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ABSTRACT

The flow of fluid between two concentric cylinders is

considered under three time-dependent forcings as an ap-

proach to instabilities of general time-dependent flows. The

first is by gravity on a free surfaces the annulus is

rotating about an axis slightly tilted with respect to

gravity, so there is a periodic motion. For certain

geometries, there are resonances of inertial-gravity modes.

These periodic motions cause a rectified mean azimuthal

flow, including a central vortex for a cylinder, according

to analysis of the viscous boundary layers. These mean flows

can be unstable to shear oscillations, sometimes causing

renarkable commotion which could disrupt geophysical model-

ing experiments. The theory is found to accord well with

experiments.

The second type of forcing is periodic torsional motion



of the inner wall, with the outer wall held still. This

causes periodic ring vortices for certain parameter ranges.

These ring vortices are studied by several methods to

ascertain the most practical ways to approach similar

problems. Oscillations slow with respect to viscous diffu-

sion time are essentially quasi-steady and give rise to

essentially ordinary Taylor cells which turn on and off with

each half-cycle. Faster oscillations give rise to more

continuous Taylor cells which feed on the mean absolute

centrifugal gradient. Critical Reynolds numbers are found by

straight-forward numerical integrations and by harmonic

expansions in timerpurely periodic perturbations correspond

to narginal growth rates. Experiments corroborate the

results. Oscillations superposed on a mean rotation always

destabilize.

The third type of forcing is similar to the second,

except the inner cylinder is suddenly started. This illumin-

ates what instability might mean on a flow that is

changing anyway, and when a quasi-steady assumption can be

used. In this case, one can be used even from small times,

and the results fit experimental data of Chen and Chris-

tensen [R6 quite well.

Thesis Supervisort Professor Louis N. Howard

Titlet Professor of NMthematics
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Instabilities of Some Time-Dependent Flows

Introduction

All geophysical flows are unsteady: the wind over water,

the potential temperatures around a cumulus, and a long wave

with a nascent cyclone imbedded, all change even as the

perturbations grow, though usually on a longer time-scale.

Yet, theories of wave growth or cyclogenesis classically

assume the unperturbed flow to be steady. They generally do

this for mathenatical reasons: first, so the equations

separate to leave a linear problem with constant coeffi-

cients in time, and second, to avoid difficulties with what

it means to speak of instabilities on a f low which is

changing anyway. So, how can one start toward understanding

instabilities when the basic solution is not steady?

For certain ranges of parameters (such as the Reynolds

number, the asymptotic behavior of the solution of the

Navier-Stokes -equations is not uniquely determined by the

boundary conditions. E.g., the Benard problem of Boussinesq

convection between parallel plates always has a conductive

solution of no motion, but above a certain Rayleigh number,

there also exist convective solutions which merge with the

conductive solution as the Rayleigh number decreases to the

critical parameter. This is known as "bifurcationI One



expects similar behavior for suitable non-dimensional

parameters, even if some of them measure time-dependence. We

have integral theorems such as Serrin's (1959a) which

provide a basis in showing that there exist parameter ranges

for which the basic flow is unique, but where are the limits

of the ranges? Under what circumstances are the limits given

by the linear theory, as Howard (1963) showed is true for

the Benard problem?

The various fluid instabilities are so diverse that an

attempt at a general theory would not be appropriate, though

some general approaches to stability such as Serrin (1959a),

Sorger (1966), and Ito (1961) have yielded weak but

interesting uniqueness criteria for certain classes of

flows. The classic sources of energy for a fluid instability

are density differences (Benard, Rayleigh-Kelvin, and gravi-

tational instabilities), shear (Kelvin-Helmholtz, Tollmien-

Schlichting), and centrifugal forces (Taylor-Gertler),

variously combined and complicated by rotation, magnetic

fields, material temperature dendences, and various

geometries. Of this wide choice, what problems can include

time-dependence and yet be tractable?

There has been some work done on effects of time-

dependence. Most of the relevant ones such as Lick (1965)

and Currie (1967) which study turning on the heat in Benard

convection, and D'Arcy (1951) which studies started concave

flow, ignore the direct role of time, through assuming

quasi-steadiness without particular investigation of when

this may be appropriate, though it may hold over a time

short compared to the time-scale of the basic flow. Some-

times this can be a bit disastrous. For instance, a stick



may be balanced upright on a hinge if it is osc 1lated

vertically at the right frequency, even though a quasi-

steady theory would indicate it to be always unstable. On

the other hand, Benjamin and Ursell (1954) showed that when

a cylinder containing an inviscid fluid with a free surface

condition is shaken vertically with simple-harmonic accel-

eration, the fluid can be unstable even if the amplitude of

the acceleration is much less than gravity, whereas a quasi-

steady analysis always predicts stability. Yih (1967)

considers horizontal oscillation of a plate with a viscous,

shallow fluid on it in the long-wave limit, and likewise

shows there exists instability. This does agree with quasi-

steady theory.

So, what are suitable problems here? The easiest time-

dependent centrifugal instabiities seem to be open, though

Conrad and Criminale (1965 ) have done some quasi-steady work

with certain weaknesses, and recently Sorger (1968, abstract

only) has completed some. Orr-Serrin bounds. The functions

easiest to handle rrthematically are simple harmonic plus

steady [Chapter two of this thesis], and impulses [Chapter

three]. Since it is desirable to approach time-dependence in

easy stages, it is worth investigating Fultz's (1965)

observation that weak periodic tide-like forces on a

rotating fluid can cause considerable turmoil, unlike what a

quasi-steady theory might suggest. This is the subject of

Chapter One.
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Forcing of the Fluid in a Slightly Tilted

Rotating Cylinder or Annulus

The most common geophysical fluid dynamic laboratory

models involve annuli (including ~ cylinders), or perhaps

spheres. Thus it is reasonable to study their responses to

extraneous influences such as tides or imperfections of

rotation. Kelvin (1880) found the oscillation modes for a

rotating cylinder of fluid and described an experiment to

excite axisymmetric modes with an axial plunger and disk,

which was finally carried out by Fultz (1960). Baines (1967)

theoretically studied axisynmetric forced oscillations of a

finite rotating cylinder and found the asymptotic periodic

flow contains pseudo-random patterns of internal shear for

forcing slower than the rotation frequency. Aldridge (1967)

experimentally studied axisymmetric modes of a rotating

sphere excited by a small torsional oscillation.

Aldridge (1967) also studied the viscous boundary layer

in his sphere and observed a rectified mean drift with a

square law dependence on the oscillation amplitude. He also

reported roll instabilities on the viscous boundaries with

wavelengths and critical Reynolds number which suggest the

instabilities are essentially time-dependent G'rtler-Taylor

vortices. Rectified currents in boundary layers have been

studied for a long time, since at least Rayleigh (1884) and

by many people. There are comprehensive reviews, e.g., by H.

Schlichting (1968). Longuet-Higgins (1953) showed how two-

dimensional, non-rotating gravity waves in shallow water

cause a forward jet in the bottom boundary layer.

Instability of shear motion has been reviewed by Lin
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(1949) and by Betchov and Criminale (1967), mostly for two-

dimensional, non-rotating flows. Johnson (1963) gives a

study of stability of one-dimensional parallel shear in a

rotating, inviscid fluid, and gives a stability criterion

for large wave numbers in a cylindrical shear layer.

The complicated steady motion due to precession of

spheroids has been considered by Malkus (1964,1966) and

Busse (1967), and of a cylinder by Johnson (1967). For

rotating annuli, visible effects of the misalignment of the

axis of rotation were reported by Fultz et al. (1959) and

McDonald and Dicke (1967), but apparently the only previous

studies of the effects have been by Fultz (1965) and Crow

(1965). Fultz found that the water in a rotating, tilted

rectangular box developed a powerful central vortex for a

certain range of water depths. Crow found the same for a

cylinder and showed that the depth of water corresponded to

a resonance of inviscid fluid in a cylinder with an

artificial pressure to keep the surface plane. In this

thesis, the viscous boundary layers are considered carefully

enough to show how vortices can arise, relieving the

geostrophic ambiguity left by Crow, as well as considering

all of the resonances, and improving the correspondence with

experiments (also more thoroughly done) by considering the

paraboloidal surface. The results also explain- the -puzzle

proposed by Claes Rooth (private comnunication) as to why

ink placed on the bottom of the cylinder often

intriguing scallop shapes which sometimes grow to form

turbulence. A new observation is also mde and explained

that the ink will form concentric rings on the bottom.

has
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Notation.

The cylinder is rotating at angular velocity 11- about its

axis of symmetry at angle C from vertical (so sinE =

Igxo../(Jgj Inli) ).

The outer radius is R, the inner is aR, the viscosity is 2/ ,

and the mean depth of the water is H. The usual cylindrical

coordinates are taken rotating with the cylinder, so z is

along its axis, r is radial, and e is counterclockwise. The

angular velocity .2. is chosen positive. So, the. height

around which to linearize is

H+ (r 2 - RZ(l+a )/2) + Er cos(e+O t)

choosing & counterclockwise from the projection of .. onto

horizontal. The deviation from this depth is denoted . Let

u be the radial velocity dr/dt, v be the tangential velocity

r d6/dt, and w be the vertical velocity dz/dt. Let p be the.



deviation pressure from hydrostatic, which latter includes

centrifugal force and the rotating horizontal component of

gravity as well as the vertical component.

In a frame rotating with the cylinder, the equations of

motion for an incompressible, homogeneous fluid aret

-wj ) ~ IY Y(L
2 +gH z+ scs9+O t + (r -f21a)/)=0

wx = dZ/dt

4)V V V WtW +LAX' 29 1 'V Y'V .. Vtq

V1 +1)

t ;L it t W;L 4.

The boundary conditions aret

U v= w=0at z O,

QUU V v=W 0 at r = R1 and r = aR [unless a=01,

S= Hp + grH -Z +r co(+ ost) + J +(r'- R (l4a2a/ + 2 .

W dz /dt,

+ =0.

The last four boundary conditions all hold "at the surface,

z H + f r c os(e Sl t)+2( . (1+a')/2) +

Surface tension is neglected. Now scale t by Li, r and z by R,

u,v, and w byefR, p byeRl and ?by EFR, where F = f2R/g.

Also define E =2)/.(R . Then the non-dimensional equations

of motion aret

r z- -ti A- +'
_ DII )2



with boundary conditions of

u = v = w = 0 at z = 0,

u V =-W = 0 at r = and r =a [# 0],

w = -r sin(G +t) +F 4F ur +

E[u cos (e+t) -v sin(G+t) +Fug +Fv ]

a.FEi> - + + =0,

with the last f our equalLties holding at

z F[r -(1+a 2 )/2] +dr cos (e+t) + F' I +H/R.

'Expand the non-dimensional variables in the snmll parameter

E, so u = u. + Eu, + o(cE ), etc., and separate the

coefficients of E to get the zero order (linear) equations

(3) and the f irst order equations (/).

zga +v.xs + Eg = .

2. * U, 4-, V* a O (!3

u,= at = 1a atr=a 3]

E IV

2. ~ (3)

The zero-order inviscid boundary conditions are

w0 at z = 0

u. =O atr =l1and. at r a#

and p = and w= -r sin(e+t) -+F + Fu

at z = F (2r' -l -a )A4 +HI/R.

The zero-order viscous boundary conditions are



u, =v, = o at z = 0,

, = w,= 0 at r = 1 and r = a [ unless a = 0],

and tFL G-t+ = 0 at z = F(2r'-l - 4

Zero-order Interior Solution

In the interior, E is negligible [0(10 ) in the

experiments discussed later], so set E = 0 in (3) for the

interior behavior. The equations are linear, so only keeping

the driven components of flow, write

w,= w(r,z) sin(G+t), %= (r) cos(e+t), u,= u(r,z) sin(G+t),

p, = p(r,z) cos(e+t), and v, = v(r,z) cos(G+t), so

u = -M + 2v

-v = p/r -2u

w-W

are the interior equations, with boundary conditions

w = 0 at z = 0,

u = 0 at r = 1 and r = a [+0],

p = and w = -r -FT +Fru at z = F (2r'-l -ao )/4 + H/R.

