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ABSTRACT

- The flow of fluid between tWo concentric cylinders is
cohsidered under three time-~dependent forcings as an ap-
proach to instabilities of general time—dependent flows. The
first 1s by gravity on a free surfaces the annulus 1s
rotating about an axis slightly tilted with respect to
- gravity, so there 1is a periodic motion., For certain
geometries, there are resonances of 1lnertial-gravity modes.
These perliodic motions cause & rectified mean azimuthal
floW, including a central vortex for a cylinder, according
’to.analysis of the viscous‘boundary layers. Thesé mean flows
can be unstable to shear oscillations, sqmetimes causing
renarkable commotion which could disrupt geophysical model-
ing experiments. The tﬂeory 1s fouﬁd to accord well with

experiments.

The second type of forcing is perilodic torsional motion



of the inner wall, with the outer wall held still. This
causes perilodic ring vortices for certain parameter ranges.
These ring vortices are studied by several méthOds to
ascertain the most practical ways to approach similar
problems. Oscillations slow with respect to viscous diffu-
sion time are eSsentially quasi-steady and give rise to
essentially ordimary Taylor cells which turn on and off with
each half-cycle. Faster oscillations give rise to more
continuous Taylor cells which feed on the mean absolute
centrifugal gradient. Critical Reynolds numbers are found by
straight~forward numericai integrations and ’by harmoﬁic
expansions in time;purely periodid perturbations correspond
to mafginal growth rates. Experiments corroborate the
results. Oscillations superposed on a mean rotation always
destabilize.

The third type of forcing 1s similar +to the second,
except the inner chinder is suddenly started. This illumin-
ates what instability might mean on a flow that is
changing anyway; and when a quasi-steady assumption can be
~used. In this case, one cah be used evén from small times,
and the résults fit experimental data of Chen and' Chfis-
tensén fed quite well.
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Instabilities of Some Time-Dependent Flows
Introduction

AAll geophysical flows are unsteady:the'wind,OVer water,
‘ the‘potenﬁial temperatﬁres around a cumulus, and a long wave
with a nascent cyclone 1imbedded, all change even as the
perturbations grow, though uswally on a longer time-scale.
Yet, theories of wave grthh or cyclogenesis élassically,
assume the unperturbed flow to be steady. They generally do
this for mathematical reasoné: first; so ther equations
separate to leave a 1linear problem with constant coeffi-
'cients in time, and second, to avold difficulties with what
it~means‘ to speak of instabilitles on a fléw which is
~changing anyway. _So,'how can one start toward understanding
instabilities when the basic solution 1s not steady? |
'For.certain ranges of parameters (such as the Reynolds
number, the asymptotic behavlior of the solu’cion_ of the
Navier-Stokes equations 1s not uniquely determineQ‘by the
'bouﬁdary conditions. E.g., the Benard problem-of'Boussinesq
convectlon between parallel plates always has a conductive
solution of no motion, bﬁt above a certéin Raylelgh numbér,
there also exlist convective solutlons which merge with the
conductive solutlon as the Rayleigh number decreases to the

critical parameter, This 1is known as "bifurcation, One



expects similar} behavior for sultable nonfdimensional
| parameters, even if some of ﬁhém measure timefdebendence. We’
have integral theorems such as Serrin's (1959a) which
provide a basis 1n showing that Ehere exist parameter ranges
for which _thé basic flow is imique; but where are the limits
of the ranges? Under what circumstances are the limits given
by the linear theory; as Howard (1963) showed is trce for
the Benard problem? | .

The various fluld instabilities are so diverse that an
attempt at a general thecry would not be appropriate, though
some general approaches to stability such as Serrin (1959a),
Sorger (1966), and Ito (1961) have yielded weak but
interesting unlqueness criterla for certain classes of
flows. The claSsic soﬁrces cf enérgy for a fluid 1nstability
are density differences (Bermdrd, Rayleigh-Kelvin, and gravi-
tational instabilities), shear (Kelvin-Helmholtz, Tollmlen-
Schlichtiﬁg), and centrifugal ‘forces (Taylor-Gortler),
variously combined and complicated by rotation, magnetic
fields, mterial temperature dendences, and various

Vgeometries. Of this wide choice, what prdblcms can include
time-dependence and yet be tractable? ‘ |

There has been some wcrk >doﬁe on effects of time-
dependence., Most of the relevant ones such as Lick (1965)
and Currile (1967) whichrétudy turning on the heat in Bemard
convection, and D'Arcy (1951) which studies started concave -
flow, ignore the direct role of time, through ‘assuming
quasi-steadiness without particular inveétigation of when
“this may Dbe appropriate, though it my hold over a time
short compared to the timefscale of the basic flow. Some= -

times this can be a bit disastrous. For instance, a stick



may be balanced upright on a hinge If it 1s oscillated.

vertically at the right frequehcy, even though‘ia quasi-
steady. theory’would indicate it to be always,unstaﬁle. On
the other hand, Benjamin and Ursell (1954) showed that when
a cylinder containing an inviscid fluid with a free surface
condition is shaken vertically with simple-harmonic accel-
eration, ﬁhe £luid can be unstable even if the amplitudé of
’the acceleration 1s much less than gravity, whereas a quasi-
steady. analysis always predicts stability. Yih (1967)

considers horizontal oscillation of a plate with a viscous,

" shallow fluld on it in the long-wave 1limit, and likewise

shows there exists instability. This does agree with quasi-
steady theory.

So, what are suitable problems here? The easiest time~
depenaent centrifugal instabiities seem to be open, though
Conrad and Criminale (l965),have done some quasi-steady work
with certain weaknesses, and‘recently Sorger (1968, abstract
only) has completed some Orr-Serrin bounds. The functions
easiest to'handie nathematically are simple harmonic plus
steady ‘[Chapter_tWO of this  thesis], and impulses [Cha@ter

three]. Since it is desirable to approzch time-dependence in

‘easy stages, 1t 1is worth ‘investigating Fultz's (1965)

observation that weak periodic tide-like forces on a
rotating fluild can cause ébnsideréble turmoil, unlike what a
quasi-steady theory might suggest. This is the subject of

Chapter One,

10



Forcing of the Fluid in a Slightly Tilted
Rotating Cylinder or Annulus

The most conmmon geopﬁysical fluid dynamic laboratory
models_involvé annuli (including ecylinders), or perhaps
spheres. Thus 1t 1s reasonable to study their responsés_to
extraneous influences such as tides or imperfections of
rotation. Kelvin (1880) found the oscillation modes for a
~rotating cylinder of fluid and described an experiment to
exclte axisymmetric modes with an axial plunger and disk,
which was finally carried out by Fultz (1960). Baines (1967)
theoretically studled axisymmetric forced oscillations of a
finite rotating cylinder and found the asymptotic periodic
flow contains pseudo-random patterns of internal shear for
forcing sloWwer than the rotation frequency. Aldridge (1967)
experimentally  studied axisymmetrlc modes of a rotating
sphere excited by a smll tdrsional oscillatione.

Aldridge (1967) also studied the viscous boundary layer
in hils sphere and observed a rectified mean drift with a

square law dependence on the oscillation amplitude. He also

reported roll instabllities on the viscous boundaries with

wavelengths and critical Reyholds number which suggest the
instabilitles are essentially time-dependent Gortler-Taylor

vortices. Rectifled currents 1n boundary layers have béen '

studied for a long time, since at least Rayleigh (188%4) and
by many people. There are comprehensive reviews, e.g., by H.

Schlichting (1968). Longuet-Higgins (1953 ) showed how two-

dimensional, non-rotating gravity waves in shallow water -

cause a forward Jjet in the bottom boundary layer.

Instability of shear motlon has been reviewed by Lin '

11



(1949) and vy Betchov and Criminale (1967), mostly for two-

' dimensioral, non-rotating flows. Johnson (1963) gives a

study of stability of one-dimensioral parallel shear in a

rotating, inviscid fluid, and gives a stability criterion

for large wave numbers in a cylindrical shear layer.
The coﬁplicated Stéady motion due to precession of
spheroids has been considered by Malkus (1964 ,1966) and

Busse (1967);' and of a cylinder by Johnson (1967). For

rotating annuli, visible effects of the misalignment of the

axis of rotation were reported by Fultz et al. (1959) and
McDorald and Dicke (1967), but apparently theionly pfevious
studies of the effects have been by Fultz (1965) and Crow
(1965).  Fultz found that the water in a rotating, tilted
rectangular box developed a powerful central vortex for a
certain range of water depths. Crow found the same for a
cylinder and showed that the,depth of water corresponded to
a resomance of Inviscid fluid in a cylinder with an
artificial préssure to keep the surface plane. In this
thesis, the viscous boundary layers are considered carefully
enough to shoWw how vortices can arise, .relieving fhe
geostrophic ambigulty left by Crow, as well as considering
- all of the resonénces, and improving the correspondence Wwith
eXperiments (aiso more thoroughly done ) by considering the
paraboloidal surface. The results also explain the -puzzle
proposed by Claes Rooth (priyate comunication) as to why
ink placed on the bottom of the cylinder often has
intriguing scallop shapes wWhich  sometimes _grbw to form

turbulence. A new observétion is also made and explained

that the ink willl form concentric rings on the bottom.

12



Notation.

The cylinder is rotating at angular velocity £ about 1its
axis of symmetry at angle €  from vertical (so sin€& =

lexg /el 101D ).

e

The outer radius is R, the inner is aR, the viscosity is 2/,
and the mean depth of the water" is H. The usual cylindrical
cobrdinates are taken rotating with the cylinder, so z is
along its axis, r 1s radial, and € is counterclockwise. The
angular velocity £ is chosen positive. So, the height
around which to linearize 1is | | -

H+ g(rz— R2(1+az )/2) + er cos(&+Qt)

choosing © counterclockwise from the projection of 0 on’cb'

horizontal, The deviation from this depth is denoted ¥, Let

u be the radial velocity dr/dt, v be the tangential velocity

r d&/dt, and w be the vertical velocity dz/dt. Let p be the.

I3



z

deviation pressure from hydrostatic, which latter includes
centrifugal force and the rotating horizontal component of

gravity as well as the vertical component.

In a frame rotating with the cylinder, the equations of

motion for an incompressible, homogeneous fluid ares

P} v p) LU 4 du > J
ag “T" ‘%*“’ ™ "SE”’( PRI e A iy V)*Qﬂv
VoV 2P Vo LoV

W oo av 1v v SV v o)
3% Ma*%g@”’%"% = (e e i)

MW _ -2 W 1w L1 AW Dy
ety o =3 o2l T 5

3 A TBYY 32
M U, M W |
‘55*75*»39*'35,’0' (/)

The boundary conditions aree
u o= v=uw =O}av’cz'=0,-
_Qz/(()“ M) . Uu=v=W=0 atr =Rand r = aR [unless a=0],
2?75-,.};3 + g(H =2 +r gcos(e+qt)) +‘Q (r*-~ K(14a%)/2) =
W dz/dt,
P (2 3 ) +/4(9; +43) = o,
Dn(-tp v 230 + A 35 ?g% ) = o.
The last four boundary conditions all hold at the surface,
Z = H + €r cos(6+N0+t) +§—-§(rﬁ R (1) L) + ?"‘,
Surface tension is neglected. Nowv scale t by..ﬂ.:' r and z by R,
u,v, and w by &R, p byeRI; and 7"by €FR, where F = 22R/g.

~ Also define E =J)/D_2R « Then the non-dimensional equations

of motion arey

u vou _v* ,3u __Qf’ 24U _y o

$reluf+ X% - ] = -5 v Tuni A? 5
v L1 2V vy J

g_;_:’.fg[u‘};‘:‘t‘i’-gk.,.eu ,)3‘]_. ‘g'o-au+E[ 2, et 5;; fl+i—3‘ié])

ow 1ow ,a’v
55 +£[K%‘"’-+%%’ W3 .)/’ +E[ a;;,a"'/bg’[, 25 T



+%%—;’ o, (2)

with boundary conditions of

u w=0 at z =0,

It
<
]

n

u=v =W=0 atr=1landr =a [{0],
,RFE(#+%)«QEg+p =7,

W = -r sin(® +‘c) +F§,} +Fur +

1l

glu cos(9+‘c) ~v sin(e+t) +Fu;’_f ﬁvg],
[ty > 5] +55+ 4L - o,
- 2. uw
-F[» f) +2] 4 §/+
with the last four equahtles holding at

J

z =_Fi_[r" ~(142%) /2] #lr cos(o+t) + F7 ] +H/R.
‘Expand the non-dimensional variables in the smll parameter
£, so u =u, + €u, + O €2 ), etc., and separate the
coefficlents of € t'é get the zero ordei" (linear) equations

(3) and the first order equations (/6).

o, 26 ' 2
= = -2k V, +E -% A\,
A AR )
SET w2 HE(VY, Yo+ 258,
’ 2

w, - -32 +E VW, ,

M

) AV, dw,
e s L ﬂ-,— + 5—3} =0,
S + 25 (3)
V= 3% AZ“‘A‘J@* 232 -

The Zero-order inviscid boundary conditions are

~$1

w=0 atz =0,
u=0 atr=1landatr =a [$0],
and p =7 and W = - sin(6+t) &F% + Fyr
% | at z =F(2r? -1 -a* )/4 +H/R.

The Zero-order viscous boundary conditions are

15



u =Vo=0 at z =0,
y=w,=0atr=1landr =a [ unless a = 0],

and AF( E?,—@/%t'é +%%+ %/%’ -0at z =F(er*-1 -a° )4+ H/R)

_a,v. 9\4\/ 2 (%
3t A58 ~Fla °%) +°“].

h Ty

Zero-order Interior Solution

In the interior, E 1s negligible [0(10—5 ) in the
experiments discussed later], sb set E =0 in (3 ) for the
interior behavior. The equations are linear, so only keeping

| the driven componehts of flow, write
W, =w(r,z) sin(e+t), %= 7(r) cos(e+t), u,= ulr,z) sin(e+t),

'p, =p(r,z) cos(e+t), and v, = v(r,z) cos(e+t), so

u=-%£; + 2v

~v = p/r -2u

we=- (4)

-

are the interior equations, with boundary condltlons
w=0 atz =0,
g u=0 atr=11landr =a [{0],
p = 7[ and W = =r -F? Fru at z =F(2r"-i -aa)/l-t + H/R.
Equations (4 ) imply

u = (?%U‘*' 2p/r)/3,

V=2 + ‘I‘.3

(33%L p/r)/3,

which can bgrsubstituted into the continuity equation to
ylelde

/6



r o L3 P a3 -(5)"

with boundary conditions B .
o ,

9‘?,é_o.at.z—o, R

%'EJ +2p/r=0atr=1and r =a [unlessa=0]'

g—"l =r + Fp/3 -Frgﬂ/B at z = F(2r -1 a* )/4 +H/R

A

¥

By the usual sepa"atior\ techniques, one solves ~
z"(z) + 3 zl-o and r R"(r) + R' + (Nr* -1)R = O.

