
THE OCEANOGRAPHIC AND GEOIDAL COMPONENTS OF

SEA SURFACE TOPOGRAPHY

by

VICTOR ZLOTNICKI

Agrimensor, Universidad de Buenos Aires, Argentina.
(1974)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

February, 1983

Signature of author

Certified by

Certified by

Accepted by

MtR
MVTLjWAAR1ES

Joint Program in Oceanography,
Massachusetts Institute of Technology-
Woods Hole Oceanographic Institution, February 1983.

Thesis supervisor.

Thesis supervisor.

Chairman, Joint Committee for Marine Geology and
Geophysics. Massachusetts Institute of Technology-
Woods Hole Oceanographic Institution.



THE OCEANOGRAPHIC AND GEOIDAL COMPONENTS

OF SEA SURFACE TOPOGRAPHY

by

Victor Zlotnicki

Submitted to the Massachusetts Institute of Technology!
Woods Hole Oceanographic Institution Joint Program

in Oceanography on February 11, 1983,
in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

ABSTRACT

Altimetric, gravimetric and oceanographic data over
the North Atlantic are combined -using techniques of
optimum estimation- to infer the surface expression of the
time averaged circulation (c) and to estimate the marine
geoid (y), both in the wavelength band 100 km-2000 km.

Optimum inverse methods in geophysics are reviewed.
They are then used to analyze the estimation of the geoid
from gravity data, emphasizing the wavenumber spectrum of
resolution functions. It is found that accurate bandpassed
versions of the geoid can be recovered from restricted data
sets.

The accuracy and distribution of publicly available
gravity data are shown to define an estimate y whose
expected errors, ay, range between 30 and 260 cm, assuming
the Wagner and Colombo (1978) spectrum describes the
average geoid behaviour. The a underestimate the actual
differences between y and an altimetric surface (s) derived
from Seasat, but the spatial variation of a follows
closely the differences s-Y. The discrepancy is attribu-
table to a partial failure of the spectral model at short
wavelengths. AA

The differences s-y are dominated by geoid error that
masks much of the signal ;. The main North Atlantic gyre
emerges clearly only after the oy and the simplest model
for C -as a spatially uncorrelated process with (30 cm) 2

variance- are taken into account. To obtain a corrected
geoid, a hydrographic estimate of C is combined with s and
y, and their expected errors.
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CHAPTER 1: INTRODUCTION

1.1 OVERVIEW

The shape of the surface of the oceans results from the

combined effects of many forces. These include the gravity

fields of the earth, sun and moon, the rotation of the earth,

and forces driven by the sun's heat such as the drag of the

winds, atmospheric pressure variations, and pressure

gradients associated with the distribution of temperature and

salinity of seawater. These forces, and the ocean motions

they induce or modify, are related to other phenomena of

interest about which the shape of the ocean surface also

conveys information. Let s($,X,t) denote the height of the

ocean surface, measured from some agreed-upon reference

ellipsoid, at latitude $, longitude X, time t. The earth's

gravitational attraction is, by far, the largest of the

forces acting on the oceans and makes s closely resemble an

equipotential surface of the earth's gravity field. Gravity

is related to the density distribution inside the planet,

therefore such apparently different phenomena as the direc-

tion of lithospheric plate motions, the existence of sea-

mounts on the the ocean floor, or the pattern of convection

in the mantle, all produce departures from a uniform density

distribution and contribute to the undulations of s. Such

geophysical phenomena can therefore be inferred, or at least

constrained, from measurements of s.



The surface expression of ocean motions produces small depar-

tures of s from an equipotential surface of gravity. Because

the ocean exchanges heat with the atmosphere, and ocean

currents both redistribute this heat and tilt the ocean

surface, s also contains indirect information on weather

patterns and the longer time scale climatic variability.

Because the roughness of s (its behaviour at wavelength

shorter than a few hundred meters) is a direct consequence of

local winds acting on the ocean, measurements of s also

contain information about winds.

The only measurements of s prior to 1973 were obtained

with tidal gages at scattered coastal points, and a few

pressure gauges placed on the ocean bottom. These instru-

ments provided excellent time series, but little or no

information on the spatial variability of s. The first

measurements of sea surface topography on a global scale were

made in 1973 using an altimeter aboard the artificial

satellite SKYLAB. The accuracy of altimetric measurements

improved steadily over the first three missions (SKYLAB, GEOS

3 and SEASAT) and is currently 10 or 20 cm. Such an accuracy

has spurred many efforts directed at recovering the wealth of

information about the planet that is contained in s. This

thesis will concentrate on the discrimination of time-

averaged departures of s from the geoid (the equipotential

surface of the earth's gravity field to which sea surface

would conform if gravity were the only force acting on the

oceanst). Both to justify the choice and to provide general



background information for the topics covered in later

chapters, a brief review of the main components of s and the

methods by which they can be measured will be given in the

following sections. To this end, it is convenient to think

of s($,A.,t) as a sum two terms, both varying in time: the

geoid y and the surface expression of ocean motions, C. In

symbols,

1.2 THE GEOID y

This particular equipotential surface resembles an

ellipsoid of revolution, with an equatorial radius of

6,378,137 ± 1 meters, and a polar radius shorter by 21,385 m.

The geoid differs by less than 25 m rms from this ellipsoid.

y measures the differences between the geoid and a reference

ellipsoid, adopted by international convention (see Chovitz,

1981). y, with a spatial variability of 25 m rms, is the

dominant term in equation 1-1 when compared to the approxi-

mately 1 m rms spatial variability of C.

t The geoid is usually defined as the equipotential surface
of the Earth's gravity field that best fits mean sea surface
(e.g., Bomford, 1980). The increasing accuracy in measure-
ments of s will soon require a more accurate working defi-
nition. The surface expression of time-averaged motions of
the ocean is usually not zero (see section 1.3); uniform
changes in temperature or salinity of seawater can also
produce small changes in s that do not reflect changes in the
gravity field.



Large geoid changes with time occur mostly over geolo-

gical time scales: mountain building, the drift of the

continents and the rebound of portions of the crust following

ice melting, are all processes that redistribute large masses

within the 'solid' Earth at rates of a few cm per year.

Erosion by winds and rivers are processes faster than

continental drift, but involve masses that are small relative

to the total mass of the Earth. The assumption that y has

changed negligibly during the past 20 years is made in this

thesis. 'Negligibly' has the specific meaning that for all

t1, t2 within this period, the following condition is true:
T

(1/T) f TY($,X,ti)-y($, ,t 2)12 dt2 << 10 cm
0

10 cm is the nominal accuracy of the measurements of s with

Seasat altimetry; most of the gravity acceleration and

satellite perturbation data were collected over the last 20

years. With different accuracy requirements, this assumption

underlies much current work in geology and geophysics, but

the assumption may be wrong. Morner (1982) claims to have

identified evidence in the sedimentary record for time

changes between 1 and 3 cm/year in y, a very plausible value

(his work has not been published yet).

For the purpose of discussing the different methods of

estimating the geoid, it will be convenient to write it as a

sum of terms in three nonoverlapping wavelength bands:

Y = Y1 4 Y2 4 Y3 (1-2)



- Geoid Surface Computed from the GEM 9 Model (Height in Meters Above the Mean Brpsoid. f =1/298255)

LONGITUDE (Degrees)

FIGURE 1-1 The long wavelength component of
the geoid, estimated from perturbations to satel-
lite orbits. This GEM-9 model (Lerch et al.,
1979) is based on 840,000 satellite tracking
measurements, 200,000 of which are accurate to 5
cm. Because the satellites' heights ranged bet-
ween 1000 and 6000 km, and because of the
exponential attenuation of high degree energy
with height, this model only defines spherical

harmonic degrees 2 to 20, or wavelengths longer
than 2000 km, approximately. A few isolated
higher degree terms to which the orbits were
resonant are also defined. The expected uncer-
tainties in this model are:
UP TO DEGREE : 4 6 10 15 20
ACCUMULATED ERROR (CM): 16 30 71 128 173
A recent improvement, GEM-L2, has just been

published (Lerch et al., 1982).
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Y1 contains energy at wavelengths between 20,000 km and 6700

km, Y2 between 6700 and 50 km, and Y3 at wavelengths shorter

than 50 km.

The analysis of perturbations to satellite orbits has

yielded information on the longer wavelengths of y (energy at

high wavenumbers k is attenuated as exp(-kz) as height z

above the earth increases; artificial satellites fly at 700

km height or more). Although estimates of the earth's

flattening from observations of the precession of the moon

date back to Helmert's textbook of 1884 (quoted by Heiskanen

and Moritz, 1967), the bulk of the data comes from observing

artificial satellites over the last two decades. The theory

of the method is presented in Kaula (1966); Heiskanen and

Moritz (1967, hereafter H&M) have a brief, didactical over-

view chapter; Bomford (1980) surveys both the elements of the

tracking techniques and some of the computational details.

Formally, solutions such as GEM-9 (Lerch et al., 1979; see

figure 1-1 of this chapter) describe the geoid up to

spherical harmonic degree and order 20 (an approximate length

scale of 2wR/20 = 2,000 km; R=6371 km is a mean earth

radius). However, the expected relative errors in the coeffi-

cients increase rapidly with degree. The choice of a cutoff

degree depends only on the signal one wishes to extract from

the geoid model. For most geophysical applications, GEM-9 is

sufficiently accurate at least to degree 10 (length scale ~

4,000 km), but this is not so for oceanographic applications.



Tai (1982) analyzed the expected errors in GEM-9, the power

at long wavelengths in a time averaged version of c, and the

power in the difference between GEM-9 and a time average of

s. He concluded that noise in GEM-9 masks any oceanographic

information at corresponding wavelengths for all degrees

larger than 6. Satellite orbit analysis has defined the

component yi as defined above with higher accuracy than any

other available method.

Surface measurements of gravity accelerations using

springs, pendulums and the free fall of objects (and infre-

quent measurements of the angle between the vertical and the

normal to the reference ellipsoid) have steadily accumulated

since, at least, the beginning of this century. Bomford

(1980) surveys the measurement techniques and their accuracy;

Talwani (1971) discussed the special difficulties of measure-

ments at sea. Again, the majority of the available data were

collected over the last two decades.

Surface gravity data can, in principle, provide informa-

tion about y at all wavelengths (the introduction to chapter

3 reviews techniques for computing geoids from gravity). In

practice two problems arise: 1, because entire regions of

the earth lack any data, the long wavelengths cannot be

defined accurately (this problem is analyzed in chapter 3);

2, existing gravity data are not distributed densely enough

to define the shorter wavelengths of the gravity field, nor

do gravity measurements filter the short wavelengths (height
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FIGURE 1-2: Seasat altimetric measurements of
sea surface topography between Australia and
New Guinea, from Rapp (1982a). The altimetric
measurements resolve wavelengths longer than 50
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location and the details of the crossover
adjustment. Comparison with figure 1-1 shows
much short wavelength energy west of New
Guinea, asociated with the southern reaches of
the Philippine and Palau trenches on the sea
floor.



takes care of this filtering in the case of satellites). The

consequence is an aliasing of gravity data by unsampled short

wavelength energy acting just as if it were noise (this

subject is also analyzed in chapter 3). When publicly

available gravity data are used to compute a geoid with

wavelengths longer than 100 km in the North Atlantic ocean,

its expected errors range between 30 cm and 260 cm, and most

of this error is simply due to unsampled short wavelengths

(a point discussed in chapter 4).

Because s is dominated by the geoid y, one can interpret

measurements of s, from which tides have been removed, as

measurements of y with a 1 m expected error due to C, plus

any noise associated with the measurements. Analysis of the

coherence between overlapping Seasat orbits (Brammer and

Sailor, 1983) shows that current altimetry can resolve

geoidal length scales larger than 30-80 km, i.e., the

components yi and Y2 of equation 1-2. Figure 1-2 shows a

sample of the results of such altimetric measurements, and

figure 1-3 shows an altimetry-derived power spectrum of y.

The special problems of altimetry will be reviewed in section

1.4, but a comparison between altimetric and gravimetric data

is worth discussing now. A research vessel measuring gravity

travels at some 5 m/sec (10 knots), and averages gravity

accelerations over 5 minutes (a 1.5 km alongtrack average). A

satellite such as Seasat travels at 7 km/sec and takes

- roughly - a 10 km average of s($,X,t) every 0.1 sec., but
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FIGURE 1-3. Geoid power spectrum (Wagner, 1979),
from altimetric measurements aboard the Skylab and
Geos-3 satellites. Length scales defined: 40 km to
1000 km. The best known previous estimate c' the
spectrum (Kaula, 1966) is known as "Kaula's rule"
and labelled here "expected geoid spectrum".
Kaula's rule had been estimated from surface gravity
data alone. A more recent estimate, Brammer and
Sailor (1983, in press), is based on Seasat altime-
try.

R RMS AVERAGES OF SEA SURFACE HEIGHT POWER IN GROUPS
OF 10, 40 AND 80 FREQUENCIES (SEE FIGURE 6)

REDUCED OF "WHITE" NOISE AND ESTIMATED
DEPARTURE POWER (SEE FIGURE 8)

I I I I

20 30 40 50 100 200 300 400 500

GLOBAL FREQUENCY, n: CYCLES/REV.

1000

\,.EXPECTED GEOID SPECTRUM DUE
TO: og = 10-5/22

G 46 GEOS 3 ARCS AND THE SKYLAB
ND-THE-WORLD PASS

F

0.5 F-

0.11
10 1000

I I I a



it can only resolve gravity features longer than about 50 km.

It follows that the alongtrack resolution of altimetry is

about 33 times lower than the ship's, but altimetric coverage

in one hour is 1400 times greater. For this reason altimeter

measurements, subjected to an adequate time average that

removes time-varying oceanography, are currently the best

available way to describe the gravity field over the oceans.

Satellite-to-satellite tracking and satellite gradio-

metry are likely to yield much future data on y. Satellite-

to-satellite tracking allows an almost continuous tracking of

each satellite's perturbations with very high accuracy; since

short wavelengths are highly attenuated, but not eliminated

at the satellite's height, they can be recovered given the

proper tracking accuracy. Marsh et al. (1981) have published

an estimate of y in the Pacific by this new technique.

Satellite gradiometry measures the gradient of gravity acce-

lerations (i.e., components of the tensor of second deriva-

tives of the potential) at satellite heights. This concept

has not been implemented yet, but much preliminary analysis

has been done, including studies of a proposed gradiometric

mission by the French government.
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FIGURE 1-4. Comparison of the wavenumber spectra
of the geoid, the time-varying and the time-
averaged oceanographic components of sea surface
topography, at wavelengths shorter than some 1000
km, from Wagner (1979). He estimated the time-
varying component (labelled "D") from the height
differences in 9 overlapping pairs of Geos-3 arcs,
separated by a multiple of 37 days (526 orbits).
White noise, inferred from the leveling off of the
spectrum at high wavenumbers, has been removed.
The time-averaged component (labelled "S") was
estimated from a chart computed by Defant (1961)
from historical measurements of temperature and
salinity of seawater. The geoid spectrum is here
approximated by Kaula's rule, for simplicity.
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Frequency spectra of sea-level obtained from tide-gage data at
various coastal locations of the Atlantic and Pacific oceans.
a) Bermuda. The sharp peaks occur at the tidal frequencies, and
for this particular site they carry 70% of the vagiance of the
time series. The total variance is about (28 cm) . The record
used for this spectrum was sampled every 1 hour for 8 years.
Frequencies in cycles per hour.

b) Locations are as indicated above the figure. Frequency is
in cycles per day, hence tidal peaks fall to the right of the
graph. Notice the change of power by an order of magnitude
between different locations.



1.3 THE OCEANOGRAPHIC COMPONENT C

Two main differences exist between the oceanographic and

geoidal components of s: 1) at any fixed time, the spatial

variability of c is about an order of magnitude smaller than

the spatial variability of y (a point best illustrated in

figure 1-4); 2) at any fixed point on the oceans, the time

variability of C is much larger than that of y (but y is not

known accurately enough for a quantitative statement).

Time variability of c has been observed at all periods

between fractions of a second and several years. In the

words of Wunsch (1981): " the ocean is filled with time-

varying features, with all space and time scales, whose

energy levels vary by an order of magnitude over the ocean

basins. To state it slightly differently, the field of

variability is locally representable by a continuous

frequency-wavenumber spectrum, but the underlying process is

not spatially stationary in the statistical sense, and this

vitiates much of the utility of the spectral description".

In some cases, energy concentration within a more or less

narrow frequency band can be associated with an identifiable

physical cause, and is given a particular name: wind waves

have most of their energy at periods of 1-2 sec (e.g.,

Kinsman, 1965); tides (e.g., Hendershott, 1981) have their

energy concentrated in narrow peaks at periods determined by

the relative motion of the earth, moon and sun (but mostly at

once or twice per day); mesoscale eddies (e.g., MODE group,

1978) are features with typical widths of 50 to 200 km that



will drift past a gage in 2 or 3 months; the Gulf Stream

(e.g., Fofonoff, 1981) is in the same place -within a few

hundred km-, and has the same strength -within perhaps 30%-

as it had 212 years ago, when Franklin and Folger first

mapped it (see Richardson,1980). Figure 1-5 gives examples

of measured frequency spectra of sea-surface height at

selected locations.

This thesis will concentrate on discriminating time-

averaged departures between s and y (for reasons given in

section 1.5); the continuous spectra of figure 1-5 already

suggest that the result will be sensitive to the averaging

time T. Let

t04T/2
c'41t)= (1/T) f c(+,,X,t) dt

to-T/2

and define y' and s' with an analogous averaging (but y=y' by

our previous assumption). If we choose T of the order of

many months, then c' will be dominated by the signal oceano-

graphers call 'the general circulation of the oceans'.

The general circulation is a persistent pattern of cur-

rents, their return flows, and associated spatial distribu-

tion of seawater density (e.g., Defant, 1961, Ch. 18; Warren

and Wunsch (ed.), 1981, part 1); the Gulf Stream and Kuroshio

currents are perhaps the best known components of the

pattern. Except within a few degrees from the equator, this

flow is well described by the geostrophic approximation to

the equations of motion (e.g. Pedlosky, 1979, Chap. 2), which
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FIGURE 1-6. Estimate of the geostrophic component of sea-surface
topography in the Pacific, in dynamic centimeters (a unit of geopoten-
tial, numerically equivalent -within 2%- to cm of height), from Wyrtki
(1979). This chart is derived from measurements of temperature and
salinity of seawater extending over 73 years. Because measurements are

seldom repeated at the same station, the chart is time-aliased rather
than time-averaged (figure 5-4 shows an equivalent chart for the North

Atlantic). In addition, heights are computed as if a deeper surface

(the 1000 dbar isobar) were motionless, a reasonable but not exact
assumption. If the main assumptions were exactly true (that motion is

purely geostrophic, and that no motion occurs at 1000 dbar) and if time

aliasing were negligible, then this chart would represent absolute

topography relative to the geoid.



essentially states that horizontal pressure gradients in the

ocean (caused by variations of temperature and salinity) are

balanced exactly by the Coriolis force due to the Earth's

rotation; this approximation neglects friction and the trans-

port of momentum and energy and assumes a steady state. The

latter condition requires averaging times scales much larger

than 1 day/2 sin$. The surface expression of this circula-

tion is a slope dC/dy, normal to the direction x of the

current velocity U, with approximate magnitude dC/dy ~

U/(7x10 6 cm/sec sin$). Typical values of U range between 10

and 50 cm/sec, but western boundary currents, such as the

Gulf Stream and Kuroshio can reach 200 cm/sec.

To interpret the results later presented in chapter 5 we

need to summarize some features of the way in which oceano-

graphers estimate the general circulation and arrive at

pictures such as figure 1-6. From measurements of tempera-

ture and salinity of the oceans one obtains density p($,A,z),

where z is depth, at those (few) points where measurements

were taken; the equation of state relating them appears in

standard tables (see Neumann and Pierson, 1966, chapter 3).

From the vertical profile of density at a 'station' ($oXo),

one can compute pressure p($OXo,z), assuming that pressure

is only due to the weight of water above depth z (i.e.,

neglecting dynamic pressure effects). In differential form,

g p(,X 0 ,z)= - ap($OXOz)/az (1-4)

where g is the acceleration of gravity. In the next step,



one makes the geostrophic assumption -that horizontal

pressure gradients are exactly balanced by the Coriolis

force-, i.e.,

p f UH = - k x Vp (1-5)

Here f=2Qsin$ is the Coriolis parameter, 0 is the rate of

rotation of the earth (once per day), p is a mean density, UH

is a horizontal velocity vector, and k is a unit vector down

the local vertical direction (the effect of k x Vp is a

horizontal velocity at 90* from the horizontal component of

the pressure gradient, an idea that takes time getting used

to). Equations 1-4 and 1-5 are combined and integrated into

the equation finally used for the computations. Taking, for

example, the component of Vp along a local x axis (x and y

horizontal) we obtain the y-component Uy of the velocity

vector:
z (1-6)

Uy(x,y,z) = (g/pf) f (ap(x,y,z')/9x) dz' 4 Uy(x,y,zo)
ZO

The chart of figure 1-6 was obtained using a reference

level zo chosen as the vertical position of the surface of

constant pressure=1000 dbar, where Uy(x,y,zo) was assumed

sufficiently small that its neglect in 1-6 (because U was not

measured) would not alter the picture dramatically. This

'level of no motion' assumption was a theoretical difficulty

that waited until 1977 for a satisfactory solution: when 1-6

is combined with a statemtent of mass conservation,

V-(pUH)=O, into a single equation, the need for assumptions

about zo disappears. Stommel and Schott (1977) combined the



statements into a differential equation; Wunsch (1977)

obtained a discretized integral equation. The practical

difference between these two versions is another assumption,

pointed out by Davis (1978): over what length scales is the

combined equation valid when actual data are replaced in it.

The relationship between 1-6 and sea-surface topography is

this: if zo is chosen as the plane that (locally) best fits

the geoid, and write zo=0 on this plane, then the pressure at

zo is :

p(x,y,0) = g c(x,y,O) p(x,y,O)

and the surface velocity can be written (neglecting

variations in P)

UH(x,y,O) = (-g/f) k x Vc'(x,y) (1-7)

If c' were measured, the integration 1-6 could be started at

zo=O; alternatively, 1-6, 1-7, and mass conservation provide

an estimate of VC'.

It is important to remember that the instantaneous

reading of a moored current meter is not UH; in fact, to

recover UH from current meter data requires averaging the

measurements over many years, because the time-varying compo-

nent of velocity is so energetic that shorter averages do not

allow a statistically significant difference between the mean

and zero.

