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ABSTRACT

LATERAL VARIATIONS OF DENSITY IN THE EARTH'S MANTLE

by

Jafar gholi Arkani Hamed

Submitted to the Department of Geology and Geophysics on
13 January 1969 in partial fulfillment of the requirement for the degree
of Doctor of Philosophy.

Lateral variations of the earth's gravitational field, deduced from
orbital data of artificial satelliteo, indicate the existence of lateral
density variations within the earth. A density model is computed for the
the mantle with the following constraints: 1) the model presents the
perturbations for Gutenberg's earth model specified by spherical
harmonics with n = 2, . . ., 6; 2) the density anomalies are confined to

the mantle and the crust; 3) the anomalies of the crust are determined
for n = 2, . .. , 6 from crustal thickness, crustal P wave velocity, and

Pn velocity, and those of the upper mantle for n = 2 and 3 are related to
the lateral variations of seismic travel time residuals; 4) the unknown
density anomalies of the mantle are determined such that the total shear
strain energy of the earth is a minimum, 5) the gravitational potential
of the deformec earth (subject to the density anomalies) on its surface
equals the first six degrees of the spherical harmonic representation of
the measured geopotential; and, 6) an isotropic, elastic, and cold
mantle and a liquid core are assumed in the str anlysis.

The density anomalies thus obtained exhibit a decreasing feature
wiTh depth. In the crust they are on the order of 0. 03 g/cc, in the
upper mantle 0. 1 g/cc, and in the lower mantle 0. 04 g/cc, which are
within the values deducted from seismic measurements.

Maximum shear stresses associated with the density anomalies
are about 40C bars throughout the mantle. It is concluded that the real
mantle subject to these density anomalies is in the creep state.

Thesis Supervisor: M. Nafi Toks'dz
Title: Associate Professor of Geophysics
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CHAPTER 1

Introduction

The observed perturbations of close satellite orbits have yielded

accurate determinations of the low order harmonics of the lateral

variations of the earth's gravitational field. These results indicate

that the lateral variations of density exist within'the earth. Seismic

and heat flow measurements have also shown lateral variations. Thus,

detailed studies of the lateral variations of the properties of the earth's

interior are in order.

In this study we will be concerned with the larteral variations of

density in the mantle. Kaula (1963) made a start on this problem, but

we wish to extend his work by making use of seismic data on crustal

thickness and crustal seismic velocities to fix the crustal density

variations. This extension is made possible by the close relationship

between density and seismic velocity in igneous rocks (Birch, 1961).

Similar determinations of upper mantle density variations are made

by using seismic travel time residuals. We determine the density

variations in the mantle by using these seismically inferred loads as

inputs, and by minimizing the total shear strain energy in the earth

w-xhile satisfying the satellite gravity data.



-2-

(1 - 1) - Historical Review

The departure of the earth from a spherically symmetric body

has been known for. about three centuries. Richer (1671) observed

that a pendulum oscillates with different frequencies at different

latitudes and concluded that the earth is not a perfect sphere.

Assuming an equilibrium state for a self-gravitating, rotating,

uniform liquid earth, Newton pointed out that the earth is spheroidal.

His conclusion was later confirmed by the measurements of the

length of the meridian arc of 1 in Peru and Lapland which were

conducted by Bouguer (1735) and DeMaupertuis (1736) respectively

(see Spencer Jones, 1954, for the cited references). The lateral

heterogeneity of the earth is also manifested in the theory of

isostasy (Airy, 1855; Pratt, 1855; (see Jeffreys, 1959)) which explains

the lack of gravity effects of surface topography by compensation

through variation of the crustal thickness and/or density. These

crustal variations have been observed by seismic investigations.

Unlike the radial density variations in the earth, which have

been studied in great detail, the lateral density variations have not

been studied satisfactorily. This is partly due to the fact that the

gross data of the earth, the total mass and the moment of inertia,

are unable to yield any information about the lateral distribtion of

the density inside the earth (except for the second degree zonal

spherical harmonic which contributes to the earth's moment of
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inertia about the polar and an equatorial axis ). Jeffreys (1941) pointed

out that the spherical harmonic representation of geopotential has

harmonics of degree 3, 4 and 6 and concluded that their sources must

be below the thin crustal layer. Vening Meinesz (1962) also related

the third and the fifth degrees of these harmonics, to the convection

currents possibly existing in the earth's mantle.

In the last few years the artificial satellite data have indicated

the lateral undulations of geopotential. These have been related to

density anomalies in the earth (Wang, 1965; and Kaula, 1963 and 1967).

Kaula (1963) presented two models for the lateral density variations of

the crust and mantle. These models assume the topography of the

surface of the earth as a surface load and also yield gravitational

fields similar to the observed geopotential expressed by spherical

harmonics through the fourth degree. However, in his determination

of the models he had only used surface loads, so his models may not

be realistic. An example is shown by the following table where the

degree correlation coefficients of the crustal thickness with his

crustal anomalies are listed.

n Crust. Thick, and Model 1 Crust. Thick and Model 2

2 .39 .97

3 -. 86 .057

4 -. 83 .31

This table shows that the second degree harmonics of model 1 and all

of the harmonics of model 2 have positive correlations with those of
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crustal thickness. That is, the thicker crust has higher densi ty and

vice versa. Considering the oceanic and the continental crust and

their associated densities these results are not geophysically realistic.

Therefore, we consider Kaula's work as a mathematical problem and

adopt his procedure and use more data in order to determine a more

realistic model of lateral density variations of the mantle.

(1-2) - Thesis Outline

Including the present chapter, this thesis is made up of five

chapter s.

Chapter 2 presents the data collected on crustal thickness and

P velocity. The crustal thickness and the P wave travel time
n

residuals are analyzed in terms of spherical harmonics through the

sixth and the third degrees respectively. Using the coefficients of

the harmonics we then calculate the linear correlation coefficients

between any two sets of data: geopotential, surface equivalent rock

topography, crustal thickness, and P wave travel time residuals.

These coefficients are used to demons-trate the existance of, or lack

of, linear relationships between the various types of geopotential

data.

From crustal thickness, crustal P wave velocity, and P

velocity we determine the a7verage dersity of a surface layer (with

50 km. thickness) beneath 297 stations by using a linear density-

velocity relationship (Birch, 1961). Because of the strong correlation
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between the density and the actual crustal thickness we employ an

emphirical relationship in order to compute the shperical harmonic

coefficients of the density of the layer from those of crustal thick-

ness. In the case of the upper mantle we relate the lateral variations

of density to those of P wave velocity through Birch's (1964) formula

and, thus, calculate the density anomalies from P wave travel time

residuals.

In Chapter 3 we compute the density variations inside the

mantle through the stress analysis in an isotropic, elastic and cold

mantle overlying a laterally homogeneous liquid core. The density

anomalies obtained in Chapter 2 together with the geopotential and

equivalent rock topography are utilized in the analysis. From all

possible density anomalies we select the one which exhibits a

smoothly varying radial dependence and, moreover, produces a

minimum total shear-strain energy in the earth.

Chapter 4 is devoted to the geophysical interpretation of the

results of Chapter 3. These results are compared with the lateral

variations of seismic structure of the mantle and with tectonically

active regions. Furthermore, we determine the relaxation time of

the stresses produced by the density anomalies in the mantle.

As a suggestion for further development of the present work we

formulate in Chapter 5 the equations of a visco-thermo-elastic

mantle model.

So as not to burden the text, mathematical formulas are

developed in appendices.
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CHAPTER 2

Lateral Variations of Geophysical Data

In recent years an increasing number of geophysical measure-

ments have become available on a global basis. The joint studies of

these data provide excellent means for understanding the properties

of the earth's interior. This chapter focuses attention on the geo-

physical data that yield detailed information about the crust and the

tpper mantle. The physical quantities considered are: gravitational

field of the earth (geopotential), surface equivalent rock topography,

crustal thickness, seismic velocities in the crustal layers, seismic

velocity at the top of the upper mantle (P velocity), and P wave

travel time residuals.

The lateral variations of geopotential have been studied from

the measurements of the unduiptions of close satellite orbits. From

such measurements the coefficients of the spherical harmonic

representation of geopotential have been determined (Guier, 1963;

Izsak, 1964; Guier and Newton, 1965; Kaula, 1963, 1966, 1967; and,

Gaposchkin, 1967). The correlacion of Kaula's (1967) and Gaposchkin's

(1967) values yields the degree correlation coefficients greater than

0. 9 through the 6th degree, 0. 7 for the 7th, and 0. 3 for the 8th degree

harmonics. Thus, Kaula's (1967) coefficients are reliable for the

first 6 degrees of the harmonics which will be used thi-oughout the
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present studies. Spherical harmonic coefficients of the equivalent

rock topography are also available (Lee and Kaula, 1967).

Deviations of seismic travel times from Jeffreys-Bullen

tables are well known for certain distance ranges (Herrin and

Taggart, 1966; Carder, et al., 1966; Cleary and Hales, 1966; Doyle

and Hales, 1967; Chinnery and Toksbz, 1967). In addition

to these variations, individual seismic stations exhibit well-defined

residuals which are independent of the epicentral distances. These

residuals are discussed and analyzed through the 3rd degree of

spherical harmonics by Toksbz and Arkani-Hamed (1967). Recently

Herrin, et al. (1968) have compiled all of the available P wave

travel time residuals. We re-analyze these data through the 3rd

degr ee.

In this chapter we present and analyze the most recent

collection of crustal data, through which we dcduce the crustal

effects on the lateral variations of geopotential and P wave travel

time residuals. Moreover the linear correlation coefficients of

any two sets of the data are calculated in order to acquire some

detailed information about the lateral densit'y variations of the

upper mantle.
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2.1 - Spherical harmonic analysis of crustal thickness and P wave

travel time residuals

Study of the lateral variations of crustal thickness involved the

collection of all the data available through 1967. These are listed in

Table (2-1). Included in the data are the results of seismic refraction,

reflection, and surface wave dispersion measurements. P wave

travel time residuals, however, are taken from the station corrections

of Herrin, et al. (1968) for 320 stations. They have expressed the

correction &t, at a station by:

At = A + Bsin (c + d) (2-1)

where c is the station-source azimuth and A, B, and d are the

con stants of the station which have been determined from at least 10

observations at that station. Our main interest is in the first term,

A, which presents the overall travel time residual of the station. In

addition to these data, we also use the data obtained from three ocean

bottom seismic observatories located on the Pacific ocean floor which

provide the only information from the oceanic areas, Figures (2-1)

and (2-2) display the global distribution of crustal thickness and travel

time residuals, averaged over grids of 5 0 x 50 latitude and longitude.