The solutions are of the form |

B | 2T/ +23, () R
SR APPSR I Ar)] cos(Rr),

“with A to solve
[axd* (aX)427 (aA) 1A (\)+2%(N)] =

[AT! (N)423,(A) 1[aay? (ad)+2y,(aX) 1.
For a= d, the solutions are of the form

~ RZ =3 (ar) cos{%'z),
with X\ to solve
AJL(N) +2 3 (X) =0, (¢)

For f)\l< O, there i1s no non-zero M = 1\ which satisfies
/)I" (/u) +2I(4) = 0, since I, (x) = J, (1x) 1s monotonic. Using
the Bessel function tables of Abramowitz and Stegun (1965)

for initial estimates, the first filve roots of (6 ) were.

found by use of the polynomial approximations to J, of :

E.E.Allen (1954) to be o _
N = 2.7346426, )\, = 5.691402, \,= 8.76658,
A= 11.87525, and A= 14.99735. .

For a 4 0, there 1s also such an asymptotically equally

17



spaced sequence of A's, and in fact,"/\m"' n/(1 ;a), for
(1 -2)/n small., Note this asyinptétic r_élation already holds
for a = O.A The motibns corresponding ‘66' these elgenvalues
~are plainly inertial wave.s, which will be 1nfl\uenced, by
gravity through the surface "boundary condition. ‘I‘hére_ is
" also one /u= 1\ for a 4 0, giving an ad‘d‘itiona'l eigen-

function

O ulimeazg | | | |

R = [e) - Loeaio K(pie)] cosnlz, (7)
‘where M satisfies (s (ax) +2K(au) 1T} (1) +21 ()] =

| (BT} (50) 2 U g) w2kl ()

This /L can be found approximately by considering the shapes

of the graphs for sI"~(s) + 2 I‘(s) and sk (s) +2 X, (s). By
considering the values at a/t( and/l asp increases, plainly
the left side of (§ ) is positive but the right side is
negative until 84 >4* % 1.329. Plainly also, the left is
always < 1, and very much so for a < 1, but the right 1is
> l for a/4 >/a*’* :' 2,113, soas a = 0, Y/L—*l.329/a‘.- For
a > 1, one can expand in Taylor series around-/a’ to get
=T 312, If one needs U for only one given a, probably

the most practical way to find it accurately 1s by using

( ) with tables. E.g. for a = 0.9, 4= 1,81, From (7), '

this mode 1s seen to resemble a Kelvin wave in decaying
exponentially away from the walls, as well as downward.
Since sinh has but one real zZero, there are no resonances

for this mode.

Fach of the modes satisfy the homogenous bottom and side

boundary conditionsge a sum is necessary to satisfy the non-

/8



homogenous surface condition boundary“coﬁdition.' Unforfu-
nately, as well as being inhomogehous, it is inseparablq, S0
some sort of expansion is necessary. 'F‘ 1s smll in the
experiments, so can be used as fhe expansion parameter.

First consider the case a = 0 (l.e., & cylinder), so

f——ZA m( 2) 5 (0.0 ()

where ), satisfies _
T'O0)+2T0) =0.

' The surface. boﬁndary condition has yet to be satisfied.
Using a Taylor expansion in F, this condition is

N
2'0 +__(2,L..[) “}b +FP —ﬁz,af +o(F‘)»
L (10)
at z= H/R. Perhaps such an expansion is questionable for the
higher modes (those for which nF > 1), but these Will not be
studied much,.since'they are more susceptible to friction,
less effected by F, énd of less interest anyway.

The coefficilents in the expression ( 9 ) for p will be
found by a Galerkin technique of mking the error in
satisfying the condition (/0 ) orthogonal to each of the
functions 3, (QA). That is, to meke

/»‘T:‘,A I“ ”‘M(" ’*)J'(Ml) - f;\fm(&“)(m—\)f(&m)
- (8
- -t (%Q-)IOM"H%m.(%%MJ(w)}: n

multiply each side by rJ ( r) and integrate over [0,1]. The

11



resulting linear system determines the response {A,,ﬁ unless

the determinant is Zero, in which case there 1s a resonance.

The case F = O is easy, for then the equatlons are
{

{ )”‘511’1( )frJ &r)J()r’)dri = fr"J(x,‘r')dr, for k=1(1r<

Then using equation (6.49) page 89 of Tranter (1956)

m:-: "

and noting that
o 2 (& ge)) = £g(t),
the equations for F = O are simply .
A - >‘l31n (3%) (%) '_‘f&.} = 3(M, for k=1(1)eo.
Clearly uhe determlnant is zero iff one of the coefficients

) of[A,&is zero, and otherwise the response 1s determirate:

p = —-Z.QFJ‘O»)

~2l

While the pressure forrrally nas a dense set of singular
depths (multiples of  H/R = 1.992, .957, 625, U158, etc.)
one does not expect to see the higher modes, since viscosity

will damp them inore, especially since
2T LW _
COntZL)T00)

goes rapidly to Zero as n increases, so the resonances get

1032, “O.SO’ 0.30’ “'0.18,'0006, etc.

narrower as well as shalloWwer as n increases, The Zero-order

solutions for =0 are thuse
=-&2 A 9t0O=) J;(}M/),),Caﬁ_v_:.l’,am(ew)"
] 3 '

”=|
A H
abbreviated ‘

b= 2 A,J( XMI’)COS(X__.;‘Z) cos (64t ),

= 2’3—2—’& [3Ja(z\mr)‘+{(5,,r)]covs( %%) sin(e+t), (n)
) = ZAS}.’Z" (33, (M) —Ja(z\,‘r)]cos(’\%) cos (&+t),

W, = Zé%,: J, ( Ar) sin(%@é‘) sin(eft).

@
©
|

S
]

The above are dimensionlessg dimensionalizing, one has, €.8.,

20



u = "EQ f. &J:‘I(X-)

WBJ ( ) +J, ()"‘)]cos('\"’)sin(m-ie) |

So the magnitudes depend only on(f.RD)and H/R. One expef‘ts the

qualitative behavior of the system for F =0 to carry over
for F >0, at least for small F's. So, the main task is to
determine how much the first few resonance depths change
with F, | | | .
| The first step 1s to solve for Just the first
- coefficient.’ We write p X A, cos( N z) J, (2\r) and make the
| error in the surface boundary condition (./0) orthogona 1 to
o9, (x‘r)! : |
{'rae ) 4panC)g(ae) Ar(2r*-1)3(Ar)
+3F30p) Tl (p)] -rf ar = o.

I.e., We truncate the system (/| ) to the first element to
get | , : ‘
afl ~2~1n( ) 4w Meos (3) 4 ¥ cos(AE)T 5t AL

-7 \ fr 3i\r) dr cos( ) +F/,\.cos()f)J /\,)(l-g,:) = J(,\)
Numerically, the integral evaluates to O. 130 This gives a

first approximation to the singularity as
-1.576 tan(1,576H/R) - F(0.459) =

or for F smmll, :

(H/R), ~ 1.995 - 0.618.

- The coefficlents required f.or the Galerkin approximation to

(I{) were found using 'the T-point and _9-poir¥t"Gaussian

integration schemes, to yield

1\\[’--.2'0483l ~,059'7Fc‘] 4A1[.0454F¢'] 443[-'.0.1113'01] +eee = 4805
Af.ol5kFc ] .+A,[-.189832_ +.0135F¢c,] #[.0775Fc,] +..0 = =.1713
A[-.0111Fc] +A[.OTT5FC] +A[~.1859s; +.0541Fq] +..0 = .0910

.
A

2



etcetera,, whére s'= sing%?, etcetera. Firét.approximafions
to the second and third resonances are found by setting the
diagdﬁal terms equal to zero, This yields the above‘estimate
.ffor the first harmonic, and gives for the second -
(H/R)M=‘n' + tan (.07IF»)_, -
or - | |
'(H/dei = .958 +-.072F, 1.915 + .OT2F, etc.

The first approximatibn to the third harmonic yilelds

(HR), = 1.621+.291F, 1.241+.291F, 1.862+.291F, etc.

To get a second approximation, one can find the Zeros of the
determinant of the whole third—order' minor above numer-
ically, to avold difficulty . in combining tﬁé disparate
trigonometric terms.AOne mey use the values of the other two
trigonometric functions at the first approximetion to the
harmonic to improve the estinate;v Noﬁe‘the‘cérrections to
M are no. longer independent of n.  Carrying out - the

computations with F = .145 ylelded the estimates

(H/R% ~ 1.905
(H/R) = .968
(H/R)1 = o67,_ 1.25

where the error estimAte is about one in the last place

v( 13) |

given., These are compared wWith experiments later, and are
found to be excellent: certainly within eXperimehtél error,

-and definite improvements over the F = 0 estimates.
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Z ero-Order Boundary Solutions ’

While E very smll allows viscosity to be ignored

throughout most of the fluid, the high order terms become -

important in regions of relative height E# from the top and

bottom. Rescaling (3 ) in the usuwal fashion for boundary

layers, the boundary equations [z = O(E™)] ares

alzo - __Qﬂ, .31'1/0
% = T Top ™%,

N, _of 2

e - =& Z e -2U
5t 6 oy 2

(14)

m Tt 2%; +-%;? =0
57 = x® =05 W, = -r -F7, -Fur at I= 0 for the top,

u, = v, = W, = 0at J=0 for the bottom,

and the solution merges with the interior.
These problems might be called time-dependent Ekmn layer
problems. The top boundary layer riQuires ;%5 ‘and %%; to
change by 0(1) across a distance O(E*), which means the top
boundary iayer wili only negligible change the stresses from
the interior values. 1In any case, the strong motions néér a
resonance Will not show up, because they automitically
satisfy the free stress condition, for the hormal Qeldcity
of the resonant mode 1s by definitlion. zero at the mean
surface. Then contlnuity causes the rest of<the stress to

vanish, for the normal derivatives of u, and v, will behave

like the second derivative of the normal velocity, which -

23
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vanishes at the mean surface.

Acfoss Athe bottom boundary. layer, u, and v, , and- hence
the streéses, change by 0(1), _so must De considered more
explicitly. in~the same fashion as the steady Ekman, problem,

‘and wrlting %} > i, one gets - -
q 29y _.°F
?)—“—.. -:u.;ﬂ +30 = "X "o

which has characterlstic roots +(l-1)/ﬁ§‘ and +(l+1)¢3/2

« Boundedness as ¥Y>° excludes the roots with positive real

parts, so imposing u =v = 0 at J = 0 gives

1z ()5
. / = +.’2/’)+A(QV V)e : *%(%{;’ )C
- P 2 -!C(l*é)l’
Y (‘2.;% /v.) ( + e' r te <§i /1:— - ,

and imposing continuity and W = 0at §=0 gives

— (13 —VZ ()3
. A —H-A va "4‘,« ’+'* N }
wo= V?[ Z+E{ - Za aﬁe, YT

Note the extra fterm due to non—steadiness soon swamps the
(modified) Ekman convergence, as one proceeds Iinto the
interior.

Restoring the factor e‘t and taking real parts, one

has in the bottom boundaryt

% s
{(33‘ + 3 ) en(6+1) -33,€ M(th*f) J.e M(mz&‘-&f'y)}

c
l

% 'y
YV, = Z“ {(33’ -3 e (ot ~3J0€ M(Q-ﬁt-{—,¢)+~’1€ M(ou—d" g)g
2 “:rl”-‘ J ( M\) {2M(9+t) -E c'/G[,oﬂ CEZ2A +x#vl«(e+ t+,{,’.)] |

+ c [dc,p (64t-£3) *M(Off'&j)] A (et mloet) 42 (5D o],
(15)

Feeding this tran51ent Ekman suction back into the interlor



had only

the effect of rotating the pattern by E%S allowing

the Lfansport of momentum te "ounteract friction. Equations

(/8) will be used in the first—order forcing in the boundary

layer. . ,
First-Order Mean Motion
The first~order equations of motlon are :
;u‘l U, v
UpSr2 + Uy AU, Jb-% — QV-+E th—.%aﬁ 1
SE T i = S (7= 5~ T5),
WV, Mo o 9v My puvs _ -9h YV, Ladu
Sp e wWo S AU - QU +E(Vv =N 2%
7_ 93— "5‘9 l ! 5 -—"‘"A’_a@
3\/\/, AW V. W |y W _9k 2
7z thsn )5_ Woyg = ' +EVW

L7

L 4 _,5,!_ v ot = .

v, =W =0 at 3=0 andatr=1andr =4 [unless Ol,

W= FM. +Fu?% +Fv53;_ +u,¢os (6+t ) HFu,r atz = ,(\+a)/2]/2

-—VoM(th) +Hx +e[1miort)+ F/y,]

The mean motion only will be considered, denoted Dy &

superbar. Since 6 and t only occur in the combination (e+t),

a time average 1is also a ©@-average, l.e., & steady state has

been reached. Write

A (r,z)
)q’ (I’,Z )
m(vl’,z)

These are

o 9“0 + Vo 31/,, + W g’%g V,

Yosn PAPY-Y )
= N‘-’ Vo &Vo w, dV, (!7
2}\' + 23D & (] 3"’ + V’a/\/_o , )
= UM VoW, oW,
4 .-r 0 _0 _,(—-W &)
w5 oy

xnown from (/§°), though cumbersome, except  that

2§



¥ (r,z) =0 in the interior, from sin(e+t) *# cos(6+t) =
etc. '

The flrst-order mean equations ares

iﬂ-+2v+E(V"u-))

SN
-~
"
“N

I

N (r,z) = —2u' + E(V'Y v, - YA}-); . Co

7/{ (r,z) = -_i!;_ + EV’w) . - (/g)
T F ar | , , » .
fhi+ﬁ “"%\%';":AO)

£t
il

<t
|

Il

.-( cos(e+t) +#7)(w, -F Z —Fru, ) +F_?Z +Fru

R
+u, cos(e-l-t) A s1n{9+") +F ,%?2 +Pvaz —Fru s
an 7o

at z

]

KR
/R F(res 2]

Standard boundary-layer theory suggests splitting the

problém into two partse interlor and boundary layers. The

interior equations aree¢

- /ﬂ,(r,z) =-9‘f: + 2V,
0 =-2 1 '
' - (19)
= - _
%(I‘,Z) T;

' %‘/—t‘ + % + 39%4/ —:.0)'
Where | E =0 at z = H/R - +*ﬂ5/2 and other . boundary
conditions to nétch the boundary solutions. In the surface
bopmdary layer, it was earlier found that 2 and N ‘change
by at most O(E%" ). Thué equations (22) below have only

L
trivial solutions, %o O,(E”), for free stress surface

conditions, so the boundary condition —v'i: = Fr ﬁ’. effectively

=w =0 at z'_=0 and at r = 1 and r = a [unless O],
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" holds at- the top of the interior. In_the'v interior,

——

} u] =0 . ' (20)
then implies "’;,;l:l =0 from (/24), which with the top boundary
condition implies

=

| W, =0, » @)
Elimimating p betWeen (M4.1) ana (/9.3) g-iv‘es |
but leaves v, amtiguous by any axially symmetric geostrophic
flow. Since we are particularly interested in such this is
inconvenient. of course, one could also say there is such an
ambiguity in the 2zero-order flow, but there we can argue
that any non-driven flow will decay from Ekman friction.
Here that 1s not evident.k |
The cases of principal interest are resonances‘, when
the nth component of the formulas (/5‘ ) dominate, so
A ~ Al)\;f {(BJ (N2 )+, (N, r))(—2J - ) cos (r\,,.?*) sin® (6+t)
+(39, =3) (<43, + (I -33.Y\,r) cosa(&z“) cos (e+t)
+2J (39, +3, ] sin (>‘m3') sin (e+t)? de,
7~ Mrﬂ, fﬂ((r&r +J, )(J, J /Ar) sin(2)\, 2/i5) sir? (0+t)
+(33, =3, )(3,/xr) sin(@2 Xz /A5) cos” (0+t)
. +J$?sin(2>4;2/ﬁ) sin’ (e+t)} ae,
%%” /*%;{ 2(3;, +3, )3, +3, /Zr) +(’3J_,> -3, ) (3(g, -J,_,?J 3, )
#7J (35,+ 3 ) sin (2 )Mz/.g)g

Since the nth resonance s such that sin(\H/BR) = o0,



cos (xHAFR) =1,

];‘ /y f 9?”4 0.

