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ABSTRACT

AN EXPERIMENTAL STUDY OF THE INTERACTIONS
BETWEEN EKMAN LAYERS AND AN ANNULAR VORTEX

Albert W. Green

Submitted to the Department of Meteorology on November 19, 1968
in partial fulfillment of the requirement for the degree of

Doctor of Philosophy

Transitional Ekman boundary layers (local Reynolds number > 56)
are found to couple with the zonal flow in a rotating axisymmetric
source-sink apparatus. The apparatus is a circular annulus with axial
boundaries perpendicular to the axis of rotation. The outer (source)
and inner (sink) boundaries are porous, reticulated polyurethane plastic.
The working fluid is air and the velocity sensors are hot wire anemometers.

The coupling between the Ekman layers and the inviscid annular vortex
which forms the core of the source-sink flow changes abruptly upon trans-
ition from laminar to non-linear state in the boundary layers. The mean
response of the laminar Ekman layers to forced motion by the core oscilla-
tions is a net efflux of mass while the transitional boundary layers are
non-divergent. The interactions between the annular vortex and the Ekman
layers are highly coherent, and periodic in space and time as determined
by electronic spectral and correlation techniques. Definite spatial
structure of the three-dimensional core waves suggest that they may cor-
respond to some of the inviscid inertial modes of the vortex.

Thesis Supervisor: Erik Mollo-Christensen
Title: Professor of Meteorology
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Figure 1B. Rotating annulus. Outer sheet of polyurethane foam
on the source wall has been partially detached. (See
appendix C for details of source configurations.)



Introduction

Tatro and Mollo-Christensen (1967) investigated the incipient

instability of Ekman Boundary layers using an apparatus consisting

of a hollow cylindrical annulus which was rotated about its center.

(See figure 1A.) Air was drawn through the outer vertical wall into

the apparatus via a porous screen and was ejected at an equal rate

through the inner wall. In 'an axisymmetric source-sink flow, such as

this, nearly all of the mass transferred radially through the apparatus

is carried by the Ekman boundarylayers on the horizontal surfaces.

(See Faller 1963, and Hide, 1968). Tatro and Mollo-Christensen using

hot wire anemometers were able to observe instabilities in the Ekman

layer which occurred at two Reynolds numbers determined by the rotation

and flux rates. As a by product of their investigation and later work

(Mollo-Christensen, Tatro and Green, 1967), they found that oscillations

occurred in the interior of the flow at the onset of Ekman layer insta-

bilities. The present investigation describes the interior oscillations

and their relationship to Ekman instabilities.

The mean flow in this system is axially symmetric and steady as long

as the Ekman layers are stable, but as soon as the Ekman layer goes un-

steady, oscillations occur throughout the interior. These oscillations

occur in narrow range of frequencies and have definite spatial structure

which could correspond to the normal modes of the columnar vortex compri-

sing central core of the flow. The problem of the oscillatioins of an

inviscid annular vortex is discussed in relation to the observed waves

and the etastiod-inertia waves of Kelvin (1880).

ii



2.0 The Experiment

The apparatus employed in this experiment is represented schemat-

ically in Figure lA and is rendered photographically in Figure 1B. It

can be described in a general way as a rotating, axi-symmetric, source-

sink system comprised of a hollow annulus with rectangular cross-section,

with the source and sink walls forming the outer and inner walls, respec-

tively; these are both made of porous, reticulated polyurethane foam.

The upper and lower horizontal surfaces are parallel polished metal disks.

These disks are held apart at their centers by a hollow porous steel

cylinder. This whole assembly is connected to a hollow pipe concentric

with its axis, this in turn supports the apparatus and joins it to the

rotation rate and flux control subsystems (Figure 4). In operation the

annulus rotates on its center about the vertical axis. A small steady,

negative radial pressure gradient is impressed across the annulus by

the axial blower (Figure 4), causing a slow flow of air from the labor-

atory to enter the annulus. When the boundary layers throughout the

interior are stable, mass is transfered across the annulus from source

to sink via the Ekman layers which cover the horizontal surfaces. The

steady axi-symmetric cases for flows of this type are discussed in

detail by Lewellen (1964) and Hide (1968). If the flux through the an-

nulus is continually increased, the equilibrium balance within the

Ekman layer among the Coriolis, viscous dissipative, and pressure grad-

ient forces breaks down and an instability results.

Mollo-Christensen and Tatro and Green(1967) had reccgnized the

connection between onset of boundary layer instabilities and oscillations



within the core of the flow, however, limitations inherent in our appa-

ratus prevented us from ascertaining the spatial scales of the core

motions or their temporal coherency. The investigation in its next

stage concentrates on the relation of these core motions to the Ekman

instabiltities in the apparatus. This has required a considerable ad-

vance in technical complexity. In this experiment there are five sub-

systems ancilliary to the basic apparatus:

1. Sensor Position Control (Figure 2)

2. Velocity Sensors (Figure 3, center)

3. Recording and Analysis (Figure 3)

4. Flux Control (Figure 4)

5. Rotation Rate Control (Figure 4)

2.1 Position Control

The radial and azimuthal positions of the two hot wire anemometers

(velocity sensors) are controlled manually by rotation of the circular

inserts in the top surface of the annulus (see Figure lA and B). The

maximum angular separation allowable in this configuration is 600 at

a radius of 35 cm and the range of radial separation is 5.0 to 35 cm

while the maximum range of radial positon is from 11.2 to 57.6 cm with

error at t 1.5 mm. Axial positions and angular orientations of the

probes with respect to the mean flow are regulated and measured by

electrically powered traversing mechanisms (Figure 2) capable of con-

tinuous variation from zero to 15 cm axially with precision + 0.004 c-.

The angular orientation of the probes can be controlled within ± 1*.



Figure 2. Velocity sensor position control.



2.2 Velocity Sensors

The velocity sensors are constant current hot wire anemometers

with an x-array configuration. This subsystem includes standard bat-

tery powered current controls, bridges, galvanometers, voltage dividers

and linear DC amplifiers (Figure 3). The sensors in the rotating an-

nulus are connected to the rest frame by electrically noiseless, viscous

metal sliprings. Caiibration of the hot wire anemometers was performed

in a small wind tunnel similar to that used by Tatro (1966). The porous-

urethane foam on the source wall kept the air in the annulus virtually

dust free, so that the "aging" due to contamination so common to hot

wires in open systems, was virtually eliminated. Elimination of aging

reduced the problems of calibration of a given wire considerably, since

the only other major factor in the change of calibration values is the

fluctuation of ambient temperature. The mean hot wire voltages were

nullified by voltage dividers before amplification by the DC amplifiers

so that velocity fluctations could be observed separately.

2.3 Recording and Analysis

The recording and analysis subsystem (Figure 3) consists of two

tape recorders, a frequency spectrum analyzer, a correlation computer,

and a small analog power spectrum computer. Unfortunately the power

spectrum computer did not function properly so its output is only qual-

itative for power amplitudes over the observed spectrum. The data in

the form of amplified (xlOOO) voltage fluctuations were recorded on

two channels of the first tape recorder (Figure 3) using frequency

modulation techniques to transform the signals to information which



FIGURE 3
Datan re-cording- nd Analysis subsystems
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could be recorded 6n standard magnetic tape. Next the data are trans-

fered from the first recorder to a second which records the data on a

continuous tape loop capable of storing approximately two minutes of

continuous data. The second tape recorder then replays the tape loop

at a tape speed one hundred times greater than the original recording,

the two minutes of data are then compressed in time to 1.2 seconds.

This brings a block of low frequency information into a range of

frequencies amenable to analysis by analog methods. From the second

recorder the accelerated data signals are routed to any of several ana-

log data analysis instruments.

When the accelerated data are transmitted to a correlation func-

tion computer, (such as the Princeton Applied Research Model 101 used

here) we obtain auto correlations of two probes which are spatially

separated. The root mean squares of the fluctuations are also given

as the correlation at a zero time delay. The spectrum analyzer is pro-

grammed to scan a given input frequency band at a fixed rate, and its

output is a voltage proportional to the amplitudes of the input signal

frequencies across the band. This output signal may be plotted on the

x-y recorder by using the demodulated output of the analyzer's beat

frequency oscillator as the frequency coordinate and the output of the

analyzer as the amplitude coordinate.

The x-y recorder is also used to record the correlation functions

where the output of the correlation computer is plotted against time

over the total delay time of one signal with respect to another.