This averaging is required in order to minimize the baising effect of

the varying density of the stations onthe spherical harmonic Lnalvsis

of the data.

The averaged data are, then, expressed in terms of the

following spherical harmonics:
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71= y n=o

where A and B are the coefficients to be determined. Since we
nm nm

are primarily interested in the lateral variations of the data we first

remove their mean values which correspond to the zero degree co-

efficient. The remaining coefficients are determined through two

different techniques. For crustal thickness that has fairly uniform

spatial distribution the simple least squares method is used. For

the travel time residuals which are mainly available on the conti-

nents and islands and have a non-uniform distribution, a weighted

least squares procedure is employed. Both of these methods are

described in Appendix I. Spherical harmonic coefficients through

N = 3 for travel time residuals and N = 6 for crustal thickness are

computed and are tabulated in Table (2-2). These coefficients were

used to construct the contours of the lateral variations of crustal

thickness and travel time residuals, which are shown in Figures

(2-3) and (2-4). The contours of crustal thickness outline oceans

and continents fairly well and those of travel time residuals

delineate the ocean basins, the shield areas, and the tectonic regions

in the northern hemisphere. The shield areas in North Amer ica,

Europe and Asia are characterized by the early arrivals indicating

higher average velocities, while Pacific Ocean seems to be late.
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The harmonic coefficients obtained are subject to the aliasing

effect. That is, the low harmonics are probably biased by the higher

order variations that may exist in the data. This biasing was

examined for the case of travel time residuals by generating arti-

ficial data at the same points where we have real data, and

re-expanding the data thus obtained in terms of spherical harmonics

through N = 3. The resulting coefficients were, then, compared

with those used to generate the data. For values of N K 6 the

corresponding coefficients did not, in general, differ by more than

30 %. Including the N-values of 7, 8 and 9 changed the coefficients

significantly. This indicates that the location of the stations is such

that the harmonics of the degree higher than 6 contributes to the

lower degree harmonics. In the case of crustal thickness, because

of the uniform distribution of data, the aliasing effect is less

pr onounc ed.

2. 2 - Crustal effects on geopotential and P wave travel time residuals

The lateral variations of crust affect all the measurements

made on the earth's surface and, thus, obscure the effects of the

lateral variation of the mantle on the measurements. To separate

the crustal effects we consider a surface layer with 50 km. thickness.

This imaginary boundary lies below the Mohorovicic discontinuity

almost everywhere, We then determine the average density of this

layer at 297 points by the following equation:
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.. -(2-3)

8= I

th
where H.. and .. are the thickness and the density of the i layer

th
and N. is the number of the layers under the j station. Density of

each layer is determined from its P wave velocity (Tabulated by

Arkani-Hamed and Toksbz, 1968) and the Birch's (solution 8; 1961)

experimental relationship:

f O- + 35 97 (2-4)

Table (2-1) also includes the densities, thus obtained. Woolard

(1959) demonstrated the validity of utilizing seismic velocities in

order to calcuate the crustal densities.

Figure (2-5) displays 5 versus crustal thickness. The

strong negative correlation between these quantities (their linear

correlation coefficient is -. 83) indicates that the thicker crust is

associated with the lower average density and vice versa. This is

because the oceanic crust is primarily made up of basic rocks

with densities higher than those of the continental ar-eas. Further-

more, continents have deep roots in the mantle while the ocear;ic

crust is so thin that a large part of the "equivalent crust" must be

filled up by heavy materials of the upper mantle. Because of the

strong correlation, the empirical relationship:
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- 3.3 /1 - o. o 2 3 9(CRTH) + o.ooo 2.L.-7 (C R TH)2 (2-5)

is used to relate the density of the surface layer to actual crustal

thickness. Here crustal thickness (CRTH) is in km and is in g/cc.

This relationship enables us to determine the spherical harmonic

coefficients of f from those of crustal thickness. Table (2-2)

contains the coefficients of f and Figure (2-6) displays the spherical

harmonic synthesis of f
The spherical harmonic coefficients of the gravitational field of

this layer and the equivalent rock topography over lying the layer are

related to those of f and - by:

1.+3 yn+3 ..

27W+ -. +' i 'o+n- '

where c is the mean radius of the earth, R is the radial distance to

the bottom of the layer (R = a -50 km. ) and 6- is the surface mass

density corresponding to surface equivalent rock topography (the

topography is reduced to a surface mass by using 2. 7 g/cc for the

average density of its materials, Lee and Kaula, 1967).

Table (2-3) is the list of the spherical harmonic coefficients of

the gravitational potentials of the equivalent rock topography, the

surface layer, and their total contribution to geopotential. The co-

efficients of geopotential are also listed in the same table for easy
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comparison. The gravitational potentials of the topography or the

surface layer are an order of magnitude greater than the observed geo-

potential variations, indicating the existence of some compensating

density anomalies in the deep mantle.

Because of the lateral variations of the crust, travel times of P

waves propagating vertically through the surface layer under different

stations are different. Table (2-4) gives the locations of 50 x 50

squares where the crustal data together with the travel time residuals

are available. The square with the asterisk is chosen as the reference

point, and other residuals are reduced to this point and are listed in

the same table (STTR*). Using the average crustal velocity and P
n

velocity, the travel times of P waves propagating from the surface to

the bottom of the surface layer are determined and their residuals

with respect to the reference point (the crustal residuals, CSTTR) are

computed and also included in table (2-4). The crustal effect on the

travel time residuals is very pronounced. Figure (2-7) illustrates

the observed travel time residuals (STTR) versus the crustal

residuals. Their linear correlation coefficient is -. 47. The

negative sign of the coefficient indicates that areas with positive

crustal residuals (low P wave velocity of the layer), are associated

with negative observed residuals and vice versa. This result is geo-

physically important and derotes that wherever the surface layer

velocities are low (the continents) the upper mantle velocities are

high and, thus, the layer compensates for the large lateral variations
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of the velocities of the upper mantle.

Table (2-4) also includes the travel time residuals associated

with the upper mantle (the mantle residual, MSTTR) which are

computed through the following formula:

MSTTR = STTR - CSTTR (2-7)

Comparison of these residuals with crustal residuals shows that not

only do they have, in general, opposite signs but that also the MSTTR

is about three times larger than the CSTTR.

?,, 3 - Correlation of Geophysical Data and Upper Mantle Density-

Anomalies

To demonstrate the existence of or the lack of the linear

relationships between the sets of geophysical data, we compute the

correlation coefficients between any two sets. Wherever the data have

common locations, which is the case for crustal thickness versus

average density of the surface layer, or observed travel time residuals

versus crustal residuals, the correlation coefficients are determined

by (Lee, 1960):

r ) (2-8)

where x is the mean value of x and 6- is the standard deviation of x.
x

In the cases where the data do not have a common spatial distribution,
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their spherical harmonic coefficients are used to display their

correlation. If A , B , and A' , B' are the spherical
nm nm nm - nm

harmonic coefficients of the two phenomena their correlation co-

efficients will be expressed by (Appendix II):

LXII+Bu2HP:+B2 +"2

Equation (2-9) and the coefficients listed in Table (2-2) were

used to calculate the correlation coefficients between the foregoing

sets of geophysical data used in this study. These are given in a

matrix form in Table (2-5). In all these computations the value of n

is determined by the lower value of the two sets. Moreover, the C2 0

coefficient of geopotential is omitted since its large value is

primarily due to the improper correction for the flattening of the earth.

The correlation coefficients listed in Table (2-5) are in general

low except for a few cases. The highest correlation is between

surface topography and crustal thickness. This is in excellent agree-

ment with value r = . 76 of Lee and Taylor (1967) obtained by linear

regression analysis. Such a high correlation means that higher

regions are associated with thicker crust; this is an obvious con-

clusion when we consider the oceans and the continents and the

associated crustal thicknesses. There is comparatively good cor-

relation between geopotential and P wave travel time residuals. Its

negative sign indicates that the zones with higher densities are
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associated with higher seismic velocities. The negative correlation

between travel time residuals and equivalent rock topography or

crustal thickness means that the oceanic areas are associated with

relatively lower average velocities than the continental ones, which

implies that the upper mantle velocities under the oceans are slower

than those under the continents to offset the crustal delays.

The lack of correlation between geopotential and equivalent

rock topography or crustal thickness is very significant. These results,

which have also been observed by Munk and MacDonald (1960), Birch

(1964), and Kaula (1967), indicate that the lower harmonics of geo-

potential variations are controlled by the mass distributions in the

mantle.

Table (2-5) displays overall correlations between the data. For

a detailed study of the correlation coefficients, however, we have

correlated the harmonics of similar degrees for two sets of data (the

degree correlation) by using equation (2-9) for a given value of n. The

results are listed in Table (2-6), which also includes the degree power

and degree cross-power spectra of the data and shows the dominant

degree of harmonics in the data. Harmonics with n greater than one

are considered because of the lack of first degree harmonics in geo-

potential and, hence, in the lateral density variations of the earth with

which we are concerned in the present studies. The almost equal

degree correlation coefficients of crustal thickness and equivalent

rock topography indicates a very close relationship between them and,
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hence, confirms Airy's theory of isostasy. The large and negative

degree correlation coefficients of travel time residuals and crustal

thickness are very interesting. They mean that the thicker crust is

associated with the shorter travel times. This indicates that

materials under lying a thick crust are characterized by high P wave

velocities. The small magnitudes and alternative sign of degree

correlations of geopotential and crustal thickness are very significant.

This indicates that geopotential is not due to the uncompensated part

of the crustal anomalies but, rather, mantle density anomalies are

responsible for the lateral variations of geopotential. The negative

and high degree correlation coefficient of the second degree harmonics

of travel time residuals and those of geopotential once more

delineates the existence of large lateral variations in the properties of

the upper mantle.