Thus, the vertlcal average. of v, (O+,r)  Let's go to
the bottom boundary to get this value.
Physically, we look for (U,Ww)-rolls in the boundary,

driven by radiation pressure. ;; is coupled at the tops . of

these rolls by Coriolis force. Suppress Writing r, aﬁd.apply )
scaling of the uswal boundary variety to get the mean first-

" order flow in the boundarys

4(T) =2f + 3% _ 9

X W
: PRt |
¥ (1) = 25 + 3 (Q;z)
o:-?,ﬁ '
a.u—l-]-l:‘—; +3\7 =0
w | R 33
4, =V =W =0 at y =0

3 andW, >0 for [ > 1 .

‘Now & and N can be found from the result (/§) of the
boundary layer analysls, and equatlons (QQ)vafe‘of a well-
behaved linear form, so one shouid be able to solve .them
analytically. Severai months of effort were convincing that
the same answer will néver ~recur, SO ﬁhe easler, and
therefore.more reliable, technique of numerical solutioh was
taken up. Unfortunmately, this turned out fo require a good
part of the floating point software for the PDP-1 computer,
so also took several months, but at - least the answers are
reproducible.

The system (22) is a two boundary value problem on an

infinite interval, Two methods come to mind, namely shooting .

and relaxation., The first is more convenient for determining

a
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3F,

the eigenvalues i which allow solution. Reformulate the w-
boundary conditions via the centinuity quftibn

0 = f;w ay = (%@-{_)L G,a¥
50 rud = s/r,
i.e., no vertical flux out implies the total horizontal flux
is constant. For a cylinder, this must be finite (in fact,.

zero) for r = 0, so the boundary conditions and equations are .

47 +c = %%Q + 2v,
_ M o= |
¥ = o 2 (23

u(O) = ’\T(O) = 0,

\ m %@/énd éﬁ;— >0 for > 1,
o fudy—o,
?E. . ‘
Where g, is wrltten ¢ to emphas1ze its independence of T ,
and 1s determined by the Tfive boundary conditions on the
fourth order equation. This system can be numerically solved
fairly easily by simultaneously computing three solutions:..
RARER AR LR A A R R
7
| - - S | .
% T Yo =4+ Wy Yy = Vo Va N“ayq’
 J t '
3{3 y‘,% 353: 3}'3_ y":
Where gh(o) =0 for n =1 to 15 except y&(o) = xl(o) = 1,

| - | T : | I -
Ve =y o ¥ =A e 2y, u =y, v = W 2y

One integrates this set to infinity [using a Kutta -Merson
scheme with automatic step—size‘ control to keep down the
error.] and checks whether the other boundary'conditions.cani
be satisfied. They can be if therﬂ; is a linearu combinatlon
of the three solution vectors which satlsfles i?-aV— W =0 as

y»oo which 1s so if the determlnant R —
{ i

Yy YQ Yl
y"» y? y = O'

(kS

M " 5t oo



If not, use the value of the determinant to search fbr a
better yaiue for ¢, by bisecting‘the interval within which
the zero is known to lie. Given c, ¥ at thé outer edge of
the boundary layer is given by (Y +c)/2, and 1s plotted for
' the first three resonmances in figure (2). Note that a
first—-order -vortex occurs at the origin in each case., The
exponentially growing possible solutions. to the "equations

- limited the integration to T £ 12, Fortiuna-tely, & and W

had already effectiveiy, reached thelr asymptotic values

before then, so the limitation was not.seriOus.  The values
of 4 and ¥ were found with as little hand algebra as
possible, which'  meant 1long ©but straightforward programs
taking much computer “time. ~The Bessel functions Wwere
evaluated wlth error less than 2x10;7 using the appfdxi—
mtons of E.E. Allen (1952). The trigonometric and expo-
nential functions were evaluated with error less than 2x
107" using the appro_ximations of Hastings (1958).  The
integrals over - © wgre 'approxinated by a twelve-point
formula, -and the vertical derivatives were approximated by
central differendes; Using the determinant above avoided
having to find the actual initial conditlions necessary to
hit the boundary conditions at infinity. This was highly
necessary while shooting, for the undesilred exponenpially
growing solutions rendered the soluﬁion highly unstable, as

numerical experiments confirmeds Thus, to find the actual
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Figure 23,

1.5

, non-dimensional mean azimuthal velocity at the top of the
viscous boundary layer, for the first
resonance, :

r— ‘ 0.5

7.0
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Figure 2b,

Second
resonance,

Figure 3b,

Second
_resonance,
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Figure 2c,

Third
resonance,

1.0

Figure 3¢

Third -
resonance




velocities  1in the vboundaryv layer, another techniQue is-

necessary. Now that the eigenvalues c(r,),) are known, a
relaxation technique may be used. The same programs to
compute,li and M were .used, along with the usw@l second-

order approximations to the second differences and boundary

‘conditions in system (23) Llepmann relaxation in alter-'

nating directlons was used, with a v1sua1 dlspLay to check

for satisfactory convergence. Starting from random initial |

gueéses, the convergence was slow due to what appeared to be
a close analog to slowly-decaying geostrophic oscillations
with sweep number in the place of time. Over-relaxation just

increased the frequency. So, a smll amount of damping

(slight increase in the nagnitude of the milddle coefflcient

in the differencing scheme) was introduced and then relaxed
to zero itself. This very effectively killed the oscil-
lations. The resultant non-dimensional radial nass fluxes in
the boundary are sketched in figure (:3) for the first three
resonances. Fedtures of spe01al interest about the deplcted
m.ss flux in the boundary layer are that .they represent
somewhat distorted Ekmen spirals and the (closed) flows
occur 1in n gyres for the nth resonance. These gyree%'or
ring vortices, will result in sweeping anything on the
bottom into rings. They are sketched in figure (3) for the

flrst three resonances.
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Shallow Water |

The above treatment has been focused on the resomances,
which occur for'depths_comparable to the radlius. While these
are the most 1mportaht cases, the limlt of shallow waﬁer is -
also of interest, especially since it is eésier, ag least'if
one takes RF/H = O, | \ v |

While the sums over Bessel functions still hold, they
do not converge rapidly, so it 1s easler to start over; In
fact, to compute the lagrangian drift léter, it.is\easiér to
use Cartesian coordinates. Proceeding as before, except

scaling z by H and hence u and v by leﬁ?H, the zero-order

interior equations are.

2 |
’?i,(t-e-:‘g'a)’z” +2V,,
X _ _26 ~
Y'Y S —74}: "'2«”0, | : (24)
O= _db . ‘ o
73 ~

| ERR A o
with boundary conditions of
uo=o at r=1landr =a [$0],
| W, =0atz =0
w=-xslnt -ycost atz=1L
The solution 1is
W, = -z (x sin t + y cos t)
u = (-4xy cos t +(14y°+10x°- ~10) sin t)/16,

v = ((18x% + 10 y*=10)cos t =-.U4xy sin,t)/iGoeuj
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Thus, there are no resorances,
The structure of the ©bottom boundary layer 1s needed.

The edquatlons of motion there are
%%’ = 3;’2”’ + aagf— 2V ~2V=), |
, , (29)
Mo _ 3V 2, | | o

with y(0) = v(0) = 03. u > uf>), v, > vo(ool as {»< It seems.
‘easiest to solve this by the method of undetermined coeffié
cients, since We know from the form of the solutions (/57)
before that : :
-3 &
u(x,y,t T) ~ulx,y,t,7) =A e "‘sin(t+4—) + Be cos(t+(€)
-i-CC[; sin(t-&5) + De cos(t—QS),
v(x,y,t,§) «v(x,y,t,9) = Ee ’s_in(t+',¢;) +F€_Jﬁcos(t+4c)
weﬂﬁssin_(t-@y) + He’éfms (t-E5),
for coefficlents which are functions of x and y iny.' Since th_ese. _
solutions must'satisfy the equations of mo‘tion". (25),
F=A,E==B, H=-C, G = D.
- Four morer are given by u(0) = v(0) = 0,
which imply | '
16u, = (-txy) cos t + (l4y* + 10x* =-10) sin't
+(10 -larl)e-_%'sin(t-i- : ) R (x -y )e sin(t-f )
+ hxyég‘gs (t =E&1), | (259 |
16v, = (14x* + 10y* -10) cos t = 4xy sin ¢ ‘
+(10—12r1)e—%€:os(t+%') Hixy evﬁssin(.t—@g)‘ 2%~y )e"é‘cos (t-139.
These give, ;upon rescaling w, by El‘: as before, .
6?‘% -16(3““ +%"/ ) 5
=-16(y cos t + x sin t) +2’4e “ly cos(t+15,r)+x atn(‘c+/ﬂ)]
F8e [y cos(t=51) +x sin(e-&()],



which ca-n be lintegrated td give w . ‘Since‘ the_ s_,’ci?es‘ses must
be formed numericaliy . anyvway, the ':L'ntégratio'n my as well
“also be nﬁmerical. The x and y derivatives nﬁiy be exactly
evaliated by seéond-order differences, since there are only

| quadfatic coefficients. Then, one shoots for the evigenvaAllues

. for the boundary equations as before, and gets Vv, at the

outer edge of the boundary 1ayer.' The result for y =0 is
- X ' 3 '
v, (r,04) =+ 23r ~ 084 r°. (20)
This allows one to determine the Ederian mean velocity

throughout the interior, since v 1s 1ndependent of z. This

mean azinuthal velocity ough‘c to' be experimentally'
measurable, and has. been by Heyer (1967). Howgver, the

~velocities are so slow [0Of 2‘)] that one needs to consider
‘dhe_ difference between the Iagrangian.mean ve_lbcity.of an
integrative tracer and the'Eiulerian mean veloclty given
above., The Iagrangian velocity of a particle originally at
point 2 is y_(?._§t), and 1s the Eulerian veloclty. u at the
current location of the particle, a +5x. Expanding in £ and
using a Taylor series,«

€V, (agt) +£v. (ast) = £y, (a+Jx,t) +£u (a+5x,t)
ego(ga-s Qodt +0(€%),t) + g’g‘ (a+o(e),t)
gu.(a,t) + elu, (a,t) + £tg,dt:Vgo) + o( &),

so we have the formula gilven by Longuet-Higgins (1953)s
v=u+fud’c°Vu. _ - (@2

The latter increment to the Eulerian mean velocity is easily

found from formulas @sb) to ve

Zl
= r’ + 50/8

4in a tangential direction, so the mean Iagrangian tangential )

velocity, after dimensiormalizing, is .
[+ T40(x/R) = THoleRT T (29)
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Side Wall Boundary Iayers

So far, the effects of the side-walls have been
ignored. This is because they are ignorable to a consi-
derable extent, since the Coriolis force does not COupl_é
‘with V' here as it does on the bottom.

The full vyiscous zero-order equations are glven as

(3 )e Consid’ering‘ the slde Dboundary lé.yers » Write

s S-zr-l), and expand in g. The continui’cy equation and

u=0 at s =0 force rescaling u by & also, 'The viscous

: A )
terms do not enter the equations 1in & until = EZ so the

interior equations hold outsid_e an E layer, and there 1is no

% L L
need to consider an E” or E' layer. When § = Ef consider

‘_yt_zdf’éj“t.’?z;i (Q?)
U EY_Q+2W0 |

‘with u, =v,= W= 0 ats =0, and all merge with the

interior.

Since B 18 independent of s, ’che v ahd W equations are

simple diffusion equ;ations, and‘ Q‘g?:‘-é% » SO Wwriting wex

A cos (B+t),Www= Bsin (B+t) as the speeds Jjust outside
the boundary laiYers, | ' '
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3]

W, = B(1-e %h/drdf)«@"(@*ﬁ -y—Be’% r/c”“(%‘-)

The continuity eqnﬁtion my be inﬁeérated to glve u '

U, = (A —a‘g)M(Bft)['d"i"’L 3 (et i) it

- (Afbg),c,a(éi—t) [Le (et tend)— k=

If We - now consider the (steady) mean velocity, the
Zero=order E%‘ layer above will reflect in the forcing. Ifr
we subtract the interior ‘forcing froni the me‘é.'n‘ ve'loci'cy s We
wlll have effecﬁ_ively ‘the steady side-wall problem consi-
dered by Howard (1968), since the E% deviation forcing will
act as forced mean velocities (u,v,w) at the outer edge of

the E layer, which can be taken as the inner boundary for an

3

and W, while an E% layer will allow V to match the interior.

E° layer. Howard shoWs how this E layer will ‘balance out u

Eege, 9, # 08t r = 1 infigures 2 is no difficulty.

Possible Shear Instabilitye.

The last section showed that there will be mean
tangeritial veloclties V‘ in the interior, and conseQuently

shears., Thus there 1s a possibility of shear instabilities. ;

— R < :
A (1-e¢ 1@&%‘5)@«(9&) -Ae M%M/Qti’)). '
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Since the cylinder is rotating and the silnuous flow
“will not be rapid, the Taylor-Proudman theorem will hold for

the perturbations, even if the mean shear does depend on Z.

