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COSMOGENIC P AND P IN THE ATMOSPHERE AND

OLIGOTROPHIC OCEAN AND APPLICATIONS

TO THE STUDY OF PHOSPHORUS CYCLING

by

Nathalie Waser

ABSTRACT

Cosmogenic 32P (14.28 days) and 33P (25.3 days) are powerful tracers of upper

ocean P cycling, when coupled with time-series of the atmospheric sources. A method

was developed to determine the low-level beta activities in rainwater and plankton. The

wet deposition rates of 32P and 33P were determined during 12 months at a marine site, at

Bermuda, coinciding with measurements of the activities and activity ratio 33P?2, P

suspended particles and plankton tows at BATS station. The in situ production rates of

radiophosphorus in the upper ocean were estimated by measuring the activities induced in

Cl, K and S targets by cosmic rays. Knowledge of all the sources of radiophosphorus to

the Sargasso Sea allowed the cycling of 32P and 33P in suspended particles and macro-

zooplankton to be studied. The study was based on the determination of the activity ratio
33 32

P/ P in different particulate pools. The activity ratio was higher in particle collections

dominated by higher levels in the food web. The increase in the ratio in plankton relative

to rain allowed the determination of the turnover times of P in plankton and in situ graz-

ing rates.
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ABSTRACT

Cosmic-ray produced 3P (t = 14.28 days) and 3P (t = 25.3 days) are power-
ful tracers of upper ocean P cycling, when coupled with ti e-series estimates of the
atmospheric sources. The cycle of cosmogenic 3P and 3P in the atmosphere and euphotic
zone of the ocean was investigated in the Sargasso Sea. A method was developed for the
determination of the low-level beta activities of both nuclides in rainwater and marine
particulate matter. The fallout rates of 3P and 3P by precipitation were determined over a
period of 12 months at a marine site, at Bermuda, coinciding with measurements of the
activities and activity ratio 3P/2P in suspended particulate matter and plankton tows at the
Bermuda Atlantic Time-series Study (BATS) station (310 50' N, 640 10' W). The in
situ production rates of 3P and 3P in the upper ocean were estimated by measuring the
activities of 3P and "P produced in Cl, K and S targets exposed to cosmic rays at Woods
Hole, on Mount Washington, and on l'Aiguille du Midi. Fallout by precipitation was
found to be the major source of radiophosphorus to the ocean; in situ production in the

32 33
upper ocean was found to account for 5 % for P and 1 % for P of the wet deposition
rates. Knowledge of all the sources of radiophosphorus to the Sargasso Sea allowed the
cycling of 3P and 3P in suspended particulate matter and macrozooplankton to be studied.
The study was based on a new approach consisting of the determination of the activity
ratio 3P/ 2P in the different pools of phosphorus. The activity ratios 33P/ 2P in suspended
particulate matter and plankton tows ranged from 1.0 to 5.0 and were either equal to or
higher than the activity ratio in rainwater. The monthly activity ratio in rain was
remarkably constant and on average 0.96. The increase in the ratio in plankton relative to
rain can be interpreted as aging of the phosphorus in that pool or in the 1ool fror which it
is derived. This is because of differential radioactive decay rates of P and 33P. The
activity ratio was higher in particle collections dominated by higher levels in the ocean
food web. The residence time of P in macrozooplankton was estimated to range from 40
to 60 days. A grazing rate of macrozooplankton of 0.024 day was determined, allowing
the determination of a grazing flux of 110 mg C/m2 /d and a flux of particulate carbon
due to defecation of zooplankton of 30 mg C/m2 /d.
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INTRODUCTION

In order to understand the magnitude and variations of primary productivity in

the oligotrophic Sargasso Sea, as in any other oceanic province, it is essential to study the

factors that control productivity. Primary productivity in the Sargasso Sea is likely regu-

lated by the supply of nutrients into the euphotic zone during deep winter mixing (Menzel

and Ryther, 1961; Marra et al., 1990) and by the rate of nutrient recycling (Goldman,

1988). Time-series measurements near Bermuda reveal correlations between the export

flux of carbon, the flux of particle-reactive radionuclides in the deep ocean and primary

productivity in the euphotic zone with a time-lag consistent with the sinking speed of

large particles (Deuser and Ross, 1980; Bacon et al., 1985; Deuser, 1986; Asper et al.,

1992). The study of nutrient cycles in the upper ocean remains a central issue for a com-

plete understanding of the biological pump and its effect on the deep ocean.

There is recent evidence that primary productivity in the Sargasso Sea is higher

than previously estimated with 4 4C incubation techniques (Jenkins and Goldman, 1985;

Jenkins, 1988). Recent primary productivity estimates (Michaels et al., 1992) at the

Bermuda Atlantic Time-series Study (BATS) station are two-fold higher than the histori-

cal rate, possibly reflecting the use of cleaner techniques (Fitzwater et al., 1982). The

fundamental processes that govern both the rate of carbon fixation and its export to the

deep ocean remain poorly understood. Recent studies of photosynthesis-irradiance

relationships suggest that there is a direct physiological control by nutrients on primary

productivity in the North Sargasso Sea (Platt et al., 1992; Falkowski et al., 1992).



Overall, the exact relationship between new production, primary production and nutrients,

particularly which nutrient is limiting productivity, remain in doubt.

Among the processes that are most important in nutrient cycles and their rela-

tion to ocean productivity are uptake and regeneration rates and thus the fate and

pathways of nutrients from the autotrophs to the higher trophic levels. The amount of C,

N and P export to the deep ocean depends not only on the amount of nutrients being

supplied to the euphotic zone, but also on the efficiency of the transfer of C, N and P to

higher trophic levels (Eppley and Peterson, 1979; Goldman, 1988; Michaels and Silver,

1988). Therefore, it is important to determine the uptake rates, regeneration rates and

turnover times of nutrients in the euphotic zone, because they directly determine the

extent of new production versus primary production (Eppley and Peterson, 1979).

Phosphorus is one of the fundamental building blocks of all forms of living

aquatic organisms. Its study has been neglected in favor of the cycles of nitrogen and

carbon. It is a widespread view among biologists that N is the limiting nutrient in ocean

ecosystems as opposed to P limitation in freshwater ecosystems (Perry and Eppley,

1981). Recently the role of P in the oligotrophic ocean has received renewed interest

(Fanning, 1989; Michaels et al., 1992; Karl et al., 1992; Fanning, 1992). With the results

of the time-series studies of two oligotrophic oceans, the Sargasso Sea and the North

Pacific Sub-tropical Gyre, the role of P in the marine environment has been reexamined

(Karl et al., 1992; Michaels et al., 1992). Fanning (1992) recently reported puzzlingly

high ratios of dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIN/DIP)

in the North Atlantic Ocean in contrast to all other oceans, raising the question of the

relative role of N and P as limiting nutrients. DIN/DIP ratios below the euphotic zone

down to 800 m at BATS are high, sometimes up to 40 (mole ratio), and always higher

than the Redfield ratio of 16 (Knap et al., 1991; Knap et al., 1992; Michaels et al., 1992).

Unfortunately, dissolved organic nitrogen (DON) and dissolved organic phosphorus



(DOP) data are not measured routinely at BATS, so total dissolved nitrogen (TDN) and

total dissolved phosphorus (TDP) cannot be compared. The high DIN/DIP regenerated

below the euphotic zone might be indicative of P-depleted particles being regenerated or

another source of nitrogen. These results are very puzzling and might be explained by (1)

nitrogen fixation (Karl et al., 1992; Fanning, 1992), (2) high atmospheric supply of

nitrogen relative to phosphorus due to polluted air (Fanning, 1989), or (3) blooms

dominated by coccolithophorids (Fanning, 1992). These observations have pointed out

the weakness of the current understanding of P and N cycles and their coupling in the

oligotrophic ocean. If nitrogen fixation is truly an important process supplying N to

phytoplankton in the ocean, then P should be the ultimate limiting nutrient.

The subject of this thesis is the study of the phosphorus cycle in the Sargasso

Sea using two naturally produced radioisotopes of phosphorus. Cosmogenic 3P (t =

14.28 d; E = 1.71 MeV) and 3P (t = 25.3 d; E = 0.249 MeV) are beta emitters
max 1/2 max

produced by spallation reactions in Ar, in the atmosphere, and by spallation in Cl, S, Ca

and K in the ocean. Very recently the first measurements of the minute activities of 3P

and 3P in seawater were obtained (Lal and Lee, 1988; Lal et al., 1988). More extensive

measurements of 3P were made in TDP, DIP, DOP and plankton tows (Lal et al., 1988;

Lee et al., 1991; Lee et al., 1992) demonstrating the feasibility of applying 3P and per-

haps 3P to the study of the P cycle in the upper ocean. There were very few data on 3P

because 3P is a weak beta emitter and thus hard to detect.

The approach of this thesis consists of utilizing 3P and 3P and the ratio "P/2P

to determine the residence time of P in plankton and in the euphotic zone and the export

of P out of the euphotic zone at the Bermuda Atlantic Time-series Study (BATS) station

(310 50' N, 640 10' W) in different seasons. In order to determine the turnover times of

P in particles and in the total dissolved phosphorus, the mass balances of 3P and 3P in the

euphotic zone need to be accurately constrained. The fallout rates of 3P and 3P by



precipitation at Bermuda and the in situ production rates in seawater have thus been

determined. The wet deposition rates of 32P and 3P have not been previously estimated at

Bermuda, and it is important to document the variability of the supply of these short-lived

nuclides at the study site. The in situ production of 3P and 3P has been estimated pre-

viously (Lal et al., 1988) but not measured directly in all of the possible targets in sea

salt.
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Chapter One

METHODS OF MEASUREMENT OF 32P AND 33P

I INTRODUCTION

Activities of 3P (t = 14.28 days) and 3P (t = 25.3 days) in seawater have only

been measured very recently (Lal et al., 1988; Lal and Lee, 1988; Lee et al., 1991; Lee et

al., 1992). In spite of their tremendous potential for tracing processes involving phos-

phorus in the environment, the very low activities in nature have impeded their use in

biogeochemistry. Very low counting backgrounds and, more importantly, high specific

activities are essential to their detection by low-level 1 counting. The background can be

reduced by the use of an anticoincidence system surrounding the primary detector. High

activities can be obtained by preconcentration in the field. Preconcentration of the ac-

tivity in rainwater is achieved here by concentrating the activity of the dissolved phase on

alumina, a specific adsorbent of phosphate, in a system similar in principle to the one

used by Silker (1969, 1971). Large volume filtration is utilized to collect suspended

particulate matter. To separate 3 2 P and 3 3 P a nuclear technique has to .be sought. The

two isotopes are distinguished by their half-lives and by the very distinct energy spectrum

of the electrons emitted in the decay. Their half-lives are not different enough to enable

their separation by decay-curve analysis. In contrast, 3 2 P (E = 1.71 MeV) is a much

more energetic emitter than 3 3 P (E = 0.249 MeV). As a consequence, the absorption

characteristics of the two isotopes differ enough that an external absorber of a given

thickness will absorb all the radiation from 3 3 P but only a small fraction of the radiation

from 3 2 P. I have used this absorber method to separate 3 2 P and 3 3 p.



H COLLECTION AND EXTRACTION OF RADIOPHOSPHORUS

1- Principle

The preconcentration of dissolved 32 P and 3 3 p from rainwater has been

achieved by extracting the radiophosphorus on alumina. The sorption properties of

alumina with respect to orthophosphate have been well studied. Sorption studies have

been carried out at different pHs, P0 4 concentration, and in the presence of inorganic and

organic species (Chen et al., 1973; Huang, 1975; Stumm et al., 1980; Morel, 1983). The

process by which P0 4 binds to the surface has been described as a ligand exchange

reaction in which P0 4 replaces a hydroxide group at the surface (Stumm et al. 1980). In

addition, my own experiments have shown faster removal of P0 4 from solution on

freshly precipitated aluminum hydroxides than on freshly precipitated ferric hydroxides

in the absence of other inorganic or organic species at pH 7. For this reason, alumina was

the adsorbent of choice for this study.

2- Rain sampling

Rain samples were collected from the roof of a building at the Bermuda

Biological Station for Research (BBSR) and from a collector situated on the roof of Clark

building in Woods Hole. The collectors enabled the collection of the 10 to 60 £ of rain-

water necessary to detect radiophosphorus. The rainwater was spiked with 100 gmoles of

stable KH 2 PO4 , which served as carrier and enabled the yield of the extraction and

purification procedures to be determined. The rainwater was left to equilibrate for 4-6

hours. The sample was then pumped (with a peristaltic pump) through a plexiglass unit

containing about 7 g of alumina (Activated alumina, 98% powder, Matheson Coleman

and Dell) packed between two porous polyethylene filters (3.5 cm in diameter). The

extraction efficiency of P0 4 was better than 98% for a volume of 60 1 of rainwater and

flow rates of 5 1/min or less. This efficiency was confirmed by laboratory experiments.



In the laboratory, 50-140 1 of distilled water and filtered seawater (0.2 sm) from

Vineyard Sound were spiked with stable phosphate. Phosphate was extracted on alumina

with efficiencies higher than 98% in the case of distilled water. In the experiment with

filtered seawater, the efficiencies decreased from 100 to 90 % during the course of the

extraction. Once the extraction was completed, the resin was sent by Federal Express to

WHOI, where the alumina was processed in the laboratory.

3- Particulate sampling

Different size fractions of particles were sampled. Particles were collected using

293-mm diameter Millipore filters (3 or 8 prm mesh size). These samples were collected

with a simple filtration system which consisted of either an impeller pump or a diaphragm

pump connected to a 293-mm filter holder. The pump was placed upstream of the filter

holder. For surface samples a vacuum hose was lowered to a depth of 3-5 meters over the

side of the ship. For deep samples the vacuum hose was attached to a weight on the

hydrowire, and the rest of the hose was allowed to float freely at the surface. With this

system I could pump 1,000 1 at 10 to 45 psi in about 1 hour. The filter clogged fast and

was changed as soon as the flow rate started to decrease, which was about every hour.

The filters were immediately frozen to avoid release of phosphorus compounds (Collier

and Edmond, 1984). Particles larger than 67, 150, 300 and 500 gm were harvested with

plankton nets. The particles were sampled at the surface and at depth. Samples were

recovered from the cod end and gravity filtered on Whatman filters and immediately

frozen.

III RADIOCHEMICAL PURIFICATION

1- Rain samples



The Al2 03 was removed from the filter holders and slurried in 1 N NaOH.

NaOH has been reported to be efficient at releasing P0 4 adsorbed by aluminum oxides

and hydroxides (Dickman and Bray, 1940; Turner and Rice, 1954). NaOH (1N) removed

adsorbed P from A12 03 , but large volumes of it were necessary to get good recoveries (>

50%). Typically for rain samples 800 mi to 1 I of 1N NaOH was used and boiled down

to about 200 mi. The alkaline solution was then poured gradually into a 6 N HN03

solution. The pH of the solution was kept below 2 to avoid formation of massive amounts

of aluminum hydroxide colloids.

2- Particulate samples

The frozen Millipore filters and the zooplankton samples were refluxed for a few

hours in concentrated HNO3 until the solution was clear. If refractory particles were

present, the solution was filtered. The solution was then taken down to a small volume

and diluted to about 1 N HN03 with distilled water. At this point, an aliquot of the

solution was analysed for phosphate, i.e. the yield monitor, by the classic molybdenum

blue method (Murphy and Riley, 1962; Koroleff, 1983).

3- Radiochemical procedure

The chemical purification of phosphorus is based on a series of specific phosphate

precipitations, which have been described in the classic chemistry and radiopurification

methods (Hillebrand et al., 1959; Mullins and Leddicotte, 1962; Volchock and De

Planque, 1983; Whaley and Ferrara, 1972). The sample solution in HNO3 was heated,

and an excess of ammonium molybdate was added. This solution was heated to about 30-

40 0 C and stirred until a yellow precipitate of ammonium phosphomolybdate

(NH 4 )3 P0 4 (MoO 3 )1 2 appeared. The ammonium phosphomolybdate precipitation is a

preliminary separation which reduces the amount of heavy metals, particularly Fe, Co,

Ni, Cr, Ti and Zr (Mullins and Leddicotte, 1962). Heating of the solution was stopped



while stirring was maintained and the precipitation process allowed to continue. If heat-

ing was continued too long (at temperatures higher than 50 0 C), molybdic acid would

start to precipitate, and the precipitate would be contaminated with Si, As and V

(Hillebrand et al., 1959). After about one hour the precipitate was vacuum filtered

through a Millipore HA filter (0.45 sm, 47 mm in diameter) and washed with 1 N

HNO3 . Sometimes the precipitate was so fine that a 0.2 sm MilliporeTM filter had to be

used. The precipitate was dissolved with NH4 OH and the solution acidified to 1 N

HNO 3 . Ammonium phosphomolybdate was precipitated a second time and redissolved

with ammonia. The pH of the solution was then lowered to about 7 with HCl. The solu-

tion was cooled in an ice bath. A reagent containing MgCl2 and NH4 Cl was added to

the cold solution. Drops of NH4 OH were added while stirring. A white crystalline

precipitate of ammonium magnesium phosphate formed. An excess of concentrated

NH4 OH was added. The NH 4 MgPO4 .6H2 0 precipitate in solution was stirred for 15

min and cooled for half an hour in an ice bath. This step is not a separation, since there is

a large number of interferences with the precipitation. The advantage of the

NH 4 MgPO 4 .6H2 0 precipitate is that it can be dissolved in HCl while

(NH4 )3 PO4 (MoO 3 )1 2 cannot. The NH4 MgPO4 .6H2 0 precipitate was vacuum fil-

tered through a Millipore HA filter (0.45 gm, 47 mm in diameter), washed with dilute

NH4 OH, and dissolved in 9 N HCl. A cation exchange column of AG-50W-X8 Cl, 100-

200 (Analytical grade resin from Biorad Laboratory) mesh was conditioned with 3

volumes of 9 N HCl. The solution was loaded on the column and 1 volume of 9 N HCl

was passed through to rinse. The cation exchange resin allows separation of Ca, K, Fe,

Al, V, W, Zn, Zr and Ti, which will interfere with the final MgNH4 PO4 .6H2 0 precipita-

tion (Hillebrand et al., 1959; Mullins and Leddicotte, 1962; Whaley and Ferrara, 1972).

Concentrated NH4 OH was added to make the pH neutral, and the solution was put again

in an ice bath prior to the last precipitation. MgNH4 PO4 .6H2 0 was precipitated as

described previously and vacuum filtered on a preweighed Millipore HA filter (0.45 gm,



25 mm in diameter). The area of the precipitate was 2.75 cm2 . The precipitate was

hygroscopic and it was thus dried carefully until the weight was constant. It was then
TM

mounted face down on a film of Mylar (thickness = 0.9 mg/cm 2 ). The film of Mylar

was supported by a white Delrin ring. A silver planchet (140 mg/cm2 ) was placed on top

of the filter, and the source was sealed with tape to ensure no change in the weight of the

precipitate. The source was counted on an anticoincidence low-level p counter.

IV LOW-LEVEL BETA COUNTING

A thin-wall anticoincidence counter was used for low-level beta counting. The

basic feature of low-level 0 counting that distinguishes it from ordinary p counting is the

use of an anticoincidence guard detector next to the primary detector. The primary detec-

tor used here was similar in design to that of Lal and Schink (1960). The detector is a gas-

flow counter and operates in the Geiger-Muller region. The plateau starts at 820-860

Volts. The detector was operated at a voltage centered on the plateau. Q-gas (98.7%

Helium and 1.3% isobutane) flows continously through the sealed counter chamber. The

2.54 cm window is a thin 0.9 mg/cm 2 aluminized Mylar. The background of the detector

is significantly reduced by the guard detectors. Typically the background is about 0.25-

0.5 cpm with an error of 0.02 cpm. This background is about 50 times lower than that of

a detector without the guard detectors. The counting system is usually stable (no change

in the background) for periods of 30 days or more. The detector measures beta radiation

in pulse-type mode. The pulses from the source and the guard detectors are first

amplified by Pelagic Electronics Model 7030-2 preamplifiers. They are further amplified

by a Canberra Model 2012 amplifier. Pulses from the guard detector are sent to a Pelagic

Electronics Model 7030-4 gate driver. Pulses from the source are sent to a Canberra

Model 2032 dual discriminator, which is coupled to a Gate Driver and further through a

Canberra Model 2035A single-channel analyzer and a Canberra Model 1476A scaler.



V SEPARATION OF 33P 32,

A nuclear method was used to separate the two radioisotopes of P based on the

difference in energy of the beta particles emitted in their decay. Phosphorus-32 is a hard

p emitter with an end-point energy, E = 1.71 MeV, while 3 3 p is a soft P emitter with

E =0.249 MeV. This difference in energy between the two isotopes results in different

absorption characteristics for the P particles. The interaction of p particles with matter is

described by the experimental half-thickness of absorption x which is the thickness of a

solid material between the source and the detector that will absorb half of the emitted

radiation. The intensity of a source I as a function of the external absorber thickness x is

simply approximated by: I = Io exp( - In 2 x /x ), where Io is the intensity of the source

with no external absorber (Libby, 1947). I have found that the activity of 3 2 p is

decreased by a factor of 2 when an aluminum foil of 71.6 +2 mg/cm2 is placed between

the source and the detector (Figure 1.1). The mass absorption coefficient p (p = In 2 /x )

was thus calculated to be 9.7 + 0.3 cm2 /g. These experimental values are comparable to

some previous studies. An empirical formula relates p and the maximum p energy as

follows: p = 22/ E 1 33 for 0.5 s E 2 6 MeV. For E = 1.71 MeV the calculated p is
mwx max max

10.8 cm2 /g (Price et al., 1958) which is very close to the value of 9.7 cm2 /g found in

this study. Libby (1957) reported a different relationship, i.e. 1/p = 55 E/, which yields

a lower p and a higher x of 84 mg/cm2 . For the range of absorber used in my separa-

tion method, i.e. 6 to 40 mg/cm2 , the two extreme half-thicknesses 72 and 84 mg/cm2

yield activities which differ by 1 % to 5 %. In the case of 3 3 P, a foil of only 4.3 + 0.1

mg/cm 2 blocks 50% of the 1 radiation (Figure 1.2).
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Figure 1.1. Net count rate of 3P as a function of external absorber thickness.
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Figure 1.2. Net count rate of 3P as a function of external absorber thickness.



