindu Kush
region pose no obstacle to HYPTi.

The second test explored the effects of
random errors on the locaticn. Travel times
were calculated to stations for 58 events
throughout the zone, and the events were
relocated after random errors of 0.1 s for P
and 0.6 s for S were added to the synthetic
data. The mean mislocation is about 2 km but
increases toward the edge of the array to 3 km
(Table A2). When standard errors were increased
to 0.2 and 1.0 s for P and 3, the mislocation
increased by about 1 km throughout the array
(Table A3).

We then made tests with subsets of the array
to determine the precision of the location and
to gain insight into which data were redundant.
We first selected 15 well-recorded events
throughout the array and relocated them with
subsets of the stations used initially (Table
Ah). Provided S waves were used, and provided
8 or more arrivals were used, locations were
generally within 2-3 km of one another.
Without an S wave the locations were much less
reliable. Similar results were found by
Buland (1976] and James et al. [1969]. The
geometry of the network also is very important.
To insure reliable depths, the distance of one
station to the epicenter should be less than
the depth. IMoreover, when the azimuths to all

stations are within 600 of one another, more
than eight arrivals are needed. As a second
method we calculated uncertainties in location
using the covariance matrix relating the data
and location (see Appendix A and Figure Al).
Results of this analysis agree with those
described above and suggest that eight phases,
including at least one S phase, are adequate to
give a precision of 2-3 km in the locations in
most of the region.

Because there are likely to be large lateral
heterogeneities in the deep structure of the
Hindu Kush while HYPOl requires a flat layered
structure, we also calculated travel times frcm
hypothetical events in a laterally heterogeneous
structure and relocated them with HYPO1. The
heterogeneous structure was intended to imitate
a slab of high-velocity material with maximum
velocity contrast of 10%, surrounding the
earthquake zone (Figure A2). This was imbedded
in the uniform structure used by HYPOl (Table
1), a odification of that given by Lukk and
Nersesov [19701. The results show that
relocaticns (Table A5) are in error by less than
5 km. When an incorrect choice of the ratio
Vp/Vs was assumea (1.70 or 1.76 instead of
1.74), however, the relocated depths were
systematically in error by about 10 km (too
deep for Vp/Vs = 1.70 and too shallow for 1.76).
These errors are systematic, so in terms of the
precision of the locations the effect of the
lateral heterogeneity introduces an error of
about 5 km.

All of the results discussed above apply to
events in the center of the array. For the
deeper events in the western portion, however,
the uncertainties could be twice as large.

From these tests we considered as reliable
only locations based on at least eight arrivals,
with at least one S phase and with at least one
station at a distance from the epicenter less

Fig. 3. A comparison of event epicenters located
by both the USGS and the 1977 local array. Solid
circles are epicenters reported by the USGS, and
solid triangles are epicenters located by the
local array. Letters near the epicenters
specify the events in Table A7. Numbers in
brackets refer to the number of stations used by
the USGS in locating the events.
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than the depth of focus. In addition, when the
azimuths to all the stations were within only
600, only those locations based on 10 or more
such stations were considered reliable.
Finally, acceptable locations included only
those with root-mean-square residuals (Rms)
greater than 0.1 s but less than 0.55 s. Among
1200 initial locations we used only 600. They
are listed in Table A6.

We estimate the uncertainties in the epi-
center to be about 5-10 km-, increasing with a
decreasing number of arrivals and decreasing
depth. Similarly, depths are uncertain by

5-15 km. For comparison we plotted the
locations of events in 1976 and 1977 that were
also located by the United States Geological
Survey (USGS) (Figure 3 and Table AT). The
locations given by USGS for events recorded at
more than 40 stations differ by about 10 km in
depth and about 5 1m in epicentral coordinates
from those obtained by the local arrays. USGS
locations with less than 40 stations disagree
with ours considerably. Agreement in location
suggests that both locations are good and that
many stations are required to locate an event
well teleseismically.

Fig. 4. Map view of the earthquake locations which passed all the quality criteria,
along with the plotting scheme for cross sections. In plotting cross sections
perpendicular to the trend of the zone, hypocenters are projected onto planes which
bisect the sections. The lateral cross section is made by radially project'ing
hypocenters onto a vertical cylinder, the intersection of which with the map is
denoted by the line H'H.
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* 9.

Fig. 5. Map views of the best locations
depth intervals.

Results

Mapping Technicues

The configuration of the zone, as revealed in
each microseismic study, is displayed by plotting
the recorded events in three orthogonal pro-
jections. The first consists of a series of
plan views which divide the events into
intervals of 50-km depth (Figures 5 and 7). The
second is a series of vertical cross sections.
Because of the basically accurate trend in the
seismicity, we chose to divide the zone into
several circular sections (Figure 4) and
project the events onto planes bisecting the
sections (Figures 6 and 8). Such projections
are everywhere nearly perpendicular to the trend
of the zone. In the third perspective the
events are projected radially onto a vertical
cylinder (H'H in Figure 4), resulting in a
lateral section that is approximately parallel
to the trend of the zone (H'H in Figures 6 and
8).

The events that met all the quality criteria
established above are plotted as solid circles
in these diagrams. While it is advantageous
not to consider poor locations when describing
the seismic trends of an area, it is important
to insure that the criteria are not overly
biasing the results. Therefore some events that
did not meet all the criteria are included in
the plots as open circles. First, shallow
events with depths less than the distance to
the nearest station but otherwise meeting the
quality criteria are included in the plots for
1977. This is because this criterion would
prohibit nearly all shallow seismicity
regardless of how well recorded it is and
would thus give a false impression of complete
shallow aseismicity. Second, since all the
tests described above were based on the 1977
array, the strict application of the criteria
to the results of previous studies may be
questionable. The configuration of the 1966-
1967 [Roecker et al., 1980] array, for example,
is somewhat different from that of 1977. Also,
while the configuration of the 1976 array is

of 1977. Events are divided into 50-km

similar to that in 1977, the uncertainty in the
arrival times is somewhat greater owing to the
reading techniques used. Therefore in plotting
the events from these other studies, the only
restriction was that the Rms be less than 0.7.

Description of the Zone

Because of our greater confidence in the 197T
results they provide the basis for our con-
clusions. Nevertheless, some of the conclusions
from this study arise from defining regions of
aseismicity. While considerable effort was spent
verifying where events actually occur, the task
of defining where they do not is more difficult.
One can easily argue that 1 month of recording
is not sufficient to sample the seismicity
adequately. Fortunately, despite both the
greater uncertainties and the fewer events in
the other investigations of Hindu Kush
seismicity, many of the gross aspects of the
zone defined by the data from 1977 are apparent
in the data from 1976, from 1966-1967, and from
the teleseismic studies of Billington et al.
[1977] and Santo (1969]. The agreement of all
these results verifies the existence of features
in the zone for at least 10 years.

In general, the intermediate depth
seismicity of the Hindu Kush is confined to a
small isolated area, roughly 700 km in extent
and bounded on the west at about 690E (Figure
1). The eastern boundary is beyond the limits
of the local arrays, but teleseismic results
show the intermediate seismicity ceases at
about 75*E [Billington et al., 1977, Fiures 2
and 8]. On the whole, the zone is grossly
planar and steeply dipping, but several unusual
features can be resolved with the 1977 data.

With the exception of some activity in the
westernmost part of the zone, there is very
little seismicity between 0- and 70-km depth
(Figures 6 and 8, Roecker et al. [1980, Figures
2 and 3], Billington et al. [1977, Figures 2,
3, and 4], and Santo [1969, Figure 9]).
Krestnikov and Nersesov [1964] inferred that
the depth of the Moho is about 65-70 km for at
least parts of this region. Therefore the
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relatively aseismic region seems to correspond regions of activity: one north of 370N trending
to the crust, with activity beginning abruptly to the northeast and another south of 370 N
in the mantle below, aligned approximately east-west (Figure 5). At

The entire zone can be separated into two depths greater than about 100 km there is a
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Fig. 6. Projections of 19TT hypocenters and fault plane solutions onto planes
perpendicular to the zone (A'A - G'G) and onto a cylindrical surface parallel to
the zone (H'H). In each of the sections perpendicular to the zone the northernmost
side is marked by the unprimed letter. In the parallel section H'H, H MArks the
easternmost point, and the boundaries of the perpendicular sections are plotted
above the figure. Solid circles represent locations which passed all of the quality
criteria. Open circles represent events which passed all of the criteria with the
exception of being recorded by a station whose epicentral distance was less than
the depth of the event. Fault plane -solutions are plotted in back sphere
projections. Dark quadrants include compressional first motions, and white
.dilatational. T axes are plotted as open circles, and P axes as solid circles.
Starred solutions are those determined with data from the WWSSN. All others were
determined with local data.
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Fig. T. Map of the best locations of 1976.
intervals.

rather wide (50 km) gap between these seismic
regions, which appears in all of the local
results (Figures 5, 7, and 9). The FF'
cross section in Figures 6 and 8 and Figure 3 of
Roecker et al. [1980] shows that this gap is
well defined at depths greater than 150 km. The
lateral projections shcw some curvature in this
gap above 150 km and suggest that it extends
down from as shallow as 100 km depth (Figure 9,
H'H in Figures 6 and 8, and Roecker et al. [1980,
Figure 3]). The seismicity shallower than 100
km that connects these two active regions north
and south of 370N seems to occur in a restricted
area roughly TO km long and 30 km in both width
and depth.

The seismic zone south of 37
0N can be

further divided into two regions: a shallower
one between 70- and 170-km depth and a deeper
one between 180- and 300-km depth. Only one
microearthquake was located deeper than 300 km
for the entire zone. The gap between them is
about 70 km wide in the west and narrows in the
east to about 15-20 km near 70.7

0E (Figure 9,
H'H in Figure 6 and 8, and Roecker et al. [1980,
Figure 3]). This gap is evident in Figures 3
and 4 in Billington et al. [19771, but
unfortunately, the entire southern region was
plotted on one projection, and identification
of this gap in the west is impossible. Santo
(1969, Figure 91 shows no real aseismic gap,
but he notes a pronounced minimum of events at
160-km depth. We note that when viewed on
lateral sections (EH' in Figure 6), the entire
southern region seems to plunge west at roughly
20*. This observation is based on the apparent
trends of the aseismic boundaries which define

the shallower and deeper regions.
In cross section the shallower seismicity

defines in the southwestern region a broad zone
about 40 km in width (particularly CC', ED',
and =E' in Figures 6 and 10). Even with the
estimated errors for the locations this shallow-
er region must be at least 30 km thick. In the
far west the zone dips north at about 45* and
becomes progressively steeper to the east.
Although the seismicity appears to be continu-
ous in the shallower region, there seems to be

Events are divided into 50-km depth

a relative sparseness in activity roughly 30
km wide centered at about 70.20 E.

The deeper seismicity defines a consistently
narrow zone (15-20 km wide) which has a nearly
vertical dip (Figures 6 and 8, Roeckcr et al.
[1980, Figure 3], anC Billington et El. [1977,
Figure 31). Given the errors in locations,
however, this zone could be somewhat thinner.
In cross section the deeper events in the west
seem to be more scattered than in the center of
the zone, but as discussed above, the locations
there are less precise.

In all of the local results a gap in the
seismicity, which is about 15 km wide, appears
at 70.64E at about 200 km depth (Figs. 5,7, and
9 and Roecker et al. [1980, Figure 21. This
gap also appears in Figure 6 of Billington et
al., but the low density of events to the west
of the gap makes its appearance less dramatic.
The events east of 200- and 250-km depth near
this gap between 70.807 seem to concentrate
(Fig. 5), but the possible gap between these
and the events further east is too small to
resolve with the present data. This concentra-
tion is especially important because it contains
most of the events with fault plane solutions
determined with the WWSSN.

Perhaps the most curious trend in the
seismicity of the deeper region is the trail of
events that extends downward and to the west
of the concentration at 70.3'E (HH' in Figures
6 and 6). The narrowness of this trend when
viewed from any angle suggests that the events
are confined to a tube of activity which
branches off from the concentration to the east.

Because the region to the north of 37
0N is

outside the 1977 array, any fine details of this
seismic -one are more difficult to resolve.
However, the gross trend of the zone shows a
dip of about 450 to the southeast at 150-km
depth that becomes almost vertical at 200-km
depth (G'G in Figures 6 and 8, and Roecker et
al. 1980, Figure 3]. Therefore this zone dips
in nearly the opposite direction from that in
the southern zone. This reversal in dip is
also evident in Figure 5 of Billington et al.,
.but they showed no reliably located events at

[S *.

K77 ... ,

-4

5,

ins

1372



Chatelain et al.: Microearthquakes and Tectonics of the Hindu Kush

depths greater than about 170 k. By contrast,
the 1977 results show microearthquakes to depths
of about 24-0 km, with one event as deep as
260 km.

Although the Hindu Kush seismic zone is
grossly planar and steeply dipping, in detail
it is highly contorted and consists of several
zones separated by gaps of aseismicity. Two
of the most prominent gaps - one that separates
the regions north and south of 370N (Figures 5
and 9) and another that separates events deeper
and shallower than about 160 km depth (Figure 9

A A
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and AA', BB' and HH' in Figure 6) - serve as
boundaries between regions distinctly different
in dip and breadth. A third gap, in the deeper
region at 70.70E (Figures 5, HHI' and Figures 6
and 9) does not separate zones which show
distinct qualities in spatial distribution of
events but, as discussed below, seems to
separate regions with different fault plane
solutions. The consistency of the patterns
obtained from studies made in the last few
years, with both locally and teleseismically
recorded data, confirms that these gaps have
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Fig. 8. Projections of the 1976 locations onto planes perpendicular and a cylinder
parallel to the trend of the zone. The sections are the same as those used for the
1977 data (Figure 6) Hypocenters which passed ali the quality criteria are plotted
as solid circles. Open circles represent all of the events which have Rms residuals
less than 0.7 but did not pass all the criteria.
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Fig. 9. Gaos in activity. HH' from Figure 6
is plotted without fault plane solutions but
with gaps discussed in text shaded.

been real features in the Hindu Kush for at
least the past 10 years. Moreover, their clear
role as boundaries between regions of distinct
qualities provides an argument for claiming that
they may have existed for thousands of years
and perhaps longer.

Fault Plane Solutions

Although the distribution of stations in
1977 proved adequate for determining locations
over a wide area, the hypocentral regions for
which well-constrained fault plane solutions
could be determined were more restricted.
Nevertheless, because of the large number of
events recorded with data from the local
stations, we were able to determine 26
relatively well constrained solutions for
individual earthquakes in various places in
the zone (Figure 10 and Table 2). The data
were supplemented by first-motion readings from
the Soviet station at Khorog [see Roecker et
al., 1980]. Two composite solutions were made
for events in regions where we could not obtain
a solution for an individual earthquake (B and
C in Figure 10 and Table 3). The purpose of
these solutions is to show that the earthquakes
of these regions have radiation patterns
grossly consistent with those observed with
WWSSN stations rather than implying the

orientation of any axis or nodal plane.
Composite fault plane solutions were, as a rule,

avoided in this study. There are large
variations among the well-constrained

individual solutions for events in relatively
small regions within the Hindu Kush, so that a
composite solution will most likely misrepresent
the patterns that exist. Fault plane
solutions were also determined for 17 events
using teleseismic recordings at WSSN stations
(Figure 10 and Table 4). While the addition
of these solutions extends the regions
represented by fault plane solutions, there
are unfortunately few places where solutions
based on local and teleseismic data overlar.

Giving a quantitative description of how
well constrained a certain fault plane solution
is or estimatirg the exact errors involved in
the orientations of the noadal lanes and axes
requires several subjective decisions. Rather

than attach uncertainties to the parameters for
each solution given in Tables 2 and 4, we
present all the data used in determining the
fault plane solutions in lower hemisphere plots
(Figure 10).

As in previous investigations of fault plane
solutions of the Hindu Kush [Billington et al.,
1977; Isacks and Molnar, 1971; Ritsema, 1966;
Shirokova, 1959; Soboleva, 1968a,b, 1972;
Stevens, 19663, the solutions generally indicate
thrust faulting with nearly vertical T axes.
This type of solution is similar to that for
intermediate depth earthquakes at island arcs
[Isacks and Molnar, 19711. There are, however,
some significant variations that we explore by
plotting the fault plane solutions in various
orientations on the seismicity maps and profiles
(Figures 6, 8, and 11-14).

Local solutions. Plotted in plan view (Figure
11), the solutions for events with depths less
than 170 km show considerable scatter, much
more scatter than is typical of island arcs.
Although most display thrust faulting, solutions
23 and 24 have large strike slip components,
and solutions 9, 21, and 14 indicate normal
faulting. One might expect some scatter in
these solutions because of the highly contorted
nature of the shallow region. When plotted on
the cross sections (Figure 6), many of the
solutions seem to have either one nodal plane
or the T axis parallel to the dip of the zone.
One possible exolanation for this duality is
that events with nodal planes parallel to the
zone occur along the boundary between two plates
of lithosphere, while those with downdip T axes
occur within a subducted slab of lithosphere.
This observaticn is not consistent for all
events, however, and the lack of sufficient
data makes the explanation arguable. In any
case the stress field in the shallow region
appears to be too complex to be explained in a
simple manner.

In contrast to the shallower region, solu-
tions for events in the region below 170 km are
much more consistent with one another. The
solutions for the seven events (1, 2, 4, 8, 11,
13, and 19) in the concentration west of 70.6

0E
are essentially the same (Figure 12). The T
axes lie within the plane of the zone and
plunge to the west at an angle of about 450*.
There appear to be some exceptions to this
pattern, shown by the composite solution A
(Figure 10), made using events in this region,
for which there are some apparently inconsistent
first motions.

Most of the solutions for events east of
710E have similar solutions to those west of
70.60E, but two of them (18 and 25) indicate
more southward plunging T axes (Figure 12). The
composite solution B (Figure 10), made from
events in this area, generally shows compression-
al first motions in the center and is consistent
with reverse faulting. There are unfortunately
no solutions for the concentration of events
near 70.84E (Figure 12), which is where several
events with solutions using the WWSSN are
located. A composite solution (C in Figure 10)
made from locally recorded events in this area
shows comoressional first motions in the center
of the diagram, but the nodal planes are poorly
constrained.
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Viewed on the cross sections (Figure 6), the
nodal planes for the deeper events, although
regular, do not seem to align with any trend in
seismicity, and so are not obviously related to
any deep major faulting. A plot of the
solutions on the lateral section (HHii' in
Figure 6) shows the P axes generally perpendi-
cular to the seismic zone, and the T axes are
consistently within it as at island arcs. The
T axes, however, deviate from the downdip
vertical direction by 20*-404, The T axes for
events in the cluster at 70.h0E seem to be
parallel to the tube of seismicity that plunges
to the west (HH' in Figure 6).

WSSN solutions. As with the local solutions
the T axes for most of the W6WSSN solutions
plunge steeply and lie within the zone.
Similarly also, there is considerable variation
in the solutions.

Most of the events for which WWSSN solutions
are available are located in clusters (Figure
13). The radiation patterns for events within
each cluster are generally similar to one
another, but differ from cluster to cluster.
In particular events near 36.4 0N, 70.70E and
210 km=-depth (2, 5, 7, 8, and 14) all radiated
compressional first motions to stations to the
northwest and southeast, with some dilatations
to the south and southwest (Figure 10). The
solutions for events near 35.5*17, 70.90E and
180-km depth indicate two trends. The events
farther to the west (6 and 16) radiated
compressions more to the south, and the quadrant
with compressional first motion is aligned more
east-west than for the solutions for events at
70.70E. Events 1 and 13, at the eastern end
of the cluster at 70.94E, radiated dilatations
to the southeast, and the zone of compressions
tends to be aligned in a northeast-southwest
direction. Events 3 and 12 radiated compressions
to the east and west, and dilatations to the
south. We note that these two events were
located by the International Seismological
Center in an area where we recorded no events.
Solution 15, which is the only solution that
overlaps with the local solutions at T0.40 E,
generally has compressional first motions in the
center of the diagram, but the nodal planes are
poorly constrained. It is, in fact, possible
to redraw this solution to look more like the
local solutions (Figure 10). Event 4 radiated
compressional first motions to the west, which
are separated from dilatations to the east by a
nodal plane that trends north-south. As
mentioned above, this event is deep (%280 km)
and is somewhat isolated from the rest of the
events. Plotted in plan view (Figure 13), a
pattern emerges where the P axes for the
solutions rotate smoothly from a northeast-
southwest orientation in the west to one that
is more northwest-southeast in the east.

Viewed on the cross sections (Figure 6), two
of the solutions (1 and 13) seem to have nodal
planes aligned with the dip of the deeper zone.
However, as in the local solutions, this
observation is not applicable for most of the
solutions. On the lateral section (Figure 14),
there appears to be a systematic change in the
plunge of the T axes from east to west. T axes
for the five events (2, 5, 7, 8, and 14) at
70-T*E plunge about 700 to the north or north-

east. This cluster is just to the east of the
gap at 70.60E and contrasts with the westward
plunging T axes of the local solutions west of
the gap (H'H in Figure 6). East of 70.70 E,
solutions 6 and 16 show nearly vertical T axes,
and further east the T axes for events 1 and
13 plunge to the west, following the same
pattern as the local solutions. The solution
for event 12 also has a westward dipping T axis,
while that for solution 3 is more vertical, but
again there is no seismicity in this area to
which these solutions can be related.

The four solutions for events shallower than
150 km (9, 10, 11, and 17) indicate large
components of reverse faulting. These earth-
quakes are scattered throughout the zone, and
events 9 and 11 apparently occurred in the
crust. When plotted in plan view (Figure 11)
or in cross section (Figure 6), the solutions
for these events show no apparent consistency
either among themselves or with the deeper
events and seem to accentuate the variability
of solutions for events shallower than 150 kmn,
which were noted in the local solutions.

Fault plane solutions throughout the Hindu
Kush are reminiscent of those for island arcs
but show significantly more variation. When
correlated with seismic trends, some patterns in
the solutions emerge, but the stresses governing
their orientations do not appear to be simple.
Nodal planes of the solutions generally do not
align with the dip of the zone, so there is
apparently no r.ajor deep-seated faulting. The
T axes for the deeper events lie in the plarne of
seismicity but do not plunge downdip. Instead,
many plunge about 704 to the west, and align
with the plunge of the tube of seismicity west
of 70-5 0 E (HH' in Figure 6). As discussed
below, there is some evidence that the aseismic
gap at about 160-km depth indicates that the
lower part of the slab has broken off from the
upper part, at least in the west. The westward
dipping T axes would then support the idea that
the partially detached slab is hanging from the
shallower region in a hingelike fashion.
Resistance to subduction caused either by a pull
from an eastern connection to the shallower zone
or by some frictional drag due to flow of
mantle material around an obliquely sinking
lithosphere could cause the T axes to deviate
from vertical. The exceptions to the westward
plunging T axes that occur east of the gap at
70.60E, where the T axes plunge to the east, is
also evidence of a local perturbation in the
stress field. This perturbation could indicate
that the slab in this area is being torn apart
by competing stresses. The origin of these
stresses is uncertain, but the change in
orientation of the axes about a relatively
small gap suggests that the subducted
lithosphere is discontinuous here.

Tectonic Interpretation

To discuss the Hindu Kush seismicity in the
context of the India-Eurasia collision, we
some correlations between the trends of the zone
and regional tectonics. In Figure 15 the
projection of the seismic zone to the surface
is drawn on a map depicting the major faults
and some pertinent geology of the region.
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Fig. 10. Lower hemisphere fault plane solutions of all
Solid circles represent compressional first motion, and
Starred solutions are those using data from the WWSSN.
indicate S wave polarities, and crosses represent nodal
and C are composite solutions using local data.

Tectonic Overview Indus suture
found in the
westward aim

As India approached Eurasia, subduction of [e.g., Ganss
the Tethys ocean beneath Eurasia apparently Kohistan Him
occurred along the Indus-Tsangpo suture zone however, hay
(e.g., Dewey and Bird, 1970; Gansser, 1964, al. [1977] a
1966]. The location of this suture east of crust. Acco
T6*E is generally assumed to be quite simple would have b
with only a single belt of ophiolites (Gansser, and the Dras
1966, 1977]. To the west, however, the location a marginal b
of the Indus suture is evidently not as simple. Asia was sub
One candidate for the westward extension of tfhe In this regi

data used in this study.
open circles dilatations.
Arrows on the WWSSN plots
readings. Solutions A, B,

is the Dras volcanics that are
Ladakh region and can be traced
ost continuously into Afghanistan
er, 1977]. Mafic sequences in the
alaya south of the Dras volcanics,
e been interpreted by Tahirkeli et
s being suggestive of island arc
rding to this interpretation,-India
een subducted at this island arc,
volcanics would mark the zone where

asin between the arc and the rest of
ducted (see also Burke et al. (1977]
on the Indus suture would be a broad
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Fig. 10. 4continued)

zone that includes both the are terrain and the
Dras volcanics.

The Dras volcanics seem to reach as far west,
as the Kunar fault, an active fault that is
very clear on the Landsat imagery [Prevot et
al., 19801. The Kunar fault seems to terminate
in the west near the Sarubi fault, an active
right lateral strike slip fault [Prevot et al.,
1980; Wellman, 19661. Ophiolites have been
found south and -west of the Sarubi, and a
mapping of them suggests that they were
emplaced during the late Cretaceous or early
Tertiary [Cassaigneau, .979]. These ophiolites
seem to be bordered on the west by the Chaman
fault, an active left lateral fault than can be
traced almost to the Gulf of Oman. West of the
Chaman fault there have not seemed to be

ophiolites or other evidence of subduction
since the mid-Cretaceous. At present, the
Chaman fault appears to accomodate a substantial
fraction of the slip between India and Eurasia
(Auden, 1974; Chatelain et al., 1977; de
Lapparent, 1972; Wellman, 19661. Both the
Chaman and Sarubi faults seem to terminate at
the Panjer valley, through which, according to
Wellman [19661, the east-west, right lateral
Herat fault continues. The Panjer fault
trends in a direction approximately parallel to
the Kunar fault and is itself associated with
ophiolite bodies [Gansser, 1977; Stdeklin,
19771.

In the north, crustal deformation,
apparently due to the protrusion of India into
Eurasia, essentially follows an arclike pattern
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centered symmetrically at about 73*E. This

region is laced with a series of southward
dipping thrust faults. At least one of them,

- the Darvaz-Karakul fault, becomes a left
lateral strike slip fault to the west [Kuchai
and Trifonov, 1977). .o the east, most of the
thrust faults abut against right lateral strike
slip faults (e.g., the Karakorum fault)
(Burtman et al., 1963; Peive et al., 1964;
Buzhentsev, 1963. Some of these faults were
active as early as in the Paleogene, while
others appeared in more recent times [Peive et

al., 19641. The trend of the faults generally
conforms to that of the Pamir mountain range.
The Par, however, appears to be a westward
continuation of the Kunlun, a late Paleozoic-
early Mesozoic orogenic belt along the northern
margin of Tibet (i:orin [1979], and qucted by
Molnar and Burke (1977]; Peive et al. (1964]).
Subsequent right lateral faulting along the
Karakorum and other faults seems to have
displaced the Pamir 250 km north in relation to
the Kunlun [2orin, 1979; Peive et al., 1964].

Inferences Derived From the
Configuration of the Seismic Zone

The most general inference that one can make
about the Hindu Kush seimsic zone is that
subduction has taken place. The narrow width
and approximately planar character of the zone,
along with its essential continuity to depths
of 300 km, are indicative of anomalously low
temperatures confined to a narrow, planar zone.
Presumably, subduction of cold oceanic litho-
sphere into the warmer asthenosphere has
occurred. For the rest of this discussion we
take the general scenario of subduction as a
starting point and elaborate on it as the
additional complexities of the zone require.
In particular, we are concerned with the rate
and duration of subduction, the influence of
the collision on the seismic zone, the possible

locations of sutures, and scenarios for
emplacement.

Evidence For Times and Amounts of Subduction

With the exception of seismic activity
beneath Burma, the Hindu Kush seismic zone is
the only zone of intermediate depth activity
near the boundary between India and Eurasia.
This observation implies that the Eindu Kush
was the scene of final subduction of oceanic
lithosphere between India and Eurasia. If the
subduction beneath the TEindu Kush was
initiated prior to the collision, which
occurred 45+10 m.y. ago [Garsser, 1966;
Molnar and Taononnier, 1975; Powell and
Conaghan, 1973.j, the occurrence of earthquakes
suggests that it has continued for some time
after the collision as well.

Unlike most subduction zones, however, there
are no active volcanoes and not even any known
recent volcanic material above the seismic zone.
Although a full understanding of calc-alkaline
volcanism at island arcs is lacking, we note
that such volcanism occurs a- nearly every
known actively subducting region. In western
North America, volcanism and subduction seemed
to have ceased at essentially the same time
[Cross and Pilger, 197;; Snyder et al., 19761.
Although there are no active volcances in some
portions of the Andes, beneath which subducticn
has taken place for a long time, most of the
Andes experienced Pliocene or .uaternary-
volcanoes. Therefore we infer that since no
volcanic rocks of late Cenozoic age have been
reported anywhere alcng the -Hindu Kush,
subduction probably occurred only for a short
duration.

One implication of a sacrt duration is that
if subduction was initiated a long time ago,
for instance, 50 r.y. ago, cessation of
subduction must also have occurred a long time
ago. The existence of intermediate depth
events would, however, see= to disallow that.

Table 2. Fault plane solutions determined with the local array ditA of 1977-

W0 DATE ORIGI% LTITUDE LONGITUDE DEPTH P AXIS T AXIS B AXIS ?"LE 'F TL 7 PCL F SECOND
NO ATE ORIIN ATIUD LCGITDE ET XL '-AM!Z NODAL PLANE

IE (N) (*E) (M) AZ PL AZ PL AZ FL AZ . AZ PL

1 77/06/17 15:29 36*28' 70*24' 197 155 14 263 48 52 38 196 46 307 20

2 77/06/18 21:32 36'29' 70"19' 212 154 14 268 46 62 40 204 12 313 2C

3 77/06/18 23:20 35*59' 70*38' 112 22 3 286 64 114 26 226 37 318 41

4 77/06/19 05:49 36*29' 70*23' 209 152 7 252 54 56 35 186 42 304 28
5 77/06/19 13:40 36'20' 70'04' 117 160 26 340 65 70 0 340 20 164 72

6 77/06/19 22:50 35*20' 70*39' 135 177 14 282 42 70 42 220 42 326 14
7 77/06/20 01:48 .6*05' 70*26' 99 358 5 260 56 90 34 204 32 325 40
8 77/06/20 15:55 36*30' 70'23' 220 174 20 286 44 66 33 326 14 219 48
9 77/06/20 18:16 3610 69*24' 119 285 62 189 2 98 26 217 42 347 36

10 77/06/20 2:00 36-41' 71*05' 233 152 14 264 S6 52 30 186 50 30 24
11 77/06/22 02:16 36*29' 70*20' 209 186 21 296 40 74 42 232 46 334 12
12 77/06/23 15:37 36'48' 71*11' 260 164 18 274 44 60 39 305 I 308 46
13 77/06/23 15:48 36*33' 7V17' 212 159 32 273 32 36 42 216 53 31i 0
14 77/06/23 22:30 36*02' 70143' 97 340 82 63 1 164 8 66 43 262 44
15 77/06/24 '2:45 36z43' -7107' 217 144 22 270 54 40 26 181 58 302 20
16 77/06/24 20:12 36=07' 7.*43' 107 136 52 275 30 18 20 112 12 234 66
17 77/106/26 39:36 35'56' 69'19' 97 246 8 146 52 330 36 94 29 213 39

13 77,06/26 11:05 36=33' 70*57' 212 299 16 188 52 40 32 146 20 282 s0

19 77/06/27 16:28 36~28' 70'20' 209 168 14 272 46 64 40 203 a4 316 20

23 77/07/01 05:43 36 32' 710' 221 145 8 248 56 51 34 1 44 320 28

21 77/07/"2 1:11 3559' 70*43' 94 86 65 266 25 174 0 254 'O ?6 20

22 77/07f03 16:21 36'24' 71 30' 96 308 8 188 73 40 15 131 45 291 51

23 77/07!54 :41 36:12' 69-26' 128 43 14 146 28 296 98 189 10 94 30
24 77/07107 16:48 3608 69'08' 112 138 9 282 34 82 56 230 33 329 16

25 77/7/09 17:22 36*33' 71402' 197 288 37 177 26 60 41 229 48 324 6

26 77/37/11 11:02 36*26' 71'20' 104 178 8 297 72 84 16 345 34 136 50
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Table 3. Events used in determining composite
fault plane solutions.