Equations (N) imply

w = -

u = (9-+ 2p/r)/3,

v = (2 + p/r)/3,

which can be substituted into the continuity equation to

yieldt



with boundary conditions

= 0 at z = 0,

+2p/r =Oat r= land r= a [unless a = 0.,

= r + F p/3 -Fr /3 at z = F (2rl-1a )/4 +H/R.

By the usual separation techniques, one solves

Z" (z) + .0
3

The solutions are of

RZ = [J (\r) -

with A to solve

and r R" (r) + rRI'

the form

kY' +a2Y()

+ (Ar~ -1)R = 0.

Y, ( \r) ] c-os

[aXJ' (aX)+2 J(aA)][AY (\)+2Y,(X) ] =

[,' (X)+ 2J,(XA) ] [ak YI (ak )42Y,(aX) ]

a= 0, the solutions.are of the form

RZ = JI (Xr) cos(A.7),
r3

with X to solve

+2 J ( ) =0.

For < 0, there is no non-zero At = iX which satisfies

= 0, since I, (x) = J, (ix) is monotonic. Using

the Bessel function tables of Abramowitz and Stegun (1965)

for initial estimates, the first

found by

E.E.Allen

five roots of (6 ) were

use of the polynomial approximations to J,

(1954) to be

2.7346426, X= 5.691402,

X4= 11.87525, and,

X= 8.76658,

14.99735.

For a + 0, there is also such an asymptotically

(S~)

F or

'(F + 2

(A r),

NJt'(X)

equally



spaced sequence of A's, and in fact, A, nT/(l -a), for

(1 -a)/n small. Note this asymptotic relation already holds

for a = 0. The motions corresponding to these eigenvalues

are plainly inertial waves, which will be influenced. by

gravity through the surface boundary condition. There is

also one/= iX for a 4 0, giving an additional eigen-

function

Z = [(gLr) - K( (oshz 7)

where satisfies [a/K' (aA ) +2K,(a/) ][/I' (I) +2I( )] =

. [a I ( a) +21I (a/,A) ]I[/ K', (f) +2C]

This can be found approximately by considering the shapes

of the graphs for sII(s) +2 1 ( and sK'(s) +2 K (s). By

considering the values at aA and/ as/I increases, plainly

the left side of (8 ) is positive but the right side is

negative until a ) ~ 1.329. Plainly also, the left is

always < 1, and very much so for a (( 1, but the right is

>1 for a( 2.113, so as a -> 0, /- 1.329/a. For

a + 1, one can expand in Taylor series around/4* to get

A-~Tz 3 . If one needs ( for only one given a, probably

the most practical way to find it accurately is by using

( () with tables. E.g. for a = 0.9, /A 1.81. From (7),

this mode is seen to resemble a Kelvin wave in decaying

exponentially away from the walls, as well as downward.

Since sinh has but one real zero, there are no resonances

for this mode.

Each of the modes satisfy the homogenous bottom and side

boundary conditionsy a sum is necessary to satisfy the non-

mom



homogenous surface condition boundary condition. Unfortu-

nately, as well as being inhomogenous, it is inseparable, so

some sort of expansion is necessary. F is snall in the

experiments, so can be used as the expansion parameter.

First consider the case a = 0 (i.e., a cylinder), so

where Xsatisf ies

The surface. boundary condition has yet to be satisfied.

Using a Taylor expansion in F, this condition is

-- A + + (

at z= H/R. Perhaps such an expansion is questionable for the

higher modes (those f or which nF. > 1), but these will not be

studied much, since they are more susceptible to friction,

less effected by F, and of less interest anyway.

The coef ficients in the expression ( ) for p will be

f ound by a Galerkin technique of making the error in

satisfying the condition (/D ) orthogonal to each of the

functions J ( 4). That is, to make

ONO'

multiply each side by rJ (,r) and integrate over [0,1]. The

ul
+ F,
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resulting linear system determines the response [A, unless

the determinant is zero, in which case there is a resonance.

The case F = 0 is easy, for then .the equations are

:A - _sin(X*) rJ(kr)J(r)dri = rzJ(a)dr, fpr k=l(l)1

Then using equation (6.49) page 89 of Tranter. (1956)

and noting that

(tJt)) t'Jl(ti),

the equations for F = o are simply

At- sin( ) J 7-(\) = J(), for k=l(1)PO.

Clearly the determinant is zero iff -one of the coefficients

of [Ai is zero, and otherwise the response is determinate:

While the pressure fornally has a dense set of singular

depths (multiples of H/R = 1.992, ..957, .625, .458, etc.)

one does not expect to see the higher modes, since viscosity

will damp them more, especially since

- 1.32, -0.50, 0.30, -0.18, 0.06, etc.

goes rapidly to zero as n increases, so the resonances get

narrower as well as shallower as n increases. The zero-order

solutions for F=O are thust

PO =-_ ____ \L~ c0

abbreviated

pA, J( Ico cos(9+t)

u [3J, (,\r +J ( r)]cs(f sin(G+t),

v =[3JO (Ar) -J( r)]cos( cos(e+t),

w J i men sin( ) sin(9+to.

The above are dimensionlessl dime ns iona liz ing, one has, eg.,



%3J ( ) +J

so the ignitudes depend onIly on(R-*nd H/R. One expects the

qualitative behavior of the system for F = 0 to carry over

for F > 0, at least for strall F's. So, the main task is to

determine how much the first few resonance depths, change

with F.

The first step is to solve for just

coefficient. We write p A% cos( X( z)

the first

J ( r) and rrake the

error in the surface boundary condition (I/O) orthogoral to

J, (>r).

rJ(Ar)j A, Itan( ()J(r) -F (2r -1)J(A,r)

+ 1FJ(Xr) +FrJ ( r)] -r dr =0.

I.e., we truncate the system (/1 )

get

to the first element to

A,( S' i
ri'

-F fr

Numerically,

n( Nitf-) + F cos( )

J (),r) dr cos (k)

+ IF cos( \)] J I-

+F cos( )J (

the integral evaluates to 0.130.

(1-i) =J

This gives a

first approximation to the singularity as

-1.576 tan(1.576H/AR) - F(0.459) =.0,

or for F small,

~ 1.995 - o.618F.

The coefficients required f or the Galerkin approximation to

(i ) were found using the 7-point and 9-point Gaussian

integration schemes, to yield

A[-.2048s -. O597Fc,] j+A2[.0454Fc]

A,[.o45Fc] 4A[-. 1898s, +.0 135F c,]

= 4805

+Ai[.0775F ca) +. .. = -. 1713

A 1-. OllFc1 -A.[.0775Fc] +A[-.1859s3 +.0541Fca].3] 3 = .0910

U =

24l

+A[-e.111F e +. .
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etcetera, where s, = sin , etcetera. First approximations

to the second and third resonances are found by setting the

diagonal terms equal to zero. This yields the above estimate

for the first harmonic, and gives for the second

(H/R) = Tit tan (.071F)

or

(H/R) .958 + -. 072F, 1.915 + .072F, etc.

The first approximation to the third harmonic yields

(H/R) = 1.621+.291FW, 1.241+.291F, l.862+.291F, etc.

To get a second approximation, one can find the Zeros of the

determinant of the whole third-order minor above .numer-

ically, to avoid difficulty in combining the disparate

trigonometric terms. One may use the values of the other two

trigonometric functions at the first approximation to the

harmonic to improve the estimate. Note the corrections to

m7-t are no longer independent of n. Carrying out the

computations with F = .145 yielded the estimtes

(H/R 1.905

(H/R .968

(H/R) .67, 1.25

where the error estimate is about one in the last place

given. These are compared with experiments later, and are

found to be excellent. certainly within experimental error,

and definite improvements over the F =0 0 estimates.
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Zero-Order Boundary Solutions -

While E very snall allows viscosity to be ignored

throughout most of the fluid, the high order terms become-

important in regions of. relative height E2 from the top and

bottom. Rescaling (3 ) in the usual fashion for boundary

layers, the boundary equations ( z = o(E-)] aret

- (u-i)

0~

0, w,= -r -F -Fur at 0 for the top,

u= v = w = 0 at =0 for the bottom,

and the solution merges with the interior.

These problems might be called time-dependent Eknan layer

problems. The top boundary layer requires and to

change by O(1) across a distance o(Ex), which means the top

boundary layer will only negligible change the stresses from

the interior values. In any case, the strong motions near a

resonance will not show up, because they automatically

satisfy the free stress condition, for the normal velocity

of the resonant mode is by def inition zero at the mean

surface. Then continuity causes the rest of the stress -to

vanish, f or the nornal derivatives of u, and v, will behave

like the second derivative of the norrral velocity, which



vanishes at the mean surface.

Across the bottom boundary layer, u, and v, and hence

the stresses, change by O(1), so must be considered more

explicitly. In- the same fashion as the steady Ekan, problem,

and writing i, one gets

which has characteristic roots +(l-i)/C and +(l+i .

Boundedness as- +*"" excludes the roots with positive real

parts, so imposing u = v = 0 at S = 0 gives

++ -+(

3

and imposing continuity and W = 0 at I= 0 gives

W 17(fA 
+;

Note the extra term due to non-steadiness soon swamps the

(modified) Eknan convergence, as one proceeds into the

interior.

Restoring the factor e and taking real parts, one

has in the bottom.boundaryt

u 0 .
F t b in o

(If-

Feeding this transient Ekn~n suction back into the interior

24 AA

rl 0 J-4
+



had only the effect of rotating the pattern by E , allowing

the transport of momentum to counteract friction. Equat ions

(/5) will be used in the first-order forcing in the boundary

layer.

First-Order Mean Motion

The f irst-order equations of motion are

Da C a-&vdo ; a +V,--- - +E ( v ,

t o +V + V2 -= - -;)U

. W +~0  -W

A.,.

u v= w, 0 at 3= 0 and at r 1 and r = a [unless 0],
w F +Fu~4 +Fv +1 ,cos (G+t ) +Fu r at z

wd4 = r at z1tt)t

The mean motion only will be considered, denoted by a

superbar. Since 8 and t only occur in the combination (e+t),

a time average is also a 9-average., i.e., a steady state has

been reached. Write

=r, u + -- .V

)(r,z) 7)

77L~r,z) = u

These are known from (r), though cumbersome, except that



(r,z) = 0 in the interior, from sin(G+t)* cos (0+t 0

etc.

The first-order mean equations aret

(rz 2V + E ( -

(r,z -2G + E(7 -

(r,z + E ew

u V w 0 at z = 0 and at r 1 and r = a [unless 0]

=-(r c os (&+t) +F )(w, -F -Fru,) + F +F ru

+ucos (t ) -vs ine(+t) +F u) +FV = Fru

a t z = H/A +F (r 2/2.--

Standard boundary-layer theory suggests splitting the

problem into two partst interior and boundary layers. The

interior equations aret

(r,z) = +

0 -2 u

Ot(r,z)

where w = 0 at z = H/R +-2 and other. boundary

conditions to Match the boundary solutions. In the surface

boundary layer, it was earlier f ound that and N- change

by at most O(E"). Thus equations (22) below have only

trivial solutions, to O(E ), for free stress surface

conditions, so the boundary conditi-on wI = Fr effectively
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holds at the top of the interior. In the interior,

u =0

then implies = 0 from (/7,j), which with the top boundary

condition implies

W= 0.

Eliminating p between (fl) and (113) gives

but leaves v, ambiguous by any axially symmetric geostrophic

flow. Since we are particularly interested in such, this is

inconvenient. Of course, one could also say there is such an

ambiguity in the zero-order flow, but there we can argue

that any non-driven flow will decay from Ekman friction.

Here that is not evident.