No estimate of c' obtained from the density field over

the oceans, sampled in the traditional oceanographic way, and

using the geostrophic equations to compute c' can equal a

time average of s-y, even assuming that both s and y are



known exactly. The essence of the problem is that the

geostrophic equation used to convert p into C is a very good,

but not an exact description of ocean dynamics. Equation 1-5

does not contain 3UH/3t, but the position of the Gulf Stream

axis has been observed to oscillate (north of Cape Hatteras,

by about 300 km over a few months. See figure 5-5, chapter

5). Equation 1-5 does not provide for any component of Vp

parallel to UH, but the Gulf Stream is known to flow slightly

'downhill'. These features simply point to a slight

difference between the pressure gradient and the Coriolis

term in 1-5, a difference that must be balanced by the time

evolution of the field, as in the first example, or by

nonlinear combinations of UH and its derivatives, as in the

second example. The slow changes in C' with time are the

source of the largest discrepancy between altimetric and

oceanographic estimates of the circulation (still assuming

that s and y are known exactly). Because ships are slow and

expensive, the relatively few measurements of the density

field are widely separated in space and time, precluding a

true time average. This aliasing is not really a problem at

spatial scales very large compared to the Rossby radius of

deformationt, roughly 50 km at mid latitudes (e.g., Charney

tThe Rossby radius of deformation (e.g., Pedlosky,
1979), is the smallest scale over which geostrophic motions
can exist at all. For scales around this radius, a variety
of waves will produce time dependence of the geostrophic
approximation.



and Flierl, 1981), but the chances of time aliasing increase

at wavelengths approaching 50 km.

1.4 SATELLITE ALTIMETRY

The appearance of the first radar altimeter carried

aboard a satellite (SKYLAB, in late 1973), to measure its

height relative to the Earth's surface, triggered the current

convergence of interests between geodesists, geophysicists

and oceanographers. SKYLAB's altimeter had an instrumental

accuracy - as opposed to overall accuracy - of 5 m (Vonbun

et al., 1978). Its successors to date have been only two:

the altimeters aboard Geos-3, launched in 1973 with 1 m

accuracy, and Seasat-1, in 1978 with 0.1 m accuracy.

The Geos-3 mission has been reviewed by Stanley (1979);

this is the first paper in an issue of the Journal of

Geophysical Research entirely devoted to Geos-3. The SEASAT

mission has been partially reviewed by Lame and Born (1982);

details of the four instruments on board (altimeter, scatter-

ometer, scanning multichannel microwave radiometer, and syn-

thetic aperture radar) are given by Barrick and Swift (1980),

and in other papers of the same issue of the IEEE Journal of

Oceanic Engineering.
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FIGURE 1-7. Seasat ground tracks during august 6-8, 1978, from Schutz et
al. (1982). Seasat flew at an altitude of 800 km with an inclination of
1080. Between june 26 and august 25 it completed a revolution in 100.62
minutes, circling the Earth a little more than 14 times a day. The
Earth's rotation produced each equatorial crossing of the ground track
to be displaced some 25.1* to the west of the previous crossing. In
addition, the ascending node of the orbit itself advanced some 20/day
relative to an inertial frame. These values imply that the ground
pattern would almost repeat itself every 17 days ('almost' because of an
18 km offset at the Equator). On august 25, a slight maneuver (that
increased the period to 100.75 minutes) allowed the ground track pattern
to repeat itself every 3 days.

The difference in altimeter measurements on overlapping
pairs of arcs measures time-varying oceanography and system errors. The
coherent part along overlapping arcs measures the geoid and time-
averaged oceanography. The difference in height measurements at the
points where ground tracks cross (a "crossover"), after tides are
removed, is dominated by the orbit interpolation error, and thus
provides the constraints to reduce it (a "crossover adjustment").



The SEASAT altimeter emmited a microwave radar pulse

that travelled 800 km through various layers of atmosphere,

interacted with the sea-surface and perhaps with clouds, and

returned to the altimeter, where both its travel time and

shape were measured. Such raw measurements require many

corrections before they can describe sea-surface topography;

these include instrument delays, effects of the geometry of

the satellite (the antenna does not coincide with the center

of mass), variations in the speed of light along the path of

the radar pulse, and wave-wave interactions between the pulse

and sea surface. The reader should consult the recent review

by Tapley et al. (1982; also Hancock et al.(1980) and TOPEX

Science Working Group (1981)) for the current status of these

corrections. After these corrections are applied, however,

there still remains an error of some 2 meters rms, with most

of its power at a frequency of once per revolution. This

error occurs because the satellite is not tracked conti-

nuously, hence its position between two consecutive fixes

(sometimes many revolutions apart) must be interpolated using

the equations of motion and models for the Earth's gravity

field, atmospheric drag and solar radiation pressure. This

interpolation leaves a residual error in the radius vector,

an error usually modelled as a bias and a trend over

distances much smaller than its 40,000 km typical scale.

The altimeter should measure the same height where two

ground tracks meet (a 'crossover', see figure 1-7), except

for time-varying oceanographic features whose amplitude is



usually smaller than the crossover error (after tides are

removed). The crossover discrepancies have been successfully

used to correct the radial component of the position interpo-

lation error. Rapp (1982; also Rowlands, 1981), whose

adjustment of Seasat altimetry is used in this thesis, found

post-adjustment discrepancies between 23 and 34 cm rms,

depending on the location. Much of this remaining energy is

due to time-varying oceanography, as shown by Cheney and

Marsh (1981) for Geos-3; Marsh et al. (1982) found that the

post-adjustment residual for Seasat data in a small area in

the quiet eastern North Pacific was 8 cm if coastal zones

were excluded, and 12 cm when the coastal region was

included, probably because of incomplete tidal modelling.

It is fair to conclude that, after all corrections are

applied, the component of s($,X,t) with wavelength longer

than some 50 km can be measured with accuracies between 10

and 30 cm using altimetry. At this writing, however, the

spatial structure of this error is not known; we still need

to know whether any basin-scale errors, that can mask long

wavelength oceanographic information, are left in the adjus-

ted surfaces.



1.5 THIS THESIS

The purpose of this thesis is to present appropriate

methods for combining gravity, oceanographic and altimetric

information in order to estimate c' and y', and to perform

such a computation in the North Atlantic ocean. There are two

main motivations for this choice: 1) the time averaged

circulation, whose surface expression is C', is responsible

for much of the heat transport in the oceans, and thus for

moderating climate. Altimetry has provided the first oppor-

tunitv to obtain a global, quantitative picture of the

circulation, with good areal coverage -if only C' could be

recovered. 2) for the reasons explained in section 1.2, the

best estimate of the geoid that can be obtained at present is

one based on altimetry. This estimate can then be used both

to analyze time-dependent oceanography (which requires remo-

ving the geoid from individual tracks), or to study solid

earth processes such as mantle convection (which requires

comparing the geoid to bathvmetrv). For these uses, the

surface expression of the general circulation is a noise that

one would like to remove.

Because estimates of both C' and y' have large errors

when shipboard data alone are used, Wunsch and Gaposchkin

(1980) proposed combining the altimetric, gravity and hydro-

graphic data to produce optimum corrections to the three

surfaces involved. The relation of y to observable gravity

accelerations is linear to an excellent degree of approxi-

mation, and so is the relation between c' and the observable
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distribution of density in the oceans; it follows that it is

possible to combine all this information using the mathema-

tics of optimum linear estimation. The enormous amount of

data that would have to be considered simultaneously,

however, precludes a joint inversion from basic data today.

It is perfectly feasible, however, to compute initial esti-

mates of the geostrophic component from hydrographic data

alone, and of the geoid from gravity and satellite data only,

and then combine the initial surfaces and their expected

errors in an optimum manner, to compute corrections to the

initial estimates. This approach -perturbation of initial

estimates- is followed in this thesis.

Chapter 2 reviews the theory of optimum linear estima-

tion that underlies all computations of linear models from

discrete and noisv data. The necessity for such a review

arises because 'least squares collocation' is used in

geodesv, oceanographers follow meteorologists in the use of

'objective mapping', and most geophysicists are convinced

that the 'Backus and Gilbert theory' has no equal. The fact

that these names, and others, refer to essentially equivalent

methods in spite of their different origins, has been

recognized only over the last few years, but the literature

is still scattered.

Chapter 3 analyzes the optimum estimation of geoids from

gravity data, a necessarv step towards the computation of an



initial geoidal model and its error structure. The analysis

of chapter 3 was prompted by a few problems of available

geoids: 1) geoids estimated from orbit analysis are suffi-

ciently accurate only at wavelengths longer than 6700 km

(Tai, 1982). In order to define shorter wavelengths in jil,

surface gravity data must be used. 2) very good regional

gravimetric geoids have been published (Marsh and Chang,

1977; Chapman and Talwani, 1979), but we know they are good

only because thev agree with altimetric measurements of s.

This argument obviously breaks down when one tries to

recover discrepancies between s and y, but published gravi-

metric geoids lack error estimates. Chapter 3 starts with a

brief review of current methods to construct geoids from

gravity. The equations that estimate the expected error of

a geoid computed as any (not necessarily optimum) linear

combination of gravity data follow. The core of the chapter

is an analysis of the maximum amount of information that can

be extracted from limited data distributions. The main

finding, in addition to the methodology, is that a fairly

restricted data set can provide a band-passed version of y,

a most useful characteristic.

t Different wavelength bands in c' are interrelated both
kinematically and dynamically. The Gulf Stream, for
example, has a characteristic width of order 100 km. If the
total transport in this wavelength band is known, then we
also know the transport in the return flow needed to
conserve mass, a flow whose scale ranges between these 100
km and the width of the basin. Hence knowledge of an
appropriate wavelength band can, in principle, constrain the
whole flow.



Chapter 4 is the first one to face real data. All

publicly availablet gravity data over the North Atlantic are

subjected to a crossover analysis to assess their accuracy.

We are unable to use optimum methods to estimate the geoid

due to computer limitations, and a suboptimum method is

chosen. The geoid so constructed describes the wavelength

band between 100 and 2000 km with accuracies ranging from

30 cm in the western part of the ocean, to 250 cm in the

eastern part. This geoid is then compared to a 3-month

average of the Seasat altimetric data (adjusted by Rapp,

1982), and the discrepancies are found to agree with the

expected errors, except near Florida, where the geoid has

much unsampled short wavelength power associated with the

Bahama islands, and the expected errors underestimate the

actual discrepancies.

Chapter 5 combines the estimates of s and y using

optimum methods, but disregarding the spatial correlation

between errors, again due to computer limitations. The

difference s-y does not directly measure C because of the

variation in errors by an order of magnitude; the effect is

somewhat like changing units in the middle of the map. A

simple assumption -that c is spatially uncorrelated, with

(30 cm) 2 variance- produces a believable estimate of C,

t The data used bv Marsh and Chang (1978), and by
Brammer (1979) belong to a classified Navy data set.



believable by comparison with the estimate of Wunsch (1981),

derived exclusivelv from hydrographic data. When the hydro-

graphic estimate is included in the computation we lose all

independent checks on the accuracy of the result, but obtain

a corrected geoid, based on altimetry, hydrography and

gravity.

Chapter 6 discusses the various simplifications intro-

duced throughout and their likely effect on the results.

In all following chapters, the unprimed s, C and y will

refer to time-averaged quantities.
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CHAPTER 2

REVIEW OF LINEAR INVERSE METHODS IN GEOPHYSICS

2.1. INTRODUCTION

Like many other geophysical studies, this thesis

deals with a finite number of noisy data (gravity anomalies,

satellite heights, temperature and salinity of seawater),

and these data are linearly related to either discrete

parameters or continuous functions (the geoid, the geostro-

phic component of sea-surface topography) that we wish to

estimate. The need for a brief review arises because names

such as least squares collocation, Backus and Gilbert

theory, Lanczos' generalized inverse, Moore Penrose inverse,

ridge regression, optimal estimation, objective mapping,

universal krigging, harmonic splines, and Wiener filtering,

all seem to refer to competing methods of dealing with the

same basic problem. In some cases the differences arise

because these results were derived from different initial

assumptions, such as finite versus infinite number of

parameters, or discrete versus continuous independent

variables, or even deterministic versus random unknowns. In

other cases, an older result was rediscovered in a different

discipline. Somewhat surprisingly, the optimum estimators

derived in each of these cases are fundamentally similar.

Broadly speaking, the similarities arise because a) the same

error norm is always minimized (least squared error); b)

different optimization criteria are equivalent under this
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norm; c) the functions dealt with can be approximated to any

desired accuracy by a finite number of parameters.

It is the purpose of this review to summarize these

results (applied in all later chapters), and emphasize their

similarities, differences and practical consequences.

2.2 AN EXAMPLE

To fix ideas, a one-dimensional equivalent of the

problem analyzed in chapter 3 -the estimation of geoidal

heights from gravity data- will be used as an example

throughout this chapter.

Assume we are only interested in the local structure of

a strongly lineated feature (for example, the Ninetyeast

ridge in the Indian Ocean). Let y be a horizontal axis

running along the ridge, x a horizontal axis normal to the

ridge, and z the upward vertical direction. Assume gravity

accelerations are measured at Nd points xi, with L=x Nd-x.

Also assume that a long wavelength reference field (such as

GEM-9) approximately defines wavelengths longer than L. Let

gi be the difference between measured gravity and the

reference gravity at xi. Let g(xi) be the exact component

of gravity with wavelength shorter than L. Finally, let

h(x) be the exact geoid component with wavelengths shorter

than L. Then, it is approximately true that

9k = c Ik| hk (2-1)

where c is a constant, k is wavenumber along x, 9k is the



kth Fourier coefficient in the expansion of the short

wavelength gravity accelerations g(x), and hk is the Fourier

coefficient of h(x), defined by

L/2
hk = (1/L) f h(x) exp(-jkx) dx j=V -1 (2-2)

-L/2

h(x) = I hk exp(jkx) k=2wv/L (2-3)
v=1

(Chapman (1979) reviews the result 2-1; to see the weakness

of a one-dimensional geometry in geoid studies, see McAdoo

(1981)).

It follows that we can write g(x) as either

g(x) = c I |k| hk exp(jkx) (2-4)
k

or (at least formally, because the series does not converge)

L/2
g(x) = (1/L) f A(x-x') h(x') dx' (2-5)

-L/2
where

A(x-x') = [c/(x-x') 2

It is important to notice that, if the g(x) are finite

then the hk must decay fast enough to make 2-4 converge:

|hkI << k_2 as k-> cc. In other words, h(x) is a smooth

function, a property that makes interpolating between data

points easier, and a property that will be central to the

later development.
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2.3 THE FORWARD PROBLEM

NOTATION

mp: the unknown function m (model) at pointa. If the
unknown are discrete parameters, the p parameter.

mv: generalized Fourier coefficients of m in some
suitable orthonormal basis.

*vp: vth basis function in the expansion of m, at p.

mP an estimate of mp.

m: other functions or vectors in the same Hilbert space
as m. In the stochastic approach, other realizations
of the same stochastic process.

fp: mean value of the integrand over the volume of
definition of mp (i.e., the integral divided by the
finite volume.

p: when the mp are discrete parameters, sum over all p.

di: ith data value.

di: linear functional of mp, of which di is a measurement

ei: di - di, error in the ith equation.

Ji: sum over all available data.

< >: expected value of the enclosed random variable.

Mpp <mp mp > (covariance of mp, assumed random).

Mv power spectrum of mp (Mv=|mvI 2).

wv an upper bound (not necessarily the smallest) on Mv

[ ]: a matrix.

d vector with elements di.

T: hermitian transpose of a matrix or vector. Also, the
adjoint of a linear operator.



Good reviews of the basic formulation are given by

Parker (1977), and by Aki and Richards (1980, ch. 12). Only

a brief summary follows.

By physical considerations one has arrived at a linear

or linearized relation ("the forward problem") between a set

of observable quantities d = {dl,...,dN d}T, and a model,

described either by a set of discrete parameters m =

{ml,...,mN }T, or by a function m(v) of a continuous
p

variablet, or by an n-tuple or such functions. For genera-

lity we assume all quantities are complex; * denotes complex

conjugate. Let us first assume discrete parameters mp. The

most general linear relation between the di and the mp is:

di = N A*ip mp = { A*ip mp i=1,...,Nd (2-6-a)

p=1  p

When Np +W, equation (2-6-a) is still valid, provided

the corresponding sums converge. When a function m(v) is

the unknown -such as in our example- the forward problem has

the form

di = (1/V) f A*ip m(vp) dvp f A*ip mp (2-6-b)
V p

Here p is the name of a point in the volume V, a

point that can vary continuously through V. The second form

t Throughout this chapter, many differences between
discrete parameters and continuously varying functions de-
fined on a volume V will arise. The latter will be
referred to as a 'function m', for brevity.



of 2-6-b will be used throughout the rest of the chapter.

No confusion need arise, because the region of integration

and the element dv remain fixed throughout a problem. For

the remainder of the chapter, P, p',... will denote either

model positions or parameters; i, i',... will indicate data

values.

In our example, V is the interval Ox<L, not because

the data were measured in that interval, but because h -as

defined- contains no wavelengths longer than L, hence it is

sufficient to define it over a length L.

Equation (2-6-b) is valid provided the corresponding

Lebesgue integrals exist. There is another restriction that

h must satisfy in order to apply the Hilbert space formu-

lation of the next pages: a series expansion of the form
CO *

mp = I 9 Yvp (2-7)
v=O

must be able to compute mp 'almost everywhere' in V (i.e.,

except on sets of measure zero, for example an isolated

point where m is discontinuous; at the point the series will

give a mean value, but m is undefined). The basis functions

Tvp are defined in the same volume V, and they are assumed

to be orthonormal (if a basis exists, it can always be

orthonormalized). Let Sv,y=1 if v=y, 0 otherwise (Kronecker

delta); then

(1/V) f Yvp TY pp dvp = SvIy
V

and the coefficients mv are given by the inverse transform
*

r> = f mp Yvp
p
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Also, Aip (for fixed i) is a function defined in the same

volume V. We assume it can be expanded in a series like 2-7

Aip = Aiv Tvp 2-8
v=0

If 2-8 is absolutely convergent, then sums and integrals can

be exchanged and the forward problem can be written

di = Aiv m*v 2-6-c

This expansion allows us to identify the function m(v) with

a countable sequence of coefficients mv; it also allows us,

in principle, to replace the integral equation (2-6-b) with

an algebraic system of equations, (2-6-c), with infinitely

many unkowns (see Riesz and Nagy (1955), chapter 5).

In our example, the di are the (exact) short wave-

length gravity values g(xi). If we identify mp with h then

the kernel Aip is singular (equation 2-5). The singularity

reflects a problem in the formulation, not a physical

possibility for either g or h, both of which are square

integrable (i.e., have finite energy). The relationship

9k = c |k| hk 2-1

is well posed because Ik |k hk 2 < co, so we will define the

forward problem with 2-1 (see sections 2.6.1 and 2.6.2).

For each equation i one has a measured value di that

differs from the di by an error ei:

di = di + ei 2-9

In the example of section 2.2 there are 3 distinct



components to the error e:

a) measurement noise

b) errors in the reference field (removed from

the data so that a plane approximation could be used).

c) errors in the one dimensional approxima-

tion. Modelling errors are always the hardest to describe,

so one must usually assume that they are negligible.

Of course, the values of the ei are not known, but in what

follows it is assumed that their variances are known.

With these definitions, our aim is to compute the

exact values of the mp or, if this is not possible, some

best approximation, mp. It is also essential that we be

able to assess the accuracy of the approximation.

Our example requires the continuous formulation 2-6-b,

because there is an integral constraint on the unknown h.

Even if we are only interested in the value of h at one

point, each constraint equation applies to the whole of h.

It is also possible to use the discrete formulation for this

problem, inasmuch as h can be approximated arbitrarily

closely by a finite number of terms in the series 2-7; we

can simply replace h by a vector that differs from h by an

acceptable amount, and then estimate this vector.

A discretization of 2-6-b must be done with certain

restrictions noted below. First, the integral must be
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approximated in the following manner:

Y (Aip (Axp/L) 1/2) (h(xp) (Axp/L)1/ 2) = di (2-10-a)

p

Y A'ip h'p = di (2-10-b)

p

The reason for splitting the Ax evenly between the kernel

and the unknown vector is that the 2-norm of the unknown is

minimized in all methods discussed here, hence the 2-norm of

the vector h' must be approximately the same as the 2-norm

of the function h(x)

Sh'p1 2 = 1hp|2 Ax ~ IhpI2
p p L p

The second restriction is that the chosen Ax must be

small enough to approximate the forward problem correctly,

i.e., so that if the "true" but unknown h were replaced into

2-10, the gi that one would compute from 2-10 would differ

negligibly from the gi that one would compute from 2-5;

'negligibly' should be interpreted as 'the error due to the

approximation 2-10 must be much smaller than the error in

the measurements gi'.

2.4 RESOLUTION, NOISE, AND EXPECTED ERROR

All the approximate solutions to (2-6) or (2-7)

summarized here are linear (due to the choice of norm). Any

estimate m p obtained as a linear combination of the di has

the form
Nd ~

mp = B*pi di = 2 B pi di (2-11)
i=1 i



[j, Iii will denote sums over all available data throughout

the remainder of the chapter.

To avoid cumbersome repetitions, all equations that

follow are written for a function m, hence involve fp. They

apply as written to discrete parameters, if f is replaced by

1. In a few instances the difference between forms is

critical and will be pointed out in the text.

For any linear solution, equations 2-6, 9 and 11 imply

mp = f I1pp mpi + B*pi ei (2-12)

p
AA I

mp-mp = f (Ipp -Ippt)* mp + i B*pi ei (2-13)
pi

In both the discrete and continuous cases, the resolution

operator I is defined as the result of applying the inverse

B to the forward operator A:

Ipp' = { B*pi Aip (2-14)

and the identity operator Ipp is a Kronecker delta for

discrete m, and a Dirac delta for a function m.

Equation (2-12) is the fundamental relationship between

what we wanted to find, mp, and what we computed, mp; 2-12

is valid no matter how the coefficients Bpi were computed.

The resolution operator I describes a systematic distortion

in mp, produced because B is not the exact (left) inverse of

A. This can be due both to the lack of enough data, and to

the criterion by which B was chosen. For fixed p, Ipp i is a

filter (discrete or continuous) through which we must view
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mp. This term makes mp a weighted average of the mp ,

possibly scaled (i.e., the sum or integral of weights may

not be equal to 1). Perfect resolution requires that Ipp

be the corresponding identity: a Kronecker or Dirac delta

centered at p. The first term in 2-13 will be called

'resolution error' (it is also called 'omision error').

The second term in (2-12) is the error due to noise in

the data and to modelling error (and influenced by the

choice of B); this term will be called 'noise' (it is

sometimes called "comission error") and must be treated

statistically. Suppose we understand e well enough to

compute its expected value and covariance matrix [E]

(ei> = 0 ; [E]ii' = <eiet'> 2-15

With (2-15), the expected value of XiBpiei is also zero,

and its covariance function E' is

E' = Bip Eti' B*ip 2-16
i i1

If the ei were stationary and had a gaussian distribu-
A

tion, equation (2-16) would describe the noise in m comple-

tely, hence only 2-16 would need to be minimized in order to

bring noise in m down to acceptable levels. This is the

usual assumption, based on the property of sums of random

numbers with any probability density function (pdf) to

approach a gaussian pdf, and it is the one followed in the

rest of this summary. But it is not always a good

assumption. Claerbout and Muir (1973) give good examples of

the effect of blunders in the data, and of the robust

properties of minimizing a 1-norm, rather than a sum of



squared errors as (2-16) is.