Sol. Date Origin Latitude Longitude Depth
time (*N) (*E) (km)

A 77/06/18 10:03 36*31' 70*24' .221

77/06/20 00:25 36031' 70*18' 210

77/06/22 03:30 36*28' 70*20' 208

77/06/26 11:03 36*27' 70*22' 216

B 77/06/17 17:14 36*33' 70*57' 197

77/06/19 01:47 36044' 71*29' 194

77/06/20 20:00 36*42' 71*06' 233

77/06/2k 21:33 36033 71*22' 160

77/06/23 23:32 36042' 71*22' 167

77/06/26 15:05 36*33' 70057' 212

77/07/02 04:09 36*41' 71*04' 242

77/07/02 14:21 36028' 70*59' 231

77/07/03 01:55 36*43' 71*14' 254

77/07/06 04:54 36033' 71001' 204

77/07/08 01:30 36038' 71*09' 212

77/07/08 05:25 36040 71*10' 224

77/07/08 09:50 36*42' 71014' 235

77/07/10 08:05 36040' 71009' 226

C 77/06/21 05:33 36*29' 70046' 204

77/06/23
77/06/23
77/06/23
77/06/25
77/07/01
77/07/01

77/07/02
77/07/07
77/07/08
77/07/12

03:22
12:14
20:40
12:40
01:39
15:39
03:30

06:20
03:22
08:05

36027'

36033'

36038'

360366'

360256

36037'

36034'

36025'

36027'

36028'

70*46' 214

70041' 205

70*46' 190

70045' 168

70043' 219

70059 230

70040' 174

70*38' 229

70*57' 163

70048' 203

In active subduction zones, such as the
Japanese arc, the limit in the depth of
seismicity occurs in lithosphere that has
resided in the mantle for about 15 m.y. or
less. We suspect therefore that if subduction
of lithosphere beneath the Hindu Kush has
ceased, it probably could not have done so
earlier than 20 m.y. ago. In fact, since the
upper boundary of the seismicity seems to
coincide with the depth of the Moho, it is
possible that subduction has ceased very
recently or is continuing aseismically through
a relatively weak lower crust. The continuation
of subduction would require that continental
lithosphere is being subducted, a situation
which might account for the broader zone of
seismicity at depths shallower than 170 km.

Although it is difficult to place a precise
limit on the duration or on the times of
subduction, we can place lower bounds on
values associated with these parameters. First
the above observations taken together suggest
that subduction beneath the Hindu Kush most
likely-completely postdates the collision
about 45 n.y. ago and was probably much more

recent. Since the trend of the seismic zone
is approximately perpendicular to the
direction of convergence between India and
Eurasi3., it is unlikely that subduction
occurred at a rate exceeding the rate of
convergence between these two continents, about
43 mm/yr [Minster and Jordan, 19781. From the
depth of the seismic zone we know that at
least 300 km of lithosphere have been subducted.
Therefore while the lack of volcanics suggests
a short duration of subduction, the depth of
seismicity indicates it must be at least 7 m.y.

If all of the convergence did not take place
in the region of subduction, the subduction
rate could perhaps have been slower, which would
in turn result in a longer duration. It is
unlikely that the rate of subduction could be
very much less, however, because, for lower
rates, subduction to such depths probably
could not occur. From a study of seismic zones
where the rates of subduction and age of
subducted oceanic lithosphere is known, Molnar
et al. [19791 deduced that the length of the
seismic zone is approximately proportional to
the rate of subduction times the square of the
thickness of subducted lithosphere. If the age
of the subducted lithosphere is less than about
100 m.y., the thickness of the lithosphere is
proportional to the square root of the age, so
that, approximately, length = rate x age/10
[Moinar et al., 1979]. For oceanic lithosphere
older than about 120 m.y., however, the thick-
ness of the lithosphere is essentially constant
("125 km, Parsons and Sclater [19771), so that
the length of the seismic zone is proportional
to the rate of subduction. Thus for a lengt-h
of 300 km the rate of subduction of old
lithosphere should be at least 20 mm/yr
[Molnar et al., 19791. For a maximum rate of
43 rm/yr the age of the lithosphere at the time
it was subducted beneath the Hindu Kush should
have been greater than about 70 m.y.

We conclude that relatively old, and there-
fore cold and thick, oceanic lithosphere was
subducted beneath the Hindu Kush for a short
duration in the late Tertiary.

Influence of the Collision

Locations of the earthquakes indicate that
at least in the south the lithosphere is
sharply bent, going from a horizontal to a
vertical disposition in a very short distance.
Assuming that the upper seismic zone defines an
approximately circular transition region between
these dispositions, the radius of curvature for
this region is about 100 km. For most
subduction zones the radius of curvature is
about 200 km [Isacks and Barazangi, 19771.
From the discussion above we suggest that the
subducted lithosphere was relatively thick.
Therefore if the lithosphere is continuous, a
large bending moment, significantly greater than
is evident in island arcs, must be applied to it
to bend it so sharply. The gap between the
events shallower and deeper than about 170 km
may in fact represent a discontinuity in the
lithosphere, so that at shallower depths the
lithosphere does not necessarily curve
significantly with increasing depth. The
vertically dipping lower region would then have
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broken off recently and would be sinking some-
what independently of the shallower region. In
addition, there is a considerable change in the
dip of this shallower region from east to west.
Since the length of the slab is much shorter
than at island arcs, where the slab seems to be
continuous, the gravitational body force
associated with such a short slab is probably
inadequate to bend the plate or to break it off.
We suspect that the protrusion of the Indian
subcontinent has provided a dynamic push that
has bent the underthrusted slab and straightened
up the eastern end of the zone. This conjecture
is supported by the fact that the top of the
seismic zone near 70 km extends to shallower
depths as the zone becomes more vertical, as
one might expect if the entire slab were being
rotated to a vertical direction without sinking.
Moreover, the projection of the seismic zone to

the surface (Figure 15) is parallel to trends
of folds and faults such as those in the Panjer
and Kunar valleys, which apparently were also
deformed by the protrusion.

Emplacer.ent Scenarios

An implication of a short duration of sub-
duction is that it is unlikely that the
lithosphere beneath the Hindu Kush was once
part of the Tethys ocean that was attached to
India and subducted beneath Eurasia, unless we
have overestimated the date of the collision.
Subduction that postdates the collision and
occurs over a short duration suggests that
independent pieces of oceanic lithosphere, such
as intracontinental or interarc basins, have
recently been subducted beneath the Hindu Kush
north of the Tethys suture [Khalturin et al.,

1977]. In examining this proposal we discuss
the implications of a spectrum of possible
emplacement scenarios.

The problem of trying to determine where
and from which direction subduction took place
is complicated by the fact that two parts of
the zone dip in nearly opposite directions. Any

explanation that assumes subduction in only one
direction must account for the complete over-
turn of some part of the downgoing slab,
presumably by the underthrusting lithosphere
dragging it through the asthenosphere [e.g.,
Billington et al., 1977]. Such a phenomenon
may have occurred north of New Guinea, where the

intermediate depth zone dips south under the

island, not northward beneath the volcanoes
[Johnson and Molnar, 1972].

The observation that Eurasia moves slowly
with respect to frames of reference in which

either the relative motion of the hot spots or
the net rotation of the lithosphere is minimized
[Minster et al., 19T4) suggests that Eurasia
has not overriden a slab attached to it. Since

any slab originally dipping to the south
probably would at most be forced to a vertical
position, and since the southern zone dips
northward, subduction from the north alone is
unlikely.

In contrast, India moves rapidly with respect
to such frames. As noted above, we infer that
the protrusion of a northward moving Indian
lithosphere is probably responsible for the
partial straightening of the southern zone of

subducted lithosphere. If one assumes that

subduction occurred entirely from the south,

this line of reasoning could be extrapolated
to explain the overturning of the northeastern
portion of the downgoing slab beneath the
Pamirs [e.g., Billington et al., 1977]. Some

evidence for this scenario is suggested by the
trend of the seismic zone in this area, which
conforms to the arc of deformation as defined
by the southward dipping thrust faults in the
Pamir. One consecuerce of such a scenario is
that if the lithosphere were displaced north-
ward sufficiently to overturn the slab, then
the suture that formed when the last part of
the basin was subducted, the Pamir suture,
would be presently northwest of the seismic
zone. The India-Eurasia suture zone is thought
to be at or just south of the Kunar fault
[Tahirkeli et al., 19771, which is nearly 300
km south of the seismic zone. The Kunar fault

therefore could not have been the Pamir suture,
and the oceanic lithosphere beneath the Pamir
was not originally from the Tethys. Therefore
regardless of whether or not subduction
occurred entirely from the south, the existence

of the intermediate depth events beneath the
Pamir recuires that an intracontinental
(possibly interarc) basin originally lay north
of the Kunar fault . Although we are aware of
no evidence that disallows northward subduction
beneath the Pamir and subsequent overturning of
the zone, we think that the geologic evidence
is more easily accomodated by a southward
subduction beneath the Pamir.

Hence we think that a more likely scenario is

Table 4. Fault plane solutions determined with data from the WSSN.
POLE OF FIRST POLE OF SECOND

go DATE LATITUDE LONGITLDE DEPTH P Ails I AXIS B AXIS NODAL PLANE NODAL PLANE
(*N) (*E) (Y1) PL AZ PL AZ PL AZ PL AZ PL AZ

1 64/01/28 36.48 70.95 197 26 140 64 320 0 50 22 320 72 140

2 65/03/14 36.42 70.65 205 15 219 72 2 8 127 30 32 58 241

3 66/06/06 36.43 71.12 221 5 180 85 0 0 90 40 0 50 180

4 67/01/25 36.71 71.60 281 24 60 60 276 17 155 64 32 22 252

5 69/03/05 36.41 70.73 208 20 205 70 25 0 115 25 25 65 205

6 69/08/08 36.44 70.86 196 7 16 83 196 0 106 52 16 33 196

7 71/08/06 36.42 70.73 207 35 198 55 18 0 108 10 18 80 198

8 72/01/20 36.39 70.72 214 10 228 64 339 22 134 30 28 s0 256

9 72/06/24 36.28 69.69 47 17 276 62 152 22 14 22 112 56 248

10 72/11/16 35.67 69.91 120 18 166 72 346 0 76 27 346 63 166

11 73/10/12 37.68 71.88 35 10 180 80 0 0 90 35 0 55 180

12 73/10/17 36.38 71.11 211 15 168 75 322 10 76 30 342 60 176

13 74/05/13 36.54 70.96 197 35 124 55 304 0 34 10 304 80 124

14 74/07/30 36.42 70.76 209 24 190 63 35 10 295 20 19 67 168

15 74/12/10 36.48 70.47 213 10 137 80 317 0 47 35 317 55 137

16 75,03/03 36.45 70.92 187 15 337 75 157 a 67 30 157 60 337

17 75/05/14 36.08 70.90 97 42 161 42 18 20 270 0 0 70 90
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Fig. 11. Lower hemisphere projections in abbreviated balloon format of fault plane
solutions for events shallower than 170-km depth using data from local and WWSSN
stations. Locations of events using WWSSN data are plotted as stars. Dark quadrants
represent compressional first motions, and white quadrants dilatations.

that two small ocean basins were subducted
separately in opposite directions, one to the
north beneath the Hindu Kush, and one to the
south beneath the Pamir (see also Billington,
et al. [19771, VaMlazud [19731 and Vinnik and
Lukk (1974]). Evidence for subduction from the
north beneath the Pamir consists of the
following observations: first, the zone dips to
the south. Second, almost all of the faults
north- of the zone indicate underthrusting to
the south. By examining repeated facies of
Cretaceous and Paleogene sediments, Peive et
al. [1961] infer that at least 100 km of
northward overthrusting has occurred along these
faults. In the Garm region, just east of the
Vakhsh overthrust, geodetic observations indi-
cate active convergence of about 2 cm/yr
(Konopoltsev, 19711 and an uplift of the south
wall of a thrust fault at about 1 cm/yr (Finko
and Enman, 1971; Nersesov et al., 1976]. A
projecticn of the seismic zone to the surface
lies near the Darva:-Karakul fault, which
changes from a southward dipping thrust in the
north to a left lateral strike slip fault in
the west [Kuchai and Trifonov, 1977]. Displace-

ment along the western part of Darvaz-Karakul
seems to occur at about 1 cm/yr (Kuchai and
Trifonov, 1977], and the accumulated displace-
ment could be as much as 200 km [Zakharov,
19691. Right lateral displacement of 250 km
seems to have occurred along northeast trending
faults east of the Pamir (Norin, 1979; Peive
et al., 1964]. All of these data are consistent
with a northward overthrusting of the Pamir
onto the rest of the Eurasian landmass.
Finally, thick marine sediments were deposited
in the Tadjik depression north and west of the
zone during the upper Cretaceous and Paleogene
[Peive et al., 1964]. The Darvaz-Karakul fault
seems to separate these sediments from
Paleozoic deposits to the south and east. We
note that subduction from the north requires a
Pamir suture which lies far to the north of the
India-Eurasia suture, and this in turn would
imply that a marginal ocean basin, isolated
within the Eurasian continent, once existed
north of the Pamir.

The northward dip of the Hindu Kush seismic
zone strongly implies that it formed by
subduction from the south. Some geological
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-A 134'N I I
Fig. 12. Fault plane solutions using
Symbols as i:. Figure 11.

evidence exists that supports this direction of
subduction, but the details of the emplacement
are difficult to resolve. The surficial
projection of the zone intersects the surface
just south of the Panjer fault, making it a
likely candidate for a suture zone. Ophiolites
have been identified both on the Panjer and at
least as far as 300 km to the south of the
Panjer [Cassaigneau, 1979; Gansser, 1977;
St8cklin, 1977]. These latter ophiolites are
bordered on the west by the Chaman fault, which
apparently terminates at its intersection with
the Herat fault in the Panjer valley. Such a
geometry is suggestive of a system analogous
to a trench-transform system. The Chaman fault
has been active at least since some time in
the Tertiary, and although the data are not
conclusive, there may have been as much as
300-500 km of left lateral displacement along
it [Auden, 19"4; de Lapparent,(-1973; Wellman,
1966]. A hypothetical extension of the fault
past its termination aligns approximately with
the western edge of the intermediate depth
seismicity.

These observations, however, do not prove
that subduction took place at the Panjer fault.
The ophiolites south of the Panjer were
apparently emplaced in the late Cretaceous or

local data for events deeper than 170 km.

early Tertiary [Cassaigneau, 1979; Gansser,
1977; Mattauer et al., 19781, which is too early
to be associated with the final closure of a
basin whose lithosphere now contains the Hindu
Kush seismicity. Moreover, the ophiolites in
the Panjer valley are of uncertain age and not
well studied.

A second possibility for the suture zone is
the Kunar fault and its extension east into
the Hazara region north of the Kohistan
Himalaya. From the geology of the region
further north, Tahirkeli et al. [1977)
suggested that an interarc basin was subducted
at the Kunar fault after the collision with
India.- The projection of the seismic zone is
approximately parallel to the trend of the
Kunar fault but would imply that thrusting
occurred on a plane dipping at about 200
between 0- and 70-kn depth. Fault plane
solutions of large events in the Himalaya are
consistent with such a dip [e.g., olnar et
al., 1977), but a study of microearthquakes
near the Kunar fault does not reveal a simple
fault dipping northward [Prevot et al., 1980].
Again, this evidence is inadequate to prove
that the lithosphere in which the Hindu Kush
earthouakes occur was subducted here.

1382 Chatelain et al.:



Chatelain et al.: Microearthquakes and Tectonics of the Hindu Kush

In any event, subduction beneath the Hindu

Kush from the south seems likely4 even if the

suture zone cannot as yet be recognized with

certainty.
Although the possibility of oppositely

subducting lithosphere has been proposed before
from other studies of seismicity, differences in
the data resulted in different interpretations.
In the teleseismic study of Billington et al.

(1977], such a scenario was partially dismissed
because the results implied that the two zones
would somehow become contiguous after the
collision. The microearthquake results,
however, show a considerable gap between the
regions. Therefore even though the simultaneous
subduction of lithosphere in different
directions within a relatively small area may
seem unusual, the gap between them indicates
that some spatial independence between the
neighboring basins could have existed.

The earthquake locations also suggest that
the sutures associated with subduction of the
two basins lie on opposite sides of the Pamir-
Hindu Kush orogenic belt. Since this belt
formed in the late Paleozoic or early Mesozoic
and therefore predates subduction, there must
have been two oceanic basins separated by the
Pamir-Hindu Kush belt regardless of the
direction of subduction. On the basis of these

observations we suggest that the subduction of
two oceanic basins in opposite directions
beneath the Hindu Kush and Pamir is both
plausible and likely.

Subduction of isolated basins probably has
been quite comon in the tectonic evolution of
orogenic belts. As Arabia and Africa continue
to converge with Eurasia, isolated basins such
as those beneath the Black Sea and Caspian Sea
probably will eventually be subducted. They
could well be future analogues for the kind of
subduction beneath the Hindu Kush and Pamir.
For a brief time they will give rise to
intermediate and possibly deep earthquakes in
isolated areas far from the main suture zones,
where thousands of kilometers of oceanic
lithosphere were subducted. Clearly, the
existence in the past of such basins and their
subsequent subduction will cause complexity
that will make the unraveling of geologic
history of orogenic belts much more complicated
than standar. two-dimensional cartoons imply.

Sumay

Owing to the high activity of the Hindu Kush
seismic zone the microearthquake investigations
of 1976 and 1977 recorded a substantial number
of earthquakes. From a series of tests designed

BAR

5 +2

4V A

Fig. 13. Fault plane solutions using WWSSII data for events deeper than 170 km.
Solutions for locally recorded events occurring in the area are plotted as well.
The line J'J is a section of H'H used to plot the solutions in a lateral projection

parallel to the zone. Symbols as in Figure 11.
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3001
Fig. 14. Back hemisphere projections of
plane solutions using WWSSN data onto a
lateral section parallel to the zone.
Location of the J'J section is given in
Figure 13.

fault

to evaluate different sources of uncertainty,
quality criteria were developed for estimating
the precision of the location of these events.
From the 1200 events for which locations could
be obtained, application of the criteria allowed
us to cull out 600 well-located events, with
uncertainties in epicenter of about 5 km and in
depth of 10 km. These 600 events were used to
define the seismic zone in some detail. While
the definition of a seismic zone with data from
a temporary network carries the stigma of
inadequate sampling, many of the features
revealed by the 1977 study are reflected in the
microearthquake studies of 1976 and 1967-68
[Roecker et al., 19801 and in the teleseismic
results of Billington et al. [1977) and Santo
[19691. In fact, the large number of earth-
quakes in the 1977 study accentuated many
features such as a bend in the zone at shallower
depths and aseismic gaps, which went largely
unnoticed in previous studies.

We find that the crust from 0- to 70-km
depth is essentially aseismic. Below the crust
the seismic zone in the upper mantle is
separated into three regions by two prominent
aseismic gaps. A 70-km gap separates a south-
ward dipping region beneath the Pamir from a
northward dipping one beneath the Hindu Kush.
A gap in seismicity beneath the Hindu Kush
further separates seismic regions deeper and
shallower than about 170 km from one another.
The deeper region is characterized as a narrow

(15-20 km) vertically dipping zone, while the
shallower region is broad and dips at
progressively steeper angles from west to east.
The differences in dip and breadth of these
regions makes the long-term role of the
aseismic gaps as boundaries viable.

Fault plane solutions for the ocean events,
determined with both local and WWSSN data,
reveal T axes generally lying in the plane of
seismicity and P axes generally perpendicular
to the plane, which is similar to solutions in
island arcs. In contrast to island arcs the T

axes are not always parallel to the dip of the
zone, and there seems to be substantial
variation in their orientation. Much of this
variation occurs on opposite sides of a
resolvable gap in activity of about 15-km
width in the deeper region at about 70.60E.
To the west of this gap, T axes plunge to the
west. On the other side of the gap, T axes
plunge to the east and, further east, become
progressively more westward plunging. In the
western end of the deeper seismic zone, activity
seems to be confined to a tube which dips to the
west, and the T axes west of the 70.7E gap are
roughly parallel with this trend.

In contrast to the smooth variation of the
solutions for deeper events, the fault plane
solutions for shallower events show a great deal
of scatter. A larger data set than is presently
available may perhaps resolve a pattern in these
solutions, but no consistent behavior is evident
in the 1977 solutions.

On the basis of the essentially narrow and
planar definition at the seismic zone to depths
of 300 km, we infer that subduction of oceanic
lithosphere has taken place beneath the Hindu
Kush. Some bounds on parameters associated with
this subduction can be made by considering the
extent of the seismic zone and its relation to
the tectonic environment. From the isolated
nature of the seismic zone, from the occurrence
of earthquakes at depths of 300 km, and from
the absence of volcanic rocks above the zone it
is likely that subduction occurred over a short
duration and did not begin much before 20 m.y.
ago. Subduction may actually be occurring
today through a relatively weak lower crust.
A recent history of subduction places an upper
bound on the rate of subduction of about 43
mm/yr, while the depth of activity restricts
this rate to be at least about 20 rm/yr. We
infer that the oceanic lithosphere was probably
greater than 70 m.y. old when subducted and
therefore relatively thick. A comparison of
the dips of the shallower and deeper zones
suggests that the gaps between them near 170-km
depth actually may represent a discontinuity in
the lithosphere, and the change in dip of the
shallower zone is most likely a result of the
penetration of the Indian subcontinent into
Eurasia.

By correlating the trend of the seismic zone
with surficial geology we draw some inferences
regarding the tectonic evolution of the region.
Although the scenario given is not exclusive,
we think that the available evidence is most
easily accomodated by subduction of two
separate basins in opposite directions. A
projection of the seismic zone to the surface
reveals some possible candidates for Hindu
Kush - Pamir suture zones. North of the Pamir
the seismic projection lies south of the
Darvaz-Karakul thrust fault, which separates
the thick. Cenozoic marine deposits of the Tadjik
depression in the west and north from Paleozoic
deposits to the south and east. South of the
Hindu Kush the projection lies just south of the
Panjer fault, but the role of this fault as a
suture is uncertain. Another candidate for
Hindu Kush suture is the Kunar fault and its
extension to the east, north of the Kohistan
Himalaya, since it may have at one time been
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Figure 15. Map of major tectonic features of the Pamir-HinduiKush region and their
relation to a projection of the seismic zone to the surface. The projection of the
zone was made by fitting a line to the trend of the shallower side of the zone above
170 km. Faults and geologic features are taken from maps compiled by Desio [1975],
Gansser [1977], Peive et al. [1964], and Stocklin [1977].

associated with subduction of a marginal basin
[Burke et al., 1977; Tahirkeli et al., 19773.

While the unraveling of the history of the
Pamir-Hindu Kush is rather complicated, we
suggest that the geology and seismicity in this
area may actually be a prototype of a type of
complexity that will exist after basins such as
those beneath the Black and Caspian seas are
subducted and that has probably been common in
collision zones.
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CHAPTER II

Aureliano not only understood by then, he also lived his

brother's experiences as something of his own, for on one occasion

when the latter was explaining in great detail the mechanisms of

love, he interrupted him to ask: "What does it feel like?" Jose

Arcadio gave his immediate reply:

"It's like an earthquake."

- Gabriel Garcia Marquez

One Hundred Years of Solitude



S. W. Roecker,l 0. V. Soboleva,
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Abstract. Relocations of earthquakes,
. recorded by a local network of stations in

Afghanistan and Tadjikistan in 1966 and 1967,
indicate a narrow seismic zone (width ( 30 km)
dipping steeply into the mantle to a depth of
300 km beneath the Pamir and Hindu Kush ranges.
Very low seismicity was observed at depths less
than about 70 km, the approximate depth of the
Moho. Clear gaps in activity exist also within
the zone of intermediate depth seismicity. One
gap, about 50 km wide near 37*N and at depths
greater than 100 km, separates a steeply north-
ward dipping zone to the southwest from a
steeply southeastward dipping zone to the north-
east. This gap probably marks either a tear in
the downgoing slab or a gap between two
oppositely dipping slabs. Fault plane solutions,
determined by Soboleva for events between 1960
and 1967, generally show steeply plunging T axes
approximately within the planar seismic zone.
They therefore are grossly similar to those at
island arcs where no deep earthquakes occur and
presumably result frcm gravitational body forces
acting on a relatively dense slab of lithosphere.
At the same time there is a very large variation
in the fault plane solutions, much larger than
is common at island arcs.

Introduction

Although it does not have an island arc
structure, the Pamir-Hindu Kush region is the
source of very high intermediate depth
seismicity. This region is one of the most
active sources of earthquakes felt within the
USSR, even though most of it lies outside of the
USSR, in Afghanistan. Accordingly, Soviet
seismologists have devoted considerable
attention to its study. An extensive network of
stations has been operated in Tadjikistan for 20
years by the Tadjik Institute of Seismo-Resistant
Construction and Seismology (TISSS) of the
Academy of Sciences of the Tadjik SSR and by the
Institute of Physics of the Earth (IFZ) of the
Acadeny of Sciences of the USSR (in Moscow).
Moreover, in 1966 and 1967 a special network was
installed in Afghanistan and along the Soviet-
Afghan boundary by the IFZ to study the seis-

- micity and structure of this region. The data in

lDepartment of Earth and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge,
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SEISMICITY AND FAULT PLANE SOLUTIONS OF ITERMEDIATE
DEPTH EARTHQUAKES IN THE PAMIR-HINDU KUSH REGION

2 1. L. Nersesov,3 A. A. Lukk, 3

atelain,4 and P. Molnarl

1966 and 1967 allowed the most precise determina-
tions of hypocenter that were possible at that
time [Lukk and Nersesov, 1970]. These hypo-
centers defined an approximately planar zone that
dips steeply into upper mantle and extends in an
east-west direction for nearly 700 km. With
careful analytical and graphical techniques, but
without the aid of high-speed computers, Lukk
and Nersesov [1970] simultaneously determined a
velocity structure for the crust and upper
mantle and located the earthquakes. In -.he
present paper we extend their study and present
relocations of these sane events using a
comouter.

The data obtained with this network were also
used to infer a high-velocity zone surrounding
the seismic zone [Vinnik and Lukk, 1973, 1974;
Vinnik et al., 19771, and subsequent studies
suggested a corresponding high Q zone [Khalturin
et al., 1977; Molnar et al., 19763. These
studies and others [Billington et al., 1977,
Chatelain et al., 1977, 1930; Malamud, 1973;
Nowroozi, 1971,. 1972] suggested a variety of
possible configurations of slabs of oceanic or
continental lithosphere that had been subducted
in the region.

In addition, the longer-term recording in
Tadjikistan has allowed the determination of
numerous fault plane solutions of earthcuakes
with magnitudes ranging from about 4 3/.4 to 7
[Soboleva, 1968a,b, 19721. Because of the close
proximity of many stations, much smaller events
were studied than was ordinarily possible with
data from the World-Wide Standardized Seismo-
graph Network (WWSSN) alone. Soboleva (1968a]
discussed the orientations of the P, T, and B
axes and their relationships to the seismic
zone, but her interpretation preceded the
recognition of plate tectonics and more modern
ideas about such relationships [Isacks et al.,
1968, 1969; Isacks and Molnar, 1969, 1971].
Moreover, locations of these events which
occurred between 1960 and 1967 were
sufficiently imprecise to reveal systematic
relationships between solution and location,
such as those observed by Chatelain et al.
[1980]. In the present paper we use either
Nowroozi's 1971 relocations of the events or
hypocentral determinations given by the
International Seismological Center (ISC) to
relate the solutions to the seismic zone
defined by the well-located earthquakes deter-
mined here for smaller events in 1966 and 1967.
We then discuss the results in light of the
ideas given by Isacks et al. [1968, 1969] and
Isacks and Molnar [1969, 19711. (Nersesov and
Lukk take no responsibility for the interpreta-
tion given in that discussion.)

Seismicity

Three-component short-period seismograph
stations, equipped with Soviet S5S seismometers,

Paper number 9B1562.
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were operated at locations shown in Figure 1
(and at other sites not used in this study).
These instruments have a flat frequency response
for displacement between about 5 and 30 Hz.
Recording speeds were typically 120 m/min, and
signals were usually impulsive. Consequently,
P wave arrival times could be determined with
uncertainties less than a few tenths of a
second, and S waves arrival times could be
identified with somewhat larger uncertainties,
about 1 s. These times were measured by A. A.
Lukk and I. L. Nersesov. When possible, the
data were supplemented by published arrival
times from stations at Warsak Dam, Pakistan
(WRK), and Kabul, Afghanistan (KBL).

We relocated the earthquakes recorded by.
this network in 1966 and 1967 using the computer
program HYP071, written by Lee and Lahr [1975],
assuming a modification of the velocity structure
determined by Lukk and .ersesov [1970]. A more
complete discussion of the velocity structure,

of the location procedure, and of the various
uncertainties is given in the companion paper
[Chatelain et al., 1980]. Much of the analysis
given in that study deals with networks with
some stations in approximately the same places
as Soviet stations were in 1966 and 1967. There-
fore the precision of the locations is probably
comparable. The Soviet network, however, is
concentrated to the north of the seismic zone,
and the temporary networks employed by Chatelain
et al. [1980] in 1976 and 1977 were largely
south of the zone. We found a systematic
northward displacement (of about 10 km) of the
seismic zone using the Soviet data compared
with the data from 1976 and 1977, and-we infer
that pronounced lateral variation in velocity in
the region may be the cause of systematic
differences between the locations of events.
Nevertheless, the uncertainties in the relative
locations of events (their precision) are likely
to be approximately the same for either

[.KBL _________
Fig. 1. Map of region showing position of stations (solid diamonds) and epicenter of
earthquakes at various depths: solid triangles, 50-100 km; open triangles, 100-150 km;
inverted triangles, 150-200 km; pluses, 200-250 km; and Y's, 250-300 km.
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Fig. 2. Maps of 1966-1967 epicenters of events in different depth ranges and fault
plane solutions in abbreviated balloon format. Lower hemisphere diagrams are shown
with quadrants with compressional first motions in black, and locations of earthquakes
with fault plane solutions are from Nowroozi [1971] or the ISC. Numbers correspond
to events in Table 1 and Appendix A.

configuration of stations. For the majority of
the events we estimate that uncertainties in the
precision of the depths and hypocenters are
about 10 km and that there could also be
systematic errors of the same amount.

All locations with Ems residuals less than
0.7 see [Chatelain et al., 19801 areplotted in
Figure 1 and are listed in Table Al.- Maps for
separate depth ranges are given in Figure 2, and
cross sections are shown in Figure 3. This
arrangement of plots is the same as in Chatelain
et al. (1980], and the general features of the
seismicity are similar. As noted in other
studies, the seismic zone dips steeply (Figure
3) and is oriented approximately east-west
(Figures 1 and 2) [Billington et al., 1977;
Chatelain et al., 1977; Lukk and Nersesov, 1970;
Malamud, 1973; Nowroozi, 1971]. West of
approximately 710E the zone trends east-west,
but to the east it trends more nearly northeast-
southwest. As the data from the studies
referenced above show, at depths greater than
about 150 km, the east-west zone dips steeply to
the north, and the northeast-southwest zone dips
steeply to the southeast (Figure 3).

Because of the greater number of more
precisely determined hypocenters than for the
previous studies, there are also some features
that were less clearly resolved in most of these
earlier studies. At shallower depths (70-150
km), both zones appear to dip at shallower angles
than at greater depths (Figure 3), a result also
obtained by Billington et al. [19T7]. At the
same time there is a very low level of seis-
micity at depths shallower than about 70 km
(Figure 3). This is not a consequence of
inaccurate locations but reflects much lower
seismicity in the crust than in the underlying
mantle.

1Appendix is available with entire article on
microfiche. Order from the American Geophysical
Union, 2000 Florida Ave., N. W., Washington, DC
20009. Document J80-003; $01.00. Payment must
accompany order.