This half-thickness is in close agreement with x1/2 of 4.9 mg/cm 2 found for 4 5 Ca

(E =0.255 MeV) in Al (Libby, 1957). Thus from the absorption curves of 3 2 P and 33 P
rm

one can choose a thickness of aluminum that will block essentially all the radiation from

3 3 P and decrease the radiation from 3 2 P by a known small amount. The thickness of

aluminum was chosen so that the estimated activity of 33p in the source would be

decreased to less than 0.02 cpm when the source was counted with the absorber.

In order to separate 3 2 P and 3 3 p the samples were counted repeatedly in time

with and without external absorber. The time-dependent curve generated without absorb-

er represents the total activity of the sample. The curve with absorber represents the

activity of 3 2 P, decreased slightly due to the absorption of 0 particles in the absorbing

material. The initial net count rates 3 2 No and 3 3 No of 3 2 P and 3 3 P, i.e., the net count

rates at the time the sample was first counted, are then determined by the difference of the

two time-dependent curves. The activities at the time the sample was collected were

calculated from the known decay rates of 3 2 P and 3 3 P. The equations describing the

total gross count rates without absorber G and with absorber G at a given time are the
ta

following:

(1.1) G = N + B = 3 2 N +3 3 N+B=N 0 exp (-, t)+ B
t t t

(1.2) G =N + B = 3 2 N 3 2 p + 3 3 N 3 3 p + B = 3 2 No 32 exp (_ 3 2 X t) + Ba a
where

N : total net count rate in cpm
t

N a: net count rate with absorber in cpm

B : background count rate

32 N: net count rate of 3 2 P in cpm

3 3 N: net count rate of 3 3 P in cpm



3 2 p: fraction of 3 2 P transmitted through the absorber.

3 2 0 = exp(- In 2 x/71.6).

x: thickness of the absorber, in mg/cm2 .

3 3 p: fraction of 3 3 P transmitted through the absorber.

3 3 0 = exp(- In 2 x/ 4.3).
3 2 X: decay constant of 3 2 p.

In practice each sample was counted long enough to obtain 8% or less counting

error both with the external absorber and without. Typically the thickness of the absorber

ranged from 6 to 40 mg/cm2 for the low count rate (plankton samples) to the high count

rate samples (rainwater samples), respectively. N (i.e., 3 2 N 3 2 p + 3 3 N 3 3 p) was

usually approximated by 3 2 N 3 2 P, since the absorber was chosen to allow absorbtion of

essentially all the radiation of 3 3 P so that 3 3 N 3 3 p < 0.02 cpm. This approximation

was verified when 3 2 No and 3 3 No were determined, by calculating 3 3 N0 3 3 p. The

two curves Nt (t) and Na (t) were then fitted by least squares. The source was counted

repeatedly over 30 to 60 days, allowing a minimum of 10 points on N and 5 on N . The
t a

general equations used for the fit are:

N = a exp(- a t)

Na b exp(- 3 2 X t)

The values of the initial net count rates 3 2 No and 3 3 No were determined by the inter-

cepts, a and b, of the two curves with y axes. At this point the term 3 3 No 3 3 p was

computed to verify that 3 3 NO 33 0 was smaller than 0.02 cpm. For samples of ex-

tremely low total activity, there was sometimes a remaining activity of 3 3 P in the

absorber curve (3 3 N 33 0 > 0.02 cpm) which was corrected for by substracting the

estimated activity of 3 3 P from the curve with absorber. The correction was iterated until

the calculated values 3 2 No and 3 3 No converged to constant values.



VI DETERMINATION OF ABSOLUTE ACTIVITIES

The initial net count rates, 32 N" and 3 3 N*, were converted into absolute ac-

tivities 3 2 A0 and 3 3 A0 by taking into account the counting efficiency, E, and the yield

of the procedure, y. The absolute activities were calculated as follows:

A0 = No / y e

The absolute activity at the time of collection is:

A 0 = A0 exp( X t )

where, t is the time elapsed between collection and initial counting time, and X is the

decay constant. The activity ratio r of 3 3 P to 3 2 P is:

r =33 A0 / 3 2A" =3 3N0 3 2 E / 3 2N 3 3

The counting efficiency, e, for a given radioisotope varies with the thickness of the

source according to the following relationship (Libby, 1947):

(1.3) S / Eo = (1 - exp(- g d)) / (g d)

where

s: self-absorption coefficient in cm2 /mg

d: thickness of the source in mg/cm2

E: counting efficiency for a source of thickness d

eo : counting efficiency for an infinitely thin source

Typically, the thicknesses of the samples, d, varied from 2 to 12 mg/cm2 . Self-

absorption and scattering processes in the source, absorption in the air and window and

backscattering processes on the backing material were all included in one parameter: Eo ,

the counting efficiency for an infinitely thin source. The thickness of the backing

material is chosen to be the thickness of saturation (or close to it) to allow maximum

backscattering. Experiments have shown that saturation is reached for a thickness of

about 20% of the range of a nuclide (Price et al., 1958; Wang et al., 1975; Choppin and



Rydberg, 1980). The ranges in aluminum are 800 mg/cm2 for 3 2 P and 60 mg/cm 2 for

3 3 P, and the saturation thicknesses are 12 mg/cm 2 for 33 p and 160 mg/cm 2 for 3 2 p

(Choppin and Rydberg, 1980). The fraction of the electrons backscattered increases with

the atomic number of the backing material. Silver (A = 47) was chosen and gives a factor

of 1.65 increase in the counting efficiency at saturation backscattering for 3 2 p (Choppin

and Rydberg, 1980). For 3 3 P, absorption in air and in the window of the detector

eliminates some of the backscattered particles, and therefore the factor is lower, about

1.35. The thickness of the silver planchet used for backing material was about 140

mg/cm 2 , which is well beyond the saturation thickness of 3 3 P and very close to the

saturation thickness of 32 P.

1- Counting efficiency

The overall counting efficiencies 32 E and 3 3 E were experimentally obtained by

counting sources of constant activity and of varying thickness. Previous studies by

Nervik and Stevenson (1952) have shown that the efficiency curves are not simply

described by equation (1.3), which models the effect of self-absorption only, because self-

scattering in thin sources can also be an important process. Their study showed that the

shape of the efficiency curve is a function of the composition of the source (nature of the

precipitate) and the energy of the beta emitter. For the weak emitters S (E = 0.167
max

MeV) and 1 Pm (E = 0.244 MeV) the efficiency curves exhibit a maximum for very
max

thin sources (about 1-2 mg/cm 2 ) followed by an exponential decrease with thickness.

For the high energy emitters32 P and Y (E = 2.28 MeV), the curves increase slightly
max

initially and reach a plateau (Nervik and Stevenson, 1952). The transition in the curve for

both hard and soft beta emitters is due to the relatively higher importance of self-

scattering versus self-absorption in the thin sources. The transition is also dependent on

the composition of the source. The exponential decrease is due to self-absorption only

and can be described by equation (1.3).



a)- Counting efficiency of P

Phosphorus-32 was commercially available from DuPont in a solution of

KH 2 PO4 . The 3 2 p purchased was not a standard and had to be standardized.

Verification of the purity of the tracer was obtained by determining the half-life and the

half-thickness of absorption on the low level beta counting system. The half-life was,

within the error, 14.28 days and the half-thickness was 71.6 mg/cm2 . The solution was

then standardized by counting a thin source of 3 2 P, evaporated on a stainless steel plan-

chet on a 2H gas-flow proportional counter (Nuclear Measurements Corporation, model

PCC_1IT). The counter had been calibrated by the manufacturer with sources of beta

emitters of different E on stainless steel, and I recalibrated it with standards of 2 3 4 Th

and 1 7 Pm (Amersham). A standard of 2 3 4 Th was prepared by separation from a high

purity U3 Os standard solution (NBS 950A) in which 2 34 Th had grown into radioactive

equilibrium (Fleer, 1991). My calibration agreed with that of the manufacturer and a 72

% counting efficiency was determined for 3 2 P on the 2r1 gas-flow proportional counter.

The standardization of the 3 2 P in KH2 PO4 solution from DuPont could then be done.

A known amount of activity of 3 2 P was precipitated as NH4 MgPO4 .6H2 0 with

varying amounts of stable P04 . The sources were dried until the weight was constant

then sealed and counted. Phosphorus-32 is a hard beta emitter and the efficiency was

almost constant in the range of thicknesses encountered in all the samples. The efficiency

for an infinitely thin source, co , was calculated by evaporating drops of a standard solu-

tion of 3 2 P on an area of 2.75 cm 2 centered on the Mylar film. This was to ensure that

all the activity was distributed on an area equal in size to the area of the precipitate, be-

cause the counting efficiency is not the same in all the area of the source (Lal and Schink,

1960). A Milliporem filter and a silver planchet were placed on top of the source. The

efficiency for an infinitely thin source and for all thicknesses from 2 to 8 mg/cm 2 was

49%.



b)- Counting efficiency of 33P

A solution of KH2 PO4 of unknown activity of 33 P was obtained from DuPont.

A standard of 14 7 Pm was available from Amersham and was used as an analogue of
3 3 P. 1 4 7 Pm (t = 2.6234 y) has an end point energy of 0.224 MeV which is extremely

close to that of 3 3 P (E = 0.249 MeV). It is therefore expected that the two
max

radioisotopes will have a similar half-thickness of absorption. A 1 4 7 Pm standard was

evaporated on a silver planchet and its absorption curve was generated (Figure 1.3). The

exponent of that curve is 0.156 cm2 /mg and the half-thickness of absorption is 4.4 + 0.1

mg/cm 2 . Within experimental errors it is identical to 4.3 + 0.1 mg/cm2 , the half-

thickness of 3 3 P. Thus 1 47 Pm and 3 3 P were considered to be equivalent with respect

to their properties of interaction with matter. A known activity of 147 Pm was

evaporated on a Mylar film. A filter and a silver planchet were put on top so that this

standard was as similar to the sample as possible. The ratio of the net count rate to the

activity of this standard was the counting efficiency of 3 3 P, 3 3 Eo , for an infinitely thin

source. To calculate 3 3 e for all thicknesses, a carrier free unknown activity of 3 3 P0 4

was precipitated as MgNH4 PO4 .6H2 0 with increasing amounts of stable P04 . A curve

was generated of the net count rate as a function of thickness. The expected decreasing

curve was regressed with a least square method and the intercept at 0 mg/cm2 was deter-

mined. That intercept was assumed to be the net count rate for an infinitely thin source,

3 3 Eo . Since from our 1 4 7 Pm standard 3 3 Eo was already known (i.e. 26%) the rest of

the curve could then be calibrated. The curve did not exhibit any maximum, possibly

because (1) I could not make sources thinner than 1 mg/cm2 or (2) self-scattering is small

in MgNH4 PO4 .6H2 0. I concluded that the efficiencies might be underestimated by up

to 3 % when using equation (1.3) to calculate the efficiency of 3 3 P. Figure 1.4 shows the

counting efficiency,3 3 e, as a function of sample thickness. The counting efficiencies for

an infinitely thin source, 3 3 Eo , were the same within 1 % for all 4 counters. The relative

efficiency curve was fitted by the function given in equation (1.3).
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Figure 1.3. Net count rate of 1Pm as a function of external absorber thickness.
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The exponent p of the curve was determined for each detector. It varied from

0.145 to 0.160 and averaged 0.150 + 0.01 cm 2 /mg. These values all agreed within the

error of the regression. Figure 1.5 shows the effect of a change in p on the relative ef-

ficiency. The error on the absolute efficiency is estimated to be less than 2 % for an error

of 0.01 cm2 /mg on p. The counter efficiency e (expressed in %) for a sample of thick-

ness x (expressed in mg/cm2 ) is calculated from the experimental relationship:

(1.4) e = 26 (1 - exp(-0.150 x)) /(0.150 x)

2- Yield of procedure

The chemical yield was calculated as the ratio of the amount of stable P in the

source relative to the amount of stable P initially present. The determination of the yield

was different according to the sample type. For rainwater samples 100 ptmoles KH2 P0 4

were added to the rainwater. The amount of P0 4 present in the final NH 4 MgPO4 .6H2 0

precipitate was determined colorimetricaly with the classic molybdenum blue method

(Murphy and Riley, 1962; Koroleff, 1983). This procedure was used because the amount

of phosphate in the source could not be precisely determined from the weight of the

precipitate. This was because the precipitate is hygroscopic and the stoichiometry is not

always 6H2 0. For plankton and suspended particulate samples, the initial amount of

P0 4 was measured colorimetrically after digestion with nitric acid. In the case where the

amount of phosphate exceeded 100 smoles, the sample was split so that thin sources

could be obtained to minimize self-absorption of 3 3 P in the source. Experience showed

that 50-100 pimoles of stable P in the source optimized the total net count rate and mini-

mized self-absorption of 3 3p for samples collected in the Sargasso Sea. Usually, for

plankton samples obtained from 15-20-minute tows, the initial amount of stable P
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exceeded 100 smoles and the sample was split. For suspended particles, the samples had

typically 30-60 srmoles of P0 4 initially and were thus never split.

The data for all the rain samples and plankton samples are listed in Appendix A.

The data include the equations of the regressions of the curves Nt and Na in tables A.1

(rain samples) and in table A.2 (plankton samples). The thickness, d, the yield, y, the

counting efficiencies, 3 2 s and 33 E, and the counting rates at the time of sampling 3 2 N

and 3 3 N are given, for all the samples, in appendix A in tables A.3 for the rain samples,

in tables A.4 to A.9 for the plankton samples and in table A.10 for the salt samples (see

chapter 3).

VII COUNTING STATISTICS AND ERROR ANALYSIS

The errors on the absolute initial activities 32 A0 and 3 3 A0 were computed for

the time the sample was put in the counter. These activities are derived from the two

experimental curves Gt (t) and G a(t) of the gross count rate of the source as a function of

time expressed in equations (1.1) and (1.2).

1- Error on the net count rates

The curves N t(t) and Na (t) were fitted with a least square method and the 2 inter-

cepts N a and N t were determined. The errors were given by the non-weighted least
a t

squares fit (samples are counted in time typically until each count in time is 300 or 500

for low count rate samples and 1000 or more for rain samples). 3 2 No is equal to (Go a~
B) /3 2 I or N 0 / 3 2 p. The error on 3 2N0 , a32 No was deduced from the propagation

theory (Friedlander et al.,198 1). 3 2 N0 is a function of 3 2 0, Ga and B. Thus the stan-

dard error is given by:

(1.5) a3 2 2= 2 * ( 3 2NO / 3 2 P)2 + a 2Gao *(a3 2 No/aG a 0) 2



+ a2Be(D3 2 N* /aB)2

Both the background and 3 2 1 are well known, and the errors associated with these quan-

tities are small. It follows that:

(1.6) 32N 2 2 GO *(a3 2N /3GO a) N *(a 3 2 NOaNO a
a a

or

(1.7) a3 2 = 1/ 3 2 YNO

a
Since No =3 2N +3 3N, thenN = N*o 3 2 p + 3 3N . Therefore:

t t a

(1.8) 3  3 NO = NO - N" /32
t a

Applying the theory of propagation of error to 3 3 No we obtain:

(1.9) a33N 2 0 2 *(as 3N0/ N a )2 N t '.
a t

Thus:

(1.10) as3 3 2 = (1/3 2 )2 *aN +0
a t

The standard errors a3 2 No and as 3 No were therefore calculated from equations (1.7) and

(1.10) and depend only on the errors aN0 and aN which were determined by the fit of the
a t

time-dependent curves N and N .
t a

2- Error on the absolute activities

3 2 AO =3 2 N* /y* 3 2 E

33 A0 = 3 3 N0 /y* 3 3 E

R= 3 3 A" / 3 2 AO =( 33 N / 3 2 NO)*( 3 2 E /3 3E)

From the propagation theory it is straightforward to derive the errors on 3 2 A0 , 3 3 AO

and R. The errors are given by:

(1.11) 0 32 A0 2 = (ly*3 2 E) 2 *3 2 N 2 + (3 2 No /y 2*3 2 )2*a 2+

(3 2 NO /y* 3 2 E2)2*03 2 2
E



(1.12) a3 3 A"= (l/y* 3 )2 * N0 2+ (3 3N N ,2*3 N" *0 y2 +

(33 N" /y*3 3 E2 2*33 2

(1.13) R (32 Ep2 N** 3 e)2*a33 + (N3 N 0 3 3 e*3 2 N* )2 *a3 2 +

(33N0* 3 2 e 2 N"*33 E2)2* 3 +(33N"*2 3 3 ;3 2 NO 22* 2

In practice, the errors were given by equations (1.11), (1.12) and (1.13). For the rain

samples the errors associated with the counting statistic were small (usually < 2 %), and

thus the errors on the initial activities, 3 2 A0 and 3 3 A0 , and the ratio, R, were dominated

by the errors on the counting efficiencies. For plankton samples the errors were often

equally dominated by both counting statistics and counting efficiencies.

VIII CONCLUSION

The method described in this chapter allows the measurement of cosmogenic 3 2 p

and 3 3 P in rainwater (10 to 60 1), suspended particulate matter filtered from 2,000 to

5,000 £ of seawater, and 15 to 20 minute plankton tows in an oligotrophic ocean. The

activities of 3 2 P and 3 3 P in rainwater can be determined within 10%-20%. The specific

activities in both suspended particles and plankton tows can be determined within 10%-

30%. The activity ratio 3 3 P, 2 P was measured within 10% in rainwater and 20-30% in

particles. The successful measurement of the weak emitter, 3 3 P, in particulate phases

was due to the low amount of stable P in the samples collected off Bermuda. Low

amounts of stable phosphate are essential to minimize self-absorption, in the source, of

the low energy 0 particles emitted by 3 3 P. The accuracy of the measurements is limited

by the accuracy of the determination of the counting efficiencies. The precision of the

measurements is limited by the precision of the counting efficiencies, the chemical yield

and the counting statistics for the low activity samples.
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Chapter Two

DETERMINATION OF THE FALLOUT RATES

OF 32P AND 33P AT BERMUDA

I INTRODUCTION

In order to understand the pathways, concentrations and transformations of 3 3 p

and 3 2 P in the upper ocean it is necessary to know the supply to the ocean. Following

their production by spallation in Ar, 3 2 P and 3 3 P are believed to be rapidly oxidized to

phosphate and scavenged by sub-micrometer aerosols. The aerosols are ultimately

removed from the troposphere by precipitation. Wet deposition is believed to be the

primary removal mechanism of 3 2 P and 3 3 P (Lal et al., 1957; Goel et al., 1959; Lal et

al., 1960). Therefore, in order to quantify the deposition rates of 3 2 P and 3 3 P at a par-

ticular site, it is necessary to study the activities of 3 2 P and 3 3 P in rainwater at that site.

A year-long record of the activities of 32 P and 3 3 P and of the activity ratio
3 3 P,3 2 P in individual precipitation events was acquired at Bermuda (320 30' N; 640

40' W). In conjunction with those data a few individual rain samples were collected at

Woods Hole (410 31' N; 700 40' W). The activities of 3 2 P and 3 3 P measured in rain-

water and the measured rainfall rates allowed computation of the wet deposition rates of

3 2 P and 3 3 P from March 1991 to March 1992 at Bermuda.



H BACKGROUND

Cosmogenic "P and 3 3 P are continuously produced by cosmic-ray spallation

of argon within the earth's atmosphere. The production rates vary notably with altitude

and latitude (Lal et al., 1958; Lal and Peters, 1967). The production rates of both 3 p

and 3 3 p increase by two orders of magnitude from ground level to the top of the tropo-

sphere and are much higher in the stratosphere than in the troposphere (Lal and Peters,

1967). The global tropospheric production rates of 32 P and 3 3 P are almost independent

of latitude. This is in contrast with the global stratospheric production rates, which are an

order of magnitude higher at a latitude of 900 than at 00 (Lal and Peters, 1967). The

ratio of the production rates of the two isotopes is approximately constant with time,

latitude and altitude (Lal and Peters, 1967). The atom ratio 3 3 p/2 P of the production

rates has been determined experimentally in argon to be 0.8 (Lal et al., 1960a).

Following their production 3 3 P and 32 P are believed to be rapidly oxidized to

phosphate. Cosmogenic 2 p, 33 P as well as 7 Be (t = 53.3 d), another cosmogenic

nuclide with similar source and pattern of production as 32 P and " P, are believed to be

rapidly scavenged by sub-micrometer particles in the atmosphere. Tropospheric aerosols

become condensation nuclei and the radionuclides are ultimately deposited by precipita-

tion. Dry deposition of both short-lived and particle-reactive radionuclides, i.e. 3 2 P, 33 P

and 7 Be, has generally been assumed to be small relative to wet deposition (Lal and

Peters, 1967; Young and Silker, 1974; Turekian et al., 1983). Recent studies have shown

that dry deposition of 7 Be is only 10% of the total deposition rate (Brown et al., 1989).

Wet deposition rates and total deposition rates of 7 Be have been measured extensively

(Rama Thor and Zutshi, 1958; Goel et al., 1959; Lal et al., 1960b; Walton and Fried,

1962; Schumann and Stroeppler, 1963; Young and Silker, 1974; Lal et al., 1979; Young

and Silker, 1980; Krishnaswami et al., 1980; Crecelius, 1981; Turekian et al., 1983;

Olsen et al., 1985, 1986; Dibb, 1989). This is in contrast with the small amount of data



on the fallout of 32 p (Lal et al., 1957; Goel et al., 1959; Lal et al., 1960) and even fewer

data for 3 3 P fallout rates (Lal et al., 1957; Goel et al., 1959). The lack of data on the

deposition rates of 3 2 P and of 3 3 P is due primarily to the difficulty of the measurements.

It results in a poor latitudinal coverage of the wet deposition rates of 3 2 P and 3 3 p.

There have been more extensive measurements of 3 2 P activities in surface air relative to

rainwater, and it has been used as a tracer of atmospheric circulation, usually in conjunc-

tion with 7 Be and sometimes with 3 3 p (Rama and Honda, 1961; Aegerter et al., 1966;

Luyanas et al., 1970; Bhandari et al., 1970; Reiter et al., 1971; Reiter et al., 1975; Sanak

et al., 1985).