. Thus, it is reasonable to average Vv With respect to z and-

consider the motion as two-dimensional. Now, a scaling
argument shows that for such a system, the Ekman friction
far dominates lateral friction, so the latter will be
neglected.‘This gives a barotropic shear problem which seems
more relevant to geophysical fluid dyrnamics than the
classical shear problems.

kThe perturbations are nearly non-divergent:

U L w v £%
n AR Y Rse = Q_I
where the vorticity 1s defined by

_ oV v,_a,%_
5 = o YT 96 -

The Ekman vorticity equation is

I} )
where G has been rescaled to 0(1) in energy measure, the
Rossby number

!V} P 11\/—'l 2
Ro = o = A< 2£ r v, (0+,r) dr |

wilth A, the amplification factor near a resonance from

equations (12), and Z the mean vorticity ?1'+%% . Since the

o
perturbvation flow is nearly non-divergent, write
_ 2 z _ ¥ %

u "'E%g +Ev , v=95 +tEV.

Substituting ~ into the vorticity equation and back into the

continulity equation gives

__ o4 _o¥Y  ko¥
u =% +E§;+O(E), v =2 +Ew‘9 o(E),

1 = V*¢  + 0(E).

Y0



Substitute these into ( 30 ) to get

> .2 —sol,
B +K,%%§%£+&%(,—9 +E*>f’)+,,g£‘*zv {/z:-—E‘V‘P+O(<:)
| (31)

Both experiment and balance of equation (3! ) suggest»

R, 1s 0(E%), so writing R, = SE* and 7 = E t in (31 ) and
‘dropping terms of O(E‘),

oVt '
3’4‘:‘* = V-—SV %g_l + S[(v* ~—-,.)VJ 55 - V14/ (32)

[4

For grdwth of a shear 1nstability,'_ one needs vtilted
troughs, so one cannot separate r and & easily, Since
rotation has dropped out excep’c' in E, one looks for insight
in the corresponding 'f-plane' cartesian equation

9‘72"’ SV Ti’hrs(v Mt —y v - (329)

with I periodic in x and y. Figure ( 2) of 7 at several
resonances suggests the ’ |

v =V2 cos x

is an appropriate cartesian form. An upper bound for inf S

can be found from any admissible ¢ which gilves ‘%’—(E 2 O.

Since this is a barotroplc shear problem, a good estimate

reQuires 'tilted troughs', and one exXpects on physical‘

grounds that an excellent approxinatiqn shouldcome from the
trial form; ' | . | .
Y = ¢ sinx sin(ky —@x), 0K x (T,
| sinx sin(ky +¢x -2(177'), < x < 2™,
periodlc extension, other X. .

For this trial form and v,

4l



55 - Z[wt = [y

SHVETY 5 ((GDeE ([ voy
%@Wkﬁws—(f4@+ljﬂﬁ

so at marginal growth, S= 3( €L+ W 1)1
EVagk

which has a minimum of S = 31T

R

4ya

at B =k =o0. The latter implies a y- or 6- wavelength
much shorter than the x-wavelength imposed by the mean
shear. This corresponds to the experimental observation of
waveinumber about thirty around on the second mode, and to
the marked tilt of the troughs which develop. Returning to
the dimensiomal form, there will be instabilitj if
\Eﬂvj‘(Ohr) r dr (A°£%) E~é>%, (5’5}

but not if much below, unless another resonance 1is actilve.

the gm's are given by inverting <the infinite set of

equations (12) near the nth resonance. From equations (12),

A =2,34| sin(1.65 wR)| 7,
A =0.90 [ sin(3.25 H/‘R)!" > (3%
A = Q.49 { sin(4.7 H/R)/—l s

etc., Where F has been set to .145 for the rescnances, but
to O for the coefficilents. The error in the coefficients 1is
only O(F). | |

The mean ‘square amplitudes‘for the first three v 's are

.33, JAU4U4, and 3|, so the instability bounds are

€, = .059 |sin(1.65 H/R)| ,
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£, =.132|sin(3.25 HR)| ,
(3‘}a>
£ =.29 | sin(h.7 HAR)],

: -5
using E = 1.5x10 to match the experiment. The instability
bounds predicted by (34a) are given in figure 4. Note that

if € 1s greater than any of the right sides above,

instability is predicted. Thus, there are wedges of

instability reaching down to zero tilt. However, as the tilt
increases, -shears may oécur when no one one component 1s
dominant, so there may be instabilities for ££{1R large,
even 1if £ 1s not large enough to cause one component to go
unstable. |

When comparing the experimental results given in figure
L with the instability bounds given above, remember that the
experimental v !s are 1in cylindrical coordinates, and are
not exactly sinusoidal, Nonetheless, the results compare
well enough to conclude that the observed instabllities are
due to the vertically averaged barotropic shears, with Ekman

friction.
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Experiment2l Verification

It 1s time to show that the theory developed so far has
some relation to reality. The turntable used was the l-ineter
table in the FPFluid Dynamics Iaboratory of the Woods_Hole
Oceanographic Institution, described in Turner and F'razei
(1958); This turntable is carefully engineered to maintain
constant angular velocity, which 1s continuously adJjustable
over a large range. Tilting was accomblished by a‘ hand winch
from a guward-rall to the four foot steel plate upon which
the turntable stood, allowing accurate measurement of small
angles. The cylinder wused was clear plexiglass of radius
4.5 cm, depth 29 cm, and Qquite accurately circular and
right. A flat clear plastic sheet was used as"a‘ 1id to get
rid of torque from the air,

The flow was >nade' visible with dye and dust, A
television attached to the turntable showed the zero-order
waves rotating backward on the rOtating’ frarhe of reference,
b_u’b. otherwise did not havve suffliclent resolution, and was
restricted to one view, so was not used fur‘ther.

A typical run consisted of f1l1lling the cylinder to the
desired depth with hot and cold water mixed éo room
temperature, centering it on the turntable és 'closely as
feasible, then speed:}.ng the turnta}ble to a fixed voltage on

a dial.; The angular velocity this 'corresp'onde,d to varied

s



from day to day, so the actwal frequency was determined with

a stop=watche It was not realized then that F would be.

important, and setting a particular.anguiar velocity'was not
easy. The fluid was allowed to spin up for at least twenty
minutes, then potassium permanganate crystals were dropped
through sméll holes in the 1lid to check for completed spin-
up. The permangamate dye was used to trace bottom ’boqndary

motlons, and flourescent dye was used 1n fhe interior., As

soon as spin-up was completed [except in three cases of

resonances ], the turn-table was slowly tilted and left for

at least ten minuteé, uswally thirty. Then‘obéervations were
mde, mostly of the ink on the bottom though interesting
cases were followed in the interlor. Then the téblé was
carefully tilted further. The resﬁlts are plotted in figure
4 . If nothing much was observed (besides the. zefoéorder
periodic motion), a circled'dot is entered. If rings of ink
were observed, a circled R 1s entered, 'with the number of
rings, counting center dots and ink at the edge as rings. It
may be Worth noting that these rings were not due to the
location of the dye crystals, for they normaily sharpened up

long after the crystals had dissolved and bccasiQnally clear

areas formed over a crystal, except for 1ts thin plume goling
elther in or out. At higher tilts, the rings became unstable

to wavy disturbances, with wave number 30 and up for outer

rings and wave numbers 2 to 4 for inner rings. These are .

entered as circled I's with the number of rings. Near

resonances, the instabllity was violent enough that visilble

rings did not have time to form before powerful vortices
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formed, which are entered as circled VS, These are presum-

ably what Fultz and Crow observed, since they form most

strongly near the first resomance. It mAy be worth noting

' that these vortices are not necessarily the first-order

vortex at the origin derived upori finding the theoretical

V;, though thelr continued exlstence mAy depend on similar
eauses, becdﬁse these'vortices form from the ihstability on
the 1nner ring when this grows slowly enough to observe in

detail, Occasionally a ring of ink along the wall will

develop cusps which may grow end spread into the interior.,

These are entered as circled E's and were observed at 2zero

1éft of the edge at three resonances. They look as if they

might be caused by an instability on a shear a little way in

from the wall, with the 1nk collected' in the the corner

- because 1t 1s ,heavier. However, they my be ,due. to a
G%rtlerdTaylor. centrifugal 1instability of the zero-order
flow up and down over the concave corner. This idea is
diecussed in the next chapter. | |
Looking at the completed diagram, we see there is a

general agreement wWith the theory: there are resonances

which get weaker as n increases, there are rings of -

convergence and divergence in the bottom‘ boundary, with
generally one ring for the secend resonance and two for the
third. The vorﬁices (zero rings) go with the first. Now let
| us look at the quantitative predictions,

The experiments Wwere mostly run about 30 rpm, SO F =

« 145, Thus the Ze:o-ordef interior theery gave resomances at

H/R = 1.905, .968, and .67,1.25" for the first, second, and

Y6



third resonances. With R = 14.'5;cn'1, this forecasts H = 27.60
cm, 14‘.05 cm, and 9.72, 18.1 cm. The observed E's for Zero-
£11t are taken as the experimental tips of the wedges -of
instability, and occured at depths 27.5 em, 13.9 cm, and
18.0 cm. There is also a wedge around 9.2 cm, though 1its
center 1s not well defined. These seem 1ike excellentl
confirmations and are within the experimental error, which
is mostly due to various F's being used. - The widths and
depths of the stable region seem in agreement with the (a
posteriori) prediction of figure . o

A rather crude experiment with an annulus with outer
radius 35.4 cmand inner radius 21 em was also tried on a
similar turntable that could not be tilted. The anhulus was
not deep enough to try the first harmonic, but the invisible
tilt ‘automatiqauy ‘in> the table was sufficlent to cause
considerable cﬁrrent and edge vortices at 33 cm, surpri-
singly close to the predictéd second resonance'at H =lg(35.4
- 21l)em = 12.4 cm, considering the crudeness of the
exberiment. These currents and vortices were not observed at
four dthei' random depths, so this was encouraging.

A later exploratory trial wi.th a snalle;' but much
better built annulus showed 2 few slugglsh vortices at the
first resomance but not at the others. Since the vortices
retained the same size as before (afew cni) they filled over
half of the}gap, suggesting they found it difficult to form,
since incipilent vortices were visible to the desirous eye at
k’che second. resénance. ~ However, whai‘t rra‘y Abe much ‘more'

interesting 1is that a relatively strong meriodional circti—



lation developed near the first and second resonances,
though there was a 1lid, and spin-up had been complete before
tilting, ink in the bottom layer flowed out to the outer
corner and from there, spiraled up and forward through the
interior to nearthe upper inner corner. However, the water
next to the inner wall remained clear while the ink formed
into a central and outer ring (for the second resomance, at
H= (RJ-R,)V§*}él Such eirculatiors could concelvably exist

in nature or in an experimental model.

“L;S‘Q'= V?fi cqswt
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Figure 6, Sketch of basic Taylor avoparatus with oscillating inner cylinder,



Chapter Two ==~ Perlodlc Taylor Problems,.

We now consider another problem of periodic, incom-

pressible, laminar fluid motion in ah annulus which wil],’
involve similar 'rra‘chenatical tools, but which 1is funda-
mentally different. This problem is a vérian‘c of Taylor's

[1923] classical problem of centrigugal instability when the
inner cylinder of a concentric pair (as in figure & )’
rotates enough fasﬁer than the outer., What will bé the
effects if the rotatlon speeds dépend on time? One still
expects centrifugal instabilities if there is énough mean

centrifugal potential, or perhaps when the potential is -

particularly strong. With a view toward Fourier integrals,
the obvious motions to conslider are periodic and impulsive.
This chapter considers periodic torsional movements of the
cylinders, with special attentlon to the interesting
limiting case of pure torsional oscillatioﬁs of the inner
cylinder while the outer cylinder is fixed.

Literature Review,.

‘The Zero-;freQuency (steady) problem of centrifugal

49
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Figuve 7. Critical Reynold's number Re = Qf R,"/;/ as a function
of gap width for the steady Taylor problem with ._(Z_z = 0,
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instability was started,and to a remarkable extent finished,

by G.I. Taylor (1%3) both experimen’cally and theoretically.

It has been pursued extensively sinceg thorough reviews mayl

be found in Chandrasekhar (1955) and Coles (1967). Coster

(1919) considered the two~dimensioﬁa1 flow around a torsion-

'a11y oscillating cylinder. Winny (1932) tested the theory
experimenvalky and found 1t good for Re = £2l§E§E; £ 600,

Ring vortices were apparently first observed for oscillation

of the inner cylinder by Fage (1935), but he presents no
theory nor critical parameters. Meister and MGHZef (1966)
considered the special case (1{: 3+ fsinaoﬁ, S?z =2 for
nArrow gap, using Gélerkin appraximtion, and solved numeri-
cally for €= 1, and L) = O and 10s They found the kinetic
enérgy for fixed t to be 1less for & =10 than for & =0,

Carrier and DiPrima (1956) consider the. toréibnal

oscillations of a sphere by expanding 1in the oscillétion’

amplitude. However, the resultant mean -flow should not be
considered an 1instability 1like the vortices around a
cylinder, where the generators are parallel to the axis of

rotation. Serrin (1959b) used variational techniques to show

that 1f the Reynolds number is below a certain bound, the
flow in a volume with periodic forcing is stable. Kirch-

gdssner (1960) gives a  time-dependent extension of
Rayleigh's principle, that an inviscid flow 1s centrifugally

stable for all £ > 0 if £+ ¥ > .0and v(r,t) 3 0. Note this

does not cover the case of pure oscillations. Conrad :and ;

Criminale (1965) consider sufficient conditions for

stability for axisymmetric vortices in a marrow gap for



torsioral oscillatlon of one of the cylinders With or

without a superposed steady mean motion of either cylinder.

They use Serrin's (1959a) variatiomal equations to gvive

several lower bounds for the critical Reynolds numbers as

functions of the shape of the basic flow‘, asSuming it is .

| quasi-steady, perhaps relative to a changing amplitude, .but

always 1ocally'1ri time., They seem to regard stability as
being a local property of a fluld flow rather than

asymptotic 1in time or as a bifurcation of solution forms as
functionals of the parameters. Héwevér, if the Reynolds
number of the basic flow 1s below the infimum over a cycle
of the Reynolds numbers curves they glve, then the energy of
a perturbation must always decrease, For steady rotation,
their critical Taylor number 1s about two-thirds of Taylor!s
for Ql-:. O but is a- .vdefinite improvement on Rayleigh's

principle for 0 < Q,_ < . For pure oscillatlon, of one

~cylinder, they get the- curioﬁs_ "~ result that the critical
Reynold's number for the outer cylinder oscillating is 10ﬁer
than for the inner, ’chbugh unfortumately they.uséd different
Strouhal numbers (or angle of swing.) Conrad and Crimirale
also find that superposing an oscillation on an outside
rotation lowered thelr Reynolds number bound a lot as .the
frequency 1ncreases, Superimposing an oscillation on the.
inner cylinder!s mean rotation also lowered tﬁe bound ‘fdr
large enough amplitude, but actwally slightly increased 1t
for small amplitude. They also find that rotation of the

outer cylinder lcwered the Reynold'_s number bocund for

oscillation of the inner cylinder. While these are for



lower Dbounds, Donhelly} (1965) found that smll oscillations
superiapsed on ‘a2 mean rctation bf the 1inner cylinder can
stabilize the flow to centrifugal 1nstab111t1es, though he
meant by this that the torque does not increase st;'ongly
until higher xﬁeah ﬁ‘ , even thbugh periodic rolls appeared

at lower mean L) ,

Notation and. Discussion,

As sketched in figure ©, we consider concentric

cylinders with inner radius R, and outer R,, with 7} =R, /R,
and d = R, =R, . The angular velocities of the cylinders are
_Q‘ (t) and _Ql(t). Define non-dimensional parameterss

g =d/R,

. 2 .