Suppose 2-13 is multiplied by its complex conjugate;

we then take expected values over the noise process. This

yields a formal equation for the expected error in mp

<mp-mp 2> =MPP + I I I f Bpi Aip Mypnp, A*itpt B*pit -

i isp'p" (2-17)

2 I Bpi Aipi Mpep + Bip Eiu' B*ifp
ip ii

to write 2-17, we called

MPP = mp mp, (2-18)

Without further assumptions, 2-17 is useless, because the

covariance M as defined in 2-18 is unknown.

The statistical methods (Liebelt, 1967; Moritz, 1978)

start with the assumption that the mp themselves are random

numbers. Hence, one also takes expected values over the

ensemble of m in 2-17 (an equation that retains its form if

<mp ei>=0). This yields the expected value <mp mpt> which

can, presumably, be estimated from data that we do not wish

to include in the inversion; this subject will be expanded

later.

In this section we have summarized the functional

description of the resolution error (equation 2-13) and the

statistical description (equation 2-17). In practice both

lines of reasoning have many connections, as will become

obvious later, and equations (2-13) and (2-17) simply

describe two aspects of the same problem.
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2.5 THE STATISTICAL METHODS.

The statistical approach described in this section

has a long history of success when applied to a variety of

geophysical problems: predictive decomposition of seismic

signals (Robinson, 1954), interpolation of gravity anomalies

(H&M (1967), chapter 7), design of oceanographic experiments

(Bretherton et al., 1976), and others. The various names:

discrete Wiener filtering, least squares collocation, opti-

mal estimation, objective mapping, universal kriging, etc.

refer to the same basic result (the Gauss-Markov theorem,

equation 2-22). Each one has added peculiarities owing to

the specific problem to which the technique was applied; for

example, collocation uses a spherical geometry, where inva-

riance under rotations must be required; the original Wiener

filters were designed for continuous (rather than discrete)

data, and requiring causality.

Two related arguments are frequently raised against

the use of probabilistic methods: 1) that the attribution

of statistical properties to the physical model is very

artificial, for example, when density or seismic velocity

vary with depth; 2) what is the physical meaning of an

ensemble of earths that differ randomly from ours?.

In response to the first concern, Papoulis (1965)

responds: " the student accepts readily this separation

between the conceptual ... model and the physical world
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for the so-called deterministic phenomena, but in probabi-

listic descriptions he confuses the two". A statistical

model may accurately describe the density vs. depth profile,

without implying that density is a random property in a

philosophical sense. With appropriate constraints, the

infinitely many realizations of a random process, one of

which is the density profile we are interested in, are

entirely equivalent to the infinitely many elements of a

Hilbert space, one of whose elements is the density profile.

In other words, they are all functions potentially capable

of satisfying our data. These points will be expanded in

this and following sections.

2.5.1 THE GAUSS-MARKOV RESULT

Both for discrete parameters mp and for a function m,

the Gauss-Markov theorem (Liebelt, 1967, chapter 5) applies,

because in this chapter we assume the number of data is

finite. When a function is the data, the formulation of

Wiener and Kolmogorov (Liebelt, 1967, chapter 7) must be

used. The book by Liebelt (1967) is an excellent introduc-

tion to this subject. A rigorous treatment of probability

measures for infinite-dimensional spaces can be found in

Wong (1971) and in Gihman and Skorohod (1974, chapters 5 and

8). Moritz (1980) and Luenberger (1967) have good summa-

ries, with the added advantage that these books assume

deterministic unknowns m, but Luenberger only applies the

statistical method to a finite number of parameters.
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Assume the measured values di are random numbers with

any probability density function (pdf), zero expected value,

and with known covariance matrix [Di, whose elements are

Dii = <d*i dii> 2-19

assume each unknown mp is also a random number, with zero

expected value; assume each mp is correlated to each di with

a known crosscovariance function Cip

Cip = <d i mp> 2-20

We now seek the estimate mp of each mp that satisfies

two properties: 1) MP is a linear combination of the data;

2) mp has smaller expected squared error than any other

linear combination of the data:

m= Bpi di; <1mp-mp|2> minimum 2-21
i

The Gauss-Markov theorem states that Mp can be computed with

Bpi 2 C pit [D1- ii, 2-22
i'

where [ 1- is the inverse of the matrix in brackets.

Remarks:

** No assumptions were made about the pdf of either

the di or the mp. This gives great generality to the result

2-22, but it should also be remembered that for a very

general pdf the sum of squared errors may be the wrong

quantity to minimize. Also, for an arbitrary pdf a nonli-

near combination of the data may yield a smaller squared

error than 2-22.
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** If both the di and the mp have a gaussian pdf,

then 2-22 has other desirable properties:

-- 2-22 yields a smaller mean squared error

than any other estimate of mp, linear or not (Van Trees,

1968, chapter 6).

-- 2-22 maximizes the likelihood, i.e., the

probability of observing the actually observed di.

-- 2.22 maximizes the entropy or information

content of the data (B. Cornuelle, 1982, pers. comm.)

** It is not necessary that the mp and the di be

linearly related for the G-M result to hold, only that the

covariances Cip and Dii exist and be known, and that the

matrix [D] be invertible (in section 2-7 this constraint

will he relaxed).

** When the mp and the di are linearly related, then

the required covariances can be easily written in terms of

Mpp the covariance of the mp. Let

MPPI = <mp* mp > 2-23

When mp and its conjugate are expanded in a series like 2-7,

both series are multiplied together, expected values are

taken, and the assumption is made that terms with different

index v are uncorrelated

((my *vp)* (mv' Wvp')> = 0 2-24

then 2-23 gives the spectral representation of Mpp

MPP I= X Mv *vp **vp' v 0 ~ 1 2> 2-25
V



50

** Assuming linearity of the forward problem, and

using the result 2-25

Cip E [AM]ip = Aiv Mv *vp = <d*i mp> 2-26
v

Diii [AMATiiI = iv Mv I*i'v = <d*i di> 2-27

(the notation in square brackets is a shorthand; for

discrete mp it indicates the required matrix operations; for

a function m it indicates linear operators defined by 2-26,

2-27 (AT is the adjoint of A).

The further assumption that the mp are uncorrelated

with data errors ei, <m*p ei> = 0, yields

[D~ii, = (D]ii, + [E]iii 2-28

With 2-26 through 2-28, and assuming Np>Nd, the Gauss-Markov

result can be written
* ~ *1

B pi = { [AM]itp ([AMAT + El- )ii, 2-29
i'

For Np<Nd, the classical least squares overdetermined case,

the result is somewhat different from 2-29. See Luenberger

(1969), chapter 4.

** The Gauss-Markov result in any of its forms vields

A

a biased estimate (<mp> * <mp>), unless one of the following

is true:

. <p> = 0 2-30

A

. I = Ipp 2-31

Condition 2-30 can be satisfied, for example, when the

linear problem is the result of linearizing a nonlinear
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will appear in chapter 3) occurs when the < > operation is

defined as an average over the volume of definition of m

(this property, ergodicity, is discussed below), and the

mean value of m is zero. Condition 2-31 can only be

satisfied if the mp are discrete parameters, and Np=KCNd

where K is the rank (e.g., Strang, 1980, chapter 2) of the A

matrix in 2-6; in other words, when there are, at least, as

many independent equations as there are parameters.

** Stationarity and ergodicity. Let mp,k indicate

the kth realization of a random process at point p, for an

unknown function m. The expected value can be defined

either as an average over the ensemble of realizations, or

in terms of the pdf p(m)
N 0

(mp> = lim (1/N) X mp,k = f m p(m) dm 2-32
N+c k=1 -0

To use the Gauss-Markov result for deterministic functions

m, we must add two conditions to the probabilistic model

1) stationarity:

<mp> = <mpt>; <ImpI 2> = <|mpl| 2>; ... 2-33

for any p, p' where mp is defined. When this condition is

only true for the mp themselves and their squares, but not

for higher powers, the process is called 'weakly stationary'

(see Wong (1971), chapter 2).

2) ergodicity

<m> = (1/V) f mp,k dv(p) 2-34

OMl 2 > =so
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in words: the expected values can be computed as integrals

over the volume of definition of m, on any realization k.

This property requires stationarity. It is 2-34 that

connects the Hilbert space approach described in the

following sections and the probabilistic approach of this

section; it states that the average properties of the

(conceptual, not physical) ensemble mp,k must be the average

properties of the only function we are interested in, mp.

To see this point, notice that 2-34 implies that the

condition 2-24 on which later equations are based, is

trivially satisfied.

** Assume m is ergodic, in the notation of 2-6

<m= f mp 2-35
p

Assume the forward problem is linear (equation 2-6). Then

the minimum variance estimate of mp among all unbiased

linear combinations of the di can be computed with

BpiI = ([AM]ip + Qip) ([AMAT + E]-')ii 2-36

where Qip = ai Ap, ai = fp Aip 2-37

and Ap is a Lagrange multiplier that must be adjusted to

satisfy the 'unimodular' condition

Ipp' = f ( Bpi Aipi) = I Bpi ai = 1 2-38
p p' i i

(the result is Ap = (1 -cpT [D]- 1 a) / (aT [5]- 1 a), where

cp is a vector with the Cip, [0] is the matrix of the Diii,

and a is a vector with the ai. C and D were defined in 2-26

through 2-28).



** Note that <|mp-mp|2> is larger when the unbiased

result 2-36 is used than when the original Gauss-Markov

version 2-29 is used. A choice between these two boils

down, in practice, to a matter of judgement, because MppI is

never known, but estimated from other data:

a) if we have a very good estimate of MppI

then obviously the G-M result 2-29 is preferable, because

its rms discrepancy from the desired mp is smaller. The

fact that mp cannot equal mp --on the average-- is a small

price to pay for higher overall accuracy.

b) if the estimate of Mppe is poor, then

neither of the two estimates we are discussing has high

overall accuracy; in this case I would choose the unbiased

result, because at least one condition is satisfied (condi-

tion 2-38, which implies unbiasedness under the ergodic

assumption, is satisfied even if a very poor estimate of

Mppi is used in the computations). This point will be made

again in section 2.8, where the Backus-Gilbert conditions

are discussed.

2.5.2 EXAMPLE

A cursory overview of the application of these

results to the example of section 2.2 completes this section

I.-DATA COVARIANCE. From the data di and from any

other data of the same type that we have but do not want to

use in the inversion (for example, because it would produce
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computer), one computes the power spectrum Dv of the data

(the methods for one dimensional data are standard; see

Bendat and Piersol (1971), section 9.6.2). The inverse

Fourier transform of the Dv is a piecewise constant estimate

of the covariance function Diii of the data. From this

estimate we build the covariance matrix of the data vector

d.

II.-ERROR COVARIANCE. We need the error covariance

matrix of the data. Knowledge of the measuring process

should provide the component due to measurement noise. To

this term must be added the error due to the incomplete

formulation of the forward problem. In our example, model-

ling error includes the residual power at long wavelengths

owing to errors in the reference field, and the error of the

1-D approximation. When using GEM9, a reasonable estimate

of this error accompanies the reference field. For lack of

information, we must assume the error in the one-dimensional

equation is negligible. Let us assume the error is statio-

nary, i.e., the variance is the same for each di and the

correlation only depends upon the distance between the di.

Then we can also compute the power spectrum Ev of the

errors.

III.-CROSSCOVARIANCE. To estimate Ci the following

steps can be used.

1) the coefficients of the forward kernel



(equation 2-4) are Aiv = c IkvI exp(jkvxi), i.e.,

Aiv = Av Yvi; Av = c JkvI

hence, the covariance D can be written as

Diii = Av A*v Mv Yvi vi 2-40
V

Dv

and the crosscovariance C can be written as
*

Cip = A Mv Yiv 'pv 2-41
V

It follows that the coefficients of the crosscovariance can

be computed from the already computed spectra of the data

and of its noise

Cv = (5v - Ev) Av / |Av1 2  2-42

2) The inverse Fourier transform of the coef-

ficients 2-42 gives a piecewise continuous estimate of the

covariance function Cip, from which the required values can

be interpolated.

3) The [D1 matrix is formed with the values of

Diii previously computed, sampled at the appropriate data

positions.[D1 is mathematicaly positive definite, because

it is the sum of the error matrix [E], which is positive

definite, and the errorless D, which is nonnegative definite

(this point is expanded in section 2.6.2). To invert D, a

Cholesky decomposition (e.g., Dongarra et al., 1979) is an

accurate and efficient method, if indeed D is computatio-

nally positive definite. The meaning and solution of

computational singularities will be discussed in section

2.6.2.
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A

4) The expected error of mp can be computed

using 2-17 with the quantities just defined. The resolution

function has little meaning for this problem, because we can

argue that it is a bandpass filter whose boundaries are the

length L and the data spacing Ax.

2.6 HILBERT SPACE METHODS

A

In the statistical methods the unknown m is thought

of as one realization of a random process, which is the set

of infinitely many realizations having in common means,

variances, etc. The pdf of the random process effectively

summarizes the common features of all the realizations. In

the Hilbert space methods, m is thought of as one element of

a Hilbert space)A that contains other functions i;; all the

m are defined in the same volume, can be expanded in a

series 2-7, and are at least as smooth as the desired m (a

concept made precise below). As such, all the mn are

reasonable candidates to be on the right side of the forward

equation 2-6, at least before the data are taken into

account. The data values, di, are also considered as

elements of a finite dimensional Hilbert space (a

classical vector space).

The author's favorite introduction to the subject are

chapters 3 to 5 of Lanczos (1961), but the modern use of

reproducing kernel spaces must be sought elsewhere. Davis

(1975, chapters 8,9,13 and section 12.6) is more concise,
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emphasize the fundamental reciprocities between under and

overdetermined problems. Luenberger (1968) is far more

complete and concise than the preceding two; as such, it is

an excellent reference, but also a little harder to follow

as a primer. Moritz (1980) covers applications to a spheri-

cal geometry, compares statistical, Hilbert space and dis-

crete methods, and does the above in a leisurely and

didactical style. The article by Freeden (1981) summarizes

many recent developments (reproducing kernel spaces, harmo-

nic splines).

The key operation in both the and X spaces is the

norm: in the norm of (d-d) measures how close a vector d

is to the data vector. In A%, the norm of an estimate m of

m is used to choose the estimate with smallest norm

-physically, the estimate with the minimum possible struc-

ture required by the data; e.g., Wunsch (1978). The inner

product is the other essential property of Hilbert spaces,

but this summary will circumvent the concept with algebra.

The norm of an element dcS will be computed with

fdfl = ( 2 d*i [E]-1i1 di' )1/2 = (dT.[E]-1-d)1/ 2

2-43

Notice that 2-43 can also be written:

I1dfl E- 1 = (([E]-1/2-d)T.([E]-1/2-d))1/ 2= (d'T.d' )1/2

The geometrical effect of E-1/ 2 is to rotate the vector d

into d', whose components refer to an orthonormal set of
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errors with unit variance, while those of d do not. In

addition, if the errors of d are gaussian, those of d' also

are.
The norm of me/$ will be computed as follows

a) for discrete parameters mp

ImIW-i = ( m*p [W]'pp mpw )1/2 = (mT [W]- 1 m)1/2
pp

b) for a function m

IlmH_ = ( * v mv / Wv )1/2 2-45
v=O

In 2-44, W-1/ 2 usually provides a normalization (e.g., if

the mp have different units). In 2-45, the Wv are mostly

used to provide a physically required upper bound on the

spectrum of m, and thus define the smoothness of the

functions in the space AC ( only functions with finite norm

are acceptable).

2.6.1 CONSTRAINED MINIMUM NORM

With these definitions, one chooses as optimum solu-

tion an mg = Ji B*pi di such that

m p I is minimum among all i that satisfy the data
W-1 within a bound S:

HAm-dB = S < S 2-46
E-1

(where (Am)i = fp Aip mp for a function m). See Moritz

(1980) or Shure et al. (1982). Using a Lagrange multiplier

P-1 we can write
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minimize { HRnII + (1/v) IIAm-d E } 2-47

choosing y to satisfy 2-46.

In order to write the solution to 2-47 for a function

m, let

[AWlip = A iv Wv vp 2-48
V

[AWATii, = I A*iv Wv Ai'v 2-49
V

(when the mp are discrete parameters, AW, AWAT indicate the

required matrix operations). With this notation, the result

of minimizing 2-47 is:

Bpi = I [AW]*ivp ([AWAT + vE]-iit 2-50
p i'

** 2-50 is similar in form to the Gauss Markov result

2-29, in spite of the fact that 2-29 optimizes each mp,
A

while 2-47 is a global constraint on all mp.

** The essential difference is that the G-M result

presumes we know the expected covariance MppI (or its

equivalent for a function, the expected spectrum Mv); there

is no parameter y to be adjusted. In 2-50, W is arbitrary,

within a class of reasonable constraints. Any (small) upper

bound on the spectrum Mv is a reasonable choice for Wv.

It is a subtlety of the Hilbert space formulation that the

spectrum Mv is not a valid choice of weights, because in

these "units" the norm of m is w. Because W does not have to

be closely related to m, the Lagrange multiplier y must be

chosen on the basis of the only known quantities, the di.



60

** The choice of y is known as 'ridge regression'

(Marquardt (1970); Lawson and Hanson (1974), chapter 25).

The following summary is based on Shure et al. (1982). If

the errors in the di are gaussian, and if [E] is their

covariance, then the expected value of S( p) in 2-46 is Nd,

the number of data. Calling

(AWAT+uE]- 1 = (Z]; [Z]d = h

then S and 9S/4y can be written

S = y2 hT [E] h 2-51

3S/3v = 2p hT [AWAT][Zl[E] h 2-52

Equations 2-51 and 2-52 can then be used in a Newton

iteration to find a P that makes S=Nd. The iteration is

guaranteed to converge because all matrices in 2-52 are

positive definite when y>0. [AWAT] may be positive semide-

finite (see section 2.7), but [AWAT+pI] is mathematically

positive definite. The range 0<p<w corresponds to O<S<

dT[E]-d; in that range, 9S/3y>O, guaranteeing convergence

of the Newton iteration.

An overview of the computational steps needed to

solve the example of equation 2-5 using equation 2-50

concludes this section. The data are the gi, and their

error covariance Ei' is presumed known (see section 2.5).

The key choice to make is W. Because the coefficients hk

must decay at least like

lhk| << ck k-2 as k-> 2-53
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for the gi to be finite (the ck are numbers of order 1), one

could set Tk = k-4- 0 0 1 . If the data are marine gravity, it

is likely that the sources of significant anomalies are at

least zo=2 km below the surface. This allows us to impose a

stronger constraint for short wavelengths:

I V = ck exp(-Iklzo) as k-> w 2-54

(variations in water density, etc. become data noise). Hence

= exp(-Iklzo) 2-54

is another valid choice. No units are necessary: y is

adjusted to yield the correct units. With the choice 2-54,

(AW)ip = |k| exp(-Iklzo exp(jk(xp-xi)) 2-55

(AWAT)ii, = |k 2 exp(-Iklzo exp(jk(xi-xii)) 2-56

Equations 2-55 and 56, the di and their xi, and Eu1: are all

the information required to solve 2-50; p is chosen with

2-51, 52 (any singularities in [Z]- 1 are discussed in

section 2-6-2).

Shure et al. (1982) have excellent examples of

physically required upper bounds for the spectrum of the

geomagnetic potential.

Because the Wv are not necessarily close to the

spectrum of m, the expected error equation 2-17 cannot be

used. Our two choices are: a) find and describe the

resolution function 2-14, or b) find an upper bound to

im-mf . Upper bounds, however, are almost always
W-1

unrealistically large unrealistically large.
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2.6.2 THE SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) underlies all

Hilbert space methods; the SVD also allows us to do away

with the often-seen requirement that all equations in 2-6 be

linearly independent when Nd<Np, so that the Gram matrix

[AWAT] can be inverted. Even [AWAT+E], although always

mathematically positive definite, may be computationally

singular.

For finite P, the matrix version of 2-6-a,

d = [A] m
2-57

will be replaced by

[EI-1/ 2 d = ([E]-1/ 2 [A] [W]1/ 2) ([W-1/2 m) 2-58-a

d' = [A' mi' 2-58-b

In 2-58,[E] and [W] are positive definite matrices, hence

[W1-1 , [W]-1/ 2 are well defined. The meaning of [E] and

[W] is the same as in section 2.6. For a function m, and in

order to avoid describing the properties of reproducing ker-

nel Hilbert spaces (see Freeden, 1981) the integral equation

di = fp A*ip mp 2-59

will be replaced by

di = Jv A'*iv m V 2-58-c

with

d'i = I [E-1/2= di= E-1/ 2 d 2-60
i'

m'p = { (mv /WV7 ) vp 2-61
v=0

A'ip = I X [E-1/2, Ai'v VWv 'vp 2-62
v=0 i'
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Aiv was defined in 2-8; mv in 2-7, [E-1 1 2]1ii is an element

of the E-11 2 matrix. Equations 2-58 relate elements of a

space '(d'e') to those of a space)X. A norm ins.' will

be computed as

Rd'H = ji Id'i1 2

For function m, the norm in,4 will be computed as

NIm'n = Iv |m'v 2

it is clear that such norms correspond to weighted norms in

the unprimed spaces.

The primes in d', A', m' will be dropped in the rest

of this section, but the discussion will refer to the

rotated equations 2-58, 2-59; m will be assumed to be a

function; the changes needed for discrete mp are trivial.

The function Aip (for fixed i) as defined in 2-62

must have a finite norm in , i.e.:

Iv |Aivj2 G

In the example of section 2.2, the unrotated kernel of the

integral equation is not even integrable; after a Wv is

introduced that requires the measured gi to be finite every-

where, the new, "rotated" Aip is square integrable.

The following results are based on Lanczos (1961,

chapter 3 for finite Np; chapters 4 and 5 for infinite Np

and Nd). See also Parker (1977) for infinite Np and finite

Nd-

Any element des' can be expressed as a linear combi-

nation of Nd basis vectors uk = {Ulk U2k - Uugk}T; the uk

are the eigenvectors of the symmetric Gram matrix AAT:
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[AAT)ii, = fAip A*i, p 2-63
p

) (AAT]ii, Ui'k = X k Uik 2-64
i

K Nd
di = I ak Uik + I ak Uik 2-65

k=1 K+1

Equation 2-64 yields KCNd nonzero eigenvalues Xk, and Nd-K

zero eigenvalues with their corresponding eigenvectors (let

1 > 2>---> XK; XK+1 = - ~ = N = 0). The uk associated
d

with nonzero eigenvalues (i.e., uk, k<K) span a subspace A

of '; 'A will be called 'activated subspace'. The uk,

K<k<Nd span the 'null subspace' 'o. K is the rank of the

matrix [AAT]; K indicates the number of independent linear

combinations one can form with the Nd equations 2-58.