Cosmogenic 7 Be has been widely studied. The studies of its distribution in air,

scavenging rates, and seasonal and latitudinal variability can be useful for the study of

3 2 P and 3 3 P and those studies are thus reviewed. The strong dependence of 7 Be con-

centrations in surface air on latitude and season is now well established. It has been

attributed to latitudinal and seasonal variations in the exchange between the troposphere

and the stratosphere (Parker, 1962; Schumann and Stroeppler, 1963; Peirson, 1963;

Rangarajan and Gopalakrishnan, 1970; Reiter et al., 1971; Viezee and Singh, 1980;

Dutkiewicz and Husain, 1985; Dibb, 1989). Maximum 7 Be concentrations in surface air

and maximum deposition rates have been reported at mid-latitude (40-50 0 N) in late

spring/summer (Parker, 1962; Schumann and Stroeppler, 1963; Viezee and Singh, 1980;

Dibb 1989); at low latitudes (20-30 0 N) in spring (Rangarajan and Gopalakrishnan, 1970;

Viezee and Singh, 1980); and at polar latitudes during austral summer (Feely et al., 1977;

Maenhaut et al., 1979; Sanak et al., 1985). Anomalously high deposition rates of 7 Be in

the intertropical convergence zone (ITCZ) have been reported north of the ITCZ (10-

200 N) by Young and Silker (1974). They explain these high deposition rates not by

stratospheric intrusion per se, but by the intrusion of tropospheric cumulus and

cumulonimbus clouds into the stratosphere and scavenging of the stratospheric aerosols.



At low latitudes (20-300 ) and mid-latitudes (40-504 ) the exchanges have been attributed

to low-pressure troughs associated with a folding of the tropopause (Danielson and

Mohnen, 1977; Viezee and Singh, 1980). These areas of exchange are found in the

vicinity of the jet streams which are typically located at 300 and 600 in both hemispheres

(Hasse, 1983). The process of exchange in the jet stream is due to large-scale eddy

transport (Reiter, 1975). At polar latitudes the stratospheric contribution could be con-

siderable because of (1) the much higher production rates of 7 Be in the stratosphere at

high latitudes than at low latitudes (Lal and Peters, 1967) (2) substantial and continual

fluctuations of the height of the tropopause at the poles (Sanak et al., 1985) and (3)

breakup of the polar vortex in the winter and spring (Martell and Drevinsky, 1960).

During the time of atmospheric testing of nuclear weapons, the distributions of

the bomb-produced radioisotopes * 0 Sr, 13 7 Cs, 2 3 8 Pu, 2 3 9 Pu and 2 4 0 Pu were similar

to the distribution of 32 P, 3 3 P and 7 Be, because they were injected primarily into the

stratosphere and at high latitudes. The tropospheric contribution of the tests was small,

because; (1) the tropospheric tests were low yield (Perkins and Thomas, 1980), and (2)

the tropospheric radioactivity so produced was removed rapidly after the tests. The bomb-

produced radioisotopes were thus good tracers of stratospheric air. The concentrations of

the bomb-produced nuclides in surface air and their transport to the troposphere exhibited

strong latitudinal and seasonal variations (Rangarajan and Gopalakrishnan, 1970; Silker,

1972; Perkins and Thomas, 1980; Staley, 1982; Dutkiewicz and Husain, 1985). The

concentrations of 1 3 7 Cs in surface air were highest in the spring at low and mid-latitudes

(Rangarajan and Gopalakrishnan, 1970; Silker, 1972). The fallout rate of 9 0 Sr and its

concentration in surface air were found to be highest (1) in late-winter and spring at low

latitudes (Machta, 1959; Staley, 1982) and (2) in summer at mid-latitudes (Schumann and

Stoeppler, 1963; Staley, 1982).

Most of the exchange processes between the stratosphere and the troposphere

evidenced with radionuclides are due to large-scale eddy transport across the tropopause



in the jet stream region. This process has been widely reported to have a very strong

seasonality. Nevertheless, there are also other exchange mechanisms, in particular the

adjustment of the height of the tropopause (Reiter, 1975). This adjustment is continuous

during the year and occurs at all latitudes. It is characterized by a general drop of the

tropopause from spring to fall and a general rise from fall to spring.

HI METHODS

Rain water was collected from the roof of Hansen Hall at the Bermuda

Biological Station for Research. The roof (area of about 30 m2 ) thus collected particles

in addition to rainwater. Two 60-liter barrels were connected to the gutter and could be

alternately filled. Usually only major rain events (rainfall rate > 1 cm/d) were sampled

because of the large minimum volume required (10-20 1). The rainwater was spiked with

stable P (KH2 PO4) as carrier phase and yield monitor. Phosphate was efficiently ex-

tracted on alumina, and the sample was analysed as described in Chapter One. In

addition, rainwater samples were collected from a 4 m2 rain collector placed on the roof

of the Clark Building at Woods Hole in the winter/spring of 1990 and 1991. The collec-

tion procedure used was identical to the one described above.

IV RESULTS

A year-long record of the concentrations of 3 2 P and 3 3 P and of the activity

ratio 3 3 p,3 2 p in single precipitation events was acquired at Bermuda (320 30'N; 640

40' W). Figure 2.1 shows the record of the ratio from March 1991 to March 1992.

Figure 2.2 shows the daily rainfall rates measured from January 1991 to March 1992 at

Saint Davids, situated at the eastern tip of the island. The distribution of the monthly

averaged rainfall rate during that period shows high rates in February, March, September



of 1991 and January, February of 1992 (Figure 2.3). The activities of 32 P and 3 3 P and

the activity ratios " 3 32 P of all the individual rain samples collected in 1990-92 at

Woods Hole and Bermuda are presented in tables 2.1 and 2.2. The activities of 3 2 P and

3 3 P vary from 0.15 to 3.5 dprn/l for 3 2 P and from 0.14 to 3.0 dpm/l for 3 3 P at Bermuda

and from 0.4 to 0.9 dpn/l for 32 P and from 0.5 to 0.98 dpn/l for 3 3 P at Woods Hole. In

contrast to the wide range in activities, the range in the ratio is smaller: 0.66 to 1.20 in the

Bermuda samples and clustering around 1.10 at Woods Hole. The activities of 32 P and

"' P in rainwater are extremely variable, because they depend on the residence time of

aerosols, the activities of 32 P and " 3 P in air and the rate of scavenging of 3 2 P and 3 3 p

by aerosols. In contrast, the activity ratio " P/" P in rain depends only on the history

and pathways of the air mass. The highest activities of 3 2 P and 3 3 P in Bermuda rain are

found in March 1991, and they are associated with high ratios averaging 1.0 in March

1991. The June-November 1991 period is characterized by a higher frequency of low

activity ratios 3 3 pp2 P than the March-April 1991 and January-March 1992 periods. At

the same time, ratios as high as 1.0-1.2 are observed during the period.

An important feature of the Bermuda data set is the systematic variation in the

activity ratio 3 P,3 P about the annual mean of 0.96 (Figure 2.4). Higher ratios were

observed in April 1991 and January-February 1992, and lower ratios were observed in

September-October 1991. The activity ratio was on average 1.01+0.04 in the late

winter/spring period (i. e., March to June 1991), 0.88±0.03 and 0.90+0.06 in summer and

fall 1991 and 1.03±0.05 in the winter of 1992 (Table 2.3). The variations might be due to

stratospheric input in spring and winter at Bermuda. It might also be due to increased

mixing between the upper and lower troposphere in summer and fall relative to spring

and winter.
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Figure 2.1. Activity ratio 33P/ 2P in major precipitation events collected at Bermuda Biological
Station for Research (BBSR) from March 1991 to March 1992.
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Figure 2.3. Monthly rainfall rates at Saint Davids, Bermuda, from January 1991 to March 1992.



Table 2.1. Activities of 2p and 33P eA and 31A) and activity ratio 33P?2P (R)
in rain samples collected during 1991 and 1992 at the Bermuda biological Station.

date 32A 33A R
dpm/1 dpm/L dpm/dpm

05-Mar-91
10-Mar-91
10-Mar-91
20-Mar-91
20-Mar-91
22-Apr-91
22-Apr-91
01-May-91
1 1-Jun-91
1 1-Jun-91
20-Jun-91
27-Jun-91
07-Jul-91
08-Jul-91
18-Jul-91
19-Jul-91
07-Aug-91
26-Aug-91
05-Sep-91
1 1-Sep-91
14-Sep-91
16-Sep-91
29-Sep-91
28-Oct-91
28-Oct-91
07-Nov-91
17-Nov-91
16-Jan-92
21-Jan-92
25-Jan-92
31-Jan-92
02-Feb-92
14-Feb-92
17-Mar-92
26-Mar-92
26-Mar-92

0.41±0.07
1.92+0.30
3.46±0.16
1.05±0.19
1.55±0.3
1.02±0.11
0.55+0.07
0.75±0.10
0.60+0.09
0.38±0.06
0.58±0.06
0.49±0.06
1.39+0.17
1.31+0.13
0.72+0.07
0.60±0.07
1.05±0.09
0.77±0.09
1.04+0.13
0.67+0.09
0.26+0.03
0.90±0.09
0.4710.05
0.79±0.09
0.26+0.04
0.79+0.09
0.88+0.10
0.31±0.03
1.26±0.15
0.36±0.04
0.67+0.09
0.31±0.03
0.69+0.09
0.15±0.02
0.54±0.08
0.65±0.12

0.3710.06
2.1210.29
3.02±0.46
1.13±0.14
1.69±0.20
1.06±0.14
0.67+0.11
0.73+0.10
0.58+0.10
0.29±0.06
0.64±0.08
0.50±0.07
0.98+0.14
0.86+0.11
0.73+0.10
0.70±0.10
0.86±0.14
0.7510.10
0.78+0.14
0.59+0.09
0.2610.04
0.72±0.09
0A8±0.04
0.62±0.08
0.22±0.03
0.77±0.09
0.81+0.09
0.3110.05
1.4210.17
0.39±0.06
0.74+0.09
0.38±0.04
0.63+0.1
0.14±0.03
0.5610.09
0.60±0.12

0.91+0.14
1.10+0.12
0.87 ±0.10
1.08±0.12
1.09 O0.11
1.04±0.12
1.22 + 0.14
0.97+0.12
0.96+0.13
0.78 ± 0.14
1.10 ±0.12
1.02±0.12
0.71+0.11
0.66+0.10
1.02 +0.14
1.1610.16
0.81 ±0.10
0.97 ±0.11
0.70+0.09
0.87+0.10
1.00 +0.15
0.80 ±0.09
1.03 ± 0.13
0.78 :0.10
0.84+0.15
0.98 +0.13
0.92+0.13
1.0010.14
1.1310.12
1.08 ±0.15
1.09+0.13
1.20 +0.14
0.91 +0.12
0.94 ±0.18
1.02±0.19
0.93 ±0.15



Table 2.2. Activities of and "P eA and "A) and activity ratio "P 3 P (R)
in rain samples collected at Woods Hole.

date 3A 3A R
dpm/1 dpm/t dpm/dpm

27-Dec-90 0.82±0.09 0.98±0.10 1.21+0.09
16-Jan-91 0.41±0.04 0.51±0.06 1.24±0.11
21-Apr-91 0.90±0.10 0.74±0.10 0.82±0.13

Table 2.3. Seasonal averages of the activity ratio 33P?2P (R) in rain and associated residence times of
tropospheric aerosols at Bermuda for two different values of Ro .

Season R T T
dpm/dpm days days

Ro=0.7 Ro=0.6

Spring and March 1991 1.01±0.04 50±10 110 25
Spring 1991 1.02±0.05 52±10 115±35
Summer 1991 0.88±0.03 25±5 52±10
Fall 1991 0.90t0.06 30±7 57±10
Winter 1992 1.03±0.05 55±12 95-290

Annual average 0.96±0.02 40±7 80±15



The average wet deposition rates were determined by multiplying the monthly

average activities of 3 2 P and 3 3 p (Figure 2.5) by the monthly average rainfall rates.

Monthly, seasonal and yearly averages of the wet deposition rates are shown in tables 2.4

and 2.5. The monthly mean wet deposition rates of 3 2 P and 3 3 P show significant dif-

ferences from one month to another, mostly due to the difference in rainfall rates. The

monthly averages vary from 0.059 to 0.266 dpm/cm 2 /yr for 3 2 P and from 0.058 to 0.264

dpm/cm2 /yr for 3 3 P. The extreme upper and lower values occurred in March and May

1991 (Table 2.4). For the 9 other months, the average wet deposition rates were much

more constant and averaged 0.074+0.04 dpm/cm 2 /yr for 3 2 p and 0.073 + 0.05

dpnm/cm 2 /yr for 3 3 P. The extremes in March and May were caused by (1) a low

precipitation rate in May 1991, resulting in a low fallout rate for that month, and (2) very

high concentrations of 3 2 P and 3 3 P in rain and high rainfall rates in March 1991. The

seasonal averaged wet deposition rates range from 3.6 10 to 10.2 10 dpm/cm 2 /yr for
3 2 P and 3.7 102 to 11.3 10-2 dpm/cm 2 /yr for 3 3 P (Table 2.5). The annual averages are

8.6 102 and 8.2 10 dpm/cm2 /yr or 4.9 10-3 and 8.2 10 atom/cm 2 /min. Assuming a 40

day residence time of tropospheric aerosols, Lal and Peters (1967) estimated global mean

tropospheric fallout rates of 5.8 10 atom/cm2 /min for 3 2 P and 6.9 10-3 atom/cm 2 /min

for 3 3 P with uncertainties of 20 to 30%. These values agree within the uncertainties of

each estimation.

V MODEL OF AEROSOL RESIDENCE TIMES

In this section, I explain how the residence time of sub-micrometer aerosols in

the troposphere can be derived from the ratio 3 3 p/ 2 P in individual rain events. The

ratio 3 P/3 2 P in air increases between the time the nuclides are produced and the time

the aerosols are scavenged by precipitation because of the differential decay rates of 3 3 p

and 3 2 P. If one assumes that there is no fractionation during the condensation process,



then the increase in the ratio in the air will be exactly reflected in the rainwater. The

determination of the residence time is model-dependent. Both a non-steady-state and a

steady-state model were investigated. A non-steady-state model has been previously

applied to cosmogenic 7 Be (Lal and Peters, 1967; Shapiro and Forbes-Resha, 1976;

Bleichrodt, 1978) and to the ratio of two cosmogenic radioisotopes: (1) 3 3 p3 2 P (Lal et

al., 1957; Goel et al. 1959; Luyanas et al., 1979; Rama and Honda, 1961) and (2)

7 Be/3 2 P (Goel et al., 1959; Lal et al., 1960; Rama and Honda, 1961; Walton and Fried,

1962; Bhandari et al., 1970).

a) Non steady-state model

The mass-conservation equation for a radionuclide in a parcel of air is the fol-

lowing:

(2.1) dC/dt=aC/at+uC/ax+v3C/ay+waC/az=F-XC

Where C is the mean concentration, X is the decay constant, u, v and w are the mean

advective velocities in the x,y and z dimensions, and F is the mean production rate in the

troposphere. Equation (2.1) assumes that the radionuclides are continually produced and

lost by decay in the air mass. No removal term by precipitation is included, because

precipitation is a discontinuous process and will be treated as such. The model assumes

no mixing of the air mass with surrounding air. The solution of (2.1) is:

(2.2) C = F /X-(F /XA- CD) exp( -XAt)

Where C = C0 at t = 0. Furthermore it is assumed that at t = 0 both radioisotopes were

efficiently removed by washout. Thus CO = 0 and equation (2.2) becomes:

(2.3) C=F/ A (1-exp(-Xt))
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Table 2.4. Monthly averes f the activities of and "P (A and "A), rainfall rate (r) and wet
deposition rates of 3 and3 P W and 3W) at Bermuda in 1991 and 1992.

Month 32A 33A r W
dpm/I dpm/L 10 cm/min 10 dpm/cm2 /yr

Mar-91 1.46 1.45 3.47 2.66 2.64
Apr-91+ 0.78 0.86 1.23 0.50 0.55
May-91* 0.75 0.73 0.15 0.059 0.058
Jun-91 0.53 0.52 1.97 0.55 0.54
Jul-91 0.99 0.82 1.85 0.96 0.80
Aug-91 0.91 0.81 1A2 0.68 0.75
Sep-91 0.67 0.57 3.59 1.26 1.07
Oct-91+ 0.52 0.42 2.46 0.67 0.54
Nov-91 0.83 0.79 0.94 0.41 0.39
Jan-92 0.70 0.77 3.14 1.15 1.27
Feb-92 0.50 0.51 3.49 0.92 0.93
Mar-92 0.74 0.72 1.48 0.58 0.56

* Averages based on one data point.
+ Averages based on duplicates of the same rain event.

Table 2.5. Seasonal wet deposition rates of 32P and 33P e2W and 3W), seasonal activities e2 A and33A) and
seasonal rainfall rates (r). Spring refers to April, May and June; summer refers to July, August and
September; fall refers to October, November and December; and winter refers to January and February.

season 32A 3A r 3W 3W 3W 3W

dpm/1 dpm/1 cm/mon 10-2 dpm/cm2 /yr 10-3 atom/cm2 /min

Spring and 0.94 0.94 7.38 8.4±2.2 8.4±2.2 4.7±1.2 8.4±2.2
March 91
Spring 91 0.62 0.63 4.80 3.6±0.8 3.7±1.2 2.0+0.5 3.7±1.3
Summer 91 0.85 0.72 9.86 10.2±2.2 8.2±1.5 5.8±1.2 8.2±1.5
Fall 91 0.73 0.67 5.77 5.1±1.2 4.7±1.3 2.9±0.6 4.7±1.4
Winter 92 0.58 0.65 14.33 10.1±2.0 11.3±2.5 5.7±1.1 11.3±2.2

Annual 0.82 0.77 8.76 8.6±1.5 8.2±2.1 4.9±1.4 8.2±2.2
averages



Equation (2.3) describes the evolution of 32 P or I P attached to aerosols that are part of

an air parcel and thus move with it. The ratio R is then simply given by:

(2.4) R=C 3 3 /C3 2 =(F 3 3/F3 2 ) (3 2 /A3 3 ) (1 - exp(-X3 3 t))/(1 - exp(-3 2 t))

R is equal to Ro = F3 3/F3 2 at time to = 0 and reaches a limiting value of R = 1.77

F3 3 /F3 2 in approximately 300 days. In the troposphere, since the residence time of air

masses is shorter than 300 days (Lal and Perters, 1967; Poet et al., 1972; Moore et al.,

1973; Martell and Moore, 1974; Shapiro and Forbes-Resha, 1976; Bleichrodt, 1978;

Holloway and Hayes, 1982) the ratio 3 3 P,3 2 P in the air mass will increase until the

aerosols are removed by condensation and ultimately by precipitation. Therefore, the

ratio 3 3 P,3 2 P in an individual rain event is identical to the ratio in the tropospheric air

scavenged by the rain, and equation (2.4) becomes the following:

(2.5) Rr = (F3 3 /F 3 2 ) 1.77 (1 - exp(- X3 3 r))/(l - exp(- X3 2 T))

Where, R is the ratio in a rain event, and r is the average residence time of troposphericr
aerosols in an air mass that is being washed out by a particular rain event.

To summarize, the assumptions of this model are: (1) the air masses are con-

fined to the troposphere only; (2) the troposphere is well mixed; (3) no mixing occurs

during the movement of an air mass; (4) at to , C= 0; and (5) no fractionation of 3 2 P and

3 3 P occurs during condensation on the aerosols. The residence time calculated with

equation (2.5) can be in error if any of the assumptions is violated. This will be the case,

for example, if stratospheric air intrudes and mixes with the tropospheric air, or if the

lower and upper troposphere are isolated or partly isolated from one another.

The most important feature of the Bermuda data set, as stated previously, is the

small variability of the activity ratio 3 3 p 3 2 P, with values ranging from 0.66+0.10 to

1.220.14 (Table 2.1). According to the model, the ratio in rainwater should vary from



an initial ratio Ro to an equilibrium ratio Re equal to 1.77 times Ro . The range of ratios

observed at Bermuda is 0.66-1.22. The highest and lowest ratios observed are in a ratio

of 1.8 which is, within the error, identical to 1.77. Thus the data exhibit, within the uncer-

tainties of the measurements, the entire theoretical range, i.e. Ro to R . In view of the
e

fact that the errors on the measurements are around 0.1, the theoretical range of the ac-

tivity ratio could be 0.6 to 1.06 or 0.7 to 1.24 or any range in between that satisfies the

relationship R / Ro = 1.77.

Equation (2.5) allows the calculation of the residence time r of tropospheric

aerosols for each activity ratio 3 3 P3 P measured in individual rain events. Figure 2.6 is

a plot of equation (2.5) for different values of Ro : 0.60, 0.65 and 0.70. It is seen in

Figure 2.6 that the residence time of tropospheric aerosols cannot be determined precisely

if it exceeds 80 days. The residence time calculated for the two extreme values of Ro is

shown in Figure 2.7 and Table 2.6. It is high on average in March-April 1991 and

January-February 1992 and lower on average in August-October 1991. The activity

ratios are also averaged over a season and the corresponding residence time calculated

(table 2.3). From March to June of 1991 and January to February 1992, the residence

time averaged 52 10 days while from July to November 1991 it averaged 27±7 days,

assuming Ro = 0.7. If one assumes that Ro = 0.6 then the residence times are about 110

days and 55 days for the two periods. A value of Ro = 0.7 gives residence times that are

more consistent with previous estimate of 30-40 days (Beck and Kuroda, 1966; Lal and

Peters, 1967; Shapiro and Forbes-Resha, 1976; Bleichrodt, 1978).

b)- Global steady-state model

Another method of estimating the residence time consists of establishing a

steady-state mass balance for each isotope. The approach assumes that the mean produc-

tion rate of an isotope in tropospheric air masses is balanced by the sum of its decay and

its removal by precipitation:



(2.6) F=W+XC

(2.7) =(F - W) / (X W)

Where

W: mean wet deposition rate of 3 2 Por 3 3 Pin atom cm n

f32 r3pntM -2 -1
F: tropospheric production rate of 2 P o P in atom cm mn

X: decay constant of 3 2 P or 3 3 P in min~ ;

C: mean 3 2 P or 3 3 P concentration in tropospheric air in atom/cm 2

t: mean residence time of aerosols in the troposphere, 'r = C / W.

The monthly mean wet deposition rates of 3 2 P and 3 3 P (i.e., W3 2 and W3 3)

are given in table 2.4, and the seasonal means are given in table 2.5. Equation (2.7)

allows computation of t for each of the three particular periods late winter/spring of 1991

and late winter 1992 and summer/fall of 1991. It is assumed that, on these time-scales,

there is a balance between the production, decay and removal by precipitation of 3 2 P and

3 3 P. The average wet deposition rates are 5.25 10-3 and 9.65 10-3 aton/cm2 /min for 3 2 p

and 3 3 P, respectively, in late-winter/spring of 1991 and winter of 1992. For summer and

fall the wet deposition rates are 4.86 10-3 and 7.3 10 atom/cm2 /min for 3 2 P and 3 3 p,

respectively. The global tropospheric production rates have been estimated by Lal et al.