The seismic zone is not a continuous planar
zone with uniformly distributed seismicity but
instead contains pronounced gaps in activity and
tight clusters of concentrated activity. One
gap, near 37*N, is clear at all depths
(Figure 2 and section FF' in Figure 3). This
gap, approximately 50 km wide, seems to separate
the zones that dip north and southeast (Figures
1 and 3), and it is tempting to suggest that the
slab of lithosphere in which the earthquakes
presumably occur is discontinuous there. This
gap in activity is also clear in the data
discussed by Chatelain et al. [1980].

A less well-defined gap in the western part
of the zone between depths of about 150 and 180
km separates regions of shallower and deeper
activity (profiles BB', CC', and HH' in Figure
3). Although there may not be enough events to
convincingly demonstrate its existence here, this
gap is particularly clear in the data described
by Chatelain et al. [1980]. There is a
suggestion also of a narrow gap in activity
between 200 and 250 km at about 70.5*E (Figure
2 and profile HH' in Figure 3) which is very
clear in the data from 1977 [Chatelain et al.,
1980, Figure 5].

Along most of the zone and below about 150-km
depth the width of the zone is about 30 km, a
result similar to that of Billington et al.
[1977] but much narrower than the data from most
previous studies suggest [e.g., Lukk and Nerse-
sov, 1970; Malamud, 1973; Nowroozi, 1971]. Given
the uncertainties in the locations, the width
could be narrower in most regions, except
possibly near 710E, and at depths greater than
200 km. There the zone seems to divide into
two separate zones separated by a gap in activity
about 20 km wide (Figure 2 and profile DD' in
Figure 3). Events in both clusters were located
with the same stations, and our estimation of the
errors in locations suggests that this separation
is real. Nevertheless, with a more favorable
station distribution the southern branch is not
apparent in the data of Chatelain et al. [19801.

Because most of the gaps and clusters in the
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Fig. 3. Cross section of seismiicity perpendicular to seismic zone (AA to G'G) and
parallel to zone (H'H) and fault plane solutions (see Figure 1). Back hemisphere of
fault plane solutions shown. Solid symbols for earthquakes which met the quality
constraint in Chatelain et al. (19801, and open symbols for those with most mean
square residuals less than 0.7 s.

seismicity in 1966 and 1967 are evident in the
data obtained in 1976 and 1977 [Chatelain et al.,
1980], we do not consider them to be artifacts
of short time periods of recording. At the
same time the data are clearly inadequate to
show that these features are representative of
much longer periods of time. A close correlation
of neculiarities in fault clane solutions with
hypocentral positions (Chatelain et al., 1980],
however, suggests that these clusters and gaps
reflect variations in the state of stress and
therefore may be representative of the seis-
micity for longer time pneriods than considered
here.

Fault Plane Solutions

Since most of the data used to determine the
fault plane solutions were radiated into the
upper hemisphere of the focal sphere, upper
hemisphere diagrams for all of the solutions are
given in Appendix A. Pertinent parameters are
listed in Table 1. To facilitate comparison with
data in other studies, however, lower hemi spheres
given in abbreviated balloon format in Figure 2
for earthquakes at different depths, and back
hemispheres are given in Figure 3 in the cross
sections. These solutions were determined by
Soboleva [1968a,b, 1972, new unpublished data,
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19791, and among those discussed in her papers,
these include only the ones to which she
assigned the highest quality factor. They
include essentially all events between 1960 and
1967 for which it was possible to determine a
solution with Soviet data. The locations of
these earthquakes were taken from Nowroozi's
[1971] tabulation for events occurring in 1960-
1963 and from the ISC listings for the more
recent events. We assume that the uncertainty in
the locations of some of these may be 10 km, but
for most it is probably 20 km.

Probably the most obvious generality reflected
in these data is that the T axes are nearly
vertical in most cases, a result noted by
Soboleva [1968a, 19721 and observed with
solutions determined with other data (e.g.,
Billington et al., 1977; Chatelain et al., 1980;
Isacks and Molnar, 1971; Nowroozi, 1972]. Among
Soboleva's better constrained solutions, those
used here, the T axis is in all but two cases
more nearly vertical than the P axis.

Perhaps the most notable feature in Figure 2
is the wide variety of fault plane solutions.
This contrasts markedly with island arc struc-
tures, where fault plane solutions of inter-
mediate and of deep earthquakes are usually very
similar to one another within the arc and in the
same depth range [Isacks and Molnar, 1971].
Solutions for events 71, 7, 80, and 82 were
obtained both from Soviet recordings, most of
which were radiated into the upper hemisphere
of the focal sphere (Appendix A), and from data
of the WWSSN, which were radiated into the lower
hemisphere [Chatelain et al., 1980, Table 1,

Appendix A]. In general, the parameters differ
by less than 100 and always less than 15*, their
approximate uncertainty. This suggests that
locally heterogeneous velocity structures do not
cause the large observed variation in the
solutions and that there is a real variation in
the orientation of the fault planes.

Variation in fault plane solutions was noted
for the larger events (M k, 5.5) in the Hindu Kush
region, but much of this variation is systematic
[Chatelain et al., 1980]. Near 70.6*E most of
the P axes trend northeast-southwest, becoming
more nearly north-south near 70.80E and
approximately northwest-southeast farther east
near 71.0*E (Figure 2). Although many of the
solutions presented here fit this general
pattern, particularly the larger events, there
is still a very large scatter. Although the
solutions presented here are not as well
constrained as those determined with the W'AWSSN,
the variation in the observed first motions of
the P waves reouires large differences among the
solutions (see Appendix A). We think that the
variability within localized regions may not be
real but is simply a consequence of large errors
in the locations of the events. Chatelain et al.
[19801 found very large differences in fault
plane solutions of earth::uakes only 20-30 km
apart. Therefore errors in locations of this
amount, which are difficult to eliminate,
could introduce an apparently random scatter of
solutions, whereas in fact there is a simple
regional variation.

The fault Dlane solutions for the shallower
events (70-150 km) include large components of

Table 1. FAL.T PLANE SOLUTIONS

P AXIS T AXIS 3 AXIS POLE OF FIRST POLE OF SECOND
J DATE Origin LAT LONG DE?TH NODAL PLANE NODAL PLANE

Tim (*N) (*E) M) AZ PL AZ PL AZ PL AZ ?L AZ PL

23 60/01/9 07:24 36.43* 70.10' 234 150 15 260 50 49 36 300 20 190 40
25 60/02/8 18:54 36.19* 70.55' 175 143 10 46 33 247 55 100 30 0 15
27 60/02/19 10:36 36.56* 71.11' 211 95 5 195 80 4 10 260 40 105 45
28 60/02/23 02:09 36.51* 71.11* 194 310 5 135 80 40 1 130 40 320 50
34 61/03/20 03:30 36.78* 71.26* 75 335 0 65 60 245 30 130 35 0 40
10:61/04/26 05:23 36.56* 71.30* 218 40 0 310 40 130 50 0 25 260 30
36 61/06/19 17-04 36.47* 70.88' 197 30 20 170 70 296 12 200 25 50 60
30S61/07/20 00:40 39.40* 72.40* 123 15 61 126 12 223 24 99 53 326 .n
31161/,08/17 13:48 37.50* 71.70* 113 105 60 315 26 220 15 344 68 124 18
32A61/08/18 07:56 38.70' 72.70* 110 142 2 234 79 52 10 154 46 311 42
38 61/08/21 07:C0 36.49* 71.68* 108 130 0 220 45 40 45 275 30 165 30
39 61/09/6 13:35 36.52' 70.61* 204 225 30 45 60 135 0 45 15 225 75
41 62/01/5 04:27 36.46' 71.39* 104 166 9 67 40 266 48 125 35 20 20
42 62/01/8 22:25 36.41* 70.77* 212 182 6 84 54 276 35 150 40 30 30
43 62/02/27 05:40 36.53* 71.45* 101 355 0 90 75 265 15 160 40 10 40
44 62/03/28 00:51 36.581 71.47* 102 307 22 78 59 208 21 110 20 340 60
48 62/07/6 23:05 36.46* 70.35* 208 172 14 59 58 270 29 140 50 15 25
49 62/08/3 18:02 36.52* 71.10* 203 340 5 245 60 73 30 315 40 185 35
51 62/10/9 15:59 36.41* 71.19* 238 40 25 235 65 133 6 25 65 225 20
53 63/01/12 06:20 36.09' 69.09* 122 155 0 345 85 245 1 330 45 160 50
55 63/02/17 05:38 36.46* 70.55* 201 255 0 160 65 345 25 100 40 230 40
56 63/02/18 14:25 36.46* 70.78* 219 165 5 70 55 258 35 140 40 15 35
58 63/03/7 21:49 36.47' 71.41* 96 135 .0 235 80 45 10 300 40 145 45
28163/06/1 10:49 36.12* 71.24* 96 100 5 355 63 193 26 300 35 70 45
29163/36/11 0 3:25 37.11* 70.07* 24 295 5 185 70 27 19 280 50 130 35
62 63/37/10 02:12 36.37* 71.60* 87 275 5 180 55 9 35 125 30 240 40
63 63/08/13 07:03 36.55* 71.04* 245 255 10 80 85 344 1 75 40 255 60
64 63/09/29 10:39 36.46' 70.33* 205 145 0 55 54 235 36 115 35 355 35
65 63/10/14 21:12 37.46* 71.88* 113 107 0 197 43 17 47 145 33 250 30
66 63/12/28 01:40 36.55' 70.12' 209 170 8 68 53 266 35 136 42 19 27
70 64/01/23 15:19 36.58' 71.18* 76 110 15 270 75 19 5 280 30 120 60
71 64/01/28 14:3) 36.48* 70.95* 197 150 20 335 70 241 2 150 65 330 25
72 64, 2/18 17:18 36.47' 70.70* 202 162 9 69 40 264 44 130 40 15 25
72364/03/23 18:38 38.25* 73.63* 125 355 41 345 18 138 44 290 43 36 15
73 64/05/16 09:38 36.36' 71.43' 110 9 6 271 56 103 33 340 40 215 30
74 64/05/17 11:45 36.49* 70.47* 226 22 26 149 51 278 27 180 15 70 60
75 64/09/29 06:51 36.42* 71.51' 77 105 10 0 65 200 24 305 35 80 45
76 64/11/27 11:03 36.40' 70.73' 211 181 5 283 65 92 24 340 35 205 45
77 64/12/24 01:08 36.35* 70.89* 127 350 15 181 75 81 2 350 60 170 30
78 65/03/14 15:53 36.42* 70.73* 205 220 15 40 75 130 0 220 60 40 30
80365/04/10 21:21 37.33* 71.97' 12) 290 16 195 19 58 65 244 23 152 2
81.65/07/20 37:43 36.72* 71.32' 191 308 30 62 35 188 40 1 48 94 4
79 65/11/16 1l'13 36.41* 71.11* 242 341 19 89 43 233 41 130 15 25 45
82L65/05/30 11:28 36.42* 70.09* 234 268 58 116 28 20 14 149 68 286 15
80 66/06/6 07:46 36.43* 71.12' 214 178 18 322 68 86 13 350 25 200 6081 66/07/07 19:00 36.58* 71.14* 79 286 8 30 59 192 34 80 31 318 43
82 67/31/25 01:50 36.71' 71.60' 281 48 11 265 76 138 7 36 55 234 3383 67/02/11 08:05 36.66' 71.05* 89 2 9 249 62 96 25 202 33 334 48
84 67/12/28 20:15 37.28* 71.92' 147 330 35 123 54 230 12 138 Il 13 76
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thrust faulting, therefore with steeply dipping
T axes, and with P axes oriented approximately
northwest-southeast (Figure 2). The dip of the
seismic zone is not well defined in this depth
range (Figure 3) but seems to increase with
depth. It is possible that for some of these
events one of the nodal planes is parallel to
the seismic zone (event 53 in AA'; event 77 in
DD'; events 38, 41, L3, 44, 58, and 73 in E';
and event 65 in GG' of Figure 3). In such a
case the slip during earthquake might represent
displacement along a fault parallel to the
seismic zone [Vinnik and Lukk, 1973, 19T;
Vinnik et al., 19771. Such a phenomenon is
unusual for earthquakes at these depths, but
perhaps in Asia the plates are thicker than at
island arcs [e.g., Vinnik et al., 19771. These
earthquakes would then result from relative
plate motion, not internal deformation of the
downgoing slab as at island arcs [Isacks and
Molnar, 1971].

The approximately horizontal northwest-
southeast P axes for these events (Figures 2
and 3) are similar to those of shallower,
crustal events further south [Prevot et al.,
1980]. At the same time the solutions in
Figure 2 are sufficiently different that the
slip vectors definitely differ from one another.
Therefore only some, if any, of these events
between 70 and 150 km could reflect slip of one
plate past another. They might reflect more
diffuse deformation resulting from northwest-
southeast compressive stress due to the India-
Eurasia collision.

Alternatively, the nearly vertical T axes for
the deeper of these events (near 150-km depth)
could indicat'e internal deformation of the
downgoing slab, as is typical of intermediate
depth events at island arcs. The uncertainties
in the locations of these events and in the
configuration of the seismic zone do not allow
this to be resolved.

Summary

A study of earthquakes occurring in 1966 and
1967 in the Pamir-Hindu Kush region and recorded
by a relatively dense network of local stations
reveals several unusual patterns in the
seismicity. Seismicity in the crust is very low
so that the intermediate depth zone does not
continue to the earth's surface along any clear
zone. Two possible explanations are either that
convergence between India and Eurasia continues,
with deformation in the crust occurring
aseismically, or that convergence is absorbed
farther north (or south), with the intermediate
depth earthquakes occurring in a slab of
lithosphere hanging in the mantle. These two
explanations are not mutually exclusive.

To-a first approximation the seismicity is
confined to a narrow (width <30 km) planar zone
that dips steeply into the mantle. The data
suggest a pronounced gap near 374N that
separates a steeply north dipping zone in the
west from a steeply southeast dipping zone in
the northeast. This gap in activity could
represent a discontinuity in the downgoing slab
of lithosphere or even a gap between two
lithospheric slabs (see Chatelain et al., 19801.
There is a suggestion of a decrease in the dip

of the zones at shallower depths (100 km), but
because of the lack of continuity of seismicity
to the surface, it is difficult to trace either
inferred zone to a place at the earth's surface,
where subduction of the slab would have
occurred. The dips of the seismic z6ne suggest
a southerly source of the western zone and a
northerly source for the eastern zone, an idea
expressed by others from the faulting and
geologic structure along the northern margin of
the Pair LKhalturin et al., 1977; Malamud,
1973; l et al., 1973; Ulomov, 1974; Vinnik
and Lukk, 19~3, 1974; Vinnik et al., 1977].
This interpretation is certainly not required by
the data, and Billington et al. [19771 give other
possible scenarios.

The gap in activity at 370 is not the only
gap, and clusters of activity also occur. Since
these gaps and clusters are evident in data
obtained during short periods of recording 10
years later, we think that they are representa-
tive of the seismicity for at least tens of
years. Perhaps they have persisted hundreds or
thousands of years [Chatelain et al., 1980].

We used fault plane solutions of earthquakes
in 1960-1967, determined by Soboleva (1968a,
19721, but assu-ed the locations given in
Nowroozi1971 and ISC. The T axes, in general,
plunge at steep angles and lie approximately
within te plane of the seismic zone. Thus they
conform to the gross pattern for intermediate
depth events at island arcs where there are no
deep events or where there is a gap in seismicity
between intermediate and deep events [Isacks and
11onar, 1959, 1971]. Therefore most of them
presunaczy result from stress in a downgoing
(or hanging) slab of lithosphere. The imoortant
parameters would be the orientation of the P, T,
and B axes, not the nodal planes or slip vectors.
The downdipicrc T axes imply that gravitational
body forces tend to pull the slab down [Isacks
and Molnar, 1969, 19711.

The only exception to this pattern might be
for events at shallower depths (70-150 km),
where the seismic zones seem to dip less
steeply. Solutions for some but not all of these
events show that one plane could be parallel to
the seismic zone. If the plane of seismicity
marks a fault, then the displacement might
represent slip of one plate with respect to
another. The data do not require this
interpretatton, however.

Fault plane solutions of deeper events (180-
230 km) also show considerable variability.
Although the regional variation in solutions
discussed by Chtelain et al. (19801 describes
much of the variation in the data presented
here, the scatter is still very large. We
suspect that the scatter is only apparent and
is due to errors in the locations.
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CHAPTER III

Perhaps the closest one could approach an experience of

travel in the old sense today would be to drive in an aged

automobile with doubtful tires through Rumania or Afghanistan

without hotel reservations and to get by on terrible French.

- Paul Fussel

Abroad: British Literary traveling

between the Wars
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Shallow Earthquakes and Active Tectonics
in Eastern Afghanistan
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Brief studies of microcarthquakes in four separate parts of eastern Afghanistan reveal a high level of
seismicity over a broad area. In general, the activity is not concentrated on well-defined faults, nor does it
define new faults, but seismicity on or close to the Chaman and Sarubi faults attests to their activity. First
motions of P waves are consistent with left- and right-lateral strike-slip motion, respectively, on these two
faults. Fault plane solutions and composite solutions of events in different areas throughout the region
differ from one another, but in general, the P axes are parallel to the north-northwest direction of relative
motion between India and Eurasia. Several earthquakes beneath Kabul and its immediate surroundings
emphasize a need for further study of its seismic hazard.

INTRODUCTION

The tectonic activity of the Himalayan belt, of which north-
eastern Afghanistan is a part. is usually interpreted as a con-
sequence of the collision between the Indian and Eurasian
subcontinents (e.g., Dewey and Bird, 1970; Molnar and Tap-
ponnier, 1975]. This collision is thought to have occurred ap-
proximately 40-50 m.y. ago, and now the relative convergence
rate is calculated to be 41 ± 5mm/yr [Minster and Jordan,
19781. The India plate is bounded on the north by the Hima-
laya, where thrust faulting predominates. The plate boundary
is not sharp on the west, and deformation seems to occur pri-
marily by strike-slip faulting along several subparallel faults.
Accordingly, the junction between these two portions of the
boundary in northeastern Afghanistan and northern Pakistan
is not well defined, and the seismicity is scattered over a broad
area [Armbruster et al, 1978; Seeber and Jacob, 1977; Seeber
and Armbruster, 1979].

From aerial photos, Wellman [19661, and later Heuckroth
and Karim [1970, 1973], inferred a complex pattern of faults in
eastern Afghanistan. The major fault is the left-lateral Cha-
man fatilt (Figures 1 and 2), with a length of about 800 km
aA4 north-northeast strike. Wellmnan inferred a rate of slip
along the fault of-abopt 15 mm/yr, and several authors haye
inferred displacements of 300-500 km [Auden, 1974; de Lap-
parent, 1972; Wellman, 1966]. Although the Chaman fault sep-
arates two very different geologic units and it clearly is active,
the quantitative estimate of rates or total displacements is not
well constrained. Its clear topographic expression and dis-
placements during historic earthquakes [Griesbach, 1893;
Heuckroth and Karim, 1970, 1973; McMahon. 1897; Richter,

1958] attest to recent activity. The Chaman fault seems to in-
tersect the Herat fault near the town of Charikar (Figures I
and 2), and it cannot be traced north beyond the Herat fault
into the Hindu Kush.

Although a substantial fraction of the motion of India with
respect to Eurasia may occur at the Chaman fault, the mere

Copyright @ 1980 by the American Geophysical Union.
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fact that the direction of relative motion is not parallel to the
fault requires that it alone is not the boundary. Surely some
displacement occurs further east and southeast, in Pakistan,
but there seem to be several other active faults in,northeastern
Afghanistan along which the relative motion of India and
Eurasia can also be absorbed. Wellman 11966] infers that the
Gardez fault, which is roughly parallel to the Chaman fault, is
an active left-lateral strike-slip fault. Between it and the Cha-
man fault, the Sarubi fault shows clear topographic expression
on aerial photos [Wellman, 19661 and the Landsat imagery
(Figure 2), as well as from the ground. From first motions of P
waves of earthquakes near the Sarubi fault, we infer a large
component of right-lateral slip. The Kunar fault (Figures I
and 2) seems to occupy the position of an important suture,
possibly between an island arc and the Asian continent [Ta-
hirkheli et al., 1977]. It too is very clear on the Landsat im-
agery (Figure 2) and seems to be associated with seismicity.
These faults appear to divide the region into wedge-shaped
blocks that move with respect to one another but also undergo
some internal deformation [Carbonnel, 1977]. Although the
seismicity located with teleseismic phases for'the last 15 years
has been low, numerous historical earthqugkes attest to con
tinuing activity (Figure 1) [Heuckroth and Karim, 1970, 1973;
Quittmeyer and Jacob, 19791.

To examine the active deformation of the region, we in-
stalled temporary networks of portable seismographs in four
parts of eastern Afghanistan for periods of 1-2 two weeks in
1976, 1977, and 1978. These studies were intended to supple-
ment data obtained from a study of intermediate-depth seis-
micity in the Hindu-Kush region [Chatelain et al., 1980].

DATA
Instruments and Procedure

For each of the four networks we used portable Sprengne-
ther MEQ-800 seismographs with Mark Product L-4C vertical
seismometers. The amplifier was usually set at 84 db, corre-
sponding to a total magnification of 5 x 10' at 10 Hz. The
drum rotation rate was 60 mm/min. By checking the clocks
every 2 days with radio signals from the ATA station in New
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Delhi, clock drifts were found to be less than 0.1 s for 2-day
periods.

We measured arrival times with a hand lens, with a scale 12
cm long and graduated at 0.1-mm intervals. We estimate that,
in general, P wave arrival times could be measured with un-
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certainties of a tenth of a second and, in general, S wave ar-

rival times are uncertain by less than I s. We used the com-

puter program, Hypo 71 [Lee and Lahr, 1975], to determine

the locations. The magnitudes of the earthquakes were esti-

mated from the duration of the signal, T (in seconds) using

71 E

Fig. 2. Landsat imagery of the area studied. Landsat images E1517-05270-5 and E1517-05264-5.
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earthquakes from Quiumeyer and Jacob [19791 (open symbols). Dot-dashed line is border between Pakistan and Afghanis-

tan.
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the formula

M - 0.87 + 2 log T + 0.0035A

where A is hypocentral distance in kilometers [Lee and Lahr,
19751. Because the instruments in Afghanistan were different

- from those used in determining this empirical formula, our es-
timates of signal duration are probably systematically too

- long. However, the magnitude depends on the logarithm of
the duration, so the effect of this difference is probably not
great. A complete list of the locations is available on micro-
fiche.

Velocity Structure and Uncertainties in Locations

Since there are no studies of the velocity structure of any of
the region considered here, we defined our own velocity struc-
ture (Table 1) as follows. First, we estimated a value for the
ratio of the P wave and S wave velocities, v,/v,. Hypo 71 uses
a constant ratio for all depths. We chose the 10 most well re-
corded events with S waves, and for each we constructed Wa-
dati diagrams, plots of differences in S wave and P wave ar-
rival times versus P arrival time. We obtained a range of
values of v,/v, = 1.70-1.76 with a well-defined mean at 1.73,
which we used for all locations. We used three criteria to de-
fine good locations: the root mean square (rms) residual of the
arrival times used to determine the location (typically rms is
0.1 s), the uncertainty in the depth obtained from Hypo 71
(ERZ), and the P wave residual at the nearest station (PRZ).
We explored different layered structures in order to find the
structures that minimized these parameters for 46 well-re-
corded events.

For ciWated depths less than 7 km, we txamined loca-
tions calculated using a homogenous half space with v,, of 5.8,
6.0, 6.2, and 6.4 km/s. We found that the smallest residuals
were obtained for v, = 5.8 km/s and assumed that value for
the upper 7 km. We then considered events with calculated
depths between 7 and 25 km and found that a value of v, =
6.2 km/s in this depth interval yielded the smallest computed
uncertainties. There were not enough earthquakes below 25
km to carry out the same procedure. so we simply assumed
that v,= 6:8 km/s between 25- and 40-km depth and that v, =
8.0 km/s below the Moho. Because very few rays penetrate
below 25 km, ignorance of this portion of the structure is less
important than that of shallower depths.

To estimate the uncertainties in the locations, we made sev-
eral tests. First, we examined the influence of random noise in
theariva times on the calculated location. This should allow
an estimate of the importance of random errors in arrival
times. We calculated travel times from hypothetical events in
different regions and then added random noise, with zero
mean, of 0.1 s for P waves and 0.5 s for S waves to the arrival
times. The differences between the computed and actual loca-
tions are generally less than I km (Table 2).

We then examined the influence of the station distribution
by calculating locations of these hypothetical events with sub-
sets of the arrival times. The results again show that for net-
works of five to six stations near the epicenter (those stations
most likely to record the events), the differences in computed
and actual locations are generally about 1 km (Table 2). For

The appendix is available with entire article on microfiche. Order
frosn American _Gepohysical Union, 2000 Florida Avenue, N. W.,
Washington, D. C. 20009. Document 180-001; $1.00. Payment must
accompany order.

TABLE 1. Velocities of Layered Model Used to Locate Events

Velocity, Depth,
km/s km

5.8 0.0
6.2 7.0
6.8 25.0
8.2 40.0

some cases the depths differ by more, but in no case by more
than 6 km.

We then calculated locations using a different value of v;/v,
= 1.70. For this case we used all of the stations. The computed
locations differed by less than 1.5 km from the actual loca-
tions (Table 2).

Finally, we examined the effect of different velocity struc-
tures on the locations. In particular, we considered homoge-
nous half spaces with different values of v, of 5.8, 6.0, 6.2, and
6.4 km/s, and relocated the events with these structures. In
general, the epicenters differ by less than I km and the depths
by less than a few kilometers (Table 2).

From these tests we conclude that when five or more sta-
tions near the epicenter record clear arrivals, the precision of
the calculated epicenter is probably about 4 km or less and
that of the depths is about 6 km.

Fault Plane Solutions

Although we recorded first motions of P waves from only
12 stations in the optimum case, we attempted to determine
fault plane solutions for individual events whenever possible.
In a few cases, unique solutions could be obtained in this-way,
but in general, it was necessary to combine data and to-con-
struct composite fault plane solutions. For example, solution
5B in Figure 3 for a single event is poorly constrained, but by
including data from another event in the samezegion (5D),
two well-constrained planes can be drawn. Because it is diffi-
cult to evaluate the basic assumption used for composite solu-
tions, that the radiation patterns for all of the events are the
same, uncertainties for composite solutions are greater than
those of single events. Indeed, when first motions from many
events are combined, there are often many inconsistencies. In
constructing the solutions therefore we did not, in general.
combine data that were simply consistent with one another
but instead chose all first motions from earthquakes in well-
defined clusters. Thus from the scatter in the data we can eval-
uate the extent to which the nodal planes fit the data well
(Figure 3). For some regions the lack of consistent data made
it impossible to obtain composite solutions.

A principal source of uncertainty in the solutions arises
from ignorance of the velocity structure. For a layered struc-
ture and for different depths of foci and different epicentral
distances, the ray path can initially go up directly to the sta-
tion or go down and refract along a deeper interface. An er-
roneous structure can strongly affect the calculated radiation
pattern. To explore the influence of the velocity structure, we
examined the calculated radiation patterns for all well-re-
corded earthquakes using three structures: A, which contains
20 layers and approximates a continous gradient from 6.0 to
6.7 km/s in the crust; B, the three-layered model used for lo-
cations (Table 1); and C, a homogenous half space. In a few
cases, solutions were discarded because they depended
strongly on the assumed velocity structure. As examples of so-
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Real
Position

TABLE 2. Relocations of Hypothetical Events

With a Y,/v, -
Random 1.70 v, 5.8 Y, -6.2 v,= 6.2 v,= 6.4

Noise Subarray km/s km/s km/s km/s km/s

19.45 A 19.52 19.50 19.33 19.66 19.98 20.2512h27 19.48
34*38.45
70*38.91

5.26
12h41 13.84

34021.99
70034.01

6.18
18h35 56.20

34026.98
70*31.75

4.12
17h15 20.24

34044.01
70*52.90

4.95
Ohl6 43.87

34042.86
69047.42

4.49
13h08 45.87

34052.87
69039.71

5.34
14h22 50.69

34*55.97

70020.59
17.21

3h21 23.12
34024.70
70000.30

13.70
16h31 38.76

34039.49

70028.50
1.13

21h40 2.15
34034.86
70*20.36

8.64
15h56 56.88

34034.93

70033.18
16.46

Oh21 45.89
34042.82

69057.21
8.96

19h 19 54.07
34059.55

70031.92
40.64

21h25 10.32
34039.09

70038.44
4.18

38.69
39.14
4.78

13.87
22.05
33.64

6.82
56.15
26.70
31.77
4.31

20.16
44.24
52.84
4.02

43.83
42.42
47.32

45.89
53.16
40.26

4.48
50.55
56.23
20.24
18.76
23.10
24.57
00.44
13.44
38.76
39.12
28.86

2.12
2.23

35.15
20.72

7.43
56.98
34.94
33.04
15.14
45.77
43.29
56.79
10.81
54.08
58.69
31.69
42.46
10.32
39.21
38.38

3.60

38.63
38.69

5.71
B 13.69

21.60
33.20
11.67

B 56.11
27.49
30.37

8.58
C 20.20

45.54
52.12

0.83
D 43.82

42.55
47.19

D 45.90
53.06
40.36

4.56
C 50.65

57.03
20.78
16.34

B 23.27
24.77
01.50
15.94

A 38.61
39.13
29.26

3.55
A 2.07

35.28
19.95
9.49

A 57.04
35.19
32.87
15.33

D 45.82
43.45
56.91

9.94
C 53.82

58.50
31.25
45.57

A 10.18
38.24
38.97

2.17

38.66
39.26

4.33
13.90
21.96
33.67

6.53
56.18
26.54
31.86

3.40
20.20
44.50
52.66

2.49
43.86
42.69
46.65

45.58
54.28
38.99

5.43
50.54
56.37
20.38
19.48
23.04
24.34

0.20
14.91
38.80
39.21
28.68

0.90
2.27

35.20
20.76

6.71
57.02
34.91
33.16
15.46
45.73
43.57
56.56
12.41
54.01
59.37
31.78
43.34
10.37
39.32
38.43

3.14

38.90
39.04

7.06
13.53
22.26
33.33
10.81
55.79
26.86
31.43
12.27
20.13
44.47
52.32

2.53
43.68
42.10
47.43

46.07
52.21
41.44

1.98
49.95
55.82
20.52
20.76
22.55
24.59
0.40

16.33
38.75
39.17
28.74

0.73
1.80

35.12
20.63
10.82
56.43
35.06
32.79
17.36
45.33
43.07
57.46
14.06
53.30
57.60
31.86
42.13
10.33
39.13
38.38

2.32

38.94
39.15

5.34
13.92
22.06
33.46

8.45
56.22
26.45
31.63

8.30
20.42
44.58
52.69

1.04
43.99
42.43
47.12

46.17
53.03
40.53

2.35
50.35
56.16
20.46
19.78
22.96
24.65
0.64

15.57
39.01
39.20
28.64

1.09
2.23

35.18
20.62

8.46
56.86
34.98
32.96
15.99
45.63
43.39
56.96
13.59
53.60
57.89
31.76
42.27
10.61
39.37
38.30

0.46

38.93
39.33

2.60
14.28
21.86
33.66

5.25
56.64
26.23
31.84

0.36
20.69
44.60
53.18

0.58
44.21
42.70
46.58

46.13
54.15
39.10

1.77
50.80
56.34
20.41
18.10
23.34
24.39

0.29
13.35
39.28
39.17
28.59

0.89
2.65

35.16
20.59

5.01
57.25
34.91
33.13
14.54
46.02
43.62
56.59
10.94
53.88
58.31
31.68
42.66
10.87
39.57
38.37

0.81

Travel times calculated with three layer crustal model and v,,/v, = 1.73. In each of the columns we
change only one parameter. Random noise is 0.1 s for P and 0.5 s for S times. Subarrays are A (SLW,
AMV, SLK, KKN, PJP), B (CHK. GBW, CRZ. KKN, AMV), C (CHK, CHS, SLW, KYN, AMV), and
D (SLK, KKN, KYN, CRZ, GGM, TGB). Numbers giving locations are (from top to bottom) time, lati-
tude, longitude. depth.

lutions not strongly altered, compare the various solutions for RESULTS
events 7, 8, 10, and 12 in Figure 3. The refracted waves are
shown with crosses. In general. structure B was used for com-- Chaman Fault Region
posite solutions, but they are labeled D in Figure 3 and Table Between September 2 and 9, 1976, we recorded earthquakes
3 to distinguish them from solutions for single events. with six stations between Moqur and Qalat along the Chaman
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39.01
39.46
0.25