Equation 2-65 can also be written

d = dA + do ; dAT-o = 0 2-65-b

with dAE A I dOE ZO. In other words: A and 0 are

orthogonal complements.

A similar basis can be found in . Let (ATA) denote

the symmetric function

(ATA)ppi = 2 Aip Aipt 2-67

then any element me,/ can be written in terms of the eigen-

functions vk of the self-adjoint operator

fp A (ATA)pp Vkp = 2 k Vkp 2-67

Equation 67 has an infinity of solutions vk, but only

K of these are associated with nonzero Xk; the nonzero

eigenvalues of 2-67 are equal to those of 2-64. The unknown

m can be written as the sum of two orthogonal parts
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K O
mP = Y Sk Vkp + Y Sk Vkp 2-68-a

k=1 K+1

m = mA + mo 2-68-b

(We assumed in section 2.3 that m could be expanded in an

infinite series 2-7; this assures discrete eigenvalues in

2-67).

The key result of this section is the singular value

decomposition of A:

K

Aip = Y Uik Ak V*pk 2-69
k=1

i.e., Aip can be computed exactly using only the activated

eigenvectors and eigenfunctions. Equation 2-69 has many

consequences:

** The matrix or integral operator A, does not

act upon the whole of) /, but only upon components Ej A'A, and

does not vield as a result vectors 'anywhere' in ', but only

those lying inSYA-

** 2-69 implies that d does not have any

component lying in .'. The data, however, are in the vector

d = d+e = d+eA+eo, where e0os . If the error vector does

indeed have a nonzero component e0, then the system of

equations 2-58 is incompatible (e.g., two different measure-

ments of the same quantity). The error component eA cannot

be distinguished from 'legitimate' data, hence eA will

always map into erroneous components of m.
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** 2-69 implies that any component me (m = mA+

+mo, mo6(. ) present in m has no expression in d (or 2); in

other words,

fp Aip (mO)p = 0

Converselv, with the given data d+e, nothing can be said

about those parts of m lying in A4 (e.g., g(xi) sampled

every Ax gives no information about components of h whose

wavelengths are shorter than 2Ax).
A

The SVD inverse computes m with

K
Bpi = Y Vpk (1/Xk) Uik 2-70

k=1

hence 2-70 only acts between the activated subspaces. Equa-

tion 2-70 can also be written as

i (Np Nd) 2 2Bpi lim Vpk (Xk/(Xk +P)) Uik 2-71
yP+0 k=1

the upper limit of the sum is the smaller of Np or Nd, but

the choice is irrelevant because the lim operation elimi-

nates all terms whose Xk equals zero.

The relation between this and previous results can be

seen by rewriting 2-71. When Np>Nd, and y*0, and we revert

to our primed notation, then 2-71 can be written in the form

B'i = lim { Ajwp (f[A/T+yI]-1)ii,} 2-72
11+0 i'

see Luenberger (1969, ch. 6) for some properties of 2-72.

When Np<Nd (the overdetermined case) 2-71 is equivalent to

B'i = lim (I ([XTA'+ 1I]-1)pp, Ajpi}
y1+0 p'

When 2-72 is written in terms of the 'unrotated' variables,
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we obtain the now-familiar form
*

B'i = lim ([ [AWlitp ([AWAT+yE]l)i,} 2-73
y+0 i'

Equation 2-73 is a mathematical definition, not an

efficient computational algorithm. In practice, two alter-

natives have been used:

1) the 'tapered or damped' inverse: is 2-73

with a finite p (i.e., the limit operation is eliminated).

The names of this inverse derive from the effect of y on the

factor Xk/(Xk 2+) of equation 2-71. This is, of course, the

same equation 2-50 previously discussed. The choice of y

was discussed in equations 2-51 and 2-52.

2) the 'truncated' inverse: follows the

suggestion of Lanczos (1961, chapter 3) that any eigenvalue

small enough to cause trouble when inverted, should be

considered a zero eigenvalue, hence the whole term asso-

ciated with this eigenvalue should be removed from the in-

verse. For Nd<<Np this algorithm is implemented as follows:

a) all original variables are 'rotated' into

primed variables.

b) the Gram matrix [A'A'T] is set up. Its

eigenvalues and eigenvector are computed (e.g., routine

EIGRS of the commercial package IMSL).

c) 2-70 is equivalent to
= * ~K * 227

Bpi = A'ilp ( Uik (1/Xk2 Uik )2-74
i'=1 k=1

All terms in 2-74 with Xk <A2 (whose choice is

discussed below) are eliminated from the sum. Lawson and



Hanson (1974) point out that for a finite P which is not too

large, it is more efficient to avoid building the Gram

matrix. It is sufficient to build the A' matrix, and compute

its singular value decomposition directly.

The limiting A is chosen with an argument similar to

that used to choose y. The data misfit can be written

K
S(K) = I Uik Ui'k di' -di 2 2-75

i k=1 i

Assuming the Xk are ordered ( >X2 ), the rank K is

chosen as the smallest K' for which S(K') achieves the value

Nd, the number of data and the expected normalized misfit.

Keeping more Xk will only fit data noise better.

2.6.3 THE BACKUS-GILBERT CONSTRAINT.

The resolution equation 2-12 will be needed again:

m =I Ipp mpI + B*pi ei 2-12
p 1

2-14
Ipp' = B*pi Aip

The physical problem Backus and Gilbert (1968, 1970)

dealt with was the distribution of densities and seismic

velocities as a function of depth in the earth. They chose

not to impose any constraint on the smoothness of these

functions (other than requiring that they be square integra-

ble). Let us say m is density as a function of depth.



Backus and Gilbert argued that an estimate $p gave useful

information about density at depth p if: a) mp was a local

average of m, and, b) the effect of noise e was as small as

possible. They showed that it is not possible to optimize

resolution and noise independently of each other. The
A

Backus-Gilbert constraint, for each mp, can be written

minimize a J |Ipp'-Ipp 2 + B*pi Eij Bpit 2-76
p? ii

A

subject to f Ipp' = 1 2-77
p'

with V +I = 1 ; o ,f > 0. 2-78

Setting v(=1 yields the maximum resolution that the given

data can provide for $p; setting P=1 yields the minimum

noise that mp can have. Infinitely many choices of ve7

yield an equal number of solutions, all equally 'optimum' in

the sense that for a given acceptable noise level, 2-76

gives maximum resolution, and for a given acceptable resolu-

tion, 2-76 gives minimum noise level. Unless the constraint

2-77 is imposed, setting /P=1 yields mp=O (an estimate

insensitive to data noise ... ); indeed, for any value offA

other than zero, 2-77 is required to yield an unscaled local

average.

The integral in 2-76 is the so-called first Dirichlet

criterion of deltaness. "Many such F-ness criteria are

available, so we are free to choose one which facilitates

numerical computation" (Backus and Gilbert, 1968). This

criterion requires only one matrix inversion for all mp.



Let v= a/r, 0*. The solution to 2-76 with 2-78 can

then be written

Bpi = (A+Q)itp ([AAT+PE]-l)ii, 2-79

where

Qip = ai Ap, ai = fp Aip

and Ap is a Lagrange multiplier that must be adjusted to

satisfy the 'unimodular' condition 2-77.

** In the original Backus-Gilbert papers no use is

made of weighting functions in)g( When this concept is

introduced, the deltaness criterion must be changed in form

because the weighting function Wpp , for fixed p, is itself

a reproducing kernel for all functions belonging to (see

the article by Freeden, 1982). The same result can be

obtained by 'rotating' m as was done in the previous

section.

** The particular deltaness criterion used makes the

form of equation 2-79 very similar to all previous results,

in particular to the unbiased inverse (equation 2-36),

obtained through statistical arguments.

** The fundamental difference between the Backus-

Gilbert line of reasoning and the previous results, particu-

larly those reached at by statistical methods, is this:

there is no unique, overall best inverse. The statistical

methods have one and only one answer, because the covariance

M is presumed known. The minimum norm method of section

2.6.1 also yields only one answer, but many reasonable
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weights W can be chosen. Backus and Gilbert invite the user

to explore the range of possible solutions.

** If a unique answer is needed, the argument by

which v (i.e., a/0) was chosen in section 2.6.1 is still

valid: the solution should not fit the data any better than

the expected errors of the data predict, otherwise B is,

most likely, reproducing noise.



2.7 CONCLUSIONS

All the methods discussed in this chapter are least

squares methods, and the optimum inverses they yield have

essentially the same form.

The fundamental difference between methods lies in

how much we can assume known. In addition to the data di,

the following are required, in order of increasing informa-

tion

1) Etii: a covariance matrix describing both

measuring noise of the di, and modelling error of the

forward problem. This latter component is usually unknown.

2) N : an upper bound on the spectrum of the

unknown function m.

3) : the spectrum of the unknown function
m.

If both 1 and 3 are known with reasonable accuracy,

the Gauss Markov result 2-22 is applicable. Furthermore, in

this case, valid expected errors (rms errors over the volume

of definition of m) can be computed. This case occurs when

very large amounts of data are available (e.g., satellite

altimetry) because it is not possible to use all the data in

one inversion; although a stepwise inversion can include

more equations, the total number is still well below the

millions of data values that a satellite can collect in its

lifetime. The 'statistical' approach uses all the data to

compute the spectra, and only some to provide the correct

phases of the different basis functions in a small area.
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If only 1 and 2 are known (e.g., Shure et al., 1982),

then the 'damped' inverse is a better choice. Ridge

regression provides a value of v that scales the solution to

fit the data only to the extent that their errors permit.

The unbiased damped inverse is a better choice when the mean

value of m is not zero, and W is far from M. If no

constraint on m is known, the Backus-Gilbert philosophy

applies, and all one can ask is: what is the range of

possible solutions?. This approach is still applicable when

more information is available.

The difference between an infinite dimensional formu-

lation and a finite one has two different aspects.

1) inasmuch as all functions dealt with can be

approximated arbitrarily closely by a finite vector (either

Fourier coefficients, or discrete samples), the forward pro-

blem can always be replaced by a finite dimensional problem

that is arbitrarily close to the original. Many times the

forward kernel Aip is only known at discrete points p (e.g.,

Wunsch and Grant, 1982), so little is gained by an infinite

dimensional formulation whose kernel is unknown.

2) if the discretization chosen is too coarse or

extreme (e.g., describing the ocean floor as three layers

only) then the modelling error is large. Since the model-

ling error is always very difficult to describe, because it

requires knowledge about m that one does not have, this

error component should be kept small. If the modelling



error is large, but our description of it (i.e., the matrix

E) is incorrect, then we are solving the wrong problem. In

this sense, an infinite dimensional formulation (when the

unknown is a function) is a safe way to keep the modelling

error negligibly small.

The elegance of the theory of Hilbert spaces and the

simplicity of the Gauss-Markov result should not obscure the

fact that the only norm being minimized is the sum of

(weighted) squares. A humorous "example" of the inapplica-

bility of the L2 norm to fit the data will be borrowed from

Claerbout and Muir (1973): '... when a traveller reaches a

fork in the road, the L, norm tells him to take one way or

the other, but the L2 norm instructs him to head off into

the bushes'. The main requirement to fit the data in a

least squares sense is the removal of outliers from the data

set prior to inversion, because the L2 norm does not yield

'robust' estimates.

The L2 norm is not the only way to choose among

different estimates of m either. Density inside the Earth

is a positive quantity, but none of the methods discusses

here addressed inequality constraints. The singular value

decomposition allows one to add null space eigenfunctions vk

(which the data do not constrain) until an inequality

constraint is satisfied. But linear programming -for finite

Np and Nd is a systematic way to incorporate inequality

constraints, and minimize the 1-norm of m (see Sabatier

(1977)).
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Furthermore, statistical methods are well suited to

include inequality constraints, inasmuch as the pdf of m can

be set to zero in the forbidden regions. Tarantola and

Valette (1982 a,b) have proposed -for finite Np- to use the

pdf of the data and the a-priori pdf of m to compute the pdf

of m given the data. Such an approach is computationally

very cumbersome, but it has the ability to solve nonlinear

problems without linearization and gives an excellent des-

cription of the set of acceptable models.



CHAPTER 3

OPTIMUM GEOID ESTIMATION

3.1 INTRODUCTION

This chapter analyzes the construction of geoidal

estimates from surface gravity data (it is a slightly

revised version of Zlotnicki et al (1982)). At present, the

analysis of satellite orbits has been able to yield the

spherical harmonic coefficients of the earth's gravity field

associated with wavelengths longer than 2000 km (such as GEM

9 and GEM10, Lerch et al., 1979) with more accuracy than

surface gravity measurements can provide. Because of the

height at which satellites fly and the exponential decrease

of high frequency coefficients with height, coefficients in

the wavelength range 2000-4000 km have large uncertainties

and those with wavelengths shorter than 2000 km are practi-

cally unknown. In order to define these short wavelengths,

surface gravity data must be used.

This chapter does not analyze the estimation of

satellite-derived coefficients because they are always

accompanied by realistic formal error estimates (see figure

1-1). The best gravimetric geoids, on the other hand, lack

any error estimate, and their quality has only be assessed

by their similarity to sea-surface topography, an argument
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that breaks down when one is trying to recover oceanographic

discrepancies between the two.

Geoidal heights and gravity accelerations are both ex-

pressions of the earth's gravity field; as such, one of them

can be computed if the other is known fully. To compute a

geoidal height at just one point, however, knowledge of

gravity accelerations over the entire surface of the Earth

is required. Unfortunately, gravity measurements are always

discrete and noisy, and entire regions of the earth lack any

data. Using the methods discussed in chapter 2, we can

obtain optimum estimates of geoidal heights from any dis-

crete distribution of data. What is more important in order

to extract small signals, realistic estimates of the syste-

matic error owing to the incompleteness of the data set

(the "omission" or "resolution" error) and the uncertainty

owing to noise in the measurements can be given. The

equations for the omission error are valid for any other

computational scheme that involves a linear combination of

gravity data, such as the non-optimum method actually used

to compute a North Atlantic geoid in chapter 4.

The goal of inferring the geoid from gravity is not

new, and four methods have been used to solve it approxi-

mately: Stokes integral, Molodenskii's series, modified

Stokes integrals, and least squares collocation.

Stokes integral [Stokes, 1849; Heiskanen and Moritz,

1967 (hereinafter H&M)] is the exact solution to the problem

of computing the disturbing potential (proportional to

geoidal height, within excellent accuracy), assuming exact
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gravity data are available everywhere on a sphere and no

masses exist outside this sphere. A discrete version of

Stokes integral has been the most commonly used procedure,

usually with no analysis of the omission error (but Sjoberg

[1979] discussed the error for a particular distribution of

data). Marsh and Chang [1978] computed a detailed local

geoid with a variation of this technique. A long wavelength

error (usually a strong bias and a trend) are the result of

integrating only over a fraction of the Earth.

Molodenskii et al. [1967] break up the integration over

the sphere into two terms: an integral over a small

spherical cap around the point of interest and a series in

'truncation' functions for the remaining effect. This

approach shows that short wavelength information is contri-

buted by data at neighboring points and long wavelength

information by distant data; it also allows one to evaluate

the omission errors due to lack of data outside the

spherical cap. Jekeli [1979] evaluated omission errors in

this manner, assuming perfect data (i.e., continuous and

noiseless) around the point of interest.

Molodenskii's expansion can be used to find modifica-

tions of Stokes kernel that reduce the error due to lack of

remote data. Optimum algorithms for continuous point data

inside a spherical cap were discussed by Jekeli [1981],

based upon a minimization also due to Molodenskii et al.
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[1967]. See also Rapp [1980]. These methods do not address

discrete (and irregularly spaced) data and require the point

of interest to be in the center of a circle of data.

Least squares collocation [Moritz, 1978, 1980] has been

reviewed in Chapter 2. It is closely related to the

Backus-Gilbert method, but they differ in the error analy-

sis: collocation depends upon knowledge of the covariance

function of the model, whereas the Backus-Gilbert method

emphasizes the resolution function, which retains its signi-

ficance even when nothing is known about the expected

behaviour of the geoid. Both these methods are more

accurate and data adaptive (for real data sets) than those

described above but they require more expensive computa-

tions. Although this chapter emphasizes optimum methods,

the geoid computation of Chapter 4 was performed with a

suboptimum modified Stokes kernel.

All these methods include other assumptions whose

violation is a source of systematic error.

1.-Usually a spherical geometry is used; when an

integral such as Stokes' is used to compute geoidal

heights, the gravity data are assumed to lie on a

sphere (the optimum methods do not require this

assumption). The 21 km difference between equatorial

and polar radii introduces a long wavelength error of

order f=1/298. Rapp (1981) derived and computed the

corrections needed when a partial Stokes integration
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is performed over a cap. For a 100 cap (which is

used in chapter 4) and the unmodified Stokes kernel,

the maximum and rms corrections needed are (-26 cm,

±6 cm); using a modified Stokes kernel the

corrections were slightly lower. For larger caps the

error increases because the integration relies more

on gravity data for its long wavelength information:

for an integral over the whole Earth the corrections

have (-59 cm, ±18 cm) values. Although these numbers

are relatively low, they appear as an E-W slope that

can be easily mistaken for the longer scales of the

general circulation.

2.-The other major assumption is the absence of

masses outside the geoid (needed for Laplace's

equation to remain valid). Continents, islands, and

the whole atmosphere are violations of this

assumption. According to H&M (section 8-2) this

error can be corrected by a 3-step process:

-remove from measured gravity the attraction of

the exterior masses ME, either by moving them

out to infinity (mathematically, of course) or

by pushing them inside the Earth.

NOTE: in this chapter, geoidal heights will be denoted by N,
as is traditional in the geodetic literature. In all other
chapters, they are denoted y.



g'i = gi - Agi(ME)

-compute from g' the geoid N' of an Earth

lacking ME (called the 'cogeoid'), for example

with Stokes integral.

-add to N' the geoidal effect of the external

masses, AN(ME), usually called 'indirect effect'

Np = N'p + ANp(ME)

The main practical problem encountered in computing these

corrections is the lack of knowledge about ME. One can

easily measure the topography of a mountain, but it is much

more difficult to obtain its density. H&M (sections 3-6 and

3-7) argue that the best among the existing corrections is

the 'condensation' correction, which compresses ME onto a

surface layer on the geoid, because both Ag(ME) and AN(ME)

are small, hence the error introduced by inaccurate know-

ledge of ME is a fraction of a small number. For the

atmosphere AN(ME) varies with the seasons between -0.1 and

-1.3 cm, and Ag(ME) is about 0.87 mgal (Christodoulidis,

1979). For mountains or islands, AN is of order 1 m per 3

km of average elevation of ME. Over the oceans this effect

is important only near coastlines.



3.2. FORMULATION OF THE SPHERICAL PROBLEM

This section derives and discusses various forms of the

basic integral equation needed for the inversion. A sphe-

rical geometry is used.

The total potential V(O,X,r) of the earth's gravity

field is split into a reference component U and a disturbing

potential T. U is the attraction of a field of which the

reference ellipsoid is an equipotential surface (H&M).

V(r,6,X) = U(r,0,X) + T(r,0,X)

Here r is radial distance as a fraction of the radius of the

limiting sphere, e and X are colatitude and longitude,

respectively.

The required solution of Laplace's equation for T, in

terms of spherical harmonics, valid on and outside the

sphere, and assuming no masses exist outside this sphere, is

(H&M)

CO n
T(r,6,I) = I (anm cos(mX)

n=O m=O

+ bnm sin(mX))Pnm(cos e)/rn+l

where Pnm are fully normalized Legendre functions and anm

and bnm are real coefficients. For notational convenience

we use complex coefficients Tnm and functions tnmp (Jackson

[1975] but with the normalizations of H&M; the asterisk

denotes complex conjugate)



Tnm(r) = (-1)mT,-m(r) = (1/ 1 2)(amm -ibnm) / rn+1
(3-1)

Onmp = (_im O*n,-mp = (1//2)Pnm(COS Op) exp(jmXp)

so that the expansion of T reads

Sn
T(r,G9,xp) = O nmp Tnm(r) (3-2)

n=0 m=-n

The coefficients Tnm satisfy the inverse transformation

Tnm(r) = f T(r,6p,xp) 4nmp (3-3)
p

where fp (-) = ff(-)dag recovers the mean value of the

integrand on the sphere of radius r (the element of area dag

around point p is measured as a fraction of the area of the

sphere). The geoidal heights, N, are computed from Brun's

approximate formula (H&M)

Np = T(1,O9,pX)/Y (3-4)

where y is the mean value of gravity acceleration on r = 1.

Equation 3-4 is a spherical approximation. The ellipsoidal

relationship can be found in Moritz (1980, section 39).

Equation (1) becomes the spherical harmonic expansion of N

when r=1, after dividing by y:

Nnm = Tnm(l)/Y (3-5)

Studies of gravity acceleration customarily use gravity

'anomalies' (see below), but this discussion will be res-

tricted to gravity 'disturbances'; use of the former requi-

res only minor changes. The gravity disturbance, g, is

defined as
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g(r,,) = -(aT/ar)Ir,.,.=I gnm(r)nmi (3-6)
1 1 n m

The coefficients in the expansion of gravity and the geoid

are related by

gnm(r) = (y/R) [(n+1) / rn+ 2] Nnm (3-7)

(R=6371 km is a mean earth radius). If we wish to assume

that gravity data are given on the surface of the sphere

r=1, then 3-7 becomes

gnm(l) = (y/R) (n+1) Nnm (3-8)

(both gravity anomalies and disturbances are defined as

3/3r(Vp-Upt); for disturbances P'=P; for anomalies P' and P

are on the same vertical but at different heights, with P'

on the reference ellipsoid. When gravity anomalies are on

the left hand of (7) and (8), (n+1) on the right must be

replaced by (n-1), and both equations are valid for n > 2.

See H&M).

To use gravity measured on r=1 we would have to

back transform equation (8). Clearly, the kernel whose

coefficients are (n+1) is singular (it is unbounded at the

origin, H&M, equation (1-96)). We know, however, that g has

finite energy, hence gnm must fall off as Ignm(l) 2 << n-2

as n+c, and Nnm must decay even faster. The difficulty,

therefore, lies only in the very high degrees, which the

kernel attempts to amplify n+1 times, whereas neither g nor

N have significant energy at those high degrees. For this

reason all terms with n > n, a very large but finite cutoff

will be deleted from the formulation.
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We define a function m (the model) that contains all

spherical harmonic terms of N, in the range -nj<n4n. The

inversion procedure of section 3 will attempt to estimate m

rather than N. Let

n n
di = I Y 9nmfi)nmi

n=n1 m=-n

n n
Aip = An O*nmi Onmp An = (n+l)R

n=n1 m=-n

n n
mp = Y I Nnm Onmp

n=n m=-n

Assume first that ni=O. Because g and N are bounded

and square integrable, d and m can approximate them as

closely as desired by taking n sufficiently large. It is

enough to choose n so that the remainder in the series for

d is much smaller than measurement noise. Measurements of g

can then be interpreted as measurements of d. We also

remove terms with n<nl because analysis of satellite orbit

perturbations can provide these components of g and N, and

their removal allows us to use fewer data in the inversion.