(1988) to be 1.6 10 and 1.3 10 atom/cm 2 /min for 3 2 P and 3 3 P, respectively cor-

responding to the years 1948-1949. Since the years 1992 and 1948/49 correspond to

periods of low production rates in the 11-year cycle, the estimates of Lal et al., (1988) are

used unmodified. The residence times are thus calculated for each isotope. For the

period March to June 1991 and January to March 1992, the residence time calculated for
3 2 p and 3 3 P are 42+12 days and 13+5 days, respectively. For the period July to

November 1991, the residence times are 47±15 days and 28+10 days for 3 2 P and 3 3 p

respectively. The residence times calculated with the steady-state model are similar to the

residence times calculated with the non steady-state model applied to the ratio 3 3 p/3 2 p

suggesting that steady-state is a good approximation on a seasonal time-scale.



VI DISCUSSION

In this section three aspects of the data will be discussed. First, the observations

made both at Woods Hole and at Bermuda will be compared to previous data on 3 2 P and

3 3 p in air and rainwater samples. Second, the contrast between winter/spring and

summer/fall of the wet deposition rates and the ratios will be compared to the general

patterns found in previous studies of short-lived cosmogenic nuclides and artificial

radionuclides. Third, the more detailed structures in the data on the ratio 3 3P/3 2 P in rain

will be discussed as well as the validity of the assumptions made in the non-steady state

model.

A range of 0.66 to 1.24 was observed for the activity ratio 3 3 P3 2 P in rainwater

in the samples collected both at Bermuda and at Woods Hole. The observed ratios were

somewhat lower than the ratios of 0.8 to 1.6 measured in rainwater by Goel et al. (1959)

and higher than the ratios of 0.42-0.56 determined in 3 rainwater samples by Lal et al.

(1957). Rama and Honda (1961) determined the 3 3 p 3 2 P activity ratio in air at different

altitudes, both in the troposphere and stratosphere, and found ratios ranging from 0.46 to

1.1, which are, within the uncertainties of the measurements, very close to my observed

range of ratios. Luyanas et al. (1970) reported ratios that are significantly lower, ranging

from 0.18 to 1.01 in surface air samples collected in 1967-1969. They argued that their

lowest values 0.18-0.26 were probably due to artificial sources of 3 2 P from weapon tests

and that they should be neglected, bringing their range to 0.3-0.4 to 1.0. Lal and Peters

(1962) estimated activity ratios in tropospheric air ranging from 0.46 to 0.81 using a

different approach. They measured a ratio of the production rates 3 3 p 3 2 P in Ar of 0.82

(atom ratio) or 0.46 (activity ratio) (Lal et al., 1960a). Their results suggest that the

expected range of ratios is lower than what I have found at Woods Hole and Bermuda.

The measurements of the production rates of 3 3 P and 3 2 P made by Lal et al. (1960a)



differ from the calculation done earlier by Lal (1958) that predicted a 3 3 P,3 2 p

production-rate ratio of 1.1 (atom ratio). This discrepancy might be due in part to the

difficulty of measuring 3 3 P, since very few direct measurements of the production rates

of 3 2 P and 3 3 P were made. It appears that the measured ratios, either in air or rain, have

a wider range than would be predicted by the non-steady-state model (Ro to 1.77 Ro ). It

is probably due to difficulties in measuring 3 2 P and 3 3 P. It might possibly be because

the troposphere is not always well mixed but divided into upper and lower zones. It is

conceivable that an air mass could spend a long time in the lower troposphere (which has

small production rates of 3 2 P and 3 3 P) before the aerosols are being scavenged by

precipitation. Once the air mass is confined to the lower troposphere the 3 3 p? 2 P ratio

would exponentially increase and increase much faster than if the air mass was irradiated

in the whole troposphere. This might explain why high ratios (i.e., higher than the ratios

predicted from secular equilibrium) are observed.

A contrast that is possibly seasonal has been observed in the activity ratio
3 P,3 2 P at Bermuda. High ratios were observed in March-June 1991 and January-

March 1992 at Bermuda. Ratios significantly higher than the annual average were

observed in April 1991 and January-February 1992. Significantly lower ratios were

observed in September-October 1991. Residence times based on the ratio were high in

March-June 1991 and January-March 1992 period averaging 50 10 days while they

averaged 27±7 days in the July-November 1991 period. The long apparent residence

time of 50 days was higher than the estimates of 30-40 days (Beck and Kuroda, 1966; Lal

and Peters, 1967; Shapiro and Forbes-Resha, 1976; Bleichrodt, 1978). The observations

might be explained by a stratospheric input during that period, "apparently" increasing the

residence time. Stratospheric air is characterized by high 3 1 P,3 2 P ratios because both

radioisotopes are in equilibrium with their production rates due to the long residence time

(about 14 months) of stratopheric air. The data suggest that the activity ratio 3 3 P,3 2 P in



stratospheric air is about 1.1-1.2. Intrusion of high " P,3 2 P air would explain the ap-

parent old age of tropospheric air masses in March-June 1991 and January-March 1992.

It might also explain the high ratios observed in individual rain samples in summer 1991.

The observed high ratio in April 1991 is consistent with evidence of a seasonal stratos-

pheric intrusion of 9 0 Sr in the spring at Bermuda (Health and Safety Laboratory, 1977).

Figure 2.8 shows a 6-year record of 9 0 Sr in precipitation with a marked peak in the

spring of every year. The high ratios and deposition rates observed in the winter and

spring at Bermuda are due possibly to: (1) stratospheric intrusion at high latitudes (45-50

* N) and subsequent advection of that air to lower latitudes or (2) stratospheric intrusion

at low latitudes (20-30 * N). The southward advection of high latitude, high altitude air

masses is markedly visible in the distribution of ozone in the atmosphere of the northern

hemisphere (Johnson and Viezee, 1981). It is furthermore confirmed by trajectory

analysis which shows that in the winter most of the air masses traced 10 days before

reaching Bermuda come from the American continent at both high latitudes and altitudes

(J. Merrill; AEROCE meeting, 1991).

A change in the convective mixing in the troposphere can explain some of the

contrast observed between the two periods. In the summer, convection is more efficient

than in the winter, leading to more extensive mixing between the lower and upper tropo-

sphere. It is evidenced by 2 1 0 Pb and 2 2 2 Rn determined on aerosols at the AEROCE

site at Bermuda (western tip of the island). The ratio 2 1 0 Pb/2 2 2 Rn is higher in the

summer than in the winter because of increased convection in the summer delivering high

activities of 2 1 0 Pb to the lower troposphere (W. Graustein, personal commmunication at

AEROCE meeting 1992). The magnitude of vertical mixing in the troposphere affects

the activity ratio 3 3 P,3 2 P. Increased mixing between the lower and upper troposphere,

following a period of stable stratification, would decrease the residence time determined

from the activity ratio 3 3 p/ 2 P in rainwater.



The residence time of 27±7 days estimated in the summer and fall 1991 at

Bermuda is consistent with previous studies of short-lived radionuclides (Bleichrodt,

1978; Shapiro and Forbes-Resha, 1976; Lal and Peters, 1967) and artificial nuclides

(Beck and Kuroda, 1966). It is in disagreement with most of the studies of the radon

daughter nuclides which tend to show residence times on the order of a week (Poet et al.,

1972; Moore et al., 1973; Martell and Moore, 1974; W. Graustein, personal communica-

tion at AEROCE meeting, 1992). The disagreement might be in part due to: (1)

stratospheric input that tends to apparently increase the residence time as determined by

the cosmogenic nuclides and/or: (2) poorly mixed troposphere with increasing residence

times with altitude. The determination of r, as explained previously, is very sensitive to

the choice of the initial ratio 3 3 p 3 2 P. The estimate of 27 days assumes that Ro is 0.7.

That estimate was also calculated from the average ratio 3 3 p 3 2 P in the rain in summer

and fall 1991. It is observed in figure 3.1 that the ratio exhibits some high values in the

summer and fall and that they could correspond to air originating in the stratosphere.

Therefore, the residence time of 27 days determined in the summer could be overes-

timated if the peaks in the ratio are truly associated with stratospheric air intrusion.
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Table 2.6. Residence time (,t) derived from the activity ratio "PP (R) in each precipitation event
sampled. Samples collected the same day were averaged. iT is calculated assuming that; (1) Ro = 0.7;
and (2) Ro = 0.6.

date R Residence time iT
dpm/dpm days

Ro =0.7 range* Ro =0.6 range*

05-Mar-91
10-Mar-91
20-Mar-91
22-Apr-91
01-May-91
11-Jun-91
20-Jun-91
27-Jun-91
07-Jul-91
08-Jul-91
18-Jul-91
19-Jul-91
07-Aug-91
26-Aug-91
05-Sep-91
1 1-Sep-91
14-Sep-91
16-Sep-91
29-Sep-91
28-Oct-91
07-Nov-91
17-Nov-91
16-Jan-92
21-Jan-92
25-Jan-92
31-Jan-92
02-Feb-92
14-feb-92
17-Mar-92
26-Mar-92

0.91±0.14
0.99±0.08
1.08±0.08
1.13±0.09
0.97±0.12
0.87±0.11
1.10±0.12
1.02±0.12
0.71±0.11
0.66±0.10
1.02±0.14
1.16±0.16
0.81±010
0.97±0.11
0.70±0.09
0.87±0.10
1.00±0.15
0.80+0.09
1.03±0.13
0.81+0.10
0.98±0.13
0.92±0.13
1.00±0.14
1.13±0.12
1.08±0.15
1.09±0.13
1.20±0.14
0.91±0.12
0.94±0.18
0.98±0.12

31
45
65
83
41
25
72
52
14
0
52
95
16
42
0
25
47
14
54
15
43
32
47
83
65
70
120
31
37
43

10-57
30-62
47-95
56-150
21-70
8-43
43-150
28-85
0-32
0-8
26-95
47->290
1-31
23-65
0-12
10-42
22-90
2-27
28-95
4-27
22-75
12-58
23-85
50->290
35-180
40-150
60->290
12-53
8-80
18-85

61
95
290
290
85
50
290
110
19
10
110
290
37
85
17
50
100
35
130
37
90
64
100
290
290
290
290
60
70
90

30-160
60->290
>290
>290
45->290
27-90
>290
57->290
0-37
0-27
53->290
>290
18-60
48->290
1-32
30-85
45->290
18-55
58->290
18-60
45->290
32-160
48->290
>290
>290
>290
>290
32-130
27->290
48->290

* range: RO -a to Ro +a.
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CONCLUSIONS

1. A contrast was observed between March-June 1991/ January-March 1992

and July-November 1991, possibly suggesting a seasonal change in the atmospheric

processes at Bermuda. Activity ratios 3 3 pp 2 P higher than the annual average of 0.96

were observed in April 1991 and January and February 1992 at Bermuda. Lower-than-

average activity ratios were observed in September and October 1991. The contrast

might be due to seasonal changes in mixing of stratospheric air and/or changes in mixing

between upper and lower troposphere. Injection of stratospheric air due to tropopause

folding might explain the high ratio observed in April 1991 at Bermuda.

2. The calculated residence time of tropospheric aerosols of 27+7 days could be

overestimated if the high ratios observed in July to November 1991 are due to stratos-

pheric air mixing with tropospheric air. The residence time would also be overestimated

if the troposphere is not well mixed.

3. The range of activity ratios in rainwater suggests that the ' 3 P,3 2 p

production-rate ratio is 1.06-1.24 (atom ratio).
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Chapter Three

IN SITU PRODUCTION OF COSMOGENIC

32P AND 33P IN SEAWATER

I INTRODUCTION

Cosmic rays are capable of inducing nuclear transmutations in the atmosphere,

in the oceans and in rocks. These interactions result in the production of a suite of

radionuclides. Spallation reactions on atmospheric Ar are believed to be the major

mechanisms for the production of 3P and 3P on earth (Lal and Peters, 1967). In the

ocean, it is believed that an additional source derives from spallation reactions on Cl, S

and K in seawater (Lal et al., 1988), but direct measurements of the production rates of

both 32P and 33P are scarce, preventing accurate assessment of the importance of this

process relative to the wet deposition of 3P and 3P produced in the atmosphere.

The purpose of this study was to investigate the in situ production of 3P and 3P

in seawater relative to their fallout rates via wet deposition at Bermuda (geomagnetic

latitude X = 43.6 0 N). NaCl, KNO 3 , MgSO 4 and CCL4 targets were exposed to cosmic

rays at sites of different altitudes. The sites chosen were Mount Washington, New

Hampshire (X = 55.7 0 N, altitude = 1917 m); 1' Aiguille du Midi, France (X = 47.4 0 N,

altitude = 3840 m); and Woods Hole, Massachusetts (X = 53 0 N, altitude = 0 m).



H BACKGROUND

Primary cosmic rays interact strongly with atmospheric nuclei giving rise to

secondary cosmic rays. Pomerantz (1971) described 3 types of cosmic ray components:

(1) the nucleonic or nuclear-active component (neutrons and protons), (2) the meson or

hard component (pions and muons), and (3) the electromagnetic or soft component

(electrons and y-rays). Muons are weakly interactive particles and do not generally

contribute significantly to the production of cosmogenic nuclides in the atmosphere,

except in the case of Cl, for which muon capture by 4Ar is the major production

mechanism (Winsberg, 1956). In fact, the majority of the nuclear disintegrations are

induced by neutron capture or nucleonic spallation reactions (Rossi, 1952; Lal and Peters,

1967). The nuclear disintegration rates and the production rates in the atmosphere are

approximated by an exponential increase with altitude. In the atmosphere, the attenuation

length of the production rates of most cosmogenic nuclides, e.g. Be, 3P, 3P, 3Cl (Rama

and Honda, 1961; Mabuchi et al., 1971; Nakamura et al., 1972; Zreda et al., 1991), is

identical to the attenuation length of neutrons in air (Rossi, 1952; Simpson and Fagot,

1953; Hess et al., 1959). The attenuation length of slow neutrons (neutrons responsible

for the spallation reactions, typically with E > 40 MeV) is a constant at a given latitude in

the lower troposphere and was determined to be 145 ± 5 g/cm 2 at geomagnetic latitudes

of 40-55 0 N (Simpson and Fagot, 1953; Yamashita et al., 1966; Lal, 1991). As a result

of the neutron dependence, the production rates of nucleonic spallation products vary

significantly with latitude. The magnitude increases substantially toward the poles,

reflecting the higher neutron fluxes at high latitudes due to decreased shielding of cosmic

rays at the poles (Rose et al., 1956; Lal and Peters, 1967).

The magnitude of nuclear disintegration rates and of the production rates of 3P

and 33P have been estimated previously by two nuclear physics methods (Lal, 1958; Lal

and Peters, 1967) and by direct measurements of the activities produced in a particular



target (Lal et al., 1960; Bhandari et al., 1968). The nuclear physics methods refer to two

distinct methods. The first method is a theoretical one and relies on the knowledge of the

neutron flux and the cross section of interaction. The second method is experimental and

consists of determining the nuclear disintegration rate and the yield of the spallation

reaction. The direct measurements of the production rates of 3P and 3P in Ar gas have

allowed independent verification of the calculations (Lal et al., 1960; Bhandari et al.,

1968). The latitude and altitude coverage of the production rates of cosmogenic nuclides

determined by direct measurement is very scarce. In contrast, the neutron flux has been

measured extensively with neutron monitors and is relatively well known at all latitudes

and altitudes. The wide coverage of the neutron monitors has allowed extrapolation of

the few direct measurements of production rates to all latitudes and altitudes (Lal and

Peters, 1967). The nuclear disintegration rate due to neutrons has been parameterized in

the form of polynomials expressed as a function of altitude for particular latitudes be-

tween 0 and 900 N (Lal, 1991). These polynomials serve as altitude and latitude scaling

factors for any direct measurement.

In seawater, production of 3P and 3P can occur via nucleonic spallation reac-

tions in Cl, S and K due to the abundance of these targets. The in situ production rates

have been estimated recently (Lal et al., 1988) based on the data of Rama and Honda

(1961). The nucleonic spallation in 3S inducing 3P has a well known cross section and

thus the production rate of 3P can be calculated fairly accurately. Otherwise, there have

been a few direct measurements of the production rate of 3P in S and Cl exposed to cos-

mic rays (Rama and Honda, 1961, Husain and Kuroda, 1968; Mabuchi et al., 1971) but

none at all in K. In the case of 33P, there has been one measurement of in situ production

in Cl by Rama and Honda (1961). The nucleonic spallation reactions which are believed

to occur in each target are given in table 3.1.



Although neutrons are the major cosmic ray component responsible for nuclear

disintegrations in the atmosphere, at the earth's surface and below the neutron flux is

substantially diminished. In contrast, the muon attenuation length is an order of mag-

nitude larger than that of neutrons (Kurz, 1986; Lal, 1987; Bilokon et al., 1989).

Although muons are weakly interactive particles, they can become the primary source of

cosmogenic nuclides at depth below the surface (Rama and Honda, 1961; Tanaka et al.,

1968; Takagi and Tanaka, 1968; Mabuchi et al., 1971; Hampel et al., 1975; Lal, 1988;

Nishiizumi et al., 1989). For instance, Mabuchi et al. (1971) detected 3P in CS2 exposed

at sea level and underground and reported that a significant fraction of the production of

P at depth is due to muons according to the reaction 3S(s-,y) P.

Variations in the neutron flux can occur over time, and it is important to ex-

amine the time scale of these variations with respect to the half-life of 3P and 3P. It is

well known that changes in the production rates occur due to changes in the solar mag-

netic activity. It is well established that solar activity modulates the intensity of cosmic

rays, and by far the most pronounced effect is the 11-year solar cycle (O'Brien, 1979; Lal

and Peters, 1967). Other shorter time-scale variations occur as well, like the reduction in

cosmic ray intensity, i.e. Forbush effect (Lockwood, 1962) or the 27-day variations (Lal

and Peters, 1967). Changes in the neutron flux associated with the 27-day cycle are

small, and its effect on the production rates has usually been neglected (Lal and Peters,

1967). Solar flares can produce dramatic increases in the neutron flux by factors of 1 to 2

(Lockwood, 1962), but this effect is limited in time to a few hours up to a day and is thus

generally neglected. Similarly the Forbush effect, which produces a decrease of the

neutron flux, is limited in time to a few days and is also neglected (Lockwood, 1962).



Table 3.1. Nuclear reactions occurring
in nucleonic spallation of Cl, S and K.

Target Reaction

35 C 35C1 (n,a) 31p

35C 5C, (n,2pn) 33P

C1 3 C1 (n,a2n) 1

3CI 37C1 (nan) P

32S 32S (np) 3

39K 39 32

39K 39K(na2pn) 33P



HI Experimental procedure

Salts of NaCI, MgSO 4 , KNO 3 as well as CC14 were exposed on Mount

Washington (geomagnetic latitude 55.7 0 N, altitude 1917 m), on l'Aiguille du Midi (47.4

0 N, 3840 m) and at Woods Hole (53 0 N, 10 m). The salts were packed in polyethylene

bags and heat sealed. The carbon tetrachloride was exposed in 2.5 liter glass bottles. The

targets were placed on the roofs of buildings at each site and away from obstacles (i.e.,

walls) to allow a 2H geometry. The targets were exposed for a minimum of 2 months,

after which the activities produced should have been more than 95% and 83% of satura-

tion exposure for 3P and 3P respectively. At Woods Hole and on 1' Aiguille du Midi a

combination of salts was exposed. The salts consisted of NaCl, KCl, CaCl2 .H2 0 and

MgSO 4 mixed in the proportions as they occur in seawater (i.e., Cl: 19.35 g/kg, SO4 :

2.71 g/kg, K: 0.40 g/kg and Ca: 0.41 g/kg). Chlorine is the most abundant target in

seawater, and more experiments were pursued with that target than any other. The

samples were generally processed within 4 days after the end of the exposure. The salts

exposed on l'Aiguille du Midi were sent by air to WHOI (flight was approximately 6

hours at 10-11 km at 50-55 0 N). On Mt. Washington, NaCl, KNO 3 , CCL4 and MgSO 4

were exposed separately for 68 days on top of the Observatory. The targets were brought

quickly to WHOI and analyzed.

No corrections for initial activities were made for the high altitude exposure

experiments, because exposure to cosmic rays was long enough (68 and 82 days) to

ensure virtually complete decay of any initial activity of 3P. The production rate of P is

expected to be very low at sea level, so, in the small quantities of laboratory chemicals

exposed at high altitudes, 33P would be undetectable prior to exposure (activity below the

error on the background of 0.01-0.02 cpm). For the exposure experiment at sea level, a

blank of 1 kg of NaCl was run. No activities were detected in the blank within an error of

0.01-0.02 cpm associated with the background. At most the initial activity was 0.02 cpm



in 1 kg of NaCl or 0.2 cpm in 10 kg. After 64 days of exposure the activity of 3P would

be 4% of the initial activity (i.e., 0.006 cpm), and the activity of 33P would be 17% of the

initial activity (i.e., 0.008 cpm). It is thus assumed that no corrections for initial activity

have to be made for any of the experiments.

After exposure the salts were dissolved in distilled water. The salts exposed at

Woods Hole were dissolved in a 140-liter drum, while all the others were dissolved in 20-

liter cubitainers. Each solution was spiked with KH 2 PO4 . An FeCl3 solution and then

an excess of ammonia were added to each solution to precipitate Fe(OH) 3 . The

precipitate of ferric hydroxide was allowed to settle. The supernatant was decanted and

the precipitate was centrifuged, washed, and finally dissolved in HCl. The solution was

then boiled to a small volume. Nitric acid was added and the solution boiled until HCl

was all removed. Finally the nitric acid solution was made 1 N. The rest of the chemical

separation procedure is explained in Chapter One.

Phosphate in the carbon tetrachloride phase was extracted into the aqueous

phase in a two-liter separatory funnel. The 4 L of CCL4 were extracted 1 £ at a time. For

each extraction, 1 1 of distilled water was spiked with KH 2 P04 . The two phases were

shaken vigorously for 3 to 4 minutes and allowed to separate for half an hour. After each

separation, the P0 4 in the aqueous phase was measured by the classic molybdenum blue

method (Murphy and Riley, 1962). 100% of the KH2 P0 4 added was recovered in the

aqueous phase after each separation. Phosphorus was co-precipitated with Fe(OH)3.