The foregoing discussion leads us to conclude that some large

lateral density variations exist in the upper mantle and moreover, the

lateral variations of P wave velocity of the upper mantle are somewhat

linearly related to those of density. Therefore, the upper mantle

density variations were determined from the mantle residuals by the

assumption that Birch's (solutiun II, 1964) formula:

Af .3~7eA (2-10)F

holds between these variations. In the absence of any 'realistic
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equation of state this assumption is in order. To evaluate the mantle

residuals, the travel time residuals corresponding to the surface

layer are first calculated from its average density by using the

following r elationship:

At : A)' (2-11)
V

which is derived from equation (2-4). Then the mantle residuals are

readily determined through equation (2-7). Using these residuals and

equation (2-10) the upper mantle density anomalies are computed by

the following equation:

f -- 37 3 7 x M5TTR

Y (N~/~a

Here H. and V. are the thickness and the velocity of the .th layer in
1 1 3

the upper mantle. In the numerical calculations, Gutenberg's earth

model is used and it is assumed that Af does not change with depth.

If we use Jeffreys' model instead, there will not be any significant

difference in the results. Both of these models are listed by

Alterman; et a!. (1961).
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LIST OF TABLES FOR CHAPTER 2

Cruatal data

colatitude (in degrees and minutes)
East longitude (in degrees and minutes)
Elevation (km. )
Crustal thickness (km.)
Pn velocity (km. /sec.)
refraction data
reflection data
surface wave dispersion data
average density of the surface layer (g/cc)

references

Lat.
Long.
ELEV
CR TH
PNVL
RR
R L
SW
R H
Ref.

(2-2) Spherical harmonic coefficients of P wave travel time

residuals (STTR, in sec. ), crustal thickness (CRTH, km. ),
and average density of the surface layer (RHo, g/cc).

N = degree of harmonics
M = order of harmonics
ANM = coefficients of even harmonics

BNM = coefficients of odd harmonics

(2-3) Gravitational potential of the crust and observed

geopotential.

Gl

G2O
G3
GEOP

gravitational potential of equivalent rock topography

gravitational potential of the surface layer

Gi + G2
observed geopotential

(2-4) Common locations of crustal data and P wave travel time

residuals.

Long. =

Lat. =

VCAV
STTR =

STTR* =

CSTTR =

MSTTP=

East longitude (degree)
colatitude (degree)
average P wave velocity of the surface layer (km. /sec.)

observed P wave travel time residuals (sec)

reduced P wave travel time residuals (sec)

crustai residuals (sec)
mantle residl-als (sec)

C orr elation matrix

(2-6) Correlatioa of geophysical data

EQRT = Equivalent rock topography at the surface of the earth.

Table

(2-1)

(2-5)
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Table (2-1)

NO LAT.
D M

1 114 34
2 116 56
3 121 29
4 122 55
5 129 45
6 125 46
7 126 51
8 127 15
9 127 56

10 123 48
11 122 45
12 124 11
13 122 50
14 119 42
15 115 3
16 110 43
17 106 25
18 103 9
19 104 57
20 103 47
21 103 31
22 41 54
23 42 55
24 42 14
25 43 05
26 43 15
27 41 40
28 52 0
29 52 35
30 53 20
31 53 54
32 52 0
33 51 30
34 50 45
35 39 47
36 39 33
37 40 3
38 39 0
39 39 0
40 39 0
41 40 0
42 46 0
43 45 30
44 46 0
45 12 30
46 13 30
47 46 00
48 47 00
49 49 00
50 52 00

LONG. ELEV TI. PN
D M KM KM KM/S

57 27
58 10
61 52
62 26
63 58
73 40
76 23
78 31
87 39
96 1

102 45
105 55
108 41
111 31
104 12
97 12
89 19
93 13

108 9
115 33
118 26
273 56
269 16
274 10
268 05
267 25
265 00
240 50
242 30
243 45
245 12
238 0
240 0
241 0
248 50
246 50
249 40
247 0
242 0
240 0
234 0
295 0
296 0

261 0
266 0
290 00
286 00
283 00
277 00

-4.9
-5.5
-4.3
-4.8
-5.0
-4.0
-3.2
-1.9
-3.8
-4.3
-4.8
-5.6
-5.3
-5.3
-5.1
-5.8
-5.7
-5.2
-5.6
-5.7
-5.7

1.9
3.4
1.3
0.3
0.0
1.4
1.0
0.7
1.4
0.8
4.0
8.0
2.0
4.0
0.0
0.0
0 0

0.0
0.0

4.6
5.5
5.5
6.1
4.4
4.0
3.9
8.5
8.2
7.1
7.7
6.9
4.7
5.9
5.0
6.2
4.2
7.5
6.1
9.0
8.4

63.9
37.6
72.0
34.0
33.6
50.6
42.9
34.9
33.8
31.5
21.0
27.4
36.0
48.0
48.0
48.0
44.0
32.0
32. J
54.0
36.3
32.8

38.0
37.8
37.0
36.0
33.0
39.0

8.06
8.12
8.16
8.39
8.13
7.99
8.23
7.61
7.80
8.06
8.18
8.24
7.87
8.28
8.11
8.14
7.94
8.07
8.28
8.23
8.09
8.39
8.52
8.52
8.39
8.28
8.28
7.80
7.80
7.80
7.80
7.90
7.90
7.90
8.25
8.25
8.01
8.20
7.80
7.80
8.10
8.11
8.11
8.11
8.20
8.20
8.20
8.10
8.20
8.10

RR RL SW RHO REF.
G/CC

3.24
3.25
3.26
3.33
3.27
3.21
3.28
3.03
3.11
3.20
3.21
3.26
3.14
3.27
3.24
3.24
3.20
3.21
3.28
3.21
3.17

2.78
2.87
2.85
2.86
2.97
2.82
2.78
2.59
2.65
2.61
2.63
2.78
2.84
2.99
2.79
2.81
2.84
2.88
2.73

47
47
27
.27

27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
73
73
73
73
73
73
39
39
39
39
77
71
77
40
40
40
81
81
81
81

5

5
5

65
75
75
75
75
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****** CONTINUE

NO LAT.
D M

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
9?
93
94
95
96
97
98
98

100

43 30
44 30
42 30
53 00
60 00
43 30
43 30
49 00
55 00
48 00
55 30
47 00
50 00
50 00
51 00
51 30
52 30
53 30
52 30
55 30
35 0
37 0
39 0
41 30
42 30
43 15
44 30
46 00
46 0
48 0
56 10
56 30

152 0
150 0
135 0
140 0
140 0
145 0
155 0'
143 0
125 0
155 0
142 0
175 0
137 0
137 0
155 0
140 0
150 0
134 0

LONG. ELEV T-i. PN
0 M KM KM KM/S

271 30
270 00
265 30
268 30
263 00
253 00
246 30
253 00
253 00
250 00
251 30
243 30
240 00
243 00
240 00
239 00
243 00
244 30
238 00
240 30
258 0
258 30
303 0
301 0
295 30
299 0
299 30
295 00
300 30
301 0
137 0
136 30
220 0
225 0
240 0
230 0
250 0
217 0
180 0
290 0
305 0
270 0

5 0
70 0
97 0

10.7 0
135 0
115 0
140 0
97 0

0.3
0.3
0.0
0.0
0.0
0.0
0.0

0.0
-4.0
-2.2
-2.1
-3.4
-3.4
-3.7
-3.7
-3.7
-3.7
-3.7
-3.8
-3.8

0.0
-4.4

3.9
-3.7
-3.8

1.0
-3.8

0.0
-3.9

37.0
37.0
37.0
41.)
33.0
53.0
41.0
48.0
51.0
41.0
31.0
47.0
50.0
22.0
45.0
16.0
28.0
30.0
23.0
23.0
31.0
34.0
31.1
34.7
48.7
42.5
32.5
36.3
34.8
11.6
14.4
13.9
6.5
6.5
6.5

6.5
6.5

10.0
30.0
10.0
10.0
25.:)

5.0

35.0
10.)
10.0
35.3
10.0
35.0
10.)

RR RL SW RHO REF.
G/CC

8.10
8.00
8.10
8.20
8.20
8.10
7.90
8.00
8.20
8.00
7.90
7.90
7.90
7.80
7.90
7.90
7.80
7.80
8.00
8.20
7.90
7.90
7.98
7.98
8.50
8.50
8.10
8.10
8.00
7.96
8.03
8.03
7.79
7.79
7 70

7.79
7.79
7.79
7.79
7.79
7.79
7.79
7.79

7.79
7.79
7.79
7.79
7.79
7.79
7.79

2.94
2.89
2.87
2.82
2.75
2.82
2.84

2.59
2.95
2.89
2.89
3.13
3.13
3.13
3.13
3.13
3.08
2.83
3.08
3.08
2.89
3.15
2.76
3.08
3.08
2.76
3.08
2.76
3.08

75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
34
34
11
11
11
11
11
11
11
11
52
52
1
1
i
1
1

18
18
18
18
18
18
18
18
18
18
18
18
18
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****** CON)iNUE

NO LAT.
D M

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

144
145
146
147
148
149
150

150 0
125 0
143 0
155 0
127 0
144 0
160 0
120 0
140 0
160 0
135 0
158 0
140 0
126 00
132 00

43 45
44 00
44 00
44 30
44 30
44 40
44 35
44 32
44 40
44 45
44 50
44 51
44 55
44 55
44 55
44 58
45 00
45 00
44 55
44 54
44 57
45 02
45 02
45 05
45 05
45 05
45 10
45 10
45 12
45 12
45 12
45 18
45 18
45 18
45 20

LONG. ELEV TH. PN
D M KM KM KM/S

135 0
287 0
275 0
220 0
290 0
282 0
240 0
302 0
310 0

50 0
40 0
90 0
46 0

178 00
173 00

8 10
8 05
7 10
8 00
7 05
7 00
7 00
7 05
7 20
7 30
7 00
7 10
6 55
6 45
6 50
6 40
6 35
7 16
7 16
7 26
7 40
6 30
6 50
6 10
6 20
7 00
6 20
-7 A0

6 28
7 00
7 30
6 35
6 52
7 30
7 00

0.0
0.7

-4.4
0.0
0.7

-4.2
0.0
0.1

-3.8
2.9

-4.5
0.0

-4.2
-2.4

0.0

35.0
30.0

5.0
25.0
30.3

5.0
25.0
30.3
10.0
35.0

5.0
35.3

5.0
15.5
35.0
36.0
37.0
37.0
49.0
44.0
43.0
42.0
45.0
40.)
42.0
39.0
47.0
47.0
46.0
42.0
44.0
36.0
39.0
38.0
43.0
53.0
36.0
42.0
28.0
33.0
46.3
29.0