Although n eliminates the mathematical singularity,

Aip can still be larger than the computer can represent, or

produce instabilities in the inversion (large changes in m

due to minor perturbations in the data).

This 'computational singularity' can be avoided either
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by filtering d or by weighting m; at least one of these

alternatives must be used. We multiply (8) by the

coefficients Fn of a filter and apply a weighting Wn, both

functions of angular distance only (hence with no order m

dependence), and both Fn*O, Wn+O as n+=.

FnGnm(1) = (I Fn (n+1) Wnl/ 2 ) (Wn 1/2 Nnm) (3-9)

Applying the inverse transform to (9) yields

(Fd)i = f (FAW/2)i (W1/2m)p (3-10)
p

where we have called

n n
(Fd)i = X FnGnm(i)Onmi (3-11)

n=ni m=-n

1/2 n 1/2 1 (-2(FAW )ip = Z Fn An Wn 1/ Pn(cos tip) (3-12)
n=n n

1/2 n n 1/213
(W~ m)p = n 1/n Nnm Onmp (3-13)

n=nI m=-n

where tip = angular distance between points i and p,

En=1//2n+1. See also Appendix 1.

We first discuss filtering only (setting Wn=1 in (9),

all W disappear in (10)-(13)). An example at hand is

equation (7), where 1/r(n+ 2 ) acts as a filter by attenuating

high degree components of g as distance to the earth increa-

ses; this filter appears because of the physical constraints

on g. Another type of filter is the degree average [e.g.,



Rapp, 1978] but its coefficients do not decay with n fast

enough to make (12) computationally efficient when Wn = 1-

For our examples we will use a spherical equivalent of the

Gaussian filter, described in Appendix 3 and characterized

by its half width *o. When a filter that makes 3-12

converge is used, the artificial cutoff at n becomes

unnecesary. Filtering data is a standard procedure for

reducing both noise and the number of values that must be

handled. The additional advantage here is the reduction

of high degree content in (FA). The main disadvantage is

that a sampling error is introduced, because we assume

(Fd)i = fitFiiidit with &if Fiii = 1 but we must use

(Fd)i = { Fii dii / ) Fiii
i' i'

where Xii is a sum over the available data. The tilde on

d indicates that it contains measurement noise, but that

over (Fd) reflects both the effect of noise and incomplete

sampling. (The integral over i' need not cover the sphere

if Fiii is negligibly small for Viii > ).

We now focus on W alone (setting Fn=1 in (9) eliminates

F from (10)-(13)). Because Wn+O as n+w, high degrees are

eliminated from (AW ), thus removing the singularity. Its

effect will be discussed further in later sections. W may

be any reasonable upper bound on the power spectrum of N;

when used, it becomes unnecesary to cut off the sums at n.
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But I feel that the high degree behaviour of N has not yet

been adequately modelled, so that cutting off at some high

degree is the simplest possible description, and the one

whose error (the rms power above n) is easiest to describe.

The computations of section 3 require such functions

as (FAWATFT). We list here their Legendre series for

reference. See also Appendix 1.

An = R(n+)

(n = 1/1 2n+1

n

n=nl
(3-14)

Wpp' = Z Wn P Pn(cos *ppe)En

(FAW)ip = ) Fn An En ~ Pn(cos 'ip)
En

(FAWATFT)i' = l Fn 2 An 2 Wn - Pn(cos $1)
En

In these equations it is easy to take into account gravity

accelerations measured at different distances from the

Earth's center, thus eliminating the need for free air or

ellipsoidal corrections: one simply replaces the kernel

coefficients by An=(Y/R) (n+1) r-(n+l) (and use the ellip-

soidal approximation to Brun's formula).

The same reasoning described in this section can be

used to pose integral equations for gravity accelerations,

given geoid data from satellite altimeters. We need only

exchange m and d in (11) and 13), and replace (n+1)y/R by

its reciprocal in (12) and (14). Truncation is still needed
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because the kernel whose coefficients are 1/(n+1) (similar

to Stokes function, H&M, equation (2-169)) is also singular

because of its high degree content. Filtering and

weighting operate in the same manner.

3.3. RESOLUTION AND NOISE

Equation (10) can be written, after an obvious change

of variables,

di = f Aip mp (3-15)

p

where Aip is a square integrable function, as are d and m.

The whole machinery of chapter 2 can now be applied.

Integrals are taken over the surface of the sphere,

and they recover the mean value of the integrand.

We assume ND measurements di are available,

di = di + cdi i = 1,2,..., ND ND << Np (3-16)

where diare measurement errors, and Np is the dimension of

the space in which m lies.

We compute mp with

mp = Bpi di (3-17)
1

(again indices i, i', ... indicate data positions and p, p

... for model positions). Notice that Bpi can be Stokes

kernel sampled at the data positions i, any of its modifica-

tions, or the optimum inverses. The fundamental relation

between, m and m (equation 2-12) follows
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m = f IpAp MP + B B i Ed. (3-18)

where

Ip p = Bi Aip (3-19)
o i o

Data noise Ed is described by its covariance matrix [Ed],

[Edliil = "dEd > <cd > = 0
1 11

and its effect on m is described by the covariance function

E p p = Bp i [Ed] Bpi, op" = /(E"pp (3-20)
0 if 0) ii i;

Using the definition of $nmp in (1), and calling nm

the Legendre coefficients of mp, the resolution error

becomes

E' 2 2 n mm(Ip - nm ) (3-21)p 7 l±ip nm nmpon1  n=nl m=-n 0 0

where

IpOnm = Bpi An O*nmi

(3-22)

pop mp onm Onmp

Because we are not interested in reproducing low degrees

n<ni (provided by the analysis of perturbation to satellite

orbits) we will consider m a useful estimate of m if a range

n1 <n~n2 exists over which C' p 2 is small. If we do not
on1

know the Mnm we must require

Ani < n n 2
I*p nm ~ nmp (3-23)

0 0 -n C m < n



The right hand side of (23) is the spherical harmonic

coefficient of the identity operator (Dirac delta) on the

sphere, centered at po (Appendix 1).

Direct verification of condition (23) for all n, m of

interest would be prohibitively expensive. We will use two

alternatives: looking at the degree variances of I, and

estimating the rms value of the error (21) betwen n1 and

n2 -

A necessary condition on the degree variances can be

obtained from (23) (see also Appendix 2)

^ 2 n ^ 2324|6p nf ~ IIp 0 nmI ~ 2n+1 nl<n<n2  (3-24)
0 m=-n

(necessarily, 2n+1 are the degree variances of a Dirac del-

ta). This condition is not sufficient for (23); it is

AAalso necessary to ascertain whether I POP is peaked at 90,

indication that many terms in the expansion of I are in

phase at that point.

3.3.1 RMS RESOLUTION ERROR

The error analysis described before has a fundamental

advantage: it requires no knowledge about the model m. For

example, if condition (23) is satisfied to a specified

accuracy for all n between n1 and n2 , if the degree

variances are negligibly small when n is not between ni and

n2 , and if these hold for all po inside some area, we can



claim that m is a band-passed version of m inside the same

area, a most useful property.

An estimate of the spectrum of m is needed, however, if

we want an rms value of the systematic omission error in the

proper units. Given two points inside the data region, p1

and P2, we imagine their error computed from (25) (we really

do not know all the Mnm)- We then 'slide' the data

distribution to another place in the earth, where p, and P2

have different latitude and longitude, but the same position

relative to the data points; again we compute their errors.

The average over the earth of the products cp ep is defined

as the covariance of the omission error between pi and P2-

It is difficult to compute it unless we also average over

all azimuths, a more meaningful operation if m is isotropic.

With this assumption

<IMnmI2> - -- for all orders m-

Therefore, multiplying (25) by its complex conjugate, taking

'expected values' and summing between ni and n2 , one obtains

the rms error equation 2-17 [e.g., Moritz, 1976)]

n2 n2

E' ' p Bp i (ACAT),ni Bpi,
0. n' 0 n

n2 n2 n2
+ Cp | - I Bp i(AC)ipl - I Bpi(AC)ipoI (3-25)

0 ni i o ni i n



n2
where E'| is the component of the covariance function of

nj 2
the resolution error with nl~n~n2 , Cy is the same compo-

nent of the expected covariance function of m; (AC)T is
ni

the same component of the forward kernel function weighted
n2

with C; (ACA)| is the same component of the inner product
ni

function also weighted with C. Formulas for these are

given in section 2; the Legendre series are summed between

nj and n2 (in our computations we made tables with these

functions, from which the needed values were later inter-

polated.

The total rms error of m is obtained by summing (25)

and (20). The limits ni and n2 in (25) will be used to

study the error in a particular frequency band. The total

error of a point estimate requires n2 +'

3.3.2 INVERSE OPERATORS

The three inverse operators that will be used are

of the form

Bpi = { Aitp [AATI-,ii (3-26)

where [AAT]~ is a generalized inverse of the inner product

or Gram matrix (see section 2.6.2).

The singular value decomposition (SVD) inverse of AAT

is (equation 2-72)

K
[AATI-ii, = X Uik Xk- 2 Ui'k (3-27)

k=1
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The tapered least squares (TLS) inverse (eq. 2-50) is

D1
[AATI-ii, = 1 Uik C 2 + 2 2) Ui'k (3-28a)

k=1 Xk + 8 /a
[AATV= [AAT + 2 -1

[2] (3-28b)

The constraint fi = 1 cannot be applied to this problem

because the lack of a zero degree term in m and A yields fI=

0. This produces an undesired effect that is better

explained in section 4. To avoid it, an 'unbiased TLS

inverse' will be defined by

2,2 D1

[AAT-ii, = (1 + 2) 2 Uik( 2 , 2 2) Ui'k (3-29)

k=1 Ak + 6 /a

As written,these inverses are optimum only when data

noise is an uncorrelated process with constant variance.

When the noise covariance ED, the weights W and the filter F

are made explicit, we write

B = [FAW]TED_1/ 2[ED_ 1/2FAWATFTED 1/2]- ED_1/2 (3-31)

Notice that the elements of FAW and FAWATFT are computed

from (14).
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3.4 EXAMPLES

This section illustrates how the different parameters

associated with the computational scheme and the data

distribution affect the geoidal estimate.

3.4.1 SVD, TLS, AND UNBIASED TLS INVERSES

Assume a filtered data value is given every 10 both in

latitude and longitude between 60N to 60S, 60W to 60E (169

data points). Each datum is a weighted average, the filter

is that of equation (3-A15), with v = 10,000 (*o ~ 0.810).

In this chapter (except in section 'Random noise')

random errors in the filtered data values are always assumed

to be uncorrelated with constant variance. Except where

noted, no model weighting W is imposed. The only filter

applied to the data is that of equation 3-A15, appendix 3-3.

Most figures in this chapter present the square root of the

ratio between the degree variances of the resolution func-

tions (equation 3-A14) and (2n+1), the degree variances of a

Dirac delta; they will be called 'degree responses.'

Figure 3-1 shows the degree responses for (lat, lon)p =

(00,00), at the center of the data region, computed by the

SVD equation (3-26)/(3-27) for three different ranks: 169,

146, 97. Figure 3-2 shows the range of eigenvalues for this

example. These figures show that the full rank solution

retains as much high degree information as this filtering

and distribution of filtered values allow to be defined.

This choice of data spacing and filter width produce
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Fig. 1. Degree responses at (lat, lon) = (0*, 0*); data distribu-
tion: 6*W to 6*E, 6*S to 6*N, every 1*. Filter: v = 10000; SVD
inverse, ranks 169, 146, and 97. Random noise sensitivities of 194,
46, and 18 cm/mgal, respectively. Data are assumed to lack degrees
0-9.
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Fig. 2. Range of eigenvalues A for the problem of Figure 1; A, =
13.1 mgal/cm.



97

redundant combinations of data; for K=169 very small eigen-

values are retained, and 1 mgal random noise in the filtered

data produces 194 cm random noise in the geoidal estimate.

Dropping smaller eigenvalues (Figure '3-1) eliminates high

degree information, yields a sharper high degree cutoff,

eliminates a small positive bias of the full rank solution,

and brings noise down to 46 cm/mgal. Reduction of the high

degree cutoff is the main effect of decreasing the rank up

to K = 120. Beyond that, the low degree cutoff is affected

too, as the curve for K = 97 shows; also, the ripples at the

plateau become larger. Higher degrees are the least well

defined and thus are associated with the smallest eigenva-

lues; the very low degrees are also associated with small

eigenvalues because of the limited extent of the data.

Notice that the plateau remains around 1 when the rank is

decreased. (In Figures 3-1, 3-3, and 3-4 it is assumed that

degrees 0-9 have been (exactly) removed from the data. This

produces 6n= 0 for n<9. However, these terms had not been

removed from the functions that make up the inverse operator

(equation 3-26).

The inverse operators for Figure 3-3 were computed by

the TLS equation (26)/(28) and three different values of

8/a: 0.7, 4, and 8 mgal/cm, respectively, equal to the

eigenvalues X169 , X146, X111 . The a=0 solution is obviously

the same as the full rank solution of Figure 1. Increasing

a/a shifts the high and low degree cutoffs toward medium

degrees, it decreases noise (63, 20, 11 cm/mgal,
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Fig. 3. Degree response. Same data as Figure 1. Degrees 0-9
removed from data and kernel. TLS inverse, p/a: 0.7 (=X, 69), 4
(=K,46), 8 (=km), all in mgal/cm. Random noise: 63, 20, 11 cm/
mgal.

Fig. 4. Degree responses. Same data as Figure 3, but using the
unbiased TLS inverse. #/a = 1.2, 2.5, 4.0 mgal/cm. Noise: 54, 35,
24, cm/mgal.

LATIs

Fig. 5. Resolution function on the sphere. Same data as Figure 1.
SVD inverse, K = 152. (lat, long)j, = (4*, 4").



respectively); but the most striking effect is the bias it

introduces, shown by the decrease in the value at the

plateau. The reason for this bias is the inability to force

I to integrate to 1.

The unbiased TLS inverse, equation (3-26/28), elimi-

nates this problem (Figure 3-4).

For illustration, Figure 3-5 shows the resolution func-

tion corresponding to one of these degree responses. Notice

that it is difficult to infer anything from it, besides its

center, which is at the correct location (showing that the

phase condition is satisfied), its width, and the presence

of sidelobes. Degree responses are easier to interpret for

this problem.

3.4.2 QUALITY VARIATION ACCROSS THE DATA REGION

Quality of the geoidal estimate is degraded away from

the center of the data region. To see this explicitly,

consider the same filtering and data distribution of the

previous example. (In addition, degrees 0-9 were removed

from the kernel and its inner product to compute the inverse

operator B. When this B is applied on data d', which

completely lack the first 30 degrees, instead of acting on

data which only lack degrees 0-9, IiBpiA'ipt has zero power

at n < 30. This is best seen in equation (3-A14)).

Three zones can be distinguished: an inner zone,

surrounding the center of the data region; an intermediate
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zone, the outer rim of the data region; and, an outer zone,

where no data are given.

Quality in the inner region is fairly uniform both in

resolution and in sensitivity to noise; at data points, a

band-passed version of the real geoid is reproduced. Figure

3-6 compares the degree responses in the inner region, using

an unbiased TLS inverse, $/a = 3.4 mgal/cm. The response at

(2*,2*) contains less information at low degrees than that

at (00,00), the center of the data region.

A geoidal height at a point in this inner region, but

where no gravity data is given, say at (0.50*0.50), is a

weighted average of the closest neighbors that do have data,

and its high degree content is diminished (Figure 3-7).

In the intermediate zone and toward the edge of the

data region, resolution worsens noticeably, but we can still

recover some useful information at intermediate degrees (Fi-

gure 3-8).

The data contribute no useful information about the

outer zone (curve for (80,80) in Figure 3-8).

Degree responses do not tell the whole story because

they lack phase information (both of which are expensive to

compute). We then compute the rms value of the resolution

error, equation (3-25). The degree response clearly show

that 304n4160 is the range accurately resolved by the data.

Assume that we know the component with n(30 from other
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Fig. 6. Degree response. (lat, lon);,: (0*, 00), (1 1*), (2*, 2*).
Unbiased TLS inverse, O/a = 1.7 mgal/cm. Data distribution: 6*N to
6*S, 6*W to 6*E, every 1*. Filter: v = 10000, degrees 0-9 removed.
Noise: 46 cm/mgal.

Fig. 7. Degree response. Same data and inverse as Figure 6. (lat,
Ion),,: (0*, 0*), (0.50, 0.50). Noise: 46, 28 cm/mgal.

0-5- 4\ 4*
4I'4

0 100 200 ~ 3C0o

Fig. 8. Degree responses. Same data and inverse as Figure 6.
(lat, lon),, = (00, 00), (40, 40), (50, 50), (6*, 6*). Noise: 46, 44, 40, 29 cm/
mgal. Also shown, curve for (80, 80) outside the data region.

101
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4- 16 44 36 ERROR IN
Z 30znz 180
w in cms
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Fig. 9. rms value, in centimeters, of the systematic error in 30 s
n : 150 for the example of Figures 6-8. Total rms height by Kaula's
rule: 213 cm. The figure can be completed by arguments of symme-
try.
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Fig. 10. rms value, in centimeters, of the systematic error in 30
S n s 250 for the example of Figures 6-8. Total rms height by
Kaula's rule: 216 cm. The figure can be completed by arguments of
symmetry.
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Fig. 11. Sensitivity to uncorrelated noise in the filtered data, in
cm/mgal, for the example of Figures 6-8. Figure can be completed
by symmetry.
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measurements and that it can be (exactly) removed from the

data. Figure 9 shows a map of the rms value of the

resolution error in the range 304n<160, assuming Kaula's

rule (Wn=R2 10-1 0n-4 ; Kaula [1966]) approximates the spec-

trum of m. Noise is not included in figure 9. Because the

high degree 'tail' cannot be removed the way the low degrees

can, Figure 3-10 shows the same error in 30<n<260 (the

degree response is negligibly small for n>260). Finally,

Figure 11 shows the effect of uncorrelated noise in the

filtered values. A discussion of the effect of uncorrelated

noise in the original point data is postponed until the last

section of this chapter.

3.4.3 DATA COVERAGE

Now we shrink the data region to 5*S to 50N, 50W to

5*E, again sampled every 10 (121 points), applying the same

filter as in the previous example. Figure 3-12 compares the

solutions of maximum resolution for the central point with

this reduced coverage and with the slightly larger coverage

used before. The most significant difference is that the

smaller data coverage distorts the low degree information in

the geoidal estimate. The high degree cutoff has not

changed, and the sensitivity to data noise has decreased

only slightly. This same behavior is retained when dropping

smaller eigenvalues, but the intermediate degrees are better

defined when more data are given.
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Fig. 12. Degree responses for (lat, long) = (00, 0*). Data:
sampled every 1*, filter P = 10000, degrees 0-9 removed from data
and kernel. Full curve: data, 50W to 50E, 50S to 50N; SVD inverse, K
= 121; noise 184 cm/mgal. Dashed curve: data, 60W to 60E, 60S to
6*N; SVD inverse, K = 169; noise 194 cm/mgal. Labels refer to the
number of data points.

~0 20 40 60 80 100 120 n 140
DEGREE

Fig. 13. Degree responses at (00, 00). Data: covering the globe,
every 150 in latitude, and approximately every 150/cos(lat) in longi-
tude. Filters: P = 10000 and P = 30. SVD inverse. The fundamental
differences between the curves is the filtering, but their respective
ranks are K = 191 and K = 121.
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For the corresponding problem on a plane, these conclu-

sions are easy to infer from the analysis of time series;

here they have been quantified for a spherical geometry.

Both Molodenskii's approach and these examples show

that the information about the component of a geoidal height

with n>nl is mostly given by the data around the point.

Roughly, the minimum width of the data region must be about

2nR/nl and is governed by the reference field that is

available.

3.4.4 DATA SPACING: OVERSAMPLING

What is the effect of sampling the filtered data more

closely than required by their filter? The sampling dis-

tance, A*, should be smaller than one half the shortest

wavelength passed by the filter (Nyquist frequency); how-

ever, the filter of equation 3-A15 does not have a sharp

high degree cutoff, but the half-width to (equation 3-A17)

can be used as a reference. For the following examples, we

fix A4=1*, and the extent of the data region as 50N to 50S,

50W to 50E.

The examples in the previous sections used a filter

with W0=0.81* (v=10,000), with satisfactory results. The

computations corresponding to *0=1.0* (v=6500) yield similar

degree responses as with o0=0.81 0 , but noise sensitivity is

5 times larger for equivalent degree responses. Furthermore,
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if a filter with *0=1.15 0 is used, not only the sensitivity

to noise increases, but the computation itself may become

unstable (in the full rank solution) because the ratio of

the largest to the smallest eigenvalues of AAT is 10-7.

Oversampling produces small eigenvalues, because it gene-

rates redundancies among the data.

Filtering the data with a very narrow filter (0=0.68*)

yields the same full rank degree response as when *0=0.81*

is used, but lower noise sensitivity (35 cm/mgal). For

smaller to however, the undesirable effects of undersampling

begin to appear. They will be discussed in the next

section.

In summary, the 'proper' sampling is in the range

1.2 0<A4<1. 6 *0 for the filter of equation 3-A15. Oversam-

pling increases noise sensitivity at equivalent degree res-

ponses.

3.4.5 DATA SPACING: UNDERSAMPLING

A global data coverage can provide a good example.

Filtered values, spaced by 150 of arc, are assumed to cover

the whole earth, but the filter has a width $o~0.81*.

Length scales between 150 and 1.1* (=1.4*0) are then

incorrectly sampled, because the width of the filter is much

smaller than the distance between samples, a classical

aliasing problem.
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The resolution functions are of two kinds: those

obtained right at a data position, and those far from one

('far' is more than 10 away). Far from a data point the

resolution is zero, implying that there is no information

about the geoid between data points (we did not use a model

covariance function). At a data point the estimate is

useless but interesting (Figure 3-13, curve for v=10000).

This curve is proportional to the degree response of the

forward kernel (AnFn//2n+1), and is precisely the resolution

that would be obtained if the whole data set consisted of

only one point (an answer that can be derived analytically

because the problem has only one eigenvalue different from

zero). These 191 data points act in isolation, each one

providing information only in its immediate neighborhood.

The other curve in Figure 3-13 (v = 30) is the degree

response for the same distribution of data, but with a

filter width to ~ 210. The result is the same everywhere on

the sphere and has high noise sensitivity: 10 m/mgal.

Because the resolution curves are similar whether the point

is or not at a data position, the estimate of the field (not

just one geoidal height) is a low-passed version of the real

geoid. It is as if we knew the first 10 sets of coef-

ficients for the spherical harmonic expansion, and from them

had computed the geoid. (We note in passing that computa-

tion time can be saved for a uniform data distribution

because AAT acquires a Toeplitz structure [Colombo (1979)].
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In summary, although undersampling decreases the sensi-

tivity to data noise it increases the systematic error

described by the degree response because of aliasing.