II
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2.4 Flux Control

The flux control subsystem consists of the calibrated flux meter,

baffle, perforated cylindrical sleeve and its flexible cover, and an

axial fan; all of which are connected together with flexible ducting

as shown in Figure 4. The calibrated flux meter is a device similar

to that used by Tatro and Mollo-Christensen (1967) which is basically

a pipe within which is a series of flow rectifying screens, a small

cylindrical bar extending across the pipe's diameter, followed by a

hot wire anemometer in the wake of the bar. At low flux rates the wake

of the bar becomes turbulent and forms a vortex street whose frequency

is proportional to the volume flux through the pipe. Volumetric flux

versus shedding frequency was calibrated over a large range using an

American Meter Corporation standard proof meter. The result of this

calibration showed that the shedding frequency varied linearly t 1.5%

with the volumetric flux over a range from 600 cm 3/sec to 3200 cm 3/sec.

The perforated cylindrical sleeve with its flexible rubber covering

provide the control of the flux, by increasing or decreasing the covered

area of the sleeve which in turn increases or decreases the differential

pressure provided by the fan.

2.5 Rotation Control

The rotation rate control system includes magnetic reed switching

assembly, DC motor and control unit, and a preset counter. The switch-

ing assembly consists of an annular disk with five small magnets equally

hLOllow rotating sLLaft I proximit t o th reedhswitch, which closes hen each

magnet passes. When the switch is activated, an electrical signal is
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sent to the preset counter which indicates the period of rotation.

The power for rotation of the annulus is provided by the 1/2 hp DC

motor and its control unit. Once the basic rotation rate is set the

deviations can be maintained at less than 1% utilizing fine torque

adjustments on the control unit.

Unfortunately rotating systems with accurate control and measur-

ing capabilities are very complex. For more complete technical infor-

mation refer to Appendices A-D in the thesis.
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3.0 Vibrations of an Annular Vortex

3.1 An Old Problem

More than a century ago Lord Kelvin published his commentaries,

on "Vortex Atoms" (1867) in which he attempted to rectify, if not

devastate, a popular theory of the constitution of matter which had gained

some popularity at that time. Judging from his collected works, it appears

that the intricacies of vortex motion intrigued him for a number of years.

In 1880 he presented "Vibrations of a Columnar Vortex" which amounted

to his final significant work on this subject. In this he solved

the most tactable examples from the "crowds of interesting cases"

which had appealed to him, and left the mathematically complicated

cases to those who felt that such challenges were worthwhile. The

cases which he presented showed that inviscid fluids in an organized

state of vortex motion respond to small oscillatory perturbations.

This response is simple harmonic; however the modifier "simple" in this

instance is a misnomer, since the vortex oscillations are usually

three dimensional inertial waves which are difficult to visualize,

or observe, except in the most elementary cascs. Many authors have

worked Kelvin's examples, and have applied the results in various con-

texts; i.e. V. Bjerknes et al (1933) in geophysics, Chandrasekhar (1961)

on the stability of inviscid couette flow, and Phillips (1961) on cen-

trifugal waves, plus many others. In all this time there have been

only two experimenters who have interjected observational fact into

thIe, .ll-o1reA phca 1 theor7*.Li% vvi IL v .& P I -.
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Fultz (1959) studied the axisymmetric inertial modes of a cylinder

of fluid in solid body rotation, the first and most simple example given

by Kelvin (1880). The agreement between theory and experiment was excel-

lent. Phillips (1960) studied the stability and some normal oscillations

of a hollow cylinder of fluid which had a high angular velocity about its

central axis. The local gravity vector was perpendicular to the axis

of rotation. He reported observations of two-dimensional azimuthal

waves which agreed fairly well with the approximate theory. The paucity

of experimental results arises from the technical difficulties encountered

in attempting to observe complex three-dimensional waves within a rotating

frame. In this experiment we have been forced to artempt quantitaive

measurements of the oscillations of a complex annular vortex.

3.2 An Axisymmetric Annular Vortex (Kelvin's General Problem)

A rotating axi-symmetric source-sink flow such as ours consists

of three types of motion: a two-dimensional, annular vortex bounded

by Ekman layers on axial surfaces and two different shear layers on

the outer (source) and inner (si.nk) porous walls (Figure 1A). Hide

(1968) has recently described such systems from che stand-points of

physical theory and observations, so the reader is ieferral to this work

for the detailed argument applicable to the steady motions.

In this experiment we are concerned with the state of a source sink

flow which has oscillatory Ekman layers The mean staLe of motion

of the core vortex is two-dimensional and axisymmetric, but the

existence of non-steady components considerably alters the picture

gained by the steady state linear theory as we shall see in the next
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sections. The major part of the volume of the annulus is occuppied by

the inviscid vortex. In the course of this work experimental techniques

became more refined, and it became apparent that the core was responding

to the motions of the boundary layer in a coherent way. This realiza-

tion motivated a study of the linear problem of the normal oscillations

of a rotating annular vortex, which was the problem posed by Kelvin in

1880. Alas, after many days of mathematical divagations this author

has learned, as many others have, that this eigenvalue problem cannot

be solved by easy analytical methods. In the remainder of this section

we shall state Kelvin's general problem of the annular vortex in a new

way and shall try to surmise some implications from simple approximations.

In section five we shall see that a complete solution is necessary to

determine the role of the vortex in a general scheme of the source-

sink motion.

3.3 Equations of Motion

In the following derivation of the pressure perturbation equation

for linear vortex motion, we shall spare many details, since this is for

most part a claspical problem and a restatement of Kelvin's (1880) deri-

vation in a rotating frame of reference. The importance of centrifugal

constraints will become apparent where the discriminant for stability is

recast in a rather novel way.

The momentum and continuity equations for a system in uniform rotation

(2) about the z-axis are:

(3.1) + (u-V)u + 2QKxu - Vp;u =
-at P

Where the reduced pressure (p) is given by:

(3.2) pP+p' 2r2
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P is the mean ambient pressure, p' is fluctuating pressure perturbation,

and -2 2r is the centrigual force. In the core of axisymmetric source-
2

sink flow, the mean ambient reduced pressure gradient is balanced by

the coriolis force, and as a result there is a differential zonal vortex

flow V(r) which is a function of the radial co-ordinate only. (See

Hide, 1968.) In this problem we are interested only in the small time

dependent fluctuations about the mean zonal state which are periodic in

time, the azimuthal (zonal) and axial directions.

3.3.1 Perturbations and Scaling

The perturbations, which we shall assume to be much smaller than

the mean, zonal motion, are to be scaled with respect to the radius (a),

the height (H) of the annulus, and the rotation rate (Q). The non-

dimensional form of the independent variables in cylindrical coordinates

can then be given as:

(3.3) R = e, = , e = e, T = Qt
a H'

The perturbations shall have the form, Qa[F(R)expl(nT + me + Kq)],

where n, m, and K are the non-dimensional frequency and wave numbers,

respectively. Then the perturbations are:

(3.4) u = Qa[$p(R)exp i(nT + me + Kn)]

V = Ga[X(R)exp i(nT + me + KTI)]

W = Qa[,2(R)exp i(nT + me + KTI)]

P = pQ2 a2 [L(R)exp i(nT + me + Ku)]

(V(R) + V) - the total zonal component where at a

given R,(u, V, W,'<V(R).

If we neglect squares and product of small quantities, substitiutions

of (3.3) and (3.4) into equations (3.1) will give us the following set

of differential equations for the motion:
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(3.5) i(n + mE) - 2(1 + E)X = -DE

(RDE + 2E)$ + i(n + mc)X = 2R

i(n + me)E = -KE

1- D$ + 1M X + 1KE = 0

where D = d/dR and e = V/Qa, the Rossby number of the mean zonal flow

at a given radius; later we shall refer to this quantity as the local

Rossby number R OL(R *

3.3.2. The Complete Equation for the Perturbation Pressure

Sinultaneous solution of the first two equations of (3.5) gives X

and $in terms of DE and E. These relations plus the axial velocity equa-

tion may be substituted into the continuity equation to obtain a differ-

ential equation for the oscillatory pressure perturbation:

(3.6) D2E + [- - 2] DE +
R ((D -cy2)

2m Da D(- - 2) - 2 2 ) = 0
cYR m (+ -K R Y

where a = n + mE, which we shall call the apparent frequency; the

other new term @ is the Rayliegh discriminant defined as:

(3.7) @ = 2(1 +s)[2(l +s) - R De]

3.3.3 The Rayliegh Discriminant

Lord Rayliegh (1920) showed that a necessary and sufficient condi-

tion for the stability of a steady rotating flow is that the radial gra-

dient of the total circulation in the inertial frame must be positive

($>0),(see Chandrasekhar 1961 , p. 275). In this experiment we nave con-

fined ourselves to the centrigually stable cases for which @>0. In

equation 3.6 there are singularities when the Rayliegh discriminant

equals the apparent frequency (a). In his study of inviscid couette

flow Chandrasekhar (1961) showed that centrifugally stable systems have
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no real vertical wave numbers (K), if the apparent perturbation frequency a

isgreatr than or equal to the Rayliegh discriminant. Chandrasekhar

arrived at his conclusion via a variational argument in which he had

assumed that the radial component of the perturbation vanished ( =)

at the radial boundaries.