30.0
45.0
44.)
31.0
34.0
47.0
35.0

RR RL SW RHO REF.
G/CC

2.76
2.83
3.15
2.89
2.83
3.15
2.89
2.83
3.08
2.76
3.15
2.76
3.15

7.79
7.79
7.79
7.79
7.79
7.79
7.79
7.79
7.79
7.79
7.79
7.79
7.79
7.79
7.79
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15
8.15

18
18
18
18
18
18
18
18
18
18
18
18
18
76
76
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28

* * *** *



-23-

****** CONTINUE ***

NO LAT. LONG. ELEV TH. PN RR RL SW RHO REF.
D M D M KM KM KM/S G/CC

151 45 20 7 07 47.0 8.15 1 28
152 45 21 6 55 35.0 8.15 1 28
153 45 25 6 35 28.0 8.15 1 28
154 45 25 6 55 34.0 8.15 1 .28
155 45 25 7 25 43.0 8.15 1 28
156 45 30 6 57 34.0 8.15 1 28
157 45 30 7 04 36.0 8.15 1 28
158 45 30 7 20 41.0 8.15 1 28
159 54 20 60 35 47.5 8.40 1 7
160 54 22 60 30 48.0 8.40 1 7
161 54 24 60 25 51.0 8.40 1 7
162 54 30 60 12 51.0 8.40 1 7
163 47 30 112 0 1.8 30.8 7.80 1 0 0 2.88 82
164 48 30 110 30 2.4 36.8 7.80 1 0 0 2.85 82
165 50 25 254 0 6.5 56.0 8.00 1 1 0 3.01 38
166 22 10 20 26 0.4 33.9 8.05 0 1 0 2.89 6
167 35 20 3 20 -0.2 29.7 8,30 1 0 0 2.71 15

168 40 00 8 40 30.0 8.20 1 1 31
169 38 00 10 00 27.0 8.20 1 1 31
170 40 35 8 40 28.5 8.20 1 1 31
171 40 30 11 40 29.8 8.20 1 1 31
172 48 48 16 31 0.0 39.0 8.25 1 0 0 2.88 24
173 91 45 42 7 -2.1 16.6 8.10 1 0 0 2.86 26
174 92 40 43 28 -3.6 9.9 8.08 1 0 0 3.01 26
175 92 31 44 56 -4.2 8.3 8.14 1 26

176 92 55 47 2 -4.8 11.1 8.10 1 0 0 3.07 26
177 93 28 49 36 -5.0 4.2 7.88 1 26

178 93 36 51 29 -5.1 3.4 8.18 1 0 0 3.28 26
179 92 12 57 18 -4.4 6.8 8.14 1 0 0 3.21 26

180 94 46 55 4 -0.1 31.9 8.10 1 0 0 2.94 26
181 68 20 202 0 -0.1 5.4 7.60 0 0 0 3.01 29
182 68 40 201 55 -0.2 4.7 7.65 1 0 0 3.06 29

183 68 50 202 10 -0.6 20.6 8.80 1 0 0 3.07 29
184 46 20 9 0 -2.5 10.5 8.00 1 0 0 3.03 23
185 46 45 8 30 11.5 8.00 1 23
186 47 15 7 30 -2.5 8.5 8.00 1 0 0 3.06 23
187 48 15 6 30 -2.5 8.0 7.70 1 0 0 2.98 23
188 48 45 5 0 -2.5 9.7 7.70 1 0 0 2.95 23
189 48 15 34 55 26.5 8.20 1 1 53

190 44 30 236 40 0.0 15.q 8.00 1 0 0 3.03 10

191 45 20 236 20 0.0 15.8 8.00 1 0 0 3.03 10

192 60 0 76 0 0.4 37.9 8.10 0 0 1 2.81 30

193 43 40 7 0 1.5 49.5 8.10 0 0 1 2.71 44
194 44 0 6 20 1.5 42.5 8.10 3 0 1 2.(T 44
195 43 0 8 0 1.0 40.0 8.10 0 0 1 2.80 44

196 42 50 8 40 0.6 37.5 8.10 0 0 1 2.80 44

197 42 20 9 30 0.3 42.5 8.10 0 0 1 2.74 44

198 42 10 7 40 0.0 30.0 8.10 0 0 1 2.87 44
199 170 0 45 0 0.0 42.0 7.85 0. 0 1- 2.68 32
200 67 0 320 0 -5.8 11.5 8.10 0 0 1 3.11 9
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****** CONTINUE

N) LAT.
D M

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

41 00
52 30
51 00
50 20
49 20
49 40
49 20
50 18
50 17
53 51
53 20
54 44
55 38
54 59
62 36
70 38
79 17
75 19
69 34
70 58
77 33
78 48
78 40
89 13
80 59

103 36
108 59
111 55
109 57
110 30
110 02
106 16
107 28
107 32
102 47
101 20
100 45
101 46
104 16

97 20
89 49
84 13
75 2
36 43
34 48
34 35
33 15
34 15
39 17
38 37

LONG. ELEV
D M KM

154 00 -2.0
60 40
63 30
64 20
65 40
69 40
73 30

141 10
140 06
139 23
138 12
136 15
132 26
135 44
238 25 -4.2
231 30 -4.8
214 07 -5.2
208 6 -5.8
205 6 -5.2
182 41 -4.8
168 22 -4.9
165 10 -4.5
161 35 -3.9
169 11 -4.4
174 56 -5.2
174 56 -2.5
177 34 -2.6
178 33 -4.1
187 27 -6.1
186 40 -9.2
186 53 -8.9
191 29 -5.1
199 1 -4.8
201 20 -5.2
216 27 -4.6
217 35 -4.6
226 25 -4.2
231 3 -4.1
240 50 -3.6
241 20 -4.3
236 34 -4.5
236 1 -4.3
235 48 -4.4
196 12 -6.9
191 8 -2.1
192 10 -0.2
207 11 -0.1
207 37 -5.4
211 38 -4.6
214 49 -4.2

TH. PN
KM KM/S

23.0
46.5
45.0
46. 5
40.0
42.0
55.0
25.0
26.0
39.0
46.0
27.0
29.0
23.0

7.4
5.9
5.4
5.3
7.2
8.2
6.3
8.7

12.5
13.0

6.5
5.6

12.5
10.6

6.1
11.2
11.1
11.2

6.1
5.8
7.1
7.4
6.4
5.6
5.2
4.8
5.5
5.4
6.4
7.6

18.8
28.8
23.3

9.6
6.3
6.6

RR RL SW RHO REF.
G/CC

8.15
8.20
8.30
8.30
8.10
8.20
8.30
7.52
7.52
7.52
7.52
7.52
7.52
7.52
8.41
8.05
8.24
8.15
7.92
8.28
8.42
8.28
8.09
8.16
8.14
8.14
8.51
8.42
8.25
8. 29
8.29
8.77
8.17
8.21
8.43
8.34
8.14
8.00
8.12
8.30
8.21
8.16
8.46
7.78
8,41
8.08
8.07
8.19
8.17
8.15

79
80
80
80
80
80
80

1 2
1 2
1 2
1 2
1 2
1 2
1 2

0 0 3.31 47
0 0 3.23 47

47
0 0 3.25 47
0 0 3.12 47
0 0 3.24 47
0 0 3.28 47
0 0 3.18 47

47
0 0 3.13 47
0 0 3.23 47
0 0 3.22 47
0 0 3.20 47
0 0 3.20 47
0 0 3.25 47
0 0 3.23 47

47
0 0 3.35 47
0 0 3.25 47
0 0 3.27 47
0 0 3.31 47
0 0 3.29 47
0 0 3.24 47
0 0 3.21 47
0 0 3.23 47
0 0 3.31 47
0 0 3.26 47
0 0 3.24 47
0 0 3.35 47
0 0 3.06 47
0 0 2.)6 47
0 0 2.76 47
c 0 2.83 47

47
47

0 0 3.24 47
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****** CONTINUE

ND LAT.
D M

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

37 24
36 53
36 3
35 37
37 16
39 41
63 18
63 57
64 33
69 15
70 56
73 50
76 36
77 0
78 4
78 30
61 32
66 43
66 43
66 30
76 25
77 22
67 10
67 23
68 0
66 40
68 55
67 47
67 12
66 51
42 00
60 56
62 48
64 43
66 42
67 34
68 32
66 19
68 26
39 41
37 33
36 57
36 7
34 21
34 40
33 58
33 40
37 15
34 50
76 6

LONG. ELEV
D M KM

218 50 -3.7
221 15 -3.5
224 6 -2.9
227 28 -0.4
183 37 -3.6
182 21 -7.3
190 56 -4.4
191 10 -3.2
191 33 -1.1
253 33 -4.1
254 32 -4.9
260 15 -5.1
268 45 -0.1
268 20 -6.1
268 17 -3.6
271 56 -5.1
287 48 -4.3
289 10 -3.1
288 38 -8.0
287 1 -3.7
280 51 -4.5
281 24 -6.0
206 39 -5.0
205 56 -4.6
203 26 -4.9
203 40 -4.3
203 45 -0.9
204 47 -4.5
204 6 -4.3
203 22 -4.3
225 00 -4.0
246 40 -1.1
248 40 -1.7
250 19 -2.5
251 39 -2.7
252 09 -2.9
252 39 -3.1
252 43 -0.1
253 51 -0.6
182 21 -7.3
183 14 -3.1
184 29 -3.4
183 56 -3.7

1 A 3 -3.8
182 40 -3.8
183 18 -3.7
124 21 -3.7
183 37 -3.7
190 10 -3.7
285 25 -4.0

TH. PN
KM KM/S

6.9 8.36
7.3 8.30
6.5 8.13

25.8 8.50
9.9 7.60
6.1 7.57
6.9 8.00
9.9 8.28

13.1 8.42
8.2 8.29
4.2 7.64
6.6 8.24

10.3 8.18
8.7 8.04
4.5 7.76

10.8 8.60
9.0 8.40

19.5 8.20
10.5 8.02
8.7 8.20
6.4 8.10

10.7 8.36
5.4 8.68
5.5 8.50
7.3 8.10
5.9 8.08

12.3 8.05
5.2 7.99
6.3 7.97
6.7 8.71
4.6 8.10

10.9 7.60
7.7 7.80
5.1 7.73
4.8 7.47
It 07 1 I .1~

6.9 7.92
18.2 8.02
10.2 7.60
6.1 7.57

17.2 8.89
10.8 8.12
11.0 7.84
117 808

9.2 7.73
11.4 8.25
12.0 7.98

9.9 7.60
18.8 8.41
13.8 8.00

RR RL SW RHO REF.
G/CC

0 0 3.26 47
47

0 0 3.17 47
0 0 2.97 47
0 0 2.89 47

47
0 0 3.16 47
0 0 3.19 47
0 0 3.14 47
0 0 3.18 47
0 0 3.05 47
0 0 3.25 47
0 0 3.13 47
0 0 3.13 47
0 0 3.11 47
0 0 3.26 47
0 0 3.29 47
0 0 2.99 47
0 0 3.16 47
0 0 3.21 47
0 0 3.22 47
0 0 3.23 47
0 0 3.43 47
0 0 3.37 47
0 0 3.18 47
0 0 3.23 47
0 0 3.03 47
0 0 3.20 47
0 0 3.20 47
0 0 3.42 47