14.58
21.55
33.69

0.35
56.88
26.01
31.91

0.21
20.92
44.66
53.76

0.68
44.41
42.94
46.00

45.Y9
55.25
37.29

0.86
51.29
56.49
20.38
14.99
23.64
24.01
59.81
11.84
39.52
39.18
28.51

0.70
2.97

35.14
20.54
0.04

57.62
34.84
33.28
13.00
46.31
43.80
56.28
10.32
54.15
58.79
31.69
42.65
11.14
39.52
38.51
0.78
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Fig. 3. Fault plane solutions in equal area projection of the upper hemisphere of the focal spheres. Solid circles are
compressions, open circles are dilatations, and crosses indicate refracted waves. Solutions are determined with different
velocity structures: A is a 20-layered model, B is a three-layered model (Table 2), and C is a homogenous half space. For
composite fault plane solutions (D) the three-layered model was used. Numbers correspond to Table 3 and Figure 8.
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TABLE 3. Fault Plane Solutions

Pole of First Pole of Second
P Axis T Axis B Axis Nodal Plane Nodal Plane

Origin Lat., Long., Depth,
Date Time *N *E km Trend Plunge Trend Plunge Trend Plunge Trend Plunge Trend Plunge

May 24, 1977
ID May 24

May 25
2B May 23

May 22

June 1
June 2

3D June 2

June 3

June 5

June 7
4B June 6

June 2

June 3
June 4

4D June 5
June 6

June 8

June 9

5B June 5
5D June 5

May 31

June I

June 2

6D June 2
June 4
June 5
June 6

June 7

June 9
7A June 3
7B June3
7C June 3
SA June 10
8B June 10
8C June 10
9D June 3

69.25 9
69.24
69.25
69.08
69.71
69.69 6
69.67 4
69.67 5
69.68 4
69.65 7
69.67 4
69.68 2
69.68 4
69.67 5
69.65 6
69.69 5
70.34 17
70.34 16
70.33 18
70.33 17
70.34 18
70.32 18
70.34 18

20:19 34.60
20:22 34.60
10:01 34.60
02:08 34.98
16:47 34.82
17:30 34.82
19:58 34.87
13:08 34.88
15:13 34.87
20:52 34.87
22:30 34.90
15:49 34.90
15:55 34.90
17:59 34.90
21:33 34.90
12:57 34.91
14:22 34.93
11:33 34.90
15:22 34.92
16:01 34.91
19:44 34.94
22:34 34.92
02:24 34.93
17:50 34.90
10:59 34.94
11:30 34.92
14:22 34.93
16:25 34.93
10:41 34.93
23:28 34.91
23:54 34.91
18:29 34.91
19:55 34.91
22:03 34.91
03:59 35.00
03:59 35.00
19:59 34.99
15:36 34.68
16:38 34.68
20:11 34.69
22:11 34.69
22:18 34.69
01:07 34.69
19:11 34.69
05:08 34.68
08:53 34.68
12:55 34.67
14:26 34.68
06:23 34.69
15:17 34.67
16:25 34.68
16:54 34.68
18:55 34.67
19:50 34.69
19:51 34.68
02:27 34.70
08:02 34.68
23:20 34.67
12:27 34.64
12:27 34.64
12:27 34.64
01:38 34.63
01:38 34,63
01:38 34.63
15:56 34.59
15:56 34.58

70.54 14
70.54 16
70.54 16
70.54 16
70.54 21
70.54 18
70.54 21
70.52 19
70.53 20
70.55 5
70.52 7
70.53 19
70.54 21
70.53 21
70.54 20
70.53 22
70.53 20
70.55 23
70.52 15
70.65 4
70.65 5
70.65 6
70.60 26
70.60 25
70.60 25
70.55 18
70.55 16

10 324 33 180 51

0 73 0

66 17 276 70 160 10

90 118 0 28 0

12 20 102 25 253 57 60 32 154 6

206 18 312 42 98 42 249 44 355 15

199 30 317 38 82 36 255 36 348 4

36 222 23 69 30 200 50 13 40 106 3

36 322 23 69 30 200 50 13 40 106 3
41
13
17

106 20 302 70 198 6 96 65 290 25

4 57
5 117
5 54

17 211
10 212
14 38
15 212

75 254
83 245
67 250
23 73
16 70
1 127

38 62

13 355
6 343

22 356
60 261
70 260
75 261
46 271

37 149 49
50 152 40
36 135 46
30 170 4
20 168 4
10 353 10
40 168 16

70.33
70.33
70.34
70.34
70.32
70.33
70.33
70.34
70.33
70.35
70.32
70.53
70.53
70.53
70.53
70.54
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TABLE 3. (continued)

Pole of First Pole of Second
P Axis TAxis B Axis Nodal Plane Nodal Plane

Origin Lat., Long., Depth,
Date Time *N *E km Trend Plunge Trend Plunge Trend Plunge Trend Plunge Trend Plunge

a
h

14 107
4 70
1 78

69 247
62 259
63 259

50 142 30
35 141 44
38 144 40

4 168 10 55 64 266 24 9 30 143 50
12
14
14
12
12
8
7 196 6 101 37 295 53 53 20 156 30
6
5

10A June 5 18:35 34.45 70.53
10B June 5 18:35 34.45 70.53
10C June 5 18:35 34.45 70.53

June 2 02:07 34.47 70.51
13:42 34.47 70.53

June 5 07:19 34.47 70.53
10D June 5 18:35 34.45 70.53

June 6 01:13 34.47 70.51
08:39 34.46 70.53
20:08 34.47 70.50

June 9 04:37 34.48 70.51
05:59 34.46 70.53

lID June 4 10:22 34.38 70.55
10:25 34.37 70.56
18:47 34.37 70.56
20:57 34.37 70.57

12A June 4 12:41 34.37 70.57
12B June 4 12:41 34.37 70.57
12C June 4 12:41 34.37 70.57

09:42 34.36 70.57
12:41 34.37 70.57

12D June 4 20:57 34.37 70.57
13B June 2 21:40 34.58 70.34

May 31 16:43 34.62 70.40
June 2 03:22 34.60 70.32

04:49 34.59 70.28
10:49 34.56 70.42
21:40 34.58 70.34

June 3 09:33 34.63 70.49
June 5 11:40 34.57 70.30
June 6 07:26 34.63 70.41

10:50 34.60 70.32
11:25 34.56 70.29
16:58 34.63 70.49

13D June 6 23:25 34.63 70.35
23:41 34.61 70.32

June 7 16:31 34.66 70.48
22:27 34.58 70.35

June 8 02/58 34.67 70.38
03:35 34.56 70.48
14:32 34.55 70.32
15:36 34.56 70.31

June 9 17:27 34.52 70.27
11:06 34.56 70.30
15:49 34.59 70.41
17:17 34.66 70.34
20:36 34.61 70.34
20:36 34.61 70.34

June 10 06:19 34.62 70.37
June 2 21:39 34.71 69.78
June 4 04:44 34.74 69.78

14D June 7 05:25 34.75 69.78
06:08 34.72 69.78

June 8 00:16 34.71 69.79
14D June 8 00:19 34.72 69.77

00/25 34.72 69.77
01:27 34.75 69.77

Sept. 4, 1976 12:08 32.48 67.45
12:15 31.92 67.16

Sept.7 06:23 31.97 67.17
Sept.8 04:56 31.71 67.06

22:51 32.17 67.28

5 312
12 326
10 306

30 147 60
30 169 58
28 150 60

6 336 3 100 85 246 5 332 50 152 40
5
9 13 1 104 70 282 20 32 42 172 40
6

8 218 72 65 15 315 50 166 36

7 141 0 41 0 90 6 0 96 0

8 349 15 227 51 82 33 302 50 186 20
7

12
19
2
2 356 40 86 4 180 50 305 27 50 30
7
3

A, the crust contains 20 layers; B, the crust contains 3 layers; C, the crust is homogenous; D, composite solution.

16 292
14 294
16 280
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fault (Figure 4). We chose this part because there has been

historical seismic activity, the fault is geologically well de-

fined, and it was possible to find accessible outcrops of bed-
rock on which to place the geophones. We located five small
events with magnitudes less than 2 close to the fault itself at
depths less than 20 km (Figure 4). Given the uncertainties in

36'N

Q0~ 0
0 Z0A
SAtk zuc

35'N 0
CHR BOD 1

A\

TGB\~

69E' - 0

Fig. 5. Map of Kabul region. Circles show epicenters of earth-
quakes. The size of circles is function of M. Stations are full triangles.

the locations, all five events could have occurred on the fault.
A composite fault plane solution for these five events is con-
sistent with left-lateral strike motion along the Chaman fault.

Also at station MOD (Figure 4) we recorded many very local
events, which could have occurred on the Moqur-Kandahar
fault. (Figure 1).

Fig. 6. Map of Charikar region. Symbols same as in Figure 5.
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Fig. 4. Map of Chaman fault region and fault plane solution. Full triangles are seismological stations, empty triangles
are towns, stars are earthquakes. Dashed lines show minor faults. The composite fault plane solution for the five events
near the Chaman fault is shown on the right in an upper hemisphere projection.
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Fig. 7. Map of southern Nuristan-Jalalabad region. Symbols same
as in Figure 5.

Kabul Region

Between May 19 and 26, 1977, we recorded with up to 10
stations in the Kabul region (Figure 5). This network was in-
stalled to determine the seismicity in the vicinity of Kabul and
to study the junction of the Chaman, Sarubi, and Herat faults.

We were able to locate 27 earthquakes with magnitudes up to
about 3. The calculated depths are between 5 and 25 ki.
There was inadequate activity to defie a simple pattern, but
it is clear that Kabul and its surroundings are active. Seven
earthquakes occurred in the immediate vicinity of the city in
this 1-week period.

A composite fault plane solution of mediocre quality for
these events near Kabul (ID in Figure 3 and Table 3) in-
dicates thrust faulting with an approximately northwest-
southeast P axis. First motions from a single event (2B in Fig-
ure 3) on or near the Chaman fault are consistent with left-lat-
eral strike-slip motion.

Charikar Region

We recorded with a network of six instruments between
May 25 and June 6, 1978, near the junction of the Herat, Cha-
man, and Sarubi faults. (Political turmoil prevented a more
thorough investigation.) We located 30 earthquakes with mag-
nitudes between 1 and 3 (Figure 6). Poorer quality locations
than for the other studies and the small number of events do
not allow us to associate the activity with known features ex-
cept perhaps the Sarubi fault near TGB. Nevertheless it is
clear that the region is quite active.

Southern Nuristan-Jalalabad Region

Because of the high activity in the Alingar valley during a
study of the Hindu Kush region in 1976 [Chatelain et aL,
1977], we installed a network of I1 stations in southern Nuris-
tan to study the seismicity associated with the Sarubi and Ku-
nar faults and the region between them (Figure 7). Between
May 31 and June 10, 1977, we recorded 284 events that could
be located (about 25/day), with a range of magnitude between
1 and 4.

Shallow activity (h < 10 km) seems to be associated with
the Sarubi fault (Figure 7). A composite fault plane solution

Fig. 8. Fault plane solutions in upper hemisphere abbreviated balloon format. Darkened areas are quadrants with com-
pressional first motions. Boxes indicate region in which earthquakes in composite fault plane solutions occurred.
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Fig. 9. Summary of seismicity of Kabul. Charikar, Southern Nuristan. and Jalalabad regions. Squares are from Kabul
study, circles from southern Nuristan-Jalalabad study, diamonds from Charikar study, and triangles from Hindu-Kush
study [Chatelain et al., 19801.

(3D in Figure 3) indicates a large component of right-lateral
strike-slip motion on the fault (Figure 8).

The first motions from a cluster of events south of those
used for solution 3D and east of the Sarubi fault show a very
different pattern (solutions 14D and 14D* in Figure 3). The
composite fault plane solution is not well constrained, and the
data are consistent with both strike-slip faulting or nearly
pure thrust faulting. The strike-slip solution (14D*) is consis-
tent with left-lateral motion parallel to the Gardez fault (see
Figure 1), whereas the thrust solution (14D) would represent

rig. 10. Upper hemisphere stereographic projection of P axes of
fault plane solutions. P is the mean direction of the P axes. Rm is the
direction of relative motion between India and Eurasia [Minster and
Jordan, 19781.

deformation of the region between the Sarubi fault and a pos-
sible continuation of the Gardez fault. In either case the P
axis is oriented northwest-southeast to north-northwest-
south-southeast.

Further east, seismicity is distributed over a broad area with
clusters in various places but no clear zones or belts of activity
that might indicate major active faults. There are some earth-
quakes that might be associated with the Kunar fault, and two
fault plane solutions (8B and 9D) near the fault are consistent
with right-lateral motion along it (Figure 8). First motions
from events in different clusters indicate a variety of fault
plane solutions that differ from one another, but with P axes
generally aligned in a north-south to northwest-southeast di-
rection (Figure 8).

CONCLUSIONS

The most obvious results of this study are that the seismic-
ity is not confined to narrow zones but is scattered throughout
the region of study (Figure 9) and that the fault plane solu-
tions likewise show considerable variability (Figure 8). Most
of the activity neither can be clearly associated with any
known active faults nor clearly defines a major unrecognized
fault. This activity seems to represent more diffuse deforma-
tion of a broad area. The most consistent pattern, however, is
that the P axis is oriented approximately north-northwest-
south-southeast, parallel to the present direction of con-
vergence between India and Eurasia. An upper hemisphere
projection of the P axes for all of the solutions (Figure 10)
shows a mean azurnith of 3370 * 16* with a plunge of 4* ±
17* (down to the southeast). This direction is very close to the
calculated direction of relative motion between India and Eu-
rasia of 350* IMinster and Jordan, 19781. It follows that the
tectonic activity is probably a consequence of that con-
vergence.
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In addition, a modest amount of activity was recorded near
the Chaman fault, and first motions of P waves are consistent
with left-lateral motion. The Sarubi fault is well defined topo-
graphically (Figure 2) and seismically (Figures 7 and 9) and a
composite fault plane solution indicates a large component of
right-lateral strike-slip motion. The Gardez fault is less clearly
active than the other faults recognized in this region.

There is scattered activity beneath Kabul and its immediate
vicinity. A composite fault plane solution indicates thrust
faulting with a northwest-southeast P axis. The occurrences of
several earthquakes with magnitudes up to 3 in a 1-week pe-
riod calls attention to the need for a more thorough investiga-
tion of the seismic risk of Kabul and its environs.
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CHAPTER IV

Jack :... That, my dear Algy, is the whole truth

pure and simple.

Algernon : The truth is rarely pure and never simple.

Modern life would be very tedious if it were,

and modern literature a complete impossibility!

- Oscar Wilde

The Importance of being Earnest



Sensitivity of the Earthquake Location Problem to
Network Geometry

W.L. Ellsworth and S.W. Roecker
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Summary

The influence of network geometry on the linearized

hypocenter determination problem is studied through direct

examination of the pseudoinverse operator. Analysis of

simple array configurations for which the analytic form of

the operator can be constructed reveals that the critical

geometric factor controlling the location is the spread of

ray take-off angles at the source. However, the slowness

vector components, which are used to form the conditional

equations, do not reliably predict the influence of a given

observation on the hypocentral adjustment. In particular,

focal depth adjustments commonly depend upon data for which

dT/dz = 0. The suitability of a particular network to the

earthquake location problem can be quantified by studying

the correlation between rows of the pseudoinverse operator.

High correlation between .rows implies that the perturbations

to the corresponding parameters are not indepenaent. The

analysis also demonstrates that problems with both P and S

wave data are better posed problems than those which have

only one type of data.



58

I. Introduction

Determination of earthquake hypocenters from

observations of body wave arrival times is, perhaps, the

most commonly solved geophysical inverse problem. Virtually

all computational schemes in use today for the location

problem stem from Geiger's solution [Geiger, 1912] which

seeks linear perturbations to the four hypocentral

parameters by minimizing a norm of the travel time

residuals. Linearization is achieved by expanding the

observed travel time about a trial hypocenter in a Taylor

series of the hypocenter perturbations (60, 6z, 6x, 6y) and

retaining only first order terms.

Geiger's linearization may be written as

dT. aT. dT.
(1.1) r. = 60 + z + -6x + Ay

az ax dy

thwhere r. is the travel time residual for the i station and

T is the travel time. The system of linear equations

defined by (1.1) has been solved by many different methods

including least squares [Flynn, 1960, Bolt, 1960; Nordquist,

1962; Eaton, 1969], stepwise multiple regression [Lee and

Lahr, 1975], singular value decomposition [Bolt, 1970;

Buland, 1976; Klien, 19783, and hybrid methods [Anderson,

1979]. As simple as this method is to derive, and despite

its widespread and successful application, comparatively

little is known about the influence of network geometry upon

the success or failure of the iterative procedure.
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In this paper, we focus on analysis of the linear

inverse operator for the last squares solution of (1.1),

using both analytical and numerical approaches. This

analysis of the linear inverse operator quantifies the

relationship between each observation and the four

hypocentral parameters. Direct examination of this

operator, which is the pseudoinverse for the minimum length

solution of (1.1), reveals information about the linear

estimation procedure that is not readily obtained from more

traditional methods of viewing the linear inverse problem.

In particular, the partial derivatives in (1.1) often

provide misleading information when inferences about the

inverse problem are drawn from them alone.

In the discussion that follows we will make the

following simplifying assumptions for the purpose of

reducing algebraic complexity. The variance of the travel

time observations are assumed to be uniform and Gaussian.

We also assume that errors in the theoretical travel times

causea by incomplete knowledge of the earth structure are

also uniform and Gaussian. The application of variance

equalization weights when these conditions are not met is

straightforward, so these assumptions make the analysis no

less general.



II. Evaluating The Minimum Length Solution

The minimum length solution for (1.1) can be

constructed by forming the generalized inverse discussed by

Lanczos {1961]. For convenience, we write (1.1) in matrix

notation as A6 = r, where 6 ( 60, 6z, 6 x, 6y) and A. .

contains the corresponding, partial derivatives for T. with

respect to 6.. The generalized inverse, A , is a

pseudoinverse (Lawson and Hanson, 1974] for the

overdetermined systems considered in this paper. The

singular value decomposition of the n x m matrix A (n > m)

expresses the original matrix as the product of three

matrices:

A = W\VT

where U and V are orthogonal matrices of dimension n x n and

m x m, respectively. A is an n x m matrix, the first n rows

of which form a diagonal matrix of the singular values. The

pseudoinverse of A is A 1UT where only p non-zero
p p p

singular values and their corresponding singular vectors are

used to form A. When p m, the space spanned by V is

complete and the solution to (1.1) given by

(2.1) 6 = A+r

is the least squares-solution to the normal equations

(2.2) A TA6 = AT r
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In this case, A+ can be constructed from(2.2) by

(2.3) A+ = A A)1 AT

We will be studying special cases of the analytic form of A+

below and will use (2.3) to contruct them.

The concept of parameter resolution, introduced by

Backus and Gilbert [1967], which is invaluable in the

analysis of many geophysical inverse problems, is rarely

useful in the hypocenter problem because p = m = 4 in most

,cases. When V is complete, the resolution matrix R = V VT
p p

is the identity matrix.

The information density matrix, or data resolution

matrix, S, does contain useful information in the problem

when p = m:

(2.4) S = UU T = A(ATA) AT
p p

The parameter covariance matrix, C, formed under the

assumption of uncorrelated data errors, also provides useful

information:

2 + + T 2 -2 T
(2.5) C = O A*(A-) =oVA V

Additional and often unique information about the

linear solution can be extracted directly from A+. Viewing

A+ as a linear operator which transforms the data vector

into the solution (2.1), we recognize that each element of

A +is the weight or "sensitivity" that a particular



observation has on a given parameter.

Each column of A+ contains a complete description of

how the corresponding observation contributes to the

solution. The euclidian length of the column is a measure

of the. net contribution the datum makes to the solution.

Its square occupies the diagonal element of the matrix

(A+T A+ which we will refer to as the data importance matrix

T:

(2.6) T = A72UT = (A T A+

T is equivalent to the data covariance matrix divided by a?.

Each row of A+ describes how the observations combine

to form the perturbation for the corresponding parameter.

The euclidian length of the row, formed by taking the inner

product of A+, is a diagonal element of the parameter

2
covariance matrix C (2.5) divided by a-. Under the

assumption of a Gaussin error distribution, the off-diagonal

elements of C quantify the interdependence of the elements

of the solution, 6. The linear correlation coefficient

2 2(2.7) R.. = C.. / (C..C..)
13 13 11 3

is a measure of this interdependence.
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III. General Form of the Pseudoinverse for Geiger's Method

Partial derivatives of the travel time with respect to

the three spatial coordinates of the hypocenter in equation

(1.1) may be written as the components of the slowness

vector for the unperturbed raypath evaluated at the trial

hypocenter [Flynn, 1960; Lee and Stewart, 1980]. Referring

to figure 1, these components are

dT.

ax - x = sine cos./V

dT.
(3.1) p = sinG.siny./V

dT
- p cosG./V

dz

where G is the take off angle, 9 is the azimuth for the ray

to the ith station, and V is the velocity at the source.

Because the partial derivatives are evaluated at the

source, the results to be discussed below do not depend upon

t.he nture of the earth mgodel. For illustratiye purposes,

we will occasionally apply the results to one-dimensional

earth models.

Using (3.1), equation (1.1) may be written as

r . 6 + p 6z + p 6x + py 6y
1z x. y.



thand the i row of A is

(3.2) (1,p ,p ,p )
z. x. y.

The matrix A TA, appearing in the normal equation (2.2), has

the explicit form

n EP z P p Ypz x. y.

2
EP 2p p Epz z x. -z -y.

T
(3.3) A A = 2

p Ip p

xE .y.
'2

where symmetric terms below the diagonal are omitted and n

is the number of observations.

It is evident from (2.3) that numerical stability and

uniqueness of the solution demanas that (A A) exist and be

well conditioned. Buland [1976] shows that it is desirable

to form the pseudoinverse from A directly with out resorting

to the normal equations, using a singular value

decompostiion algorithm such as the QR algorithm [Wilkenson

and Reinsch, 1971]. However, we will be performing

algebraic operations on A and A TA and are justified in using

normal equations to derive analytic forms of A+. Numerical

results presented below are computed directly from the

singular value decomposition of A formed using the SVD

algorithm [Businger and Golub, 1967].
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IV. Analytical Form of A+ for Special Network Geometries

The complete analytic form of A+ for the general

problem is tedious to form and difficult to evaluate. A

useful algebraic simplification occurs when the depth-origin

time (O-z) and latitude-longitude (x-y) problems decouple.

Decoupling occurs when

Tp :0
- x.

1

7p = 0
- y.

(4.1)

1 1

7py p Z = 0

It is, in general, possible to find many network geometries

where these requirements are approximately met. For

example, decoupling occurs for geometries in which pairs of

stations record rays that have the same take-off angle and

complimentary azimuths. For a one-dimensional earth model,

networks with an n-fold symmetry (n > 2) axis about the

epicenter decouple the (0-z) and (x-y) problems. An example

of this type of network is shown in figure 2.

Depth-Origin Time Problem

The normal equations for the decoupled (O-z) problem



are

n Ep Z 60 1,, Pi .,

(4 .2 ) E P E 2 6 z P .3. p
zL z z zJ 1 n -

To form A+ . we first construct (A TA)0-z

(ATA) -
O-z (na)2

2

1 2zE ]

n

where a is the variance of the vertical slowness.

column of A+ is

12 rp - p Ep
z zk z

(na)2 [zk 
Zi

and the explicit form of the solution is

1 ( 2
6o )-p - p 7-p )2- z. Zk-zi

(no-) k1

(4.3)

6 z= 2 npz z-p )rk
(no-) k i

The first row of A+ contains the

sensitivities that transform the travel time residuals into

r
n

The kth

weights



the origin time perturbation 6o. They quantitatively

express the sensitivity of 60 to each observation. Figure

3a shows the sensitivity curve for the cross-shaped array of

figure 2 which overlies a halfspace. The ratio

2
P 7p /7p z has a special meaning for origin time

1 1

sensitivities. Rays with p = have no influence on the

origin time as the corresponding elements of A are zero.O-z

When p < D, positive travel time residuals act to make the

origin time earlier and when p > ^ positive residuals act

to make the origin time later (figure 3a). None of these

features is readily apparent in the conditional equations

(1.1) since 6Tk/16 = 1 for all observations.

The second row of A+ contains the sensitivities for
0-z

the depth perturbation 6z. This row is nearly the mirror

image of the 6o sensitivities (figure 3b). The sensitivity

is zero when p 7p /n or at that station where the

vertical slowness is equal to the mean vertical slowness.

Again, the partial derivatives fail to predict the impact of

dT
a particular observation on the solution. Even when - 0,

dz

equation (4.3) shows that the sensitivity which weights the

residual in the solution is, in general, nonzero.

The functional similarity between the rows of A+
0-z

illustrates the well known trade-off between origin time and

depth which exists even when the model space resolution

matrix is the identity matrix. This trade-off between 6o

and 6z becomes complete when
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(p 2 2(!P 2= n7p2
z. z.

or when both sensitivity curves cross zero at the same pz

value. Geometrically, this occurs when all stations have a

common vertical component of the slowness vector.

The linear correlation coefficient R2 (2.7) expresses

the degree of interdependence between 60 and 6 z. For

geometries satisfying the decoupling criteria (4.1)

(7p 2

2  no? i
0-z 2 2

7p n~p-z. -z.

Clearly, if we seek to reduce the interdependence of focal

2depth and origin times, R O needs to be minimized . The0-z

"optimal" geometry for a network of stations can also be

defined as that geometry which minimizes the diagonals of

the covariance matrix [e.g. Kijko, 1977a, 1977b]. The

covariance matrix (2.5) for this problem is

CT 2 ZP2 E

(4.5) C o-z ( : )

nc -Ep nZ.

2We see that optimization entails the maximization of 2-.

This perspective makes clear the role of including both

upgoing and downgoing rays in the determination of depth and

2origin time, since the maximization of a- occurs when 7p =

0. If only rays in the upper or lower focal sphere are



used, all vertical slowness values are of the same sign. By

including both upgoing and downgoing rays, the contributions

to Tpz. tend to cancel.

Finally, we note that when the depth-origin time

problems decouple, the kth column of the pseudoinverse takes

the form

A
P Ep 2

z k z

Because of the removal of coupling effects, the

sensitivities are equal to the partial derivatives, within a

scale factor.

Latitude-Longitude Problem

When the depth-origin time problem decouples from

latitude-longitude problem, the normal equations for

(x-y) problem become

the

the

Ip 2p p px6x p , . r
x. x y x 1x 1

11 n

r
n

+ tnConstructing A as above, the general form for the kx-y

column of A+ is
x-y

(4.6)
D

2
p Ep - p Ep p
Xk i k i i

p ik2
yk i~ k i

r



T 2 2 2
where D = Det (A A) = 7p -( p p) .

xy x.- 1y. y.i1 1 1 1

Because the elements of A+ depend upon both azimuth
x-y

and take-off angle, it is more difficult to generalize about

the Wehavior of the sensitivities than it was for the origin

time-depth problem. Still, we can make some observations.

The total impact of a single observation on the epicentral

adjustment can be studied by examining the diagonal elements

of the data importance matrix T. For simplicity, we examine

stations lying along the +x axis (the results are no less

general because of this). After some algebra, we find the

length of the kth column of A+ is
x-y

1/2
Tkk x

where w2 = ((7p 2)2 + (7p p ) )/D . Figure 3c illustrates
-y. -x y.1 1 1

1/2
the behavior of T for the array shown in figure 2.

kk

While the behavior of the total sensitivity for the

epicentral perturbation agrees with the behavior we would

predict from knowledge of the horizontal component of p, the

individual horizontal components of p do not necessarily

reflect the sensitivity contained in A+ . For example,
x-y

wnen the raypath to a particular station leaves the source

in a direction parallel to the x-axis, dT/dy = 0, and one

might expect that the sensitivity of 6y to this observation

would be zero as well, when actually the sensitivity is

-p kp p . As in the depth-origin time problem, it is
okl w

only when the latitude problem decouples from the longitude



problem that the sensitivities of A+
x-y

mirror the partial

*derivatives of A.

The covariance matrix for the (x-y) problem is

Cx-y

2 2EP2
d y

D EIpp Y

and the linear correlation coefficient is

(4.9) R
x-y

D

- x.- y.

)2
(7pTp ) P

i i

2 2
- x.- y.

(4.8)
-Ep X p Y

x2

Ip.x



V. Influence of Network Geometry

In this section, expressions for sensitivities

associated with symmetric arrays developed above are used to

illustrate the effects of different network geometries and

velocity models on the location problem. Specifically, we

examine the effects on sensitivity of the array apertures

for a half space and for a layer over a half space

structures. These examples are intended to be a suggestion

of how sensitivities can be used to evaluate some geometric

effects, rather than an exhaustive review of the phenomena

associated with earthquake location.

Half Space Model

Sensitivity values of A+ for hypocenters between 1 and

20 kilometers depth recorded by a cross-shaped array appear

in figure 4. At all focal depths, the depth and origin time

sensitivities (figure 4a and 4b) are essentially mirror

images of each other. The magnitude of the sensitivities

increases with increasing focal depth, or, equivalently, as

the solid angle subtended by the array becomes smaller.

Following our previous expressions, this change in magnitude

2
can be viewed as a decrease in o . Because the covariance

2
matrix is inversely related to a , the standard errors of

depth and origin time increase as the effective array

aperature decreases. One significant difference between the

behavior of A+ for depth and origin time is that the

magnitude of the origin time sensitivities increases



monotonically with depth, while the depth sensitivities have

a minimum value. The increase in depth sensitivity at

shallower focal depths is caused by the low density of

stations within one focal depth of the epicenter.

The behavior of A+ for the epicentral adjustment shows

an increase in sensitivity magnitude with decreasing array

aperture (figure 4c). The epicentral sensitivity approaches

a constant value for observations at epicentral dist4nces

greater than about four focal depths.

Layer Over a Half Space Model

Sensitivities for a layer over a half space model

illustrate the effects of a mixture of upgoing and downgoing

rays (figure 5). Sensitivities for sources in the half

space exhibit the same behavior descibed above. However,

when the -source is located within the layer, the addition of

downgoing rays dramatically alters the form of A+. In

particular, the magnitude of the sensitivities are smaller

than in the case where only upgoing rays are present, and

therefore the covariance of the parameter corrections are

smaller. While the differences between the magnitudes of

the sensitivity for events in the layer are all small,

events closer to the interface have smaller magnitudes

overall.

In figure 6 we show the partial derivatives used to

form the pseudoinverse for this model. Comparison of the

elements of A+ (figure 5) for any parameter with the
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derivatives used to generate them (figure 6) again leads to

the conclusion that coupling prohibits a reliable prediction

of the influence of a given observation on the solution.



VI. Importance of S Wave Arrivals to the Hypocenter

Problem

Anyone who has experience -in locating earthquakes with

a sparse network appreciates the value of a few S wave

readings in improving the quality of the hypocenter

solution. Buland [1976) states that "the marginal utility

of ,dding an S arrival is large compared with the marginal

utility of adding one more P arrival". He also notes that

the use of P and S arrival time data typically leads to

superlinear convergence whereas use of one type of data

results in linear or slower convergence.

To see how S waves add such important information to

the location problem, we examine the partial derivatives for

S. If we express each partial derivative, or component of

the slowness vector, as an equivalent P wave at a different

take-off angle k we have, from (3.1):

(T k cose cose k

dz V V
S p

Clearly 4k does not exist if jcos k > V p/V. Eor take-off

angles in this range, S waves add unique information that

cannot be replicated by any P observations. When

Scose k < V /V p the S observation behaves- as an equivalent

P observation along a more vertical raypath.- For an upgoing

ray in a half space in the decoupled (O-z) problem discussed

above, the 3 observation has the same effect as if the



station were nearer the epicenter improving the depth

control by increasing 0?.

The partial derivatives 6T/dx and dT/dy for the S wave

can also be viewed as equivalent P wave derivatives with

take-off angles given by

V
(5.2) sing = - sine

S

where isin@ k < V /V . When (5.2) is satisfied, an S

observation has the same effect as a P observation from a

more distant station in the decoupled epicenter problem,

again giving more control to the epicenter determination.