The condition that O>O is not easily recognized until it is put

into a form which is more familiar to the reader. We shall take the

example of solid body rotation of an annular column of fluid where

C = 0, then

(3.8) 0 = 2(1 +E) [2(l+E) - RDs] = 4

a = n + me = n

So that Chandrasekhar's condition for real K (vertical eigenvalues)

becomes the familiar relationship for limiting frequency of inertial

waves of frequency n, 4 > n2.

Now let us attempt to gain some insight into the effects which

differential rotation in a system may change the upper bound on the

eigenfrequencies of the normal modes. In terms of the systems parameters

the stability condition is:

(3.9) -(G + me) <n<(OAi - mi)

The first easily noted difference between the solid body frequency limit

and the limit for this system with differential rotation is the dependence

on the local Rossby number (e) and the zonal wave number (m). As an illu-

A
strative example, let us assume that 6 = A2, then (3.9) takes the form:

(3.10) -[2/1 + 3e + 25z + mE]<n<[2/l + 3E+ 2&; - mE]

or in the case c<<l, we can make the following approximation.

-[2 + (3+ m)E]< n< 2 + (3 - m)E
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Thus we can see that at small Rossby numbers the characteristic fre-

quencies corresponding to zonal wave numbers m42 are slightly higher

than the solid body modes, while at higher mode numbers the maximum

frequencies are lower. As Rossby number is increased to very large

values, this stability condition restricts the zonal wave number to

m 3 for progressive (n>Q) disturbances which move in the direction of

the system rotation. The maximum allowable frequencies for the pro-

gressive waves is nmax <(2/2 - m)E, m<3. If eigenmodes do exist for

this vortex, then we should observe only the lower zonal wave numbers

in the progressive waves. In observations of the core waves in the

annulus we find that the dominant modes appear to have zonal wave num-

bers m =1, m =2 (section 4.3). The eigenfrequencies for a system can

be calculated only if the boundary conditions are specified, so we

shall discuss some of the plausible types which could be applied to solve

equation 3.6.

3.3.4 Boundary Conditions

The first boundary condititon which we shall assume is homogeneous

at both radial boundaries. We shall require that the radial component

of the perturbation ($) vanishes at the inner (R = L) and outer (R = 1)

boundaries; in terms of the pressure these conditions are:

2m(1+c)
(3.10) $(b), $(1) = 0 = (n + mc)DZ + 2mR E

Chandrasekhar (1961) assumed these boundary conditions in the discussion

on the stability of inviscid couette flows. Using these boundary condi-

tions and a tacit assumption that the super-imposed motion was potential

flow (E ' 12), he arrived at a variational solution for the boundary
R
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value problem specified by equations (3.6) and 3.10).

Another reasonable and relatively simple boundary condition allows

small, periodic fluctuations of the radial components on a steady pressure

surface;this is analogous to a copliant boundary or a free surface. In

our annulus this condition could correspond to a fluctuating vertical

shear layer, such as the sink boundary layer or the Ekman instability

zone.

The net pressure fluctuations at the inner boundary (R=b) are

(3.11) a = [(R2-b2)+ (R)expl(nc + me + Kz)]

and the virtual fluctuations at the boundary are assumed to be given by;

(3.12) R = b + A(R)exp i(nT + me + Kg), b>>A(R)

so that the fluctuating pressure at the wall may be approximated to

0(A) by;

(3.13). 22 = (E(R) + 2bA(R)Iexp i(nT + me + Kr)

In the mean these small fluctuations must conform to the ambient pressure

on the boundary at R = b, which we shall take to be zero, thus:

(3.14) = E(R) + 2bA(R) = 0 at (R = b)

Kinematics of the small radial fluctuation requireo that the fluid par-

ticles must follow the deformed radius,.R. The motion following the

fluid particles gives us the second part of the boundary condition

approximated from

(3.15) $(R) Z(A- + ) R = i(n + ) A(R), b>>A(R).
DT ba6 b

The kiiLematic plus dynamic conditions at the boundaries to the 0(A)

approximation are

(3.16) {$(l) = 0 = (n + mE(1)DE + 2m(l + E) ,. at R = 1

Z(b) + 2bA(b) = 0

$(b) - 2[n + pL(b) ]A(b) = 0} at R = b
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These non-homogeneous boundary conditions lead to very complicated

eigenvalue relations, which cannot be resolved even for the most

simple case of solid body rotation, by this writer. The following

example will illustrate some of the difficulties which arise in the

most simple case, solid body rotation of a fluid in a rigid annular

container.

3.4 The Normal Inertial Modes of an Annular Column of Fluid

We shall assume that the'radial and axial walls of our container

are rigid, and that the fluid is in a mean state of solid rotation.

The pressure equation (3.6) and simplified boundary conditions from

(3.10) reduce to a Sturm-Liouville system with "separated" boundary

conditions:

(3.17) D2E + + [ z - 22) ] E 0
R nz R

DE + 2Z = 0 at R = b and 1
R

The eigenfunction must be a linear combination of Bessel's functions of the

first and second kinds,

(3.18) E(R) = AJm KR) + BYm (KR
2

(3.18b) K = K (4-n')
n

in order that the conditions at the inner and outer boundaries are sat-

isfied. The coefficients, A and B, are determined to an arbitrary

amplitude by substitution of this eigenfunction into the boundary

condition at R = 1, then (3.10) E(R) = A[Jm (KR)

(2+n)Ym-i(K) + (2-n)Ymtl(K)

Y (KR)] The reader will find that the
(2+n)JM-l(K) + (2-n)JM+ ces) ti

following relations are necessary to obtain equation 3.19:
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(3.20) -m J (KR) = J (KR) + J (KR)
KR m M7-1 m+1

2 DJ (KR) = J( R)- J (KR)
K m r-i rl

The relationships among n, m, k, and K is obtained by substitution of

(3.19) into the boundary condition at the inner wall (R = B); after more

manipulation we find the transcendental equation,

J j(Kb) + SJ (Kb) Y (Kb) + SY (Kb)
(3.21) m-1 m+1 __m-1 m+1

J (K) + J (K) Y (K) + Y (K)
rn-1 -m+1 mn-1 m+1-

where = 2-n). A Sturm-Liouville system of this stype has a denum-
2+n

erable infinity of eigenvalues. The unwieldy relationship for this

most simple example of three-dimensional waves stymies a smooth quanti-

tative solution for the eigenvalues of a given container.

3.4.1 An Approximation of Eigenvalues

In equation 3.18 we defined the eigenvalue, (K) which is a function

of the vertical wave number, K = q2-ka/H, (q = 1, 2, 3 ... ) and the non-

dimensional frequency (n). From this definition we can see that the

smallest eigenvalues (K-+) corresponds to n-2, and that K40 . as n+0.

Physically the eigenvalue corresponds to a measure of the number of nodes

in a radial standing wave decribed by its eigenfunction, so that large K

means that there are many undulations between the radial boundaries.

The aspect ratio, a/H, and the distance between walls, a(l-b), are impor-

tant in the determination of K. When the aspect ratio and the distance

between walls is large,K may be large for relatively high frequencies;

in these cases we can call on some well known approximations for eigenvalus

of Scapital systems with separated boundary conditions.

II
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If K is the ath eigenvalue for our sy stem equations and a is a

large number, thenK can be estimated (see Birkhoff and Rotta, 1962)
Ia

to 0(a ) by

(3.22) K ~ an _
aL 1-b a

(3.18) K =K-n )Y
n

In this experiment (section 4.2.1) we have determined that the most

energetic waves in the core vortex have non-dimensional frequencies,

n - 0.38 and 0.86. The eigenvalues K associated with these frequencies

by equation 3.18 are K = 80.5 and K2 = 28, respectively. We can

then see whether the approximation (3.22) holds in these cases:

a K 1 23

aK 2  8

a is not large. This indicates that these frequencies could possibly

correspond to some of the higher frequency modes of the annulus, however

the observed oscillations do not appear to have the high numbers of nodes

indicated from equation 3.18.

3.5 Commentary on Future Work

The complete pressure equation 3.6 may be integrated by numerical

methods with reasonable ease, but the complexities of the boundary condi-

tions may create some difficult problems. The normal frequencies of

annuluar cylinder can also be calculated using a high speed computer

which is programmed to search for the zeros of equation 3.21. Both of

these projects are necessary and worthwhile to the clear interpretation

of the body of data obtained in this experiment; however, they must be de-

ferred to a time in the near future. Problems, which have awaited

solutions for nearly a century, can wait a while longer.

ii
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4.0 Results

4.1 Correspondence of Boundary Layer and Core Motion

Initial observations in the experiment lead to the conclusion

that the energy sources for the oscillations observed in the interior

were the instabilities associated with Ekman layer transitions. In

order to check this conclusion it is necessary to establish the

sequence in which the boundary layer instability and the core motions

appeared. This sequence is determined in the following manner:

1. At a constant rotation rate the flux is set so that no

oscillations distinguishable from a low ambient noise level

are detected by either of two sensors; one of which is in the

Ekman layer at the edge of the sink boundary layer, and the

other is at mid-radius in the core.