The cases of principal interest are resonances, when

the nth component of the formulas (/S) dominate, so

(3 J,( ) +J, (r r)-J, - ) cos( s in (e+t)

+(3J, -J)(-4J, + (3 3,-3JD/Xr) cos' (n ) Cosa (e+t)

+2j, (3J, +J sin"( ) sinz (e+t) de,

f3J, +J, )(J -J, /Ar) sin(2z/3~) sin4(9+t)

+(3J,-J )(JI / Xr) .sin (2 .,z/f3~) dos '2(9+t)

+J 2-sin(2N,pZ/\(3) s in (6+t ) de.,

~ f 24(3J, +J )(J +J / r ) (3J, --J )(3C J J -+4J )
+2J, (3J,+ J) sin (2Nz/r)

Since the nth resonance is stich that sin(H/iR) = 0,



cos( 0H/jR) = I, and

Thus, the vertical average. of V = (o+,r). Let's go to

the bottom boundary to get this value.

Physically, we look f or (U,w )-rolls in the boundary,

driven by radiation pressure. v, is coupled at the tops of

these rolls by Coriolis force. Suppress writing r, and apply

scaling of the usual boundary variety to get the mean first-

order flow in the boundaryt

(+ =05

V 0 at y=0

U andw +0 for )

Now and can be found from the result (IS) of the

boundary layer analysis, and equations (22) are of a well-

behaved linear form, so one should be able to solve them

analytically. Several months of effort were convincing that

the same answer will never recur, so the easier, and

therefore more reliable, technique of numerical solution was

taken up. Unfortunately, this turned out to require a good

part of the floating point software for the PDP-1 computer,

so also took several months, but at least the answers are

reproducible.

The system (2) is a two boundary value problem on an

infinite interval. Two methods come to mind, namely shooting

and relaxation. The first is more convenient for determining



the eigenvalues which allow solution. Ref ormulate the w--

boundary conditions via the continuity equation

0 = j =

so f'd = S/r,

i.e., no vertical flux out implies the total horizontal flux

is constant. For a cylinder, this must be finite (in fact,.

zero) for r 0, so the boundary conditions and equations are

+ c = + 2T,
)$+c= -2'~

a(0) = v~(0) = 0

L /bnd + 0 for >>

,iTdf =0,

where is written c to emphasize its independence of ,

and is determined by the five boundary conditions on the

fourth order equation. This system can be numerically solved

fairly easily by simultaneously computing three solutionst

=y 2 , y =&+c -2y3 , 3= y; = y

y'=yy +c'-2y, ,y' yr,y = -+2yy

y' =y,-+c -2y, , y= y , y +2y
= )O 10 ~ I

13 IVJ, . e

where y(0) = 0 for n = 1 to 15 except y&(o) = y (a) = 1.

One integrates this set to infinity (using a Kutta -Merson-

scheme with autonatic step-size control to keep down the

error.] and checks whether the other boundary conditions -can

be satisfied. They can be if there is a linear combination
'U

of the three solution vectors which satisf ie = W = 0 as

->o, which is so if the determinant

y y) y
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If not, use the value of the determinant to search for a

better yalue for c, by bisecting the interval within which

the zero is known to lie. Given c,. q at the outer edge of

the boundary layer is given by (4 +c)/2, and is plotted for

the first three resonances in figure (2). Note that a

first-order vortex occurs at the origin in each case. The

exponentially growing possible solutions to the equations

limited the integration to 1 ( 12. Fortuna-tely, 4 and )4

had already effectively reached their asymptotic values

before then, so the limitation was not serious. The values

of and }t were found with as little hand algebra as

possible, which meant long but straightforward programs

taking much computer time. The Bessel functions were

evaluated with error less than 2x10 using the approxi-

matons of E.E. Allen (1952). The trigonometric and expo-

nential functions were evaluated with error less than 2x

10 using the approximations of Hastings (1958). The

integrals over. 9 were approxinated by a twelve-point

formula, and the vertical derivatives were approximated by

central differences. Using the determinant above avoided

having to find the actual initial conditions necessary to

hit the boundary conditions at infinity. This was highly

necessary while shooting, for the undesired exponentially

growing solutions rendered the solution highly unstable, as

numerical experiments confirmed. Thus, to find the actual
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velocities' in the boundary layer, another technique is

necessary. Now that the eigenvalues c(r,A,) are known, a

relaxation technique may be used. The same programs to

compute 4. and M were used, along with the usual second-

order approximations to the second differences and boundary

conditions in system (23). Liepmnn relaxation in alter-'

nating directions was -used, with a visual display to check

for satisfactory convergence. Starting from random initial

guesses, the convergence was slow due to what appeared to be

a close analog to slowly-decaying geostrophic oscillations

with sweep number in the place of time. Over-relaxation just

increased the frequency. So, a srrall amount of damping

(slight increase in the ragnitude of the middle coefficient

in the differencing scheme) was introduced and then relaxed

to zero itself. This very effectively killed the oscil-

lations. The resultant non-dimensional radial -mass fluxes in

the boundary are sketched in figure (3) for the first three

resonances. Features of special interest about the depicted

rrass flux in the boundary layer are that .they represent

somewhat distorted Ekran spirals and the (closed) flows

occur in n gyres for the nth resonance. These gyres, or

ring vortices, * will result in sweeping anything on the

bottom into rings. They are sketched in figure (3) for the

first three resonances.



Shallow Water

The above treatmnt has been focused on the resonances,

which occur for depths comparable to the radius. While these

are the most important cases, the limit of shallow water is

also of interest, especially since it is easier, at least if

one takes RF/H = 0.

While the sums over Bessel functions still hold, they

do not converge rapidly, so it is easier to start over. In

fact, to compute the Lagrangian drift later, it is easier to

use Cartesian coordinates. Proceeding as before, except

scaling z by H and hence u and v by ES.R/H, the zero-order

interior equations are

~~2- VO

with boundary conditions of

u 0 at r = land r = a [+0],

w, =0 at z =0

w0= -x sin t -y cos t at z =1.

The solution is

w= -z (x sin t + y cos t)

u = (-4xy cos t +(14y'+lox' -10) sin t)/16,

v = ((L4xi + 10 y'-10)cos t -. 4xy sin t)/16.



Thus, there are no resonances.

The structure of the bottom boundary layer is needed.

The equations of motion there are

__~~.2k~O)-ZL4

with u,(0) = v,(0) = 0 u, u,(**), v, +v(o> ) as [+" It seems.

easiest to solve this by the method of undetermined coeffi-

cients, since we know from the form of the solutions (/f)

before that

Ae sin(t- 5) + D B cos (t-5),

v(x,y,t,1v) -v(x,y,t ,oa) = Ee sin(t+) +e.cos(t.-

4G e sin(t- F) + H e cos (t-s),

for coefficients which are functions of x and y only. Since these

solutions must satisfy the equations of motion (25),

F = A, E = -B, H = -C, G = D.

Four more are given by u(0) = v(0) = 0,

which imply

16u, = (-4xy) cos t + (14y' + l0x' -10) sin t

+(10' -12r j e-;O s in (t+ .g)+2 (x _y' )e 'pss i n(t- i

+ 4xyecos (t - (f ,
16v, =(14x' + l0y2 -10) cos t - 4xy s in t

+(10-12r2) C os (t+'.) +4xy e s in (t-(O) -2 (x -y' )e e os (t -()

These give, upon rescaling w, by Ej as before,

16 = -16( au. + - )

=-16(y cos t + x sin t) +24e '[y cos (t+,k)+x sin(t+36)]

i'8e [ y cos (t-rt3 ) +-x sin(t-6v )]',
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which can be integrated to give w . Since the stresses must

be formed numerically anyway, the integration nay as well

also be numerical. The x and y derivatives. my be exactly

evaluated by second-order differences, since there are only

quadratic coefficients. Then, one shoots for the eigenvalues

for the boundary equations as before, and gets Vat the

outer edge of the boundary layer. The result for y = 0 is

,(r,0+) =123 r NOf r3

This allows one to determine the Eulerian mean velocity

throughout the interior, since v is independent of 'z. This

mean azimuthal velocity ought to be experimentally

measurable, and has been by Heyer (1967). However, the

velocities are so slow [O( 0')] that one needs to consider

the difference between the TlAgrangian mean velocity of an

integrative tracer and the Eulerian mean velocity given

above. The Lagrangian velocity of a particle originally at

point a is v(alt), and is the Eulerian velocity. u at the

current location of the particle, a +Sx. Expanding in E and

using a Taylor series,

ev.(a9t) +gt v, (a9t) = eu.(a+Jx,t) +2u, (a+x,t)

= u,(a+E fdt +O(E7),t) +u, (a+O(),t)

u.(a,t) + eXu (a,t) + u$dtO u 0 ) +(

so we have the formula given by Longuet-Higgins (1953)9

A V = U+ , dt oVu . 2

The latter increment to the Eulerian mean velocity is easily

found from formulas (241) to be

r- r' + 5r/8

in a tangential direction, so the mean lagrangian tangential
velocity, after dimensionalizing, is

(+.79I(r/R) - .74o(rAd I( 2 0
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Side Wall Boundary layers

So far, the effects of the side-walls have been

ignored. This is because they are ignorable to a consi-

derable extent, since the Coriolis force does not couple

with V here as it does on the bottom.

The full viscous zero-order equations are given as

( 3 ). Considering the side boundary layers, write

8= Sr-l), and expand in S. The continuity equation and

u = 0 at s = 0 force rescaling u by 2 also. The viscous

terms do not enter the equations in until = E , so the

interior equations hold outside an E layer, and there is no

need to consider an E or E layer. When g= E, consider

0-0A4w,

with u,= v w 0 at s 0 and allmerge withthe

interior.

Since p is independent of s, the v and w equations are

simple diffusion equations, and - , so writing v=

A cos (9+t),\)= E sin (G+t) as the speeds just outside

the boundary layers)
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The continuity equation may be inte rated to give U

If we now consider the (steady) mean velocity, the

zero-order E layer above will reflect in the forcing. If

we subtract the interior forcing from the mean velocity, we

will have effectively the steady side-wall problem consi-

dered by Howard (1968), since the E 2 deviation forcing will

act as forced mean velocities (ii,v w) at the outer edge of

the Ellayer, which can be taken as the inner boundary for an

E layer. Howard shows how this E layer will 'balance out u

and wi, while an E layer will allow "i to match the interior.

E.g., 0 at r 1 in figures 1 is no difficulty.

Possible Shear Instability.

The last section showed that there will be mean

tangential velocities V, in the interior, and consequently

shears. Thus there is a possibility of shear instabilities.



Since the cylinder is rotating and the sinuous flow

will not be rapid, the Taylor-Proudan theorem will hold for

the perturbations, even if the mean shear does depend on z.

Thus, it is reasonable to average v with respect to z and

consider the motion as two-dimensional. Now, a scaling

argument shows that for such a system, the Ekmn friction

far dominates lateral friction, so the latter will be

neglected. This gives a barotropic shear problem which seems

more relevant to geophysical fluid dynamics than the

classical shear problems.

The perturbations are nearly non-divergent:

where the vorticity is defined by
D V V4

The Ekxran vorticity equation is

where v has been rescaled to 0(1) in energy measure, the

Rossby number

Ro- = - A~Vgr v2 0+,r) dr

with A, the amplification factor near a resonance from

equations (12), and Z the mean vorticity + . Since the

perturbation flow is nearly non-divergent, write

u+ E u ,+ Ev.

Substituting into the vorticity equation and back into the

continuity equation gives

u=- + E' I +0(E), v +E +0(E),

I = V 2 + 0(E).



Substitute these into ( 0 ) to get

-C + T - + V2-4.- ; D( ),

Both experiment and balance of equation (31 ) suggest

R is 0(E), so writing R =SEL and '= E t in (31 )and

dropping terms of O(E

- -S e f l (32)

For growth of a shear instability, one needs tilted

troughs, so one cannot separate r and 6 easily. Since

rotation has dropped out except in E, one looks for insight

in the corresponding 'f-plane' cartesian equation

SV X(32C)

with ( periodic in x and y. Figure ( 2) of at several

resonances suggests the

v 2 cos x

is an appropriate cartesian form. An upper bound for inf S

can be found from any admissible q1 whidh gives > 0.
Since this is a barotropic shear problem, a good estinate

requires ' tilted troughs', and one expects on physical

grounds that an excellent appraxination shouldc.ome from the

trial formt

sin x sin(1y -x), 0 < x < T)

sin x s in(1<y + x -2e F),g x < 2ff

periodic extension, ' other x.