Remarkably, the S observation is equivalent to both a closer

and more distant station for the whole problem.

In general, S waves cannot be viewed as equivalent P

observation. When V /V > 1.414, there is no @ which canp s

simultaneously be converted into an equivalent A for all

three spatial partial derivatives. Consequently, S waves

add unique information whenever one component of its

slowness vector exceeds the compressional wave slowness of

the medium.



VII. Application to Arbitrary Array Geometries

T
In order to simplify the form of A A, much of the

analysis in sections IV-VI assumed certain symmetries of the

stations with respect to the hypocenter. In the general

case, these conditions are rarely met and the specter of

coupling between unknowns in the normal equations haunts our

intuition to an even greater extent. Many of the

observations made in this paper concerning the relative

sensitivities of decoupled problems and the effects of S

waves are for the most part congruous with what someone who

has experience with earthquake location problem knows

intuitively. We therefore suspect that in cases where an

earthquake is adequately recorded by a large array, simple

forms for A+ (4.3 and 4.6) are approximately correct. While

a detailed analysis of A+ for a given array is beyond the

scope of this paper, some numerical tests have shown that

the decoupling conditions (4.1) do not need to be satisfied

exactly for the decoupled solutions to be useful. An

example of an array which violates the symmetry conditions

but has sensitivities similar to those predicted when (O-z)

and (x-y) problems decouple is shown in figure 7. At the

same time, the use of intuition in predicting the influence

of an observation when the (O-z) and (x-y) problems are

coupled can be misleading. This is typically the case for

small, irregular arrays (e.g., see Chatelain et al., 1980).

We suggest, therefore, that direct inspection of A+ as part

of the routine hypocenter program output is one practical



approach to the evaluation of the effects of network

geometry. The covariance matrix and correlation

coefficients are also useful indicators of the geometric

suitability of the observation set. The correlation

coefficient R2 provides a natural way to examine the

independence of the hypocentral adjustments. Since the

analytic form of (A TA)+ for the complete 4 x 4 problem is

complicated, this is best handled numerically. Jackson

[19801 shows the utility of this approach for studying the

coupling of focal depths and origin times from teleseismic

observations.

Some generalizations about the influence of network

geometry can also be made by noting that instability in A+

arises when two or more columns of A become parallel to each

other. As the epicenter moves outside the network, the

horizontal components of the slowness vector, p and p ,

tend toward constant values for all stations. As the

epicentral angle subtended by the network closes, the

corresponding columns of A (3.2) become more parallel to

each other and to the column corresponding to 6o, which is a

constant. Consequently, the condition number of A increases

and the least squares solution becomes unstable. Similarly,

the column of A corresponding to 6 z becomes parallel to the

column corresponding to 6o when pz is equal for all raypaths

and the inversion becomes unstable.



VIII. Discussion and Conclusions

Accurate location of earthquake hypocenters depends

critically upon the geometric distribution of ray take-off

angles at the source. The influence that a particular

observation exerts upon the hypocenter adjustment cannot, in

general, be reliably predicted from the partial derivatives

in (1.1) unless the correlation coefficients (2.7) are

small. The influence of a particular datum upon the minfLmum

length solution can be determined directly through

examination of the columns of the pseudoinverse A+

If we view A+ as the linear operator which transforms

the data vector r into the solution vector 6, the rows of A+

are the weights which express the sensitivity of the

components of 6 to each datum in r. Errors in the

observational data set arising from inaccuracies in arrival

time measurements or errors in the earth model are also

projected into 6 by A+. Therefore, the elements of A+ also

express the sensitivity of the components in 6 to errors in

the data. A large sensitivity value in A+ for a particular

datum may not be a virtue if errors in travel-time

measurement or their prediction through an earth model are

large.

Analytic forms of A+ that can be constructed for

special network configurations illustrate some of the non-

intuitive facets of the least-squares solution. In general,

sensitivities for 60 are not constant and are nearly a

mirror image of sensitivities for 6z. Observations for



which dT/az = 0 may have significant influence on 6z when

aT /dz/O. This condition will always occur when only

either upgoing or downgoing rays are present in the

observational set. A mixture of upgoing and downgoing rays

improves the quality of the solution by reducing its

covariance. Sensitivities for 6 x and 6y appear to be more

faithfully predicted by their corresponding partial

derivatives, at least when the epicenter is within the

network.

Control over the hypocentral parameters can also be

greatly enhanced by mixing P and S wave data. Hypocenter

location problems so formulated are better posed than those

that contain only one type of data because S waves add

information which cannot be replicated by P waves.

Finally, we note that 6o is the only unknown that

depends upon the mean travel time residual. Solving the

first normal equation (2.2) for 60 gives

1
(8.1) 60 = -(7r 1 - 6 zTpz - 6xp -

6y7py
n i1 1

The origin time correction is thus the difference between

the mean travel time residual and the mean of the components

of the slowness vector weighted by their respective

perturbations. Algebraic substitution of (8.1) into (2.2)

removes the means of both the residuals and the partial

derivatives from the system of equations.

The conclusion that the mean residual exclusively
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affects the origin time also applies to any linear problem

containing a column vector. Consequently, the mean residual

does not affect velocity perturbattonsin joint hypocenter-

velocity inversions. Velocity perturbations, as well as

hypocentral coordinates, are controlled exclusively by the

shape of the travel time residual curve.
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Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Coordinate geometry for the hypocenter problem

showing components of the slowness vector at the

trial hypocenter.

Cross-shaped array with a 2-fold' symmetry axis

about the epicenter.

Elements of the pseudoinverse of A for a cross-

shaped array with 20 stations in each leg and one

above the epicenter. The medium is a half space

with V = 6.0 km/sec. Elements are organized by

row and sorted by epicentral distance for a)

origin time perturbation, b) depth perturbation,

and c) magnitude of the epicentral perturbation.

Hypocentral perturbations are formed by summing

the product of the travel time residual and the

appropriate sensitivity function.

Elements of the pseudoinverse of A for hypocenters

at various focal depths in a half space velocity

model. The station array is the same as that used

to construct figure 3. Elements of A are shown

for a) origin time perturbation, b) depth

perturbation, and c) total epicentral

perturbation.



Figure 5.

Figure 6.

Figure 7.

Elements of the pseudoinverse of A for hypocenters

at various focal depths in a layer-over-a-half-

space velocity model. Velocity increases from 4

km/sec to 6 km/sec at 8 km depth. Elements of A

are shown in the same format as figure 4.

Travel time surface (a) and its partial

derivatives (b,c) corresponding to the elements of

A+ shown in figure 5.

Example of sensitivities from an irregular network

for which the decoupling conditions (4.1) are not

satisfied. Elements of the pseudoinverse of A for

origin time, depth, and total epicentral

perturbations are shown in a, b, and c,

respectively.
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Figure 1.
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Figure 2.
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CHAPTER V

"You don't have to buy, just have a look"

- Chicken Street shopkeeper



Estimates of Q in central Asia as a function of
-frequency and depth using the coda of locally

recorded earthquakes

S.W. Roecker, B. Tucker, J. King, and D. Hatzfeld

MIT, UCSD, and Grenoble

ABSTRACT

Digital recordings of microearthquake codas from

shallow and intermediate depth earthquakes in the Hindu Kush

region of Afghanistan were used to determine the attenuation

factors of the S wave coda (Q c) and of primary S waves (Q ).

An anomalously rapid decay of the coda shortly after the S

wave arrival, observed also in a study of coda in central

Asia by Rautian and Khalturin 11978], seems to be due

primarily to depth dependent variations in Q Inc

particular, we deduce that the the average Qc in the crust

and uppermost mantle (< 100 km depth) is approximately four

times lower than in the deeper mantle (< 400 km depth) over

a wide frequency range (0.4-24 Hz). Further, while Qc

generally increases with frequency at any depth, the degree

of frequency dependence of Q depends on depth. Except atc

the highest frequency studied here (~48 Hz), the magnitude

of Qc at a particular frequency increases with depth while

its frequency dependence decreases. For similar depths,

determinations of Q and Q agree, suggesting a common wave
P c

composition and attenuation mechanism for S waves and codas.



Comparison of these determinations of Q in Afghanistan with

those in other parts of the world shows that the degree of

frequency dependence of Q correlates with the expectedc

regional heterogeneity. Such a correlation supports the

prejudice that Q is primarily influenced by scattering andc

suggests that tectonic processes such as folding and

faulting are instrumental in creating scattering

environments.



INTRODUCTION

The successful interpretation of the high frequency

seismograms of microearthquakes can provide a wealth of

information about the earth, if only because the quantity of

data that can be gathered in a given space and time far

exceeds that provided by large events. However, there is a

major difficulty in using high frequency data, namely their

sensitivity to details in the earth's structure.

Accordingly, any model which explains a high frequency

seismogram exactly requires too many parameters to be

useful. One can reduce the number of parameters by assuming

stochastic processes and considering the average behavior of

the seismogram over certain intervals of time. As a result

of this averaging, deterministic considerations must be

simple, since we do not yet understand how to decouple

deterministic and stochastic processes of a medium. For the

analysis of the data to remain practicable with stochastic

modeling, the earth model is homogeneous, in the sense that

the medium is assumed to be filled with randomly distributed

inhomogeneities.

In general, the behavior of the seismic coda is

described by the average decay of the envelope of a

seismogram, rather than by the amplitude of a particular

arrival. The results of several investigators

[Aki(1969,1980a,1980b), Aki and Chouet(1975),

Chouet(1976,1979), Dainty and Toksoz(1977,1980),

Herrmann(1980), Kopnichev(1975), Nakamura(1976), Rautian and



Khalturin(1978), Sato(1977a, 1977b,1978), Tsujiura(1978)]*

confirm that the envelope of the coda can be adequately

explained by the scattering of primary elastic waves in a

random medium. In this paper similar explanations of the

coda envelopes are used to determine the attenuation

properties of the crust and upper mantle of the Hindu Kush

region of central Asia, using digital recordings of

microearthquakes in that area.

* Because of repeated referencing, Aki and Chouet(1975]
will hereafter be refered to as AC75, Rautian and Khal-
turin[1978] as RK78, and Sato [1977a] as S77.



DATA

Between June 11 and July 13 of 1977, 11 smoked paper

recorders and 4 digital event detector recorders were

deployed around the Hindu Kush mountains of northeastern

Afghanistan (figure 1). The earthquake locations and fault

plane solutions derived from the analogue data in this and

in similar investigations were discussed in detail by

Chatelain et al. [1977,1980], Prevot et al11980], and

Roecker et al.[1980].

Each digital station was equipped with four Soviet S53

seismometers (one high gain for each component and one

vertical low gain). The seismometers had a natural period

of four seconds, and, for an intermediate period

seismometer, proved to be exceptionally stable in field

conditions. During the investigation, the integrity of each

seismometer was checked by recording an automatic

calibration pulse every 16 hours and maintained by regular

manual adjustments. The recorders were of the event

detector type described by Prothero[1976]. Before being

recorded, the signal from each seismometer was passed

through a preamplifier (20 or 40 db) and an amplifier (52 or

58 db), digitized at 128 samples per second, and

multiplexed. The response of the amplifier was modified by

a 3 pole, low-pass, antialiasing filter with a corner

frequency of 32 Hertz. The response of the entire system is

shown in figure 2. When the signal exceeded the pre-set

trigger level, one second of data preceeding the triggering
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signal were recorded.

Our choices of trigger level and run time (32 seconds),

dictated by the frequency that stations were serviced (once

every two days) and by the length of recording tape, create

a bias in the data collected. First, the magnitude of the

recorded events, with the exception of a few local

earthquakes, is usually greater than 3 (Table 1).

Therefore, any interpretation of the data is biased towards

larger events. Second, and more important, the limitations

on the length of the data sample, determined indirectly by

the trigger level and the run time, often meant that distant

events were recorded for less than twice the S travel time.

As discussed later, this places restrictions on models for

the generation of the coda.

All of the seventy five earthquakes recorded digitally

were located using the arrival times on smoked paper records

(figure 3, Table 1). For the purpose of analyzing the

coda, either the east-west or north-south component was

selected depending on the quality and regularity of their

automatic calibration pulse responses before and after the

event of interest. Cursory inspection of records indicated

that the coda of a given earthquake had approximately the

same appearance on all components, but no quantitative

assessment of similarity was attempted. The recordings

selected were band pass filtered (high passed and then low

passed) in the time domain in 8 bands (figure 4, Table 2),

using a 6 pole, phase free, Butterworth filter. RMS
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amplitude values for points in time windows were determined

from the data in each band (Table 2). The length of the

time windows were chosen to smooth out irregularities in the

amplitudes of the arrivals. The starting point was chosen

at some point after the S arrival where the amplitude

appeared to decay monotonically. The resulting values were

corrected for instrument response using the response at the

center frequency of the bandpass, although this step was not

necessary for the analysis presented in this paper.
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ANALYSIS

Models of Coda:Generation

At present, models for the generation of the coda

generally fall into one of two extreme categories: the

diffusion or strong scattering models and the single or weak

scattering models. Recently, Dainty and Toksoz[1980) have

argued that diffusion models may not be appropriate for

earthquakes, since the observed diffusion rise times (i.e.

time from the onset of the P wave to the seismogram's

maximum amplitude) are much shorter than the theory

predicts. AC75 derived a usable single scattering model

which predicts a time dependence for coda amplitudes as

A(Wt) = c(ut exp(-ut/2Q) (1)

where u 2rf is the angular frequency and the -1 power of

time is for body wave scattering. The term c(ua is usually

called the "coda source factor" and is related to the

earthquake source spectrum. This derivation assumes that

the source and receiver are at the same point, which is a

good approximation for signals recorded long after the

primary arrival. However, when one is restricted, because

of short recording times, to signals near the S arrival, the

separation of source and receiver must be taken into

account. Such a separation is included in the single

scattering model developed by S77. Below we briefly review

the derivation of this model and then test its applicability
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to our data.

Imagine a source and a receiver imbedded in an infinite

medium populated by a random distribution of scatters of

number density (per unit volume) N and crossectional area o-.

The product No- is called the turbidity and is equivalent to

g(G) derived by Chernov[1960], where @ is the angle between

the incident and scattered waves. In the analysis of S77,

the ' dependence is ignored by assuming isotropic

scattering. Energy observed at the receiver at a given time

after the S wave is the sum of energy scattered by

inhomogeneities on the surface of an expanding ellipsoid

whose foci are the source and receiver (figure 5). From

this sum, S77 obtained the following expression for the mean

energy density of the scattered body waves:

No- W (u)

E (r, tub = K () (2)
s 2

where

= t/t

t = S travel time
5

r = source-receiver distance

1 |Q%+1:
K(Q) = -ln|--

W (u) = total energy radiated by the source within

a unit angular frequency band

The earthquake source in this derivation is a point which

radiates isotropically and instantaneously. The analysis of
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377 is for body waves and therefore for 3 dimensional

geometric spreading. Although the derivation of E for
S

surface waves is straightforward, most of the events

recorded in the Hindu Kush are deep and local and therefore

the application in this paper assumes only body wave type

scattering.

One observation concerning this analysis may be made

here for clarity. As a wave travels a distance x through a

-x/L
random medium, the energy in the wave decreases as e ,

where L is the mean free path and is the reciprocal of the

turbidity (see Chernov [19601 for details). In his analysis

of singly scattered waves, 377 assumed that x<<L, and

therefore could neglect this decay term. (This is the Born

approximation, since the primary wave is not dissipated).

However, his estimate of 100 km for L in Japan [Sato, 1978)

suggests that x and L are of similar magnitude, so that

ignoring the decay term is probably not justified. It is

-x/L
simple to show that leaving the e term in the analysis

-vt/L
results in the multiplication of (2) by e- . Usually,

-bt
(e.g. AC75; Sato, 1978] factors like e (b w /Q.) are

incluaded only 'ui ta the afil'ysis "'of soatteilang

effects to allow for intrinsic attenuation. Note that since

we now determine b = uQ. + v/L instead of uYQ. alone, it is

not obvious how to separate "intrinsic Q (Q.)" from

"scattered Q (Q =uL/v)" by using only the decay of tne coda.
5

This should be kept in mind when one is trying to interpret

Q values in cases where Q. and ut/v are of similar
e
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magnitude or in cases where an accounting of the energy

radiated cannot be made.

To relate (2) to the data, we use the relations

suggested by AC75 for band-passed signals:

A(r,u t) = [2P(r,ua|t)Af]11/2  (3)

2
E (r,uA t) = PWP (r,uAt) (4)

where P(rut) is the coda power spectral density, Af is the

bandwidth, E is the density, and Ar,u4t) is the RMS

amplitude. Combining these relations with (2) gives

1/2 1/2
2W (__f K( ) (-ut/2Q

2 =2: e (5)
Ar u ' 1 r

= C(u.k(r,ck)e-bt

where b = (u/Q.+v/L) = w /Q . Taking the logarithm of (5)

gives

log 10Ac(r,t~u = log 10C(u) - b(log 10e) t (6)

2 122
r I

where A (r,tiu) = A(r,tiusO-j is the corrected

amplitude. The factor 'b' is then determined by a least

squares fit of log 10A (r,tliu versus t from (6).

Regional Considerations

The coda is comprised of waves scattered in an

expanding, ellipsoidal volume and therefore represents an

average over a large region. (This averaging quality is the
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usual explanation for the similarity of the codas of

different events at a given station.) Since we are using

relatively short recording intervals and widely distributed

earthquakes (400 km in breadth and 300 km in depth), the

regions sampled by codas often do not overlap significantly.

For this reason, different zones of activity were defined

(figure 1, Table 3) and the extent of sampling by the coda

of earthquakes in these various zones was ex-amined.

For small Q:, the shape of the expanding ellipsoid is

difficult to describe, but it can be characterized

approximately by two parameters (figure 5)

2 1/2H = D( -1)//2 , and Z=D1/2, where D is the distance from

source to receiver. For an event directly beneath a

station, H is the extent of horizontal sampling and Z is the

extent of vertical sampling (Note that as Q increases, the

sampled region approximates a sphere of radius DK/2). This

description becomes more complicated when the event is not

directly beneath the station. Representative plots of the

sampled regions are shown in both horizontal and vertical

crossection in figures 6 and 7. Combining the information

on these plots with a knowledge of the variation of < for

the different zones (Table 3) will describe the regions

actually sampled. To a good approximation, codas from

earthquakes in the same zone sample the same region at a

given c.
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DETERMINATION OF Q
c

In a previous study of the behavior of coda in central

Asia, RK78 overlaid the peaks of arrivals following the S

wave from many events recorded at Garm, Tadjikistan

(39 N, 70.8 E). For travel times longer than twice the S

travel time, they observed that the decay of the peaks of

the coda was very regular from one event to another within

each frequency band. RK78 were able to fit all of these

data with simple curves of a form similar to that described

by (1). For data arriving before twice the S travel time,

however, there was a more rapid decay. In the data

discussed here an initial rapid decay is also often

observed. Such behavior is qualitatively consistent with

the corrections represented by the K(c) function, which

contains a singularity at the S wave travel time and becomes

asymptotic to the smoother t~ behavior proposed by AC75 for

the coda after 2*t (see figure 2 of S77). In fact, data

taken from the curves in figure 7 of RK78 agree fairly well

with Sato's theoretical decay.

Even after taking the K(c ) decay into consideration,

however, the coda decays more rapidly at the beginning than

at the end (figure 8). Values of Q generated by fitting

(6) to windows of data 40 seconds long (figure 9) quantify

this observation. The increase of Q with travel time is
c

indicated by the decreasing rate of decay of the coda with

time. In the following, we examine the possibility that
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this residual rapid initial decay is due to the inadequacies

of some explicit or implicit assumptions of the model.

Sato's model neglects the effects of the free surface,

directional- scattering, multiple scattering, and regionally

varying properties. While all these effects are difficult

to evaluate quantitatively, but useful bounds can be

estimated for the first two. The question is whether the

neglect of any of these effects can cause the observed

variations of Q of about a factor of ten at low frequencies

(see "E" in figure 11) We shall see that the neglect of

regionally varying properties plays the key role in causing

the initial rapid decay.

Free Surface

377 neglects the free surface by assuming an infinite

medium when a half-space is more realistic. For simplicity,

let us assume that, after reaching the surface, energy is

either completely attenuated, due to some anelastic behavior

at near-surface, or totally reflected without change of

phase. In the case of total energy attenuation the problem

ran be solved exactly. Since K(c<)= d2 (377), we can

derive K() for those values of q (figure 5) corresponding

to rays confined to the subsurface. For a source directly

beneath the station the integration limits are from

-1
cos (1/ ) to w. and the half space correction is

1 2
KH(a) = -- In (7)

2K (q-1)
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As shown in figure 10, the decay predicted by (7) is faster

than for an infinite medium (by KI (()). To compare the

values of Q predicted for the half space (QR) with those
C H

for the infinite medium (Q ) we examine (from (6))

1/2
QH Alog 10A - 1log 10 KI ) (8)

Q Alog10 A - Alog10 H 1/2

Typically, Alog 10 A - 1.0 between t and 2*t . This gives

-- . 1.03

Q I

which is much smaller than the observed change in Q with

time. Therefore, although our assumption of an infinite

medium may overestimate the later arriving energy (by a

factor of 2 when t>>t ), the rate of decay is underestimated
5

only slightly.

In the case of perfect reflection with no phase change,

the problem is does not depend on the relative position of

source and receiver, so the K(G) corrections for the half

space and the infinite space are the same. It should be

noted for later discussion that in this case the sampling is

initially biased towards the near surface, since it is

essentially being sampled twice. In the case where converted

phases result on reflection, energy will be concentrated in

the initial part of the coda, because the resulting

scattered P to P energy will arrive earlier than the S to S

energy. The effect of phase conversion is difficult to

estimate, but, since SV to P conversion is significant only
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over a small range of incidence angles (approximately 15 to

30 degrees), we will assume it is small.

Directional Scattering

Most of the energy of the early part of the coda has

been scattered in the forward direction, while that of the

later parts has been backscattered; the proportion of

backscattered to foward scattered energy increases with

time. In order to estimate the effect of ignoring

directionally dependent scattering on the decay of coda, let

us examine an extreme case where the energy changes from

being completely forward scattered to completely back

scattered within t and 2*t
S s

Our stochastic model of the earth contains

inhomogeneities that can be described by a slowness

fluctuation function <V(t)>, where is a point in space

relative to the origin. We can describe the magnitude and

smoothness of p( ) by examining the spatial autocorrelation

function N >. Assuming different forms

for N(r) (r Chernov [1960] gives the following

formulas for directionally dependent turbidity:

8k4a3~ 2 -2
g(G) for N(r) = e -r/a 9)

2 2 .2 9 2(1+4k a sin
2

and

12 43 2 2 2 -rna
g(o) = 11 k a <p2 >exp(-k a sin -) for N(r) e (10)

2
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where @ is the angle between the incident and scattered

waves, k 2r/X is the wavenumber, a is the correlation

distance, and <p2> is the mean square slowness fluctuation.

For ka 0(1), these two estimates of turbidity imply

differences in the ratio of forward to back scattered energy

(from (2) where g = No) of 9 and 25. In the extreme case of

g(0)/g(w) = 25, the ratio of directionally corrected Q (Q )
1/2to the isotropic Q (Q%) is (since &log 10g = 0 for the

isotropic case)

Q log10 Ac 3.3 (11)
1/2

Q Alog 10 Ac - 1og 10gg

which is substantial but still somewhat less than the

differences among the estimates of Q made at lowc

frequencies. This analysis is not carried further ( in the

form of deriving an additional correction), however, because

the spatial autocorrelation functions which Chernov assumed

to derive g(G) may not be appropriate here (see Flatte et.

al., 1979, for a discussion on alternative correlation

functions).

Multiple Scattering

The evaluation of multiple scattering effects is even

more difficult than that of the above effects, as witnessed

by the prevalence of single scattering models. To give a

gross estimate of the adequacy of single scattering models,

one needs estimates of cr, an indicator of the strength of an

individual scatterer, and of N, an indicator of the amount
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of scattered energy to be summed. Since only the product Nc-

can be determined in this analysis, even these estimates are

beyond our reach. It Ais encouraging that data can be fit by

single scattering models for regions where Nc- is small

(~0.01 km~ for Japan, Sato[1978]), but this by no means

proves the adequacy of single scattering models.

Regional- Variations

We .note that equation (6) fits the individually

windowed data quite well (less than 20% error for most

events, see figure 9), suggesting that our stochastic model

is sufficient on a geographically small scale. This, to

some extent, makes the consideration of more complicated

models superfluous. In examining the differences between Q
c

determinations in the various windowed data, it is

instructive to consider how this time dependent decay can be

explained by regional sampling.

Comparing Q values determined by least squares fitting
c

all the available data in a zone, one finds a strong

correlation between the recording time (as parameterized by

KZ ) and Q . For instance, Q values at low frequencies at
max c c

all stations for region 'b', at stations JOR and PEN for

region 'c', and at CHS and JOR for region 'E', are

determined with short samples of data and are notably

smaller than those determined with longer samples (Table 3,

figures 11b, 11c). Such behavior can be explained by an

increase of Q with depth, but, since these shorter samplingc
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intervals are frequently less than 2*t , the effects

discussed above provide equally viable explanations.

The choice of explanations is narrowed by a

determination of QC from a group of crustal events

(31,42,51,64,67,69 ,70) which occurred near station PEN.

Because of these events' proximity to the station, the

recording time was several times the S travel time, and

therefore the effects of all the model deficiencies (except

perhaps multiple scattering, about which we know little) are

reduced. The relatively low values of Q determined from
C

these events, even for large values of ma ('cr' in figuremax

11 and figure 12 ), imply that Q at shallow depths is

small. An increase in Qc with depth would also account for

the rapid initial decay of coda from deeper events. We

infer, therefore, that the variation between the initial and

later decays of the coda is due to a Q that vaies withc

depth.
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DETERMINATION OF Q

Recently, Aki[1980a] proposed a method to determine Q

by comparing S and coda amplitudes of events at different

distances from the observer. After being adjusted to allow

for the separation of source and receiver, Aki's equation

becomes

AAw ,DW0) :S.(RG)R(wG)
I mD) > - BD (12)< in > n < nIn c c

Ac (U. t , D)1 S () R c (U. to g)

where

<x> D average of x within a distance range of 2D centered at D

D source-receiver distance

0 source-receiver orientation

S. (,G)= source spectrum of the event

c
S (u= coda source spectrum

R(wG), R (a)= receiver site effects for S wave and coda

A. (w,D)= spectral amplitude of S wave

A (mit ,D)= corrected (eqn 6) amplitude of coda at a fixed time t
c o 0

P (uit ,CK)= corrected coda power spectra = P(mit )A(K(GC))

2Q v

Q is determined by a least squares fit of (12). One major

assumption in the derivation of this equation is that

averaging over a number of S waves from events at different

azimuths in a particular distance range diminishes radiation

pattern and directionally dependent station site effects.
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This assumption, along with the choice of a value for t o

makes the second term in the equation a constant and leaves

a linear relation between measured amplitudes and distance.

To determine Q for the Hindu Kush, the t chosen for the

coda amplitude was 75 seconds, basically because data

existed for most of the events out to this time and because

the differences in Qc for longer durations made

extrapolation to later times unreliable.

Unfortunately, there were many fewer usable 3 waves

,than codas, primarily because large events were clipped and

often the first two seconds of the record (which sometimes

contains the S arrival) were lost. In addition, because

stations CHS and PEN were far from most of the events,

reasonable distributions of events with distance could be

obtained with recordings at stations JOR and FAR. Even so,

events were not distributed evenly with distance from these

stations, but instead tended to be clustered. Therefore, in

dividing the events by distance, there was some irregular

spacing. Events were usually divided into intervals of- +15

km about the center of a cluster.

The results of this analysis justify many of our

assumptions. First, a linear relation consistent with (12)

could be determined (figure 13) with an acceptable variance

(<50%), even though a small dataset was used. Second, the

values of Q determined from this method at the two stations

for given frequencies agree quite well (figure 14), so that

the assumption that receiver and source effects were
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averaged out is probably reasonable. (Coda amplitudes

corrected for K(CC) and distance usually showed very little

difference from one station to another, so site effects

apparantly did not modify the data significantly.) Third, Q

is indistinguishable (at one standard deviation) from Q
C

determined for t < 2*t (figure 14). suggesting that the

coda consists of S waves and that the mechanisms of

attenuation for S waves and coda are similar (this is a

fundamental assumption in the preceding analysis of the

coda). Therefore, Qc at shallow depths represents an

average of Q over the same depths. This result is in

accordance with the results of studies (Aki [1980a, 1980b])

that used this method to determine Q in Japan.
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DISCUSSION

Depth Dependent Q
C

In this paper we assert that simple deterministic

dependencies of Qc (in our case, a depth dependence) can be

made evident by considering the regions sampled by the coda.

In their study of coda in central Asia, RK78 determined that

QC (f)= 360(f)1/2 for travel times between about 20 and 200

seconds and Q (f) = 900(f)112 between 200 and 2000 seconds.

The first relation indicates a similar, although somewhat

weaker, frequency dependence for Qc than determined in this

paper for deeper regions over a wide frequency range ("ALL"

row in figure 11). Given the distance (~400 km) and travel

times (~200 seconds) of most Hindu Kush events from the Garm

observatory, the depths sampled (~400 km) are similar to

those in this study. Similarly, the second relation,

determined with travel times an order of magnitude larger,

represents sampling to depths to approximately 1000 km.

Combining these results, we can estimate an average Qc

structure from the crust to well into the mantle for central

Asia (figure 15). Note that while Q generally increases

with depth, the frequency dependence decreases from ~ 1.0

for depths to about 100 km to 0 75 for depths to about

400 km to ~f0 .5 for depths to about 1000 km.

The relatively low Qc at shallow depths, deduced here

for Afghanistan, may be evident in other areas of the world

as well. RK78 also observed a divergence in the decay of
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the coda of local events -(the 'b' leg in their paper) that

would correspond to such an effect in the crust and

uppermost mantle of Tadjikistan. The frequency dependence

of the Q determined by their 'b' leg is strikingly
C

different from that determined from later arrivals (see

figure 11 of RK78), and again the Q values are much smaller
c

than those deduced from more distant events.

One may infer from the published data of Sato [1978]

that a depth dependent Q may also be appropriate for Japan.c

Averaging over the entire coda, Sato determined a relation

which shows the mean free path (or, equivalently, Q)
c

increasing with magnitude of the event. Since larger

earthquakes enable longer recording times and therefore

deeper sampling, and since the contribution at shallow

depths becomes less significant with time, averaging over

the whole coda would produce this result if Q increasedC

with depth. Figure 3 of Sato £1978] shows that the decays

of the codas at the beginning of the M4.7 and M3 events in

Japan are similar. Since most of these events occur at

similar depths, which implies that depths sampled by

scattered waves from these events at a iyven time will be

similar, the resemblance of the early parts of the codas

from different magnitude events is probably a reflection of

the similarity of the sampled regions. Differences between

the early and late parts of the coda of larger events

therefore suggests that a depth dependent Q exists in
c

Japan.
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Relation of Q to Tectonics.
C

Aki [1980] reviewed results from Japan, California,

Hawaii, central and eastern U.S., and Kamchatka, and noted

that Q values tended to converge at high frequencies (~20

Hz) and diverge at low frequencies (~1 Hz). The degree of

divergence correlated to what he called the tectonic

"intensity" of the area. These results, along with those of

RK78 and this study, are replotted in figures 16 and -17.

(Note that "convergence at high frequencies" for Q~

generally means that Q increases with frequency and that Q

>~400 for frequencies greater than about 12 Hz.)

Two correlations are apparent in figure 17. One is

between the magnitude of Q and depth. For example, the

CCvalues of Q c determined from stations using only crustal

events (PEN in Afghanistan, PAC in California, OTL in

Hawaii, and OIS in Japan) are consistently lower than those

using events whose codas sample deeper mantle (TSK in Japan

and at 400 kms (CA400) and 1000 kms (CA1000) depth in

central Asia). The other correlation is between the degree

of frequency dependence of Q and the heterogeneity of thec

region. For example, the crust beneath PEN, the station

with the strongest frequency dependent Qc determination, is

very thick (~70 km, Krestnikov and Nersesov, 1964) and is

the site of an ongoing continental collision. Stations PAC

and OIS, whose Q determinations are less frequencyC

dependent than those of PEN, are located on crusts of normal
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thickness. In addition, these crusts are probably folded

and faulted to a lesser degree than the crust of central

Asia. Finally, OTL, whose Q determination is practically

independent of frequency, is located on a thin (~12 km)

oceanic crust which implies that the coda samples the more

homogeneous mantle shortly after the S arrival.