The rest of the procedure is identical to the one described for the salts.

IV RESULTS AND DISCUSSION

The production rates of 3P and 3P were calculated for each target at each site

according to the following equation:



(3.1) dC(t)/dt=F-XC(t)

The solution of equation (3.1) is:

(3.2) C(t)=F/%-(F/X-CO)exp(- Xt)

where

C(t): concentration of 32P or 33P at time t (atom/mol target);

C&: concentration of 3P or 3P at the beginning of exposure (atom/mol target);

F: production rate of 3P or 3P (aton/min/mol target);

X: decay constant of 3P or 3P (min~ );

It was assumed that CO << F / X (no initial concentrations of 3P or 3P), thus equation

(3.2) becomes:

(3.3) A(t) = C X = F (1 - exp (% t))

where

A(t): activity of 3P or 3P at time t.

The activities of 3P and 3P produced in each target at the end of the exposure period were

computed from the net count rates, the counting efficiencies and the chemical yield

(Table A. 10). Corrections for saturation exposure were done using equation (3.3). The

production rates of 3P and 3P in Cl, S and K at each site are presented in table 3.2. For

the sample exposed on 1' Aiguille du Midi and sent by air, no corrections were made to

account for the in situ production of 3P and 3P during the 6 hour flight. The production

rates at 10 km for an open exposure (not shielded by the aircraft structure) are estimated

to add a 10% and 7% contribution to the production rates at 3840 m for 3P and 3P,

respectively. In reality there is shielding and the contribution during the flight is some-

what smaller than the calculation for open exposure.

The logarithm of the production rate of 3P and 3P in chlorine was plotted as a

function of altitude (Figure 3.1). The altitudes or atmospheric depths, expressed in

g/cm2 , were calculated using the polynomial fit of the altitude/pressure curve of the

Manual of the ICAO standard atmosphere given by Lal (1991). The curve fits of the



logarithm of the production rate of 3P and 3P yield slopes which allow the determination

of the exponent and thus of the attenuation length. The production rates as a function of

altitude can be approximated by the following relationship:

(3.4) P = Po exp((1033 - z) / L )n
where

P is the production rate at altitude z (g/cm2 ).

Po is the production rate at sea level, i.e. z= 1033 g/cm2 .

L : attenuation length of the production rate.

The logarithm of the production rates is thus simply approximated by:

(3.5) Ln P = Ln Po + 1033 / L - z / L
n n

A value of L = 155 + 15 g/cm2 is calculated for the attenuation length of the productionn
rate of 3P. This value agrees well with the previously determined neutron attenuation

length of 145 g/cm2 at 40-50 0 N in the lower troposphere (0 - 5 km). The good agree-

ment between the attenuation length of the production rate of 32P and the previously

estimated value of 145 g/cm 2 confirms that neutrons are the major cosmic rays inducing

P in chlorine.

For 33P the least-squares fit of the logarithm of the production rate as a function

of altitude gives an attenuation length of 195 ±50 g/cm2 . The errors on each individual

production rate measurement of 3P in Cl are large, which implies that the inverse of the

slope of the fitted line is not precisely determined with only three measurements. In table

3.3, the production rates of 3P and 3P in Cl and S obtained in this study are compared

with previous estimates. They differ form the results of Rama and Honda (1961), and

Husain and Kuroda (1968), but the production rate of 3P in S is in good agreement with

the estimate of Mabuchi et al. (1971).



Table 3.2. Production rates of 32 and 3P
Washington and Woods Hole.

in Cl, S and K targets at 1' Aiguille du Midi, Mount

Sample, location, Target Production rates Atom

weight, target, exposure time 103 atom/min/mol ratio

32P 33P 33P/ 32P

Woods Hole (0, 530 N)
Exposure: 64 days

C1-WH*
10 kg: NaCl, KCl, MgSO4 , CaCl2 Cl 3.0±0.6 1.4 ± 0.5 0.5 ±0.2

Mt. Washington (1917m, 55.70 N)
Exposure: 68 days

Cl-MW
4.2 kg: NaCl Cl 32+7 7+2 0.2±0.1
Cl4 -MW
6.4 kg: CC4 Cl 10+1 4+1 0.4 0.1
K-MW
4.2 kg of KNO3 K 10±3 n.d. n.d.
S-MW
1.9 kg of MgSO4 S 27+7 n.d. n.d.

Aiguille du Midi (3840 m, 470 N)
Exposure: 82 days
Cl-MA*
2.4 kg: NaCl, KCl, MgSO4 ,CaCl2 Cl 37 ±4 10 ±2 0.27 ±0.06

* In these samples Cl is the overwhelmingly dominant target and thus the amount of target refers
to Cl.
n.d.: Not determined.
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Figure 3.1. Logarithm of the production rates of 32P and P in chlorine target. The
least-squares of the logarithm of the production rates are computed.
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Table 3.3. Comparison of published estimates of the production rates of 1P and 3 P in C1 and S at sea
level

Reference Geomagnetic Target Production rate
latitude atom/ min/ kg target

3233P

Rama and Honda (1961)
44 N Cl 0.24±0.03 0.09±0.04
44 N S 0.52±0.06 n.d.

Husain and Kuroda (1968)
49 N Cl 0.76±0.08 n.d.
49 N S 1.5+0.1 n.d.

Mabuchi et al. (1971)
25 N S 0.18 0.04 n.d.

(44 N)* S (0.20))*
This work

47-55.7 N Cl 0.07 ±0.01 0.026±0.007
55.7 N S 0.16±0.04 n.d.
55.7 N K 0.05 0.01 n.d.

n.d.: Not determined.
* Results extrapolated to 44 0 N by Mabuchi et al. (1971).



To assess the relative importance of the in situ production rates of P and 3P in

the upper ocean versus the wet deposition rates of 32P and 33P at Bermuda (43.6 0 N), the

measured production rates at the three sites were scaled to the same altitude (i.e., sea

level) and to a geomagnetic latitude of 43.6 0 N. The altitude and latitude scaling were

done using the polynomials of the nuclear disintegration rates given by Lal (1991).

Linear interpolations of the coefficients were made to determine the particular polyno-

mials for the latitudes of the study sites. The latitudinal variations turn out to be very

small, and thus the latitudinal corrections to scale the production rates to 43.6 * N were

small.

The production rates of 3P and 3P (in atom/min/mol) were then determined,

taking into account the concentrations of the target in seawater. The production rates of

P and 3P in the upper ocean (in atom/min/cm 2 ) were then calculated by integrating from

0 m to infinity, the following relationship:

(3.6) Pz = Po exp(- z / L ) , the integration gives:

(3.7) P = Po L
n

where P is the integrated production rate in the upper ocean.

Pz is the production rate at a depth z below sea level.

Po is the production rate at sea level, i.e. z= 0.

L : attenuation length of neutron in seawater.

The attenuation length of neutrons in seawater below the surface is somewhat

different than the attenuation length above the surface. Authors have reported attenuation

lengths of 155 ± 15 g/cm2 for the in situ production of cosmogenic nuclides in rocks

exposed at the surface (Kurz, 1986; Lal, 1987; Brown et al., 1992). It is assumed in the

calculation that the attenuation length of neutrons below the earth's surface is the same in

seawater as in rocks. An average value of 155 g/cm 2 is chosen for the calculation. The

results are presented in table 3.4. The in situ production rates of 3P and P in Cl, K and S

are then calculated by adding the production rates of 3P and 3P measured for each target.



Unfortunately, the production rate of 3P in K could not be determined because of the

thickness of the source. The in situ production rates of 32P and 3P in the upper ocean at

bermuda (43.6 4 N) are thus determined to be 2.2 + 0.4 104 atom/cm2/min for 3P and 8 +

3 10 atom/cm2 /min for 3P. In table 3.5, the in situ oceanic production rates of P and 3P

at other latitudes are then computed, using the polynomials of the disintegration rates as

scaling factors (Lal, 1991). These production rates are a factor of three lower than the

mean in situ oceanic production rates estimated by Lal et al. (1988).

The length of the salt exposure experiments (July to September 1992) is ex-

amined with respect to the longer time record of the neutron flux to investigate time

changes in the production rates. Figure 3.2 shows the neutron count rate given by the

neutron monitor at the Mt. Washington Observatory since 1954. It is observed that 1991

corresponds to a year of minimum neutron flux in the 11-year solar cycle. Although the

major variations in the neutron count rate are due to the 11-year cycle, there are neverthe-

less variations of up to 10% on time scales of 60-80 days (see years 1982 and 1991 in

figure 3.2). Therefore the in situ production rates of 3P and 3P determined in 1992 on

time scales of 64-80 days, are possibly offset from the mean of the low neutron flux

period by 10%. That correction will be made when the neutron data become available for

1992. The mean of the neutron flux varies by factors of 20-25 % between a low and a

high flux period of the 11-year cycle. It is thus expected that the production rates of

radiophosphorus will also vary by 20-25% between a low and a high flux period.



Table 3.4. In situ oceanic production rates of 3P and "P in C, S and K
targets. The production rates are calculated for the upper ocean and
geomagnetic latitude of Bermuda (X = 43.6 0 N)

Sample Target Production rate
atom/cm2 /min

32P 33

C1-WH Cl 2.4*10 1.1*10
Cl-MW C1 5.1*10 1.1*10
C4 -MW CI 1.6*10-4 0.6*10
K-MW K 2.8*10- n.d.
S-MW S 2.2*10-5 n.d.
Cl-MA C1 1.9*10 0.5*104

n.d.: Not determined.

Table 3.5. In situ oceanic production rates of 3P and 3P

Geomagnetic Production rate

latitude atom/cm2 / min

32P 33 P

0 1.3 10 0.510~4
10 1.4 10 0.5 10~4
20 1.6 10 0.610~4
30 1.9 10 0.710~4
40 2.1 10 0.8 10~
43.6 2.2 10 0.810~4
50 2.3 10 0.810~4
60-90 2.3 104 0.810~4
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Figure 3.2. Forty-year record of the neutron count rate recorded by the neutron detector at the Mount Washington
Observatory (from J. Lockwood).



V CONCLUSION

The total in situ production rates of 3P and 3P due to nucleonic spallation are

estimated to be 2.5 + 0.4 10 atom/cm2 min for 3P and 8 + 3 10 atom/cm2 /min for 3P

at Bermuda (43.6 0 N). These production rates are small compared to the annual wet

deposition rates of 5 10- atom/cm2 /min for 3P and 8 10 atom/cm2 /min for 3P at

Bermuda (5 and 1 %, respectively).

This investigation has not included the quantification of the production rates

due to muons. The above production rates are thus lower limit estimates. It is known

from previous studies that muons can contribute to the production rate of cosmogenic

nuclides, but the contribution is only a fraction of the production rate due to neutrons,

which is in turn a small fraction of the wet deposition rates. It is thus believed that the

muon contribution does not significantly affect the conclusion that in situ production is

small compared to wet deposition. There have been no studies of the muon production of

P and 3P in Cl, and that needs to be pursued to fully assess the importance of that

process on the in situ production of 3P and 3P.
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Chapter Four

COSMOGENIC 32P AND 33P RECYCLING

IN PLANKTON OFF BERMUDA

I INTRODUCTION

In spite of the tremendous potential of cosmogenic radioisotopes of phosphorus

for tracing short-term processes involving phosphorus, their extremely low natural abun-

dance in the marine environment has impeded their use in biogeochemistry. Early studies

utilizing artificial 3 2 P took advantage of the release of the tracer from the water cooling

system of nuclear reactors (Chakravarti, 1964). In a later study 3 2 P was released in a salt-

marsh to trace the P cycle in that ecosystem (Pomeroy et al., 1967). It is only recently

that the first measurements of naturally produced cosmogenic 3 2 P were obtained in the

total dissolved phosphorus (TDP) pool (Lal et al., 1988; Lal and Lee, 1988, Lee et al.,

1991), in the dissolved inorganic phosphorus (DIP) pool (Lee et al., 1992), and in

plankton (Lal et al., 1988; Lal and Lee, 1988), opening new avenues for studying the P

cycle in the environment. Although it is very desirable to utilize both radioisotopes, only

four measurements of cosmogenic 3 3 P in seawater have been reported (Lal and Lee,

1988).



The difficulty in measuring 3 2 P and 3 3 p is due both to their low activities in

seawater and to the relatively large amount of stable phosphorus, which hinders detection

of the radioisotopes, particularly the soft -emitting 3 3 P. All previously published data

on 3 2 P in plankton were collected from eutrophic provinces of the ocean, and 3 3 P could

hardly be detected because of self absorption in the source due to the large amount of

stable P (Chapter One). In that respect the Sargasso Sea, with its low DIP and paticulate

total phosphorus (PTP) concentrations, is an ideal ocean province to pursue a study of
3 2 P and, especially, 3 3 p.

In this chapter, the activity ratio 3 3 p 3 2 P is used as a means of assessing the

residence time of phosphorus in different size fractions of particulate matter and trophic

position. The principle of the use of the activity ratio 3 3 P,3 2 P is that the ratio increases

with time due to the differential radioactive decay rates of 3 3 P and 3 2 P. An increase in

the ratio in plankton relative to rain or total dissolved phosphorus can be interpreted as

aging of the phosphorus in that plankton pool or in the pool from which it is derived,

assuming that isotopic fractionation is small. Finally the in situ grazing rate of

zooplankton is estimated from the specific activities of 3 2 P and 3 3 P in both suspended

matter and plankton tows.

H BACKGROUND

While there has been limited use of natural cosmogenic 3 2 P and 3 3 P, tracer

techniques have been applied extensively to study both marine and freshwater ecosys-

tems. Uptake rates by phytoplankton and turnover times of P in plankton have been

consequently determined in the marine system (Perry, 1976; Harrison et al., 1977; Perry

and Eppley, 1981; Herbland, 1984; Sorokin, 1985; Harrison and Harris, 1986). The

studies showed substantial recycling of phosphorus during the short incubation periods

suggesting an underestimation of uptake rates by these methods (Harrison, 1983;



Harrison and Harris, 1986). In addition, tracer techniques have been applied to the study

of exchange rates between DIP, dissolved organic phosphorus (DOP) and PTP in

seawater (Watt and Hayes, 1963). Assimilation efficiencies of P of single species of

zooplankton or natural assemblages have been determined using 32 P in laboratotry

experiments. Some of the studies have been reviewed by Corner and Davies (1971).

The Sargasso Sea is an oligotrophic oceanic province. Typically DIP con-

centrations in the upper ocean, as determined by the standard colorimetric method

(Murphy and Riley, 1962; Koroleff, 1983), are below 20-30 nM (Boyle et al., 1986; Knap

et al., 1991 and 1992; Michaels et al., 1992). With the recent improvement of analytical

techniques, it has been possible to measure DIP concentrations as low as 1-2 nM at sta-

tion S (320 10' N; 640 30' W) (Ormaza-Gonzalez, 1990). On average DIP

concentrations are about 10 nM while at station ALOHA in the central Pacific gyre, they

are typically about 100 nM in the upper ocean (Karl and Tien, 1992). Particulate total

phosphorus (PTP) is also low, ranging from a few nM to 60 nM in the Sargasso Sea and

is typically around 10 nM (Bishop et al., 1986a; Ormaza-Gonzalez, 1990; J. Ammerman,

personal communication at BATS workshop 1992). Particulate nitrogen (PN) is also very

low, ranging up to 0.5 sM (Altabet, 1989; Knap et al., 1992). While DIP and PTP pools

have similar sizes, DOP is by far the major pool of P at BATS station (310 50'N, 640 10'

W) and at station S, with typical concentrations of 100-250 nM (Ormaza-Gonzalez, 1990;

J. Ammerman, personal communication at BATS workshop 1992).

Despite the importance of P in the ocean, the study of the P cycle has been

neglected in favor of C and N, partly because of the difficulties of conventional tracer

techniques, measurement and sampling techniques, and the perception by biologists that

N is the limiting nutrient in the ocean (Eppley et al., 1973; Eppley and Peterson, 1979;

Goldman et al., 1979; Perry and Eppley, 1981; McCarthy and Carpenter, 1983).



Phosphorus is an essential element for living organisms and is regarded by geochemists

as the ultimate nutrient limiting productivity in the ocean because of nitrogen fixation

(Redfield, 1958; Redfield et al., 1963; Broecker and Peng, 1982; Smith 1984; Smith and

Atkinson, 1984; Fanning, 1989). In addition, very few studies have succeeded in quan-

tifying the flux of phosphorus to the deep ocean due to large uncertainties in the C/P ratio

in sinking particulate matter. The observed ratios, i.e 150-900, are found to be generally

higher than the predicted ratio of 106/1 by Redfield or of 127/1 predicted by Peng and

Broecker (Bogdanov and Shaposhnikova, 1971; Bishop et al., 1977; Knauer et al., 1979;

Bishop et al., 1980; Knauer and Martin, 1981; Bishop et al., 1986b; Martin et al., 1987;

Liebezeit, 1991). Phosphorus recycling in the upper ocean appears to be more efficient

than cycling of carbon and nitrogen. It is also suggested by the high release of P relative

to N during remineralization of both particles (Vaccaro, 1963; Grill and Richards, 1964;

Harrison, 1980) and organic matter (Jackson and Williams, 1985; Smith et al., 1985;

Smith et al., 1986; Orrett and Karl, 1987). In addition, P is released rapidly from

biogenic particles upon collection (Collier and Edmond, 1984; Collier, 1991). Overall it

is not clear whether the high C/P ratios measured in sinking particles are meaningful

features, i.e. faster recycling of P than N or C, or artifacts of collection, i.e. loss due to

cell lysis.

III RESULTS AND DISCUSSION

A seasonal study of the distributions of 3 2 P and 3 3 P in different particulate

fractions was pursued in the mixed layer at the U.S. JGOFS Bermuda Atlantic Time-

series Study (BATS) site (310 50'N, 640 10'W), 80 km southeast of Bermuda, during

1991 and 1992.

The specific activities of 3 2 p (i.e., 3 2 P/P) and 3 1 P (i.e., 3 3 P/P) were deter-

mined in surface suspended matter in July and November 1991 and in February and April



1992 (Figure 4.1) and in suspended matter collected at three depths in April 1992

(Figures 4.2 and 4.3). The activity ratios 3 3 p/3 2 P were derived for surface and depth-

integrated plankton tows, for surface suspended matter (Figures 4.4a to 4.4e and 4.5) and

for the depth profile of33 P/3 2 P in suspended matter in April 1992 (Figure 4.6). The

samples were collected during 6 cruises on R/V Weatherbird II and R/V Endeavor at the

BATS site. The results for 4-5 March, 29 April-1 May, 15-19 July (BATS 34) and 11-15

November (BATS 38) of 1991 and for 24-26 February (BATS 41A) and 12-27 April (EN

235) of 1992 are presented in tables 4.1-4.6. The samples collected in March and May do

not correspond to BATS cruises, and hydrographic data from the closest BATS (BATS

29A and BATS 31) cruises are presented in figures 4.7 and 4.8. The hydrographic data

for BATS 34, 38 and 41A are presented in figures 4.9, 4.10 and 4.11. For the Endeavor

cruise (EN 235) T and NO3 profiles are presented in figures 4.12a and 4.12b for April

25.

Suspended particulate matter was typically collected by filtering 2,000 to 7,000

liters of water through Millipore filters (3 or 8 pm mesh size). Presumably, particles

smaller than 3 or 8 pm were collected as well because clogging occurred rapidly during

filtration. The Millipore filters were changed as soon as the flow rate started to decrease

about every hour. Large particles were harvested with plankton nets (67, 150, 300 and

500 gm mesh size). These large particles contained macrozooplankton and also large

phytoplanktonic species, such as cyanobacteria (Trichodesmium). An attempt was made

to determine 3 2 P and 3 3 P on large particles collected by filtering 5,000 X of water

through a 53-sm Nitex filter in February 1992. The amount of P on the Nitex filter was

very low (i.e., 0.3 nM) preventing analysis of 3 2 P and 3 3 P. In April 92, comparison was

made between PTP for a surface sample collected on GF/F (0.7 gm) and on Millipore (3

sm mesh size). It was found that 20 % of the suspended particles >0.7 pm were in the

fraction 0.7-3 pm. This percentage is a lower limit estimate, because particles smaller

than 3 gm were probably collected on the 3-sm filter due to clogging.

100



4

3'

>1

'.r4 0

0 i
2--

U1)

Jul. Nov. Feb. Apr.
Months

-A- 32P in >3 or 8 um particles
--.... 33P in >3 or 8 um particles

Figure 4.1. Specific activities of 3P and 3P (dpm/mg P) in surface suspended particles (>3 sm
or >8 sm) during 15-19 July 1991, 11-15 November 1991, 24-26 February 1992 and 25-26 April
1992 at BATS station.
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Figures 4.4.a, b. Activity ratio of 33P1P in suspended particles and plankton tows
(67, 300 sm mesh size) during May and July 1991 at BATS station
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Both 3 2 P and 3 3 p were measured in suspended particles and plankton tows

for the first time. Our ability to determine both isotopes, as explained before, is due

mainly to the very low stable P concentrations in the Sargasso Sea. As expected, the

specific activities in the particulate matter are one or two orders of magnitude higher than

those encountered in the South California Bight, in the Celtic Sea and in the Bedford

Basin (Lal et al., 1988; Lal and Lee, 1988).

The major features of the data set that will be discussed and interpreted are: (1)

the specific activities in suspended particles are highest in November 1991; (2) the ratio
3 P,3 2 P in plankton tows, which is either equal to or significantly higher than the ratio

in rain, is highest in February 1992; and (3) the phosphorus radioisotopes were not

homogeneously distributed in zooplankton in March 1991, allowing a labile and a refrac-

tory pool to be identified. In addition, the residence time of P in macrozooplankton and

the in situ grazing rate and defecation rate of zooplankton are estimated.

1- Specific activities of 32P and 33P

The specific activities range from 1 to 3 dpm/mg P for 3 2 P and 3 3 p in the

suspended matter and, from 0.3 to 3 dpm/mg P for 3 2 P and 0.9 to 5 dpm/mg P for 3 3 P in

plankton tows (Tables 4.1 to 4.6). The activities in suspended particles were usually 0.3-

0.9 dpm/m3 for 3 2 P and 0.3-1.3 dpm/m 3 for 3 3 p (Table 4.7). PTP concentrations

(collected on the 3 or 8-sm filter) were found to range from 7 to 19 nM and average 10

nM (Table 4.7). This is in agreement with the few existing measurements of PTP (filters

of 0.45 prm mesh size) at Hydrostation S and at BATS (Ormaza-Gonzalez, 1990; J.