For this trial form and v,



= q1+v*f _sf V.V

= f'k2 S - (k'+ + 1)V'1

so at nairginal growth, S= 3(

which has a minimum of S = 3 W

at = k = oo . The latter implies a y- or G- wavelength

much shorter than the x-wavelength imposed by the mean

shear. This corresponds to the experimental observation of

wave-number about thirty around on the second mode, and to

the Mrked tilt of the troughs which develop. Returning to

the dimensional form, there will be instability if

2 v(0+,r) r dr (AEz) E > ( 3

but not if much below, unless another resonance is active.

the A,' s are given by inverting the infinite set of

equations (12) near the nth resonance. From equations (12),

A = 2.34 sin(1.65 H/R )I -

A = 0.90 sin(3.25 H/R) (3)

A = 0.49 sin(4 .7 H/R)

etc., where F has been set to .145 for the resonances, but

to 0 for the coefficients. The error in the coefficients is

only O(F).

The mean square amplitudes for the first three v I s are

.33, .44, and .31 , so the instability bounds are

= .0591 sin(l.65 H/R)I



= .132 sin(3.25 H/R) I ,

= .29 sin(4 .7 H/R),

using E = l.5xlo~ to match the experiment. The instability

bounds predicted by (34a) are given in figure 4. Note that

if E is greater than any of the right sides above,

instability is predicted. Thus, there are wedges of

instability reaching down to zero tilt. However, as the tilt

increases, 'shears may occur when no one one component is

dominant, so there may be instabilities for .Q R large,

even if E is not large enough to cause one component to go

unstalble.

When comparing the experimental results given in figure

4 with the instability bounds given above, remember that the

experimental v 's are in cylindrical coordinates, and are

not exactly sinusoidal. Nonetheless, the results compare

well enough to conclude that the observed instabilities are

due to the vertically averaged barotropic shears, with Ekman

friction.



Eperimenta 1 V erif ication

It is time to show that the theory developed so far has

some relation to reality. The turntable used was the 1-meter

table in the Fluid Dynamics Iaboratory of the Woods Hole

Oceanographic Institution, described in Turner and Frazel

(1958). This turntable is carefully engineered to maintain

constant angular velocity, which is continuously adjustable

over a large range. Tilting was accomplished by a hand winch

from a guard-rail to the four foot steel plate upon which

the turntable stood, allowing accurate measurement of small

angles. The cylinder used was clear plexiglass of radius

14. 5 cm, depth 29 cm, and quite accurately circular and

right. A flat clear plastic sheet was used as a lid to get

rid of torque from the air.

The flow *was mde visible with dye and dust. A

television attached to the turntable showed the zero-order

waves rotating backward on the rotating frame of reference,

but otherwise did not havve sufficient resolution, and was

restricted to one view, so was not used further.

A typical run consisted of filling the cylinder to the

desired depth with hot and cold water mixed to room

temperature, centering it on the turntable as closely as

feasible, then speeding the turntable to a fixed voltage on

a dial. The angular velocity this corresponded to varied



from day to day, so the actual frequency was determined with

a stop-watch. It was not realized then that F would be

important, and setting a particular angular velocity was not

easy. The fluid was allowed to spin up for at least twenty

minutes, then potassium pernanganate crystals were dropped

through snell holes in the lid to check for completed spin-

up. The permanganate dye was used to trace bottom boundary

motions, and flourescent dye was used in the interior. As

soon as spin-up was completed [except in three cases of

resonances], the turn-table was slowly tilted and left for

at least ten minutes, usually thirty. Then observations were

made, mostly of the ink on the bottom though interesting

cases were followed in the interior. Then the table was

carefully tilted further. The results are plotted in figure

. If nothing much was observed (besides the zero-order

periodic motion), a circled dot is entered. If rings of ink

were observed, a circled R is entered, with the number of

rings, counting center dots and ink at the edge as rings. It

my be worth noting that these rings were not due to the

location of the dye crystals, for they nornally sharpened up

long after the crystals had dissolved and occasionally clear

areas formed over a crystal, except for its thin plume going

either in or out. At higher tilts, the rings became unstable

to wavy disturbances, with wave number 30 and up for outer

rings and wave numbers 2 to 4 for inner rings. These are

entered as circled I's with the number of rings. Near

resonances, the instability was violent enough that visible

rings did not have time to form before powerful vortices
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formed, which are entered as circled Vs. These are presum-

ably what Fultz and Crow observed, since they form most

strongly near the f irst resonance. It nay be worth noting

that these vortices are not necessarily the first-order

vortex at the origin derived upon finding the theoretical

V4, though their continued existence may depend on similar

causes, because these vortices form from the instability on

the inner ring when this grows slowly enough to observe in

detail. Occasionally a ring of ink along the wall will

develop cusps which may grow and spread into the interior.

These are entered as circled E's and were observed at zero

lift of the edge at three resonances. They look as if they

might be caused by an instability on a shear a little way in

from the wall, with the ink collected in the the corner

because it is .heavier. However, they ray be due to a

G6rtler-Taylor centrifugal instability of

flow up and down over the concave corner.

discussed in the next chapter.

Looking at the completed diagram, we

general agreement with the theory: there

which get weaker as n increases, there

convergence and divergence in the bottom

generally one ring for the second resonance

third. The vortices (zero rings) go with the

us look at the quantitative predictions.

The experiments were mostly run about

the zero-order

This idea is

see there is a

are resonances

are rings of

boundary, with

and two for the

first. Now let

30 rpm, so F =

.145. Thus the zero-order interior theory gave resonances at

H/R = 1.905, .968, and .67,1.25- for the first, second, and



third resonances. With R = 1.5 cm, this forecasts H = 27.60

cm, 14.05 cm, and 9.72, 18.1 cm. The observed E' s f or zero

tilt are taken as the experimental tips- of the wedges 'of

instability, and occured at depths 27.5 cm, 13.9 cm, and

18.0 cm. There is also a wedge around 9.2 cm, though its

center is not well defined. These seem like excellent

confirmations and are within the experimental error, which

is mostly due to various F's being used. The widths and

depths of the stable region seem in agreement with the (a

posteriori) prediction of figure

A rather crude experiment with an annulus with outer

radius 3 5.4 cm and inner radius 21 cm was also tried on a

similar turntable that could not be tilted. The annulus was

not deep enough to try the first harmonic, but the invisible

tilt automatically in the table was suff icient to cause

considerable current and edge vortices at 13 cm, surpri-

singly close to the predicted second resonance at H =((35.4

- 21)cm = 12.4 cm, considering the crudeness of the

experiment. These currents and vortices were not observed at

four other random depths, so this was encouraging.

A later exploratory trial with a smaller but much

better built annulus showed a few sluggish vortices at the

first resonance but not at the others. Since the vortices

retained the same size as before (a few cm) they filled over

half of the gap, suggesting they found it difficult to form,

since incipient vortices were visible to the desirous eye at

the second resonance. However, what my be much more

interesting is that a relatively strong meriodional circu-
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lation developed near the first and second resonances,

though there was a lid, and spin-up had been complete before

tilting, ink in the bottom layer flowed out to the outer

corner and from there, spiraled up and forward through the

interior to nearthe upper inner corner. However, the water

next to the inner wall renmined clear while the ink formed

into a central and outer ring (for the second resonance, at

H - (R,-RI )0 /2 Such circulations could conceivably exist

in nature or in an experimental model.

..R= f2 .f cos at

--ed

Sketch of basic Taylor aoparatus with oscillating inner cylinder.Figure 6.



Chapter Two -- Periodic Taylor Problems.

We now consider another problem of periodic, incom-

pressible, laminar f luid motion in an annulus which will

involve similar Mathenatical tools, but which is funda-

mentally different.~ This problem is a variant of Taylor's

[1923] classical problem of centrigugal instability when the

inner cylinder of a concentric pair (as in figure 6 )
rotates enough faster than the outer. What-will be the

effects if the rotation speeds depend on time? One still

expects centrifugal instabilities if there is enough mean

centrifugal potential, or perhaps when the potential is

particularly strong. With a view toward Fourier integrals,

the obvious motions to consider are periodic and impulsive.

This chapter considers periodic torsional movements of the

cylinders, with special attention to the interesting

limiting case of pure torsional oscillations of the inner

cylinder while the outer cylinder is fixed.

Literature Review.

The zero-frequency (steady) problem of centrifugal
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instability was started and to a. renarkable extent f inished,

by G.I. Taylor (1923) both experimentally and theoretically.

It has been pursued extensively sincel thorough reviews nay

be found in Chandrasekhar (1955) and Coles (1967). Coster

(1919) considered the two-dimensional flow around a torsion-

ally oscillating cylinder. Winny (1932) -tested the theory

experimentally and f ound it good f or Re < 600.

Ring vortices were apparently first observed for oscillation

of the inner cylinder by Fage (1935), but he presents no

theory nor critical parameters. Meister and Munzer (1966)

considered the special case ( = 3 + Esine)t, . =2 for

narrow gap, using Galerkin appraxinmtion, and solved numeri-

cally f or E = 1, and t = 0 and 10. They f ound the kinetic

energy f or f ixed t to be less f or W =10 than f or W =0.

Carrier and DiPrim (1956) consider the. torsional

oscillations of a sphere by expanding in the oscillation

amplitude. However, the resultant mean -flow should not be

considered an instability like the vortices around a

cylinder, where the generators are parallel to the axis of

rotation. serrin (1959b) used variational techniques to show

that if the Reynolds number is below a certain bound, the

flow in a volume with periodic forcing is stable. Kirch-

gassner (1960) gives a time-dependent extension of

Rayleigh's principle, that an inviscid flow is centrifugally

stable for all t 0 if 5+ .0 and v(rt) O. Note this

does not cover the case of pure oscillations. Conrad and

Crimina le (1965) consider sufficient conditions f or

stability f or axisymmetric vortices in a narrow gap f or



torsional oscillation of one of the cylinders w ith or

without a superposed steady mean motion of either cylinder.

They use Serrin's (19590). variational equations to give

several lower bounds f or the critical Reynolds numbers as

functions of the shape of the basic flow, assuming it is

quasi-steady, perhaps relative to a changing amplitude, but

always locally in time. They seem to regard stability as

being a local property of a fluid flow rather than

asymptotic in time or as a bifurcation of solution f orms as

functionals of the parameters. However, if the Reynolds

number of the basic flow is below the infimum over a cycle

of the Reynolds numbers curves they give, then the energy of

a perturbation must always decrease. For steady rotation,

their critical Taylor number is about two-thirds of Taylor's

for 0 =) but is a definite improvement on Rayleigh' s

principle for 0 < 0 . . For pure oscillation, of one

cylinder, they get the curious result that the critical

Reynold's number for the outer cylinder oscillating is lower

than for the inner, though unfortunately they used different

Strouhal numbers (or angle of swing.) Conrad and Criminale

also find that superposing an oscillation on an outside

rotation lowered their Reynolds number bound a lot as the

frequency increases. Superimposing an oscillation on the.

inner cylinder's mean rotation also lowered the bound for

large enough amplitude, but actually slightly increased it

for. small amplitude. They also find that rotation of the

outer cylinder lowered the Reynold's number bound for

oscillation of the inner cylinder. While these are for
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lower bounds, Donnelly (1965) found that small oscillations

superposed on -a mean rotation of the inner cylinder can

stabilize the flow to centrifugal instabilities, though he

meant by this that the torque does not increase strongly

until higher mean even though periodic rolls appeared

at lower mean

Notation and Discussion.