The correlation between the frequency dependence of Qc

and heterogeneity extends intothO mantle if we argue that

the earth becomes more homogeneous with depth due to factors

such as closure of cracks with increased pressure and

assimilation of small scale heterogeneities with increased

temperature. The correlation between frequency dependence

and depth is evident when one compares the results at PEN,

CA400, and CA1000, since, as mentioned above, the degree of

frequency dependence for Q in central Asia decreases asc

depth increases (figure 15).

In attempting to further relate the Q structure ofc

central Asia to its tectonics, we are hampered by the fact

that Q is a combination of two the intrinsic Q, Q , and the

scattering Q, Q =uL/v. Because of the conceivably great
5

differences ip attenuation mecag nis aggg c iated Wit-h these

two parameters, physical interpretations of Q are tenuous.c

Still, one at least can deduce some bounds on these

quantities. Note that since QC Q Q i '), Q e is a

minimum value for Q. and Q . Also, as Q. approaches1 s

infinity, vQ /u becomes the minimum mean free path (L .).c min

Note that L min is practically constant over a wide frequency
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range (1.5 - 48 Hz) at shallow depths (figure 18).

Because of the association of "heterogeneity" with

"scatterers", the correlation between characteristics of Q
C

and the expected degree of heterogeneity lends support to

the prejudice of other studies [Aki 1980a, 1980b] that Qs is

the dominant attenuation parameter in the frequency range of

0.3 to 48 Hz. This is an important consideration for the

interpretation of Q. For example, since Q traditionally has

been viewed as Q., i.e., as a measure of the conversion of

seismic energy to other forms of energy, Q was usually

associated with easily conceived physical entities (molten

blobs, sunken slabs, etc.). If one is to make similar

observations with Qs, it is necessary first to create models

for the generation of scattering media.

The correlation between heterogeneity and Q suggests
c

that the processes forming the various tectonic environments

discussed here are instrumental in forming different

scattering environments as well. For instance, the creation

of oceanic lithosphere at ridges can be expected to

introduce few scatterers. Similarly, processes such as

strike slip faulting can create scattering 'environments in

active areas such as Japan and California by juxtaposing

cracked rocks of different seismic velocities.~ Finally,

folding and thrust faulting can introduce large scale

heterogeneities in convergent regions such as Afghanistan.

We -infer, therefore, that, like Q., the characteristics of

Q in a region are closely tied to the tectonics of that

region.
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Table Captions

Table 1. Events recorded by digital stations and located

with the smoked paper records. Magnitude was

determined from the formula M = -1.47 + 2.01ogt -

0.0035D, where t is the signal duration and D is

the source receiver separation (Lee et. al.,

1972). Coefficients in the formula were

calibrated by comparing some events' local signal

duration magnitude with their teleseismic body

wave magnitude (M b) as determined by the United

States Geological Survey (USGS).

Table 2. Frequency bands of filtered data with time window

length used for averaging.

Table 3. Events located in the various zones of figure 1.

Tmax/Ts (<m ) is the ratio of the travel time ofmax

the last signal recorded to the S travel time.

The border between "Deep" and "Shallow" zones is

150 km.
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Table 2

BAND WIDTH (Hz) CENTER FREQUENCY (Hz) SAMPLING WINDOW (Secs)

8.0 - 16.0 *

8.0 - 16.0 *

8.0

8.0

8.0

4.0

4.0

4.0

I Depending on amount of data available
# High corner is 60 Hz (Nyquist frequency is 64 Hz)

0.25

0.50

1.00

2.00

4.00

8.00

16.00

28.00 #

0.38

0.75

1.50

3.00

6.00

12.00

24.00

46.00
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Table 3

Tmax/Ts (am )max

JOR FAR

Crustal (CR)

1.44

2.30
2.17

1.64

2.81

5.17
4.00
5.12

Pamir (P)

1.75
5.80
1.68

1.70
5.96
1.66

Transform (T)

2.62

Shallow B (b)

1.69
1.66

Shallow C (c)

2.44

2.56
2.87

Event
No.

CHS PEN

1.51

1.84
1 1.87
1 1.56

I 1.88

1.56
2.10

112.18

3.00
3.12

1 3.57
2.42
3.23
2.62

6.56
110.69

7.87
2.32

2.64
5.13

1 .45
3.36
1.36

1.40

1.45

1.73
1 1.83 1

1.532.03
1.43
2.16
2.45

2.43

2.55
1.97
9.20
5.27

2.23
3.92

1.96
1.52
5.55
3.36
1.66

1.74
1.95

2.11

1.95

1.69
1.73
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Tmax/Ts (a )

JOR FAR

Shallow D (d)

2.16
6.09
6.64
2.54
2.16
2.70
3.35
2.56
2.73

1.83
5.16

2.28
2.04
2.82
2.44
2.17
3.18

Shallow E (e)

3.32

2.24
2.31

1 2.45
2.21
2.30

| 2.20
1 5.28

1.82
4.41

2.15
2.46
1.84
1.68
2.11
2.12

1.94

1.63
3.40

Deep C (C)

6.18
2.23

Deep D (D)

6.40

2.89
2.54.

Deep E (E)

13 11
58
63 1 1.69

Event
No.

CHS PEN

3.34
4.37

1.50
1.73
1.91

2.85
2.89
1.66
1.64
1.24
1.53
1.63
1.96

1.81

1.69
1.44

3.20

1.62

1.62

3.67
1.54
2.80

7.45
2.27
5.97
1.72

3.98
1.69
3.13

4.29
1.73
3.32

1.95
6.52
1.91
1.79

6.93
1.83
1.82

1.70
4.69

1.53
2.73
2.04

1.46
1.63

1.61
4.55
1 .#t
1.43
1.60

3.95
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Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Map veiw of seismicity in the Hindu Kush, as

determined by Chatelain et. al. (1980). Sections

delimit zones into which events are grouped for

regional sampling considerations. Locations of

smoked paper stations are indicated by solid

diamonds, and digital stations by open stars.

Epicenters are plotted with symbols corresponding

to depth as follows: open circles, 0Cz<50 km;

squares, 50<z<100 km; triangles, 100<<150 km;

inverted triangles 150<z<200 km; pluses, 200<z<250

km; and y's, z>250 km.

Combined frequency response of S5S seismometer and

recorder in digital counts recorded per micron o1

ground displacement for 0 db gain (typical gain

was 92 db).

Map veiw of all the Hindu Kush seismicity recorded

on smoked paper stations, divided into 50 km depth

intervals. Locations of events recorded on the

digital recorders and used in this analysis are

denoted by the numbers used in Table 1.

(top) Uncorrected seismograms of events 44 and 3

from different stations (locations are shown in

figure 1). (bottom) Corresponding band-passed
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Figure 5.

Figure 6.

Figure 7.

Figyre 8.

signals, numbered 1 through 8 (see Table 2 for a

description of the bands). Scales to the left of

each plot are in units of digital counts.

Coordinate frame for an ellipsoidal region of

scatterers in an infinite space.

Horizontal crossections of regions sampled by coda

of events in regions shallow B-E. Small letters

indicate a typical earthquake epicenter in the

region and capital letters to the limits of the

sampling of coda from this earthquake. All plots

drawn for a depth of 70 km and for a = 2.0.

Vertical crossections of regions sampled by coda

from -events in regions Shallow B-E and .Deep C-E.

Triangles are the stations (all rotated into the

same plane) and the bold x is a representative

event location. All plots drawn are for T = 2.0.

Approximate depth of Moho is denoted by dotted

line. Vertical scale is in kilometers.

Comparison of coda envelope shapes before and

after correcting for the K(() decay and source-

receiver distance for shallow and deep E events.

Top two plots pertain to all of the data in

frequency band 3 recorded in the deep E region

(all events at all stations). Bottom two pictures

are shallow E events recorded at JOR. In both
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Figure 9.

pairs of plots, the upper one is uncorrected data,

the lower is corrected data. Note how, in both

corrected and uncorrected data, the decay at

beginning of coda is rapid relative to that in the

later parts (as approximated by the solid straight

lines). T is the origin time.

Q determinations from events of the shallow D

region recorded by JOR, made by partitioning data

into windows of forty seconds. Numbers indicate

the frequency band used. Note the general

increase in the Q estimate for later arrivals,
C

especially at low frequency, which is evidenced by

the decrease in the decay of the coda with time.

All values plotted here were determined with

errors less than 15%. T is the origin time.

Figure 10. Comparison of energy decay predicted by the

infinite medium K (K ) with that by the total

loss, half space K (K h) as a function of (K.

Figure 11. Values of log 10Qc versus frequency band obtained

from all available data from each station and each

region by a simultaneous least squares fit (except

crustal PEN, which used selected events; see

text). Letters refer to the regions described in

Table 3. Values for band 8 (center frequency =

46 Hz) were occasionally excluded if low energy

levels made the record indistinguishable from



noise. Row "ALL" is a superposition of values

determined at each station. Dotted line is the

Q(f) = 360 f1/2 relation determined by RK78. For

comparison, the trends of different frequency

powers are drawn to the right.

Figure 12. Coda envelopes for crustal events recorded at PEN

for bands 4-7. Original data is on the left, the

2 1/2same data corrected by (r /K()) is on the

right. Note, event on corrected data, the rapid

decay of the codas on the extreme left of the

plots. These events occurred very close to PEN and

sample only the crust.

Figure 13. Plot of < ln(A /A ) > vs. Distance for eventssoc

recorded at FAR and JOR for all frequency bands.

A is the S wave amplitude and A is the
5 C

amplitude of the coda envelope at to (=75 seconds)

for the same event and the same frequency band

(indicated by numbers to the right of each plot).

Dotted lines denote the least squares fit to the

data.

Figure 14. Determination of log 10QPvs. frequency for

stations FAR and JOR, and comparison with log 10 Q

determined from PEN crustal events. Q values

could not be determined at JOR for bands 1 and 2

with acceptable variance (<100%) and were not

plotted.
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Figure 15. Average Q (f) to different depths as a function
C

of frequency. Depths refer to approximate maximum

sampling depths.

Figure 16. Comparison of Q~ determined for central Asia in
c

RK78 (CA1000 = central Asia at 1000 kms depth) and

in this study (PEN, CA400 = central Asia at 400

kms depth) with Q~1 of other regions deduced byc

Chouet (1976). TSK is in central Japan, PAC is in

central California, OIS is in western Japan, and

OTL is in Hawaii. Note apparent convergence of

-1
QC values at high frequency. Errors of the

values are comparable to those in figure 15.

Figure 17. Same data as in figure 16, replotted as log 10Qc

Figure 18. Same data as in figure 15 replotted as the

minimum mean free path (L . = vQ. /u . Note near
mn a1

frequency independence of L . at shallow depths.
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Figure 1.
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Figure 3.
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Figure 3 (cont.)
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Figure 4.
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Figure 6.
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Figure 8.
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Figure 10.
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Figure 12.
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CHAPTER VI

As far as could be learnt it appeared that the poor young dog,

still under the impression that since he was kept for running the

sheep, the more he ran after them the better, had at the end of

his meal off the dead lamb, which may have given him additional

energy and spirits, collected all the ewes into a corner, driven

the timid creatures through the hedge, across the upper field, and

by main force of worrying had given them momentum enough to break

down a portion of the rotten railing, and so hurled them over the

edge.

George's son had done his work so thoroughly that he was

considered too good a workman to live, and was, in fact, taken and

tragically shot at twelve o'clock that same day - another instance

of the untoward fate which so often attends dogs and other

philosophers who follow out a train of reasoning to its logical

conclusion ....

-,Thomas Hardy

Far from the Madding Crowd
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The Velocity Structure of the Pamir-Hindu Kush
Region: Possible Evidence of Subducted Crust

S.W. Roecker

MIT

ABSTRACT

The arrival times of compressional (P) and shear (S)

waves from approximately 580 microearthquakes recorded by a

temporary array in the Pamir-Hindu Kush region in central

Asia are used in deducing one- and three-dimensional

velocity structures of this region. The results for one-

dimensional structures imply that the Moho is at 70 + 5

kilometers depth. Also, there is a velocity reversal near

160 kilometers depth, which is inferred to be the beginning

of the low velocity zone. This reversal continues to depths

of approximately 230 kilometers. Below 230 kilometers,

velocities are somewhat higher than those of normal mantle

at similar depths (9.3 km/sec vs. 8.4 km/sec for P waves).

The outstanding feature of the results for three-dimensional

velocity structures is a broad (>40 kilometers), centrally

located region with 8% to 10% lower velocities than those in

the surrounding regions. This low velocity region envelopes

the seismic zone at depths between 70 and 150 kilometers.

The region may actually extend beyond these depths, but the

results for shallower and deeper structure lack sufficient
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resolution to decide. Several tests, using both

hypothetical and real data, were performed to estimate the

reliability of the three-dimensional solutions. The results

of these tests suggest that the inferred velocities are

reasonably accurate representations of the average

velocities in the blocks, although one must be cautious of

the effects of averaging in interpreting the solution. The

low velocity region is inferred to be a manifestation of

substantial quantities of subducted continental crust.

Therefore, while subduction has occurred in the Pamir-Hindu

Kush, the results of the three-dimensional inversions

suggest that continental, rather than only oceanic,

lithosphere has been subducted to depths of at least 150

kilometers.
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INTRODUCTION

Throughout their histories, continents have been

modified extensively by collisions with island arcs.and

other continents. Discerning collision processes is

therefore fundamental to understanding continental

development. However, since there are presently no

incipient continental collisions, we must deduce these

properties solely from their aftereffects - a difficult task

if only because it is never clear how much or what kind of

material originally existed between the collided members.

Such uncertainty naturally gives rise to controversies, one

of which concerns the subduction of continental crust.

In several collision regions, including the Himalaya

[Gansser,1966; Peive,1964', the Calidonides [Gee,1975], the

Alps [Laubscher,1971; Oxburgh, 1972], and the Carpathians

[Burchfiel,19801, there is geologic evidence of thin (15 km)

allochthonous nappes or thrust sheets that have traversed

hundreds of kilometers over an autochthon. These sheets are

believed to represent a portion of the subducted lithosphere

that was stripped off and left behind. If the subducted

lithosphere had a crust of normal thickness (35 km), the

thinness of the sheets implies that much of the crust was

subducted along with the rest of the continental

lithosphere.

Assuming average values for the density, temperature,

thermal expansion coefficient, and thickness of the
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continental crust and lithosphere, it can be shown [Molnar

and Gray, 19791 that the continental lithosphere can sink

under its own weight if only 10 kilometers or less of its

crust remains attached to it. Molnar and Gray also showed

that if a heavy oceanic slab can transmit stress to the

surface, then a substantial amount of crust may be subducted

before the negative buoyancy of the slab is compensated. In

either of these situations, however, the uncertainties are

such that the limits on the length of subducted crust range

from a few kilometers to a few hundred kilometers. In

extreme cases, even the steady state subduction of crust may

be possible.

Geophysicists tend to argue against the wholesale

subduction of continental crust, however, principally

because of the lack of evidence for it. Observations that

would imply either the presence of, or the conditions

necessary for, subducted crust have yet to be made.

One may gain insight into controversies such as

subducted crust by examining the deep structure of a

collision zone in some detail. A geophysical method that

suits this purpose is the inversion of compressional (P) and

shear (S) wave arrival times for a three-dimensional

velocity structure. Since its original inception by Aki et.

al. [1976] and Aki and Lee (1976], several authors [e.g.

Cockerham and Ellsworth,1979; Ellsworth, 1977; Horie,1980;

Hirahawa and Mikumo,1980; Raikes,1980; Romanowicz,1980;

Zandt,1978] have used this technique, or modifications of
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it, to study the deep structure of various tectonic regions.

The only data that this technique requires are the

arrival times of several earthquakes at an array of stations

situated over the area in question. If the area is

relatively inactive, one must maintain the array for a

period of time long enough (perhaps years) to record a

reasonable distribution of large, distant events. If, on

the other hand, the area is seismically active, a sufficient

amount of data may be acquired in a relatively short period

of time (weeks). Unfortunately, there are at present few

long term arrays situated over known collision regions.

There is, however, at least one collision region that is

seismically active below depths of a few tens of kilometers

- the Pamir-Hindu Kush region of central Asia.

Located at the far western end of the suture between

Eurasia and India, the Pamir-Hindu Kush seismic zone

represents the last phase of the collision between these two

continents. Because of its high (40 recordable events/day)

and dispersed (70-300 km depth) activity, this seismic zone

provides an excellent opportunity to study the deep

structure of a convergent region with a short term array.

The results of an investigation with such an array is

the subject of this paper. Using the arrival times of P and

S waves from microearthquakes in the Pamir-Hindu Kush, one-

and three-dimensional velocity stuctures of the region are

determined, and then are used to comment on the general

nature of subduction in collision zones.
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DATA

From June 11 to July 13, 1977, 11 smoked paper

recorders were operated around the Hindu Kush region of

Afghanistan (figure 1). The arrival times of P and S waves

recorded during the investigation by either this array or

the World-Wide Standardized Seismic Network (WWSSN) station

in Kabul (KBL) were used by Chatelain et al. [1980) to

locate the microearthquakes of the seismic zone. The

techniques employed in reading the records were also

discussed in detail by Chatelain et al.

These arrival timnes constitute the principal database

of this study. In addition, some 230 arrival times (also

read by the author) from the Soviet station at Khorog (KHO),

Tadjikistan (figure 1), are included. KHO is a useful

addition since it improves the control over the locations of

the many events in the eastern part of the array.

Approximately 1200 events were located using the data

discussed in Chatelain et al. On the basis of extensive

tests with real and hypothetical data, Chatelain et al.

developed criteria fpr diacriminating high quality locations

from less reliable ones. These criteria are

1) A minimum of 8 phases are recorded, one of which is

an S wave.

2) If the azimuthal gap in recording stations is

greater than 60 degrees, a minimum of 10 phases are used.

3) The root mean square (rms) residual is less than
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0.55 seconds.

4) The distance to'nearest station is less than one

focal depth.

In selecting events to use in the velocity inversion, we

modify these criteria slightly. The crude requirement that

the rms be less that 0.55 seconds is replaced by one where

the standard deviation of all hypocentral parameters is less

than 10 km. This rule excludes unstable locations even if

the fit to the data appears good, and includes stable

locations even if the fit seems relatively poor. Also, the

rule excluding events with no stations within one focal

depth is relaxed in order to include some of the well-

recorded crustal events. Finally, a criterion is added

where the condition number of the hypocenter matrix (the

ratio of largest to smallest singular values) is required to

be less than 100. The reason for this criterion is

discussed in the next section.

In all, approximately 580 events comprising some 5000

P and 3800 S arrivals were selected for the velocity

inversions (events were reviewed for satisfying criteria as

one-dimensional velocity models were changed). The

locations of these events are plotted in map view in figure

1.
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THEORY

The inverse problems discussed in this paper generally

involve fitting arrival time data with a simultaneous

solution for the four hypocentral parameters (latitude,

longitude, depth, and origin time), S and P wave velocities

in one or three dimensional structures, and, occasionally,

station corrections. The purpose of this section is to

review the mathematical background of the inverse methods

used, with particular emphasis on establishing definitions

and concepts that will be useful in discussing the results.

General Formulation.

We require a rpthod which fits a set of in observed

arrival times, T with a mapping function (or forward
-o

problem), T, by adjusting a finite number n of discrete

parameters, x. The standard first step is to express T as a

Taylor series:

(1) T -T(x ) V T(x)(x - x ) + e

where x is a set of trial values for the n parameters.

Equation (1) is linearized by assuming that higher order

terms are zero and that e represents Gaussian error. In

matrix form, (1) is written as

d = Am + e(2)
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where d is a vector of travel time residuals, and. A is an

m x n matrix of partial derivatives. The correction vector

m C (x - x )] is determined in the least squares sense by

Tminimizing e e. The generalized inverse solution to the

least squares problem is [Aki and Richards,1980]

(3) = (ATA) A d

where M is an approximation to the true least square

solution m. All solutions discussed here are of the damped

least squares variety, which is a special case of the

stochastic inverse [Franklin, 1960; Levenburg, 1944; Aki and

Richards,1980]. In the damped case

T 2 -1iT
(4) mi= (ATA + 2 1ATAm

where 02 is the ratio of model variance (a ) to data

variance (oA), and I is the identity matrix.
m

The conventional estimators of the reliability of the

least squares solution are the resolution matrix, R, and the

covariance matrix, C. The resolution matrix expresses the

relation between the true least squares solution and our

estimate of it as

T 2 -T
(5) m = Rm = (A A + I)-1A Am

If R = I (identity), then M"= m and the solution is

perfectly resolved. If any diagonal of R is zero, the

corresponding parameter is completely unresolved.
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Interpretatiori of R diagonals falling in between these

extremes is somewhat qualitative, but can be useful in

discriminating reliable from spurious solutions.

The covariance matrix estimates the standard error of

the linear solution as

(6) c =m < Tn > 2 aA TA + 0, )-R

where Ca is an estimate of the variance of the data. The

standard deviation of any parameter is the square root of

the corresponding diagonal of C. The expression for

covariance in equation (6) assumes that the variance for all

the data is the same. Note also that the error estimates

provided by C are intrinsically related to the assumption of

linearity and are therefore only as valid as the linearity

assumption is valid.

Joint Hypocenter-Velocity Inversion.

The inversions performed in this study simultaneously

solve for perturbations to hypocenter parameters as well as

to any additional parameters (velocities or station

corrections). Inversions which constrain hypocenters make a

usually unjustifiable assumption that there is no coupling

between the hypocenter and velocity solutions. The

principal drawback to including hypocenter parameters,

however, is that each event adds four rows and columns to

the matrix of normal equations, thus creating a severe

computational storage problem.
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Fortunately, methods of parameter separation proposed

by Palvis and Booker [1980] and Spencer and Gubbins [1980]

allow us to formulate an equivalent problem, which retains

only a subset of the parameters. In this study we apply the

approach of Palvis and Booker, although the near equivalence

of the Palvis and Booker and Spencer and Gubbins

formulations can be demonstrated (Appendix A). A brief

review of the Palvis and Booker approach is given in the

following.

The joint hypocenter-velocity inversion problem can be

expressed (from (1)) as

(7) d Ah + Bv + e

where h contains the hypocenter perturbations and v the

velocity perturbations. Let us examine the A matrix in some

detail. It is well known [Lanczos, 1961], that any m x n

matrix can be decomposed into three matrices

(8) A = UAVT

where U is an m x m matrix whose columns are the

eigenvectors of AAT T is an n x n matrix whose rows are

the eigenvectors of A TA, and A is an m x n matrix containing

the singular values of A. The column vectors of U are

usually described as spanning the data space of A, while the

columns of V span the model space of A. Equation (8) can

be written schematically as
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m n n

p n-p T

9 A U U U m * n1 0O 2 0m

0

where p is the number of nonzero singular values.

In any overdetermined system of m equations and p

independent parameters (m>p) there are p bits of relevant

data and m-p bits of extra data. As can be seen in (9), the

U portion of the U matrix completely describes the relevant

data space, while U and U span the extra data space. All0 2

components of the residuals that project onto the U space

of A determine the hypocenter solution. All data components

orthogonal to U are either relevant to the velocity

solution or classified as noise.

The existence of U is guaranteed in any
2

overdetermined system of equations. Further, since the

Tcolumns of U are orthonormal to U , U can be used as an2 1 2

annihilator to separate the hypocenter solution from the

velocity solution, since

TT T
(10) U d =U Bv + U2

2- 2- 2-!

By employing this method, we can make use of as much data as

we like while storing only as many columns and rows as the

number of parameters we wish to determine.

Equation (9) shows that when U space (those

components corresponding to zero singular values) exists, it

can be combined with the U annihilator and thereby increaset2

the amount of extra information that goes into the velocity
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solution. One may then conclude that events with large U0

spaces are preferable sources of velocity data since less

data is used in determining the hypocenter. However, the

existence of U0 space implies that there is no control over

some part of the hypocenter location. Since velocity

derivatives are always dependent in some way on the path of

a ray between source and receiver, gross errors in

hypocentral coordinates can contribute to gross errors in

the estimates of velocity derivatives. Therefore, including

events with zero singular values is ill-advised, unless the

location of the event is constrained by some other means.

For our purposes, a zero singular value is defined as

one whose ratio to the largest singular value is less than

0.01. Events with singular value ratios smaller that 0.01

are excluded from the inversion.

The method used in initially setting up the one-

dimensional velocity inversion is essentially the same as

that described by Crosson [1976]. Station corrections are

included to lessen the effects of any strong, near-station

lateral heterogeneities that would not be accommodated by

the one-dimensional velocity model. The final solution for

hypocenters and velocities is obtained by a two-part

iterative procedure. The first part is the separated

solution of velocities and station corrections. The second

part is the relocation of the hypocenters after these

adjustments have been made.

Results from the layered inversions were used as a
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starting point for the three-dimensional block inversion.

The approach is essentially the same as that presented by

Aki and Lee {19763, with some modification of the procedure

in which portions of a ray are assigned to the various

blocks (see Ellsworth, 1977, for details). The: forward

problem employs a one-dimensional ray tracing routine which

makes the procedure non-iterative.

Use of S waves.

One may wonder about the motivation behind including S

wave velocities in the solution, since the number of

parameters practically doubles by doing so. Some advantages

are that S waves may be more sensitive to changes in

tectonic conditions than P waves, and, by correlation, the S

wave solution corroborates the P wave solution. But the

real advantage of adding S waves lies in the added accuracy

they lend to the hypocenter location. Not only do S waves

stabilize a location in a given velocity structure, as is

often advertised, but tests performed by Chatelain et al.

suggest that locations with S waves are much less sensitive

to variations in the velocity structure than when only P

waves are used.- In the vocabulary used above, S waves

appear to rotate the U1 space of the hypocenter matrix out

of the U1 space of the velocity matrix, thereby uncoupling

the solutions.

Note that one cannot take the short-cut of using a

location deduced with P and S waves and then use only P
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waves in solving for a velocity structure. The hypocenter

matrix using P waves alone has a different U space than that

for P and S, and therefore different components of residuals

project onto the hypocenter solution. Similarly, one cannot

include S arrival data in the solution and keep S wave

velocities fixed, since, as in the joint hypocenter-velocity

case, some coupling may exist between the parameters. It is

theoretically possible to separate the solutions for P and S

velocities in the same fashion as hypocenters and

velocities, but it is computationally much more difficult to

do so. The only viable way to take advantage of the

accuracy provided by S waves is to allow S wave velocities

to vary.

Progressive Solutions

In approximating a linear relationship between

residuals and corrections, we assume either that the partial

derivatives are constants or that the corrections are small.

Violations of this assumption introduce instabilities due to

nonlinearity.

To minimize the effects of nonlinearity, a solution is

obtained by progressively varying paramaters, rather than by

allowing all of the parameters to vary at once. That is,

only the least sensitive parameters (i.e., those with the

smallest partial derivatives) are allowed to vary first,

then the next least sensitive, and so on until all the

parameters vary. With each step the residuals, and
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therefore the potential sizes of the corrections, are

reduced, and nonlinear effects are lessened.

It is important that the least sensitive parameters

continue to vary while solving for the most sensitive ones

so that any biasing introduced by the progressive solution

can be detected. For example, it could happen that certain

components of the residual vector project in the same way

onto the data (U ) spaces of fixed and free parameters.

These residuals will be satisfied by the free parameters

,since they are corrected first. Then later a minimal

correction to the fixed parameters will result when they are

allowed to vary. If we solve for the second set of

parameters without" allowing the first to vary, we may

wrdngly conclude 'that the solutions for all the parameters

are well resolved. A more honest estimate will be had if

resolution is calculated with all the parameters allowed to

vary.

For the inversions performed here, the order in which

parameters are allowed to vary is: hypocentral latitude and

longitude, hypocentral depth and origin time, layered

veloitires and &tation corrections, and, finally, fractional

slowness change in the block structure. This heirarchy is

dictated by the typical size of the partial derivatives

associated with each of these parameters.
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APPLICATION - PART I: TOWARDS A STARTING MODEL

In this section we describe how the theories discussed

above are applied in determining one-dimensional velocity

structures in the Pamir-Hindu Kush. These structures will be

used as starting models for the three-dimensional

inversions.

Hypocenter Locations

A first estimate of hypocenter locations was provided

by the HYP071 location routine [Lee and Lahr, 19712. The

results of the HYP071 runs are discussed at great length by

Chatelain et al. All the hypocenters were relocated in the

various one-dimensional models before and after inverting

for the best-fitting layered structures. These relocations

were performed with a routine that computes a singular value

decomposition of the hypocentral matrix so that the quality

criteria discussed in the DATA section could be applied.

The result of the relocations pertinent to this study is

that, as the one-dimensional models varied, the hypocentral

coordinates rarely changed substantially (never more than 10

km in any direction and usually much less).

One-Dimensional Solutions

The one-dimensional, or layered, inversions provide an

estimate of how velocity varies with depth. The inversions

solve for P and S wave velocities within a fixed set of
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horizontal boundaries, along with travel time corrections at

each station (hypocentral parameters are obtained

separately, as discussed previously). Since we assume that

the velocity in each layer is constant, the solutions, at

best, represent the average velocities between the layer

boundaries. If the velocities change smoothly with depth,

similar solutions will be obtained no matter where the

boundaries are placed. However, if the boundaries are deep

enough, they will cross at least one abrupt change in

velocity at the MohoroviCic discontinuity (or Moho), and

possibly another at the beginning of the low velocity zone

(LVZ). To estimate the depth of these transitions, it is

necessary to compare inversions that employ different

configurations of boundaries.

In all, four one-dimensional inversions were

attempted: three with two-layered crusts and with Mohos at

70, 80, and 90 kilometers depth, and one with a five-layered

crust with (initially) gradually increasing velocities with

depth. The results of all the one-dimensional inversions

are shown in figures 2-5, and -an overlay of the results of

the inversions with two-layer crusts is shown in figure 6.

Two features dominate these solutions: one, a rapid increase

in the velocity between approximately 40 and 90 kilometers,

and two, a velocity reversal somewhere between 150 and 220

kilometers. To first order, one may infer that the

boundaries of the crust and LVZ lay within these limits.
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Position of the Moho.

The five-layer crustal model is an attempt to detect a

preferred discontinuity by relaxing the requirement that the

Moho occur at a particular depth. The results (figure 2)

show a substantial increase in both P and S wave velocities

at the 60 kilometer boundary, with standard mantle

velocities beginning at 80 kilometers. Taken at face value,

this result suggests that the Moho lies between 60 and 80

kilometers depth.

One must be cautious in interpreting this solution,

however, because there are almost no events between 30 and

70 kilometers depth. Layers with few sources are

notoriously unstable and poorly resolved, and, indeed, the

layers between 20 and 100 kilometers vary substantially from

the first to the second iteration. Mostnoticeable is the

tradeoff between velocities in the layers beginning at 60

and at 80 kilometer depth, which makes the lower estimate of

the Moho suspect. Therefore, while the depth of the Moho is

certainly greater than 60 kilometers, it might perhaps be

greater than 80 kilometers.

In contrast to the five-layer crust, the two-layer

crusts have stable solutions. Of the three, the solution

with the Moho at 70 kilometers shows the largest contrast

between lower crust and upper mantle, and is also closest to

what is considered to be normal velocities for these two

regions (6.4 km/sec and 8.1 km/sec for P, 3.7 km/sec and 4.7

km/sec for S, figure 6). Comparing this result with the
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five-layer crust solution suggests that the Moho is at

approximately 70 + 5 kilometers depth. This figure is in

agreement with that given by Krestnikov and Nersesov [1964]

and McGinnis [1971] for crustal thickness in this area.

Low Velocity Zone (LVZ)

In each of the layered inversions a velocity reversal

occurs at depths of 150 to 210 kilometers. Comparison of

inversions suggests that this boundary is most likely at

about, 160 kilometers. The lower boundary of the reversal

appears to be at less than 230 kilometers adepth, but,

because of lack of resolution, it is not clear how much

less,

The uncertainties in interpreting this reversal as the

LVZ are first that, as in the lower crust, the fewer events

in the reversal region make for an unstable solution, and

second that the velocity below the reversal is higher than

the normal mantle velocity for similar depths.