Re = 157, (39
E=v/wal.2: '
N = wm’

where ¢ 1s the angular frequency of osclllation, and 0 =
W. As before, u = dr/dt, v = rde/dt, w = dz‘/dt.

This thesls has a general policy of not spending
endless pages in attempting analytic ‘solti’cions to approx-
imete equwtions in which the effect of neglecting terms 1s

unknown, when an approximate solution to the exact equations

can be found more easlly numerically. As an example of

this, consider the extensive bibliography and I1impressive
formalism devoted by Taylor through ChandraSekhar to deter-
mining the critical parameters for the steady Taylor



problem, 1.e. , determining the minimum Re (or Taylor 'num"oer)v |

and ass_ocia"ced wave . number a for which one may solve
(2GR w = 2R (A By,
(&) -<)v = 2k A,
with u = %%‘\:=v =0at r=7% andr = 1.
where A = (- N, 7M)/(1 =73,
B =R} (Q,=-Q,)/(1 =73,
The classical thrashing around with this problem has

"

produced only the asymptotic values as ’*Z > 1 (Taylor,~.

1923), the values for ’y = }i (Chandrasekhar, 1955), and
’)Z = % o While testing a program used below, ‘ches‘e values
were reproduced for the special case Q=0 . Upon noticing

that the values for other 77 had not been done s sufficient

other points were run off (in about half an hour) to produce

figure 7 , of the critical Reynolds number for (), =0

for d/R = .02 to 0.9 The same program could have worked

out Re for {l,% 0.

Initial Value Problem,
The eq@tions of motion are already given_ in equations
( 1 ) where the boundary conditions are now
u=v=w=0, V =R atr=R,

u=v=w=0, V=QR, at r =Ry,

everything is periodic in z, and the azimuthal velocity is

V(I‘,t) + V(I‘,G,Z,t),
g
with jjv d8 dz =0 defining V.



Following Chandrasekhar (1955),‘1inear:12e the equations of

motion, take the wave number as k, assume axisymmetry, and.

eliminate pand w to get o
2 (00, - k* - & $)(OB k= 254,

»( DDy —k: =5 &)V = (D*V)‘S B (34)
¥ = »opV, | |
with boundary conditions as above, and where -
p) )

D=5y and D, =+ l/r,
and the variables are functions of r and % only. NoWw non-

dimensionalize, so

A ' -
K= a /R"‘, r>rR, t>Wt,

where () 1s the oscillation angular frequency;
; : | 2 2 ‘
(00, ~ @ —fN F) 00 —aIu=2Ra Win,

(DD* ’_az___&ﬂggf) vV = &(va)u‘)

| _aNd)Y =0
(DD& ﬂND’f) ) .(37)

wj_{;hu=v='])*u=0atr=landr??'I,H B

vV = .Q‘(t)/ﬂ atr =\, V =S)1(t)/noz at r =7"

BTy



Noting that the main flow V 1is independent of u and v

(since lineari7ed), it seems worthwhile to solve it first,

so try the problem with scaled boundary conditions
V(1,t) = sint £, V(7 t) = o,
and initial conditions V(r,t) =0 for 1< r <7fL
'This turns out to be easy to solve With the ald of a Hankel
transform. Multiply both sides by }
rB, (pr) = r[.3 (er) ¥, (p) =¥, (pr) 3,(p)], ° |
where p is a positive root of B, (p?") = 0, and integrate

over 1r, solve the resulting ordinary differential equation,

and invert, to get zt)
- iy -

Vit = { P J (e ZB.(Y/:)J[ Coal — L% J

M L 3G -7 (/N) +1 Gy

As t »00, this becomes strictly periodice This V is the
solution of a diffusion equatlon, so cannot have poles in

the interior 1< r <’)Z'1, which mkes one curious if the

denomimators  J;(p) - 3 (p7) ever are zero. We have

3(e7)(p) = 3(p)¥,(p77), so this 1is equivalent to the
graphs of g(x) = ¥(y) and J‘(x) = J'(y) intersecting. These
graphs were sketched, and were found to occizpy the whole
positive (x,y) quadrant 1in great wiggles, but to cleverly
avold each other, avolding any difficulties 1in the given
form (). The asymptotic expression for V can be summed to
a closed bdbut complicated form in Kelvin func"ci.on of' the
first order, e.8., for 72 = 0 [no outside cylinder]
{cos(t) [ ~ker, (&) ket (£%) +ket, (2€Y) ker (£7)
4sin(t) [ker (IZE"s ker, (£ +kei, (ne” ) kei, (£ %) ]}
{kerz(E*) +kei (Et)f

$6



| Thus,, for 7 =0,
{ker (e?) +ked, (/zE")f{ker’(z: %) ket (E’*)f
~ 3\ <%, : .
n exp(- £ * (1)),
shoWwing the boundary layer structure of the decay due to

spreading as well as viscous decay.

. Numerical Initial Value Problem.

Since there is no easy analytic method for solving the
non-dimensiomal equations ( 37 ), let us try numerical
methods for insight. We will use three numeric methods for
comparison and exploration of‘ }the bést methods a second-
order solution to the initial value problem, a harmonic
system, and a (slightly disgulsed) spectral method. For the .
initial value problem, we rephrase the non-dimensional

eduatlions so

W - 1 (pp - _22Vy
‘éff’&N(DD" a.)q) N A

v LoD 7
¥ m(op* AV - F Oy,

T (39)
Vo honY,
where y = (ppy =a*)u,

=Dyu=v =0 atr=21landr ='7'4,
v(L,8) = Q,(6), V(ght) =7"Q(¢).



The mean flow 1s 1included here because it turns out t..o'be
easler to expand the s;y's:cem, of ordinary differential equa-
tions a 1little than to evaluate a bunch of Kelvin functions,

though the latter are useful for checking. We use the uswal

second-order difference appro:cinations to D and I in the -

interior, so using superscripts. to denote network ”poSiti-on
. ,

out of K [so r=1+ %(’Z"-l) for k= 0(1)Kk and

AR = =,
K

T e

N2k

%VT: «“N@o[(** 2N —(:Z’f( sV (1~ 2]

Ll v

’;/;% ';. &N (Alt\) Y( H‘_’-)‘V-kﬂ (2+(ﬁ{)‘) )V +(! "R)Vk-‘]

Where

<t+

( 40)

L (2+(M) Lat o)X +(| 22" 4’ (‘H)

:z»."

all for k = 1(1) K-1. The boundary conditlons

W =uKav® =vf =0 ana V0 = O (), V<=0 (t)?Z
are easy enough, but the boundary conditibn D.u = 0 is more
interesting. How can this be imposed when ‘éll of the u's are -
now defined? One realizes the values - W° and .l.UK are still
free and prdvide the needed *two more conditions, through

(DD, =% )u = ¥ 3 set
h o= (HA”“)”' (2+(@=) t+a*(any ) + (1-2 ;)'u"
= (1+22)u + (12, |

5f



Now 1impose Du = 0; the centered s_econd order approicixratioh‘

-t ' ¢
defines u = u , so.

- Yo = (ﬁg%u’. T 7>
Similarly, o | | -
"PK:.‘_‘ , —E‘—I-S,_MK—»‘, S | A ¢ A!g)

These provide the additional éonstraints needed, If .one

felt uncomfortable with introducing the artificial u™ above,
one might think of only defining u from the ¢ definition
for k = 2(1)k~2, then imposing the boundary condition Du = O
as ul = u*/4, uX'= u %, which then define ¢! ana ¥
b= Ly ~an e (1m0 - 57 ) |
P iy~ e U8 - %)
However, this scheme ef‘.fectively brings the walls closer
together, thereby causing too '-high 'a critical Reynolds
number, SO one should use the centered scheme. So much for
ten hours work and experimentation. _

For the numeric solution, 'all variables were initlally
zero for each run, then the | W4 were set with small random
numbers. Then over-relaxation was used on ( 4/ ) for k =
1(1)K-1 [with u® = u® = 0], When the err'or4 was smll enoﬁéh,
$° and lVKwere set as in (42 ) and (43). Nwv all of the
right sides of (40.1) through (40.3) were defined, so a time=-

step could be taken. A fourth-order Kutta-Merson scheme

with automtic error check_s and step-size con‘crbll was ﬁsed..

The curves u(r), v(r), V(r), and ¢(r) were displayed for
viswal checks, under sense switch control, so 1t was seen
that v had the same period as V (forced to be 2 ), and a

similar shape, with zero crossings near the same radii, A

ST



typlcal graph 1is gilven as figupe & . The radial veloclity u -

‘always had the same sign.[aftér a transient adJustment
period 1in which 1t occasionally keptA a second mode
appearance for a while], so had a Zero-ffequency  ¢omponent.
It also grew tﬁice in eachlv period; Suberposed on these

cycles was an exponential growth or decay., - In figure 9 1s

'a typical graph of the kinetic energies of the perturbation :

and the mean flow, TWo bumps -correspond to one ,basié-

period, due to the squaring. Note how well the perturkation
kinetic enefgy can be represented as p(t)ért, for . p
periodic. We thus have a picture of the motionsas the inner
cylinder 1s past the middle of 1its swing, the centrifugal
potential 1n the ‘V boundary layer buil&s up enough to

encourage u to grow, which advects V to encourage Ve Thus, u

Wwill pulse on swings elther way, whereas the sign of v will .

change on oppbsite sWwings. If the centrifugal potential is
enough to cause more grdwth than the viscous decay over the
whole cycle, then each cyéle will result 1in the same
ﬁroportibnal growth, once the fastest growing' mode 1is
dominant, anq until limiting size is reached. |

' 2
The whole system was run for various parameters Re, a ,

and N relevant to the experiment with % '= 1.044}4 described

later. The initial value problem was run out far enough to

determine whether there was growth or decay., While the
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Oscillations were a handlcap, fortunately only a few cyclés

were necessary, except near marginal growth., This indicates

that the fastest growing (or most slowly decaying) mode was

always quickly dominant. After the growth or decay, was
discerned, Re was changed until the value * which gave zero

2 . .
growth was found. Then a was changed untlil the Re found was

minimlized. The results are pldtted for Re versué N in-

figure /0 and tabulated in table 2 . The six points found

represent over 6ne hundred hours of computer time. The

seventh ls the steady limit £rom Taylor's rarrow gap " ‘theory -

or figure 7 . |

For the smaller N's (higher frequency, smller angleé),
the amplitude of the kinetic energy oscillations were s.mil'l,
suggesting the pulses were rapid comﬁaréd’to the décay time,
‘but not very efficient. For. N < 1, the kinetic eAnergy

oscillations we're over several decades, whlch 1s a strong' :

' on-off' behavior, and suggests the feasibi'lity of a quasi-

‘steady appraximation, for N ¢ 1, as discussed later. How=
ever, a quasl-steady appraximation plainly will not De
-~ useful for N > 1, though then consideratiol;ls of a mean-
square centrifugal.potential my be,

The critical Re was not sensitive to ‘al s ~exp1a1ning the
rather »large error estimates for a,. The growth rate was much
more sensitive to Re foi" smll N, so the KE = O curve 1is
closer to glven finite amplitude for small N than large.
Conrad and Criminale (1965) claim stability for 72'* = 1,060
‘and N = 1.94 if Re 103 (after translating notation). While

a

62



REYNOLDS NUMBER

5K

10K

0.0

0.

UNSTABLE

STABLE

¢ C&C
©

0

1.0

ANGULAR AMPLITUDE IN RADIANS = N —

OSCILLATING INNER CYLINDERv

2.0

]



this 1s the only 7 for which they give a value, the narrow

gap approximaticn translates this toa claim of stabllity

for 77 = 1,044h and N = 1,94 if Re < 163, This point 1is
also entered on the graph. Indeed, there will be stability

below that Re.

Quasi-Steady and Rapid Oscillation Limits

When ’chel oscillations are slow enough that the. viscous
boundary layer TT{;/Z) 1s thicker than ‘the gap d, one
expects a quasi-steady assumption to be realistic. The
dimensional equations of motion and boundary conditions are

given by ( ). Let us rescale ¢ ‘->Sl—‘t, S0
(p0g —a* — &5}_—]4’ = .za_’-V'V/A,

(00 —a* —rRF]v = (D V)u, | (‘HJ
&_3%: DD#-V; -
where ¢ = (DD, -a*)u, _
Uu=v=Du=0 a’crzlandr=?",
V=0 atr’="‘z—', so

V(r,t) = M(r) sin Nt + N Re é’f K(r) cos Nt,
where Mand K are 0(1) and § = d/R. Thus, V is 'quasi~
steaqdy! insofar as N Re 1s small. ILet us use this as an
expansion paré.meter, so ¥ = ¥, + N Re SLLH +eeoe eté, and

retain the zero-order equations o -
(00 —a* ~Re$£) ¥ = 22° M) 2202,

: Y (49)
(00 —a% = Ro $YV, = DM Gelib)d,

2%



where (¢ = (DD, -ae)uo,
. S _ e
w =v, =Du, =0 at r.-l andr =7 7,

M=1, K=0atr =1, M=K=‘Oatr’=7“',
These are the quasi-steady equations, so one is Justified in

treating stabili’cy as 'depending only on the current time and

2 : o
not the past if N Re 1s smmll, i.,e. if the forcing has

plenty of time to diffuse. If it is, We have the classical
Re\si-ri Nt| = H’T_()T)‘é%'and ax3.46 , which determine the
times at which the rolls will 'switch on', reaching their
iimitying size in much less than a period of oscillation.
They will die just as fast when [sin Nt| approaches its next
zero, Of course, ~ there will bDe oN instability if

-,_

Re ¢ V1700 § 3 % .t least for N < i LE§%  Tnis gwranteed

stability line 1s entered 1in figure 10 , since it probably
holds for iarger N also, since 1t seems clear that the -

" oscillating forcing will always be less destabilizing than

_steady rotation with the same meximum angular velocity
[though quasi-steady results of Currie (1967)‘suggest this
may not be quite truel]. But in that case, Taylor (1923 ) gave
a bound which ifor this ’)Z is Re < 4710, independent of N,

This 1line 1is asymptotic to the results presented here. W'e_

see from figure (0 that the experiments were conducted for

boundary hyer thicknesses comparable to the gap width, and

merge smoothly with the dquasi-steady prediction to the

right, for N << 1.
When the boundary layer thick‘ness becomes enoqgh less
than the gap that even the vertical wavelength 1s less than

¢s



d, the dependence of the parameters on d should drop out.