Ammerman, personal communication at BATS workshop 1992) suggesting that the

Millipore 3 and 8-grm filters collected particles smaller than their nominal pore sizes. The

highest specific activities were obtained in November 1991, with values ranging from 2

to 5 dpm/mg P for 3 2 P and 3 to 6 dpm/mg P for 3 3 p (Table 4.4). More typical values
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for the period sampled are around 0.2-1 dpm/mg P (Tables 4.2, 4.3, 4.5 and 4.6). In April

1992, three-point depth profiles of 3 2 P and 3 3 P in suspended particulate matter were

obtained, and both show similar exponential decrease with depth (Figures 4.2 and 4.3).

The specific activities observed at BATS, in suspended matter and plankton tows, are one

or two orders of magnitude higher than the specific activities of 3 2 P in plankton tows

reported previously (Lal et al. 1988; Lal and Lee 1988). The authors observed specific

activities of 3 2 P ranging from 0.02 to 0.2 dpm/mg P in the Bedford Basin and from 0.01

to 0.1 dpm/mg P in the California Bight. The higher specific activities observed in the

Sargasso Sea are due to the extremely low DIP concentrations, typically below the detec-

tion limit of the molybdenum blue method, i.e., 20-30 nM and as low as 1-2 nM (Ormaza-

Gonzalez, 1990). In contrast, the DIP concentrations in the California Bight are 0.3 to 2

sM (Lee et al., 1991).

Off Bermuda, the major features of the upper 250 meters are; (1) the break-

down of the seasonal thermocline in January/February; (2) the productivity peak in

March/mid-April following the deep winter mixing event; and (3) the development of the

seasonal thermocline from April to the fall (Schroeder and Stommel, 1969; Menzel and

Ryther, 1960, 1961; Michaels et al., 1992). During the period of development of the

seasonal thermocline, new production is usually very low. In the absence of removal

processes (vertical mixing at the base of the mixed layer and net export of particulate

matter out of the mixed layer), the activities of 3 2 P and 3 3 P in TDP build up in the

mixed layer. At steady state the activities can be simply determined from the balance

between the supply and the decay of the inventories of 3 2 P and 3 3 P. Accumulations of
2 1 0 Pb and trace metals in the mixed layer have been observed in the summer off

Bermuda (Boyle et al., 1986; Jickells et al., 1990). The high specific activities, i.e., 2 to 4

dpm/mg P for 3 2 P and 3 to 6 dpm/mgP for 3 3 P, encountered in suspended particles and

plankton tows in mid-November might be in part due to the accumulation of 3 2 P and
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3 3 P in the mixed layer. In July 1991, February 1992 (BATS 34, 41A) and April 1992

(EN 235), the specific activities of 3 2 P and 3 3 P in suspended particles in the mixed layer

were lower, because they were controlled more by vertical mixing and/or new production

than by radioactive decay. In February 1992 (BATS 41A), the mixed layer depth was

210 m (Figure 4.11 a) and P0 4 was detectable at 40 m and below by the molybdenum

blue method (Figure 4.11 b). These conditions imply both supply of stable P into the

phosphate-depleted upper ocean and loss of radiophosphorus from the upper ocean,

leading thus to lowest specific activities. In April 1992 (EN 235) the specific activities of

both 3 2 p and 3 3 P were highest at the surface and decreased with depth (Figures 4.2,

4.3). April 1992 corresponded to the onset of stratification, with the seasonal thermocline

forming and being destroyed on time-scales of a few days during the 12-day long cruise

EN 235. The profiles of the specific activities of 3 2 P and 3 3 P reflect these phenomena

integrated over a few weeks and thus reflect the decrease with depth observed in the time-

average T profiles during the EN 235 cruise.

2- Activity ratio 33 P? 2P in plankton

In this section qualitative interpretations of the activity ratio 3P 3 2 P will be

given, while in sections 4 and 5 simple models will be developed to give quantitative

interpretations. The activity ratios 3 3 p 3 2 P measured in suspended particles and in

plankton tows are found always to be either equal to or higher than the ratio in rain,

which averages 0.96 on an annual basis (Figure 4.5). This is explained by an increase

with time of the ratio 3 3 p 3 2 P due to the differential decay rates of 3 2 P (14.3 d) and

3 3 P (25.3 d). The ratio is expected to increase in higher trophic levels relative to the

ratio in rain because the doubling time of plankton, to a first approximation, is positively

correlated with the particle size and ranges from hours for phytoplankton to hundreds of

days for certain species of zooplankton (Sheldon et al., 1972; Tranter, 1976).
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The turnover time of P deduced from the time-dependent curve of the ratio
SP,3 2 P in zooplankton is model-dependent. Two end-member models will be

developed for zooplankton in section four. The first model predicts that the ratio in-

creases with time until the activities of 3 3 P and 3 2 P reach a steady state, at which time

the curve reaches a plateau. This end-member model represents a situation where

zooplankton behave as an "open system", continuously grazing on phytoplankton and

regenerating a fraction of that food. The other end-member model represents the case

where zooplankton is behaving as a "closed system", neither grazing or regenarating P.

This second model predicts that the ratio will increase exponentially with time.

In May 1991 the activity ratio 3 3 p/ 2 P in plankton tow (>300 sm) averaged

1.4. This ratio is significantly higher than the average ratio of 1.02+0.03 in rain. In July

1991 the activity ratio in surface suspended particles (>3 pm; presumed to be mostly

phytoplankton) was 0.75+0.2 (Figure 4.5). That is lower than the activity ratio of 1.5+0.3

in the plankton tow (>67 sm; presumed to be mostly macrozooplankton). This observa-

tion indicates a measurable aging of P in macrozooplankton relative to phytoplankton. In

contrast, the activity ratio in suspended particles is, within the errors, identical to the ratio

in rain. The similarity of the ratios suggests that suspended particles, presumably

phytoplanktonic in origin, have a very short P turnover time, estimated to be less than a

few days, which is consistent with the doubling time of phytoplankton, i.e., hours to days

(Sheldon et al., 1972). Furthermore, Harrison and Harris (1986) estimated a turnover

time of P in phytoplankton on the order of 1-2 days in the Sargasso Sea. As pointed out

by the authors, the tracer technique used for the estimation tends to underestimate the

uptake rates, and it is likely that the turnover time of P is even shorter than 1-2 days.

In November 1991, there was no difference in the activity ratios of 1.6 between

the surface suspended particles (>8 sm) and the surface plankton tows collected with
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either a 67 or 300 jm mesh net (Figure 4.4c). The ratio was also 1.6 in the depth-

integrated (0 to 60 m) plankton tows collected with nets of mesh size 67 sm and 300 sm.
The ratio of 1.6 in the surface suspended particulate sample can be explained in part by

the accumulation of 3 2 P and 3 3 P in the shallow mixed layer from June to the fall. In

other words, 3 2 P and 3 3 P are being supplied in a ratio of 0.9-1.0 from June to November

(150 days) and are being removed mostly by decay from the mixed layer. Similar conclu-

sions were derived for 2 1 o Pb at station S where accumulation of 2 1 o Pb was found

throughout the June-September period (Boyle et al., 1986). Similarly, some trace ele-

ments accumulate in the shallow mixed layer during the summer months (Jickells et al.,

1990). In November, Trichodesmium (blue-green algae) was found in abundance in two

tows and was present in all the tows (>67 pm and >300 jm). Trichodesmium,

presumably, has a very short turnover time of P like other phytoplankton, and their

presence might account for the similarity of the ratios in plankton tows and in suspended

matter.

In February 1992 (BATS 41A) the activity ratio was 0.9+0.3 in suspended

particles (>3 gm) and was on average 3.3±0.5 in plankton tows (>67 jm and >500 gm),

as seen in figure 4.5. There were no significant differences between the ratios in the 67-

pm plankton tow and the ratio in the 500-sm plankton tow (Figure 4.4d). In an attempt

to separate species of zooplankton, material from a large tow was poured into a container

filled with surface seawater, and the fast sinking fraction was separated from the rest of

the tow which consists of mostly radiolarians. The samples were referred to as Z500-B 1

and Z500-B2 (fast sinking large particles) and Z500-T (rest of the tow) (Table 4.5).

Those two samples did not exhibit different ratios, suggesting a homogeneous residence

time of P in the different species and types of zooplankton. The most striking feature of

the February cruise, compared to the other cruises, was the great difference in the activity
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ratio in the two size-fractions (Figure 4.5). This observation suggests that macro-

zooplankton was quite old, with low turnover times, relative to phytoplankton and that

part or all of the P in zooplankton was not being exchanged with external sources of P.

This can be explained if the grazing activity of the animals had partially shut down during

the winter, leading to considerable decay of " 2 P and 3 " P already present in zooplankton.

It would explain the high ratios of 3 or 4 measured in macrozooplankton while the

primary producers exhibit ratios of only 0.9. It is possible that the plankton collected in

February 1992 in 67 pm and 500 sm mesh size nets were large interzonal migrants living

in the mesopelagic zone (Longhurst and Harrison, 1988).

In April 1992 an opposite trend was found. The activity ratio in the suspended

particles (> 3 pm) averaged 1.7+0.2, while the plankton tows (> 150 gm) exhibited ratios

of 1.0+0.2 on average. No significant difference was found between the activity ratio in

night and day plankton tows Z150-N and Z150-D (Table 4.6), and both had ratios lower

than suspended particles. It suggests that possibly a fraction of the suspended particle

pool consisted at that time of detritus with a slow turnover time of P. Detritus could

possibly originate from old wintertime zooplankton producing particles via excretion or

ejection of fecal matter. If this is the case, a simple calculation with two end-member

mixing terms (February and April terms) shows that a fraction of 1 to 10 % of wintertime

zooplankton organic matter characterized by activity ratios 3 3 P/3 2 P of 3-4 released in

the suspended particles could increase the ratio in the suspended pool to 1.7 in April.

Then the question is why the ratio is as low as 1 in the plank on tows, 1 being, within the

error of the measurements the ratio in rain. The ratio in plankton tows was 1.0, suggest-

ing very rapid turnover times of P on time scales of less than a day. In April 1992, BATS

42B (11 April) showed maximum Chl a, indicating the occurrence of the spring bloom.

Peak concentrations in the pigments (fucoxanthine, diadinoxanthine and diatoxanthine)

were observed during that cruise as well, possibly indicating the presence of abundant
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diatoms during the bloom. It is hypothesized that large diatoms might have been present

in the surface tow of 25 April (EN 235), giving rise to the observed low 33 P/3 2 P ratios.

3- Labile and refractory P in zooplankton

The zooplankton analysed in March 1991 revealed that radioisotopes of P were

not homogeneously distributed in zooplankton, and two operationally-defined P compart-

ments were identified (Table 4.1). Freshly collected plankton tows were left in surface

seawater at 4 0 C for a few days in the dark. A large amount of phosphate (about 50 % of

the total amount of P) was released into solution during storage and was detectable with

the standard molybdenum blue method (Murphy and Riley, 1962). The amount released

was far greater than typical phosphate concentrations in the surface waters (i.e., <20-30

nM). The three samples were filtered through GF/F, and the filtrates were combined.

Phosphate was extracted on alumina and processed as explained in Chapter One. The

analysis of the filtrate revealed that the activity ratio 3 3 p 3 2 P in the combined three

samples is 1.7+0.3. That ratio is significantly higher than the ratio in the rain. Two of the

fractions remaining after leaching had very high ratios. One sample exhibits a ratio as

high as 18, indicating a very long residence time of P in the refractory pool. The errors

on the determination of the ratio in the 3 refractory fractions were large because of the

extremely low count rate of 3 2 P in those samples (almost undetectable in Z67-3). It is

thus clear that those samples were particularily old, and even if the precision of the ratio

determination is not good, the slope of the total net count rate is a qualitative indication of

a very high fraction of 3 3 P in the sample. The experiment was repeated in February

1992 and April 1992. In February, unfortunately, the filtrate was lost during processing.

The refractory fraction exhibited an activity ratio of 3.7+0.8 which was not very different

from the ratios observed in the bulk of the other tows, suggesting that the filtrate or labile

fraction had a ratio similar to 2-4. This result indicates that zooplankton had slow P

turnover times. In April 1992, both the filtrate and the refractory fractions were analysed
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(Table 4.6). The filtrate was coprecipitated with Fe(OH)3 and further purified with the

procedure described in Chapter One. The amounts of stable P0 4 in each subsample

Z150-R and Z150-L were identical within the 2% analytical error of the colorimetric

method, indicating that the two subsamples are of equal size in terms of stable P. The

activity ratios 3 3 p/ 2 p of both samples were, within the 1 a error, identical to the

average activity ratio in rain, suggesting very fast turnover of P in the plankton present in

the tows. This result can be explained by the probable presence of diatoms in the tows

during the spring bloom (April 1992).

The difference in the ratios in the operationally defined labile and refractory

fractions observed in March 1991 suggests that zooplankton encompassed two compart-

ments of phosphorus, one labile and one refractory. Two distinct pools of P have been

found previously, characterized as labile and stable, with very different P turnover times,

i.e. 0.4 days and 13 days, respectively (Conover et al., 1961). Also it has been shown

that zooplankton have the ability to store P as fat in the males and in the reproductive

system in the females (Corner and Davies, 1971). The ratio of 1.7±0.3 observed in the

labile pool suggests that P turns over on a time scale of a few days to a week. That pool

of P is probably the labile pool of P identified in earlier plankton studies which showed

substantial and rapid release of P subsequent to the collection of plankton tows (Collier,

1984). It also appears that P is excreted efficiently by zooplankton relative to nitrogen,

while nitrogen is enriched in fecal pellets and thus in sinking particles (Howard, 1988),

suggesting that there is a pool of labile P.

The operationally-defined refractory pool of P might contain (1) phospholipids,

which are ubiquitous in the membranes of organisms (Wefer et al., 1982; Cembella et al.,

1984); (2) phosphonates (Cembella and Antia, 1986; Liebezeit, 1991), or (3) nucleic

acids (Holm-Hansen, 1966). The labile pool is likely to be partly composed of (1) phos-

phate monoesters, like AMP, ADP and ATP, which are very important P compounds in

the energy system of cells; (2) P0 4 groups which are end-products of many enzymatic
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reactions (Westheimer, 1987); and (3) P0 4 present in the guts of the animals.

Characterization of the P compounds in a single species of zooplankton has been pursued

by Corner (1973), and the P compounds found were an acid-soluble fraction (50%),

phospholipids, nucleic acids and phosphoproteins (phosphate ester).

In April 1992, no significant difference was found between the easily leachable

fraction and the remaining, supposedly more refractory, fraction. Both fractions had low
33 p3p 2 P ratios, suggesting rapid turnover of P. April corresponded to the spring bloom

period with high Chl a in the euphotic zone. The ratio in zooplankton suggests that

zooplankton was regenerating P at high rates. It is consistent with Corner and Davis's

(1971) study, which showed a direct link between food availability and increased excre-

tion of N and P by zooplankton.

4- Residence time of P and grazing rates of macrozooplankton

In this section, I quantify the residence time of P in macrozooplankton, based

on the activity ratios 3 3 p 3 2 P measured in suspended particles and plankton tows when

the tows were dominated by zooplankton. As a consequence, the grazing rate can be

derived from the specific activities of 3 2 P and 3 3 p in phyto- and zooplankton. The

calculation of the residence time is model-dependent. The simplest model that is ex-

anined is a steady-state model describing the mass balances of 3 2 P and 3 3 P in

zooplankton. The mass balance for 3 2 P in zooplankton is given by the following equa-

tion:

(4.1) g(3 2 P) = 13 2 (3 2 P) + r(3 2 P) + s( 3 2 p)p z z z
where (3 2 P) : concentration of 3 2 P in phytoplankton (dpm/m3 );

(3 2 P) z: concentration of 3 2 P in zooplankton (dpm/m3 );

X3 2 : decay constant of 3 2 P (S 1);

g: zooplankton grazing rate (s1);
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r: regeneration rate of P from zooplankton (s );

s: removal rate of P by zooplanktonic sinking particles (fecal pellets and mat-

ter, molts, etc...), s1.

A similar equation is written for 3 3 P. It is assumed in equation (4.1) that zooplankton

acquire 32 P and 3 3 P from the grazing of phytoplankton and assimilate the isotopes in

the proportions occurring iphytoplankton. Thus the activity ratio 3 3 P/ 2 P in

zooplankton is the following:

(4.2) R = R (X32 +r+s)/(33 +r+s)
z p

Where

R= (33 P) /(3 2 P) : activity ratio 3 3 p 3 2 P in zooplanktonz z z
R = (3 3 P) /(3 2 P) : activity ratio 3 3 P,3 2 P in phytoplankton

p p p
From equation (4.2) one can calculate r + s as follows:

(4.3) r + s =(X 3 2 -X 3 3 * R /R )/(R /R - 1)
z p z p

This model predicts that the ratio in zooplankton ranges from R to a maximum value of
p

1.77 R according to the magnitude of r and s relative to 3 2 and X3 3 . The residence
p

time of P in zooplankton, r, is then simply derived as follows:

(4.4) c = 1 / (r + s)

From equation (4.1) one can calculate the grazing rate as follows:

(4.5) g = (32 p)/ (3  p (3 2 + 1 /T) and,

(4.6) g = (3 3 P) / (3 3 P) (X3 3 + 1 /x)
z p

In July, the average activity ratio in zooplankton was 1.31 + 0.19. I did not

include the high value of 1.79 + 0.44 in the calculation of the average because that high

ratio was measured less precisely than the two others (Table 4.3). The measured activity

ratio of 0.75+0.23 in the suspended particles was found to be, within the error, similar to

the ratio in the rain (Figure 4.5). The average activity ratio in rain for the three months

that preceded the July 1991 cruise (BATS 34) was 0.92+0.04. Therefore a value of 0.92,

was chosen for the activity ratio in suspended particles. A residence time of r = 45 +85
- 37
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days is estimated for the plankton tow in July 1991, assumed to be mostly composed of

macrozooplankton. This residence time is similar to the estimated residence times of P in

zooplankton of 30-40 days or more in the California Bight (Lal et al., 1988). The es-

timated r is also within the range of turnover times of single species of zooplankton

which have been estimated previously based on the ratio of the production rate to the

biomass. The results of some of these studies are summarized by Tranter (1976) and

Sheldon et al. (1972). The turnover time of zooplankton ranges from a few days to

hundreds of days and is to a first approximation positively correlated with the diameter of

the particles (Sheldon et al., 1972). Large boreal species exhibited turnover times of

about 100 days, while temperate smaller species had turnover times of about 10 days.

In suspended particles, the specific activities were 2.99 ± 0.50 dpm/mg P for

3 2 p and and 2.24 + 0.52 dpm/mg P for 3 3 P. In macrozooplankton, the specific activities

were 0.90 + 0.07 dpm/mg P for 3 2 P and 1.21 + 0.14 dpm/mg P for 3 3 P. Grazing rates

of 0.021 + 0.006 d 'for 3 2 p and 0.027 + 0.009 d-'for 3 3 p were determined utilizing

equations (4.5) and (4.6); or an average grazing rate of 0.024 + 0.006 d7. Particulate

organic carbon (POC) concentrations yield a value of 30 sg C/1 in the 150-m euphotic

zone, for BATS 34 (15-19 July 1991). An integrated value of 4,500 mg C/m2 was

calculated for the euphotic zone for that cruise. The flux of carbon grazed by macro-

zooplankton was thus estimated to be 110 + 30 mg C/m2 /d. In July 1991 primary

productivity was 500 mg C/i2 /d at BATS station (Michaels et al., 1992); thus the es-

timated grazing flux corresponded to 20 + 5 % of primary productivity. This result is

within the range of the percent of primary productivity grazed by a copepod community

on the outer shelf off Long Island (Dagg and Turner, 1982) and on the outer and mid

shelf of the Bering Sea (Dagg et al., 1982).

Assuming that zooplankton have assimilation efficiencies ranging from 30 to

70 % (Angel, 1984; Dagg et al., 1982), I estimate a flux of 30 to 80 mg C/m2 /d out of the

euphotic zone due to defecation of zooplankton in July 1991. Although assimilation
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efficiencies of zooplankton vary with the constituent and the food type (Corner and

Davies, 1971), 70% is often considered to be a reasonable assimilation efficiency (Angel

1984; Dagg et al., 1982). In that case, I estimate that 30 + 10 mg C/m2 /d leaves the

euphotic zone by defecation of zooplankton. This second estimate is in very good agree-

ment with the flux of particulate carbon of 35 mg C/m2 /d, determined by sediment traps

deployed at 150 m at BATS station in July 1991 (Michaels et al., 1992). If the sediment

trap flux is accurate my results suggest that fecal pellets or fecal matter constitute a major

component of the particulate flux in the upper ocean at BATS. It has been recognized

that fecal material is a major source of particulate matter in the ocean (Pomeroy and

Diebel, 1980; Fowler and Knauer, 1986; Small et al., 1987), and some studies have

shown that it made up the bulk of the particulate flux in certain areas like the Panama

Basin and the equatorial Atlantic Ocean (Bishop et al., 1977; Bishop et al., 1986b).

In May 1991 the ratio 3 3 P!3 2 P in plankton tows was 1.4 + 0.1. The ratio in

the suspended particles was not measured. It is suggested from figure 3.5 that the ratio in

suspended particles must range from a minimum value of 1.0, the ratio in rain, to a maxi-

mum of 1.4, the ratio in the plankton tows. If a ratio of 1.02+0.03 is assumed (the
+30

average ratio in the rain in the spring), a residence time of 40 days is estimated for May
- 17

1991. This estimate is in agreement with previous estimates made in the California Bight

(Lal et al., 1988) and consistent with turnover times of various species of zooplankton

(Sheldon et al., 1972 and Tranter, 1976).

In November 1991 the ratios in both suspended matter and zooplankton were

the same. Therefore a lower estimate of a few days was estimated for the residence time

of P in plankton. In November 1991, Trichodesmium was very abundant in two tows

(i.e., Z67-10 and Z300-10) and was present in all the tows. The presence of
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Trichodesmium in the tows might explain the similarity of the ratios between the

suspended matter and the plankton tows in November 1991.