The arguments supporting the LVZ interpretation are

that the inferred depths of the boundaries of the reversal

at r0 and 230 kilometers are close to typical depths for

the LVZ, and that both P and S wave velocities in the 160-

200 kilometer layer (figures 4 and 6) are close to standard

values for the LVZ. The low activity in the region is also

consistent with an LVZ interpretation. In fact, there is a

recognizable gap in the activity at about 160 kilometers

depth (See figure 9 of Chatelain et al. and figur'e 7). Even
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if the solution is somewhat unstable because of the low

activity, the reversal seems too substantial to deny its

existence. In regard to the unusually high velocities below

the reversal, note that the events below the gap in activity

presumably occur in dense (and therefore high velocity),

subducted oceanic lithosphere. Based on the relative

locations of events above and below the 160 kilometer depth

gap, Chatelain et al. suggested that the. subducted

lithosphere is discontinuous in this region. Under such

circumstances, a thin wedge of asthenosphere might have

penetrated between the two pieces of subducted lithosphere

and thus create a narrow region of low velocity.

Station Corrections.

As mentioned before, station corrections are included

in the solution to allow for any near-receiver, lateral

heterogeneities that would create instabilities in the

layered solution. One must have some appreciation for

whether the scale of these anomalies is closer to one

kilometer or one hundred kilometers, since the three-

dimensional inversions without station corrections

implicitly assume that the scale is on the order of the

block size (usually about 40 kilometers in this case).

The major source- of small scale- heterogeneities is

relatively thick sediments underlying any of the station

sites. Fortunately, there is some evidence suggesting that

such thick sediments do not exist. First, most of the
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stations are located on either Paleozoic crystalline

basement or on competent metamorphic shists and gneisses

[Desio, 1975; Boulin, 1972; De Lapparent, 1972; Mennessier,

1972]. Sediments under the remaining stations appear to be

thin (< 200 meters). Second, in a study of the codl of

Hindu Kush earthquakes, Roecker et al. [1981] found that

the excitation of the coda is nearly the same at four of the

stations (JOR, FAR, PEN, and CHS) surrounding the zone.

Since coda amplitudes are notoriously sensitive to near

receiver anomalies (e.g. Tsujiura, 1979), similar coda

excitations imply that near-receiver conditions are similar.

From this evidence, we presume that station corrections

result from some large scale (i.e. tens of kilometers),

rather than local, lateral heterogeneities.

The station corrections deduced in the layered

inversions are listed in Table 1. The results can be

summarized by noting that most of the stations to the

northwest and southeast of the seismic zone (FDZ, FRA, KUY,

SAL, and CHS) have negative corrections while stations to

the southwest and northeast (PEN, GOU, and KHO) have

positive corrections.

APPLICATION PART II: THREE-DIMENSIONAL VELOCITY STRUCTURES

The inversion for three-dimensional velocity

structures involves dividing the layered structures of the

previous section into blocks, and then determining the

changes in "the blocks' fractional slownesses that best fit
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the residuals. In this section we discuss the results

obtained by applying this method to deduce lateral

variations in the Pamir-Hindu Kush region.

Overview

In all, eight three-dimensional inversions were

performed, using various starting models and subsets of

data. The starting models for these inversions are the

best-fitting layered structures discussed in the previous

section. Except in one case, station corrections are not

applied. The details of the starting models are listed in

Table 2.

The blocks are usually cubes of 40 kilometers

dimension. While the choice of block size is primarily

dictated by storage limitations, solutions with blocks of

much smaller dimensions (20 kilometer cubes) proved to be

poorly resolved. The orientation of the blocks is governed

by the concentration of ray paths in each layer. A

representative plot of the number of times the blocks are

sampled by rays is shown in figure 8. Only those blocks

that are sampled by at least 20 rays are included in the

inversion.

The results of the three-dimensional inversions are

presented in two formats. First, the percent change of the

initial velocities in each block, along with corresponding

resolution and covariance diagonals, are superimposed on a

simplified tectonic map (figure 9). Second, contours of
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percent changes in velocities are shown on a similar map.

Results of inversions AF2, AF4, AF9, and AF10 are shown in

figures 10-17 in this text, and all other solutions appear

in Appendix C. In addition, a vertical crossection of the

lateral changes in velocity inferred from the AF2 inversion

is shown in figure 18.

To first order, the results of all the inversions are

similar. First, resolution deteriorates with depth. The two

main reasons for the deterioration are that the seismic zone

thins with depth, restricting the region through which the

rays pass, and that the velocity derivatives from

approximately vertical rays couple with changes in the

hypocentral origin time. Velocity variations below about

150 kilometers depth are thus difficult to qi9gern. Second,

in nearly every layer of each inversion, the P and S

solutions correlate well. Third, in nearly every case there

is a significant reduction in the data variance (>50%), and

the resulting variance is near the assumed noise level in

the data (0.1 seconds). Finally, there is a broad,

dentrally located, low velocity region that extends from the

naar-surfacse to some unresolved depth. This last result is

unusual, since the earthquakes occur in the blocks with low

velocities. In most subduction zones, active regions are

normally associated with cold, subducted lithosphere, which

implies the presence of high velocities.
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Estimations of Reliability

The first question that comes to'mind when an inverse

solution is presented is How much can one believe? The

answer to this question is nontrivial when one considers how

solutions may be affected by problems such as nonlinearity

and improper parameterizations, which were implicitly

assumed not to exist. While necessary, a lengthy discussion

of the possible effects of situations for which one or more

assumptions is violated is somewhat tedious and is relegated

to Appendices B and C. Only the salient results of these

appendices are summarized here.

The following results were obtained through the

hypothetical tests discussed in Appendix B. If, in a

laterally heterogeneous medium, the regions of differing

velocities are not confined to short wavelength features

(i.e. features smaller than the block dimension), the block

parameterization provides a reasonable lens through which we

may view the velocity structure. If, on the other hand,

such features do exist, the lens may distort the image:

exaggerating variations in some regions and underestimating

them in others. Often it is difficult to distinguish such

distortions from reality without any a priori information.

However, there are a few traits associated with distortions

that, although often not diagnostic, should be kept in mind

when interpreting the solutions. (1) A basic rule is that

the inferred velocities should be contourable. Trends

should persist in several adjoining blocks instead of being
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defined by the fluctuations in a single block. This rule

applies to variations from one layer to the next as well as

to variations within a layer. (2) Large variations in

velocity that occur at the edges of layers with few events

are unreliable, and extreme variations in regions of low

activity can be exaggerated. (3) High amplitude, short

wavelength variations that occur outside of the seismic zone

can cause a misrepresentation of the velocity in the

surrounding regions, and thus may be inferred to be much

wider than they are.

Some estimates of the applicability of the

conventional estimators also result from the hypothetical

solutions. First, a reasonable cutoff value for resolution

(equation 5) is about 0.6 for P velocities and 0.5 for S

velocities (lower for S because the S wave data are weighted

less). Second, for the array used and for the types of

anomalies modeled, variations less than two percent are

probably insignificant, even if the linear error estimate is

less than two percent. These two rules are applied to the

solutions before the contours of figures 11, 13, 15, and 17

are drawn.

The results from runs using various subsets of real

data (Appendix C) allow us to conclude that coupling between

layers does not significantly change our interpretation of

the velocity structure of the medium, except perhaps in the

relatively event-free regions shallower than 70 kilometers

depth. Further, it appears that the estimates of velocity
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variations in a layer are principally controlled by the data

from events in the layer.

The discussions in Appendices B and C apply these

interpretation rules to the inverse solutions, and also

consider the existence of assumption-violating situations

that may cause a-misrepresentation of velocity by the

solution. The general conclusion from these discussions is

that, while one must be mindful of the approximations of the

method, the systematic variations in inferred velocity of

several percent provide a reasonably accurate description of

the real velocity structure.

Extent of the Low Velocity Zone.

Having girded our loins against the shortcomings of

the method, a general description of the three-dimensional

velocity structure of the Pamir-Hindu Kush can be given.

Most of the following description is synthesized from inverse

solutions AF2, AF9, and AF10 (Table 3, figures 10-15 and

figure 18). These runs use the two-layered crust results

discussed in the section on one-dimensional inversions as a

starting model.

Crust (0 - 70 km)

Determination of the velocity structure in the crust

is hampered by both the large, unsampled region in the

center of the upper crust, and the apparent coupling that

exists between the upper and lower crustal solutions (see
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Appendix C). Still, some general comments may be made. Low

velocities in the upper crust are associated with the

stations PEN, GOU, and KHO. In the northeast, the boundary

between high and low velocity regions coincides with the

Darvas-Karakul fault, although this may be a fortuitous

compensation for the large low velocity anomaly associated

with KHO. The low velocities near the station GOU appears

to begin at shallow depths (<35 kilometers) and migrate

northwards to join the low velocity region near PEN, which

begins at a depth of approximately 30 kilometers. Again,

because of coupling, the low velocities near GOU may occur

at greater depths, and the low velocities near PEN at lesser

depths, than the solution indicates.

Upper Mantle (70 - 120 km)

From approximately 70 to 120 kilometers depth, the low

velocities near PEN develop- into a prominent east-west

feature, the eastern and western boundaries of which are

beyond the extent of the array. The northern boundary

closely follows the trend of the seismicity, changing from

an east-west orientation in the west to a northeast-

southwest orientation in the east. The southern boundary

also appears to be oriented east-west, but its position is

less well known. Run AF4 (Table 3, figures 16 and 17) is an

attempt to trace this boundary by employing narrower blocks,

but little of the solution can be resolved in the south. In

any 'event, the low Velocity region probably has a maximum
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thickness of 60 kilometers at its narrowest point, near

68 E, and becomes broader to the east and west. The maximum

velocity contrast given by the inversion is 14%, but may be

closer to 8% since the region of highest contrast is also a

region containing relatively few sources.

Deeper Mantle (120 - 300 km)

The low velocity region is continuous to depths

exceeding 120 kilometers. In fact, strong correlations

between low velocities and seismicity can be found to the

limits of resolution with depth, which is about 200

kilometers. Below depths of about 150 kilometers, however,

the number of resolvable blocks is small and it is not clear

to which, if any, tectonic features the lows and highs

should be related. In any event, it appears that the low

velocity zone extends to at least some 150 kilometers depth.
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DISCUSSION

Because the patterns of seismicity in the Pamir-Hindu

Kush resemble those of normal subduction zones, it seems

reasonable to infer that subduction has taken place in this

region. Instead of the typically high velocities associated

with the seismicity in subducted oceanic lithosphere,

however, the seismic zone of the Pamir,-Hindu Kush is a

region of abnormally low velocity. As a general conclusion,

we infer from this result that the nature of the subduction

in the Pamir-Hindu Kush is significantly different from that

in typical subduction zones.

Because the low velocity region appears to extend

continuously into the mantle from depths shallower than the

Moho, we infer that the lower velocities are a manifestation

of subducted crust. In this section, we discuss some of the

corroborating evidence for and tectonic implications of this

inferrence, and speculate on some of the physical processes

which may facilitate the subduction of crust.

Gravity

The spatial relation of the measured gravity anomalies

[Marussi, 1963; McGinnis, 1971] and average elevations in

the Pamir-Hindu Kush to the low velocity region in the

mantle is shown in figures 19 and 20. The dominant feature

of the gravity profiles is a broad (~400 kilometers),

negative (-80 mgals) isostatic anomaly. Negative isostatic
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anomalies imply a deficiency of mass, and, therefore, the

gravity data do not conflict with the inference of

subducted crust. The patterns in the anomalies are rather

complicated, however, probably because mass deficiencies

created by other types of tectonic activity are contributing

to the overall anomaly. For example, the maximum negative

anomaly is not centered over the low velocity region but

occurs over the Tadjik depression to the north. Therefore,

attempts to draw any additional infeence from the gravity

data in support of subducted crust are tenuous.

On the other hand, if the crust is subducted in the

quantities suggested by the velocity inversions, then the

crust probably does not retain its original density. As

shown in Appendix D, the anomaly created by a 40 kilometer

thick slab of crust between 70 and 150 kilometers depth and

with a density 0.5 gm/cm3 less than the surrounding mantle

would produce a maximum anomaly of -200 mgals that decays

to -100 mgals at about 100 kilometers from the peak. The

maximum anomaly is more than twice the magnitude of the

observed anomaly, which suggests that more appropriate

density contrasts between mantle and subducted crust are

3closer to 0.25 gm/cm3

Effects of Phase Transformations

Richardson and England (1978) argued that if a crust of

normal thickness were overthrust by a 30 kilometer thick

nappe, the substantial pressure and minor temperature
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increases would cause the low density amphibolite or

3
granulite facies (2.85 gm/cm ) of the lower crust to turn

into higher density eclogite facies (3.15 gm/cm 3). A

similar argument can be made for eclogite phase

transformations in subducted crust, as long as the

subduction occurs rapidly enough that the crust maintains

its relatively cold temperatures. In addition, it is

possible that at depths exceeding appoximately 120

kilometers, quartz (2.65 gm/cm3) will transform into coesite

(3.01 gm/cm3

The increased density resulting from phase

transformations (~15% from granulite to eclogite) would

decrease the buoyancy of the unadulterated crust by a factor

of about 2, thereby making it easier to subduct in great

quantities. One may further imagine that if the subducted

crust undergoes relatively rapid transformation, the

negative buoyancy of the rest of the continental lithosphere

may be enough to maintain steady state subduction after a

collision. Moreover, the increased density would reduce the

effect of subducted crust on the gravity anomaly.

Pbase tranafgratns may alm inease he 4.gnityde

of the velocities in the subducted crust. An application of

Birch's law (Birch, 1961) suggests that the P wave velocity

in the higher density eclogite facies would be about 1.0

km/sec higher than that in the original granulite facies.

This increase in velocity is in accordance with the inferred

velocities in the low velocity region, which are closer to



192

7.5 km/sec than the average lower crustal velocity of 6.5

km/sec.

Except under near-surface conditions, crustal materials

are generally considered to be too weak to undergo

catastrophic deformation. It is curious, therefore, that

the earthquakes in the Pamir-Hindu Kush seismic zone should

occur in subducted crust. One explanation may be that

crustal materials become stronger after certain phase

transformations. Alternatively, McGarr [1977] suggested

that large stress concentrations would result from either

the vacuum left by a rising crustal melt or the volume

change associated with a phase transformation. The rapid

application of a large amount of stress resulting from these

processes may facilitate the-occurmence of earthquakes in a

normally ductile medium. Finally, the volume change

associated with the transformation may itself be a cause of

the earthquakes [e.g. Randall, 1966).

The locations of events in the Pamir-Hindu Kush from 70

to 160 kilometers depth are scattered in a 30 kilometer

thick region (figure 6 in Chatelain et al.) rather than

being confined to a thin (less than 10 km), planar region as

in most subduction zones. This scatter in locations occurs

even though the configuration of the array is best suited

for locating events in this depth range (see Appendix A of

Chatelain et al.), and persists in master event relocations

[T.J. Fitch, unpublished results, 1979]. Furthermore, the

fault plane solutions in this region show no consistent
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pattern. While the relation between these observations and

phase transitions may not be obvious, it seems likely that,

at least in this depth range, different physical processes

are associated with subduction in the Pamir-Hindu Kush than

in normal subduction zones.

Tectonic Implications

The major implication of the results of this study is

that it is possible to subduct substantial amounts of

continental crust. This implication is especially relevant

to regions where continental collisions have taken place,

since at least one of the collided members was at one time

.connected to a slab of downgoing oceanic lithosphere. A

cartoon illustrating the configuration of the subducted

crust in the western Hindu Kush along with related tectonic

features is shown in figure 21.

Combining the results of this paper with those of

Chatelain et al., one can draw some inferences about the

tectonics of the Pamir-Hindu Kush. For instance, Chatelain

et al. argued that subduction rates in the Pamir-Hindu Kush

have been between 20 mm/year and 43 mm/year. If, as this

study suggests, crust has been subducted to 150 kilometers

depth, these rates imply that the crust has been heating up

in the mantle -for a length of time on the order of a few

million years. Such a time span is probably too short for

the crust to completely assimilate into the mantle, but is

perhaps long enough for relatively sluggish reactions -(e.g.
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alkali feldspars to kyanite or hollandite) to run.

Chatelain et al. also pointed out that while the

patterns in the seismicity and fault plane solutions in the

Upper 160 kilometers of the Pamir-Hindu Kush are unusual for

a subduction zone, the seismicity beneath about 170

kilometers is confined to a narrow region and the

corresponding fault plane solutions consistently reveal

reverse faulting with nearly vertically oriented T axes.

The results of the one-dimensional inversions suggest that

velocities below about 200 kilometers are higher (~9.3

km/sec vs. 8.4 km/sec for P waves) than those of normal

mantle at similar depths. It could be, therefore, that the

subducted oceanic lithosphere begins at these depths.

Finally, we note that the low velocity region in the

mantle is broad (>40 kilometers), and extends upwards into

the lower crust. Moreover, the velocities of the low

velocity region in the lower crust are similar to those of

the upper-crust (~6.0 km/sec). These results suggest that a

significant amount of upper crustal material is residing in

the lower crust, and possibly in the mantle as well.

Therefore, it is possible that the entire, rather than just

the lower, crust has been subducted beneath the Pamir-Hindu

Kush.
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SUMMARY

Because relatively few stations were operated during

the 1977 investigation of seismicity in the Pamir-Hindu

Kush, it was necessary to use data from many events in

determining the velocity structure of the region. By

employing the methods of parameter separation introduced by

Palvis and Booker [1980) and Spencer and Gubbins [1980), we

were able to use a sufficiently large number of events in

the inversions for velocity structures without challenging

computational storage limitations. The inversion procedure

allowed hypocentral parameters, one- or three-dimensional

velocity structures .for both P and S waves, and, on

occasion, station corrections for P and S arrival times, to

vary simultaneously.

The results of inversions for one-dimensional velocity

structures suggest that the Moho is at 70 + 5 kilometers

depth, and that the low velocity zone (LVZ) begins at

approximately 160 kilometers depth. The LVZ continues to

about 230 kilometers depth. The mantle beneath this depth

-has a higher velocities (9.3 km/sec vs. 8.4 km/sec for P

waves) than those of normal mantle at similar depths.

The velocities inferred from the- three-dimensional

inversions outline a broad (>40 kilometers), centrally

located region of low velocities extending from somewhere in

the lower crust (35-70 kilometers) to depths possibly

greater than 150 kilometers. The low velocity region



196

envelopes the seismic zone, and its velocities are about 8%

to 10% lower than those of surrounding regions.

Several three-dimensional inversions were performed

with both hypothetical and real data ,in an effort to

estimate the reliability of the inferred velocities. The

results of these tests can be summarized as various rules of

interpretation, some of which may apply to three-dimensional

velocity inversions in general. We find that reliable

solutions are usually contourable. The resolution diagonals

associated with reliable results are greater than about 0.6.

Variations in velocity less than 2% seem to be

insignificant, even if the linearly estimated standard

deviation is less than 2%. Large changes in inferred

velocity occurring on the edges of layers with few sources

are generally unreliable. Finally, while the inferred

velocity in a block usually represents an average of the

actual velocities, some velocities may be completely

misrepresented by the broadening of small scale, isolated

anomalies. Application of these rules of interpretation to

the three-dimensional inversions suggests that the results

are generally reliable, although one must be mindful of the

effects of the averaging of adjacent regions with abrupt

changes in velocity.

Because the Pamir-Hindu Kush seismic zone is probably

related to the subduction of oceanic lithosphere prior to

the collision of India and Eurasia, the inferred low

velocity region around the seismic zone is an unexpected
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result; high velocities normally accompany subduction zones

because oceanic lithosphere is colder than the surrounding

asthenosphere. We infer from this result that while the

seismic zone of the Pamir-Hindu Kush is related to

subduction in the region, the low velocities enveloping the

zone are due to the subduction of a substantial amount of

continental crust, and therefore the upper 150 km of

subducted lithosphere is not oceanic but continental,

While the patterns in the gravity anomalies in the

Pamir-Hindu Kush are too complicated to permit any definite

conclusions, the large, negative isostatic anomalies over

the low velocity region imply a substantial mass deficiency

which is in accordance with the inferrence of subducted, low

density crust.

For various reasons, one may suspect that the subducted

crust does not completely retain its original densityv

First, the gravity anomaly associated with unadulterated

subducted crust would be more than twice that observed.

Second, the velocities in the low velocity region are about

1.0 km/sec higher than those in normal crust. Third,

although the lower crust is presumably too weak to sustain

catastrophic deformation, most of the earthquakes occur in

the low velocity region. One possible explanation for these

observations is that much of the subducted crust has

undergone a phase transformation, resulting in a mixture of

crustal and mantle material in the low velocity region.

The subduction of continental crust in collision
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regions has long been suggested by geologic evidence.

Geophysicists, however, have generally held a prejudice

against any suggestion that more than a minor amount of

crust can be subducted, because the density of the crust is

lower than that of the mantle. We infer from the results of

this study that substantial amounts of continental crust may

be subducted. Further, in the event of phase

transformations or other favorable processes, the steady

state subduction of crust may be feasible.
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Captions

Figure 1. Arrangement of seismographs and location of epi-

centers used in determining the velocity struc-

ture. Station locations are indicated by solid

triangles. The epicenters are plotted with sym-

bols corresponding to depth intervals as follows:

open circles, 0 < z < 70 km, stars, 70 < z < 150

kms, and Y's, z > 150 kms.

Figure 2. Results of an inversion for one-dimensional P and

S wave velocity structures using a starting model

with a five-layer crust. The velocities of the

starting model are shown by the thin-dashed lines,

the results of the first iteration are shown by

the thick-dashed lines, and the results of the

second (and final) iteration are shown by the

solid lines. The vertical bars on either side of

the solid lines represent the standard deviations

of the inferred velocities. The diagonals of the

resolution matrix are printed alongside the

corresponding layer velocity.

Figure 3. Results of an inversion for one-dimensional P and

S wave velocity structures using a starting model

with a two-layer, 70 km thick crust. Presentation

of results is the same as in figure 2. The ratio

of P wave velocity to S wave velocity is shown at
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the far right of the figure.

Figure 4.

Figure 5.

Figure 6.

Results of an inversion for one-dimensional P and

S wave velocity structures using a starting model

with a two-layer, 80 km thick crust. Presentation

of results is the same as in figure 2.

Results of an inversion for one-dimensional P and

S wave velocity structures using a starting model

with a two-layer, 90 km thick crust. Presentation

of results is the same as in figure 2.

Overlay of the one-dimensional P and S wave velo-

city structures deduced from starting models with

different crustal thicknesses. The thin-dashed

line corresponds to the model with a 90 km thick

crust, the thick-dashed line to the model with an

80 km thick crust, and the solid line to the model

with a 70 km thick crust. Note the significantly

greater difference between inferred crustal and

mantle velocities in the model with a 70 km thick

crust compared to the models with thicker crusts.

Figure 7. A projection of hypocenters onto a cylindrical

surface parallel to the seismic zone (H!H in fig-

ure 1). The shaded area indicates the gap in

seismicity in the depth range of the velocity

reversal inferred from the one-dimensional velo-

city inversidns.
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Figure 8.

Figure 9.

Figure 10

A map of the density of the rays at indicated

depths. The numbers in the figure refer to the

number of rays that pass through the-40 km cubes

used in the three-dimensional velocity inversion.

Simplified tectonic map used as a template to

display the inferred three-dimensional velocity

structures. The numbers on the map refer to the

following features: (1) Amu-Darya river, (2)

Darvas-Karakul fault, (3) Kunar fault, (4) Panjer

fault, (5) Sarubi fault, (6) Chaman fault, (7)

Herat fault.

Results of run AF2, an inversion for P and S

wave velocity structures using the one-dimensional

results of figure 3 as a starting model (70 km

thick crust). The four columns in the figure per-

tain to: (1) Percent changes from the initial P

wave velocity, (2) Percent changes from the ini-

tial S wave velocity, (3) Standard deviations

(upper number) and resolution (lower number) for

the P wave solution, and (4) Standard deviations

and resolution for the S wave solution. Each row

contains all the results for one layer. The layer

number and the depth range in kilometers are given

at the far left of the figure. The percent

changes occurring in boxes with a diagonal slash

across them are considered unresolvable. The
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small cross which appears near the center of the

plots is the center of coordinates for the inver-

sion, which is 360N, 700301E. The tick marks

along the edges of the figure delimit distances of

20 kilometers. All the squares in the figure are

40 kms by 40 kms. The results for layer 7 are not

shown because none of the inferred changes in the

layer were resolvable.

Figure 11. Contour maps of the percent changes in P and S

wave velocity for the upper 5 layers of the AF2

inversion, with the epicenters of the earthquakes

in the layers. Only the resolvable changes in

velocity were used in drawing the contours. The

configuration of the blocks used in the inversion

is superimposed upon the seismicity map. The sym-

bols in the upper left corner of the plots are

abbreviated labels indicating the layer and phase

represented. For example, "AF2 L4S"' means "per-

cent changes in S wave velocity for layer 4 of

inversion AF2".

Figure 12. Resolvable results of run AF9, an inversion for

a three-dimensional velocity structure using the

one-dimensional results of figure.5 (90 km thick

crust) as a starting model. Presentation of the

results is the same as in figure 10.

Figure 13. Contour maps of the resolvable percent changes
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in P and S wave velocities in the AF9 inversion,

along with the epicenters of the earthquakes used.

Presentation of the results is the same as in fig-

ure 11.

Figure 14. Resolvable results of run AF10, an inversion for

a three-dimensional velocity structure using the

one-dimensional results of figure 4 (80 km thick

crust) as a starting model. Presentation of the

results is the same as in figure 10.

Figure 15. Contour maps of the resolvable percent changes

in P and S wave velocities in the AF10 inversion,

along with the epicenters of the earthquakes used.

Presentation of the results is the same as in fig-

ure 11.

Figure 16. Percent changes in P and S wave velocities in

layer 3 of run AF4. The starting model in AF4 is

the same as the upper 4 layers in AF2, with layer

3 divided into thinner blocks. Presentation of

results is the same as in figure 10.

Figure 17. Contour plots of percent changes in velocity in

layer 3 of AF4 along with the epicenters of earth-

quakes occurring in the layer. Presentation of

results is the same as in figure 11.

Figure 18. Contour plot of the vertical variations in velo-

city inferred from inversion AF2, along with the
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seismicity in the region. The north-south cros-

section is made along 69 E. Locations of earth-

quakes occurring between 68 E and 700E are indi-

cated by closed circles. Percent changes in P and

S wave velocities are shown in the upper and lower

parts of the figure, respectively.

Figure 19. Spatial relation of the low velocity region

(broad contours) in the upper mantle (70-110

kilometers depth) of the Pamir-Hindu Kush to the

isostatic gravity anomalies (thin contours).

Figure 20. Spatial relation of the low velocity region

(broad contours) of the upper mantle (70-110

kilometers depth) of the Pamir-Hindu Kush to the

mean elevation (thin contours).

Figure 21. Cartoon illustrating the tectonics of the

Pamir-Hindu Kush, as inferred from the results of

the three-dimensional velocity inversions. The

shaded region indicates the location of the

seifnit tohe. TWe fositionh of the PNhjer iiid

Kunar faults is shown at the top of the figure.
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Figure 11.
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Figure 11. (cont.)
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Figure 13.
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Figure 13. (cont.)
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Figure 15.
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Figure 15. (cont.)
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Figure 17.
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Figure 19.
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Figure 20.

-370-

000

360

35*k

680 69* 70* 71* 72*



100

200

KM



238

Table Captions

Table 1. P and S wave station corrections determined

jointly with the one-dimensional velocity struc-

ture. These values are from the inversion using a

two-layer, 70 km thick crust as a starting model.

Table 2. Specifications.of the starting models used in the

three-dimensional inversions, along with the vari-

ance in the data before and after the inversions.



Table 1.

Station Latitude

36
36
36
36
37
36
36
35
35
34
34
34
34
34
37

32.87
45.14
44.00
56.73
6.87

36.00
26.14
35.14
13.70
32.45
33.53
27.53
50.73
47.44
29.00

Longitude.

70
70
70
71
70
69
68
68
69
69
69
70
70
71
71

P Correction

50 G7
50.42
50.33
2.92

33.33
52.66
55.00
40.33
19.20
2.59

35.42
20.08
17.33
4.58

32.00

-0.06
0. 01
-0 04
0.04

-0 .09
-#. 10
0.11

-0.04
0.67

-0.10
0.18

-0.16
-0.0J9
0.08
0.83

S Correction

-0.22
-0.33
-0. 22
-0.09
-0.40
-0.26
-0.08
0.08
1.09
-0.24
0.67
-0.46
-0.20
-0.06
0.40

GHA
JOR
JRM
BAR
FDZ
FRA
BGL
DOS
PEN
KBL
GOU
KUY
SAL
CHS
KHO



Inversion AF9

585 Events
5115 P Arrivals
3840 S Arrivals

Starting Model

Layer Depth

-2.0
35.0
70.0

110.0
150.0
190.0
210.0

Original Variance
Final Variance
Percentage Improv

P Velocity S Velocity.

5.93 3.48
6.41 3.71
8.08 4.63
8.55 4.99
8.41 4.77
9.14 5.40
9.09 5.25

0.206
0.098

ement 52.354

Inversion AF4

248 Events
2155 P Arrivals
1586 S Arrivals

Starting Model

Layer Depth

-2.0
35.0
70.0

110.0

P Velocity S Velocity

5.93
6.41
8.08
8.55

Original Variance
Final Variance
Percentage Improvement

3.48

3.71
4.63
4.99

0.298
0.132

55.456

+

576 Events
5042 P Arrivals
3792 3 Arrivals

Starting Model

Layer Depth

2
3
4
5
6

-2.0
45.0
90.0

130.0
170.0
210.0

P Velocity S Velocity

6.03
7.03
8.24
8.64
8.22
9.38

Original Variance
Final Variance
Percentage improvement

3.49
4.08
4.76
5.02
4.81
5.43

0.201
0 096

51.951

Inversion AF10

314 Events
2048 P Arrivals
1951 S Arrivals

Strting Model

Layer Lepth

-2.0
40.0
do.0

120.u
160.0

P Velocit

6.09
6.92
d.10
8.53
7.95

Original Varidnce
Final Variance
Percentage improvement

.y S Velocity

3.50
5.96
4.t09
4.99
4. b0

0.265
0.123

53.608

Inversion AF2
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APPENDIX A

COMMENT ON THE JOINT HYPOCENTER-VELOCITY FORMULATIONS

The formulations of both Palvis and Booker [1980] and

Spencer and Gubbins [1980] desire a solution for v in the

equation

(Al) d = Ax + Bv + e

Palvis and Booker suggest decomposing A as following

VT(A2) A* U U U
1 0 U2 p T

L - L-0 -
and then using U2 (and possibly U0) as an annihilator of A.

Equation Al becomes

T TU d U B
(A3)

Ud U TB
2 2

which, in the least squares solution, becomes

A)B [U + 22 [ 0U0  U2t2

T T Tor, letting C B [UUT + U U2
0 0 22

(A5) Cd CBv

Palvis and Booker referred to the inclusion of U space in
0

the annihilator as the "liberal approach", while strict

exclusion of U was referred to as the "conservative0
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approach". By analogy, the method employed in this paper

might be called the "ultra-conservative approach" because,

for reasons discussed in the text, hypocenter solutions with

a U0 space were excluded altogether.

The method of Spencer and Gubbins proposes inverting

the equation

(A6) Od OBv

where the annihilator 0 has the form

(A) 0 B T[I - A(A TA)~g AT

Note that

(A8) A(ATA) A = U A VT -2V TUT
p P p p p p p p p

T T- U = U U
p p 1 1

and that

(A9) UUT UUT UUT UUT I1 1 0 0 2 2

Therefore

(A1O) 0 = BT [I - U U ] = BT[U2U + UU ] C1 - 1 B U 2 + 0U0J

Since 0 = C,

by Spencer

approach" of

equation (A1) shows that the method proposed

and Gubbins is equivalent to the "liberal

Palvis and Booker.
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APPENDIX B

RESULTS OF HYPOTHETICAL TESTS

As mentioned in the section on layered inversions, the

imposition of boundaries on a medium can bias our

interpretation of the results if the velocity is not

smoothly varying. While the earth is approximately l-yered,

there is no reason to believe that it is composed of blocks.