2. Flux rate is increased until fluctuations are observed at

the inner sensor, since the boundary layer appears to be most

unstable within the region near the sink.

The sequence established in this manner shows that the boundary

layer instabilities preceed the interior oscillations. The core oscil-

lations appear to grow to full amplitude within less than two rotation

periods after the onset of boundary layer oscillations.

If the flux is increased past this incipient interaction level,

the first Ekman instabilities occur at larger radii which broaden the

areas of the perturbation sources, and their frequency-bands.
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Once motion within the core is established, the fluctuating compo-

nents in the Ekman layers have the same frequency spectra as the core.

This indicates that the zonal oscillations are of a sufficient amplitude

to affect the transitional properties of the Ekman Layer to the extent

that the only unstable waves being generated are those which correspond

to characteristic zonal modes.

4.2 Characteristics of the Zonal Waves

The zonal waves are periodic, persistent, and repeatable for a

given radius at a set state of flux and rotation. The root mean

square of these oscillationsvaries from less thati 1% to about 7% when

normalized against the mean zonal component; the ambient noise level is

quite low at less than 1/2% in most cases.

The first observations of these waves taken as radial profiles

showed that they were quite periodic, in fact the simple time averages

of the observed periods of the fluctuations on the oscilloscope agreed

well with the more sophisticated analog techniques employed later. In

taking the profiles of the zonal velocity in the core one can see that

the apparent frequency of the oscillations changes quite radically at

various radii; spectral analyses of these motions show that they are

superpositions of different modes which exist at most radii, but have

differing amplitudes according to their radial mode numbers.

4.2.1 Amplitude Spectra

Examples of the distributions of frequencies of the time dependent

motion are given in Figures 6 and 7(A). Figure 6 alsU shows the

radial variations of the spectra and the frequencies in which two
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FIGURE 6
Amplitudes of normalized sensor voltage fluctuations (E'/E versus
nondimensional frequency [n = n'/(3.55/sec.)]. Waves tend to slightly
higher frequencies at higher flux (note R = .47 and R = .57).
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azimuthal wave numbers m=1 and m=2 have been identified. The change

of the amplitudes with radius indicate a radial variation for the major

components which may be taken to indicate the presence of normal modes.

In all spectra there is little motion detected at frequencies above 2Q,

the inertial limit for motions without differential rotation. Most

of the energy in the oscillations is in a frequency band concentrated

between 0.2Q and .95Q in both examples; however, there is evidence of

lower frequency modes which lie beyond the resolution of the spectral

analyzer employed in this stage in the experiment. Figure 7(A) shows

the relations of the fluctuation spectra obtained by two sensors; the

inner of which is within a transitional Ekman layer. The outer is well

above the boundary. The inset,Figure 7B,is a sample of recorded volt-

age fluctuations taken at the inner and outer positions. The two traces

have been synchronized using information from cross correlations of

the signals. The significance of the lag or phase shift between inner

and outer portions of the wave will be discussed in section (5). Figure

8 represents a summary of spectra taken at four radial locations at a

moderately high Rossby number. The high frequency peaks (>Q) appear to

be sums of lower frequency components (Q<)except for the sharp peak at 1.4Q.

4.2.2 Relation of Rotation Rate and Flux to Observed Frequencies.

The frequencies of the dominant modes are found to vary with Q as

a linear function which has a slope of unity over the range Q=2.09 to

8.08 rad/sec.

Increase in the flux from source to sink generally leeds to higher

energies in the basic modes and has a tendency to increase the frequency



Spectra of fluctuations at two sensors, where the inner sensor (R = .35) is within

a transitional Ekman layer, and the outer is within the core.
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of a given mode. See Figure 6,R = .47 and .57. This frequency shift

is attributable to the increase in zonal advection of the wave field

by the mean motion.

4.2.3 Correlations of the Fluctuations.

Voltage fluctuations from the velocity sensors were correlated

in the correlation function computer (Section 2, Figure 2). Auto

correlation functions obtained show that most components of the oscilla-

tory motion are highly coherent in time, and in most cases the waves

appear to be superpositons of sine waves moving at different, but con-

stant, phase velocities (See Figure 9A and B). In most cases, such as

the cited figures, the periods between maxima in the auto correlations

correspond to the peaks in the observed spectra. The envelope in Figure

9A corresponds to the difference beat and summing beat of the two domin-

ant modes.

Cross correlations of the fluctuations show that the waves move

as coherent entities as they progress from one spatial point to another.

The distinctiveness of the dominant modes allos the measurement of the

time required for a given component wave to move from one point to

another. The azimuthal velocities of identifiable components are

measured by obtaining the time delay to maximum cross correlation Of

the fluctuations from two sensors set at the same axial position and

radius but separated by a knownazimuthal distance; the velocity is then

the distance divided by the time delay (Figure 10). The frequency of

the componeuL ay be determined from the spectra and the auto correlations.

The angular frequene divided into the apparent frequency should give the
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azimuthal wave number of the mode. Examples of wave number determined

in this manner are noted in Figure 6. In less distinctive cases, or

where accurate determination of the relative phase lag is to be deter-

mined, the component of interest is filtered. In Figure 11 fluctuations

at two different radial positions have been filtered at the frequency

associated with a component of azimuthal wave number m = 1 at two dif-

ferent flux rates. The sensors are aligned radially; however the inner

sensor in each case is submerged in a transitional Ekman layer and the

outer is within the core flow. There is a steady lag of nearly 1800

between the two signals; from this we can surmise that the wave motion

in the Ekman layer is syncopated with the motions of a radial standing

wave in the core.

Cross correlations of Components at different axial positions show

that there is definite vertical structure in the waves; however, the

coarseness of the spatial separation between the sensors only allows a

qualitative appraisal of the vertical wave number at a given frequency.

This rough estimation shows that the mid-axial plane between the horizon-

tal disks is the nodal point for the dominant progressive modes of azimuthal

wave numbers m = 1 and m = 2.

In addition to the progressive waves there are retrogressive waves;

the only component of this type which can be identified with certainty

at this time has an azimuthal wave number m = 1 and frequency of 0.652

in figure 6. The amplitude of this mode decreases rapidly at the outer

radii.
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In cases A and B the sensors are separated by a distance of .27R. The inner
sensor is within a transitional Ekman layer, and the outer, which is delayed
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4.3 The Mean Motion

4.3.1 The Mean Zonal Profiles

The mean zonal motion in the core of- the annulus is two dimensional

and axi-symmetric. There is no detectible axially-dependent variation

of the mean except in the Ekman Layers and the source and sink layers.

A number of radial profiles of the mean zonal velocities were obtained

for various states of volume flux (s) and rotation rates (Q). These

data were used to compute the nondimensional relative circulations of the

zonal means, which are presented in figures 13 and 14. In both of these

figures there are profiles in which the radial dependence of the circu-

lations are rather marked over a sizable portion of the radius, and in

most cases this dependence is linear. The slopes of these gradient cir-

culations are dependent on the system Rossby number Ros, which must be

constant over the sloping radial interval. This'parameter is related to

the local Rossby number, and nondimensional circulation by

(4.1) r = -= RROL = OS

V = the measured zonal mean velocity at R.

R = Non-Dimensional radius (r/a)

R = the local Rossby number (V/QaR)
OL

ROS - the system Rossby number (V/2a)

The slope of the circulation profile determines the vertical component

of the mean vorticity (E) since

(4.2) 1D
R

The profiles which have a positive slope are indicative of mean states

of positive (cyclonic) relative vorticity. These positive vorticity

portions of the core exist at the outer radii and surround a portion of

the core which has constant circulation. At moderate to high levels of



p I

6

5
*0

N

2j~

0 ... 0

.1z ,o

- 1I

* I *

2=

0*o *

1310cmu/SEC
2.33/SEC

S =8oCM /SEC
Q 2.33/SEC

*
9--

,-0-

pg. 4L~~.*r

@

sit .3. 55 /Sw

*0.

$ S= C

S 28.0 5Mkc

0 . .2 .3 4 .5 .6 .7 .8 .9 1.0
R -- +

(FIGURE) 12 Non-dimensional circaation (r') versus non-dimensional radius ()



I-,

38.

flux (S) or rotation rate (Q) the positive vorticity portions of the

zonal mean decrease in width and proceed toward the outer wall. The

significance of these states will be discussed in section 5.

No examples of centrifugally unstable profiles were seen in the

recorded data (3.2), however in the high Rossby number ranges, the sharply

sloping circulation near the source indicates that a state of unstable

shear flow may exist there.