As sketched in figure 6 , we consider concentric

cylinders with inner radius R1 and outer R2, with = R, /R

and d = R2 -R . The angular velocities of the cylinders are

(t) and .Q(t). Def ine non-dimensional parameterst.

dA,

Re= (3

E

N

where W is the angular frequency of oscillation, and f =

S+Q .122 As before, u = dr/dt, v = rde/dt, w = dz/dt.

This thesis has a general policy of not spending

endless pages in attempting analytic solutions to approx-

inmte equations in which the effect of neglecting terms is

unknown, when an approxinate solution to the exact equations

can be found more easily numerically. As an example of

this, consider the extensive bibliography an<d impressive

fornalism devoted by Taylor through Chandrasekhar to deter-

mining the critical parameters for the steady Taylor
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problem, i.e., determining the minimum Re (or Taylor number)

and associated wave number a for which one ny solve

with u = V = 0 at r = and r = 1.

where A = (D.-)/(i -' I),

B = R' (A -A)/( -'f).

The classical thrashing around with this problem has

produced only the asymptotic values as + 1 (Taylor,

1923), the values for = (Chandrasekhar, 1955), and

. While testing a program used below, these values

were reproduced for the special case 2.0 Upon noticing

that the values for other had not been done, sufficient

other points were run off (in about half an hour) to produce

figure 7 , of the critical Reynolds number for .Q = 0

for d/R = .02 to 0.9. The same program could have worked

out Re for .. +g 0.

Initial Value Problem.

The equations of motion are already given in equations

( I ) where the boundary conditions are now

u V = w = 0, V =SIR, at r =R.

u =v =w =0, V =.QR, at r

everything is periodic in z, and the azimuthal velocity is

V(r,t) + v(r,e,zt),

with v d9 dz =0 defining V.
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Following Chandrasekhar (1955), linearize the equations of

motion, take the wave

eliminate p and w to get

number as k, assume axisymnetry, and

( k -YT v (, (3d)

with, boundary conditions as above, and where

and D* G g+ 1/r,

and the variables are functions of r and t only. Now non-

dimensionalize, so

k =a /R , r +rR , t + t

where 0 is the oscillation angular frequencyt

9,

0 at
2 ~AJ-~-~-\ v

~rev S~,

0 )
(37)

with u = v =Du = 0 at r =1 and r= ,

y n(t/lat r = Vy=D~)^ at r= ~

D = ,C

= A C D, V) U,



Noting that the main f low V is independent of u and v

(since linearized), it seeis worthwhile to solve it first,

so try the problem with scaled boundary conditions

V(1,t) = sint t, V('Pt) = 0,

and initial conditions V(r,t) = 0 for 1 < r

This turns out to be easy to solve with the aid of a Hankel

transform. Multiply both sides by

rB, (pr) ~=r[ J, (pr) Y, (p) - Y, (pr) J, (p)]

where p is a positive root of B, (pr) = 0, and integrate

over r, solve the resulting ordinary differential equation,

and invert, to get

(32')

As t + oC, this becomes strictly periodic. This V is the

solution of a diffusion equation, so cannot have poles in

the interior 1 < r ( which makes one curious if the

denominators J (p) - J (P f ever are zero. We have

J(pI'')Y(p) = J(p)Y(pf^), so this is equivalent to the

graphs of Y(x) = Y,(y) and J,(x) = J,(y) intersecting. These

graphs were sketched, and were found to occupy the whole

positive (x,y) quadrant in great. wiggles, . but to cleverly

avoid each other, avoiding any difficulties in the given

form ( ). The asymptotic expression for V can be summed to

a closed but complicated form in Kelvin function of the

first order, e.g. , for = 0 (no outside cylinder]

V = cos (t) [ -ker, (i) kei, (E-) +kei (E1) ker (9 )

+sin(t) [ker (6:1*ker, (E4) +kei (n 1 ke ( 0

a ker,2(E !) +kei'(Et)f .



Thus, for = 0,

2V= ker (e ) +kei (/E6-{ker 2(E~) +kei (

exp(- E -
showing the boundary layer structure of the decay due to

spreading as well as viscous decay.

Numerical Initial Value Problem.

Since there is no easy analytic method for solving the

non-dimensional equations ( 3' ), let us try numerical

methods for insight. We will use three numeric methods for

comparison and exploration of the best methods a second-

order solution to the initial value problem, a harmonic

system, and a (slightly disguised) spectral method. For the

initial value problem, we rephrase the non-dimensional

equations so

IIV

(3)

where ! = (DD, -a )u,

u = D4u= v =0 at r =1 and r='

.v(1,t) = sh(t),. v (y',t) =At)



The man f low is included here because it turns out to be

easier to expand the system of ordinary differential equa-

tions a little than to evaluate a bunch of Kelvin functions,

though the latter are useful for checking. We use the usual

second-order difference appraxinations to D and D4 in the

interior, so using superscripts to denote network position

out of K [so rk= 1 + -1l) for k = O(1)K and

2+ k---0 -2a

where

ki~ +((iAA>~ At 4 A @5

all for k = 1(1) K-1. The boundary conditions
u0 =uK = v =~ v =0 and VV =.,(t), V =Q(t)

are easy enough, but the boundary condition D u = 0 is more

A,4-

interesting. How can this be imposed when all of the u' s are

now defined? One realizes the values . qA and g are still

free and provide the needed two more conditions, through

(D -a ) = V set=0an



Now impose Du = 0; the centered second order apprcximation

defines u = u , so

Similarly ,

These provide the additional constraints needed. If one

felt uncomfortable with introducing the artificial u- above,

one might think of only defining u from the V def inition

for k = 2 (1)K-2, then imposing the boundary condition Du = 0

as u1 = ut/4, u u'4, which then define and-

However, this scheme effectively brings the walls closer

together, thereby causing too high a critical Reynolds

number, so one should use the centered scheme. So much for

ten hours work and experimentation.

For the numeric solution, all variables were initially

zero f or each run, then the were set with stall random

numbers. Then over-relaxation was used on ( I ) f or k

1(1)K-1 (with u* = u = 0]. When the error was small enough,

' and 1P/ were set as in (14 ) and ( 13). Ifw all of the

right sides of (q04) through (9O,3) were defined, so a time-

step could be taken. A fourth-order Kutta-Merson scheme

with autonatic error checks and step-size control was used.

The curves u(r), v(r), V(r), and 4(r) were displayed for

visu.l checks, under sense switch control, so it was seen

that v had the same period as V (forced to be 21f), and a

similar shape, with zero crossings near the same radii, A



typical graph is given as f igure i . The radial velocity u

always had the same Sid'n (after a transient adjustment

period in which it occasionally kept a second mode

appearance f or a while], so had a zero-frequency component.

It also grew twice in each V period. Superposed on these

cycles was an exponential growth or decay. In f igure 7 is

a typical graph of the kinetic energies of the perturbation

and the mean f low. Two bumps --correspond to one basic

period, due to the squaring. Note how well the perturbation

kinetic energy can be represented as p(t)e , for p

periodic, we thus 'have a picture of the motionsas the inner

cylinder is past the middle of its swing, the centrifugal

potential in the V boundary layer builds up 'enough to

encourage u to grow, which advects V to encourage v. Thus, u

will pulse on swings either way, whereas the sign of v will

change on opposite swings. If the centrifugal potential is

enough to cause more growth than the viscous decay over the

whole cycle, then each cycle will result in the same

proportional growth, once the fastest growing mode is

dominant, and until limiting size is reached.

The whole system was run f or various parameters Re, a ,

and N relevant to the experiment with = 1.0444 described

later. The initial value problem was run out far. enough to.

determine whether there was growth or decay. While the
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oscillations were a handicap, fortunately only a few cycles

were necessary, except near marginal growth. This indicates

that the fastest growing (or most slowly decaying) mode was

always quickly dominant. After the growth or decay was

discerned, Re was changed until the value which gave zero

growth was found. Then a was changed until the Re found was

minimized. The results are plotted for Re versus N in

figure 10 and tabulated in table . The six points found

represent over one hundred hours of computer time.. The

seventh is the steady limit from Taylor's narrow gap theory,

or figure 7.

For the smaller N's (higher frequency, smaller angles),

the amplitude of the kinetic energy oscillations were small,

suggesting the pulses were rapid compared'to the decay time,

but not very efficient. For N ( 1, the kinetic energy

oscillations were over several decades, which is a strong

'on-off' behavior, and suggests the feasibility of a quasi-

steady appraximation, for N (( 1, as discussed later. How-

ever, a quasi-steady approximation plainly will not be

useful for N > 1, though then considerations of a mean-

square centrifugal potential nay be.

The critical Re was not sensitive to a , explaining the

rather large error estimates for a. The growth rate was much

more sensitive to Re for small N, so the KE 0 curve is

closer to given finite amplitude for small N than large.

Conrad and Criminale (1965) claim stability for = 1.060

and N = 1.94 if Re i 103 (after translating notation). While
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this is the only f or which they give a value, tfe narrow

gap approximation translates this to a claim of stability

f or = .o444 and N = l. 94 if Re < 163. This point is

also entered on the graph. Indeed, there will be stability

below that Re.

Quasi-Steady and Rapid Oscillation Limits

When the oscillations are slow enough that the viscous

boundary layer 7Tf Fi is thicker than the gap d, one

expects a quasi-steady assumption to be realistic. The

dimensional equations of motion and boundary conditions are

given by ( ). Let us rescale t -S.t, so
. R., -~ - R . .2 a.''Yi//

1[ 0, - -t it* CDV

where 9 = (DD, -2 )u,

u v = Du =0 at r =1 and r

V = sinNt . at r = 1,

V = 0 at r = , so

V(r,t) = M(r) sin Nt + N Re$ K(r) cos Nt,

where M and K are O(1) and S = d/R. Thus, V is 'quasi-

steady' insofar as N Re is snall. Let us use this as an

expansion parameter, so =q., + N Re L +.... etc, and

retain the zero-order equations

(%fAE Ltt



where = (DD0 -a:* )uO,

U =v, =D.u, = 0 at r= 1 and r =

M 1, K = 0 at r = 1, M= K =0 at r = r'.
These are the quasi-steady equations., so one is jus tif ie d in

treating stability as depending only on the current time and

not the past if N Res is small, i.e. if the forcing has

plenty of time to diffuse. If it is, we have the classical

Re jsin Ntl = F1705 and a ~ 3.16 , which determine the

times at which the rolls will 'switch .ont , reaching their

limiting size in much less than a period of oscillation.

They will die just as fast when Isin Ntl approaches its next

zero. Of course, there will be no instability if

Re ( at least for N (( . This guaranteed

stability line is entered in figure )0 , since it probably

holds for larger N also, since it seems clear that the

oscillating forcing will always be less destabilizing than

steady rotation with the same maximum angular velocity

(though quasi-steady results of Currie (1967) suggest this

may not be quite true]. But in that case, Taylor (1923) gave

a bound which for this is Re < 4710, independent of N.

This line is asymptotic to the results presented here. We

see from figure 10 that the experiments were conducted for

boundary layer thicknesses comparable to the gap width, and

merge smoothly with the quasi-steady prediction to the

right, for N (« l.

When the boundary layer thickness becomes enough less

than the gap that even the vertical wavelength is less than



d, the dependence of the parameters on d should drop out.

Then q = (DD - gives a P scale of iou/2,- whereas

(DD -kl)f =2kOVv/r gives a 4' scale of i-v, and

(DD* -k')v = (D*V)u gives gives a v-scale of u, which

combine to force constant, much like the classical

formula. Since S = . this can be squared to yield

Re= cN

for N large. The asymptotic region was not reached in the

experiments,, f or the exponent of N for Re increases from 0

at the right to about 1.9 at N = 1.5 at the left. The

thickness of the viscous boundary here is about a third of

the gap, and the wave-number has just started to increase,

so the balances above still have factors of two and three

depending on d as well as

Mean Rotations with Oscillations Superposed

With the equipment available, an obvious extension of

the theme of time-dependent centrifugal instabilities was to

superpose mean rotations of the outer and inner cylinders on

the oscillation of the inner cylinder. This seemed

attractive in connecting to the steady problem.