Thus the boundaries imposed by the three-dimensional

inversion are fairly arbitrary. Clearly, some understanding

of how improper parameterizations affect a solution is

required before an honest interpretation of a block

inversion can be made.

Like nonlinearity, incorrect parameterizations are

implicitly assumed not to exist and are therefore beyond the

powers of detection of the conventional linear estimators.

One must resort to other means, such as solving problems for

which the solution is known, to acquire an appreciation for

the effects of situations which violate basic assumptions.

In this appendix we describe the results of such tests, and

discuss their relevance to the solutions with real data.

Naturally, for any method as approximate as the one

used here, one can envision a number of pathological schemes

foiling our interpretations. Inverse solutions themselves

are inherently nonunique. Further, given the complexity of

the three-dimensional inverse problem, trying to describe

the eccentricities of a solution through a few hypothetical
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tests is rather like blind men describing an elephant. Our

modest goal is to test the performance of the method in a

few exemplary earth models, and attempt to draw conclusions

from the results. The earth models discussed are a broad,

low velocity slab (BLVS), a thin, high velocity slab (THVS),

and a thin, low velocity slab (TLVS). Other models were

also tried, but these three contain examples of all the

inferences relevant to the results in the text.

Broad Low Velocity Slab (BLVS)

The broad, low velocity slab model consists of a

centrally located, vertical, east-west oriented region of

low velocity flanked at discrete boundaries by higher

velocities (figure B1). The slab is 100 kilometers wide and

has 14 percent (for P) and 7% (for S) lower velocities than

the surrounding regions (7 km/sec vs. 8 km/sec for P waves,

and 4.4 vs. 4.7 for S waves). The 130 events used in the

inversion are at depths of 75 and 125 kilometers and are all

within the low velocity region. To imitate the real data,

the activity is concentrated in the east and there are no

events at shallow depths.

The model for the one-dimensional inversion is

comprised of two, fifty kilometer thick layers over a half

space. In the three-dimensional inversion, the blocks are

aligned so that they conform to the southern boundary of the

anomaly, and are bisected by the northern boundary.

As shown in figure B1, some mislocation occurs in the
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eastern part of the zone when the events are relocated in

the one-dimensional model. The velocities inferred in the

one-dimensional results (Table B1) are dlose to the

velocities of the seismically active (low velocity) region.

The block inversion (Table B1, figures B1, B2) shows a

high contrast, centrally located, low velocity region

bounded by higher velocities. The boundaries predicted by

the inversion correspond approximately to the actual

boundaries.

A couple of inferences can be drawn front this

inversion. First, it is possible to locate sudden changes

in velocity if these changes are approximated by boundaries

in the mod-el. Such a dretermination is possible even if all

the events are confined -to one side of the boundary, and

even though the one-dimensional model is powerless to lessen

the effect of the anomaly by averaging. Second, the

solution can underestimate the anomaly in regions with

numerous sources, and can exaggerate it in regions with few

sources. Such exaggeration is particularly evident at the

edges of the velocity solution in event-free layers. For

instance, the solution for the P velocities shows a maximum

anomaly in the first (inactive) layer of 20 percent, and in

the second (active) layer of 12 percent (nothing is resolved

in the third layer). Disregarding the extreme values- at the

edges of the first layer, however, the maximum anomaly is

the correct answer of 14 percent. Therefore, -in layers with

few sources, it may be wise to disregard any extreme values
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which occur along the edges.

Thin High Velocity Slab (THVS)

The thin, high velocity slab model used in this test

is essentially the same as that used by Spencer and Gubbins

(1980) for the inversion of New Zealand data. The model

consists of a background velocity which increases with

depth, superimposed upon which is a 50 kilometer thick

slab-like region of higher velocity. The slab is centrally

located, strikes at 60 , and dips 850 to the north. The

velocity in the interior of the slab (v) is related to the

background velocity (v ) by the relation

v = V / [1-F]

where

F = H(n2 - b2 y 2)A exp(cz) (1+cos(by))/2.0

In this formula for F, y is the distance from the center of

the slab, z the depth from the surface, A is the maximum

anomaly (0.05), c is the inverse decay length of the slab

-1(-1/200 km~ ), b is related to the half width (w 25 km) by

b= n/w, and H is a gate which makes F zero outside of the

slab region. A plot of the F function, along with the

background velocity profile, is shown in figure B3.

Data was generated by tracing rays through this medium

from 93 sources to most of the stations (KHO not included)
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using the three-dimensional ray tracing routine of Julian

and Gubbins [19771. The inverse solutions were set up by

first dividing the medium into four layers of 50 kilometers

thickness overlying a half space, relocating the events, and

then solving for a best-fitting layered structure. The

layered structure was then divided into blocks of 30 or 40

kilometers length and width for the three-dimensional

inversion. Note that the high velocity region has smaller

dimensions than the blocks, since, although the velocity

increases 25 kilometers from the slab axis, most of the

anomaly is concentrated within 15 kilomtters of the axis

(figure B3). Therefore, slab's effective width is only

about 30 kilometers.

The one-dimensional inversion (Table B1) results In

velocities that are slightly higher than the background

velocity. To .first order, the three-dimensional solution

(figures B4 and B5) shows a centrally located region of high

velocity flanked by lower velocities. The boundaries of the

high velocity region are approximately correct, and the S

and P solutions correlate.

As in the previous test (LVS), an exaggeration of the

velocity in the anomalous region occurs at the edges of the

layers with few sources. Finally, the THVS solution shows

that a poorly parameterized, small scale anomaly can be

resolved if there is a reasonable distribution of sources in

the medium.
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Thin Low Velocity Slab (TLVS)

The thin, low velocity slab model consists of a

centrally located, vertical slab that is 30 kilometers thick

and strikes at 77 . There is a 14% velocity contrast

between the interior and exterior of the slab (6.5 km/sec

vs. 8.0 km/see for P waves, 3.8 km/sec vs. 4.7 km/sec for S

waves). The 130 events used in the inversion occur at

depths of 75 and 125 kilometers and are located within a

wedge that thins to the west. The northern part of the

wedge borders the southern edge of the slab.

The TLVS model may be considered to be a "worst case"

for inversion: the slab width is less than the block

dimensions, the slab is oriented obliquely to the block

configuration, there are neither sources nor receivers

within the slab, and there are no sources in the first

layer.

For the one-dimensional inversion, the medium was

divided into two, fifty kilometer thick layers overlying a

half space. These layers are then divided into blocks with

40 kilometer lengths and widths for the three-dimensional

inversion.

The velocities inferred from the one-dimensional

inversion (Table B1) are close to the velocities of the

seismically active region outside the slab. To first order,

the three-dimensional results reveal a low velocity anomaly

in the general region of the thin slab.

On closer inspection, the three-dimensional solution
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(figure B6) seems to create more misgivings than it

alleviates. First, there is a significant reversal of the

velocity in the southern and northern ends of the first

layer. The lesson from this result is similar to the rule

inferred in the previous tests: be suspicious of variations

near the edges of layers with few sources. Second, the

inferred low velocity region in both layers is wider than

one might expect, and extends even into the seismically

active regions. It is difficult to classify this result

simply, however, since it influences the interpretation of

the inferred velocities in the seismic regions. The

ramifications of the .second result on the real solution is

discussed in more detail below.

General Rules

The rule of interpretation inferred from the above

tests is that large variations in velocities that occur near

the edges of layers with few sources, are suspect. By

comparing some of the characteristics of erroneous solutions

in several tests, the following additional rules were found

to apply to reliable solutions:

(1) A reasonable cutoff value for resolution is about

0.6 for P solutions and 0.5 for S solutions, lower for S

because the S data is weighted less.

(2) Only those variations greater than two percent can

be regarded as significant. This estimate is independent of
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the size of the linear error estimate.

(3) Solutions should be contourable, even if they seem

well resolved. Trends should persist for several blocks,

instead of a being defined by fluctuations in velocity in a

single blocks. This rule applies to variations between

layers as well as to variations within a layer.

Classifying the Effects of Smoothing

The results using real data show a broad, centrally

located, low velocity region enveloping the seismic zone.

The obvious interpretation is that a broad, low velocity

region actually exists. One may wonder, however, if some

vastly different situation could provide the same solution,

owing to some shortcoming inherent in the method.

Two fundamental questions concerning the existence of

the low velocity region can be answered unequivocally.

First, if the medium actually does contain a broad, low

velocity region, would we be able to detect it? The answer

is yes, as is shown in the BLVS test. Second, since one

normally expects higher velocities in the seismic region of

a subduction zone, could such a high velocity region be

detected? The answer provided by the THVS test is that we

would see the high velocities, even if they are confined to

a narrow region. The conclusion from these two tests is

that if the velocity in the Pamir-Hindu Kush is truly

smoothly varying and is approximately parameterized by the

block structure (i.e. that the basic assumptions are
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justified), then the solutions are believable.

More difficult questions address the violation of

basic assumptions, primarily in cases where large changes in

velocity occur over short distances. One would expect that

inferred velocities are smoothed estimates of sudden

velocity changes. The question is how much smoothing can

one expect, and how does it affect our interpretation of the

results?

Generally speaking, we can classify, two effects of

smoothing: averaging and misrepresentation. Averaging means

that the inferred velocity in a block repr'esents an average

of the actual velocities, which is really the most one can

expect from the solution. Misrepresentation means that the

inferred ve.locity in a block is in no way a reflection of

the actual velocity. In the following, we use the results

of the hypothetical tests to suggest some of the

characteristics of averaging and misrepresentation.

The results of the BLVS test show some examples of

averaging. At the southern edge of the slab, the real

boundary and the model boundary are the same.- In the

results for the blocks near the boundary there is a sudden

change in the inferred velocity that is similar to the

actual change. In the north, where the slab boundary

bisects the model boundary, the blocks on the slab boundary

show velocity changes near zero, which is the average change

of velocity within the blocks. As a result of averaging,

the boundary between high and low velocities appears to be
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broader than it actually is. While averaging may be

important to some aspects of the interpretations, it is not

in most cases a significant drawback because it is the

expected behavior of the method. The important lesson from

the BLVS test is that a reasonably accurate description of

the actual velocity structure can be obtained even in less

than ideal conditions (e.g. poor distribution of events,

strong lateral heterogeneity, and misplaced boundaries).

Some of the blocks in the TLVS test, on the other hand,

provide examples of misrepresentation. The solution for the

low velocity slab spreads to blocks north and south of the

slab, assigning completely erroneous velocities to those

blocks.

Note that the BLVS and TLVS tests are alike in most

respects. The significant difference between them is that

the regions around sudden changes in velocities are

separated into broad zones of lower and higher velocity in

the BLVS test, while they appear as small scale features in

the TLVS test. We infer from this observation that

misrepresentation occurs primarily in the presence of small

scale heterogeneities.

The medium in the THVS test also has a small scale

heterogeneity, but the results show practically no

misrepresentation. The significant difference between the

TLVS and THVS models is that the THVS model uses a

reasonable distribution of events (inside and outside the

anomaly), whereas the events are located to one side of the
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TLVS anomaly,

Combining our observations, we infer that although

averaging occurs under most conditions, misrepresentation

occurs only in the presence of small scale, isolated

anomalies.

Misrepresentation of velocities in the Pamir-Hindu

Kush may occur as a result of small, isolated anomalies in

the inactive regions of the lower crust (35-70 kilometers

depth) and in those regions of the mantle to the north and

south of the seismic zone.

Since the seismic zone begins abruptly near the base

of the crust, any anomaly that broadens vertically into the

zone must be confined to the aseismic lower crust. To have

a significant effect, such an anomaly must be thin (~20

kilometers), and of much lower velocity (by ~10%) than the

average crustal velocities. Note also that the anomaly must

be horizontally broad; otherwise it would not be traversed

by a sufficient number of rays to be detected.

Perhaps the only reason for doubting the existence of

such an anomaly is that it is difficult to think of physical

argwnents for the existence of a horizontally broad,

vertically narrow sheet of low velocity material in the

lower crust. Still, it seems reasonable, even in tectonic

regions, to assume that the crust and mantle can be

separated into broadly defined regions of lower and higher

velocity, for which case the inversion scheme is well

Suited. This is not to say that the Moho needs to be
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perfectly horizontal; indeed, the BLVS test shows that the

position of such a boundary sharp may lie within half a

block dimension without significant misrepresentation of the

velocities in the blocks. Fluctuations of the Moho to

depths greater than 70 kilometers could lower the estimated

velocities in the upper mantle, but this is a question

Af averaging, not of misrepresentation.

Another source of misrepresentation could be the

vertical protrusion of a narrow piece of crustal material to

great depths. If this protrusion lies outside of the

seismic zone, it is possible that the low velocities of the

protrusion could broaden into the zone. Let us assume that

these protrusions occur to the north or south of the seismic

zone, since these regions are free of sources and receivers.

An argument against an isolated anomaly to the north of

the zone is that the boundary between high and low velocity

occurs right along the northern edge of the seismic zone.

The TLVS test shows that misrepresentation should occur on

both sides of the anomaly, which implies that the low

velocity boundary would extend northwards of the seismic

zone.

A similar argument may be made against an isolated low

velocity anomaly occurring to the south of the zone,

although not as convincingly.. The southern boundary is

poorly resolved, and fewer events are located near the

border. Note, however, that of the four stations (PEN, DOS,

KHO, and GOU) with predominantly positive residuals, three
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(PEN, KHO, and DOS) lie north of the inferred southern

boundary of the low velocity region. Further, if an

isolated anomaly did exist to the south of the seismic zone,

one might expect positive residuals at all of the southern

stations (SAL, CHS, KUY, and GOU), whereas only one (GOU)

has predominantly positive residuals (see Appendix C for a

discussion of residuals).

Averaging of the Pamir-Hindu Kush velocities may affect

our interpretation of the solution in regions of abrupt

velocity changes, such as at the Moho or possibly on the

edges of the low velocity region in the mantle. It could

be, for instance, that the gradual, lateral changes in

velocity in the eastern part of the region are an average of

an abrupt change in velocity occurring somewhere in the

middle of the slope. Such an effect does not change the

interpretation that a low velocity zone in the mantle

exists, however.

If the Moho dips below the inferred depth of 70

kilometers, the average velocity for some of the blocks

lying between 70 and 110 kilometers will be less than that

pf tbp sgrrpygng blpcks. In sych an event, we may wrongly

conclude that the low velocities extend to depths of 110

kilometers. The only way that the effect of averaging can

be estimated is by changing the boundaries of the solution

with real data. A discussion of averaging effects on the

real solution can be found in Appendix C.

We infer from this discussion that the velocity changes
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propounded by the real data solution are most likely to be

averages of the actual velocities. We are not simply

forcing a round-peg reality to fit into a square-hole model.

Applying the Interpretation Rules

Even if the solution is approximately correct, the

rules of interpretation inferred from the hypothetical tests

still apply. It remains to review how these rules effect

our interpretation of the solution using real data.

(1) Contouring

The contour rule was the first filter applied to the

inverse solutions, with those violating the rule being

dismissed outright. In only one case was contouring a

problem: when the block dimensions were decreased from 40

kilometers to 20 kilometers. Velocities deduced from

inversions using these smaller blocks oscillated from block

to block and from layer to layer. One solution that used

smaller blocks in only one layer (AF4, see text) fared

better, although this solution did not differ significantly

from the inversions with 40 kilometer blocks.

(2) Resolution and Covariance

Blocks classified as spurious because of poor

resolution were almost always on the edge of the region or

at great depth. Most were also suspect through the

application of other rules of interpretation. In any event,



257

exclusion of poorly resolved blocks had little influence on

the interpretation, although removing these blocks

frequently made for smoother contours.

Owing to the large variations in the velocities deduced

from real data, the two percent rule does not gloss over any

interpretable variations in the solution. On the contrary,

two percent turns out to be a convenient contouring

interval.

These resolution and covariance rules are the only ones

applied in screening the solutions before drawing the

contours.

(3) Variations away from the source regions

The rule that classifies large variations aWay from

source regions as spurious applies particularly to blocks

near the edges of layers with few sources. In the AF2

solution (Table 3, figures 10 and 11 in the text) the low

velocities in the northernmost part of layer 2 fall into

this category, as do the large variations around station KHO

in layer one. Also, because there are fewer events in the

gstern port of the array, the large low velocity changes

(-6% to -8%) in layers 2 and 3 may be exaggerated. More

likely, these changes are in the -4% range, which are found

in the more active, eastern part of the array. These

assessments are necessarily qualitative, however, and serve

only to give an impression of the uncertainty involved.
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Captions

Figure B1. Results of an inversion for the three-

dimensional velocity structure of the broad, low

velocity slab (BLVS) test. Solid east-west lines

define the limits of the BLVS. The solid circles

indicate the station locations. Presentation of

results is the same as in figure 10 of the text.

Figure B2. Contour plots of inferred percent changes in

velocity for the BLVS test, along with epicenters

of the events used. The first two rows are

contour plots for the upper two layers (nothing is

resolved in layer 3). The last row shows the

original locations of events (left) and the

relocation of the same events after determining

the best-fitting layered structure (right). The

thick east-west lines in the last row define the

limits of the BLVS, and the solid triangles

indicate the station locations.

Figure B3. The background velocity profile of the thin,

high velocity slab (THVS) test. Inserted in the

figure is a plot of the percent anomaly of the

THVS as a function of the distance from the center

of the slab, and a plot of the decay of the

maximum anomaly (in the center of the slab) with

depth.
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Figure B4. Results of an inversion for the three-

dimensional velocity structure of the thin, high

velocity slab (THVS) model. The parallel lines

obliquely oriented to the block configuration

indicate the boundary of the slab region.

Presentation of results is the same as in figure

10 of the text.

Figure B5. Contour plots of the inferred velocity changes in

the THVS test, along with epicenters of events

used. The parallel lines striking at 600

correspond to the boundary of the slab. Solid

triangles give the locations of the recording

stations. Presentation of results is the same as

tuniTigure 11 of the -text.

Figure B6. Location of hypothetical events in the TLVS test

before (right) and after (left) the one-

dimensional velocity inversion. Stars indicate

events, solid circles indicate stations. The

configuration of the blocks used in the three-

dimensional inversion is superimposed on the map

on the left. Parallel lines striking obliquely

across the maps delimit the position of the TLVS.

Figure B7. Results of an inversion for the three-

dimensional velocity structure of the thin, low

velocity slab (TLVS) model. The parallel lines

obliquely oriented to the block configuration
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indicate the boundary of the slab region.

Presentation of results is the same as in figure

10 of the text.
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Figure B2.
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Figure B3.

6 7 8 KM/SEC

0 S0,0

50
00

00

- 100

00-

KM A

25K M

-200

KM



264

Figure B4.
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Figure B6.
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Table Captions

Table B1. Specifications of the starting models used in the

three-dimensional inversions, along with the vari-

ance in the data before and after the inversions.
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Table Bl.

BLS Inversion

130 Events
1950 P Arrivals
1950 5 Arrivals

Starting Model

Layer Depth

-1.0
50.0

100.0

P Velocity S Velocity

7.24
6.99
7.27

Original Variance
Final Variance
Percentage Improvement

4.45
4.42
4.50

0.449
0.007

98.260

THVS Inversion

93 Events
1090 P Arrivals
1089 S Arrivals

Starting Model

Layer Depth

-2.0
50.0

100.0
150.0
200.0

P Velocity S Velocity

7.01
8.02
8.53
8.47
8.51

Original Variance
Final Variance
Percentage lImprovemenL

TLVS Inversion

110 Events
1650 P Arrivals
1650 S Arrivals

Starting Model

Layer Depth

1 -1.0
2 50.0
3 100.0

Original Variance
Final Variance
Percentage Improvement

P Velocity S Velocity

7.93
8.00
7.69

4.09
4.71
4.98
5.04
5.02

0.159
0.065

59.097

4.30
5.11
4.65

0.340
0.007

97.748
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APPENDIX C

TESTS WITH REAL DATA

The hypothetical tests in Appendix B attempt to

classify the symptoms of nonlinearity and poor modeling, the

miscreants that threaten to rob our simple solutions of

reliability. Despite their usefulness, however, every

hypothetical solution is in some way peculiar to the model

that created it. One may invert synthetic data for hundreds

of preordained solutions without being completely convinced

of their applicablility to the real medium.

The only data truly relevant to the real medium is, of

course, the real data. To gain a full appreciation for the

stability and flak Cf bias in the real solution, the

performance of several inversions with the real data (using

various starting models and subsets of data) is necessary.

Besides allowing a gross justification for the solution, the

tests with real data are intended to provide some insight

into the problems of coupling between layers and of

aVeraging the irlregularitiea in the Noha.

Residuals

Honest velocity inversion routines perform no magic;

they simply try to explain residuals more precisely than can

eyeballs and graph paper. For this reason, a large scale

anomaly, such as the low velocity region in the Pamir-Hindu

Kush, should produce substantial residuals at appropriate
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stations, or else the solution is suspicious.

A plot of percent residuals (100 x residual/travel time

- percent velocity change required along path) at 4

stations (KHO, FRA, PEN, KUY) is shown in figures C1 and C2.

The events used are all those between 70 and 110 kilometers

depth (layer 3 of inversion AF2). At the stations to the

east (KHO) and west (PEN) of the seismic zone, the percent

residuals are positive from events throughout the region.

Positive residuals require lower velocities (i.e. lower than

the model velocities) along the rays to these stations.

Likewise, the predominatly negative residuals at stations to

the north (FAR) and south (KUY) require higher velocities.

These simple patterns in the percent residuals are

consistent with a centrally located, east-west trending low

velocity zone, flanked to the north and south by higher

velocities. (Of course, these few residuals are consistent

with other models as well; one needs to examine more

stations before drawing definite conclusions). The same

patterns are also evident in residuals from deeper (down to

150 kilometer) events.

Coupling and Stability

The resolution matrix provides an estimate of the

linear independence (or, conversely, the coupling) of the

model parameters. Because certain assumptions made in

formulating the general inverse (such as linearity and

proper modeling) are implicit in the resolution formulation,
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the reliability of the resolution estimates may be suspect.

If the parameters are completely uncoupled, the same

solution should be recovered regardless of whether a

parameter is determined by itself or jointly with others.

Therefore, a straightfoward test of coupling is to compare

solutions using different subsets of parameters. Further,

for stability reasons, a solution should be independent of a

specific combination of data. A test of such dependences

can be made by comparing inversions using different subsets

of data, and determining which data contribute the most to

the solution.

Solution AF2 (Table 2, figures 10 and 11 of the text)

is an inversion for the entire seismic zone, from the

surface to approximately 300 kilometers depth, which makes

use of the approximately 580 events that passed the

selection criteria. In the following discussion, AF2

provides a basis of comparision for the test runs.

Solution AF8 (Table C1, figures C3 and C4) includes

data from only those events shallower than 160 kilometers,

and, as a starting model, uses only the first 4 of the 7

layers used in AF2. The results are- essentially the same,

except that more blocks in AF8 fail the resolution cutoff.

This comparison shows that deeper events do not make a

significant contribution to the solution for the velocities

in the upper layers, and also that the solutions for

velocities in deeper and shallow layers are acceptably

uncoupled.
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Inversions AF7 and AF5 (Table C1, and figures C5

through C8) fix the velocities in layer 1 and in layers 1

and 2, respectively, by excluding them from the normal

equations. Events in these layers are also excluded. The

velocities inferred in the AF5 inversion agree with those in

layers 4 and 5 of AF2, and the reduction in data variance

(~25%) is approximately half that of AF2. These results

imply that there is no significant coupling between the

solutions for the layers above and below 70 kilometers

depth. The velocities inferred in the layers that were

allowed to vary in the AF7 inversion also compare favorably

with AF2, with the exception of the solution for layer 2.

The major variations obtained in layer 1 of AF2 appear to be

superimposed on layer 2 of AF7. Further, the reduction in

data variance is essentially the same (~50%) for AF2 and

AF7. The results of the AF5 and AF7 inversions suggest that

while layer 3 is independent of the variations in the upper

layers, some coupling exists between the relatively event-

free first and second layers. It is difficult, therefore,

to know the extent of the apparent variations in these two

layers. Finally, as with the AF8 solution, the AF7 and AF5

solutions suggest that the events in a layer are primarily

responsible for discerning the velocity variations in that

layer.

(4) Station corrections

As discussed in the text, it is necessary to have some
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estimate of the scale of the heterogeneity to which station

corrections apply. On the basis of a priori evidence, it

was argued that there were no obvious small scale anomalies

near the stations, and so the corrections were not applied.

This evidence may not be totally convincing, however, and

one may wonder how crucial the decision not to use

corrections is.

Run AF11 (Table C1, figures C9 and C10) uses the same

data and starting model as, AF2, except that station

corrections are applied. The most notable difference

between the two inversions is that most of the variation in

layer 1 of AF2 has disappeared in AF11. Variations in layer

2 are also lessened, owing most likely to the coupling

between layers 1 and 2 discussed above. -Below layer 2,

however, the inferred velocities are essentially the same.

Therefore, while variations in the crustal velocities must

be defended with some a priori information, the central low

velocity zone in the mantle does not.

Averaging

The hypothetical tests of Appendix B suggest that the

complete misrepresentation of velocities in the seismic zone

by an isolated anomaly in the lower crust is unlikely.

Still, one might imagine that fluctuations of 10 or 20

kilometers in the depth of the Moho below 70 kilometers

depth would lower the average velocity in the upper mantle

blocks, thereby artificially "transporting" a low velocity



276

anomaly to depths of 110 kilometers.

Even if such fluctuations did occur, it is unlikely

that they could explain the central low velocity zone

completely. Layer 4 in AF2 also shows lower velocities in

the seismic zone, which would require a broad fluctuation in

the Moho to depths in excess of 110 kilometers. Such a

condition would imply that the crust in the Pamir-Hindu Kush

is extraordinarily thick in places, being some 50% thicker

than an already thick 70 kilometers.

There remains a question of the extent to which

fluctuations in the Moho might alter our perception of the

velocity anomaly. An estimate may be provided by inverting

the one-dimensional models with deep Mohos of 80 and 90

kilometers, as is done in solutions AF10 and AF9 (Table 3,

figures 12-15 of text). Comparing these solutions with AF2,

a picture is created of a low velocity region varying

smoothly and continuously from somewhere in the lower crust

to depths possibly in excess of 150 kilometers.

The continuity of the low velocity region from the

lower crust to depths well into the mantle, regardless of

the change in boundaries, is hard to explain with a few

fluctuations in the Moho. More likely, the solutions

represent exactly what they appear to be - a continuous,

nearly vertical, centrally located, low velocity region

which extends from somewhere near the surface to some

unresolved depth.
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Captions

Figure C1. Plots of percent residuals (100 X (T - T )/T )
0 a c

at stations to the northeast (KHO) and southwest

(PEN) of the seismic zone for P (left) and S

(right). Each percent residual is an average over

all of the data from events in a 40 km cube

located between 70 and 110 kms depth. In each

block, the lower number is the average percent

residual, and the upper number is the number of

arrivals over which the average is taken. The

solid triangle in each figure indicates the loca-

tion of the station named in the upper left corner

of the figure. The open triangles -indicate the

locations of other stations in the array.

Figure C2. Plots of percent residuals at stations to the

north (FAR) and south (KUY) of the seismic zone.

Presentation of results is the same as in figure

C1.

Figure C3. Results of run AF8, an inversion for a three-

dimensional velocity structure using only the

upper 4 layers of the one-dimensional results of

figure 3 as a starting model and only data from

event shallower than 150 km. Presentation of

results is the same as in figure 10 of the text.

Figure C4. Contour maps of the resolvable percent changes
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in P and S wave velocities in the AF8 inversion.

Presentation of the results is the same as in fig-

ure 11 of the text.

Figure C5. Results of run AF7, an inversion for a three-

dimensional velocity structure using the same

starting model as run AF8, but with the velocities

in the uppermost layer held fixed. Presentation

of results is the same as in figure 10 of the

text.

Figure C6. Contour maps of the resolvable percent changes

in P and S wave velocities in the AF7 inversion.

Presentation of the results is the same as in fig-

ure 11 of the text.

Figure C7. Results of run AF5, an inversion for a three-

dimensional velocity structure using the same

starting model as run AF8, but with the velocities

in the upper two layer held fixed. Presentation

of results is the same as in figure 10 of the

text.

Figure C8. Contour maps of the resolvable percent changes

in P and S wave velocities in the AF5 inversion.

Presentation of the results is the same as in fig-

ure 11 of the text.

Figure C9. Results of run AF11, an inversion for a three-

dimensional velocity structure using the same
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starting model and data as AF2, with the exception

that station corrections are subtracted from the

arrival times.

Figure C10. Contour maps of the resolvable percent changes

in P and S wave velocities in the AF11 inversion.

Presentation of the results is the same as in fig-

ure 11 of the text.
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Figure Cl.
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Figure C2.
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Figure C4.
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Figure C6.
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Figure C9.
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Figure C10.
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Figure C10. (cont.)
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Table Captions

Table C1. Specifications of the starting models used in the

three-dimensional inversions, along with the vari-

ance in the data before and after the inversions.



Inversion AFS 

Inversion AF8

241 Events
2094 P Arrivals
1535 S Arrivals

Starting Model

Layer Depth

-2.0
35.0
70.0

110.0

P Velocity S Velocity

5.93
6.41.
8.08'
8.55

Original Variance
Final Variance
Percentage Improvement

3.48
3.71
4.63
4.99

0.191
0.141

26.039

Inversion AF7

245 Events
2118 P Arrivals
1554 S Arrivals

Starting Model

Layer Depth

-2.0
35.0
70.0

110.0

P Velocity S Velocity

5.93
6.41
8.08
8.55

Original Variance
Final Variance
Percentage Improvement

3.48
3..11
4.63
4.99

0.286
0.139

51.295

271 Events
2269 P Arrivals
1674 S Arrivals

Starting Model

Layer Depth

-2.0
35.0
70.0

110.0

P Velocity S Velocity

5.93
6.41
8.08
8.55

Original Varibnce
Final Variance
Percentage Improvement

t

3.48
3.71
4.63
4.99

0.275
0.126

54.171

Inversion AFll

585 Lveints
5115 P Arrivals
3840 S Arrivals

Starting Model

Layer Depth P Velocity S Velocity

-2.0
35.0
70.0

110.0
150.0
190.0
210.0

5.93
6.41
8.08
8.55
8.41
9.114
9.09

Original Variance
Final Variance
Percentage Improvement

3.48
3.71
4.63
4.99
4.77
5.40
5.25

0.139
0.100

20.219

Inversion AFS Inversion AF8
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APPENDIX D

GRAVITY ANOMALY PRODUCED BY A BURIED,

TWO DIMENSIONAL, INFINITE SLAB

In this appendix we derive an expression for the

gravity anomaly produced by an infinite rectangular prism.

We start with an expression for the gravity -anomaly (Ag)

produced by a line source at a depth z and distance x from

the observer:

2Gbn z
(D1) &g : 2 2 1/2

(x + z )

where tn is the anomalous line density (mass/unit length),

and G is the gravitational constant. An expression for the

anomaly produced by a vertical sheet can be found by

integrating equation (D1) over chosen depth limits:

2 2,
x + z

(D2) Ag Go-log 2 2
1x + z2

where z and z2 are the depths of the top and bottom of the

sheet, a- is the anomalous area density (mass/unit area).

Finally, the gravity anomaly produced by an infinite

rectangular prism is deduced by integrating equation (D2)

over chosen distance limits:
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2 + z2 x 11 1X2

(D3) Ag =GP x log 2 : 2 + 2 zjtan( - z tan 2

X I

where 1 and 12 are the distances from the observation point

to the edges of the anomalous region and 40 is the anomalous

volume density (mass/unit volume).

Figure D1 shows the geometry used in this calculation

and a plot of the anomaly produced for 4C0 = 0.5 gm/cm z

70 kilometers, z2 = 150 kilometers, and 12 - 1 40

kilometers. This example is intended to imitate a situation

where the inferred low velocity region discussed in the text

is caused by subducted crust that retains its original

density contrast with the respect to the surrounding mantle.
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Captions

Figure Dl. Gravity anomaly produced by a buried, infinite

rectangular prism, as a function of distance away

from the point directly above the center of the

prism. The density in the prism is 0.5 gm/cm3

less than that of the surrounding regions.
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