Then % = (DD, -*)u givesa ¥ scale of mu/2’, wWhereas

» (DD, '-kl)L}’=2k’Vv/r gives a Y scale of %—-'v, and

»(DD -k*)v = (D,V)u gives gives a v-scale of TE%L'U’ which

n(w:

combine to force constant, much like the classical

formula., Since N = %_, this can be squared to yileld

Re = ¢ N (46

for N large., The asymptotic region was not reached in the
exXperiments, for the exponent of N for Re increases from O

at the right to about 1.9 at N = 1.5 at the left. The

thickness of the viscous boundary here is about a thifd of

the gap, and the wave-number has Jjust started to increase,

so the balances above still have factors of'two and three

depending on d as well as ﬁ?.

Mean Rotations Wwith Oscillations Superposed

With the equipment available, an obvious extension of

the theme of time-dependent céntrifugal instabilities was to.

superpose mean rotations of the outer and inner cylinders on
the oscillation of the inner cylinder. This seemed

attractive 1n connecting to the steady problem,

Donnelly (1964) experimentally studied effects on the

stabllity of steady circular Couette flow of a superposed
oscillation of the inner cylinder. Meister and Munzer (1966)

and Conrad and Criminale (1965) studied this problem theore-

¢
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tically, .and agreed with Donnelly that smll amplitude

oscillations can stabilize the mean flows. Donnelly's
experimental points 46f onset of sharp increase -of mean
transmitted torque are replotfed 1n'f1gure Il . His abscissa
is inverted to show the number of viscous waves in the gap.
This way it seems‘clearér that the decrease 1n torque is due
to the éorrelation of the phase of the viscoﬁs wave at the
~outer and innef walls. It even seems clear that the effect

has about the same shape as the viscous wave, and if

Donnelly had tried higher frequencies, he would have found a

weak destabilization.

My observatiohs'of the onset of instability wereviswal
rather than by average torque, and "indicated the "periodic
exlstence of ring vdrtices about as soon as the maximum
velocity exceeded the critical for steady, except for
oscillations too fast to be quasi-steady. These did not show

up much before the instabilities on the mean flow.

The claim here that oscillations superposed on a mean

rotation always destabilize 1s not contradictory to
Donnelly's conclusion, for while Donnelly's definition of

instablility involves a sudden increase 1in the torque, here

the definition involves the existence of a different

asympfotic solution to the equations of motion and boundary

conditions than the basic one. Donhelly's own experiments

showed the existence of ring vortices with a non-Zero mean

radlal motion below the steady Taylor number.,

The périodic ring vortices only appear ‘on the latter

a

4



half of the forward swing, and not on the back, when  the
periodic velocilty opproses the mean velocity. Thils and the

possible destabilization for the proper freqﬁency oscil-
lations above suggest an interésting possible resonant
instability. If_the mean centrifugal gradient is stable,
there will be 'inertial-elastold' oscillatlions. What will
'happen if their natural frequency 1s driven? Clearly,

inviscid modes would grow, but viscosity would oppose this.

Since the mean flow here 1ls forced by viscosity, 1t would be
~ Interesting 1r a resonance could force a harmonic
instability ﬁith viscosity preéent. The possible mechanism
requires an lInner oscilllation _ét twice the natural

frequency, so that the forward pulse may correlate with each

outward swing of the mode, and the backward decay may match

the end of the swing. One suspects that there will be

considerable difficulty 1in. getting this mechanism to work,

for the high Reynolds number necessary to avold too much
decay on each cycle also makes the oscilllatory boundary very
thin, so not driving the mode efficiently.

The same program used .fdr the pure oscillation was

used, with the boundary.conditions on V changed to include a>,

dominant rotation. All runs Were for.'q = 1/2 and at = 10,

and for simple rotation of the walls, so V =lat r =1,

V = 72" at r =”Z—'. The natural f‘requency was found by setting.

the viscosity to zero and integrating in time. The solutilon
oscillated very nicely on the scope. The real part of the
frequency did not change measurably when viscosity was

added. An inner oscillation was superposed on thé ‘inner
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cylinder at that frequency, twice 1it, three times 1t, and

several other frequencies. They all decayed fairly rapidly
and rather indistinguishably. Thils suggests that either this
viscous harmonic mechanism will not work, or a different
mean state is necessary. When the forcing of the mean flow
used a2 smaller Re than the Re of the perturbations, the

resonance was dquite discernible._ Some growth rates are

plotted in figure /2. This situvation may arise if the mean

flow 1is driven by an azimuthal pressure gradient rather than

by the viscous drag of the walls,

\
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Harmonlc Decomposit ion;

Figuwre 9 and all of the other runs show that the
kinetic energy can be well represented by p(t_) emt , with p
periodic with the fredquency of the basic oscillatic'm, or
twice it for symmetric oscillations. This reminds one of
Floquet's theorem (see Coddington and Levinson, P 78-81,
1955), that the fundamental solution matrix of ‘%_ = F(gg,t)
with F perlodic in t can be expressed X(t) = P(t) exp(Rt),
where P is a periodic and R is a.cons’can’c matrix. By using
an L, norm, |IX|]| = [P(£)ll ]| exp(Rt) || , where [IX|| 1is a
positive quadratic form like the kinetic energy. When using
linear theory, the uswal pi"esump‘;idh is that the solutidn
can be separated 1into 'modes, of which some one will
dominate. Thus, exp(Rt) will normlly tend toward-a one-
- dimeslomal projector R_, ea’t ,' where R., is of rank 1, and
the kinetlc energy of any particular solution will tend to
that of the dominant mode,. or p(t) e_”t ‘, as  observed.
Since this form holds so rapldly here, the presumption of a
domimant mode holds. Thus, one might find 1t profltable to .
look for such modes, especially for O = 0, which corres-
ponds to the ‘rrarginal stability for a steady basic flow. So,
\wr_j‘.'ce. |

o0 .
Y = 4%(1‘)_ +£| (‘ll)m(r) cos nt + { (r) ~sin nt) , |
etc., substitute these into the equations of motion, and

separate harmonic coefficients to get
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-ReNV, = DDV,
ReNV, = DDV, |
2
-rReN§ = (DD,=a")¥,, +%E[ v VgV
-az% (=8 W, v, +(1+8 WV, v, .., ],
2 2
nRe Nq):bn = (DDJ-a )41}1\ = a_,_l;@[v' vl,m-ﬂ + Yl vz.’mfil (47)

2 .
+ 0:.}%‘-»[-(1+8M )V‘vbm_, + (I-SW)\QVI)M_'_],
2 ' o
-rRelv, ,, = (DD*fa )VM-Q- éRe[-b*W)u;,MH +(D*V,_)ul,#l ]

= 2zRel (1-8,)(DV)u, .y +(1+3,) (D, )u
2 .
2m (DD, 2" v~ %Re[_(DM)u 2t
+LRe[ -(1+4 )(D,V)u +(1—5w)(D,\{1)u2’44],
. — A
v qum = (DD«‘ a )MA‘M ) |

l,/n-l]’

3
Z
il

+(D,V, Ju

yntl

are ug,=v, = Du, =0at r =1and r=4Z" s for n =
91,2,3,+4¢, and V; glven. Note there are two Independent sets
of harmonics. The first are the even harmonics for u and the
odd for v. These are the ones observed rmmerically and
~eXperimentally, u has a mean and a double frequency
component, wWhereas v has the fundamental. The other set of
harmonics with u oscillating at the fundamental and v with a
rectifled component must reQuire a higher Re.

The obvious method to solve the above system of
equatlions 1s to follow Galerkin or Lorenz, and to truncate
the above system to n £ constant, se‘éting variables with
higher subscripts to zero and solve for the elgenvalue Re.
The above equations all have the second-order operator DD, , .
and seem Qquite sultable for relaxatlion. This system was

programmed separately by two programmers in quite different



styles. -Overstability in the relaxation was avoided by

‘under-relaxing with a factor min(l,(EnRéNh’)-:(azRehz)q).
This was necessary, élse there was a rapidly-growing oscil-
latory numerical instability due to the large coefficlents,
in close analogy to the time-step limitatién for parabolic
eQuatibns such as thesé arose from, HOWever, even with this
under-relaxation, when the second harmonic was added to the
system, both programs gave kinetic energles which grew
continually fof any Re, though not rapldly. This 1s
disturbing, and suggésts a new numerical instability, which
deserves to be understood. |
Let us consider a simple anmalog: Dzy + Rey = 0, with
y(0) = y(T) = o. This simple system has non-trivial solu-
tions only if Re = n® for some integer n, so has only . the
trivial solution for Re < l. What happens when one tries a
relaxation fof various Re!'s? Experlments were run for the
usual second-order relaxation scheme,
Ay"= Ly 2 gd aytt + IRe y‘]
For Re = 1, y qQulckly came to resemble the first arch of a
sine, but very slowly decayed, reflecting the slightly
different spectpal character of the finite-difference opera-
tor from the differential operator. For Re < 1, the
solutlions decayed, and did so more rapidly the smaller Re

was. For Re = 1,02, the solution slowly decayed, then grew

as the first mode emerged. For larger’Re, there was rapid.

groith. So this works nicely, and ;uggests the iInstabllity
my lle in the boundary conditlons for ¥ . .
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Experiments for Oscillationse.

The major plece of apparatus was bullt by H. Snyder and
S.K.F. Karlsson at Brown Unlversity, and’ is described in
several élaces, such-as Snyder and Karlsson (1964). It has
elaborate circulation and control devices to maintain
temperatures, as well as complicated electronic measuring
devices. However, the latter rarely worked, so could not be
used,' so perlods were neasured with a stop-watch, and
existence of the vortices was determined visually. Both the
inner and outer cylinders could be oscillated independently,
with or without a superposed rotation. Installing a heavy
fly-wheel allowed very smooth oscillations. The radius of
the inner cylinder 1s 6.0275 + .0003 cm, with length 90 cm.
The radius of the outer cylinder is 6.295 + .0003 cm, so the
gap width is 0.267% .0006 cm, and 7] = 0.9575, ’)f’: 1,044
Thermistors at varieus locations were wused to center the
inner cylinder by checking that no perilodic variation
occurred 1In the output voltages as the cylinders rotated.
The voltage froma precision potentiometer on the drive
haft was displayed against a harmonic oscillator at 0,180
cps. The signal was found to be virtually free of harmonics.

The apparatus included ink outlets, but these did not



worke ~The ring vortices were first visuwalized using
nacromer, but this was found to floculate. Aluminum powder
was tried, but required too large a concentration, settling
on the glass and forming slag inside the apparatus. It
should never be used in apparatus that cannot be taken apart
and Washed. The samé is true of the artificial nacromer
' tried next. While washing this out with Ivory Liquid
detergent, it was noticed that beautiful -vortices formed
while the innef cylinder was rotating, even for Jjust a few
capfuls 1iIn several gallons, Ivory Liquid seems ' mbre
sétisfactdry‘than ﬁacromér generally, for it 1s cheap, won't
settle out, and even helps to clean the apparatus, so was
used from then on, The observation procedurée was to set the
lever arm of the oScillatioﬁ gear, then to measure - the
angular amplitude of a half rotation. This did no£ change
during operation, for there was no measurable back-lash.
Then any mean rotation 'wés “turned on and determined by
‘cpunting with a stopwatch. Then the oscilllation frequency
was counted, using the gear arm crossing a slot in the wheel
to define a cycle., The temperature of the bath was noted.
Then any existence of vortices at any part of the cycle was
noted. As soon as‘ vortices were seen; the oscillation
frequency was lowered untll they could not be, then up again

until they could. No hysteresls was noted, so the time could

be noted to O.1 second over a minute or so. The temperature

‘wWas also measured to .0.,01C, Unfortunately, the basic
definition of existence was not so accurate, but varied with

the condition of the nacromer. It 1s also often difficult to
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decide if faint, flickering lines are really there. However,
Wwherever they were def initely cherved; a;'+',1s entered 1in
figure . Wheh near critigal, the rolls only appear near the
ends of the swings. The abscissa is angular amplitude (6 = N
,), and the ordinate 1s Reynolds number. The data seems
satisfactory in lying above the zZero-growth line nearly on a
constant growth isopleth. The p@ir of points lying far below
the 1line are undbﬁbtedly a blunder, probably due %o
measuring the angle between the end=-points of oscillation
the wrong way around. An attempt at measuring wavelength was
ma.de. While parallax made even harder the counting‘and
delimitatlon of the faint on and off bands near critilcal,
the average at N = 0,7 was about 2.1 waves/cm. With R = 6.3
cm, the numerical study result of ax 5500 gives 1.9/cm. For

higher N, there were smaller wavelengths observed. Some:

experiments were run with the outer cylinder rotating while

the 1Inner oscillated. Just as one would expect, the outer

rotation stabllized. The results are plotted in figure . The
necessary osclllating Reynolds number increases approxi-

‘mtely linearly in the outer Reynolds number. Some data on

osclllation of +the 1nner cylinder with a mean rotation:

superposed were also gotten Dbefore the mein bearing  wore

out. For these, the oscillation amplitude and frequency were

set first, then the mean angular veloclty to - cause

instability was found. The rolls only occurred on the

forward swing noWw. Some experiments for 1nner oscillation ;

only were'run ina much smRller and cruder apparatus at

MeI.Ts, for a different gap width. After grinding down the
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inner cylinder to be rid of rust spots, the inner radius was
2.08 cm, the outer was 2.57 cm, S07= .807; and the helght of
the cylinders was 15 cm. The oscillation amplitude could
only be set at six angles, and the range of constant
frequency for the smll motor was discrete and rather
limited. However, water and mixtures of Dow-Corning 200
silicone- o011l allowed sevéral viscosities, so further
Reynolds numbers. Tﬁe results are plotted in figurelds The
results seem reasonably consisfent over two orders of
magnitude inY, considering that a secretary laughed when she

saw the experimenbai set-up.
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Coda,

In the final stages of preparing this thesis, a very

relevant paper by Rosenblat (1968) appeared. Rosenblat notes
the importance, yet neglect, of the effects of time-

dependence on Iinstabilitiles, then conslders centrifugalA

rinsbabilities of invisclid, perilodic fldws between coaxial

cylinders. He linearizes and assumes axisymmetry, and also
discusses what instability might mean. ‘
For rigid oscillations of the mean flow, he finds the

time-dependence of the disturbances to be cos((%cos,wt),.

where Y 1s the exponent for the corresponding steady
(Rayleigh) problem. If this be complex, and &) is smll, the
‘disturbance will increase exp(}%)-féld during grcwth, which
may take it out of the linear range. ' . (

He next considers nearly rigild oscillations. He fiﬁds
the phase-differential' in the radial direction, however
small, is sufficlent to cause instability. This conclusion

¢certainly does not - extend to viscous flows. It also does not

hold for N (K 1, which is exactly the requirement for nearly
rigid oscillatlons when the mean flow 1s driven by wall
oscillations. _ i

Rosenblat shows that small oscillatlons on a stable
steady mean flow will be stable, except in a band around

twice the matural frequency of an inertial-elastold oscil-

Jation, though he suppresses the dependence'.of this



frequency on vertical wave-number. This seems to mean that
for all driving fredquencies below 2ﬂ', ‘some wave=numbers

will be subharmonically unstable.