Donnelly (1964) experimentally studied effects on the

stability of steady circular Couette f low of a superposed

oscillation of the inner cylinder. Meister and Munzer (1966)

and Conrad and Criminale (1965) studied this problem theore-
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tically, and agreed with Donnelly that small amplitude

oscillations can stabilize the mean flows. Donnelly' s

experimental points of onset of sharp increase -of mean

transmitted torque are replotted in figure 1. His abscissa

is inverted to show the number of viscous waves in the gap.

This way it seems clearer that the decrease in torque is due

to the correlation of the phase of the viscous wave at the

outer and inner walls. It even seems clear that the effect

has about the same shape as the viscous wave, and if

Donnelly had tried higher frequencies, he would have found a

weak destabilization.

My observations of the onset of instability werevisual

rather than by average torque, and indicated the 'periodic

existence of ring vortices about as soon as the maximum

velocity exceeded the critical for steady, except for

oscillations too fast to be quasi-steady. These did not show

up much before the instabilities on the mean flow.

The claim here that oscillations superposed on a mean

rotation always destabilize is not contradictory to

Donnelly's conclusion, for while Donnelly's definition of

instability involves a sudden increase in the torque, here

the definition involves the existence of a different

asymptotic solution to the equations of motion and boundary

conditions than the basic one. Donnelly's own experiments

showed the existence of ring vortices with a non-zero mean

radial motion below the steady Taylor number.

The periodic ring vortices only appear on the latter



half of the f orward swing, and not on the back, when - the

periodic velocity opposes the mean velocity. This and the

possible destabilization for the proper frequency oscil-

lations above suggest an interesting possible resonant

instability. If the mean centrifugal gradient is stable,

there will be 'inertial-elastoid' oscillations. What will

happen if their natural frequency is driven? Clearly,

inviscid modes would grow, but viscosity would oppose this.

Since the mean flow here is forced by viscosity, it would be

interesting if a resonance could force a harmonic

instability with viscosity present. The possible mechanism

requires an inner oscillation at twice the natural

frequency, so that the forward pulse may correlate with each

outward swing of the mode, and the backward decay ray match

the end of the swing. One suspects that there will be

considerable difficulty in.getting this mechanism to work,

for the high Reynolds number necessary to avoid too much

decay on each cycle also nakes the oscillatory boundary very

thin, so not driving the mode efficiently.

The same program used for the pure oscillation was

used, with the boundary. conditions on V changed to include a

dominant rotation. All runs were for. = 1/2 and a' = 10,

and for simple rotation of the walls, so V = 1 at r = 1,

V = '/) at r = . The natural frequency was f ound by setting.

the viscosity to zero and integrating in time. The solution

oscillated very nicely on the scope. The real part of the

frequency did not change measurably when viscosity was

added. An inner oscillation was superposed on the inner



cylinder at that frequency, twice it,- three times it, and

several other frequencies. They all decayed fairly rapidly

and rather indistinguishably. This suggests that either this

viscous harmonic mechanism will not work, or a different

mean state is necessary. When the forcing of the mean flow

used a smaller Re than the Re of the perturbations, the

resonance was quite discernible. Some growth, rates are

plotted in figure l1. This situation nay arise if the mean

flow is driven by an azimuthal pressure gradient rather than

'by the viscous drag of the walls.

4'

S 10

Figure 12.

Growth rate for Re 10000 and forL= 1 + 0.5 sinNt, 4 =/0*
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Harmonic Dec ompos it ion.

Figure 9 and all of the other runs show that the

kinetic energy can be well represented by p(t) e , with p

periodic with the frequency of the basic oscillation, or

twice it.f or symmetric oscillations. This reminds one of

Floquet's theorem (see Coddington and Levinson, p 78-81,

1955), that the fundamental solution mtrix of =F (x,t)

with F periodic in t can be expressed X(t) = P(t) exp(Rt),

where P is a periodic and R is a constant mtrix. By using

an La norm, JIXfI = IjP(t) J exp(Rt)J , where I|X is a

positive quadratic form like the kinetic energy. When using

linear theory, the usual presumption is that the solution

can be separated into modes, of which some one will

dominate. Thus, exp(Rt) will normlly tend toward-a one-

dimesional projector R,,e , where R. is of rank 1, and

the kinetic energy of any particular solution will tend to

that of the dominant mode, or p(t)C , as observed.

Since this form holds so rapidly here, the presumption of a

dominant mode holds. Thus, one might find it profitable to

look for such modes, especially for cr' = 0, which corres-

ponds to the mrginal stability for a steady basic flow. So,

write

y = qg(r) + E (1(r) cos nt + (iL,(r) sin nt) ,

etc., substitute these into the equations of motion, and

separate harmonic coefficients to get



-ReNV = DDV

ReNVY = DDVj

-nR eN = (DD, -a) + [-V v + Vv }

-sa2 [ (1-8 I +(1+) ,,

niR e N =(DD -a )9 - [v + Vv ]7

+ -(+ v. V, + (1- v 2  ]

-nReNV (DD -a' )v + -Re[-4vi)u +(DV.) u ]

-1R e[ (1-6)(D .V)u,-,+(1+3,,)(D,V Ju ]

nR eNv = (DD -a2 )v,,- .R e ((D lu +(DV)u ]
+-L Re [ (1+ I) (D V )u +1- E)(D, up]

where n = 0,1,2,3,..., i = 1,2, and the boundary conditions

are u,= vA = Du, = 0 at r = 1 and r= , for -n

o1,2,3,..., and V given. Note there are two independent sets

of harmonics. The f irst are the even harmonics f or u and the

odd for v. These are the ones observed numerically and

experimentally. u has a mean and a double frequency

component, whereas v has the fundamental. The other set of

harmonics with u oscillating at the fundamental and v with a

rectified component must require a higher Re.

The obvious method to solve the above system of

equations is to follow Galerkin or Lorenz, and to truncate

the above system to n 4 constant, setting variables with

higher subscripts to zero and solve f or the eigenvalue Re.

The above equations all have th.e second-order operator DD

and seem quite suitable f or relaxation. This system was

programmed separately by two programmers in quite different



styles. Overstability in the relaxation was avoided by

under-relaxing with a factor min(l,(2nReNh) ,(a Reh ),).

This was necessary, else there was a rapidly-growing oscil-

latory numerical instability due to the large coefficients,

in close analogy to the time-step limitation for parabolic

equations such as these arose from. However, even with this

under-relaxation, when the second harmonic was added to the

system, both programs gave kinetic energies which grew

continually for any Re, though not rapidly. This is

disturbing, and suggests a new numerical instability, which

deserves to be understood.

Let us consider a simple analog- D y + Re y = 0, with

y(0) = y(Wf) = 0. This simple system has non-trivial solu-

tions only if Re = n2 for some integer n, so has only . the

trivial solution for Re < 1. What happens when one tries a

relaxation for various Re's? Experiments were run for the

usual second-order relaxation scheme,

Ay = iyf -2y + y + Re y ],

For Re = 1, y quickly came to resemble the first arch of a

sine, but very slowly decayed, reflecting the slightly

different spectral character of the finite-difference opera-

tor from the differential operator. For Re < 1, the

solutions decayed, and did so more rapidly the smaller Re

was. For Re = 1.02, the solution slowly decayed, then grew

as the first mode emerged. For larger Re, there was rapid

growth. So this works nicely, and suggests the instability

May lie in the boundary conditions for .
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Experiments f or Oscillations.

The major piece of apparatus was built by H. Snyder and

S.K.F. Karlsson at Brown University, and is described in

several places, such-as Snyder and Karlsson (1964). It has

elaborate circulation and control devices to maintain

temperatures, as well as complicated electronic measuring

devices. However, the latter rarely worked, so could not be

used, so periods were measured with a stop-watch, and

existence of the vortices was determined visually. Both the

inner and outer cylinders could be oscillated independently,

with or without a superposed rotation. Installing a heavy

fly-wheel allowed very smooth oscillations. The radius of

the inner cylinder is 6.0275 + .0003 cm, with length 90 cm.

The radius of the outer cylinder is 6.295 + .0003 cm, so the

gap width is 0.267+ .0006 cm, and = 0.9575, '?= 1.0444

Thermistors at various locations were used to center the

inner cylinder by checking that no periodic variation

occurred in the output voltages as the cylinders rotated.

The voltage from a precision potentiometer on the drive

shaft was displayed against a harmonic oscillator at 0.180

cps. The signal was found to be virtually free of harmonics.

The apparatus included ink outlets, but these did not
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work. The ring vortices were first visualized using

nacromer, but this was f ound to f loculate. Aluminum powder

was tried, but required too large a concentration, settling

on the glass and forming slag inside the apparatus. It

should never be used in apparatus that cannot be taken apart

and washed. The same is true of the artificial nacromer

tried next. While washing this out with Ivory Liquid

detergent, it was noticed that beautiful -vortices formed

while the inner cylinder was rotating, even for just a few

capfuls in several gallons. Ivory Liquid seems more

satisfactory than nacromer generally, for it is cheap, won't

settle out, and even helps to clean the apparatus, so was

used from then on. The observation procedure was to set the

lever arm of the oscillation gear, then to measure - the

angular amplitude of a half rotation. This did not change

during operation, f or there was no measurable back-lash.

Then any mean rotation was turned on and determined by

counting with a stopwatch. Then the oscillation frequency

was counted, using the gear arm crossing a slot in the wheel

to define a cycle. The temperature of the bath was noted.

Then any existence of vortices at any part of the cycle was

noted. As soon as vortices were seen, the oscillation

frequency was lowered until they could not be, then up again

until they could. No hysteresis was noted, so the time could

be noted to 0.1 second over a minute or so. The temperature

was also measured to , 0.01C. Unfortunately, the basic

definition of existence was not so accurate, but varied with

the condition of the nacromer. It is also often difficult to
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decide if faint, flickering lines are really there. However,

wherever they were definitely observed, a '+' is entered in

figure . When near critical, the rolls only appear near the

ends of the swings. The abscissa is angular amplitude (9 = N

, and the ordinate is Reynolds number. The data seems

satisfactory in lying above the zero-growth line nearly on a

constant growth isopleth. The pair of points lying far below

the line are undoubtedly a blunder, probably due to

measuring the angle between the end-points of oscillation

the wrong way around. An attempt at measuring wavelength was

made. While parallax made even harder the counting and

delimitation of the faint on and off bands near critical,

the average at N = 0.7 was about 2.1 waves/cm. With R = 6.3

cm, the numerical study result of a ~ 5500 gives 1.9/cm. For

higher N, there were smaller wavelengths observed. Some

experiments were run with the outer cylinder rotating while

the inner oscillated. Just as one would expect, the outer

rotation stabilized. The results are plotted in figure . The

necessary oscillating Reynolds number increases approxi-

mately linearly in the outer Reynolds number. Some data on

oscillation of* the inner cylinder with a mean rotation

superposed were also gotten before the main bearing wore

out. For these, the oscillation amplitude and frequency were

set first, then the mean angular velocity to cause

instability was f ound. The rolls only occurred on the

forward swing now. Some experiments for inner oscillation

only were run in a much smaller and cruder apparatus at

M.I.T., for a different gap width. After grinding down the



inner cylinder to be rid of rust spots, the inner radius was

2.08 cm, the outer was 2.57 cm, soj= .807, and the height of

the cylinders was 15 cm. The oscillation amplitude could

only be set* at six angles, and the range of constant

frequency for the smll motor was discrete and rather

limited. However, water and mixtures of Dow-Corning 200

silicone oil allowed several viscosities, so further

Reynolds numbers. The results are plotted in figure/I. The

results seem reasonably consistent over two orders of

magnitude in), considering that a secretary laughed when she

saw the experimental set-up.

NFAM
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C oda.

In the final stages of preparing this thesis, a very

relevant paper by Rosenblat (1968) appeared. Rosenblat notes

the importance, yet neglect, of the effects of time-

dependence on instabilities, then considers centrifugal

instabilities of inviscid, periodic flows between coaxial

cylinders. He linearizes and assumes axisymmetry, and also

discusses what instability might mean.