3.4.6 MODEL WEIGHTING FUNCTION

Undersampling failed because the formulation did not

contain the information that gravity disturbances at dif-

ferent points are correlated; they were assumed to be

independent. In spectral terms, the high degrees were

assumed to be important (but they were not sampled pro-

perly). A model covariance function acts as an interpolator

and decreases the importance of high degrees (see equations

2-44 and 2-46).

Consider point values of gravity disturbance (no filter

is applied). Our first model covariance will be the same

filtering function (3-A15). Figure 3-14, dashed line, gives

an example. For n < 180 the response is the same as when

the data are filtered. For n > 180 the response grows with

n and goes to w. Growth occurs because the coefficients of

A, in the absence of filtering, grow linearly with n; the

inverse B manages to hold down the coefficients of BA only

at degrees defined by the data distribution. The model

estimate and its error remain bounded, a feature best seen

if one considers again the definition of I. Disregarding

data noise:
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1.0 "4"Wn zeq. A3-1
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Wn n-04
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Fig. 14. Degree response for (lat, long) = (00, 00). Data are point
values of gravity disturbance, minus a reference field up to degree 9.
Distribution: 5*W to 5*E, 5*S to 50N, every 1*. Model weighting was
imposed, with Legendre coefficients equal to Kaula's rule, or equal
to those of the filter (A15). Noise: 8 cm/mgal both.

FILTER + WEIGHTING
(Wn = n-4)

-FILTER ONLY

n
Fig. 15. Comparison between filtered data with and without

model weighting by Kaula's rule. Dashed curve here is the same as
the full curve of Figure 12. The full curve here has the same filtering,
data distribution, and rank, but Kaula's rule was added as model
weighting function. Noise: 184 and 170 cm/mgal.
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mp - f Ipp mp = f Bp i Aip mp
p p1i 0

1^ 2 A

break up I = I + I, where

2 ̂2
Ip p = Bp 2 Aip

0 0

2
Aip = Z An Pn(cOs *ip) / En

n>n2

i.e., 2I and 2A contain degrees higher than n2 only.

Therefore

2 ,,l 2 Ipmp = XBp0 f 2Aip mp
p i 0

D2

= Bi 2 di
i 0

Calling 2d the rms value of 2di, which is the compo-
11

2"
nent of di with n > n2 , the rms value of Ep is

2 2 Z B2

i 0

i.e., the component 2di of the data, (which has n>n 2), acts

as data noise in the inversion (equation (20)).

In summary, to use point values of gravity disturbance,

a model weighting function must be used, and three sources

of error can be recognized

mp = pp mp + [((2d)2 + ad 2) B2  1/2

0 p i

The first term represents the band-pass filter-

ing effect, and the second is the combined error due to

degrees higher than n2 in the data and to noise in the data
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(When using filtered data, the error formula is similar, but

d is replaced by the error owing to lack of continuous data

necessary to compute the filtered value.)

We emphasize that for any choice of weighting function,

the resolution function describes its influence completely.

Figure 3-14 also shows the effect of changing the

weighting function radically: Kaula's rule [Kaula, 1966] is

used. Although both curves have broad similarities, this

weighting strongly distorts the degree response. Intuiti-

vely, Wn - n-4 tries very hard to assign energy to the lower

degrees, whereas the data distribution cannot define them

properly (but, if n-4 is indeed the spectrum of m, then the

total rms error of m is minimum). The other weighting

function (Figure 20) does not emphasize so much the low

degrees. Weighting by n-4 produces a flat response when the

size of the data region matches the lowest degrees included

in the formulation. Sensitivity to noise is very small

because high degrees in the data do not have to be amplified

When both an appropriate filter and weighting by Wn =

n-4 are used, the distortion of the degree response is also

apparent (Figure 3-15).

In summary, any weighting function that makes (12)

converge can be used, if its low and high degree 'cutoffs'

are appropriate to the extent of the data and the distance

between samples. In all cases, the error due to improperly

sampled high degrees must be evaluated.
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3.4.7 MORE DATA

Needless to say, the only real way to improve the

quality of a geoidal estimate is to collect more and better

data. For economic reasons, determining where to add data

is important.

We have already seen that increasing the size of a data

region improves the intermediate and low degree information.

Obviously, increasing the number of data points inside the

data region will improve the intermediate and high degrees.

Figure 3-16 shows this effect explicitly. Notice that the

influence of noise in the filtered values is much smaller

when a narrower filter (relative to the sampling distance)

is used.

These results provide the basis of a strategy for

adding new information. If we wanted to use data with

sufficiently close spacing to resolve all details of

interest, and over a region large enough to match the low

degree field provided by satellite orbit analysis, the

associated matrices would be very large. If detail is

needed only in a small region, it is convenient to break

down the problem into two scales. Broad averages may be

used to define the low degrees, whereas narrower averages,

with closer spacing, can define the intermediate and high

degrees to desired detail.

Consider the following example. The data region is
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Fig. 16. Comparison between adding data in extent versus
increasing data density. Dashed curve: data every 1* (v = 10000),
6*W to 6*E, 6*S to 6*N. Full curve: data every 0.8" (v = 20000),
4.80W to 3.8*E. 4.8*S to 4.8"N. No model weighting. Both have 169
data points, and (lat, Ion) = (0*, 00). Ranks: 152, 154. Noise: 54, 24
cm/mgal.
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Fig. 17. Degree responses at 30*N, 40*W. Data: 147 values, in
the North Atlantic, between 56*N and 00 every 4* in latitude, and
every 40/cos (lat) in longitude, filtered with v = 800. To these, 121
values are added between 25*N to 35*N every 1*, 38*W to 49.5*W
every 1.1*, filtered with v = 12000, and have one-third the weight of
the previous data. Both curves computed from unbiased TLS
inverse, f/ca = 0.15 mgal/cm (full curve) and 0.3 mgal/cm (dashed).
Noise: 64 and 52 cm/mgal, respectively.
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Fig. 18. Noise correlation in the geoidal estimates for the exam-
ple of Figure 6. Point at the origin is (0*, 00), and the distance is
measured along the equator. Noise sensitivity at (00, 00) is 22 cm/
mgal. See text for details.
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the North Atlantic ocean, beween 0* and 560N. Assume data

are filtered with $0=2.9* and sampled every 40 in latitude

and every 40 /cos(lat) in longitude, yielding 147 values. We

now add another 121 data values, each one obtained by

filtering the original data with W0=0.740; these samples are

spaced by 10 in latitude and 10/cos(lat) in longitude, in

the region 250N to 350N, 380W to 49.5 0W. Degrees 0-9 are

removed from the formulation.

Each value filtered with *o=0. 740 was assigned a weight

of one third (equivalent to the assumption that their

standard error is 3 times larger than that of the broader

averages). Different weights are needed because broader

averages are always associated with small eigenvalues (fewer

high degrees in the inner product function yield a smaller

peak value, hence smaller elements in the corresponding

matrix). In the region with detailed data (Fig. 3-17)

degrees 13<n<140 are defined to within 2%. The high degree

falloff occurs for n>180. Noise sensitivity is 64 cm/mgal.

Increased damping in B (also in Figure 3-17) affects both

the high and low degree ends of the response. If the broad

averages are not 'at least 3 times more accurate than the

narrow ones, damping affects only the low degrees.

It is not necessary for the region of interest to be

in the center of the ocean. Detailed data in 30*N to 41*N

every 1*, 56.8 0W to 69*W every 1.20, produce essentially

similar degree responses for n>17. It is necessary,
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however, that the width of the smaller region be at least

twice the spacing betwen broader averages, so that their

respective degree responses overlap.

In summary, simultaneous use of data with two different

spatial scales gives adequate coverage for the definition of

low degrees and adequate detail in small regions, while

producing substantial computational savings. The only dif-

ference in the computation is that two partitions must be

considered in the [A] matrix, and four in [AAT]. Alterna-

tively, the inversion can be done in two stages: the first

uses only the broader averages over a large region, and the

second stage uses the narrower averages over different small

regions to improve the estimate [a technique discussed by

Moritz, 1976].

3.4.8 DATA NOISE

All previous examples assumed that random errors in the

filtered data values are uncorrelated. This yielded high

sensitivity to noise in the geoidal estimates (around 50

cm/mgal in Figures 3-6 and 3-17). The main virtue of this

assumption is its simplicity, but it is not very realistic.

Because we start with point measurements of gravity, and

take weighted averages of them (over small areas), any noise

in the original data is correlated by the filter.

The noise in the original data is itself usually

correlated, but this may be very difficult to describe. In

a marine data set, for example, data collected during one
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cruise, with the same instrument and sometimes without

recalibration at the start and end of cruise, often show a

constant offset relative to other cruises. In some ocean

areas all the data may come from only one cruise, but in

others the filtering process includes data from different

cruises, each one with its own correlation. For lack of a

quantitative description, we will now assume that noise in

the original data is uncorrelated.

We return to the simple example of Figure 3-6, using

the same inverse used for that figure. If noise in the

original data were uncorrelated with constant variance, that

in the filtered values would have a correlation ~ FFT (a

matrix whose elements are values of the inner product

function of the filter). We recomputed the sensitivity to

noise for the resolution curve of Figure 3-6 under these

conditions and obtained 22 cm/mgal, less than half the 46

cm/mgal under the previous assumption. Equally important,

model noise is itself strongly correlated (Figure 3-18),

indicating that most of the error is at wavelengths large

relative to the sampling distance.

The value 22 cm/mgal refers to 1 mgal correlated noise

in the filtered values. To compute the sensitivity to noise

in the original data, we need to know the average spacing A*

between data points (if the filter is a degree average, for

example, noise variance in the original data is reduced by a

factor (1 + 1*/A*)- 2 in the average). Assuming the point



117

data are spaced, on average, At=0.250 (25 in a degree

square), noise variance in the original data is attenuated

by -0.04 with the filter (A15) (*0=0.81 0 ). Each mgal of

uncorrelated error in the original data would then produce

only 4.4 cm error in the geoidal estimate, with a correla-

tion approximated by that on Figure 19 (which is strictly

correct for continuous data). The noise in marine gravity

measurements is between 10 and 20 mgal (see chapter 4),

hence they would produce errors between 44 and 88 cm in

geoidal estimates.

Lack of continuous data is a source of large error in

the filtered data values, an aliasing problem similar to

that described under 'Model Weighting Function'. For prac-

tical purposes, we may consider all the energy at wave-

lengths shorter than twice the sampling distance as noise in

the data. For the following discussion, the recent spectrum

of Brammer and Sailor (1983) will be used at degrees>50.

We assume a sampling every A* can accurately define wave-

lengths longer than 2AW. Then, the rms value of the

undefined length scales in the gravity anomalies, which will

act as noise in the point data, is

sampling A*0 0.25 0.5 1.0 5.0

error (mgal) 21 30 35 38

It follows that any sampling coarser than once every

0.25* would produce larger geoid error than measurement

noise would. Of course, in very 'rough' areas the omission
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error will exceed these values. These errors are correlated

because gravity anomalies are, but we may assume they are

uncorrelated and add their variance to that produced by

measurement noise. It is in this sense that undersampling

produces similar effects to data noise.

3-5. SUMMARY

Because the problem is underdetermined, many

'reasonable' geoidal estimates can satisfy the same incom-

plete set of gravity data within its noise level. Different

criteria of optimality lead to different inverse operators

and different model estimates, no single one being the best.

The SVD, TLS, and collocation inverses described in section

3 provide an efficient, data adaptive procedure for compu-

ting such estimates. The resolution function and its degree

response, described in section 3 and used extensively in

section 4, provide a clear description of the systematic

error due to the incompleteness of any data set, and to the

peculiarities of any inverse operator chosen. By assuming a

spectrum for the unknown model, an rms value of this error

can also be estimated.

The optimum inverse operators used here require inver-

ting a matrix whose size is the number of data, an operation

whose cost grows like the cube of this number (except for

special cases). We have discussed in 3.4 (under 'More

Data') a strategy for decreasing the size of these matrices
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without losing significant information. Only data in a

limited region are needed when low degree coefficients are

available from satellite orbit analysis. This component

must be removed from the data. The original data are

filtered and the filtered field is sampled according to

the filter used. Broader averages are sufficient to define

the long and intermediate wavelengths (in such a way that

the lowest degree defined by their distribution coincides

with the highest degree available from satellite orbit

analysis). Narrower averages, sampled more frequently, then

provide the needed detail in a small region, whose size is

at least twice the spacing between broader averages.

There are other valid but suboptimum inverses for

computing geoidal estimates. The variants on Stokes inte-

gral discussed by Jekeli [1981] are excellent for large,

uniform sets of point data, even if they are not optimum for

discrete, usually filtered, and noisy data. These modified,

discretized kernels are approximate linear inverse operators

of the same forward problem posed here (independently of how

they were derived), hence the error equations 3-18 and 3-25

apply also to them. The geoid presented in Chapter 4 was

computed using one such suboptimal inverse, and its expected

errors were computed using the error equations discussed in

this chapter.

Emphasis was placed throughout this chapter on the

limitations of incomplete data. The effect of data noise
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was discussed briefly in section 3.4.8. It should be clear,

however, that for any real data set both problems are

equally important (section 3.4.8). High data noise poses

additional questions, the most important of which is whether

a range of length scales exists that is both well defined by

the data distribution and sufficiently free fron noise.

Each point measurement of gravity can be thought of

as having two components of error: one is due to measure-

ment noise, the other one to unsampled short wavelengths in

the neighbourhood of the point (aliasing error). This

second component only appears when one needs to use data in

a neighbourhood, e.g., when filtering gravity or when

applying an integral transform that converts gravity into

geoidal heights. Measurement noise is independent of sam-

pling distance, but the aliasing error increases with

distance. Assuming measurement noise to be about 20 mgals,

the aliasing error will exceed measurement noise for sam-

pling distances larger than 0.250.
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APPENDIX 3-1

INNER PRODUCTS AND CONVOLUTION ON A SPHERE

Various properties of integrals over the sphere used

in previous sections are listed in this appendix. 'Fully

normalized' Legendre functions and polynomials (H&M) are

used throughout ; O9, X p are colatitude and longitude at

point P. Integrals recover the mean value of the integrand

over the sphere. Let

nmp = Pnm(cos 6p) exp(imXp) / /2 (3-Al)

Sn

gp = I g Snm nmp (3-A2)
n=o n=-n

00 n
Fip = I I Fnmi Onmp (3-A3)

n=o m=-n

f = If ( )dap
p CO n

En = 1/12n+1 ; I = I I = n
n n=0 m m=-n

The normalized Legendre polynomial Pn = Pno satisfies
n

Pn(cos 4ip) = En X *nmi Onmp
m=-n

and the inner product between F and g (complex for genera-

lity) becomes

f F*ip gp= F*nmi gnm (3-A4)
p n m

When F is a real-valued function of distance between i

and p. like Stokes function, or the kernel (12), or the

filter (3-A15) or a degree-averaging kernel, Fnmi becomes

Fnmi = Fn 0* nmi (3-A5)
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with Fn real. Then, (3-A3) becomes

Fip = I Fn Pn(Cos tip) (3-A6)
n

When this filter is applied on g it yields

f Fip gp = (Fg)i = In gnm 'nmp (3-A7)
n m

An inner product of F with itself yields

f Fip Fitp = (FFT)ii, = I Fn2 L_ Pn(cos *ii) (3-A8)

p n En

The identity operator I pP on the sphere can be defi-

ned by its essential properties, sifting and unimodularity;

f Ipo9 gp = gpo (3-A9)

p

f Ipop = 1 (3-A10)

p

It is easy to see that

Ip p = ) 4 *nmp 0 4nmp (3-All)
0 n m

formally satisfies the requirements (because this series

does not converge for p=po, a proof requires use of

distributions or generalized functions).

Furthermore, I is only a function of distance, hence it can

be written (formally) as

Ipop = 1 1Pn(cos *pop) (3-A12)
n En
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APPENDIX 3-2

RESOLUTION ON A SPHERE:

SPHERICAL HARMONIC EXPANSION

The resolution function at point go is

Ip p= Bp i Aip
0 1

where the summation is performed over the data positions i.

The forward kernel can always be expanded as

Ap = Anmi Onmp
n m

therefore, I can be expanded as

Ip p " I p nm Onmp
0 nm 0

(3-A13)

When Aip is only a function of distance betwen i and p

Anmi =A n 'nmi

In this case, the degree variances of 6 are

n A
16p 0 n 12 =

m=-n
lip0nm 12 (3-A14)

= En2An2 By i Bp it Pn(cos *ii')



124

APPENDIX 3-3

AN APPROXIMATELY GAUSSIAN SPHERICAL FILTER

We wish to find a filter F with these properties:

(1) Fn<<n- 2 as n + =, so that (12) would converge rapidly

even if Wn = 1, or n + w; (2) F($) = 0 for * > If, so that

the integral over the sphere can be replaced by an integral

over a small spherical cap; (3) a low-pass filter, which

integrates to 1. Some searching with the above criteria in

mind led us to

F(*) = (v+1) (cos */2) 2v - Fn En 1 Pn(cOs *) (3-A15)
n=0

(v+1) (v!)2
Fn = (v+n+1)! (v-n)! (3-A16)

(Gradsztheyn and Ryzhik [1965], equation (7-127), with t =

2 (cos 2 (*/2) - 1)). Figures 19 and 20 show examples of

this filter. A quick characterization of the filter can be

given by a half-width *o, defined as the distance to the

inflexion point

d2F/d2t = 0

that yields

tan2 ($o/2 ) = 1/(2v-1) (3-A17)

Another interesting property of this filter, for large

v and small V is its similarity to a gaussian

F(*) = (v+1) exp(-92 /2$12 ) (3-A18)

sin2 ($1/2) = 1/2v = 1i /4 = $2 2/4 (3-A19)
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Fig. 19. Examples of the spherical filter given by equation (A15).

Fig. 20. Legendre coefficients of the spherical filter given by
equation (A16).
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This approximation if useful because a Gaussian is a

commonly used filter for plane geometries, precisely the

range of v and * for which the approximation is valid.
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CHAPTER 4

THE ACCURACY AND COVERAGE OF MARINE GRAVITY DATA IN THE

NORTH ATLANTIC: CONSEQUENCES FOR GEOID ESTIMATION.

4.1 INTRODUCTION

The construction of geoids from gravity was analyzed in

the previous chapter. We now discuss the quality of gravity

acceleration data, estimate a geoid, and compare it to an

altimeter-derived surface. In section 2 the quality of

publicly available marine gravity data for the North Atlantic

is assesed by looking at the discrepancies between measure-

ments at the points where cruise tracks cross; summary

statistics per cruise and geographical distribution are given.

The method by which geoidal heights are computed is described

in section 3, together with the relevant equations for error

computation (the optimum inverses of the previous chapter were

not used, for reasons discussed in section 3). Comparison

between geoidal estimates and a SEASAT altimeter surface,

together with the error estimates of both, are shown in

section 4. It is shown there that, although the geoidal

estimate accounts for much of the variance in the SEASAT

surface, the remaining variance is much larger than the

amplitude of the oceanographic signals we seek, except in a

small area, off the U.S. Coast, and is usually consistent with

the estimated errors of the geoid.
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4.2 DATA SET. CROSSOVER ANALYSIS.

The marine gravity data set consisted of cruises from

various institutions, obtained through the National Geophy-

sical and Solar Terrestrial Data Center, supplemented by

cruises provided directly by the Lamont-Doherty Geological

Observatory and the Woods Hole Oceanographic Institution. All

gravity anomalies were converted to the GRS-67 reference field

(see, for example, Bomford 1980). These cruises are listed in

Appendix 4-2.

The cruises were filtered alongtrack, with a Gaussian

filter, halfwidth 50 km, after deleting abnormally large

values. The purpose of the filtering was to decrease the

number of data values to be handled. The places where two

cruises met were found by a search routine, and the values at

the crossover point linearly interpolated from the two neigh-

boring filtered values. A crossover discrepancy was computed

as the difference between the interpolated values. Computing

the discrepancies from filtered data, rather than using the

original "point" values (themselves averages over 1 minute of

time alongtrack), introduces an aliasing error into the

crossover discrepancies, schematically explained in Figure

4-1. The difference between the point and filtered values

places an upper bound on the aliasing error. This difference,

for cruise SS009, has an RMS value of 15 mgal, and reaches

peak values of 80 mgals; these two figures will be considered
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Figure 4-1: Sketch of aliasing error in crossover discrepancies
computed ~rom filtered cruises. Suppose the field is locally two-
dimensional -lines of constant g run parallel to the y axis. A cruise
."2"1 moving parallel to y measures g2 ; after alongtrack filtering, the.
filtered values are g2 , but here g2g 2 . A cruise "1" parallel to the x
axis measures gj; after filtering the result is gi. g1 (P) * g2 (P)
because of the filtering, not because of measurement errors.

11111 11T UTU11UTTT I I

-90 -70 50 3 -to

hrk~
10 50 5070 90 mgab.

HISTOGRaM OF OSAa PSCOEPeNOCES. ILTER RAVa causes.

Figure 4-2. Histogram of crossover discrepancies. This histogram
includes a 13518 crossovers, including those from cruises rejected
for the geoid computation. 95% of the values are smaller than 45
mgals. About 0.3% (42 crossovers) exceed 200 mgals.



130

representative upper bounds on the RMS and peak values of the

aliasing error, because cruise SS009 contains a mix of smooth

midocean gravity anomalies and the rougher and much larger

anomalies associated with the edge of the US shelf, Canary

islands (300 mgal amplitude), and other features rich in short

wavelengths. Of course, filtering alongtrack also attenuates

uncorrelated errors, which has the effect of decreasing the

total error variance.

The mean and standard crossover discrepancies are listed

in Appendix 4-2 for each cruise. Only those cruises labelled

'T' were used in the final geoid computation. A histogram of

all the errors is presented in Figure 4-2; 60% of the errors

have magnitude smaller than 10 mgals and 95% are under

45 mgals. A student 't' test, at 95% confidence, showed that

the mean crossover for many cruises had a systematic origin

(gravimeter drift and lack of calibration at the beginning and

end of a cruise can produce such an error), therefore least

squares estimates of the mean crossovers were computed for

each cruise, and removed before the geoid computationt.

Figure 4-3 shows the distribution of discrepancies over the

North Atlantic. They are larger in areas of high gravity

t In retrospect, only crossovers in areas with smooth anoma-

lies should have been used. This, however, would only affect

cruises with a majority of crossovers in rough areas.
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gradients, such as the Caribbean, Puerto Rico Trench and

continental edges, both because of errors in positioning at

sea, and because of the previously discussed aliasing error.

To compute geoidal estimates we needed gravity data up to

100 away from the point of interest. Land gravity data for

the continental U.S. was provided by the National Geophysical

and Solar Terrestrial Data Center, updated through 1980. Land

gravity over Canada was provided by the Gravity and Geodyna-

mics Division of the Canadian Department of Energy, Mines and

Resources, updated through November 1980. These data sets

include accuracy estimates, and they were accepted at face

value. Gravity data in the Caribbean were digitized from

Figure 3 of Bowin (1976), and assigned errors of 25 mgal.