47
47
47
47
47
47
47
47
47

0 0 2.v3 47
0 0 3.12 47
0 0 3.02 47
0 0 2.94 47
0 0 2.99 47
0 0 2.93 47
0 0 3.05 47
0 0 2.95 47
0 0 2.89 47
0 0 2.96 47
0 0 3.02 47

* ** ** *
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****** C1NINUE

NO LAT.
D M

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

78 29
78 43
78 31
72 28
70 44
71 51
71 22
70 49
70 20
72 14
72 39
65 51
64 50
76 34
76 37
74 36
73 40
72 44
70 19
70 11
70 5
65 58
67 32
69 34
71 10
71 41
71 50
71 40
70 55
70 35
75 29
76 27
74 54
73 32
53 48
63 10
61 16
58 44
55 40
56 1
66 45
65 48
73 57
54 56
54 7
52 45
61 9
61 49
54 28
48 17

LONG. ELEV
0 M KM

283 49 -3.2
284 13 -2.8
282 18 -3.7
280 26 -1.4
282 22 -5.2
279 58 -3.9
280 21 -4.8
280 51 -6.9
283 49 -5.0
285 13 -1.9
287 4 -3.8
267 37 -3.8
267 8 -3.7
296 57 -3.5
298 15 -5.0
295 14 -3.9
293 33 -4.4
292 58 -5.1
297 30 -6.2
295 48 -6.8
294 6 -8.0
297 45 -5.9
298 6 -5.8
298 21 -5.5
299 40 -6.0
299 22 -6.4
298 57 -5.6
299 06 -5.9
297 41 -6.6
295 22 -6.0
295 17 -3.9
293 36 -5.0
293 1 -5.0
293 54 -4.5
288 27 -4.1
284 58 -4.6
286 42 -4.5
292 22 -5.1
291 50 -5.3
293 33 -5.1
295 56 -5.8
296 0 -5.8
295 59 -5.6
294 12 -5.1
293 21 -5.0
291 5 -4.5
298 13 -5.3
299 41 -5.7
284 52 -5.3
304 7 -4.6

TH. PN
KM KM/S

12.5
12.5
16.2
18.4

5.3
9.4
6.0
5.2

14.3
20.0
13.8
12.9
15.5
11.6

8.4
13.1
10.2
10.9

6.7
9.4
9.8
7.4
5.9
6.9
8.3
9.8

13.6
14.6
14.1
15.8
1 41 1

7.8
8.9

10.6
8.0
7.9
9.0
5.9
4.3
4,. 2

3.3
4.8
5.0
4.8
7.3
6.3
5.7
4.4
3.3
8.3

RR RL SW RHO REF.
G/CC

7.80
8.10
8.20
7.60
8.10
8.30
8.20
8.20
8.00
8.20
7.80
8.30
8.30
8.32
8.13
8.31
8.04
7.78
7.85
8.05
7.94
8.21
7.96
8.44
8.36
8.64
8.35
8.42
8.30
8.43
8.08
8.23
8.20
7.92
7.97
7.87
8.50
8.05
7.83
7.80
7.56
8.09
7.79
8.21
8.27
7.43
8.50
8.08
7.49
7a 76

0 0 2.86 47
0 0 2.94 47
0 0 3.03 47
0 0 2.83. 47
0 0 3.20 47
0 0 3.19 47
0 0 3.22 47
0 0 3.22 47

47
0 0 2.97 47
0 0 2.96 47
0 0 3.00 47
0 0 2.92 47
0 0 3.01 47
0 0 3.08 47
0 0 3.07 47
0 0 3.08 47
0 0 2.99 47
0 0 3.11 47
0 0 3.09 47

0 0 3.08 47
47

0 0 3.17 47
0 0 3.30 47
0 0 3.25 47
0 0 3.23 47
0 0 3.03 47

47
47

0 0 3.08 47
47
47

0 0 3.15 47
0 0 3.05 47
0 0 3.03 47
0 0 3.04 47
0 0 3.18 47
0 0 3.16 47
0 0 3.12 47
0 0 3.09 47
0 0 3.04 47
0 0 3.21 47
0 0 3.10 47
0 0 3.2 47
0 0 3.18 47
0 0 2.90 47
0 0 3.36 47
0 0 3.23 47
0 '0 3.05 47
0 0 2.96 47

***i~J A~.*
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****** CONTINUE *****

NO LAT. LONG. ELEV TH. PN RR RL SW RHO REF.
D M D M KM KM KM/S G/CC

401 55 32 296 58 -5.0 5.2 7.34 1 0 0 3.09 47
402 66 31 301 15 -5.6 5.7 8.14 1 0 0 3.21 47
403 72 4 302 38 -5.5 7.4 8.23 1 0 0 3.21 47
404 64 14 292 25 -5.5 6.8 8.29 1 0 0 3.25 47
405 65 21 290 45 -5.8 6.0 8.04 1 0 0 3.16 47
406 63 52 289 51 -5.5 7.7 8.14 1 0 0 3.15 47
407 64 16 288 3 -5.4 7.5 8.32 1 0 0 3.20 47
408 57 8 306 34 -5.4 4.5 8.25 1 0 0 3.25 47
409 57 9 302 30 -4.9 5.9 8.06 1 0 0 3.15 47
410 51 39 293 50 -4.7 6.2 7.70 1 0 0 3.00 47
411 59 58 284 23 -4.6 10.2 8.12 1 0 0 3.05 47
412 48 44 300 23 -4.8 10.8 8.22 1 0 0 3.04 47
413 49 27 341 3 -5.5 5.2 7.68 1 0 0 3.05 47
414 48 36 343 58 -4.8 4.7 7.77 1 0 0 3.08 47
415 43 52 344 39 -4.4 4.5 7.65 1 0 0 3.05 47
416 43 7 350 9 -4.5 8.2 7.77 1 0 0 2.99 47
417 51 15 320 58 -5.1 5.1 8.11 1 0 0 3.20 47
418 50 53 322 53 -4.4 3.2 8.00 1 0 0 3.19 47
419 50 45 324 43 -3.9 3.1 7.90 1 0 0 3.16 47
420 54 43 333 58 -4.0 5.4 7.97 1 47
421 22 11 359 20 -3.4 3.7 8.04 1 0 0 3.19 47
422 93 55 329 26 -4.8 7.1 8.30 1 47
423 96 49 326 38 -4.6 8.8 8.20 1 47
424 125 52 307 4 -0.7 26.4 8.01 1 0 0 2.78 47
425 60 23 284 38 -4.5 6.7 7.85 1 0 0 3.02 47
426 68 16 292 30 -5.2 6.8 8.30 1 47
427 68 45 292 30 -5.2 5.3 8.10 1 47
428 69 08 292 29 -5.2 4.5 8.20 1 47
429 57 0 285 29 -4.4 11.9 8.43 1 0 0 3.08 47
430 69 41 293 36 -5.7 6.8 7.83 1 0 0 3.10 47
431 69 21 293 38 -5.5 6.4 7.99 1 0 0 3.15 47
432 69 30 293 36 -5.7 6.6 7.96 1 47
433 68 39 293 30 -5.4 5.0 8.29 1 0 0 3.26 47
434 69 11 293 24 -5.6 6.2 7.73 1 0 0 3.08 47
435 67 32 293 31 -5.8 6.0 7.95 1 0 0 3.16 47
436 67 8 293 31 -5.8 5.5 7.94 L 0 0 3.16 47
437 67 18 293 31 -5.8 6.4 7.91 1 0 0 3.14 47
438 69 17 294 13 -5.5 4.0 8.30 1 47
439 71 31 294 38 -0.0 11.8 8.20 1 47
440 68 33 292 46 -5.2 5.7 8.10 1 47
441 69 37 292 51 -5.3 9.2 8.10 1 47
442 60 5 285 25 -4.5 6.0 7.34 1 0 0 2.88 47
443 58 39 283 21 -2.7 11.5 7.42 1 0 0 2.77 47
444 58 26 284 19 -2.9 10.0 7.73 1 0 0 2.88 47
445 57 55 284 50 -3.7 8.9 7.54 1 0 0 2.87 47
446 65 5't 269 8 -3.6 12.7 8.00 1 0 0 2.92 47

447 66 19 269 22 -3.6 15.4 8.20 1 0 0 2.95 47
448 54 27 291 27 -4.9 6.6 8.08 1 0 0 3.14 47
449 54 59 292 32 -5.2 5.5 8.04 1 0 0 3.17 47
450 62 i7 297 8 -5.2 6.5 8.00 1 0 0 3.18 47
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****** CONTINUE ******