In February 1992, the activity ratio in suspended matter was 0.93+0.3 and, on

average, about 3.3+0.5 in plankton tows. The previous end-member model can not ex-

plain the high ratios observed in plankton tows. It can only account for ratios in

zooplankton ranging from 0.9-1.0 to 1.5-1.8. An extreme scenario is presented in which

zooplankton acquire P early in their growth cycle and store it. Radiophosphorus would

decay as zooplankton, assumed to be a "closed system", become older. The ratio can be

predicted by the following relationship:

(4.7) R = R exp((Xs 2 - X3 3))
z p

The residence time given by equation (4.7) represents the age of zooplankton. Equation

(4.7) yields a residence time of P in zooplankton of 60 + 12 days for February 1992. It

means that for two months prior to the cruise (December and January) radiophosphorus in

zooplankton was decaying without significant exchange with the environment. In winter,

when food is scarce, feeding activities are likely to be reduced, and zooplankton are likely

to retain phosphorus. This is consistent with the evidence of a direct link between food

availability and excretion (Corner and Davies, 1971). The residence time of 60 days is

probably an upper limit, because it is unlikely that zooplankton were completely isolated

from the environment for two months.

5- Mass balance of 32P and 33P in the euphotic zone

In this section, the inventories of 3 2 P and 3 3 P in the suspended particles are

determined. The decay of the inventories in suspended matter is then compared to the

wet deposition rates. For most of the cruises, except April 1992, the depth profiles of the

activities of 3 2 P and 3 3 P in suspended matter were not obtained. The profiles of 3 2 p
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and 3 3 p in suspended particles for April 1992 (Figure 4.2 and 4.3) were fitted with em-

pirical exponential functions given as follows:

(4.8) 3 2 P = 1.00 exp(- z / 67.7)

(4.9) 3 3 p = 1.68 exp(- z /74.2).

Where

(3 2 P) z== 1.00 dpn/m 3 and (3 3 P) z== 1.68 dpn/m 3

Each exponential was then integrated from the surface to 150 m, the depth of

the euphotic zone, to calculate the activities in the euphotic zone. It is observed that the

depth profiles of the specific activities of 3 2 P and 3 3 p in suspended particles have

decreasing trends with depth which are very similar to one another and similar to the T

profile (Figure 4.12 a). For July 1991 and November 1992 (BATS 34 and 38), I assumed

that 3 2 p and 3 3 P activities in suspended matter at any depth in the mixed layer were

identical to the activities at the surface. I also assumed that the activities of 3 2 P and 3 3 p

in suspended matter, below the mixed layer, decreased exponentially. In February 1992

(BATS 41A) there was intense vertical mixing within the upper 250 m of the ocean and

constant activities of 3 2 P and 3 3 P in the mixed layer (210 m) could not be assumed. No

inventory computation was pursued for that cruise. The inventories of 3 2 P and 3 3 p in

the euphotic zone are reported in table 4.8 for July 1991, November 1991, and April

1992.

The inventories of 3 2 P and 3 3 p in suspended particles are then compared to

the amount of 3 2 P and 3 3 P delivered by precipitation. The wet deposition rates of 3 2 p

and 3 3 p can depart significantly from the annual average rates by factors of up to three.

The deposition rates were computed from the average activities and rainfall rates over a

period of three months preceding the cruises. Three months, or four times the half-life of

the longer-lived radiophosphorus isotope, corresponded to the period prior to which the

activities of 3 2 P and 3 3 p in rain could not remain detectable in particulate matter at the
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time of sampling. Since May 1991 was such a dry month, it was assumed as a first ap-

proximation that events prior to June 1991 would not be detectable in mid-July 1991

(BATS 34) and were thus not taken into account in the calculation. For April 1992 (EN

235) the wet deposition rates used are the annual averages since no rain data were col-

lected after March 26, 1992 (one month before the sampling time). The wet deposition

rates of 3 2 P and 3 3 P so computed are listed in table 4.8.

The differences between the wet deposition rates and the decay of the inven-

tories of 3 2 P and 3 3 P are computed (Table 4.8). It is found that the decays of the

inventories of 3 2 P and 3 3 P in suspended particles are in balance with the wet deposition

rates of 3 2 P and 3 3 P in July 1991, November 1991, and April 1992 in the euphotic zone.

This result suggests that, (1) removal of 3 2 P and 3 3 P onto sinking particles (new

production) and removal due to vertical mixing at the base of the euphotic zone must be

very small, and (2) most of the inventories of 3 2 P and 3 3 P are in the suspended par-

ticles. The balance between the deposition rates of 3 2 P and 3 3 P and the decays of the

inventories indicates that the residence time of P in the euphotic zone must be longer than

4 or 5 half-lives of 3 2 P and 3 3 P or about 100 days. The estimated lower limit for the

residence time is consistent with the range of 0.7 to 2 years estimated by Ormaza-

Gonzalez (1990).

The results indicate that 3 2 P and 3 3 P inventories must be very low in the

dissolved pools of P, i.e. DIP and DOP. These findings contrast with previous studies in

the Southern California Bight showing that most of the inventory of 3 2 P is in the TDP

(Lal and Lee, 1988; Lal et al., 1988). In the Southern California Bight, DIP is usually the

major pool of dissolved P with a range of concentartions of 0.1 to 2 gM while DOP

ranges from 0.1 to 0.8 sM (Lee et al., 1991; Lee et al., 1992). These values of DOP are

consistent with the DOP range in the Pacific ocean, i.e. 0.1-0.4 pM (Orrett and Karl,

1987; Jackson and William, 1985; Ridal and Moore, 1992). In contrast, at Hydrostation

S, DIP is a very small pool with concentrations ranging from below 1 nM to 30 nM,
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while DOP is the major dissolved pool of phosphorus with 100-250 nM P (Ormaza-

Gonzalez, 1990). The DOP values found off Bermuda are also consistent with the values

found by Ridal and Moore (1990) in a Gulf Stream station. If most of the inventories of
3 2 P and 3 3 P are in PTP at BATS station, as indicated by the mass balance, then it sug-

gests that the residence time of P in DOP is long relative to the half-lives of 3 2 P and

3 3 P. A lower limit for the residence time of P is estimated to be four or five times the

half-life of 3 3 P, i.e., 100-120 days. These estimates agree with previous studies which

showed that only a small fraction of the 3 2 P activity was found in DOP, i.e., <0-0.09

dpn/m 3 (Lee et al., 1992), leading the authors to conclude that the mean time period of

DOP utilization is much longer than 6 weeks in the Southern California Bight.

Cosmogenic 3 2 P and 3 3 P studies give a somewhat different picture of DOP

availability than previous studies, because they allow computation of rates and turnover

times. There is evidence that DOP is a labile pool, more so than DON (Jackson and

Williams, 1985; Smith et al., 1986, Smith et al., 1985; Orrett and Karl, 1987) and that all

DOP is available to the microbiological community in the subarctic Pacific (Ridal and

Moore, 1992). In addition, it has been well documented that marine bacteria and

phytoplankton have evolved cell-surface enzymes that are capable of cleaving organic P

compounds (Perry, 1972; Azam and Hodson, 1977; Cembella et al., 1984; Ammerman

and Azam, 1985; Rivkin and Swift, 1985). One of these enzymes, alkaline phosphatase,

has been detected at Hydrostation S in activities high enough possibly to hydrolyse all the

DOP present in the euphotic zone (Ormaza-Gonzalez, 1990). The important question

regarding the role of DOP in contributing to phytoplankton growth and new production is

the rate of turnover of DOP. Cosmogenic 3 2 P and 3 3 P provide insight regarding that

question on time scales of days to weeks.
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Table 4.7. Activities of 3P P and concentrations of P in suspended matter (> 3-8 pm)

at BATS station.

Sample Cruise Initial Volume Stable P

amount of of water suspended 32 3,

P in the pumped matter dpm/m 3  dpm/m 3

sample A nM

mgP

Ml BATS 34 0.64+0.01 2,230±30 9.2±0.3 0.86 0.64
M-S 1 BATS 38 1.08±0.02 3,970±10 8.8±0.2 0.55 0.89
M-S2 BATS 38 0.78±0.01 3,040±40 8.3±0.2 0.62 1.13
M2 BATS41A 1.48±0.03 5,100±25 9.4±0.2 0.29 0.27
M-0 EN 235 2.93±0.06 7,400±150 12.a+0.5 0.81 1.34
M-35 EN 235 3.01+0.06 5,360±40 18.1+0.9 0.60 1.18
M-70 EN 235 3.22+0.06 5,520t80 19±1 0.44 0.77

Table 4.8. Activities (A), wet deposition rates (W) and radioactive decay (XA) of 3P and 3P, and dif-

ferences between the wet deposition rates and the decay of P and 33P (i.e., W-XA) in the euphotic zone.

Cruise %A W-AA

32A A W 2PP

dpm/m 2 dpm/m2 /d dpm/m2 /d dpm/m2 /d

BATS 34
BATS 38
EN 235

45.3 36.4 1.7±0.3
47.8 72.9 2.5±0.5
61.2 108 2.4±0.4

1.4±0.3
2.2±0.4
2.2±0.4

2.2
2.3
3.0

1.0
2.0
3.0
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III CONCLUSIONS

The specific activities 32 p and 3 3 p and the activity ratio 3 3 P/ 2 P in rain-

water, suspended particles and plankton tows allowed determination of the in situ

turnover time of P in macrozooplankton and the in situ grazing rates. The turnover time

of P in macrozooplankton was found to range from 40 days to 60 days at BATS station.

In some cruises, the plankton tows were presumably dominated by large phytoplanktonic

species as evidenced by the low ratios. The estimated turnover times of P in plankton

tows are consistent with the estimates of doubling times of species of zooplankton.

An in situ grazing rate of 0.024 + 0.006 d~ was determined, and it was es-

timated that 30± 10 mg C/m2 /d left the euphotic zone by zooplankton defecation in July

1991 at BATS. The estimated particulate flux matchs the bulk of the particulate carbon

flux determined by sediment traps deployed at 150 m at BATS, suggesting that

zooplankton fecal matter made up the bulk of the particulate flux at BATS.

The decay of the inventories of 3 2 P and 3 3 P in suspended particles was found

to balance the input of 3 2 P and 3 3 P by precipitation, suggesting that turnover of DOP,

which is the major pool of dissolved P, is long relative to the half-lives of 3 2 P and 3 3 p.
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Table 4.1. Specific activities of 3 2 P and 3
with a 67-sgm plankton net in March 1991.

P in plankton tows collected

Sample Date Depth Type Amount of Specific Specific Ratio
stable P activity activity 3 3 p 3 2 P
mg P of 3 2 O 3 3 P dpm/dpm

dpm/mg P dpm/mg P

L+ 3/4/91 surface tow / / / 1.7±0.5
Z67-R1* 3/4/91 surface tow 0.99±0.02 1.30±0.35 5.2±1.2 4.0±1.2
Z67-R2* 3/4/91 surface tow 1.09±0.02 1.7±0.9 1.12±0.30 0.67±0.19
Z67-R3* 3/4/91 surface tow 0.90±0.02 0.30±0.65 7.5±1.1 18.7±12.5
Z67 3/31/91 surface tow 1.66±0.03 0.81±0.09 0.49±0.08 0.61±0.16

+: labile fraction of the three tows combined. The initial amount of
making it impossible to determine the yield in that sample.
*: refractory fractions.

phosphate is not known, thus

Table 4.2. Specific activities of 3 2 P and 3 3 P and activity ratio 3 3 p/3 2 P in plankton tows
collected with a 300-sm mesh net in 29 April- 1 May. The samples are triplicates from the same tow.

Sample Date Depth Type Amount of Specific Specific Ratio
stable P activity activity 3 3 p? 2 P
mg P of 3 2 P of 3 3 P dpm/dpm

dpm/mg P dpm/mg P

Z300-2 5/1/91 surface night tow 2.57±0.05 0.79±0.07 1.05±0.13 1.33±0.17
Z300-3 5/1/91 surface night tow 4.74±0.09 0.71±0.07 1.10±0.11 1.55±0.22
Z300-4 5/1/91 surafce night tow 6.01±0.12 0.67±0.07 0.90±0.12 1.34±0.19
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Table 4.3. Specific activities of 32 P and 3 3 P and activity ratio 3 3 ps 2 P in suspended particles (> 8
gm) and in plankton tows (67-sgm mesh size net) collected during BATS 34, 15-19 July 1991.

Sample Date Depth Type Amount of Specific Specific Ratio
stable P activity activity 3 3 p? 2 P
mg P of 3 2 p of 33 P dpm/dpm

dpm/mg P dpm/mg P

M1 7/16/91 surface pump 0.64±0.01 2.99+0.50 2.24±0.52 0.75±0.23
Z67-10* 7/18/91 surface night tow 3.10±0.06 0.96±0.11 1.32±0.21 1.37±0.30
Z67-1 1* 7/18/91 surface night tow 3.10±0.06 0.87±0.13 1.09±0.22 1.25±0.25
Z67-12* 7/18/91 surface night tow 1.27±0.03 0.89±0.12 1.59±0.30 1.79±0.44
Sg-1+ 7/16/91 surface macroalgae 3.22±0.06 1.68±0.24 2.58±0.42 1.55±0.37
Sg-2+ 7/16/91 surface macroalgae 2.14±0.04 2.67±0.35 3.53±0A2 1.32±0.22

*: triplicates of the same tow.
+: duplicates of a sample of sargassum.

Table 4.4. Specific activities of 3 2 P and 3 3 P and activity ratio 33 p/3 2 P in plankton tows and
suspended particulate (> 3 pm) samples collected during BATS 38, 11-15 November 1991. Z67 and
Z300 refer to plankton tows collected with a 67-pm and 300-pm plankton net respectively. Each tow
is split in two samples except Z67-10. Z300-10 contained Trichodesmium and marine snow mostly.

Sample Date Depth Type Amount of Specific Specific 3 3 p/ 2 P
stable P activity activity
mg P of 3 2 P O 3 3 P dpm/dpm

dpm/mg P dpm/mg P

M-S1 11/12/91 surface pump 1.08±0.02 2.04±0.19 3.27±0.52 1.60±0.26
M-S2 11/14/91 surface pump 0.78±0.01 2.42±0.57 4.4±1.0 1.84±0.90
Z67-10 11/12/91 surface night tow 1.24±0.02 3.84±0.38 4.71±0.67 1.22±0.21
Z67-20* 11/14/91 0-60 m day tow 2.84±0.06 2.19±0.28 3.56±0.56 1.62±0.29
Z67-21* 11/14/91 0-60 m day tow 1.95±0.04 3.58±0.51 5.67+0.88 1.58±0.26
Z67-30 11/14/91 surface night tow 2.08±0.04 3.35±0.52 4.69±0.67 1.40±0.32
Z67-31 11/14/91 surface night tow 3.12±0.06 2.00±0.31 3.12±0.41 1.56±0.22
Z300-10 11/12/91 surface night tow 3.24±0.06 2.75±0.38 4.00±0.65 1.46±0.20
Z300-11 11/12/91 surface night tow 2.16±0.04 2.85±0.43 5.20±0.76 1.82±0.25
Z300-20* 11/14/91 0-60 m day tow 3.15±0.06 2.48±0.37 4.30±0.65 1.73±0.22
Z300-21* 11/14/91 0-60 m day tow 3.15±0.06 2.77+0.43 4.95+0.73 1.79±0.22

*: tows collected by continually yo-yoing the net on the hydrowire from 0 to the base of the mixed

layer at 60 m.
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Table 4.5. Specific activities of 32 P and 3 3 P and activity ratio 3 3 P? 2 P in plankton and
suspended particles (> 3 pm) in samples collected during BATS 41A, 24-25 February 1992. Z500 and
Z67 refer to samples collected with plankton nets of mesh size 500-sm and 67-im respectively. One of
the Z500 was separated into two fractions Z500-T and Z500-B. Z500-T is the fraction that stayed
suspended in seawater. It contained mostly radiolarians. Z500-B is the fraction that sank and contained
mostly marine snow and crustacians (Z500-B1 and Z500-B2 are duplicates). Z500-R is the refractory
fraction of a tow, the labile fraction was lost during processing.

Sample Date Depth Type Amount of Specific Specific 3 3 P? 2 P
stable P activity activity
mgP of 32P of 33

dpm/mg P dpm/mg P dpm/dpm

M2 02/25/92 surface pump 1.48±0.03 1.01±0.19 0.94±0.23 0.93±0.31
Z500-R 02/25/92 surface night tow 1.77±0.04 0.34±0.05 1.25±0.23 3.66±0.84
Z500-B1 02/25/92 surface night tow 3.49±0.07 0.39±0.04 1.16±0.18 2.95±0.55
Z500-B2 02/25/92 surface night tow 3.49±0.07 0.34±0.05 1.36±0.23 4.0±1.0
Z500-T 02/25/92 surface night tow 2.16±0.04 0.49±0.09 0.99±0.25 2.03±0.51
Z67-1 02/25/92 surface night tow 2.04±0.04 0.34±0.06 1.41±0.38 4.111.3
Z67-2 02/25/92 surface day tow 1.37±0.03 0.21±0.08 1.36±0.65 6.5+4.8

Table 4.6. Specific activities of 3 2 P and 3 3 P and activity ratio 3 3 p? 2 P in suspended particles
(>3 Jm) and in plankton tows collected during EN 235 in April 1992 at BATS station. Z150 refer to a
tow collected with a 150 pm net. Z150-L and R refer to the labile and refractory fractions.

Sample Date Depth Type Initial Specific Specific Ratio
amount of activity activity 3 3 p? 2 P
stable P of 32 P of 3 3 P dpm/dpm
mg P dpmng P dpn/mg P

M-0 4/25/92 surface pump 2.93±0.06 2.05±0.20 3.39±0.45 1.66±0.20
M-35 4/25/92 35 m pump 3.01±0.06 1.07±0.31 2.11±0.79 1.97±0.81
M-70 4/25/92 70 m pump 3.22±0.06 0.75±0.12 1.32±0.25 1.76±0.30
Z150-NI 4/26/92 surface night tow 3.87±0.07 1.25±0.26 1.09±0.23 0.87±0.17
Z150-DI 4/26/92 surface day tow 3.88±0.07 1.37±0.18 1.66±0.21 1.21±0.16
Z150-L 4/26/92 surface night tow 4.06±0.08 0.84±0.08 0.93±0.11 1.10±0.28
Z150-R 4/26/92 surface night tow 3.33±0.06 0.72±0.08 0.58±0.08 0.82±0.13
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CONCLUSIONS

I PRESENT FINDINGS

The wet deposition rates of 32P and 33P at Bermuda were determined to be 5 10-3

atom/cm 2 /min for 32P and 8 103 atom/cm 2 /min for 33P. The activity ratio 3 3 p/ 2 p

delivered in rainwater was found to be close to 0.96 throughout the year (March 1991 to

March 1992). The study of 3 3 P and 3 2 p in rainwater showed that the ratio 33 P/ 2 p is a

powerful tracer of atmospheric processes. The variations in the ratio 3 P,3 2 P can be

utilized to determine the residence time of tropospheric aerosols. A residence time of 27

days was found. The ratio exhibits variations that are probably seasonal due to seasonal

changes in stratospheric input and/or seasonal changes in mixing between the lower and

upper troposphere.

The study of 3 2 P and 3 3 P in Cl, K and S targets has allowed the determina-

tion of the in situ production rates of 3 2 P and 3 3 P in the upper ocean due to neutrons at

all latitudes. The production rates were estimated to be 2.5 104 atom/cm 2 1min for 3 2 p

and 8 105 atom/cm 2 /min for 3 3 P at Bermuda. In situ production was found to account

for 5% for 3 2 P and 1% for 3 3 P of the wet deposition rates.

The combined study of the sources of 3 2 P and 3 3 P to the ocean and the dis-

tribution of 3 2 P and 3 3 P in suspended particles and plankton allowed the determination

of the turnover time of P in zooplankton. Residence times of P of 40 to 60 days were

found in zooplankton, based on the activity ratio 3 3 P/3 2 P in rainwater, suspended matter

and plankton.

Grazing rates of 0.024 d~ were determined, and it was estimated that 30 + 10

mg C/m2 /d leaves the euphotic zone at BATS as fecal matter or pellets. The estimated
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carbon flux suggests that fecal pellets and matter make up the bulk of the particulate flux

at BATS.

Inventory calculations of " 2 P and 3 3 P in the euphotic zone suggest that most

of the activities of 32 P and 3 3 P delivered by rain are found in the suspended matter. It

suggests that DOP, which is the major pool of P at BATS, is turning over slowly relative

to the half-lives of 32 P and 3 " P.

II FUTURE WORK

The study of 3 2 P and " 3 P in rainwater has indicated the complexities in-

volved in the interpretation of the ratio in rainwater. The study has shown the potential

usefulness of cosmogenic " 2 P and 3 3 P and investigations could be done in the following

areas:

1- The tropospheric production rates of 3 2 P and 3 3 P need to be better known in order to

determine the residence times more accurately. It is especially important in the case of

cosmogenic 3 2 P and 3 3 P, since the expected range of ratios is small (Ro to Ro *1.77)

due to the similarity in the half-lives.

2- The vertical profiles of 3 2 P and 3 3 P in sub-micrometer aerosols in the troposphere

should be determined. One of the assumptions of the model of residence time is that the

troposphere is well mixed. There is evidence that this assumption is incorrect and the

discord should be assessed.

3- Another way of investigating the extent of mixing in the troposphere, particularly with

respect to mixing between the stratosphere and the troposphere, is to study 7 Be, 3 2 P and

3 3 P in rainwater. The observed ratios 7 Be 3 2 P and " 3 P3 2 P can possibly be used as
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tracers of mixing by comparison with the expected ratios 7 Be 3 2 P and 3 3 P3 2 p, assum-

ing no mixing.

4- The efficiency of the removal of sub-micrometer aerosols during washout needs to be

determined. The model of residence time relied on the assumption that the efficiency is

100% and that needs to be assessed.

The study of 3 2 P and 3 3 P in marine particulate matter has indicated the usefulness of

these tracers for studying zooplankton dynamics. Investigations could be pursued in the

following areas.

1- Depth profiles of 3 2 P and 3 3 p in DIP, DOP and suspended particles need to be

measured to assess correctly the inventories of 3 2 P and 3 3 P in the mixed layer and in the

euphotic zone.

2- One of the most important questions with respect to phosphorus cycling in the upper

ocean concerns the availability of DOP to phytoplankton. The ratio 3 3 p/ 2 P in DOP

can be used as an indicator of the lability of DOP by providing a means of estimating the

residence time of P in DOP.