When the steady mean flow is. unstable, Rosenblat finds
a second-order, inviscid decrease in the linear growth rate,

which he takes to explaln the reduction 1in limiting

amplitude found by Donnelly (1964). This seems QUestiOnable.
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Chapter Three - Suddenly Twisted Cylinder.

We now consider - another time dependent flow on which
centrifugal instabilities mRy arise,‘ that of sqddenly
starting the inner cylinder;rotating,' with a vviéw toward
meaning and methods, rather than just the problenfat hand.
The equations of motion are already gilven in ( l‘).vAs soon
as the cylinder starts, a thin boundary layer on it will
form, of thickness =\t . When this grows thick enough, the
centrifugal potential will be great enougp to pay radial

motions. We first are interested in the margin between decay -

and growth.,  Mallick (1957) considers the mean flow around a
suddenly twisted cylinder, but gets no closed expression,
and does not vconsider‘the instabilities. Thé 1mpulsije1y
started sphere has been considered 5y Barrett (1967),
expanding in 5:=J?%; and using boundary layer theory, but
instabilities are not involved. A simllar problem of a
suddenly applied temperature in the Bemard problem.has.lbeen
 considered by Lick (1965) and repeated by Currie (1967), but
using an assumption of quasi-steadlness, as well as a

broken-line approximate mean temperature gradient.'

Robinson (1965) also cohsiders'this Benard problem, using an -

erfc profile, and devotes some attention to when the quasi-
steady approximation mRy be valid. His results bear a
resemblance to the numeric initial-value results of
Foster(1965). |

Why should one be able to make’ sﬁch‘an*assumption as.

quasi-steadiness when the mean is changing so much? The
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uswal argument is that the perturbations have a much shorter

time scale than the mean, and then they ccnsider the

merginal state ( =0 ) of zero growth rate. This seems a

contradiction, especially since no per’curbation. timeé-sca.le
is produced. Consider 2 simple example Ol%= ty =Eye. ‘I‘he.

quasl-steady approximtlon gives O =ty -Ey or t =E as a

2
stability bound. The actwal solution is y = y(0) exp(l% -

tE), which has a minimum of y = y(0) exp(-E72) at t - E,
so the approximetion does glve the division between decay
and growth. However, y(2E) = y(0), so y cannot grow past its
initial perturbation size.until y = 2E, It Céh be made to
have arbitrarily large é&; at y =2E, by large E, so 1s not
2E the bound paét Wwhich 1nitial perturbations grow? This
sort of definition would be operatiohally more meaningful,
in requiring a finite sizZe large enough to be detectable,
However, it 1is usually inconvenient theoretically, since it
requires considerations of 1limiting size, as well as
- depending on the,particularvdetection device, |

The axlsymmetric linearized equatlons for the started

cylinder are

Be o %—%WW‘Q"‘” +57)

3w p |
de k(e
N
/":93(%0 *9% " 0) . | | ‘ (43)'
where 3V _ ., 3 /1 -d(aV) |
| SE= Yo (x —95:‘“5)

and u=v=W=02atr =R, V = {Q-R,i‘*;oz at r =R,
all>0as r »e2,all >0as t >0 (r{k).
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We are interested in the margin between decay and growth. -

Assume the r scale is Yt = §R and the z scale 1s L, to be
' 2

found. Look at ~E= 0 (quasi-steady margin), 1l.e., balance

geheration and dissipa}t,io_'n. The scales are

P

S‘R—'> QV) u//‘t
. %
P W,
Wi, ‘%

o w 12U -
= W~ BU, P~tEeth, v~ Ol
so the scales in phe first equation are

QY o
' Y c Tz -

In the experiments, Qt > 30 >> 1, so the last ter;m is much
" smaller than the second, giving scale L ~ Nt 3{R 3> S'R, or
even R, This is the sort of wave-length one expects first to
go unstable. Note the sharpening of Robinson's quasi-steady
conclusion of wave-number 2zero iynv scale R belng the ) most
;unstable. This smll but non-zero wavenumber matches the
numerical results better. Another conclusion 1s that the
scale of generation/dissipation is _0.12‘2.8-' , 80 one

. N
expects growth for t, such that .Qtog Iy critical, ors
2 N _
9,__8.. = (C* (2)_,’?- v (‘H)

Just as observyed. Thus, balancing generation and-dissipation

glves the right forms quantitative considerations will also

yield the constant ¢. First one might remrk that this
problem with a V boundary layer with one rigid surface

condition and one open 18 similar enough to the classical

convection problem with one rigid and one free boundary to
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suggest that ¢ in the last equation is about Y1100 » This
works beautifully in figure )3, so now to find out why.
| Writino r R(l+5x), and using SR for the z-scale for

simplicity, the dimensionless equations of motion are

’—‘:%%: -%—ﬁ-\-ZTa./ T(%‘(XL 5 %LL S(Al*__é;g)

(+3x arx
N . _ N sV S N _ s >V
= *—S w -9V L L2V
3 ~( ox. ) } rz T H—Sx ox (!+X><)"+T:., 23%)
Mmoo _oP aw Iw '
= T 7y T ')/;' X 9K T}f”)

(50
%i" %éf *—:ig( =0.

Note that the coefficlent Ta = Xt?/§ depends on t, as does

the.shape of V. We see that _ﬁhen S 1s smll, the only 0(1)

parameter is Ta., so ifc is natural that 1t is the critical

parameter, as argued above, Since it will be independent of

8 for smll ) , a boundary layer argument will yileld the

constant.

Quasi-Steady Approach

The Qquasi-steady approach is to assume the baslc flow
changes slowly; so there is exponential time-=dependence,
then to set the gronth;-rate' to Zero., Perhaps a more
conslstent apprcach 1s to assume that one mbde is_ dominant
and find when .the generation exactly balances‘ the dissi-
pation, so leaving .Zero_ grcmth-raﬁs This vie?« has no

explicit dependence oh slow change for the basic state,
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- . hiding this assumptlon under. the assumption of one ' mode

dominating. Either case uses the equations (48&) with

;’ﬁ = 0. One can eliminate p and W to get

0 = (Dm-éz-)q/ - 2a8®ReVv/7,
0 = (Dpy=a Jv. = Re(D,V)u,
where ¢ = (DD_X,-a")u,
u=v=Du=0 at r =| and as r 2,

This is solved. by 'shooting!. Write

¥y, =u so_Dy‘=y2-y|/r,
'y, =D;u . so Dy, =y, 11y, ,

~ ~ ($1
v =%  so Dy =y, -y,/T, )

: 2
LY so Dy = a‘z;y3 + 2a Re Vy;/r,
v s0 Dy.f" |
Y = Dyv so Dyé = a Vo + Re(D*V')Y. » '
here y (1) =y,(1) =y (1) =0 =y,(9) =y, b9 =y (9. This
is a two-point boundary value problem. which 1s solved '

=
i

V¢ = ys—/r,,

o
Il

similarly to that of the bottom boundary 1in Chapter Onet
-solve for three sets of initial conditions (y3 Yy o)

= (1,0,0), (0,1,0), and (0,0,1). The system of eduations

above 1s linear, so the outer boundary condltions can be

satisfied if the determinant of (y,,y;;xy) for the three
solut;ons goes to iero as r goes to infihity. One actually -
solves by finding that the determinant changes sign some=~
where for large enoﬁgh Reynolds'number, but does not at a

lower Reynolds number. One. déduces that there 1s an .
intermediate value for which the. determinant 1s'asymp-

totlcally Zero from éohtinuity of the solutlions with respect

to the initilal conditions, -



This numerical integration was carried out for the
approximation V = erfe((r-1 )/&) This should be an excellen'c
approximtion for smallS . The results are plotted in
figure (|3), and form a reasdhable‘ lower bound for the

observed instabilities; suggesting that this 'quasi-steady!

method here gilves a good approximation to the time of-

minimum energy, as 1in the simple example at the beginning of

this chapter. | |
One discrepancy of this Quasi-stéady apprqach'is‘ that

the wave numbers come out higher than for the fastest

growing waves found from the initlal-value integrations,

which are presented in figure 4 . These curves are even

shaped rather 1like the Simple example considered at the

beginning of this chapter =- they grow back to their

original perturbation size about as long after zero growth

rate as it took to get there, and some of those that dropped

more slowly also grew more slowly and were passed. There 1is

a correlation between those - wavelengths which started

growing first and those which grew most rapldly later, which

explains some of the success of the quasi-steady method.

Numerlcal Methods.

Because the equations of motion_ are the same for this

problem as for the osclllating cylinder of the last chapter,

&7



Figure 13,
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for the started cylinder.
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- 1t 1s first worthwhile to try this initial value .problem
wilth the inner boundary condition changed to

’Y(l::t) =1,

and the outer boundary changed ﬁo r = 4; where the boundary -

conditions were changed to free slip, u =Dv = DD4yu = O,

since thls seemed to work heuristically quite well in figure .

{3 ., R =4 was far enough out that imposing a virtuwal mass

from the exterilor 501ution would not be worth while,

The most obvious feature of the solutions was - that

while v had the same r-scalé ags didV, u and w had a
much wider scale. This suggests the value of a boundary
treatment, and mde difficult a grid representation. The
number of grid points was increased to 36, which gave smooth
enough curves on the screen ‘to indicate that Eoth scales
wére adequately handled.

Reynolds numbers of 50, 100, and 150 were run for
various wave=-numbers designed to be near meximum growth. The
kinetic energies of the dlsturbances as functions 6f the
non-dimensional. time from starting are given in figure'fy .
To compare these results with the quasi-steady. theory and
the experimental results discussed later;‘some level must be
selected at which the disturbances have become 'unstable!,
The quasli-steady theory essentially finds the points at the
bottoms of the curves, where the kinetic enérgy growth 1is
Zero, Examining these curves, We See that the time to this
point 1s not very dependent on the wave~number, and ié not
necessarily related to - the wave-number Wwhich - grows most

rapidly later.

&9



Figure 14, . Perturbation kinetic energy

versus time.aftef cylinder starts.
” )
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» The initial peaks are adjustment of the éneréy from
potential, where 1t 1s put initially, to .kinetlc. The
declining parts repreéent Viscous decay before the min
‘boundary layer grows thick enough to yield energy. Note that

the higher wave-numbers decay more during this period,

though they my start drawing energy earlier, The wave

nﬁmber of‘naximum growth increases with Reynolds number, and
with a nearly linear in Re, which 1s to say, thelr
Wavelength remains nearly proportional to the boundary
thickness. The growth rates are exponential_with 1og-sldpes
very nearly constant ovef the perlod run, ahd increase with

Re, perhaps at a 4/3 power rate.

’ Finite-Difference forms,

So far, the coﬁventional second-order finitg-difference
approximations have been used, largely because they  are
relatively easy to program, especially at boundaries. Now
let us consider what finite—difference’forms ought to be
used. Most of the computations essentlally involve parabolic

terms, for which

2, - ‘
%: 95)_:/1 , Vioy=vim) =0  ($2)

is the prototype; non-zero boundary conditions can be
absorbed 1n interlor forcing.  ILet us consider how this
might bé accurately computed with a special view toward

éliminating the purely computation restrictlon on step size

11
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A‘tég% , which can be very inconvenient for fine grids
nédessary to look at poundary layers, such as in present.
problem, Arakawa showed the yaer of preserving quadratic

integral forms., Here we have
: 2
2 fﬂ‘ Vil — f’r vy
‘9}; 3 ;‘M — , (Bx 9!%)
so let us force a finite-difference approximation to this,
- where the integrals are approximated by sums. Let us uSe

three-~point finite-difference approximations - for

illustration:

wv R ke k 41
_3;/ - av ‘—\-bv +d‘

2/"!4‘1', k- k Xt
A = é(v —[—6\’ +%V)

and require these to hold exactly for V =1 and VvV = X,
i.e., to be of first-order accuracy. Now Iimpose the integral
energy condition in the form
2 :
FL% = -z ()

or, using the boundary conditlions v° = v_m = 0, .

(@ +£)3 viv! 4+ e Z(v")2 = =(+ b+ Cg)f(\{ﬂz

-2 (a+dby. v 2acy vAv
Above we Imposed four conditions on ’che si}; coeffi-

clents, so we may lmpose the Zero and first ‘order condlitions
here., There -are two solutions to these six equations:.

a=0,b==-Ft,c=2L,a="L,,e==% anar

- L
2

which is an Euler approximation



2 ) o " -
%,'Y.;L/k _ v vt v )* vk
X (axy> 22X AX

o

'i‘he other is the backward Euler, % = (vF )/ A, Note
that the centered approaximation %ﬂk: (v -vk-')/eﬂ)( 'would
not be consistent with this energy equation. Also note that
O=2ac and f 4+ d = 2/(AX_)2, so this approximation 1s-
'act-ually second order 1n the energy and second derivative
apprfoximations.‘.‘ ' |

Thus, using an Arakawa style approach, the Euler scheme
Rty
V(r+Ar)-V(j)+ [V -2V +V ]

is derived.as 'energy' preserving!, Yet if At > (Ax )%’2, the
energy grows rapidly. ‘I‘he troubie is that the energy
requirement was imposed with ';;9" s but the computation is
done with 4AL, The above scheme would be stable on an
amlog computer, but only digital computers can handle
systems of the Jnecessary corﬁplexity.

Since the equation (452 ) 1s 1linear, let'us‘ use a

spectral viewpoint., We are committed to a discréte grid

{XK} by use of a digital computer, so cannot handle

anything with finer scale, .1f such are imp_ortant, a finer

grid must be used. Thus, we can regard V as bvand-limited, so -

m=)

V = 2_: apsin P, where ag —;"—E'v("’r,t) SinPEI‘u

by the Sampling Theorem, ‘even between the gridpoints., Thus,
vV = -Zpasinpx, - e (@9

80 %‘?f = =p? 2, and a, (t+at) = a (t) exp(-p At) G

for arbitrary at. Combining (5’5&) and (53 ) gives

V(AL t4at) = Zc(k SN (), (53)



where  C(k,3).= stin(U[) eXp(-pAt) sin(£27), 9

These glve the exact solution to the equations as a finite-
difference stepping formula, The matrix c(at) can be worked
out once at the beginning. To combine this idea with non-
linear forcing is easfy enoughj 1nstead of using a Runge-?
Kutta or whatever scheme to evaluate 3‘_\[( = VzV + F, Wwe use it
to evalwate (%: -Vq)v= F, with a +time step as uswl,
followed by the .eb’ove (§3) transfornation.' In fact, there
seems considerable merit in bringing all of the linear parts
| :of the eqwti'on to the 1left, on a general philosophy of
using everything one knows. In this case, for the Price of
having n-1 interactions to handle instead of 3, we get exact
answers (nth order), which allows arbitrary time-step size.
This must be a/t least (n=-1)/3 times as large to pay off.
However, if a fast Fourier Transform 1s used to £1nd {ap}
and back, the re.tio is only Z l’ogl(n)/?:, which can be much
smller for the fine gridsvvisn.alized. . We follow N.A,.