For rigid oscillations of the mean flow, he finds the

time-dependence of the disturbances to be cos ( -cosLwt),

where lY is the exponent for the corresponding steady

(Rayleigh) problem. If this be complex, and 4) is small, the

disturbance will increase exp()-f old during growth, which

nmy take it out of the linear range.

He next considers nearly rigid oscillations. He finds

the phase-differential in the radial direction, however

small, is sufficient to cause instability. This conclusion

certainly does not-extend to viscous flows. It also does not

hold for N (( 1, which is exactly the requirement for nearly

rigid oscillations when the mean flow is driven by wall

oscillations.

Rosenblat shows that small oscillations on a stable

steady mean flow will be stable, except in a band around

twice the natural frequency of an inertial-elastoid oscil-

lation, though he suppresses the dependence of this



frequency on vertical wave-number. This seems to mean that

f or all driving frequencies below 2' , some wave-numbers

will be subharmonically unstable.

When the steady mean f low is. unstable, Rosenblat f inds

a second-order, inviscid decrease in the linear growth rate,

which he takes to explain the reduction in limiting

amplitude found by Donnelly (1964). This seems questionable.



Chapter Three - Suddenly Twisted Cylinder.

We now consider - another time dependent flow on which

centrifugal instabilities may arise, that of suddenly

starting the inner cylinder rotating, with a view toward

meaning and methods, rather than just the problem at hand.

The equations of motion are already given in ( j ). As soon

as the cylinder starts, a thin boundary-layer on it will

form, of thickness . When this grows thick enough, the

centrifugal potential will be great enough to pay radial

motions. We first are interested in the margin between decay

and growth. Mallick (1957) considers the mean flow around a

suddenly twisted cylinder, but gets no closed expression,

and does not consider the instabilities. The .impulsively

started sphere has been considered by Barrett (1967),

expanding in = and using boundary layer theory, but

instabilities are not involved. A similar problem of a

suddenly applied temperature in the Benard problem has been

considered by Lick (1965) and repeated by Currie (1967), but

using an assumption of quasi-steadiness, as well as a

broken-line appraximate mean temperature gradient.

Robinson (1965) also considers this Benard problem, using an

erfc profile, and devotes some attention to when the quasi-

steady approximation ny be valid. His results bear a

resemblance to the numeric initial-value results of

Foster(1965).

Why should one be able to make such an assumption as.

quasi-steadiness when the mean is changing so much? The



usual argument is that the perturbations have a much shorter

time scale than the mean, and then they consider the

marginal state ( cr= ) of zero growth rate. This seems a

contradiction, especially since no perturbation time-scale

is produced. Consider a simple example = ty -Ey. The

quasi-steady approximation gives 0 = ty -Ey or t = E as a

stability bound. The actual solution is y = y(0) exp(t-

tE), which has a minimum of y = y(O) exp(-E/2) at t = E,

so the approxination does give the division between decay

and growth. However, y(2E) = y(O), so y cannot grow past its

initial perturbation size until y = 2E. It can be nade to

have arbitrarily large at y =2E, by large E, so is not

2E the bound past which initial perturbations grow? This

sort of definition would be operationally more meaningful,

in requiring a finite size large enough to be detectable.

However, it is usually inconvenient theoretically, since it

requires considerations of limiting size, as well as

depending on the. particular detection device.

The axisymmetric linearized equations for the started

cylinder are

A - )

where

and u = v = w =0 at r = R, V = at r = R,

all - 0 as r +oo, all + 0 as t + 0 (r}R).
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We are interested in the margin between decay and growth.

Assume the r scale is = S R and the z scale is L, to be

found. Look at 0 (quasi-steady Mrgin), i.e., balanee

generation and dissipation. The scales are
P

SRIC,

L

so the scales in the first equation are

In the experiments, S.Qt > 30 >> 1, so the last term is much

smaller than the second, giving scale L ~ .t R E R, or

even R. This is the sort of wave-length one expects first to

go unstable. Note the sharpening of Robinson's quasi-steady

conclusion of wave-number zero in scale R being the most

unstable. This small but non-zero wavenumber matches the

numerical results better. Another conclusion is that the

scale of generation/dissipation is £L , so one

expects growth for t. such that £t >critical, ort

just as observed. Thus, balancing generation and dissipation

gives the right forml quantitative considerations will also

yield the constant c. First one might remark that this

problem with a V boundary layel? with one rigid surface

condition and one open is similar enough to the classical

convection problem with one rigid and one free boundary to



suggest that c in the last equation is about 1100 . This

works beautifully in figure )3 , so now to find out why.

Writing r = R (l+Sx), and using SR for the z-scale for

simplicity, the dimensionless equations of motion are

aV 2j9v

Note that the coefficient Ta = t /S depends on t, as does

the* shape of V. We see that when S is small, the only O(l)
parameter is Ta, so it is natural that it is the critical

parameter, as argued above. Since it will be independent of

Sfor sanall 8 , a boundary layer argument will yield the

constant.

Quasi-Steady Approach

The quasi-steady approach is to assume the basic flow

changes slowly, so there is exponential time-dependence,

then to set the growth-rate to zero. Perhaps a more

consistent approach is to assume that one mode is dominant

and f ind when the generation exactly balances the dissi-

pation, so leaving zero growth ratr. This view has no

explicit dependence on slow change for the basic state,



- hiding this assumption under. the assumption of one mode

dominating. Either case uses the equations (is) with

0. One can eliminate p and w to get

0 = (DI;,-aI) f-2a ReVv/r,

O = (DDt -a )v - R e(DV Ju

where . (DD,-az)u,

u = v= D u = 0 at r= and as r -+O.

This is solved by 'shooting'. Write

y= U so Dy, = y - y, /r,

y2 =D. u so Dy =y3 4a y ()

y, =t so Dy3 =y, -y3/r,

y =D so Dy = ay 3 + 2a'Re Vy, /r

= v so Dy = y4 -yr /r,

y4 = Dv so Dy4 = ayg + Re(DV )yY

here y () = y,()) = yr(I) = 0 = y ) = y = Y . This

is a two-point boundary value problem. which is solved

similarly to that of the bottom boundary in Chapter Onet

solve for three sets of initial conditions (y 3 'Yq 'y)

(i,0,0), (0,1,0 ), and (0,0 ,1). The sys tem of equa tions

above is linear, so the outer boundary conditions can be

satisfied if the determinant of (y, ,y, ,y.) for the three

solutions goes to zero as r goes to infinity. One actually

solves by finding that the determinant changes sign some-

where for large enough Reynolds number, but does not at a-

lower Reynolds number. One deduces that there is an

intermediate value for which the. determinant is asymp-

totically zero from continuity of the solutions with respect

to the initial conditions.



This numerical integration was carried out for the

approximation V = erfc((r-l)/). This should be an excellent

approximation for small Z . The results are plotted in

figure (jQ), and form a reasonable lower bound for the

observed instabilities, suggesting that this 'quasi-steady'

method here gives a good approximation to the time of

minimum energy, as in the simple example at the beginning of

this chapter.

One discrepancy of this quasi-steady approach is that

the wave numbers come out higher than for the fastest

growing waves found from the initial-value integrations,

which are presented in figure M . These curves are even

shaped rather like the simple example considered at the

beginning of this chapter -- they grow back to their

original perturbation size about as long after zero growth

rate as it took to get there, and some of those that dropped

more slowly also grew more slowly and were passed. There is

a correlation between those. wavelengths which started

growing first and those which grew most rapidly later, which

explains some of the success of the quasi-steady method.

Numerical Methods.

Because the equations of motion are the same for this

problem as for the oscillating cylinder of the last chapter,
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it is first worthwhile to try this initial value problem

with the inner boundary condition changed to

(1,t)

and the outer boundary changed to r = 4, where the boundary

conditions were changed to free slip, U = Dv = DD*u = O,

since this. seemed to work heuristically quite well in figure

I3 . R = 4 was far enough out that imposing a virtual mass

from the exterior solution would not be worth while.

The most obvious feature of the solutions was that

while v had the same r-scale as did V, u and w had a

much wider scale. This suggests the value of a boundary

treatment, and made difficult a grid representation. The

number of grid points was increased to 36, which gave smooth

enough curves on the screen to indicate that both scales

were adequately handled.

Reynolds numbers of 50, 100, and 150 were run for

various wave-numbers designed to be near nximum growth. The

kinetic energies of the disturbances as functions of the

non-dimensional. time from starting are given in figure 9 .

To compare these results with the quasi-steady theory and

the experimental results discussed later, -some level must be

selected at which the disturbances have become 'unstable'.

The quasi-steady theory essentially finds the points at the

bottoms of the curves, where the kinetic energy growth is

zero. Examining these curves, we see that the time to this

point is not very dependent on the wave-number,' and is not

necessarily related to - the wave-number which grows most

rapidly later.
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The initial peaks are adjustment of the energy from

potential, where it is put Initially, to .kinetic. The

declining parts represent viscous decay before the -main

boundary layer grows thick enough to yield energy. Note that

the higher- wave-numbers decay more during this period,

though they nay start drawing energy earlier. The wave

number of maximum growth increases with Reynolds number, and

with a nearly linear in Re, which is to say, their

wavelength remains nearly proportional to the boundary

thickness. The growth rates are exponential with log-slopes

very nearly constant over the period run, and increase with

Re, perhaps at a 4/3 power rate.

F inite-Difference forms.

So far, the conventional second-order finite-difference

appraximations have been used, largely because they are

relatively easy to program, especially at boundaries. Now

let us consider what f inite-difference f orms ought to be

used. Most of the computations essentially involve parabolic

terms, for which

VD 

(v

is the prototypeO non-zero boundary conditions can be

absorbed in interior forcing. Let us consider how this

might be accurately computed with a special view toward

eliminating the purely computation restriction on step size



, which can be very inconvenient for fine grids

necessary to look at boundary layers, such. as in present

problem. Arakawa showed the value of preserving quadratic

integral forms. Here we haveV f0
so let us force a finite-difference approximation to this,

where the integrals are approximated by sums. Let us use

three-point f inite-dif ference approximations for

illustration:

and require these to hold exactly for V =1 and V =x,

i.e., to be of first-order accuracy. Now impose the integral

energy condition in the form

or, using the boundary conditions v* = v = 0

(d +f) v v + e 1v = -(a + b+ c') E(v

-2 (a+c)by vk vf -2ac vk

Above we imposed four conditions on the six coeffi-

cients, so we may impose the zero and f irst order conditions

here. There . are two solutions to these six equations

a =0, b = -i , c = I 1 d = e = - and f =

which is an Euler approximation



3' v v V'-2v-'V vC- kLVI _ _ _k

- ~ (x~z )AX

k k
The other is the backward Euler, g (v -v/ AX. Note

that the centered approximation ~(vd -V k-)/2A)( would

not be consistent with this energy equation. Also note that

0 2ac and f + d = 2/(X) , so this approximation is

actually second order in the energy and second derivative

approximations.

Thus, using an Arakawa style approach, the Euler scheme

V t+4r).---- -2V +iVa

is derived as 'energy preserving'. Yet if At > (Ax),'2, the

energy grows rapidly. The trouble is that the energy

requirement was imposed with - , but the computation is

done with 61A. The above scheme would be stable on an

analog computer, but only digital computers can handle

systems of the necessary complexity.