4.3.2 Comparisons with Other Experiments.

The two experiments known to this author which can be compared to

the present work were conducted by Faller (L963) and Tatra and Hollo-

Christensen (1967). Although the apparatuS in the latter experiment

is identical in basic design to that employed here, no data are published

which provide sufficient information about the control parameters used

in the one mean profile of zonal velocity they presented. This profile

is similar to those obtained at moderate rotation rates and flux in our

experiment. The thicknesses of the Ekman layers in the Tatro and Mollo-

Christensen experiment were somewhat greater than the standard scale of

(v/A)l/2 for Ekman thickness. This phenonienon is also observed in this

apparatus.

Faller (1963) studied the properties of some of the more stationary

modes of the higher Reynold's number instabLlity in a shallow rotating

tank with a free surface. The water source was distributed around the

lower rim at the outer radius, and the sink was at the center. This experi-

ment cannot be compared directly to this experiment since the critical

similarity variables ROL, RL and E1/2 cannot be made equal simultaneously
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due to the differences in the kinematic viscosities of air and water

plus the variation of aspect ratio in the tank with a free surface. A

Rossby number based on the system variables was chosen as the most

suitable modeling parameter in the comparison where,

Sg 1 S
(4.3) ROL = a Z V 2WaQ VIZR

f H20)

The "f" subscripts denote Faller's scale values. In figure 14 some of

Faller's data points are superposed on the non-dimensional circulation

profiles. The agreement is good at the higher Rossby numbers, but the

asimiliarity of Reynolds number and Ekman numbers is reflected in the

difference in slope at the lower circulation.

4.3.3. Measurements of the Mean Ekman Thickness

Measurements of the thickness of the Ekman layer are made at seven

radial positions across the lowerboundary of the annulus at the same

rotation and flux rates (Q = 3.44 rad/sec and S = 680 cc/sec). There

is not detectible variation of the boundary layer thickness,'except in

the confluence of the Ekman layer and the vertical sink layer. Two

dafinitions of thickness were used; both agreed within 6% of their mean.

The first type is a measure of the axial distance (z) above the boundary

at which detectible variation of the zonal component with axial dis-

placement is zero to our best determination.

The second is computed from the observed displacement of the mean

maximum of the radial component of the boundary layer from the boundary:

4Z
(4.4) 62 ~ Z

Using these definitions at the six outer radii we obtain:
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6 = .36 - .02 cm

62 = 34 .02 cm

The major uncertainties in these measurements arise from indeterminate

lower boundary positions (z=0), since the hot wire sensors respond to

the proximity of the heat conducting boundary unpredictably at the low

velocities encountered.

The standard scale Ekman thickness for a steady laminar boundary

layer is

d = = 0.208 cm

Cm
In this, case Q =3.55 rad/sec and v= .155 -. The mean measured

sec

boundary layers are then thicker by the ratios,

dL = 1.73 .09
d

- = 1.63 - .09
d

The Ekman layer is not distinct within the sink layer, it is coupled

to the sink by a strongly oscillatory transition flow. The strongest

fluctuations in this region occur at z/d ~ 3.

Two other thickness measurements have been made at central radii.

The rotation rate is the same as before, but the flux has been increased

to 1550 cc/sec. No changes in thickness are detected.

4.4 Ekman Layer Transition.

Tatro and Mollo-Christensen (1967) determined the transition para-

meter for the lower Reynolds number Ekman instability (see section 5)

V62
in terms of the local Reynolds number (RT = - ) and local Rossby

number (RoL). Most of these measurements were made near mid-radius at
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fixed states of rotation and variable flux rates. Their results of

observations of a number of transitions yielded the following empirical

relation between critical Reynolds number and Rossby number:

(4.5) (ReL)c.t = 56.3 + 58.4 (ROL)-
(4.5 (Recrit L crit

Transitions of the Ekman layer are observed in this experiment which do not

have this linear dependence of critical Reynolds number on the Rossby

number; however boundary layer transitions are observed at a Reynolds

number,

v62(R ). = -56
eL crit V

The difference is not really contradictory, when the basic definitions

of ReL and ROL are considered;

ReL V ROL =R

so that:

(4.6) ROL a
OL aR ReL

2

The empirical equation ( 4.5) by Tatroand Mollo-Christensen becomes:

(ReL = 56.3 + 58.4v (ReL)i
crit

or,

56.3 56.3Rcrit
(eL crit 1- 58.4v R i -58.4E]Ad H

6QaR . crta-
crit

In this experiment the factor,

1/2 -3(58.4E d H < 2 x 10 <<R . )
(-) tcrit

so that the radial variation of the critical parameter is unimportant.
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5.0 Discussion

5.1 Resume of Important Results

In the experiment we have learned several interesting properties

of both the mean and oscillatory states of the non-steady source sink

flow, and in this section we shall attempt to synthesize the results

with the aid of physical reasoning. First we shall list the major

results of observations and measurements:

1. Incipient Ekman layer instabilities are the primary energy

sources for oscillations in the inviscid core of the vortex.

2. The core oscillations are three dimensional periodic waves.

3. The frequency spectra of the core and the transitional

boundary layers coincide, suggesting that there is a feedback

of information from the core to the boundary layer.

4. The mean Ekman layer thickness is considerably greater

than the accepted value, (v/Q)1/2, accountable to steady theory.

5. Some states of mean motion possess a net positive relative

vorticity.

Now we shall start the synthesis of this information by determining a

relationship between the first and last of the results in this list.

5.2 Ekman Layer Transition and Positive Vorticity States.

In [4.4] we found that the critical value for the boundary layer

in this system is R o.56, and in [4.3.3] we observed that the
eLcrit 1/2

Ekman layers have a mean thickness approximately 1.7(V/0)1/ Now we

sha ic c a Vc.Li.y Vc in thLLe mean zULL fr & WhichLL

the Ekman layer may have incipient instabilities, in terms of the
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critical Reynolds number (R )crit and the local average Ekman thick-

ness I= 1.7(V/)1/2 .

- v(ReL) crit 12 12 V

(5.1) V = = 33Q V or (Re) ct v 56
c 1. 7 ('v/) eL crit V

V can be directly compared with the mean zonal velocity (V) profiles.C

The radii at which Vc = V are noted in Figures 13 and 14. The conti-

guity of the critical radii for Ekman instability (R eL 56) and the

radii at which the gradients of the mean relative circulation die away

indicates the phenomena are coupled. The greatest deviations of the

measured transition radii from those predicted by this method occur

at the higher rotation rates, indicating that the boundary layers may

1/2 -
be thicker than the assumed value of 1.7(v/Q) = 6 .

Now we should recall that the gradient of the circulation is related

to the mean vertical component of vorticity by

1 -
(4.2) -D =

The derivative of the circulation is constant untilthe transition

(R eL 56) occurs and in that region it ostensibly goes to zero;-therefore

the transition region is also the zone of maximum mean vorticity in the

core. In terms of the mean motion, the presence of the cyclonic vorticity

in the core must be balanced by a viscous diffusion and stretching of the

axial vorticity component . This diffusion of vorticity from the core

is balanced by advection of mass from the Ekman layers; at a given radius

in the cyclonic region the mean axial velocity (W) out of the Ekman layer

is given by:

- 1/9 -
W = E~

1/2 -2
In this experiment E is 0(10-) or less, and the maximum value of E

is 0(10 1) so that the maximum axial velocities by this order approxi-
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mation are very small (less than 0.06 cm/sec in the extreme case). From

the available evidence we have been able to relate the local phenomenon

of boundary layer instability to the existence of positive vorticity

states in the mean core motion which have a considerably larger spatial

scale. Oscillations in the inviscid core, which are caused by the un-

stable boundary layer appear to be the mechanism by which these two

scales of motion are coupled.

5.3 Dissipation of Inertial Waves by Stable Ekman Layers

Incipient Ekman layer instabilities (R I.56) produce a state of
eLi

periodic, three dimensional motion in the inviscid core, and as a con-

sequence all parts of the flow are forced to respond. The stable Ekman

layers respond to the core waves with damped oscillatory motions. The

interaction between inviscid modes and laminar Ekman boundary layers in

contained fluids has been studied extensively from the standpoint of

linear perturbation analysis by Greenspan (1968); however no models

directly analogous to our system are available. A theoretical model

for the interactions of inviscid normal modes of a cylinder with the

viscous bounidary layers has been presented by Kudlick [1966] who

obtained expressions for the viscous corrections of the inviscid

eigenvalues. Kudlick's results can be compared qualitatively with those

obtained in this experiment when we consider the observed flows where

the local Rossby number is small, local Reynolds number is below criti-

-5
cal value (R < 56) and the Ekman number is 0(10 ). Here the linear

eL

theory, which should be a good approximation, indicates that the modal

waves are dissipated within the Ekman layers by viscosity. The net

--_d*
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effect of this dissipative process is an efflux of mass from the bound-

aries, which in the mean alters the state of interior vorticity. This

forced motion of the Ekman layers effectively changes their depth scales

by the axial flux. Unfortunately, Kudlick's eigenfrequencies do not corres-

pond with our data from the annulus, and no explicit form for the

eigenfunctions of the core oscillations yet exists, so the general theory

cannot be applied.