Data on the Bahamas and Bermuda islands were also digitized

from Bowin et al. (1982), and assigned the same error. The

'point' gravity data, both on land and at sea, were gridded

every 0.50 of latitude and every 0.50 /cos (lat) in longitude,

starting at 700W. A gridded value at point p was computed as

Xi (Fip gi)/ji (Fip), where ji indicates a sum over all

gravity values gi within a 20 radius from point p. The filter

Fip is the one described in Appendix 3, chapter 3, with v =

50,000, which is equivalent to a Gaussian with half width s 40

km. Grid nodes with scarce or no data were declared empty.

Figure 4-4 shows the distribution of occupied grid nodes

belonging to cruises with no more than 20 mgal rms crossover

discrepancies; this data set will be called DATA-1. The data

in Figure 4-5 (DATA-2) have less than 30 mgal errors.
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4.3 METHOD OF COMPUTATION

Three geoidal estimates were computed: y[1] and y[2]

differ in the amount of basic data used; y[2] and y[3] differ

only in one computational step - an optimum interpolation of

empty grid nodes for geoid 3. The optimum inverses described

in chapter 3 were not used for this geoid estimation because

the author considered the amount of computer time and storage

that they would have required on the available computer (an

IBM 370) to be excessive, even after partitioning the problem

suitably. The method used is as follows: 1) - only for y[3]-

all empty nodes of the grid depicted in figure 4-5, over the

ocean, were filled with optimally interpolated gravity esti-

mates; 2) the product of gridded gravity values (minus their

GEM-9 component) times a modified Stokes function were numeri-

cally integrated over all grid nodes within 100 from the point

where the geoid was desired. The type of numerical inte-

gration, and the required equations for the modified Stokes

function are detailed in Appendix 4-1. Only an overview of the

method and a brief justification are given in this section.

Optimum estimation is needed so that both the absence of

necessary data and errors in the available data can be taken

into account. A geoidal estimate at a point P is sensitive to

gravity data far away from P (see 'Data Coverage" in chapter

3), but an estimate of gravity itself at P is only sensitive
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to gravity in its immediate neighbourhood - hence it can be

computed from far fewer data values. By filling the empty

grid nodes with optimally interpolated values one greatly

reduces the problem of missing data. If gravity is known at

all grid nodes within a certain radius p from P, and a long

wavelength reference field is removed, then one can compute

accurate geoidal heights with a numerical integration, so long

as the kernel compensates for the absence of data both outside

the cap of radius p around P, and in-between grid nodes.

Molodenskii's modification of Stokes kernel is optimum for

continuous data inside a cap of radius p, and its Legendre

series was truncated at degree 360 to account for the discrete

sampling (other options could have been used).

The numerical integration is simply a linear combination

of gravity data. It follows that the error equation 2-17 (ch.

2) can be applied to the resulting geoid, and a realistic

error estimate can be computed. Such a computation requires

that we know the error structure of the gridded data and the

power spectrum (or covariance function) of the desired geoid.

The power spectrum computed by Wagner and Colombo (1978) -

based on GEOS-3 altimetric data, satellite orbit perturba-

tions, and 10 averaged surface gravity - was used to describe

the average behaviour of the geoid.

The computational method also decreased the influence of

error in the GEM-9 coefficients. Jekeli (1981) analyzed

modified Stokes integrals assuming continuous gravity data;
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his error curves show that the influence of GEM-9 noise in

equation (4-1-2) is some 30 cm RMS, whereas the accumulated

error in the GEM9 coefficients is 190 cm rms. The difference

is information provided by the gravity data, hence this

(30 cm)2 variance must be added to the error variance computed

from equation (4-1-13) .

4.4 GEOIDAL ESTIMATES: PART 1

In this section two geoidal estimates (y) are compared to

a filtered version of the Seasat altimeter data, adjusted by

Rapp (1982). All 3 months of Seasat altimetry were used. The

Seasat heights were gridded simply by averaging all data

inside a box defined by two parallels separated by 1*, and two

meridians separated by 1* (hence the areal extent of the 1*

average changes with latitude). On the other hand, the geoids

y are approximately gaussian averages - those used to grid the

gravity data. The expected discrepancy between a 10 averaged

geoid and the gaussian-averaged geoid (Appendix 3-3, v =

50,000) is about 10 cm, again assuming the Wagner and Colombo

(1978) spectrum describes the geoid. These 10 averaged

altimeter heights will be referred to as 's'. The resolution

error estimates shown later, are also relative to an errorless

geoid filtered in this manner.

For the examples shown in this section, no optimum

interpolation of either DATA-1 or DATA-2 was performed prior

to numerical integration.
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Figure 4-6 shows profiles of the difference between the

geoidal estimates and s. Clearly, both geoidal estimates

contain more information about s than GEM 9 does: the

standard deviation of the differences between GEM 9 and s is

172 cm whereas s-y[1] and s-y[2] have 100 and 82 cm s.d.,

respectively. The second, somewhat surprising, observation is

that in this case the additional data, although much noisier

than the existing ones, provide substantial information.

Possible reasons: 1) the global rms value of gravity anoma-

lies is about 42 mgal, and about 39 mgal if the first 20

degrees are removed (in locally 'rough' regions, e.g., across

a trench, it can be much higher). This is about the error of

implicitly interpolated values where data are very scarce,

whereas the noisy data being added have smaller errors.

2) Data errors have most of their energy at wavelengths

shorter than the 100 km cutoff of these maps (P. Malanotte-

Rizzoli, 1983, personal communication); 3) the crossover

analysis based on filtered cruises overestimates errors.

In Figure 4-6, the mean difference s - GEM 9 is -110 cm,

whereas the means of s-y[1] and s-y[2] are +107 and +52 cm

respectively. Rapp (1981) has argued that the systematic

difference between his adjusted heights (referred to the GRS

1980 ellipsoid) and GEM 9 (which implicitly refers to the best

fitting ellipsoid, of unknown parameters) is due to a differ-

ence between the radii of the two ellipsoids. The bias in

geoids 1 and 2 is most likely error: the mean value of the
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FIGURE 4-6: Profiles along 35'N. Differences s-GEM9, s-y[1]
and s-y[2]. The mean and standard deviations are:
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ted c. Expected noise in y[2] varies from 15 cm
-west of 70*W-to 62 cm at 54*W. Resolution errors
vary between 15 and 35 cm.

3.

2. 7
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FIGURE 4-7: Profiles at 36*N. The mean and s.d. of s-GEM9
are (-142,176)cm; those of s-y[2] are (80,74)cm.
C, as inferred by Wunsch(1981) from hydrographic
data only, accounts for most of the difference
s-y[2] west of 60*W. Expected geoid noise varies
between 11 cm -at 69*W-and 46 cm. Expected
resolution error varies between 10 cm -at 73*W-
and 105 cm, assuming the Wagner and Colombo
spectrum is an accurate description of the
average geoid spectrum.
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modified Stokes function over a 10* cap is about 52 cm/mgal,

therefore a constant residual error in the crossover adjust-

ment of only 2 mgal would produce a bias of more than 100 cm.

Figure 4-7 compares s-y[2], at 360N with the component of

sea-surface topography associated with the general circulation

at that latitude, C, as estimated by Wunsch (1981) from

hydrographic data only. The mean of C over the whole ocean,

70 cm, was removed because the geostrophic equation does not

define it. Clearly, C accounts for much of the variance in

the profile, but it is difficult to infer c from s-y. The

reason is simply that the errors in the geoid are not of the

same magnitude along the whole profile (this point is expanded

in chapter 5). The error bars at points of Figure 7 indicate

total RMS error estimate. The influence of noise in the

gravity data is less than 15 cm west of 670W, and varies

between 30 and 40 cm elsewhere (highest: 63 cm at 30*W). The

resolution error, however, is about 15 cm (RMS) west of 650W,

but climbs to 120 cm at 430W (the resolution error was

computed at a few selected points only due to its high

computational expense). The relative sizes of ; and the total

geoid error (the error in s is negligible) imply that only

features significantly larger than 20-30 cm can be recovered

between 750W and 650W. Only the Gulf Stream itself is assured

from Figure 4-7. East of 650W at this latitude, ; cannot be

recovered because it is not significantly larger than the 120

cm rms error of the geoidal estimate. (Furthermore, the
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FIGURE 4-8:
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s-GEM9
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Profiles at 30*N. The mean and s.d. of s-GEM9
and s-y[21 are (22,240) and (-33,144)cm respec-
tively. The areas around 45*W and 27*W are
covered only by high noise cruises. West of 55*W
expected geoid noise alone is between 40 and 55
cm.

- s GEM9
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FIGtRE 4-9:

-30 -20

Profiles along 25*N. Means and s.d. of s-GEM9
and s-y[2] are (-75,244)' and (50,70) cm.
Although the total variance decreases substan-
tially when y[2] is substracted, the difference
s-y[2] bears no oceanographic resemblance.
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FIGURE 4-10:Profile along 66*W. Mean and s.d. of s-GEH9 and

s-y[21 are (116,379) and (-24,140) cu respec-
tively. The Gulf Stream slope -at 38*N-is com-

pletely masked by a large error in y[21.
Expected total errors underestimate the actual

discrepancies.

3.
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FIGURE 4-11:Profiles along 70*W. Mean and s.d. of s-GEM9
and s-y[ 21 are (-96,170) and (40,57) cm respec-
tively. This profile is somewhat puzzling: the
Gulf Stream slope -at 38'N- is clearly defined,

-. but the gentle southward slope in s-y[ 21 -south
of 35*N- is an artifact of the Puerto Rico trench
-at 20*N-. The trench first enters the computa-
tions at 30*N, because of the 10* radius of
integration.
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Figure 4-12 (a)
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FIGURE 4-12.Examples of expected geoid error correlation, at 350N.
At this latitude, 1* of longitude=0.820 of distance ;
T indicate distances of 100, the radius ofintegration.

The correlations a) are not the same in all directions
around a point; -b) change as the availability of data
changes. c) if properly established, can help distin-
guish between 3 and geoid error of comparable size, in
the same sense as two sinewaves of sufficien-tly dif-
ferent wavelength can be isolated from a time series.

0

1440.

0
LOl

I-

:=Q.

LU



143

systematic error is strongly correlated, over distances of up

to 10*, and so is C).

Figures 4-8 through 4-11 show profiles along 25*N, 30*N,

66*W and 70*W; they display characteristics similar to those

already discussed and they are pointed out in their captions.

The spatial correlation between total errors also varies with

position and direction: figure 4-12 shows two examples.

4.5 GEOIDAL ESTIMATE: PART 2

Another geoidal estimate, y[3], was computed using

DATA-2. The only difference from y[2] is that gridded

gravity was optimally interpolated at empty nodes prior to

numerical integration (see Appendix 4-1).

Figure 4-13 shows a map of s-GEM9 and figure 4-14 shows a

map of s-y[3]. The main points to note about y[3] are:

-the mean difference s-y[3] is -1 cm.

-the rms difference is 184 cm; prior to

optimal interpolation it was 197 cm; s-GEM9 has

292 cm rms.

-the maximum discrepancies are ± 800 cm (prior to

interpolation: -1200, +900 cm)

Cligure 4-15 shows expected rms errors for y[3]; a few

points about this map. 1) The errors for y[3] were computed

as if no optimum interpolation of empty nodes had been

performed (i.e., they are the same expected errors of y[2]).

The reason was computational economy: with this simplifica-

tion, the strong correlation between the error of an unoccu-

uied node and the error of a neighbouring occupied node is
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Figure 4-13. Difference between altimetric sur-
face (s) and the GEM-9 geoid to degree 20,
averaged over 10x1* area bins. Labels in
meters. The mean of this surface is -1.30 m,
the standard deviation is 2.92 m. Rapp (1982)
has argued that the bias indicates a difference
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between the radius of the Geodetic Reference
System 80, to which s is referred, and the
radius of the best fitting ellipsoid. Most of
the energy in this mp is the gravity field at
length scales between 2000 and 100 km.
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Figure 4-14: Difference between altimetric sur-
face (s) and the geoid computed in this paper
(y). Contours every 1 m. The mean of s-y is
-0.01 m, the standard deviation is 1.84 m. The
power in this surface is much smaller than that
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in Figure 4, implying that the gravity data
provide significant information about the geoid.
However, the power in s-y is still much larger
than expected oceanographic signals.
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automatically taken into account; the more precise error

computation would have required storing a huge number of

correlation coefficients. This simplification tends to over-

estimate expected errors. 2) The Wagner and Colombo spectrum

underestimates power at short wavelengths (compare with

Brammer and Sailor (1982)). This feature tends to underes-

timate expected errors. 3) The approximately (30 cm)2 resi-

dual variance due to errors in GEM9 was not added, because we

intend to use this map in Chapter 5 as if the errors were

uncorrelated over distances greater than 100 km (see, however,

Fig. 4-12), but GEM-9 errors are strongly correlated over

distances less than 2000 km. 4) The errors were not computed

at all grid nodes, because of their computational expense.

Previous to contouring, a simple interpolation using a weight

= 1/distance 2 was performed.

The expected errors computed in this chapter are needed

to estimate C, hence it is necessary to assess how good they

are. Let ay denote the expected errors of figure 4-15.

Figure 4-16 shows the relative differences (s-y[3])/ay. If

the ay were reasonably accurate, if ; were negligible, and if

the differences were approximately gaussian, then the rms of

figure 4-16 would be 1, and 95% of the values would be under

2. In fact the rms is 2.1, and 95% of the values are

under 5. When ay is replaed by /ayL+(30cm)L, the results

change negligibly (30 cm is the rms of ;, a point argued in

Chapter 5). The apparent conclusion is that ay underestimates

the actual errors by a factor of about 2, but follows their
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Figure 4-16: (s-Y) / ayy. Contours every factor

of 2. If ay accurately described the errors in

Y, if C and errors in s were negligible, and if

(s-Y)/ay were gaussian, then the rms of this

surface would be 1. The rms of this surface is

2.1. The largest discrepancies are associated

-45
ONGi lUDF

with obvious sources of short wavelength power
in the gravity field; at these sites, (s-Y)/ay
can be expected to exceed 1 even if the og had
been computed using the exact spectrum of y, but
the Wagner and Colombo spectrum also underesti-
mates power at short wavelengths.
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change with position closely. The large discrepancies in(s-6)/(O6

around the Bahamas and Bermuda (figure 4-16) could be ascribed

to a) the expected geoid spectrum, that underestimate power at

short wavelengths, b) the fact that no 'indirect effect'

corrections (Chapter 2, section 1) were performed for the

island masses above the geoid. The fact that the area around

the Great Meteor seamount, with no masses above the geoid,

also has large errors, suggests that a) is the dominant error,

even though b) may not be negligible.

4.6 SUMMARY

The accuracy of marine gravity data is such that 60% of

all errors are under 10 mgals and 95% are under 45 mgals.

When such data are averaged over areas 0.50 in diameter, and

subsequently used to estimate an equally averaged geoid, the

influence of data noise produces geoid noise between 20 and 40

cm, occasionally 60 cm (all errors refer to the wavelength

band 2000 km to 100 km).

The coverage of publicly available marine gravity data in

the North Atlantic is such that small areas, a few degrees in

diameter, and void of data, are scattered throughout. When

the inverse discussed in Appendix 4-1 is used to estimate a

filtered geoid, and the filtered gravity data are only given

at grid spacings of 0.50, no more than 11 cm rms resolution

error is committed if all grid nodes inside a 100 radius are

occupied. Due to the empty areas, however, this error climbs
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in places to 250 cm RMS. Because in regions of scarce data

less attenuation of gravity errors occurs, this high systema-

tic error is compounded by the presence of noise of 30 or 40

cm RMS due to gravity measurement noise. Although optimum

interpolation of filtered gravity in empty nodes reduces the

systematic component of error, the total error is not reduced

drastically. This implies that this data set, which repre-

sents almost all publicly available gravity over the North

Atlantic up to 1981, is unable to recover oceanographic

signals over a large part of the ocean. The discrepancies

between altimetric and geoidal surfaces agree with the compu-

ted expected errors if the latter are doubled. The likely

reason for this underestimate is the power spectrum used to

describe the average geoid behaviour, which underestimates

power at short wavelengths.
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APPENDIX 4-1: METHOD OF COMPUTATION

This appendix complements the second section of the

chapter by presenting the details of the geoid and geoid error

computations.

(I)-Empty nodes in the grid shown in figure 4-4 and lying

in oceanic regions were optimally interpolated from

neighbouring data. The covariance of filtered gravity

anomalies Diii was computed by:

360
Dii' = z (2n+1) Fn 2 An2 Mn Pn(cos ii') (4-1-1)

n=2

An = F (n-1) ; F= 981 gals

Fn = coefficients of the spherical filter

described in appendix 3-3, with =50,000

Mn = degree variances of the geopotential, as

estimated by Wagner and Colombo (1980).

= spherical distance between points i, i'.

Pn= unnormalized Legendre polynomial, degree n.

The interpolation formula is

gp = Dip([D+E]-1 )ii, gi

where gp: interpolated gravity; gi: gridded gravity data

E: error covariance of g

D: given by 4-1-1

Error estimates for the interpolated values were computed

(equation 2-17), but their correlations were not.
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(II)-Each geoidal height ip was computed as a weighted

average of gridded filtered gravity di available within 100

of position p.

0 ~iSPi (di-di ) 19 0
Yp Yp + .. fii S'pit dait (4-1-2)

I i S pi *iep < V = 100

The kernel function S' is a modified Stokes function

detailed in point III; the integral in 4-1-2 is the mean value

of S' inside a cap of given radius. The values 60 and d0 are

geoidal heights and gravity anomalies, respectively, computed

from the GEM-9 coefficients (Lerch et al., 1979) up to degree

20.

(III)-Molodenskii's modification of Stokes function

(Molodenskii et al., 1962, section VII-4; see also Jekeli,

1981) satisfies the following property:

minimize I f Spi gi dai - f (Spi=Spi)gi dai|2 (4-1-3)
sphere cap

here Spi is Stokes function (equation 4-1-5, but the upper

limit of Z is w) and gi is the errorless gravity anomaly at

point i, hence the first integral is the exact value of the

geoid at point p (in spherical approximation). The second

integral is only performed over a cap around p, i.e.,

$*99; the function S is chosen to satisfy 4-1-3. If our data

are errorless, continuous data around p, then such a choice

minimizes the error of Y.

Let:

S'pi = Spi - Spi
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where S is the usual Stokes function, here truncated at degree

360 to take into account the discrete sampling every 0.50

360

Spi = (R/y) I (2n+1) (n-1) Pn(cos(Wpi)) (4-1-4)
n=2

and Molodenskii's correction term is of the form

no
Spi = (R/y) I (2n+1) Sn Pn(cOs5pi) (4-1-5)

n=2

no=10 was used, in conjunction with GEM-9 up to degree 20.

There is no best no; if it is too low the influence of

remote gravity is not compensated sufficiently; if no is too

large, the modified kernel tends to amplify data noise in its

attempts to completely remove the influence of remote gravity.

The value no=10 was chosen on the basis of Jekeli's (1981)

analysis.

(IV)- The coefficients Sn were computed with the

following algorithm, discussed by Jekeli (1981). The only

reason I reproduce the equations used in the computations, is

that equation 33 of that article is incorrect.

x = cos $

k = (1/2)(1+cos *)
no

Sn = (1/2) 1 (21+1) ui hln (4-1-6)
1=n

no
ui = (1/k) I (2m+1)/2 hlm Qm(*) (4-1-7)

m=O
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0.0 j<n

Pp q
hjn -(2n+1) k-j. (P) (i) (1-k)i+1 j>n>0 (4-1-8)

- 1=0

:.2/(2j+1) k-J j=n>O

p = j-n-1; q = j+n

The Qm (called Molodenskii's truncation coefficients) were

computed with Hagiwara's algorithm (1976).

(V)-Equation 4-1-2 can be written in a form more suitable

for error computations as

Yp - Yp = Bpi (di-df) (4-1-8)

In this equation the sum was assumed to occur only over

available data, and interpolated values were not considered

data for the purpose of error computation. The error

covariance of the right hand side of 4-1-8 can be estimated

by:

E" = B(D+ED)BT + M - BC - (BC)T (4-1-9)

(e.g., Moritz, 1976), where D is the covariance of (d-dO) and

ED its error covariance, M is the covariance of the yp,

and C the crosscovariance between (d-dO) and m. These were

computed as:

360
Mpp'= I (2n+1) Mn Fn2 Pn(cOstpp')

n=2

360
Dii' = I (2n+1) Fn2 An2 Mn Pn(costii') (4-1-10)

n=2
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360

C'= I (2n+1) Fn2 An Mn Pn(cospii')
n=2

Equation 4-1-9 only describes the error in 6- o. To

obtain the error in the geoidal estimate, the error covariance

of the reference field (GEM-9) must be added. The influence

of GEM-9 errors in equation 4-1-8 is less than the error due

to the coefficients, if there are indeed gravity data supply-

ing additional information. Jekeli (1981, figure 2) estimated

the residual error for the modified Stokes function used here

to be 30 cm. This error has a correlation length larger than

the 100 radius of integration.
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APPENDIX 4-2: CRUISE CROSSOVERS

This appendix summarizes the results of the crossover

analysis between gravity cruises. The following pages are a

computer prin

follows:

tout, and the meaning of the columns is as

Column 1 (CR #): cruise number, an identifier with

meaning only within this work.

Column 2 (CR NAME): cruise name, as specified by

originating institution .

Column 3 (NX'S): number of crossovers found for this

cruise, including self-crossings.

Column 4 (MEAN): arithmetic mean of all crossovers for

this cruise, in milligals.

Column 5 (S.D.): standard deviation of all crossover

discrepancies for this cruise.

Column 6 (SELFNX): number of crossings with itself.

Column 7 (MEAN) : mean of self-crossings.

Column 8 (S.D.) : standard deviation of self crossings.

Column 9 ( ) : number of the cruise with which the

current cruise has the largest negative

crossover discrepancy.

Column 10 (MIN): value of largest negative discrepancy

Column 11 ( ) : same as 9p or the maximum discrepancy.

Column 12 (MAX): value of largest positive discrepancy.

Column 13 : logical flag. If 'F', cruise was not used for

geoid computations.



XOVMSD2 7JUN82 22:40
CROSSOVER MEAN & SD, EXCLUDING
-- 06/08/82 01:03:51 (EDT)--

CR#

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

( 20)

( 21)

( 22)

( 23)

( 24)

( 25)

( 26)

( 27)

( 28)

CR NAME

V2305

V2306

V2307

V2501

V2502

V2503

V2504

V2608

V2609

V2610

V2713

V2714

V2801

V2804

V2805

V2806

V2807

V2908

V2909

V291 1

V2912

V3001

V3002

V3003

V3004

V3005

V3006

V3007

NX'S

34

189

65

224

139

176

95

210

240

12

44

91

63

27

35

50

204

111

77

81

37

96

168

132

53

138

209

115

MEAN

-5.0

-0.7

-8.7

7.1

1.6

-12.4

-8.5

2.0

-2.5

-9.5

5.4

-1.4

-4.7

10.9

5.7

-1.0

1.9

-2.2

-1.9

-1.7

0.3

-0.0

1.9

2.2

1.0

3.8

3.6

7.9

CRUISES LABELLED 'F'. FCRI AND FCR2 JOINED./

S.D.