NO LAT. LONG. ELEV TH. PN RR RL SW RHO REF.
D M D M KM KM KM/S G/CC

451 67 26 297 3 -5.8 6.4 8.19 1 0 0 3.22 47
452 56 54 320 8 -2.8 1.5 8.36 1 0 0 3.38 47
453 57 0 321 38 -2.8 3,9 8.27 1 0 0 3.28 47
454 58 7 327 18 -4.3 7.0 8.30 1 0 0 3.26 47
455 58 9 328 52 -4.3 6.8 8.51 1 0 0 3.30 47
456 87 33 340 21 -5.1 4.7 7.99 1 0 0 3.18 47
457 89 50 337 19 -3.9 5.5 8.03 1 0 0 3.21 47
458 89 56 336 9 -3.5 4.8 8.49 1 0 0 3.35 47
459 91 16 333 20 -4.1 5.3 8.30 1 0 0 3.25 47
460 37 7 8 26 0.0 27.4 8.20 1 0 0 2.82 47
461 41 28 8 22 0.6 29.6 8.20 1 47
462 40 03 15 10 0.3 30.8 8.20 1 47
463 42 55 20 53 0.1 23.7 8.10 1 47
464 29 56 24 57 0.0 28.0 8.20 1 47
465 51 33 63 42 0.6 44.5 8.20 1 47
466 49 30 71 00 0.5 46.0 8.25 1 47
467 28 48 151 50 1.0 35.2 8.10 1 47
468 49 55 50 47 0.2 40.0 8.00 1 47
469 50 29 73 0 2.6 56.6 8.10 1 0 0 2.83 47
470 45 39 77 48 1.2 44.2 8.10 1 47
471 47 13 75 06 1.9 40.5 8.10 1 47
472 52 17 141 8 0.0 22.7 7.70 1 0 0 2.93 47
473 53 35 139 36 0.8 25.4 7.70 1 47
474 42 51 144 18 -1.5 27.5 8.00 1 47
475 54 39 135 16 0.5 31.8 7.70 1 0 0 2.79 47
476 54 49 135 50 0.5 26.5 7.70 1 47
477 38 39 246 23 0.9 43.0 8.20 1 0 0 2.77 47
478 42 58 246 38 1.7 40.8 7.90 1 47
479 43 37 253 13 0.9 53.8 8.10 1 47
480 44 33 269 51 0.3 40.0 8.00 1 47
481 60 39 263 40 0.1 33.0 8.20 1 0 0 2.62 47
482 39 30 248 08 0.9 47.5 8.30 1 47
483 53 19 238 14 0.1 23.0 8.00 1 0 0 2.87 47
484 55 7 240 19 0.1 26.1 8.20 1 0 0 2.91 47
485 50 27 242 44 1.8 26.0 7.82 1 0 0 2.92 47
486 54 58 243 20 0.1 27.8 7.80 1 0 0 2.88 47
487 53 50 244 53 1.4 27.0 7.77 1 47
488 52 52 249 45 1.6 41.5 7.80 1 47
489 53 46 244 55 0.7 41.0 7.80 1 0 0 2.69 47
490 40 00 15 00 35.0 1 67
491 35 00 27 00. 37.5 1 67
492 44 00 42 00 37.5 1 67
493 34 00 46 00 37.5 1 67
494 42 00 t8 00 42.5 1 67
495 54 00 56 00 30.0 1 67
426 60 0G 55 00 40.0 1 67
497 43 00 66 00 37.5 1 67
498 55 00 68 00 45.0 1 67
499 48 00 73 00 45.0 1 67
500 41 00 79 00 37.5 1 67
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****** CONTINUE

NJ LAT.
D M

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
555
546
547
548

53
47
45
53
39
33
31
25
26
22
23
35
43
47
26
22
39
30
38
50
43
45
43
50
36
46
44
47
52
56
57
36
30
41
41
42
41
41
41
41
41
42
42
42
42
42
42
41

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
40
00
10
00
30
00
00
00
00
00
30
00
50
42
01
57
55
50
30
40
00
10
00
20
20
30
55

LONG. ELEV TH. PN
D M KM KM KM/S

94
102
105
113
90
80
95
95

103
106
115
128
124
123
137
145
134
145
160
58
51
57
57
73
76
77
74
67
82
72
82
51

110
9
9

10
10
10
10
13
12
11
12
12
11
10
10
11

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
45
45
40
40
00
50
00
30
00
00
00
00
30
00
15
40
10
30
40
45
00
15
45
00
45
15
45
15
15

60.0
40.0
40.0
37.5
40.0
37.5
37.5
35.)
30.0
32.5
35.0
32.5
35.0
37.5
30.0
35.0
35.0
32.5
27.5
35.0
40.0
45.0
45.0
45.0
50.0
52.5
50.0
45.0
65.0
67.5
67.5
38.5
35.0
28.3
29.4
31.1

30.5
30.3
29.3
30,7
29.1
30.7
30.7
32.9
32.1
31.2
35.2
28.3

RR RL SW RHO REF.
G/CC

67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
13
3
3
3
3
3
3
3
3

33
33

33
57
66
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49

* * ****
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Table (2-2)

SPHERICAL HARMONI. COEFFICIENTS OF STTR, CRTH AND RHO

STTR (SE1.)

ANM

0.459
0.159

-0.014
-0.149

0.002
-0.062
-0.040
-0.089

0.113
-0.015

BNM

0.0
0.0
0.086
0.0

-0.159
0.100
0.0
0.080

-0.053
-0.013

CRTi (KM.)

N M ANM

18.963
3.040
1.777
4.060
0.650

-0.508
-0.726
-1.093
-5.190

0.627
1.455
1.554

-2.938
0.498

-0.053
-3.209
-0.467

0.256
-0.452
1.676
0.971
0.210

-1.134
-0.460
0.786
1.125

-0.630
-0.329

RHO (G/CC)

BNM

0.0
0.0
4.339
0.0
1.647

-0.872
0.0

-0.257
1.078
2.781
0.0

-2.205
0.575

-1.857
2.392
0.0

-0.612
0.775
1.050

-1.676
2.772
0.0

-0.933
-1.680
2.838

-0.322
-1.734
2.346

ANM

3.005
-0.039
-0.015
-0.059
-0.021
-0.004

0.011
0.017
0.045

-0.002
-0.027
-0.013
0.334

-0.018
0.014
0.337
0.003
0.006
0.004

-0.013
-0.020

0.003
0.312
0.004

-0.008
-0. 012
0.009

-0.005

BNM

0.0
0.0

-0.046
0.0

-0.018
0.022
0.0
0.000

-0.021
-0.050

0.0
0.022

-0.004
0.003

-0.030
0.0
0.001

-0.003
-0.015

0.015
-0.028

0.0
0.011
0.020

-0.025
0.001
0.030

-0.035



Table (2-3)

7
GRAVITATIONAL POTENTIAL OF THE CRUST AND OBSERVED GEOPOTENTIAL(ERG *10 )

G3

BNM

-6.718
0.0

-1.524
0.807
0.0
0.169

-0.710
-1.831
0.0
1.125

-0.293
0.947

-1.220
0.0
0.254

-0.322
-0.436
0.697

-1.152
0.0
0.327
0.554

-0.994
0.113
0.608

-0.822

ANM BNM

-0.310 -4.983
-3.140 0.0
-0.099 -0.815
-0.600 0.623
0.326 0.0
0.596 0.408
2.643 0.027

-0.590 -0.787
-0.542 0.0
-0.995 0.915

0.948 -0.159
0.223 0.800

-0.082 -0.506
' 1.112 0.0

0.148 0.202
-0.196 -0.437

0.371 -0.486
-0.124 0.653
-0.490 -0.815
-0.016 0.0

0.366 0.206
0.149 0.469

-0.223 -0.858
-0.127 -0.054

0.109 0.443
0.145 -0.789

ANM

0.150
0.057
0.112
0.051
0.036
0.015

-0.035
0.022
0.058

-0.002
0.003

-0.003
0.029

-0.021
0.001
0.005

-0.009
-0.006

0.000
0.006

-0.010
-0.008
-0.002

GEOP

BNM

-0.084
0.0
0.015

-0.046
0.090
0.0

-0.026
0.034

-0.012
0.019
0.0
0.0

-0.018
-0.001
-0.008
-0.030

0.0
0.011

-0.019
0.004

-0.028
-0.038
-0.018

N M

2.441
0.617
0.701

-1.070
-0.152
-0.124
-0.774
-0.177
0.200

-0.202
-0.535
0.477

-0.114
-0.222
-0.046
-0.090

0.183
0.573

-0.086
0,058

-0.021
-0.012
0. 052
0.267

-0.112
0.030

BNM

1.735
0.0
0.709

-0.184
0.0
0.239
0.737
1.044
0. 0

-0.210
0.134

-0.147
0.714
0. 0

-0.052
-0.115
-0.050
-0. 044

0.337
0.0

-0.121
-0.085

0.136
-0.167
-0.165
0.033

ANM

-2.751
-3.757
-0.602

0.470
0.478
0.720
3.417

-0.413
-0.742
-0.793
1.433

-0.254
0.032
1.334
0.194

-0.106
0.188

-0.697
-0.404
-0.074
0.387
0.161

-0.275
-0.394

0.221
0.115

ANM m
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Table (2-4)

CORRELATION OF GEORHYSICAL DATA

N=3 N=4 N=5

DEGREE POWER

STTR(SEC. ) 0.0613
CRTH(KM. ) 20.6371
EQRT(KM. )l 0.3071
G1(ERG *10,) 2.5535
G2(ERG *13 ) 17.6721
GEOP(ERG *10 ) 0.0296

DEGREE :ROSS POWER

STTR GEOP
STTR CRTH
STTR EQRT
CITH GEOP
CRTH EQRT
GEOP EQRT
GEOP G3
G1 G2

-0.2828
-0.9212
-0.0539
-0.0507

1.6762
-0.8046
-0.1423
-4.4720

DEGREE ,ORRELATION

STTR GEOP
STTR CRTH
STTR EQRT
CITH GEOP
CRTH EQRT
GEOP EQRT
GEOP G3
GI G2

-0.87
-0.82
-0.39
-0.02

0.66
-0.78
-0.96
-0.66

N=2 N=6

0.0324
38.0130
0.5568
2.3591

16.4786
0.0301

27.6031
0.4685
1.2010
7.1809
0.0077

27.1080
0.3275
0.5626
4.6840
0.0026

23.8965
0.1565
0.1880
2.9341
0.0034

-0.0717
-0.5842
-0.0513
-3.3595
3.8922
0.0607
0.1339

-5.1280

1.2821
2.6850
0.5215
0.0113

-2.1922

-1.1379
1.8318

-0.1796
0.0149

-0.9990

1.1143
1.3707
0.1378

-0.0151
-0.5233

-0.14
-0.53
-0.38
-0.20

0.85
0.03
0.26

-0.82

0.17
0.75
0.54
0.06

-0.75

-0.27
0.61

-0.38
0.16

-0.62

0.25
0.71
0.38

-0.18
-0.70
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Table (2-5)

Correlation matrix

Geopotential Eq. Rock Top. Crustal
thickness

Travel time
residuals

-. 05Ge opotential

Eq. Rock Top.

Crustal
Thickness

Travel time
residuals

-. 05

+.75

-. 42

-. 11

-. 20



Table (2-6)

COMMON LOCATIONS OF CRUSTAL DATA AND P WAVE TRAVEL TIME RESIDUALS

CRTH VCAV PNVL
KM KM/S KM/S

L AT.
DEG.