5.4 The Coupling Mechanisms

5.4.1 Incipient Ekman Instabilities in a Non-Steady Circular Flow

Lilly (1966] determined that steady, nondivergent Ekman layers

exhibit an instability at Reynolds number R = V 55. The insta-
e 55Vh isa

bility waves were assumed to take the form of two dimensional vortex

rolls which propagate along the Ekman layer at a small angle with respect

to the direction of the mean zonal flow. In a cylindrical configuration

such as ours these waves should propagate toward the center of the annulus.

Lilly named this low Reynolds number instability the "parallel instability",

since it appears to draw its energy from the mean zonal flow component

through the axial gradient of the mean zonal component in the boundary

dV
layer ( -) and the fluctuating Reynolds stresses (V'W'). Lilly reasoned

that these instabilities could grow only if the time average correlation

(denoted by the bar) of these quantities is less than zero:

V'W' - < 0
dz

An important feature of this instability is its decreasing growth rate

with increasing Reynolds for a given disturbance, since the relative
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strength of the Coriolis force decreases as advective forces become

more important in the motion. The horizontal scale lengths of these

disturbances range approximately from 22 to 35 boundary layer thicknesses

1/2 1/2
(v/Q)2 and an axial scale nearly 8(v/Q)l. The velocities of these

waves range from .3V to .62V along the direction of the zonal flow.

Tatro and Mollo-Christensen (1967) made numerous measurements of

these low Reynolds numbers instabilities within an annulus similar in

basic design to ours. They'found that the instabilities which they ob-

served corresponded to those predicted by Lilly, if all scales of

velocity and length were related to the local zonal velocity and the

local boundary layer thickness 62 (see equation 4.4). They observed

that the disturbances propagated toward the sink at angles from zero

to 14* measured counter-clockwise with respect to the mean zonal velo-

city. They found, as we did, that the critical parameter is the local

Reynolds number (ReL 2 56). The major difference from the theory of

Lilly and the observed disturbances appeared to be angular orientation

of the most unstable waves to the zonal flow. Lilly predicted a clock-

wise angle of 20* at Re = 65, but Tatro and Mollo-Christensen observed

no wave with detectible clockwise orientation to the flow. In the same

apparatus Mollo- Christensen, Tat ro and Green (1966) later found that

the onset of unstable motions in the boundary layer was associated uith

fluctuating motions in the interior. This is a crucial point.

Tatro and Mollo-Christensen had observed the instabilities of non-

steady Ekman lnvrs, not the steady, non-divergent types predicted by

Lillyts theory. The effect of curvature played an important role ard

must have been an important constraint on the incipient instabilities.
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The wave lengths of the disturbances observed by Tatro and Mollo-

Christensen ranged from 2262 to 3362 while 62 varied from about 0.3 cm

to nearly 1 cm, estimating from their published profiles. Assuming

that these values are correct, the dimensional wave lengths of the

disturbances they observed could range from 6.6 cm to about 30 cm.

Their annulus had a radius of only 45 cm, so the observed wave lengths

were of the same order as the radius of their apparatus.

In this experiment the waves observed in the inviscid core and

the Ekman layers have a very definite azimuthal periodicity. This in-

dicates that curvature of the interior flow is important to the charac-

teristic response of the entire system to the forcing produced by the

disturbed boundary layers. There is another point which has escaped

comment by other authors namely the effect of increasing Reynolds

number (55 R eL<110) in a flow where this parameter is a function of one

of the coordinates (R).

Once more let us recall that the mean zonal motion in the annulus

is axisymmetric, and that the zonal velocity is roughly proportional

to R7:

R

Therefore the local Reynolds number ReL is also r R 1. This proportion-

ality is most accurate at radii inside of the transition zone.

In our annulus the contours of constant Reynolds number are axi-

symmetric circles in the Ekman layers on the top and bottom boundaries.

At some critical radius determined by the mean zonal velocity and the

boundary layer thickness, the balance among the coriolis, pressure gra-

dient, viscous, and local accelerative forces in the laminar non-steady
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Ekman layers breaks down. Both Ekman layers are unstable at all points

along the boundaries in board of the marginally critical transition zone

(RL - 56). Each point along the radius (R<R . ) is at a differenteL crit

Reynold's number. In light of Lilly's theory we should expect to see

a slightly different dominant frequency and wave length at each radius

since the local Reynold's number is a function of-the radius with flux

and rotation rate constant. Lilly found that the maximally unstable

disturbances varied in growth rate approximately as the logarithm of

ReL, and that these waves could vary considerably in wave length and

velocity over the range where they dominate nonlinear motions in the

boundary layers (ReL < 125). Instead of continuous distribution of

unstable motions, we observe a rather coherent state with most of its

energy concentrated in very narrow frequency bands. The boundary layer

waves have the same frequencies as the oscillations within the interior.

There are two good reasons for the highly organized appearance of the

actual motions.

The first reason arises from the fact that the inviscid zonal motion

is capable of storing information in terms of small fluctuations about

its mean (V + V'). It is possible that the core vortex has normal modes

which resonate with the boundary layer disturbances. This hypothesis

cannot be verified until equation 3.6 is solved with the appropriate

boundary conditions. Thc incipient instabilities are particularly suited

for coupling with the interior since they draw their energy from the

mean zonal flo; which isa balance of the coriolis and pressure gradient

forces. Another factor which enhances the coupling of the unstable motion

VV2
and the zonal field is the large axial scale (8 -- ) of the discurbances.

Second, the long characteristic scale lengths of the disturbances
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(226 to 356) in an annulus of comparable radial scale would probably

feel the constraint of curvature so that a given unstable wave should

also be azimuthally periodic. The effect of curvature also enters into

-l
the R dependence of the local Reynold's number, since the mean zonal

velocity increases as R~1; counter to this trend the maximum unstable

waves predicted by Lilly's theory tend to move more slowly with respect

to the zonal mean at higher Reynold's numbers; so it would be plausible

that the most unstable waves across sizeable portions of the radius could

have the same angular velocities.

5.4.2 The "Vorticity Jump"

We have seen that the maximum mean relative vorticity corresponds

to the critical radius at which the non-steady Ekman layer develops

instabilities. The oscillatory field in the core is coupled to the

fluctuating Reynolds stresses in the transitional zones so that the

viscous diffusion of the zonal fluctuations is effectively cancelled.

The transitional zones in the mean appear to be non-divergent, since

the mean circulations above them are constant. There are some exceptions

which appear as small bumps in the circulation curves near the sink

where a small net flux into the transitional layers is indicated. The

change in vorticity which occurs across the transition zone is probably

sufficient to form a very weak vertical shear layer. A few measurements

were made in the core in these vorticity jump zones, but no oscillations

distinguishable from other core waves were discernable.

5.4.3 Inertial Modes and the Observed Frequencies

In section 3.3 we found the relationships of the eigenvalues
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for annular columns of fluid in solid body rotation. The perturbation

frequency (n) is related to the vertical wave number (K) and the radial

wave number (K) by:
21/2

K - K(4 - n2)
n

The most energetic oscillations which we observed in the core of the

annulus, had frequencies in the neighborhood of n-0.4 and -0.86, where

n is the now-dimensional frequency. In terms of inviscid oscillations of

annulus is solid body rotation, these low frequencies would be associated

with normal modes which have large radial wave numbers, as we noted in

section 3. . Greenspan (1968, p. 83) had shown in the case of large

K(m = 0) that the inertial modes of a cylinder in solid body rotation

were altered by viscosity. Earlier Kudlick (1966, p. 75) had derived

the explicit damping factors for these visco-inertial modes where m # 0

and k 0; these analyses agree when a/H is large. The results obtained

from the auto-and cross- correlations of the fluctuations at several

radial positions indicate that the core waves do not have the high radial

modes demanded by system in solid body rotation.

At this time we do not have the explicit solution for the pertur-

bation problem for the annular core. It is probable that the observed

frequencies may correspond to one of the normal modes of the vortex.

The existence of Ekman layer-vortex resonances would further explain

the sharp response of the core to the boundary layer waves. The core

in resonance could act efficiently as a reservoir of information (fluc-

tuating waves) which would force the Ekman layers to respond with co-

herency. The system would thus tend to "optimize" itself with respect
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to the energy exchange between the boundary layers and the core. The

amplitude spectra (Figures 6, 7A, and 8) are the electronically inte-

grated output of the spectral analyzer, and the integration process tcnds

to obscure the fact that all of the peaks below n = 1 have sharp cut-offs

at the peak frequencies, so that the slopes of the high frequency sides

of most peaks (n<l) are simply a representation of the decay time of

the integrator.