13.9

14.8

13.3

12.7

14.1

12.7

8.8

12.8

7.6

10.6

10.8

10.9

10.4

8.0

18.1

20.3

17.6

11.0

7.7

8.5

16.0

11.1

11.8

13.3

10.2

11.6

15.2

13.0

SELFNX MEAN

-2.1

-0.0

0.0

8.9

3.2

-0.6

-2.5

0.4

0.3

0.0

1.9

0.6

0.0

0.0

0.1

0.0

-3.7

-1.1

0.0

-4.7

0.0

2.9

0.0

0.0

-2.2

0.0

0.0

-2.0
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S.D.

4.4

0.6

0.0

13.4

0.0

0.5

5.2

2.0

1.7

0.0

2.3

0.4

0.0

0.0

0.0

0.0

8.9

2.5

0.0

7.3

0.0

6.4

0.0

0.0

1.4

0.0

9.8

7.5

(184)

(203)

( 67)

(162)

(177)

(185)

(123)

(159)

(141)

( 49)

(215)

(162)

(162)

( 82)

(184)

(162)

( 40)

( 83)

( 27)

( 14)

(162)

(182)

( 9)

( 75)

( 94)

(203)

( 28)

(184)

MIN

-37.

-36.

-55.

-44.

-39.

-47.

-31.

-64.

-28.

-21.

-23.

-38.

-34.

-8.

-24.

-92.

-42.

-31.

-35.

-25.

-61.

-24.

-23.

-45.

-24.

-43.

-29.

-24.

( 60)

( 37)

( 53)

(130)

(177)

(129)

( 39)

(142)

( 23)

( 73)

( 68)

( 43)

( 36)

( 20)

( 68)

(130)

(130)

( 68)

( 60)

( 93)

( 37)

( 3)

(132)

( 85)

( 62)

(215)

(200)

(200)

MAX

37.

49.

32.

50.

48.

24.

19.

84.

23.

15.

36.

21.

27.

25.

63.

50.

97.

47.

19.

29.

38.

29.

41.

56.

26.

33.

51.

54.
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29)

30)

31)

32)

33)

34)

35)

36)

37)

38)

39)

40)

41)

42)

43)

44)

45)

46)

47)

48)

49)

50)

51)

52)

53)

54)

55)

56)

57)

58)

59)

60)

61)

V3008

V3009

V3012

V3013

A2

CH

CH

CH

CH

CH

CH

CH

CH

CH

CH

A2

CH

CH

A2

CH

CH

A2

A2

A2

CH

V1712

V1713

C0801

C0809

COB 12

C0912

C0913

C 1001

73

36

43

43

44

46

55

57

61

34

96

54

99

61

75

115

115

92

93

92

39

41

66

36

47

2 25

212

1 19

3 15

306

383

194

330

1 13

431

5 48

3 136

1 122

2 19

1 68

1 54

9 116

1 171

1 129

2 161

1 127

27

43

146

239

130

39

87

196

2.4

0.6

-5.8

4.4

-10.3

-2.0

2.2

-13.8

-0.5

-2.9

-1.1

8.3

8.3

4.6

-25.6

-1.9

0.9

5.3

-4.5

15.1

3.7

1.2

4.3

5.3

-6.4

-16.0

-7.8

-4.1

3.1

-5.4

-1.1

-7.2

2.6

6.2

5.4

12.2

15.6

15.3

17.3

33.5

14.6

27.6

23.7

16.0

25.3

11.0

35.4

29.3

16.6

16.1

24.3
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( 62) C1311 151 -10.7 11.1 14 0.4 2.2 ( 94) -50. ( 65) 12. T

( 63) V1717 31 -4.3 16.3 0 0.0 0.0 ( 88) -40. ( 40) 20. T

( 64) V1802 100 0.4 10.9 5 -0.6 1.2 ( 40) -47. (142) 30. T

( 65) V1803 117 -3.7 21.6 0 0.0 0.0 ( 94) -83. ( 95) 46. T

( 66) V1818 98 -1.2 16.3 7 0.0 0.2 ( 95) -53. (175) 52. T

( 67) V1819 72 -5.9 20.7 1 -0.1 0.0 (162) -79. ( 3) 55. T

( 68) V1913 46 -13.8 23.8 1 0.4 0.0 ( 34) -113. ( 67) 55. T

( 69) V2012 28 23.2 23.4 0 0.0 0.0 (203) -24. ( 53) 91. T

( 70) V2013 11 18.8 21.9 0 0.0 0.0 (182) -5. ( 53) 73. T

( 71) C1509 100 3.0 12.4 0 0.0 0.0 ( 94) -41. ( 65) 28. T

( 72) C1510 75 -3.5 13.4 19 0.9 3.0 ( 52) -48. ( 6) 14. T

( 73) C1601 65 -13.9 23.3 3 -10.3 17.9 ( 40) -45. (130) 128. T

( 74) C1612 138 7.8 19.3 1 -0.8 0.0 ( 94) -45. (161) 115. T

( 75) C1613 207 -0.1 14.1 22 0.6 1.6 ( 94) -111. (160) 58. T

( 76) C1701 137 2.9 12.0 1 0.0 0.0 ( 37) -58. (161) 47. T

( 77) C1702 123 -2.1 19.6 16 15.1 19.6 ( 74) -51. -( 77) 41. T

( 78) V2207 87 9.9 20.4 0 0.0 0.0 (162) -105. (130) 56. T

( 79) V2301 53 -5.6 11.0 0 0.0 0.0 (209) -25. ( 37) 41. T

( 80) V2302 38 8.8 10.1 0 0.0 0.0 ( 81) -11. ( 60) 30. T

( 81) V2303 116 -0.1 6.8 77 0.5 6.8 ( 81) -21. ( 81) 15. T

( 82) V2304 22 -0.8 8.8 6 0.0 3.2 ( 14) -17. ( 89) 18. T

( 83) V3014 100 -3.7 10.6 0 0.0 0.0 (203) -34. ( 18) 31. T

( 84) V2201 218 0.3 12.2 6 1.2 1.0 ( 40) -50. ( 73) 40. T

( 85) V2202 119 -3.5 20.5 0 0.0 0.0 ( 37) -56. (171) 93. T

( 86) V2401 163 3.6 11.2 10 -0.1 0.2 ( 39) -33. (175) 53. T

( 87) V2604 125 1.1 6.0 111 0.6 3.5 ( 25) -13. ( 54) 32. T

( 88) V2701 27 4.3 19.0 0 0.0 0.0 ( 48) -67. ( 63) 40. T

( 89) V2706 25 -2.7 8.1 0 0.0 0.0 ( 14) -19. ( 19) 14. T

( 90) V2707 44 2.5 13.1 8 -0.7 1.5 (208) -27. ( 31) 34. T

( 91) V2708 19 -9.8 25.9 1 -0.8 0.0 ( 59) -69. ( 59) 51. T

( 92) V2709 77 1.4 6.5 1 1.3 0.0 (205) -7. (165) 39. T

( 93) V2702 40 0.2 9.0 0 0.0 0.0 ( 20) -29. ( 13) 21. T

( 94) V2607 233 23.6 25.8 61 -1.6 3.2 ( 71) -18. (171) 128. T
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CHAPTER 5

ESTIMATION OF TIME AVERAGED CIRCULATION

AND GEOID IMPROVEMENT

5.1 INTRODUCTION

This chapter describes a first approximation to the

recovery of time averaged oceanographic differences between

the altimetric and geoidal surfaces; it also discusses how to

remove these features from the altimetric surface in order to

obtain a closer estimate of the marine geoid.

The main simplification introduced is the neglect of

the correlation between geoidal errors at different loca-

tions, a simplification made owing to computer limitations.

The geoidal estimate labelled $[3] and described in chaper 4

(section 4.5) is used here (see figures 4-14 and 4-15). The

altimetric surface (s) was also described in chapter 4,

section 4.3.

In order to introduce as little oceanographic informa-

tion as possible in the computations, a first estimate is

obtained assuming that the geostrophic component of sea-

surface topography is a spatially uncorrelated quantity with

uniform variance throughout the ocean. This is not a very

good description, but it allows us to check the resulting

estimate of the circulation with one derived exclusively from

hydrographic data.

A second estimate of the circulation is computed by

combining the gravimetric geoid, the altimetric surface, and
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an estimate of the geostrophic component based only on hydro-

graphic data. This second estimate of the circulation is then

removed from the altimetric data to yield an improved geoid.

5.2 ASSUMING SPATIALLY UNCORRELATED C

Most features of figure 4-14 would strike a physical

oceanographer as artifacts of geoid error, particularly the 5 m

low north of 400. The simplest oceanographic information one

has in mind is a statement that s - y has some 'reasonable'

rms value, say 30 or 40 cm, implying reasonable maximum values

some 3 to 5 times larger. In this section that is precisely

the assumption made, with the further assumption that geostro-

phic heights separated by 100 km or more are uncorrelated.

With this particularly simple framework, the optimum

estimation of C, the geostrophic discrepancy in s-y, simplifies

(from equation 2-29) to

Cp = (s p - ip).[Zpp/(Zpp+Epp)] (5-1)

where Zpp is the expected variance of cp, and Epp are the error

variances of (s-y), dominated by geoid errors. The expected

geoid errors used for this computation are those depicted in

figure 4-15. The altimetric data were assigned 25 cm error,

based on Rapp's (1982) analysis. If the above assumptions gave

an accurate description of c, then the expected error of the

estimate computed with equation 5-1 would be :

a29 = Zpp { 1 - Zpp/(Zpp+Epp) } = Zpp (1-wp) (5-2)
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The first desirable property of any computation is that

the result not be overly sensitive to uncertain parameters.

Figures 5-1 and 5-2 show the estimate of C when its rms value Z

is assumed to be 40 or 30 cm respectively (the rms of the

hydrographic estimate of C depicted in figure 5-4 is 33 cm).

Both figures show the same features; as expected, assuming more

power in C (figure 5-1) shows more detail -most likely noise.

The most optimistic interpretation of a figure such as

5-2 is that it represents a statistically optimum estimate of

the difference between measured sea-surface topography and

computed geoid. But both the structure of c and the stucture

of data noise were strongly simplified, hence figure 5-2 is

perhaps better described as the result of a scaling scheme that

automatically takes into account the variation in geoid errors

-by an order of magnitude- over the North Atlantic.

The scaling factors wp used to compute figure 5-2 are

shown in figure 5-3 in the form 1-wp. The 'optimistic'

interpretation of this figure is that it represents the actual

expected errors of C, but the discussion in the previous

paragraph also applies here.

Figure 5-2 shows a believable gyre and a believable

time-averaged Gulf Stream, but only north of Cape Hatteras

(350N). The position and width of the 'Gulf Stream' in figure

5-2 cannot be directly compared to a quasi-instantaneous

picture of the circulation, such as computed by Wunsch (1981)

and reproduced here in figure 5-4, because of the shifting
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position of the current, and the passage through the area of

large mesoscale eddies during the 3 months over which we are

averaging (this point was discussed at length in section 1.3,

chapter 1). These motions can be inferred from remote sensing

of the temperature structure in the upper ocean, using satel-

lite infrarred radiometry. Figure 5-5 shows the position of

the boundaries of the Gulf Stream as determined by the position

of "prominent sea-surface temperature gradients, or by the 150

C isotherm at 200 m", as published in the Gulf Stream bulletin

(june-september, 1978); the agreement with the corresponding

features of figure 5-2 is very good. There is also a hint of a

northeastward flow towards Iceland (see Stommel et al., 1978;

Wunsch 1981) in figure 5-2, but it is defined as the boundary

of two obviously erroneous features in figure 4-14. The formal

error estimates of figure 5-3 confirm that this feature cannot

be taken too seriously from this data set.

The most disappointing feature of figures 5-2 and 5-3 is

the absence of the powerful signal associated with the Florida

current (the component of the circulation off of Florida in

figure 5-4) and the failure of the error estimates to predict

the large discrepancy in this region. The error estimates are

rms worldwide averages, and as such can be expected to fail

over a small fraction of the Earth's surface, but in this case

the geophysical cause is apparent. Islands such as the

Bahamas, Cuba and Puerto Rico, have strong positive signals in

an otherwise negative gravity background. Unfortunately data

over the islands are usually very sparse -and old- and
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Because of undersampling over the islands, the averages are

biased towards negative values; because these are regions of

steep gravity gradients, a worldwide average covariance func-

tion (power spectrum) tends to underestimate the energy being

aliased (an idea of the difference in power between trenches

and 'average' ocean floor can be found in Brammer and Sailor,

1983). In addition, the Wagner and Colombo spectrum underesti-

mates power at short wavelength.

5.3 USING AN INITIAL ESTIMATE OF C

We now replace our simplistic description of C as a

spatially uncorrelated process. The new description states

that C should resemble the hydrographic estimate (figure 5-4)

within certain expected errors. We assume that these errors

are spatially uncorrelated. This assumption about the errors

yields again an optimum estimation equation at each point,

uncorrelated from data at other points.

= a (s - m) + (5-3)

2 2 2 2 2 2
a = 02 /C1 +a2 ), S ~ a1 /(o1 +a2 )

2A A

a1 = error variance of s-m

a2 = error variance of the hydrographic

estimate C.

The key quantitities are now the a2 -the errors in i-.

Wunsch (1981) and Roemmich and Wunsch (1981) argued that the

expected error of a hydrographic estimate of C -obtained using
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inverse methods-is about 10 cm away from western boundary -

currents. This estimate is based on the changes in the

computed C when different initial reference levels are used,

and on the envelope of null space solutions that can be added

up to an expected variance for the current velocity (this

description of the resolution error is entirely equivalent to

equation 2-17). Within 100 km of a boundary current, the

expected error should be about 50 cm -to allow for known time

changes in the current axis-. Between 100 and 200 km from the

axis, a 25 cm error is likely, again according to Wunsch

(1981). For the computations that led to figure 5-6, a2 was

set at 10 cm everywhere outside a box that contains the Gulf

Stream north of Cape Hatteras; in this box, a2=30 cm. Off of

Florida, a2 was left at the 10 cm level to offset -partially-

the large underestimate of geoid error in this area.

The hydrographic estimate of Wunsch (1981) has a mean of

70 cm, and a standard deviation of 33 cm. The mean is a

consequence of arbitrarily setting Bermuda at 100 cm -the

geostrophic relation does not define this quantity-hence it was

removed prior to combining the hydrographic surface with the

other two. Figure 5-6 is significantly better than the crude

estimate in fig. 5-3 only in the neighbourhood of Florida; of

course, 'significantly better' still means closer to the

hydrographic estimate. Part of the geoid error in the neigh-

bourhood of the Grand Banks is apparent in figure 5-6.

Removing the surface of figure 5-6 from s yields the best

estimate of the geoid y that can be obtained with this data set
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and the simplifications introduced. Figure 5-7 shows such an

estimate of Y based on altimetry, hydrography and gravity. It

is dominated by the altimetric data -compare to figure 4-14-

but the differences due to figure 5-6 can be detected,

particularly near Florida, and around 380N.

5.4 SUMMARY

The unscaled difference s-y does not measure the surface

expression of the general circulation, C, because the errors

in Y both dominate the difference surface, and vary by an

order of magnitude over the North Atlantic. Only when the

expected errors in s-y are combined with an estimate of C,

even a very rough one, do the known features of the circula-

tion begin to appear above the noise background.

Even the simplest of assumptions -that C is spatially

uncorrelated over distances greater than 100 km, with constant

(30 cm) 2 variance- produces a believable, but blurred, picture

of the main gyre in the North Atlantic. The failure to define

the Florida current is intrinsic to the gravity data set, and

no amount of unprejudiced optimization (i.e., short of using

the hydrographic estimate itself) can recover it. Even using

expected geoid errors that underestimate actual errors, as

these do, is better than no scaling at all. The reason for

this partial success is that the spatial variability of

expected geoid errors follows closely the actual discrepancies
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whose main source is undersampling of short wavelengths in the

gravity field..

No new feature of C can be assured from these results,

and disturbingly enough, some well known and distinctive

features -such as the Florida current- fail to appear at all.

Only additional information about the gravity field can

recover these features. However, precisely because such

features are large and fairly well constrained from hydrogra-

phic data, a significant correction to an estimate of y from s

can be applied.
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CHAPTER 6

SUMMARY, DISCUSSION AND CONCLUSIONS

The review of least squares inverse methods used in

geophysics (chapter 2) showed that the diverse criteria of

optimality that use the L2 norm produce only one form of

optimum inverse. The difference in practice lies in the

choice of 1) the weighting function used to describe the

smoothness of the unknown; 2) the signal-to-noise parameter

y; 3) a desire to obtain an unbiased inverse. It was argued

that the choices of the Gauss-Markov theorem are best suited

when there is an overabundance of data -and they cannot be

inverted simultaneously or stepwise-. This approach was

then used in chapters 4 and 5.

Our analysis of the optimum construction of geoids

from gravity data (chapter 3) emphasized resolution func-

tions rather than rms errors, and explored a variety of

possible solutions, rather than a single one. The main

finding of that chapter was that accurate bandpassed ver-

sions of the geoid could be constructed from fairly limited

data sets, but only if the data themselves were accurate

averages over small areas.

A

Altimetric measurements of sea-surface topography (s),

such as those obtained with Seasat, have expected errors

ranging between 10 and 30 cm after crossover adjustments,
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but the wavenumber spectrum of this error, particularly its

accuracy at long wavelengths is still unknown. The altimetric

accuracy is fairly uniform throughout the North Atlantic. In

constrast, estimates of the North Atlantic geoid (y) in the

wavelength band 2000 to 100 km, have errors ranging between

30 and 260 cm, when computed from surface gravity accele-

ration data and satellite orbit perturbations. The second

major component of the time-averaged s, the surface expres-

sion c of the general circulation, has an rms value around 30

A

cm. Obvious consequences follow from these values: 1) s

gives more information about y than gravity acceleration data

do, even before removing C; 2) time-varying oceanographic

components are easier to recover from altimetry, because they

do not require an independent estimate of y; 3) given s and

y, one can only recover c by considering the spatial

variation in expected geoid errors, and its relation to

expected C. Points 1 and 2 were well known before this

thesis, but point 3 was never implemented (except for the

long wavelength component, by Tai (1982)) because the best

marine geoids lack any useful accuracy statements.

Publicly available marine gravity data cannot be con-

verted into geoidal heights with the same or higher accuracy

than that of the altimeter because of aliasing -gravity power

at wavelengths between 5 km and a few hundred km acts as

noise when the sampling distance is longer than its wave-

length, and research vessels -slow and expensive-have not
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been able to cover the ocean with a pattern dense enough to

define these wavelengths. Not surprisingly, one can only

compute an accurate gravimetric geoid in the immediate vici-

nity of the continental U.S., from where a majority of ship

tracks leave, and where they cross in a dense pattern. The

geoid computation of chapter 4 was aimed both at obtaining a

good geoid from the available data, and also at providing

realistic expected errors for this geoid, later needed in
A A

order to combine Y with s.

The nonuniform geoid accuracy precludes recovering C
AA

by directly substracting Y from s. A much better result is

obtained through a scaling scheme, equivalent to the optimum

estimation of geostrophic heights C when both C and the

geoid errors are assumed to be spatially uncorrelated. The

computational procedure that follows from such a simple

description of c, applied in chapter 5, yielded a believable

estimate of the main gyre in the time-averaged North

Atlantic circulation.

A hydrographic estimate of C can be combined with Y

and s, but only if the modelling errors in c are reasonably

well described. The main source of modelling error is the

neglect of time variations in the geostrophic equations.

Such a computation was performed in chapter 5; the improve-

ments over the estimate described in the previous paragraph

are most obvious off of Florida, where geoid errors comple-

tely mask the well known Florida current. This feature of
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the circulation is an extreme example of how knowledge of C

can be used to correct an altimetric estimate of y.

It is disturbing to find that the success of the

computations required to recover C from s depends mostly on
A

the estimates of expected errors in y and C. Disturbing,

but not surprising because the size of c is at or below the

noise level in Y.

Of the many simplifications introduced in the esti-

mates of chapters 4 and 5, disregarding the spatial corre-

lation in geoid errors -and not knowing those of the

altimetric surface- is probably the most critical: just as

it is possible to distinguish the sea surface signal of a

seamount from that produced by a mesoscale eddy on the basis

of their behaviour in time, it is possible to distinguish

geoid errors from geostrophic features on the basis of their

different wavenumber behaviour. Furthermore, a new gene-

ration of computers is now available, and many of the

lengthy computations avoided in this work can now be carried

out, but only small improvements in the signal-to-noise can

be expected.

The fact that the largest source of error in the

geoidal estimates is due not to measurement noise but to

missing data, suggests an alternative approach to the

problem of recovering oceanographic information from alti-

metry. Suppose we convert s into gravity accelerations,
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a computation that is much less affected by missing data

because of the excellent coverage of the satellite. We

would now substract estimated gravity from measured gravity

only at those locations where gravity accelerations were

actually measured. At this stage we would be left with

profiles of the gravity acceleration equivalent of . A

final transformation into slopes of sea-surface (deflections

of the vertical) would yield the desired quantities. The

advantage of this approach lies in its ability to minimize

the aliasing error introduced every time data are gridded or

an integral transform is applied.

"A lack of information cannot be remedied by any

mathematical trickery" (Lanczos, 1961, chapter 3). The only

way to improve significantly an estimate of the time-

averaged circulation from sea surface measurements, is to

include independent information about the gravity field.

Among already existing data, bathymetry is probably the only

source that can be used. It has been observed for many

years that gravity and the topography of the solid earth are

strongly correlated, but the degree of correlation changes

both as a function of wavelength and with tectonic setting.

During the last ten years, physical models describing

loading over elastic plates of different ages have success-

fully explained the main features of this correlation over

the oceans. The available bathymetric data set, when

properly used, becomes a source of gravity information at
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those wavelengths where the correlation is strong. But this

correlation must be used with care, because a rotating fluid

like the ocean reacts strongly to bottom topography, a

simple consequence of the conservation of potential vorti-

city; the circulation itself tends to follow contour lines

away from the equator, and seamounts can be expected to

generate swirls in the flow above them.

Other than bathymetry, satellite-to-satellite tracking

and satellite gradiometry are the most promising among

future sources of data; surface gravity measurements can be

expected to contribute only short wavelength information

because of their high resolution and poor coverage. Until

such new information about the Earth's gravity field is

available -and is not derived from altimetry- recovery of

time-averaged features of the circulation will remain res-

tricted to either small portions of the ocean, or to the

longest wavelength components.
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