45 50
35- 40
40- 45
45- 50
20- 25
60- 65

155-160

5.90
5.46
6.22
4.38
6.34
6.23
6.01
6.34
6.00
6.20
5.42
5.73
5.73
5.75
6.04
5.09
5.06
6.01
4.92
3.83
6.15
5.80
6.04
6.25
6.34

7.65
8.20
8.14
8.10
8.05
8.10
7.79
7.80
7.60
7.58
8.26
8.00
8.00
7.95
7.80
7.49
8.01
8.11
8.25
8.18
7.82
8.20
7.94
7.80
7.90

LONG.
DE;.

STTR* CSTTR MSTTR
S S S

STTR
S

0.768
0.958
0.239

-0.134
0.135
0.292
0.366
0.380
0.422
0.442
1.180
0.640
0.653
0.616
0.187
0.394
0.254
0.719
0.200
0.415

-0.060
0.226

-0.046
0.573

-0.143

-0.177
0.212
0.074

-0.041
-0.208

0.041
0.249

-0.159
0.194

-0.237
-0.740
-0.499
-0.499
-0.172
-0.089
-0.229
-0.158
0.076

-0.156
0.527
0.0

-0.152
0.649

-0.097
0.363

1.005
0.806
0.225

-0.033
0.403
0.311
0.177
0.599
0.288
0.739
1.980
1.199
1.212
0.848
0.336
0.683
0.472
0.703
0.416

-0.052
0.0
0.438

-0.635
0.730

-0.446

0.828
1.018
0.299

-0.074
0.195
0.352
0.426
0.440
0.482
0.502
1.240
0.700
0.713
0.676
0.247
0.454
0.314
0.779
0.260
0.475
0.0
0.286
0.014
0.633
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5-
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20-
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90-

20.00
27.40
40.38
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33.90
37.90
35.00
33.82
31.80
22.70
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15.80
15.80
22.00
32.00
3.34

10.10
33.90
10.21
9.97

33.74
26.12
48.00
31.65
56.00

5
10
10
10
25
80
95
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135-140
140-145
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235-240
235-240
235-240
240-245
280-285
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295-300
295-300
2q5-300
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240-245
245-250
245-250
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50-
50-

50
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50
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50
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55
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45
55
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FIGURE CAPTIONS FOR CHAPTER 2

Figure

(2-1) Distribution of data on crustal thickness

(2-2) Distribution of data on P wave travel time residuals

(2-3) Lateral variations of crustal thickness (in km. )

(2-4) Lateral variations of P wave travel time residuals (in sec.)

(2-5) Average density of the surface layer versus crustal thickness

(2-6) Lateral variations of the average density of the surface layer

(g/cc). The zero degree harmonic of the density is excluded.

(2-7) Observed'travel time residuals versus crustal residuals
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CHAPTER 3

Stress Analysis Inside the Earth

In Chapter 2 it was shown that the representation of the

undulations of the earth's gravitational field, deduced from the

artificial satellite data by different authors, using different techniques,

agree very well (through 6th degree spherical harmonics). This

indicates that the measurements and, hence, the representations are

reliable and suggests the existence of density anomalies inside the

earth. It was also shown in the previous chapter that the gravitational

field due to the topography of the earth's surface and the lateral

variation of the crustal density are an order of magnitude greater than

the measured undulations of the field. This calls attention to the

compensating density anomalies existing in the mantle. What we

measure at the earth's surface is, in fact, the small imperfections of

the compensation taking place within the earth.

In the present chapter we ccmpute a special model of density

variations in the mantle which not only takes into account surface

topography, crustal thickness, P wave travel time residuals, and

observed gravitational field but also minimizes the total shear-strain

energy in the earth resulting from the density variations.

The chapter is divided into three sectiois. In the first part

we start from the basic equations of elasticity and derive the final
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formulas for calculating the density anomalies. The second part is

devoted to computational and numerical analysis, and the third part

presents the final density anomalies together with the corresponding

displacements and stress differences in the mantle.

(3-1) - Theory

In deriving the equilibrium equations of the deformed earth

subject to laterally inhomogeneous density distributions in the crust

and mantle the following assumptions are made:

1 - The earth ic considered to be a cold spherical body with

a linearly elastic and isotropic mantle, a liquid core, and with no

rotational motion.

2 - The elastic moduli of the earth are considered to vary only

radially.

3 - The density anomalies are confined to the crust and the

mantle.

These assumptions do not represent the conditions existing inside the

real earth. The earth is hot with lateral and radial variations in

temperature. It is close to a visco-elastic body for the static loading

at low harmonics. The probable convection currents in the core and

mantle contributes to the gravitational potential measured on the

surface of the earth. In spite of these short comings, the mathe-

matical simplification introduced by the assumptions makes the

calculations feasible. Furthermore, it is shown in Chapter 5 that the
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equilibrium equations of a thermo-visco-elastic mantle are analogous

to those of an elastic model. Thus, studying an elastic model will

yield useful information about the behavior of the actual density

variations inside the real earth.

(3-1-1) - Basic Equations

The fundamental equations that formulate the problem are:

1 - Conservation of momentum

(3-1)
7 - T + F f?--

where T = stress tensor, F = body force acting on a unit volume,

V = gradient operator, = density, and U = displacement

vector.

2 - Density at a given point (Kaula, 1963)

... dr..ti f + jf (3-2)

where f = density inside the undisturbed, spherically symmetric
0

earth, A = dilation, = perturbation of the density, 1 = radial

distance from the earth's center, and Lk= radial component of the

displacement vector.

3 - General Infinitesimal Deformation Equation (5okolikoff.. 1956)

--- f .. _(v T]. (3-3)'- =- u +(u ]
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wher e E = strain tens or,V U. outer product of V and (J. , and

T
(V ) = transpose of V (A.

4 - Poisson's Equation:

2

7 _- .- G ' (3-4)

where = gravitational potential, G = gravitational constant, and

2
V = Laplacian operator.

5 - Stress-strain relationship in a linearly elastic and isotropic medium:

T = (v. O)I + 2A E. (3-5)

wher e 2 = lame constant, = rigidity, and I identity matrix.

Lord Rayleigh (1906) called attention to the application of equation (3-5)

to a pre-stressed medium, such as the earth. He pointed out that

equation (3-5), the ordinary stress-strain relationship, relates the strain

to the excess stress measured from the pre-stressed condition. The pre-

stressed condition inside the earth can well be approximated by a

hydrostatic pressure, p , with negligible lateral variations. There is a
0

change from the pre-stressed condition due to vertical displacements

which can be approximated by: LA. . Therefore, in equation
r r o

(3-5), we should add the following terms to the diagonal elements of T

in order to include the effect of pre-stressed condition existing in the

interior of the earth (Pekeris and Jarosh, 1958):



-48-

So equation (3-5) becomes:

T (7 C.O) - + U +f-2-hE~ (3-5 a)

(3-1-2) - Equations in the Mantle and the Core

The mantle (including the crust) is assumed to be an isotropic,

cold, linearly elastic body with density anomalies if which vary

laterally as well as radially. Adapting a spherical system of co-

ordinates (), 0, q ) with the origin at the center of the earth,-and

following Pekeris and Jarosh (1958), Alterman, et al. (1959), and

Kaula (1963), equations (3-1) through (3-5) become

+ * eC +--(L-e-2e - 2e +2 e Coin 9) = Oe io'r r y y e e 1

fo '

+ . -e + (2 Co(n 9 ( 0 - )=

-s;'A a 9 r to''!*

+ ,. +' .Ccd- % e0o Tr.

and

(3-6)

(3-7)

(3-8)
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Y0- £Gf(A + -Jf -,5C) = 0 (3-9)

where Y is the perturbation of the gravitational potential due to the

th
density perturbations (-fa - U f ) is the (i, j) element of

0 t '0

the strain tensor. A zero subscript indicates the unperturbed state.

The right hand side of equations (3-6) through (3-8) are set to zero

since we are dealing with the static condition, .i. e., U = 0. In
;tz

deriving these equations we have neglected the second order terms,

such as -Sf Y -
r 0 *21r 21

These terms are smaller than the terms kept by about two orders of

magnitude.

We represent the motions as:

LCXU VOs (,)(,9) 3-0

where u, v and w denote the components of the displacement vector in

r, 9 , and cf directions respectively, and U(r) and V(r) are only

radially dependent. This representation was first adopted by Hoskins

(1910) and also used by Hoskins (1920), Pekeris and Jarosh (1958),

Alterman, et al. (1959), Slichter and Caputo (1960), Longman (1962),

and Kaula (1963). The dilatation has t1e following form:
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X r .5o,

*('n + /) V
r-

(3-12)+2

of (I-) -Af7. S (o, cf)
'nflrfl

then, using equations (3-9),

'r =j Y (r)

(3-13-) we obtain

-S (&ce)

wher e Af (r) and Y (r) are only radially dependent. Substitution of

equations (3-10) through (3-14) into equations (3-6) through (3-9) leads

to the follow ing equations:

f V! +3fx- 3.sf -{ f 3 -) +$ C!~t u

+- r U , u ,n+j) sv-U-r v)] (3-6a)

3Y-.j v *'x +r~4/~- *4)
(3- 7a)44~[ + r ! V V-z-i,7C-+)VJ 0

where

(3-11)

X (r)
?I'm

di U (r> --

Let

6 f I (3-13)

(3-14)

A =2

(3 -11), (3 -12),s

'1A 
f 5 U



.. '- lG (yX+Uj --z0e (3-9a)

The subscripts n and m. are omitted above in order to avoid complexity

of the equations. Also we have considered a deformation specified by

spherical harmonics of degree n and have utilized the following

property of the harmonics

.4.+Cotai - -+ +7+( 7++)j S(O f= O (3-15)

These equations differ from those of Alterman et al. (equations

23-25, 1959) by an additional term in equation (3- 6 a) and (3-9a) due

to the density anomalies (Af) included in the present studies, and

omission of the frequency term in equaticns (3- 6 a) and (3-7a) because

of the static case considered. Equations (3- 6 a), (3-7a), and (3-9a)

represent three simultaneous differential equations of second order.

To somilify this set of equations we follow Alterman, et al. (1959)

and introduce the following dependent variables.