Since the equation (3T2. ) is linear, let us use a

spectral viewpoint. We are comitted to a discrete grid

LXR by use of a digital computer, so cannot handle

anything with finer scale, -if such are important, a finer

grid must be used. Thus, we can regard V as band-limited, so

V = ~ a~sin px , where a = -- ,) sinp

by the Sampling Theorem, even between the gridpoints. Thus,
--4

XV =pasin px,
so = p a and a,(t+6t) =a,(t) exp(-pAt) (0 )

for arbitrary at. Combining (n&) and (53L) gives

V( Et+kt) = c(k, J)v( ,t), (6)



where C(k, j)= [in(A) exp(-p At) sin(t!rj. (Sq)
P:zg

These give the exact solution to.the equations as a finite-

difference stepping formula. The matrix C(bt) can be worked

out once at the beginning. To combine this idea with non-

linear forcing is easy enough; instead of using a Runge-

Kutta or whatever scheme to evaluate =eV + F, we use it

to evaluate (Xx -V )v= F., with a time step as usual,

followed by the above ( ~3 ) transfornation. In fact, there

seems considerable merit in bring ing all of the linear parts

of the equation to the left, on a general philosophy of

using everything one knows. In this case, for the price of

having n-l interactions to handle instead of 3, we get exact

answers (nth order), which allows arbitrary time-step size.

This must be at least (n-l)/3 times as large to pay off.

However, if a f as t Fourier Transform is used to find a.

and back, the ratio is only log2 (n)/3, which can be much

smaller for the fine grids visualized. We follow N.A.

Phillips in considering a prototype equation

-(A)

where U is a stream velocity representing the non-linear

terms. The second term on the right imposes a time-step

limit like At< - ,. whereas for. conventional 'schemes the

first imposes ___ This will be more restrictive than

the first if
(XS



where the right side represents a viscous boundary thick-

ness. Thus, this new disguised spectral scheme may well be

useful for looking at a boundary layer structure, as we are

doing here. A.few evaluations of the matrix C(bt) showed it

to be near block-diagonal for at snall, and in fact, clearly

C(n,k) represents the influence of each region on the

others,* for smal time, only nearby vorticity can diffuse

over. We note that

C,(k,m) = expf- ( (sink )(sin4( )

and write .x = 17/n, x = pW/n, O to see this is a

partial sum for an integral

C(k,m) f exp[-o(xtj sin kx sin mn dx.

Now, exp(-7t) (( 1 and we are interested in o< > 1 (other-

wise, old formulas 'are stable), so my change the upper

limit of integration and use trigonometric addition formulas

to get

C(k, m) exp -' xj [c osk - cos (k+m)X - cos 2n-k-m)Xd

(2- exp[-(k -exp -(k+m) -exp(2n-k- ),(56)

from (1.4.11) p 15 of Erdelyi, et al (19&4I), Vol. 1. The

latter two terms represent reflection in the walls. Higher

order reflections have been (properly) suppressed in the

appraximation. Numerical experiments show this to hold well-1

even for n = 5, and itconsiderably eases the work of

evaluating C , and nay even be more accurate than the sum

(6 L 1 ), since there will be no round-off error. The exp[-x2j

behavior shows how far one needs to evaluate* there is no



use going beyond the accuracy of the nachine or data.

While Cartesian coordinates were clearer for exposition,

we are interested in cylindrical coordinates, where

so write B (r) = Y,( )J( r) -( )Y( r), where is such

that B 0. For wide gap, one needs to numerically

invert the natrix B to form C, which hardly pays. For narrow

gap, one can use the asymptotic formulas (9.2.9) and (9.2.10)

of Abramowitz and Stegun (1965) to get

B~' r) sinA(("IL-r) + 0(

Proceeding now exactly as for the Cartesian case, we get

C(k,m) ~14') exp(-o(y )sin(ky)sin(my) dy

(6+ '4~) [2 ex p -x ( eex p- -O.e- - x

This provides a good approximation for narrow gap which ought

to speed the numeric integration of parabolic. schemes on fine

grids in cylindrical coordinates.

The system of equations (51 ) requires DyV as well as V.

This can be- found in the same disguised spectral fashion as

D V ~ V (r'"') ......

Experimental Comparison.

Christensen [see Chen and Christensen (1967)] gathered

data on the instability for started cylinder with radius 1/4



inch in d is tilled water. Christensen's original data is

reproduced in Table & , along with the corresponding

and N' s. This data consists essentially of the time at

which instability was first observed, as varied, and are

plotted in non-dmensional f orm in f igure /3. Thus, all of

the points marked are in the unstable region, and it is

satisfying how well they all fall just above the Marginal

lines given in the last section.

After the critical time.

In the similar problem of Gortler cells on a concave

surfac , Lin (1966) 'neglects the viscous terms. His student

D'Arcy (1951) used a broken line appraximation to the basic

f low to compute the first and second modes, and found

patterns very close to Gg:rtlers. Let us look at how this

might work.

The axisymmetric linearized equations of motion are

4I$ V

22W'-



Let us look for an appropriate growth time-scale T so

The continuity equation forces scales W U/o9 , and (7)

becomes- )

The vertical momentum equation forces a pressure scale

P , and (.3) becomes

Now the quasi-steady assumption is that the perturbation

time scale T is much smaller than the basic time scale t0.

Thus, the viscosity in (S3) is precisely as negligible as the

quasi-steady assumption is good, once past the initial

marginal stability. Thus., just as Lin suggests, (and lamb

before him), the viscosity nay be neglected, so

Substituting the pressure scale found above into the u-

momentum equation forces scales (u jvI o N(T/t,), and

shows the viscosity here to be O(Od T/t,), even more negli-

gible. We get- a curious quasi-centrifugal balance

+ 2Vv/r.

We earlier f ound that the f irst o< Is to emerge have scales

evalu8.ted at that time, so is certainly smll.

However, it happens to have been preserved throughout.

Putting the u/v scale into the v equation forces the

growth time scale

T/t = -~~~)

For this to be sall, either t- must be several times the

marginal growth time, or else o. must be large. In .fact, it



is f ound below that the larger wave numbers do grow more

rapidly at this time. This fits Foster's picture of - the

growth of disturbances in the analogous started Benard

problem. the long disturbances start growing first, but do

not grow as rapidly as shorter disturbances starting later.

It also fits the observation that the wavelengths are quite

random when at f inite size.

Again dropping the viscosity as being o(T/t,

+ V/r)u.

Writing the variables with e (sin z, cos z), the equations

are

c7W WTX-

from which w, p, and v may be eliminated.

with u() =0, u +0 as x o, and 1 at x= 0, toaK
normalize. This defines an eigenvalue problem for

since V =v( ). It is worth noting that the other two

viscous boundary conditions (v = w = 0) can both be :taken

care of in a thinner boundary O((T/t,) without -affecting

this boundary.

Let us f irst consider the broken line model

V= {l- x, for 0 <x 1

0 for x > 1

as do D'Arcy, Lick and Currie. This gives exponential
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solutions for u in the two regions, which must match

continuously at x 1,i must be o at x = Oand as x

This requires

u = A sin(x ) for x < 1,

u= B K (oCx) for x >,

which requires [to O(S)]

tan = - tanho(1 -A).

For given c4 and 8, this determines c, if it exists. We

see that there are an infinite number of modes for which the

sine is just enough, past a peak to smoothly match the

declining K , so Jap, (n+ )' 1, and O'~ , so the

lowest mode grows fastest. The nth mode has n rolls stacked

radially, with the outer one stretching from inside x =[r-

1 = ] to 00 This corresponds to D'Arcy's results and

illuminates the following,

Let us now consider the better approximation

V = erfc (x/), so exp( To facilitate wave-number

comparisons, let us temporarily take o. out of the time-

scale, so T/t, = (N ) , and consider

where u(0) = 0, = 1, and o((, ) is such that u + 0 as

x + o0. This is an ordinary differential equation with non-

constant coefficients, so seemed well suited to solution on

an analog computer.

The function multiplying u must be generated by the

analog computer. We note that the erfc satisfies the

differential equation

((b3)



with erfc(0) = 1 and erf c (0) = 2/Vr

This was first generated from equation (63) using a circuit

where standard notation is used. Adjusting the coefficients

a little brought erfc to within .0003 of its exact value at

several points, and brought erfc to zero as x increased.

Naturally, x must be restricted, usually to X 5 here and

below.

With erfc well approximated, the whole equation can now

be solved.- The whole circuit, in one of its forms,

including some necessary debiasing, used is shown in figure

/S. This circuit grew considerably from the initial

conception, the lower right corner represents the equation.

The- solution u(x;,otS ) behaves very like a line a + bx

once x >> 1. We want to f ind when both a and b match the

exterior solution K, (otr), which requires

a + bx =cK, (c<) + c K'(oc)~ K (o<(l+Sx))

using a Taylor expansion. A c can be found iff

o< kA('()

For each c<, c, and 3 , the equation (63 ) was integrated

and ramp a + bx was also. This latter was adjusted until

asymptotic to the solution uand the a and b were recorde.
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Figure 15 -- An analog circuit used.

TABLE 4

Eigenvalues ' to satisfy DDyu - ( y., DV + ES)u = 0,

with boundary conditions u(O) = 0, u(eo) = 0.

wave # ,
for S = 0.1:

5.0
4.0
3.0
2.0
1.0
0.7
0.5
0.3
0.1

0.4099
0.44965
0.49514
0.548
0.6079
0.6280
0.6426
0.6578
0.6708

0.109

0.1205

0.129

for J = 0.6:

1.0 0.2195 0.0563
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The ratio is recorded and contoured in figure /

for £ 0.1. Plainly the contour for 0.1 [the

intersection f or (6q)] is close to the zero contour, and

(7 0.8 Thus, long waves grow more slowly than short

in this quasi-steady range. Actually viscosity would come

into play as c< increases, stabilizing short waves . and

causing a most unstable 0< , which will change with time.

For a check, this problem was also integrated on the

digital computer for a few cases presented in Table / .

The results are very similar.

Energy Bounds for Stability

A guaranteed stability bound can be gotten from the

energy equation for the full non-linear, time-dependent

incompressible Navier-Stokes equations, if we assume axisym-

metry. The formulas follow Serrin's (1959a), though here we

are interested in the minimum time at which there may be

growth, rather than the minimum Reynold's number for a

steady basic flow. If we raximize of the perturbation

kinetic energy over smooth perturbations (u,v,w) which

satisfy the boundary conditions, and find the time that this

naximum becomes positive, no perturbation kinetic energies

can grow before this time. Following Serrin, we find a

stationary value of the generation minus dissipation,

subject to the constraint of continuity. The variational-

equations are similar to the quasi-steady equations in form:



/OS-

Re v A-=0 +2 (DD, + +

Reu- u- +2 f (DDy + + )JV +b

0 = -+2 (IjD + + ,w

with + + 0, and u = v w 0 at r =1 and as r +

The interesting featurehere is that these equations give a

rigorous bound, and do not include a vague 'quasi-steady'

assumption. Thus, given the time, and hence the shape V, the

eigenvalue Re of these equations provides an absolute bound.

Unfortunately, they are very difficult to solve, even

numerically. If one relies on the observation that the

perturbations are axisymmetric in the experiments under

consideration, the equations can be simplified to

(DD u =- Re a2 - )v
(DD.-a' )v = -Re ( - )u

with u = v = Du = 0 at r 1 and -as r + ". These are just

like the quasi-steady equations already integrated, with

slightly dif f erent V coef f icients. These were integrated f or

several values of S with a 'broken-line' profile

V = [-r + (&+1) /r ]

so DV

for 1 < r <1 +S ,and both 0 for r >1 +S. The Re's found

are plotted on. figure 13 also. They are not as far below the

actual critical values as one might expect from -such a

general criterion. An interesting feature of the integra-

tions was that the wave-number a for minimum Re increased

very rapidly as S became small, and Re was. quite sensitive

to a2 f or S near 1.
Thus, the picture seems fairly complete: After the



cylinder starts, a viscous boundary layer forms and thickens

until the Reynolds number based on its thickness is about

30, when generation can natch dissipation f or certain long

rolls. After -this, the importance of viscosity for the

perturbations decreases, and shorter waves nay grow, and

faster than the long rolls. As the mixture of rolls reaches

finite amplitude, they will take over the transmission of

angular momentum from the basic flow, discouraging the

growth of further rolls. The first mode will grow fastest,

so all of the rolls will have a structure which intensifies

out to r - 1 Z-, then decays on a scale o< R, which can be

several radii for the longer rolls. Ink in the inner

boundary will be drawn out in disks between the rolls, just

as observed.
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