Phillips in cons'idering a prototype eQuation‘

3"‘V

Where o 1s a streain veloclty representing the non-linear
terms., The second term on the right imposes a time-etep
limit 1like At( u. s>- Whereas for. conventional schemes the
first imposes At(@‘l . This willl be more restrictive than

the first if ' |
22
ax < A= (4%)
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ﬁhére' the right side represents a viscous boundary thickh'
nesse. Thus, this new disguised spectral scheme may well be
useful for 1ooking at a boundary layer structure, as We are
doing here. A.few evaluations of the matrix C(at) showed it
to be near block-diagomal for at smll, and in fact, clearly
C(n,k) represents the influence of each regibn on the
others$ for small time, only nearby vorticity can diffuse
over. We note that | |

c(x,m) = /Z exp{ 1Tz“’(’*"“””’) (sink”r)(sinf""r)(/)
and write ax = /n, x = pir/;n,. X = 7%)1’00 see this 1s a .
partial sum for an integral

c (k, m) = T f exp{ - x* E sin kx sin mx dx.
Now, exp(=Tr") << 1 and we are interested in 5< >1 (other-
wise, old formulas are stable), so my change the upper
limit of 1ntegfation and use trlgonometric addition:formulas
to get | ; : |
- C(k,m) = ~’[ expz-ot x} [cos(_Lg:m_)X.— cos(k+m)x- cos (2n-k—m)x]dx

——\,-—-1;;[2 expf - (k—m)( -exp{-(k'rm)} -exp{-(Zn-k-m)}], (5¢) |

from (1,4,11) p 15 of Erdelyi, et al (1954), vol. 1. The

latter two terms represent reflection in the walls. ‘Higher
order reflections have b_een (properly) suppressed 1in the
apprdxina'cion. Numerical experiments show this to hold well-
even for n = 5, and itcons.iderably eases the' work of
evaluating C, and my even be more accurate than the sum .
(54 ), since there ﬁill be no round—of £ efro’r. .T‘he' exp{-x"} |

behavior shows how farj one needs to evaluatej} there is no



ﬁsé' going beyond the ~accuracy of the machine or data.

’ ;While Cartesian coordinates Wefe clearer for exposition,
Wefare interested in cylindrical coordinates, where

aV— 5—(;— ,'-BV' - (520)

so write B .(r) Y\, )J()\r) -3 )3_‘)Y Ar), Where X\, 1s such
that BM(th"U = 0, For wide gap, one needs to numerically
invert the matrix B to form C, ﬁhich hardly pays. For narrow
gap, one can use the asymptotic formulas (9.2 9) and (9.2.,10)

~of Abramowitz and Stegun (1965) to get

B™( ») = F—n': sin((”,)z‘ll”’:r) + o[ (l 7) e

Proceeding now exactly as for the Cartesian case, we get

c(k,m) ~ 1,—./"‘( V‘*L eXP(-o(Y ) sin(ky)sin(my) ay

~ (l+1/3/) [2 exp (___) - exp Uebmd (gt pf - @rrkom
dem*irartyk - ( { ; { (s g,,,)ﬁ

This provides a )good approximation for narrow gap which dught

to speed the numeric Integration of parabollc. schemes on fine
grids in cylindrical coordinates,
The system of equations (5] ) requires D,V as well as V.

This can be found in the same disguised spectral fashion as

m—
. 3 | |- (-)>™ _5'
ve Y v yar L — (126D g N4 (A

Experimental Comparison.

Christensen [see Chen and Christensen (1967)] gathered
data on the instability for started cylinder with radius 1/4
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inch “in distilled water. Christensen's original’ data is
'éeprqduced in Table J , along with the"corresponding S
and N's. ~This data consists essentially of thg time at
ﬁhich instablility was first'obsefved, as N varied, and are
plotted in nen-dimensional form in figure /3. Thus, all of
the points marked are 1in the unstable region, and it is
satisfying how well they all fall Just above the marginal
lines given in the last section.

After the critical time.

In the similar problem of GOrtler cells on a concave

surface, Lin (1966) neglects the viscous terms. His student
N

D'Arcy (1951) used a broken line appraximation to the %basic

flow to compute the first and second modes, and found
patterns very close to Gortlers. Let us look at how- this
might work. o

The axisymmetric linearized eqvations of motion are

M, — %TP-.\,‘Q_.V-V_},?)( Jr’gﬂ- U 42 ,)

?2%: _U DY +7)(;";_ 73 =Y ~ L+ SL‘/)
, o o VW oW (57)
¥ R '*’%/‘z”"”%*é&) |
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. Let us 1ook for an appropriate.- growth time-scale T so

)af""r’L>%Z"’§‘E> 523— R:”"R(Hy’() Vo SR,

The continulty equation I'Aor'ces, scales ~ y/x§ , and (579)

L 4

becomes - (_32,;{_ +g%) + 95\1( —

The vertical momentunm equation forces a pressure scale

Ru

5T , and (573) becomes

W, _ ) T S w2 19‘14/)
2t~ 53%_\'7&‘ «'>;<z Y ox <3
Now the qv.nasi-steady assumption 1s that the perturbation

P =

time scale T 1s much smaller than the basic time scale t,.
Thus, the viscosity in (5¢) is precisely as negligible as the
‘quasi-steady assumptlon is good, once past the initial
marginal stability. Thus, Just as Lin suggests, (and Lamb
before him), the viscosity may be neglected, 80

W, . _ 2P
ot = 2p -

Substituting the pressure scale found above 1nto the u-.

i z ’
‘momentum equation forces scales  [u] ~ iec*8 N(T/t,), and

shows the viscosity here to be o(«x*3'T/t,), even more negli-

gible. We é;eb a curiousA quasl-centrifugal balance
o< 13“ = -55- + 2Vv/r.

We earlier found that the first‘ x's to emerge have scales

—

X ~ A1y evaldated at that time, so <8 1s certainly smll.
However, 1t happens to have been preserved throughout.
Putting the u/v scale 1into the v equation forces the

growth time scale
. |
T/t = wozst ¢ (59)

For this to be smll, either t. must be . several times the .

ma:’cgihai growth timé, or else o must be large. - In fact, it

17



is found below that the larger wave numbers do grow more

rapidly at this time, Thls fits Foster's picture of - the

growth of disturbances in the amalogous started Benard
‘problem¢! the vlong disturbaﬁces ‘start growing first; but" do
not grow as fapidly as shorter disturbances starting later.

It also fits the observation that the wavelergths are quite
random When at finite size. .

Again dropping the viscosity as being o(T/%, ),
= (% + Sv/e)u

Wrlting the varilables with e“(sin Z, cOS z), the equations

are o
aux.'_ g} —
| ow = —p . o (éO)
061310”’10( _ ,-%- ‘\'2—‘%‘_\/ .
oV = — (&+SI>H)'

from which w', P, and v may be eliminated :

5,(% * i lré‘x [ o2 H{x H—Xx) +°615]“ o (,60‘)) a

W1thu(0).-0 u-=>20 asx»oo and ég—~-—1 at x =0, to

normalize, This defines an elgenvalue problem for 0’1(5\),

‘since V =V(&8 ). It 1is worth noting that the other two

viscous boundary conditions (v =w O) can Dboth be taken

care of in a thinner boundary O((T/t,) ) without affecting

this boundary. '
Let us first consider the broken line model

V = {l-x, for 0<x <1 - m)'
' o, forx)l o

as do D'Arcy, Lick and Currie. This gives exbonen’cial»
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solutions for u 1in the two regions, which must match
continuously at x = l, must be O at x = O'and as x =2 o0 .'
‘This réQuires | | |
=A sin(xVE.~§) forx ¢ 1,
=BK'(<=A<SX)A for x > 1,
which requires [to 0(8)] | .
== wnfh-§ = - Ltanne(1 -5), (62),
For given o< and &, this determines Of", if it exists. We
see that there are an infinite number of modes for which the
sine 1is Jjust }enoughApast a peak to smoothly vmatch the
declining K , 80 \I_;T—;-S_‘z (n+i)T, and o= (7»«7";)"7? , 80 the
lowest mode grdws fastest. The nth mode has n rolls stacked
radially, with the outer one stretching from inside x = [r-
1=8] to ?<>. This corresponds to D'Arcy's results and
illuminates the following,
Let wus - ndw . consider the better apprdximation
V = erfe(x), so §- 2 exp(-x/) To facilitate wa«e-number'
comparisons, let us temporarily take o< out of the time-

scale, 80 T/to = (NS") , and r*onsider

» S0 [ 8 s mfeld S uz0, (6)

x’~ 1+3x X
where u(0) = 0, 3—;} =1, and O"(o(,g) is such that u - O as
. .

X >0, This 1s an ordinary differential equation with non-
constant coefficlents, so seemed well sulted to solution on
- an analog computer. N

The function multiplying u must be generated by the
analog computer. We note that the erfc satibfies the.

differential equation

%{;[mﬁmj +2§£[¢%Uﬂ -0, G
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with erfec(0) = 1 and éékerfc(o) =2//T . v
This was first generated from equation (63h) using a circuit’

Where standard notatibn is used. AdJusting the coefficients
a little brought erfc to withih .0003 of 1ts exact value at
several polnts, and brought erfc to zero 'as X increased,
Naturally, x must be réstricted, uswlly to x £ 5 here and
below, | - '

| With erfc well approximated, the whole equation can now -
be solved. - The whole circuity; in one of 1its forms,
including somé necessary debiasing, used is shown in figure
/S« This circuit grew considerably from the 1initial
conception, the lower .right corner represents 'the eqwtion.

The-solution u(x;o,,8) behaves very like a line a + tx

once x > l. We want to find when both 2 and b match the
exterior solution K\(cxr), which requires

a + bx = cK, (x) +c K/(x) = K, (x(1+8x))

using a Taylor expansion. A c can be found iff

b oK@ (64)
a o<'/<,’(o<) =2 (4

For each «, ¢°, and & , the equation (63 ) was - integrated
‘and ramp a + bx was also, This latter was adjusted until

asymptotic to the solution u,and the a and b were 'recordedo :
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Figure 15 -- An analog circuit used.

TABLE 4
Eigenvalues. o* to satisfy DD,u - ( 'gii X nv +oS)u = 0,

with boundary conditions u(0) = 0, ufe) = 0.

wave # o o? _
for § = 0.1:

5.0 0.4099

k.0 0.44965 0.109
3.0 0.49514

2.0 0.548

1.0 0.6079 0.1205
0.7 0.6280

0.5 0.6426

0.3 0.6578 v
0.1 0.6708 0.129

for & = 0.6:
1.0 0.2195 0.0563
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b K ) )
The ratio Zixkvz)js recorded and contoured in figure /é
for 8‘= 0.1, Plainly +the ‘contour for é:= 0.1 [the

intersection for ((54)] is close to the 2zero contour, and

~ 0.8« 4. Thus, long waves grow more slowly than short
in this quasi-steady range. Actually viscosity would come
into play as X increases, stabilizing short waves"and
causing a most unstable 0< ,\ which will change with time;
For a cheek, this problem was also integrated on the
digital computef for a few cases presented in Table 9 o

The results are very similar,

Energy Bounds for Stabllity

A guafanteed' stability bound can be gotten from the
energy equation for the full non-linear, time-dependent
incompressible Navier-Stokes'equations, iff we assume axisym-

metry. The formulas follow Serrin's (l959a), though here we

are interested in the minimum time at which there may be -

growth, rather than the minimum Reynold's number for a

steady basic flow. If we maximize §%kf' of the perturbation

kinetic energy over - smooth' perturbations (u,v,w) which’

satisfy the boundary'conditions, and find the time that this -

mximum becomes positive, no perturbétion kinetic energies
can grow before this time. Following Serrin, we find a
statlonary ~value of the generation minus Adissipation,
subject to the constraint of continulty. The variatiomal

equations are similar to the quasi-steady equations in form:
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o~ 2 a2
revad® 2 efons Frdede ~ A
Reunl® =B e {nr v 2ol A3 (65

= aJ
N e
0 2;+2{([)D_+§,+?3;,Jw,
3(mo =V =W = O
with /lae %‘ O,andu=v =w=0atr

The interest:.ng feature, here is that these equations give a
rigorous bound, and do not include a vague 'quasi-steady!

assumption. Thus, given the time, and hence the shape V, the

elgenvalue Re of these equations provides an absolute bound.

Unfortunately, they are very difficult to solve, even
numerically. If one relies on the observation that the
perturbations are axisymmetric 1in the experiments under
consideration, the equations can be simplified to

2,2 Vv : .
-.;Rea_(ﬁ[-’/:)v | (6¢)

2V :
LRe (gj; -%)u:,

2
(DD =2 ) u

i

(DD, =* v
with u=v =Du=0at r = 1andas r »>22, These are just
like the quasi-steady equations already integrated, with
slightly different V coefficients. These were integrated for
several values of & with a 'broken-line' profile

RAEE -'5—(’2";5“[-1"-!- (8 +1)* fo ])

80 DV = = —g—'a:s;s‘

for 1< r<1+8 ,and both Oforr > 1 +8. The Re's found
are plotted on figure 13 also.. They are not as far below the
actual critical values as one might expect from such a
general criterion, An interesting feature of the integr'a-
tions was that the wave-number a for minimum Re increased
very rapildly as 5 became snall, and Re was quilte sensitive

2

to a“ for 8 near 1.

Thus, the pilcture seems fairly complete; After the

land as r »c0 .,
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" cynnder starts, a viscous boundary layer forms énd thickens
until the Reynolds number based on 1its thickness is about
. 30,> when generation can match dissipation for certain long
rolls, After -this, the importance of “viscosity for the
perturbatidns decreases, and shorter waves my ‘grow,“and
faster than the .long rc;lls. As the mixture of rolls reaches
finite amplitude, they will take over the transmission of
angular momentum from the basic flow, discouraging‘ the
growth of further rolls. The first mode 'Will grow fastest,
so all of the rolls will have & structure which intensifies
out tor - 12 S', then decays on a scale o R, which can be
several radil for the longer rolls. .  1Ink in the inner
boundary will be drawn out in disks between the rolvls, Just

as observed., -

/04
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