Exchange of energies beiween the core and the boundary layers

can also be interpreted in terms of the group velocities of the dis-

turbances. Oser (1957) demonstrated that energy is propagated at an

angle Q = sin~1 ( ) to the axis of rotation, thus a disturbance has

group velocity whose vector resultant makes an angle G with respect

to the axis. The low frequencies of the boundary layer disturbances

< 1) which we observed are capable of exchanging energy with the

core rather efficiently by slight distortions of the local vorticity

field.

5.5 A Brief Summary

We can now see clearly that the unstable Ekman layers in our source-

sink flow cannot be separated from the other types of motions within

the system. Disturbances in the boundary layers propagate into th in-

viscid zonal flow, exciting larger scale oscillations throughout the

core. In'regions where the Ekman layers are laminar the core waves are

damped by viscous diffusion and as a result there is an efflux of mass;

this efflux is balan by an increase of mean vorticity in the core.

the transitional Ekman layers interact with the zonal flow 
through fluc-
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tuating Reynold's stresses so that the viscous dissipation indirectly

feeds the energy to the disturbance through the axial component of the

zonal shear. The transitional boundary layers are, therefore, considered

non-divergent in the mean, since they usually do not alter the mean vor-

ticity of that portion of core ~which they bound.

Curvature of the flow appears to play an important part in the

determination of the spatial scales of the instabilities in our appa-

ratus, also the radial dependence of Reynold's number may tend to alter

the instabilities.

The core and the Ekman layers have the same sharp and well-defined

frequency spectra which indicates that there is a feedback response

between the two types of motion; it is possible that the boundary layers

establish a weak resonance with the core vortex. Figure 14 is a sche-

matic of the basic exchanges in the flow.

The source and sink layer appear to be passive with respect to

oscillations in the core and the Ekman layers; however at high flux

the source layer does exhibit weak oscillatory motions which are probably

responses to the more energetic interior waves.
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6.0 Possible Geophysical Implications

In our simple, highly controlled model we find that coupling of

non-steady motions between the quasi-geostrophic core and the Ekman

layers leads to states in which both Ekman layers and the zonal flow

are altered. Also the classic spiral skewed shear profile of the steady

Ekman layer was not observed in the mean. Scientists for years have

used the conceptual artifice of the linear Ekman layer to understand the

mean general oceanic and atmospheric circulation, even though they have

seldom observed the ideal form of this boundary layer phenomenon in

nature. The results of this experiment imply that the non-steady

coupling between the boundary layers and the fluctuating zonal compo-

nents must be taken into account in order to gain a more complete pic-

ture of the total role of the "real" Ekman layers in oceanic and atmos-

pheric systems. One example, where the non-steady coupling could be

important, would be in hurricanes. Oscillations of the boundary layer

near the eye of the storm could force low frequency motions above the

boundary layer. These inertial oscillations could then force motions

in the more siable boundary layer at the outer edge of the storm. The

forced response of the stable layer could result in an efflux of mass

which would increase the vorticity (intensify) the storm.
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Appendix A

Velocity Sensors: Positioning and Calibration

A.1 Positioning

The mechanisms for hot wire positioning are featured in plates

Al and A2. Plate Al shows that the hot wire axial and angle traversing

mechanisms are mounted on two off-center circular discs which are imbed-

ded in the upper plate of the annulus flush with its inner boundary.

We shall refer to these disc inserts as the traversing plates. By

rotating the traversing plates differentially the relative positions

of the two sensors can be changed. The geometry of this configuration

allows a sensor to traverse the radial extent of the annulus from about

1 cm,from the sink to 4 cm.from the outer wall; however, space and geometry

limit the range of relative positions for both sensors.

Two means of determining radial positions of the sensors were tried

during the course of the experiment. At first a triangulation of the

sensor position was used; this required measurements of distances and

angles from precisely known radii to the sensor. This procedure was

very time consuming and was found to be only slightly more accurate

than the direct measurements fromi the axis of the annulus to the sensor

which varied only +1.5 mm.from the triangulations. As a means of stan-

dardizing the radial positions in the profile measurements of zonal

velocities, index marks were made on the annulus and the traversing

plte corepnd -to cac radia poSito ofe% theo sensr. Visual align-
A. c O P~ p LLA~..LL5 J .%..I L & J6 " %

ment of the index marks for a given position provided very goadrepeat-

ability and simplicity.
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Each change of radial or azimuthal position of the sensor also -

changes the orientation of the hot wire element to the flow in the in-

terior of the apparatus. Corrections must be made each time the posi-

tion ts changed. The rough re-alignment is accomplished by visual

alignment of the hot wire with the annulus axis. During calibration

a small rod is set parallel to the hot wire element on the upper part

of'the sensor stem; the rod on the stem is aligned radially with the

annulus. When the mean state is established in the rotating system

the final orientation of the wire to the flow is made by maximizing

the sensed mean velocity. This procedure requires use of the -angle

orientation mechanism.

The orientations of the hot wire elements in the rotating system

are controlled by the small electric motors and gear drives at the tops

of the axial traversing mechanisms in plate A-2 from a control panel'

in the laboratory. When measurements of the mean zonal component are

desired, the maximization mentioned in the previous paragraph is accom-

plished by rotating the sensor until the voltage sensed across the hot

wire element is minimized; this corresponds to the maximum mean zonal

velocity.

Axial positions of the sensors are controlled by a worm gear drives

and screws. The gears are driven by the small electric motors at the

bases of the traversing mechanisms. The worm gears turn the screws

which are threaded through collars in the upper plates. Rotations of

the screws move the tops of the mechanisms up and down along the smooth

vertical rods mounted in the bottom plates. The sensors which are
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affixed to the top parts of the mechanisms follow their motions. The

change of axial positions is registered in the laboratory frame by elec-

trical pulses from a six-lobed cam switch affixed to the end of the worm

drive. Forty turns of the worm gear are required to advance the screw

through one revolution, which moves the sensor axially 0.079cm. Each

revolution of the worm causes six pulses to be sent to a counter on the

position control panel; therefore, there are approximately 3030 puIses

counted for each centimeter advanced by the sensor. The accuracy of

this system was checked against a standard spring micrometer gauge and

was found to agree within +0.003 cm. The exact positions of the sensors

relative to the axial boundaries could not be ascertained with the same

accuracy, since there are unpredicable responses.of the hot wire elements

to the highly conductive metalic surfaces which form the boundaries,

particularly at the low velocities encountered here. The "zero" posi-

tions were found in several cases when the sensor was unexpectedly forced

into the boundary. The harbingers of these catastrophic collisions were

sharp drops in sensor voltage, which are indications that the heat trans-

fer process from the hot wire changes from force advection by the fluid

to a mode of conduction to the boundary and the fluid in the viscous

sublayer. This was observed to occur when the hot wire was 0.005 cm.to

0.015 cm.away from the boundary; thus we have a maximum uncertainty of

approximately 0.02 cmin boundary layer thicknesses as we noted in section 4.

A.2 Calibration

Normally hot wire anemometers have been employed at considerably

higher mean velocities in air than those which we measured in the anrnulus,
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since most applications were in the field of aeronautics. In mean

velocity fields ranging from near 0 cm/sec to 100 cm/sec we found that

our hot wires, particularly in the x-arrays, did not respond to the

flow in the "normal" ways, i.e., the over heat ratios of the hot wires

did not follow the 1/2 power laws of velocity. There are two basic

reasons for these deviations:

1. At low velocities (V<20 cm/sec) the forced advection of heat

from the hot wire is combined with the effect of gravitational

convection. The total of these two types of heat transfer give

an indication at the potentiometer that the ambient velocity is

greater than the actual value. (For a detailed discussion of this

see Collis and Chapman (1959). J. Fluid Mech, 6, p. 357.)

2. X-arrays of hot wires consists of two hot wire sensors per-

pendicular to each other at close proximity (- 0.05cm). At low

velocities the two wires heat the slow moving air around them

enough so that they may interfere with each other and cause

anomalous behavior of the sensor response to the mean flow and

their angular orientations to it.

X-array sensorswere employed throughout this experiment. At first

they were used with the hope of measuring the radial component of the

zonal flow, but it was found virtually impossible to calibrate and

position the sensors accurata.y enough to make definitive measurements

of the cross zonal components. Later as a point of consistency in

measuring techniques the x-array was still used for the mean zonal vel-

ocity measurements. Measurements of the fluctuations in the flow werc



62.

made with single hot wire sensors.

The calibration of x-arrays is much more tedious than single hot

wire arrays, since both wires in the x-array must be calibrated against

a known velocity field at several angle orientations, but the general

procedure is the same. Here we placed the sensors in a modified version

of the wind tunnel used by Tatro (1966) in his thesis. The calibration

velocities were found by counting the shedding frequencies from various

small cylindrical bars extended across the working section of the tunnel.