3- An important question in the cycle of P is the extent of remineralization of P in sink-

ing particles below the euphotic zone. The ratio "P/2P in sinking particles at different

depths can provide estimates of the regeneration rates of P from sinking particles.
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Appendix A

Table A.1. Total net count rates (Nt) and count rates with absorber (N ) for the rain samples collected at
Woods Hole (first three rows) and at Bermuda during 1990, 1991 and 194h.

Sample Total net count rate Net count rate
date of 3 2 P and 3 3 P of 3 2 P and 3 3 P

with absorber
N N

t a

a c I b
cpm l/d d in cpm

27-Dec-90 13.34+0.07 0.0430+0.0005 16.1 6.42+0.03
16-Jan-91 4.33+0.041 0.0424+0.0008 16.3 2.12+0.02
21-Apr-91 4.44+0.07 0.041+0.001 16.9 2.33+0.06

5-Mar-91 3.49+0.09 0.0402+0.002 17.3 1.95+0.05
10-Mar-91 13.74±0.1 0.0441±0.0008 15.7 6.55±0.08
10-Mar-91 16.97±0.2 0.043±0.001 16.1 8.30±0.20
20-Apr-91 13.24+0.1 0.0411+0.0009 16.9 6.59+0.09
20-Apr-91 20.06+0.2 0.0415±0.0008 16.7 9.59+0.06
22-Apr-91 9.27+0.1 0.044+0.001 15.7 4.32+0.07
22-Apr-91 3.51+0.1 0.045+0.001 15.4 1.78+0.03
1-May-91 8.60±0.3 0.042±0.003 16.5 4.32±0.06
11-jun-91 2.12±0.07 0.046±0.003 15.1 1.23±0.02
11-Jun-91 1.78+0.08 0.044+0.005 15.8 0.91+0.02
20-Jun-91 5.75+0.06 0.044+0.001 15.8 2.69+0.03
27-Jun-91 2.66+0.06 0.043+0.002 16.1 1.24+0.01
7-Jul-91 6.53+0.2 0.040+0.001 17.3 3.01+0.06
8-Jul-91 1.89±0.05 0.043±0.002 16.1 0.80±0.06
18-Jul-91 7.15±0.1 0.0416±0.0008 16.7 3.16±0.06
19-Jul-91 6.95+0.1 0.042+0.001 16.5 3.27+0.07
7-Aug-91 6.38±0.1 0.040+0.001 17.3 3.06i0.04
26-Aug-91 9.13+0.09 0.041+0.0007 16.9 4.18+0.03
6-Sep-91 4.65±0.2 0.041±0.009 16.9 2.34±0.04
11-Sep-91 5.86±0.07 0.042±0.0009 16.5 2.87±0.03
14 -Sep-9 1* 0.77±0.04 0.044 15.8 0.32±0.02
16-Sep-91 2.18+0.04 0.041+0.002 16.9 1.08+0.03
29-Sep-91 5.37+0.05 0.042±0.001 16.5 2.59+0.05
28-Oct-91 10.32+0.2 0.044±0.001 15.8 5.63±0.09
28-Oct-91 3.33±0.1 0.042±0.006 16.5 1.98±0.05
7-Nov-91 5.56±0.1 0.047±0.002 14.7 2.53±0.04
17-Nov-91 12.01±0.2 0.040±0.002 17.3 6.02±0.09
16-Jan-92 1.90+0.04 0.042+0.002 16.5 0.94+0.02
21-Jan-92 17.44+0.08 0.0416+0.0005 16.7 7.71+0.04
25-Jan-92 6.63±0.1 0.040+0.002 17.3 3.28+0.06
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31-Jan-92 8.36+0.2 0.039+0.004 17.8 4.03+0.04
2-Feb-92 5.05±0.07 0.046+0.002 15.1 2.50+0.02
14-Feb-92 6.95±0.10 0.042±0.001 16.5 3.18±0.06
17-Mar-92* 1.27±0.06 0.044 15.8 0.68±0.02
26-Mar-92 7.53±0.2 0.042±0.002 16.5 3.47±0.18
26-Mar-92* 3.57+0.06 0.044 15.8 1.79+0.04

The net count rate with absorber Na and without absorber Nt are fitted by the following relationships:
N = a * exp(- a * t) and N = b * exp(-n2* t / 14.28)

, = In 2 / a, T is the apparent haIF-life of the total activity of P and P. The parameters a, a and b
resulting from the least-squares fit are given with the standard errors.

* The fit of the total net count rate gave a slope corresponding to T < 14.3 days. A slope of 0.044 was
imposed instead for the fit.
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Table A.2. Net count rates of the source with absorber (Na) and without (N ) as a function of time for
the particle samples collected at the Bermuda Atlantic Time-series (BATS) station in 1991 and 1992.

Sample Net count rate Net count first
of 3 2 P and 3 3 P rate with day of

absorber counting
N N

t a

a a b

L 0.57+0.01 0.042+0.003 0.36+0.03 3/9/91
Z67-1R 1.25±0.03 0.024±0.002 0.4510.04 3/11/91
Z67-2R 0.77±0.04 0.039±0.004 0.5610.05 3/11/91
Z67-3R 1.1810.03 0.017±0.001 0.3610.04 3/10/91
Z67-4 0.61+0.03 0.040+0.005 0.46+0.02 4/6/91

Z300-2 0.99+0.04 0.035+0.005 0.58+0.02 5/5/91
Z300-3 1.73+0.04 0.049+0.004 1.02+0.02 5/5/91
Z300-4 1.62±0.03 0.048±0.004 1.00±0.02 5/5/91

M1 0.43±0.02 0.06010.004 0.30±0.03 7/23/91
Z67-10 1.5010.07 0.03610.005 0.88±0.04 7/23/91
Z67-11 1.50+0.04 0.043+0.003 0.87+0.03 7/23/91
Z67-12 0.71+0.03 0.054+0.005 0.34+0.02 7/23/91
Sg-1 1.96+0.1 0.032+0.004 1.12+0.06 7/23/91
Sg-2 2.58±0.04 0.04310.001 1.22±0.03 7/24/91

M-S1 1.01±0.04 0.047±0.005 0.53±0.01 11/19/91
M-S2 1.00±0.07 0.047±0.005 0.57±0.10 11/18/91
Z67-10 1.89+0.05 0.042+0.003 1.00+0.03 11/19/91
Z67-20 3.12+0.2 0.042+0.02 1.63+0.03 11/18/91
Z67-21 3.58+0.11 0.048+0.003 1.87+0.05 11/21/91
Z67-30 3.64±0.03 0.050±0.002 2.14±0.16 11/18/91
Z67-31 2.10±0.06 0.042±0.003 1.03±0.02 11/25/91
Z300-10 3.95±0.06 0.040±0.001 1.94±0.03 11/21/91
Z300-11 3.45+0.09 0.046+0.002 1.45+0.02 11/19/91
Z300-20 5.01+0.10 0.046+0.002 2.42+0.04 11/20/91
Z300-21 4.19+0.11 0.044+0.002 2.11+0.03 11/20/91
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M2 0.57+0.04 0.045+0.005 0.35+0.03 312/92
Z500-R 0.44+0.02 0.074±0.005 0.19+0.02 3/1/92
Z500-B1 1.06±0.05 0.055+0.005 0.52+0.01 2/28/92
Z500-B2 0.99±0.04 0.05910.004 0.43±0.03 2/29/92
Z500-T 0.56±0.03 0.050±0.005 0.29±0.02 2/28/92
Z67-1 0.58±0.05 0.084+0.01 0.19+0.02 2/28/92
Z67-2 0.27±0.03 0.10+0.05 0.06+0.02 2/28/92

M-0 2.33+0.05 0.039+0.001 1.29+0.01 5/1/92
M-35 0.58+0.02 0.048+0.004 0.30±0.01 5/11/92
M-70 0.71±0.02 0.051±0.002 0.42±0.02 5/1/92
Z150-NI 1.42±0.04 0.04410.002 0.93±0.04 5/2/92
Z150-DI 2.02+0.04 0.043±0.001 1.16±0.02 5/3/92
Z150-L 1.23±0.03 0.040+0.002 0.7710.07 5/4/92
Z150-R 0.84+0.02 0.028+0.001 0.58+0.01 5/1/92

N (t) and N (t) are fitted with exponentia
t f a

for the fit are the following:
N = a *exp(- a*t)
N =b *exp(- In 2*/14.28)

l functions using a least-squares method. The equations used

aThe parameters a, a and b and their standard errors are given.
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Table A.3. Thickness (d), yield (Y), the counting efficiencies (33 e), volume of rain water (V) and
net count rates at the time of collection (3 2 N and 3 3 N) of rain samples collected at Woods Hole (first
3 rows) and at Bermuda. The counting efficiency of 3 2 P is 49t ±2 % for all thicknesses encountered.

Sample d Y E 2N 33N V
date mg/cm2  % % cpm cpmI

27-Dec-90 4.50.0.05 50+2 18.9+0.8 10.30±0.05 4.81+0.04 52±1
16-Jan-91 2.50+0.03 30+1 21.7±0.9 3.72±0.03 2.05+0.04 62±1
21-Apr-91 1.29±0.01 14±1 23.6±0.9 3.78±0.10 1.48±0.07 62±1

05-Mar-91
10-Mar-91
10-Mar-91
20-Mar-91
20-Mar-91
22-Apr-91
22-Apr-91
01-May-91
11-Jun-91
11-Jun-91
20-Jun-91
27-Jun-91
07-Jul-91
08-Jul-91
18-Jul-91
19-Jul-91
07-Aug-91
26-Aug-91
05-Sep-91
1 1-Sep-91
14-Sep-91
16-Sep-91
29-Sep-91
28-Oct-91

1.80±0.05
1.89+0.02
1.16 0.01
3.40+0.03
3.4910.03
2.1310.02
1.44±0.01
4.22+0.04
2.05+0.02
2.27+0.02
4.84±0.05
3.47±0.03
4.80±0.05
2.53+0.03
5.45+0.05
4.87+0.05
4.20±0.04
4.80±0.05
2.22±0.02
3.31+0.03
5.24+0.05
4.53+0.05
4.95t0.05
4.76±0.05

39±2
20+ 1
14+1
38±2
39±2
24±1
16±1
41+2
19+1
21+1
54±2
40±2
54±2
25+1
61+2
55+2
47±2
54±2
24±1
36+2
59+2
51+2
56±2
53±2

22.8±0.9
22.6+0.9
23.8+1.0
20.4+0.8
20.2±0.8
22.310.9
23.5±1.0
19.3+0.8
22.4+0.9
22.0+0.9
18.5±0.8
20.0±0.9
18.5±0.8
21.7+0.9
17.8±0.8
18.4+0.8
19.3±0.9
18.5±0.9
22.1±0.9
20.5+0.9
18.0+0.8
18.9+0.9
18.4±0.8
18.6±0.8

2.91±0.08
11.65+0.15
14.70+0.32
11.7+0.23
17.7910.14
7.29±0.09
2.60±0.03
8.04+0.11
3.38+0.06
2.39+0.06
6.17±0.06
5.90±0.04
22.9±0.55
9.95+0.07
13.0+0.21
6.49+0.11
10.9±0.27
12.57±0.08
7.48±0.13
7.12+0.06
4.74+0.05
13.55+0.06
6.42±0.14
12.8±0.23

1.23±0.06
5.93+0.11
6.24+0.06
5.27+0.12
7.97±0.14
3.45±0.09
1.52±0.07
3.06+0.15
1.47+0.06
0.83+0.06
2.57±0.05
2.46±0.06
6.10±0.32
2.9+0.13
4.9+0.22
2.82+0.09
3.5±0.13
4.62±0.08
2.51±0.12
2.62+0.05
1.74+0.09
4.19+0.07
2.48±0.07
3.8±0.12

37±2
62+2
62+2
60+1
60±1
61±1
60±1
53+1
60+2
61+2
40±1
62±1
62±1
62+1
62+1
40+1
45±1
61±2
61±2
60±2
62±2
60±1
50±1
62±1
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28-Oct-91
6/7-Nov-91
17-Nov-91
16-Jan-92
21-Jan-92
25-Jan-92
31-Jan-92
02-Feb-92
14-Feb-92
17-Mar-92
26-Mar-92
26-Mar-92

4.55+0.05
4.84+0.05
4.95±0.05
2.5810.03
5.00±0.05
6.00+0.06
5.62±0.06
6.05±0.06
4.44±0.04
4.10±0.04
4.67±0.04
2.45+0.03

51±2
54+2
55±2
2911
56±2
6712
63i2
68±2
49±2
46±2
5212
27+2

18.8±0.8
18.510.8
18.410.8
21.610.9
18.3±0.8
17.1+0.8
17.5+0.8
17.1+0.8
19.0±0.9
19.410.9
18.710.8
21.7±0.9

3.9±0. 12
10.2±0.2
14.25±0.2
2.7710.05
21.110.2
7.0510.1
9.55±0.09
5.18±0.05
10.3±0.2
2.1210.06
8.61±0.4
4.05±0.09

1.25±0.09
3.8+0.1
4.9±0.2
1.22±0.05
8.90±0.1
2.66+0.09
3.73±0.1
2.18+0.0
3.7±0.1
0.79±0.06
3.36±0.2
1.66+0.06

60±1
4911
60±1
6212
6112
60+1
46+2
61+1
62±2
6212
6212
46+2

Table A.4. Thickness (d), yield (Y), counting efficiencies 3 2 E and 3 3 e) and net count rates at the
time of collection ( 2 N and 3 3 N) in plankton tow samples collected with a 67-Lm plankton net in
March 1991.

Sample date depth type d Y 3 2 3 3 3 2 N 3 3 N
mg/cm2 % % % cpm cpm

L* 3/4/91 Surface tow 2.86±0.03 / 49 21.111.8 0.37±0.03 0.27±0.01
Z67-R1+ 3/4/91 Surface tow 3.59±0.04 92 49 20.0±1.8 0.58±0.05 0.96±0.10
Z67-R2+ 3/4/91 Surface tow 3.84±0.05 89 49 19.8±1.8 0.79±0.04 0.22±0.03
Z67-R3+ 3/4/91 Surface tow 3.28±0.04 91 49 20.5±1.8 0.12±0.08 1.25±0.13
Z67 3/31/91 Surface tow 5.93±0.06 95 49 17.2±1.8 0.63±Q.02 0.13±0.01

+ Operationally defined refractory fractions of three individual tows.
* Labile fractions of all three tows combined.
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Table A.S. Thickness (d), yield (Y), counting efficiencies (3 2 E and 33 E) and net count rates at the
time of collection (3 2 N and , 3 N) in plankton tows collected with a 300-pm net on 29 April-i May
1991. The samples are triplicates from the same tow.

Sample Date Depth Type d Y E C E 3 N 3 3 N
mg/cm 2 % % % cpm cpm

Z300-2 5/1/91 Surface night tow 5.93±0.1 77 49 17.2±0.8 0.77±0.01 0.36±0.01
Z300-3 5/1/91 Surface night tow 13.1±0.3 90 47 11.4j0.5 1.43±0.03 0.54±0.02
Z300-4 5/1/91 Surface night tow 13.7±0.3 74 47 11.0±0.4 1.41±0.02 0.44±0.02

Table A.6. Thickness (d), yield (Y), counting efficiencies (3 2 e and 3 3 E) and net count rates at the
time of collection (3 2 N and 3 3 N) in suspended particles and in plankton tows collected with a 67-jm net
during BATS 34, 15-19 July 1991.

Sample date depth type d Y 3 2 C3 3 3 2 N 3 3 N
mg/cm % % % cpm cpm

M1 7/16/91 surface pump 2.18±0.02 48 49 22.1±0.9 0.45±0.04 0.15±0.02
Z67-10* 7/18/91 Surface night tow 8.29±0.08 87 48 14.9±0.5 1.24±0.06 0.53±0.05
Z67-11* 7/18/91 Surface night tow 7.33±0.07 82 48 15.8±0.6 1.07±0.04 0.44±0.03
Z67-12* 7/18/91 Surface night tow 3.87±0.04 87 49 19.7±0.8 0.48±0.03 0.35±0.03
Sg-1+ 7/16/91 Surface macroalgae 7.84±0.08 78 48 15.3±0.5 2.01±0.10 0.99±0.1
Sg-2+ 7/16/91 Surface macroalgae 6.93±0.07 87 48 16.2±0.6 2.38±0.07 1.07±0.05

* Triplicates of a plankton tow.
+ Duplicates of a sample of sargassum.
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Table A.7. Thickness (d), yield (Y), counting efficiencies (3 2 e and 33 E) and net count rates at the
time of collection (3 2 N and 3 N) in plankton tow and suspended particulate samples (3-jm mesh size)
collected during BATS 38, 11-15 November 1991. Z67 and Z300 refer to plankton tows collected with a
67-pm and 300-sm plankton net. Each tow was split in two except Z67-10.

Sample date depth type d Y 32£ 3 3 3 2 N 3 3 N
mg/cm2 % % % cpm cpm

M-S1 11/12/91 surface pump 2.62±0.03 69 49 21.5±0.9 0.75±0.02 0.53±0.03
M-S2 11/14/91 surface pump 3.31±0.03 68 49 20.5±0.8 0.63±0.11 0.48±0.12
Z67-10 11/12/91 surface night tow 2.91±0.03 67 49 21.1±0.8 1.56±0.05 0.83±0.05
Z67-20* 11/14/91 0-60 m day tow 7.76±0.08 83 48 15.4±0.6 2.32±0.04 1.21±0.14
Z67-21* 11/14/91 0-60 m day tow 7.45±0.07 90 48 15.7±0.6 3.02±0.09 1.56±0.09
Z67-30 11/14/91 surface night tow 9.95±0.12 96 47 13.5±0.5 2.95±0.2 1.18±0.12
Z67-31 11/14/91 surface night tow 5.09±0.05 66 48 18.2±0.7 1.97±0.04 1.16±0.05
Z300-10 11/12/91 surface night tow 10.8±0.13 95 47 13.0±0.5 3.97±0.07 1.60±0.05
Z300-11 11/12/91 surface night tow 6.47±0.06 91 48 16.6±0.7 2.69±0.04 1.70±0.07
Z300-20* 11/14/91 0-60 m day tow 8.62±0.09 95 48 14.6±0.5 3.56±0.05 1.88±0.07
Z300-21* 11/14/91 0-60 m day tow 8.24±0.08 79 48 14.9±0.5 3.31±0.04 1.84±0.07

*: tows collected by yoyoing the net on the hydrowire from 0 to the base of the mixed-layer at 60 m.

Table A.8. Thickness (d), yield (Y), counting efficiencies (3 2 C and 3 3 E) and net count rates at the
time of collection (3 2 N and 3 N) in plankton tows and suspended particulate samples (Millipore 3 pm)
samples collected during BATS 41A, 24-25 February 1992. Z500 and Z67 refer to samples collected with
plankton nets of mesh size 500 pm and 67 sm respectively. One of the Z500 was separated into two
fractions Z500-T and Z500-B. Z500-T is the fraction that stayed suspended in seawater. Z500-B is the
fraction that sank. Z500-B1 and Z500-B2 are duplicates. Z500-R is the refractory fraction of a tow, the
labile fraction was lost during processing.

Sample date depth type d Y 32 E3 3 C 32 N 3 3 N
mg/cm2 % % % cpm cpm

M2 02125/92 surf. pump 3.64±0.04 70 49 20.0±0.8 0.51±0.05 0.19±0.03
Z500-R 02125/92 surf. night tow 4.44±0.04 71 49 19.0±0.8 0.21±0.01 0.30±0.04
Z500-B1 02125/92 surf. night tow 9.40±0.09 94 47 13.9±0.5 0.61±0.02 0.53±0.03
Z500-B2 02/25/92 surf. night tow 10.0±0.1 93 47 13.5±0.4 0.51±0.04 0.59±0.06
Z500-T 02125/92 surf. night tow 5.20±0.05 73 48 15.3±0.5 0.37±0.02 0.24±0.03
Z67-1 02/25/92 surf. night tow 4.82±0.05 72 48 18.5±0.7 0.24±0.02 0.38±0.07
Z67-2 02/25/92 surf. day tow 2.51±0.03 52 49 21.7±0.9 0.07±0.02 0.21±0.08
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Table A.9. Thickness (d), yield (Y), counting efficiencies ( 2 e and 3 3 e) and net count rates at the
time of collection (3 2 N and 3 3 N) in suspended particles and in plankton tows collected during EN 235 in
April 1992 at BATS station. Z150 refer to a tow collected with a 150-sm net. Z150-L and R refer to the
labile and refractory fractions. -

Sample Date depth type d Y 3 2 C 3 3 3 2 N 3 3 N
mg/cm 2  % % % cpm cpm

M-0 4/25/92 surf. pump 5.75±0.06 63 48 17.4±0.7 1.81±0.02 1.09±0.03
M-35 4/25/92 35 m pump 3.58±0.04 36 49 20.1±0.9 0.57±0.11 0.46±0.12
M-70 4/25/92 70 m pump 4.65±0.05 44 49 18.7±0.7 0.52±0.02 0.35±0.02
Z150-N1 4/26/92 surf. night tow 7.00±0.07 59 48 16.1±0.7 1.37±0.06 0.40±0.03
Z150-D1 4/26/92 surf. day tow 8.27±0.08 74 48 14.9±0.5 1.89±0.03 0.71±0.03
Z150-L 4/26/92 surf. night tow 8.93±0.09 76 48 14.3±0.5 1.25±0.12 0.41±0.04
Z150-R 4/26/92 surf. night tow 6.49±0.06 68 48 16.6±0.7 0.78±0.02 0.22±0.01

Table A.10. Thickness (d), yield (Y), counting efficiencies (3 2 C and 3 3 e) and net count rates at the
time of collection (3 2 N and 3 3 N) of the samples exposed to cosmic rays in Woods Hole (53 0 N), Mt.
Washington (55.7 0 N) and 1' Aiguille du Midi (47 0 N).

Sample site target d Y 3 3 E 3 2 E 3 N 3 3 N
element mg/cm2 % % % cpm cpm

Cl-WH Woods Hole Cl 3.62 81 20 49 0.21±0.03 0.034±0.008
Cl-MW Mt. Washington C1 2.18 50 22 49 0.55+0.09 0.045±0.01
CL4 -MW ML Washington C1 2.05 48 22 49 0.36+0.02 0.060+0.01
K-MW* Mt. Washington K 9.89 90 / 47 0.16±0.03 /
S-MW* Mt. Washington S 11.9 80 / 47 0.15±0.03 /
Cl-AM Aiguille du Midi C 3.93 78 19.6 49 0.50.0.03 0.049±0.004

* The activity of 33P could not be detected in that sample.
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