An empirical relation was used to determine the mean velocities from

the shedding frequencies:

1I 4.5v
f =- (0. 2 12 Uo - )

d d

where: f - shedding frequency

d - rod diameter

U. - mean stream velocity

v - kinematic viscosity

The voltage response across the hot wires was used to determine an over

heat ratio (H).

H -

V- IR0

where: V - voltage across the hot wire sensorw

I - current through the hot wire

R. - the ambient resistence of the unheated wire

The overheat ratio H is related to the mean steam velocity V by a power

law: H c BVn, where B is a coefficient peculiar to a given wire or

array; normally for single wires nzl/2. X-array varysconsiderably from
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the n~1/2 law, particularly at V<20 cm/sec. The calibrations and deter-

minations of the power law for x-arrays consisted of at least five sets

of velocity-voltage pairs for each wire taken at various intervals of

velocity from 12 cm/sec to 150 cm/sec. The power factor (n) is determined

by taking a least squares fit of the relation:

lnH = lnB + n ln V

where the ambient temperature is constant. Changes in ambient temper-

ature can alter the calibration values obtained from one time to another.

When- possible in this experiment mean velocity measurements were carried

out over a narrow range of temperature.

Comparisons were made among various single and double hot wire

sensors in order to determine a crude variance in sensed velocities.

Single wire and x-arrays agreed well to less than 5% difference below

100 cm/sec; however at velocities over 150 cm/sec the difference grew

to about 8%. The variances among sensors of the same types was usually

less than 2%.

The divergence in indicated velocities between the two types of

sensors is due to the insufficiency of a simple power law relation betweeT

overheat ratio and velocity for the x-array sensors over a wide range.
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Appendix B

B.0 The Apparatus

B.1 Tolerances on Physical Dimensions

In this experiment it is essential that the annulus is axisymmetric

with its rotation axis, otherwise periodic pressure fluctuations will

occur in the system. The upper and lower disks which are the axial

boundaries of the annulus were.cut from flat sheets of aluminum jig

plate 1/2" inch thick by a vertical lathe. The outer rims are conceutric

with respect to the hollow steel cylinder which separates them. The

tolerances on the concentricity is ± 0.005 inches. The whole annulus

assembly is mounted on- a flange at the top of the hollow shaft on which

the entire system rotates. The axes of the shaft and the annulus were

aligned to within one milliradian using a high precision machinises level.

During machining of the aluminum plates some stress relief warping

occurred. Four adjustable spacers have been placed around the outer rims

so that the plates could be made parallel '(+ 0.020"). Even though the

plates are essentially parallel, they are not perfectly flat, so that a

waviness measurable in vertical displacements at the outer rim has a peak

to peak amplitude of about 0.05 inches.

B.2 Source Walls

The outer vertical wall is both a boundary and a source for the

fluid which moves through the system. Two types of construction using

the same materials were tried. The first conzisted of two sie:ts 1/4 inch

thick reticulated polyurethane plastic foam which were separated by a one

inch thick spacer. A band of paper was connected to the outside wall
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of the inner sheet of foam midway between the upper and lower disks

of the annulus. The paper covered all of the sheet except for two 3 cm,

rings around the top and bottom of the annulus.

The second source wall consists of a single 1 inch thick section

of the same type of plastic foam, and the whole area acts as a source.

Numerous spot checksof mean zonal velocities and core oscillation fre-

quencies taken over the operation range of the experiment were the

same as the other source configuration.
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Appendix C

B.0 Flux Control

B.1 Calibration

The low volume flux from source to sink is particularly difficult

to measure by the standard methods which rely on measurment of pressure

gradients. Here the flow meter which is used to measure the net flux

consists of a 4.5 cm brass tube; three thin layers of reticulated foam

inserted in this tube across the flow at intervals of about one centimeter.

About three centimeters downstream of the last section of foam, a 0.182 cm

cylinder is installed perpendiculai to the flow. When the velocity of

the flow through the meter exceeds 600 cc/sec. a regular von Karman

vortex street forms in the wake of the cylinder.' The frequency at

which the eddies in the vortex street move past a point slightly abaft

the cylinder is proportional to the mean stream velocity; the frequency

is also proportional to the volume flux through the tube, since the flux

is directly proportional to the velocity. The relation between volume

flux and shedding frequency is obtained by measuring frequency of voltage

fluctuations registered by a hot wire anemometer placed in the vortex

street and comparing this with the volume flux indicated by an American

Meter Corporation bell-type prover (10 cu. ft.). The prover is purported

to be accurate within 1/2% of the actual volume flux.

Table C-I is the result of the frequency versus volume flux cali-

bration from the flow meter and the prover. The relation of frequency

to flux as measured is very nearly linear, but it does not correspond to
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the result one would obtain by simply computing the volume flux from

the cross sectional area and the shedding frequency formula by Roshko

(1954) noted in appendix A:

(C.1) S = Trro 2[4.72d(f + 4.5)]

where f and d are defined as in appendix A and r. is the radius of

the flow meter. This simple relationship is more accurate than one

which takes the effective thickness of the side wall boundary layer

on the Lube into account:

4.v1/2
(C.2) S = r[rov4.72d (f + 4 ) - 1.72xv]

d

where 1.72/29 is the displacement thickness of the boundary layer.

The empirical relation was found to be:
3

(C.3) S(cm) = 220(±5) + (14 + .1)f
sec

formula (C.1) would give
3

cm =8
(C.4) S ec) 288 + 13.6f

B.2 Control

Long term flux control within the narrow limits necessary here is

difficult because of the inherent speed instability of ordinary fans

or blower systems. High frequency noises can propagate upstream from

the whirling blades as pressure pulses. Also the air ducting may have

preferred frequencies which may resonate with the fluctuations in the

flow. The baffle, perforated cylindrical sleeve and the constant spced

axial fan (Figure 4) were found sufficient to overcome these problems.

The fan works against e constant pressure head determined by the

amount of ths perforated cylinder which is covered. The perforations

allow the air, which passes through them, to enter the system uniformly

so that no "chuffing" occurs due to irregular motions.
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Table C-1

Measured Volume Flux
(S)

3 -1
cm sec

669

807

991

1123

1773

2256

3236

Frequency
(f)

sec~

116

150

215



69.

Plate A-1. Velocity sensor
position control.
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Plate A-2. Detail of the axial traversing
mechanism.



71.

List of Symbols

a = a large number
2+n

2n

r = - non-dimensional circulation in rotating frame.

A = non-dimensional radial displacement
Saverage boundary layer thickness (observed)~ 1.7(\/)
= observed thickness of zonal shear in boundary layer

62= 4 - the thickness of-.the Ekman layer based on the observed distance
7T (z) above the boundary where the maximum in the radial component

in the layer occurs.
E = V/RaR = local Rossby number of the mean zonal flow.

= mean axial component of the vorticity
= z/H - non-dimensional axial position

e = azimuthal (zonal) angle
K = radial eigenvalue for inertial modes
V = kinematic viscosity
E = non-dimensional pressure perturbation
p = fluid density
Z = non-dimensional perturbation pressure
T (Ot) - non-dimensiona-l time also used as non-dimensional delay

time in correlations
0 = 2(l+e)[2(l+e) - DE] - Rayliegh discriminant for stability

X = non-dimensional zonal perturbation velocity
= radial perturbation velocity
= rotation rate

A - a non-dimensional proportionlity factor
a - the radius of the annulus at source wall
b - the non-dimensional radius of the sink wall
d - characteristic Eknan thickness (V/Q) l2
E - Ekman number (v/H 2)

E'/E - voltage fluctuations atsensor normalized against the r.m.s.
of these fluctuations.

f - shedding frequency of a rod
H - height of the annulus
K - axial unit vector
K - axial wave number (non-dimensional) = , (q = 1, 2, 3...)

m - zonal wave number
n - non-dimensioal frequency of the perturbation
p -- pressure
V - mean auibient pressure

p'- non-steady pressure fluctuations
R - non-dimensional radius = r/a
S - volume flux rate
T - period of rotation
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t - time also(T') in the real time delays. in correlations
u - vector tatal velocity in the inviscid core
u - radial velocity component

V'- fluctuations of the zonal component
V - mean zonal compoent
W - axial velocity component
17 - mean axial velocity above E.B.L.
RAA(0), RBB(0) - mean square of voltage fluctuations at sensor

channels A and B.
R (T), R (T) - auto correlation functions of fluctuations with T

BB as the variable time delay.' ,.

R (T) - cross correlation function of observed fluctuations of

sensor voltage.
RreL - VS/v - local Reynold's number

ROL - V/QaR - local Rossby number

ROS - V/Pa - system Rossby number
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