Fu4

72/lX +2 U

X3/ V (3-16)

X ~V U)
y4 K(,v T )



-52--

Using these variables, equations (3- 6 a), (37a) and (3-9a) are

reduced to the following simultaneous ordinary first order

differential equations:

dry =M-\7 +D

where

H

riz,

031

M0i

M I

0

tz

0

0

M3

33

PI

0

o63

0

M tI

0

0

0

0

0

0

M
o5

0

MXs

0

0oI

OI

n1~

with

M1 =-2 2 [r('+u) ,

M = 'I+ r I + ,

Ml, = - f-/f+l.( *.+i)/[).

z/ = - /IA( i/p)] ,1

M 0

A-I = 'miH+-)/r,

M3

33

34

A'?, = f 2(-+p/.r ep)M1 r( +)) ,5

2,

0 *Vou)),

(3-17)

1 (3-18)
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M4 = -3h/, M5 l I

"t5 =f - 4 , M +

Ml1 = i6f , and

-2 -,

and

.D =( , f , o o 0 , -itTr& ) (3-19)
0

Notice that matrix M depends on the properties of the un-

perturbed medium ( f/, kA ) and the degree of the harmonics. The

source vector D includes the perturbation of the density and the

gravitational acceleration of the unperturbed condition, .

In the case of the liquid core,/= o , Aj9o, Longman (1963)

showed that equations (3-6) through (3-9) can be reduced to the two

following equations.

-ff y4 0 (3-20)
0 5 01 2.

and

.2 d4 It jyo (3-21)

Introducing a new dependent variable

15 P (3-22)
7 de-
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equation (3-21) is reduced to the two ordinary first order

differential equations

;fJ [ f 0 4n~o (3-23)

(3-1-3) - Boundary Conditions

We solve equation (3-17) inside the mantle, and equations (3-20)

and (3-23) inside the core, subject to the following boundary

conditions:

I. At the earth's surface

i) stress-free boundary condition: all the stresses

must vanish on the deformed surface of the earth.

- 3 O' = 0 ,& cr1 M

and

Y :: O

(3-24)

where 0'

topography

is the surface mass density due to the equivalent rock

of the earth's surface before deformation.

ii) Dirichlet boundary condition: the external and

internal gravitational potential should be equal.

(3-25)

(3-26)

A1 1 Y5
-2
7 7
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where ( is the undulation of the earth's gravitational potential deduced

from the artificial satellite data.

iii) Neumann boundary condition: the difference of

the gradient of the external and the internal

gravitational potentials is due to the surface mass

distribution on the earth (topography and radial

displacement at the surface of the earth).

-it TI C- (0 f (3-27)

Equation (3-27) can be written in the following form (Pekeris and

Jarosh, 1958):

+ on+y = 4T & (3-27a)
6 Co 5 WV"

where CL is the mean radius of the earth.

II. At the center of the earth all the yrs should be regular

(Kaula, 1963); that is,

X = 6 (3-28)

and

d O135 - (3-29)
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III. At the core-mantle boundary all the y's are continuous

except y 3 which is arbitrary because of the liquidity of

the core.

In Kaula's studies the present topography is assumed to be the

surface mass on the undeformed earth while the present gravitational

undulations are considered to be due to the deformed earth (equations

11 and 11' of Kaula, 1963). These two equations are incompatible,

because if the earth today is the deformed one its topography will be

the sum of the initial topography and the displacements at the earth's

surface after deformation. On the other hand, if the present earth

is the undeformed state and it is assumed to be deformed under the

present surface topography and internal density perturbations, then

the present gravitational potential is not the potential after defor-

mation. This incompatibility did not affect his results for the elastic

mantle model significantly because of small deformations compared

with the topography. For his second mantle model, however, it

might have a very pronounced effect since the deformations are very

large, about 1600 meters at the earth's surface.

(,. 1-4) - Strain and Gravitational Energies

Once we know y,, y 3 ' A 5 at the core-mantle boundary we

can determine the other yts there. This will be discussed in part 2

of the present chapter. Therefore, we can integrate equation (3-17)
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through the mantle if A Y is known. At the earth's surface we have

four equations relating the three unknowns y1 , y3 and y 5 of the c or e -

mantle boundary. Thus, we have an over determined system. In

reality, however, Af is unknown throughout the mantle and we are

dealing with an under determined system (four equations and infinite

unknowns). To overcome this difficulty we must introduce other

constraints. One possible constraint is to minimize the total shear

strain and gravitational energy of the mantle. In order for the mantle

model to represent a static or quasi-static condition under the surface

and body loads it is necessary to make the stress differences inside

the mantle less than the creep strengths of the mantle materials.

Although the minimization of the total shear strain energy does not

guarantee local minimum stress difference, it will tend to reduce the

stress differences in the mantle, On the other hand, the minimi-

zation of the total gravitational energy of the deformation of the mantle

reduces the amplitude of the density perturbations.

In this section we formulate the strain and the gravitational

energy in terms of the variables used in the previous sections.

The total strain energy is (Sokolnikoff, 1956):

~T . d V- (3-30)

V

Using the strain stress relationship and the definition of the

compres sib ility,



we obtain

E x . e . . a'. (.. tP-. (3 -32)2 d

Here

2

cwn 2

sh ./ y( y3e..

h 2 r d-

Compressional strain energy density,

Shear strain energy density, and

Energy density of the work done by

hydrostatic pressure -

Burridge and Knopoff (1966) do not recommend calling 9 the strain

energy since it includes work done by the pre-stresses, but this is a

matter of definition.

Using equations (3-3), (3-10), (3-11), (3-12) and (3-16), the shear

strain energy density is expressed in terms of y's by the following:

2
5 OS P

with

F1,

n?.

13
0

0

FZ2.

F
'3

L3

O

O 0 0

0

(3-34)

-58-

= .- (3-31)

(3-3 3)
T =

E =/A [ 0 P
5h
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with

- 2 2
II 2/1 t ) [3(

F2 2 /(r3(o2,A,42-

1' =-2nC-nJ*l (/2+7463/(r 31)
3 /2

33

(3-35)

The total shear-strain energy in the mantle is, therefore, given by

Cx 20t _

( =1 1. 19- = , 54' d9' seeddfr 5(,

where b is the radius of the core-mantle boundary.

Using the orthogonality condition of spherical harmonics,

equation (3-36) is then reduced to

4- TT L J /r ,..

(3-36)

(3-36a)

Notice that matrix P is symmetric and depends on the elastic

properties of the unperturbed condition and on the degree of the

spherical harmonic representation of the displacement.

The gravitational force at a given point in the earth is (Hoskins,

1920; Kovach and Anderson, 1967):

(3-3 7)
A r -,. A A

F r 6) re 4 T f Cr
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Following the procedure adopted for the shear-strain energy we

express the gravitational energy of the deformation of the mantle by:

f -) c/IY =4 TJ r C1f

Q3 5

o0

0

*

Q3 5

0

0)

0)

with

Q + /
13

Q = - 1 /2 , and

35

Here again the matrix Q is symmetric and depends on the gravi-

tational acceleration of the unperturbed medium and the degree of

the harmonics

(3-1-5) - Maximum Shear Stress

Laboratory measurements show that the rate of strain of

materials subject to stresses smaller than their creep strengths is

negligible (Orowan, 1960). Therefore, we should compute the

3r

where

(3-38)

Q =

QI
0

Q
13

0

0

Q
lb

1 1

0
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maximum shear stresses in the mantle due to the surface and body

loads discussed above and then compare them with the creep strength

of the mantle.

Love (1911) studied the maximum shear stress inside an in-

compressible earth due to a surface load (the surface topography)

which was expressed in terms of the zonal spherical harmonics. In

this section we extend his studies to the case of surface and body

loads given in terms of tesseral as well as zonal harmonics. The

maximum shear stress at a point is (Sokolnikoff, 1956):

where 7 and are, respecively, the maximum and the

minimum principle stresses at that point which are the roots of the

following cubic equation:

2
T~ .- l ' +r&~~- = O (3-40)

wher e ,t->. , and ar e the str es s invar iants,



3

S12.

R2Z RI3

R3z P-33

0 0 0

0 0

0 o R 3

_ bu (31+3m)
21 -t

Rz I

R31-R'jz = R2 , ,

&X
23 2 I

9 =

R1
£3 s -

-62-

4trT
r cr

T j, Tr

TY

T1G0(f

(3-41)

e T$f

TaO Tylr

and

-,

Tr 0 R
At4.

(3-42)

o R
54

with

+. A,q)
;07z f .f

R 4 so, ) 
be ~ mm

and

( . ...c1 0..2!)S (,q)-

b Obi o21f -A'

Tr 9t 7* +T 3

"Z s ( ,),

') T 7



(3-2) - Computational Procedure

In the calculations of density perturbations of the mantle a

spherically layered model is used for the earth in which it is assumed

that the density perturbations inside a layer do not change with *depth.

The unknown density anomalies in the layers of the mantle together

with the parameters of the core-mantle boundary (y, y 3 , and y 5 ) are

determined by satisfying the imposed boundary conditions at the

earth's surface and minimizing the total shear-strain and gravi-

tational energies. For the integration of equations (3-17) and (3-23)

matricant method is adopted. This method is discussed in Appendix 2.

(3-2-1) - Normalization Process

Before

the following

r, =r/oL

integrating the equations we normalize the variables by

transformations (Longman, 1963):

C0Q'

B LtT7 cf/

Z Y/ 0

Z 2>c'

i;= 7(/A

7, =Y/_
7 7

(3-43)
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where the asterisk denotes the values at the earth's surface. These

transformations change the foregoing equations into the following

f orms:

Jr-d1r,
frl'.7Z -i-A5 ?L

f- 
'

20 Z
----

(3 -17a)

(3-20a)

I (3-23a)

where

= (o c3 , o 9 o , 0> 3)

and

M /

11 .13

2. 13

33
M

ep

S4

M 
1

34

M'
43

o 0 0

0 0

I

0 4

0 0

Ml 0
45

5'

M
65

and

'M

31

41

I

M4 t

I

'D

75
-7



I,t

+ __'__'_3/

-)(3"y|) l- m

M 3=z"[AtI, z + :

,l - ,) ] / [ , %z.

m~
'iLt

M = Bf

56

M =--3l(

M
65

-2 /r,

The boundary conditions are changed to

I) At the earth's surface r = 1

-g'p' / 3
5 0 a, /l -I

C)

h. t - , - I' - 7
13

(3-24a-27a)

with

I
ml4 - 0 /,

H,' = 1 / f12, ,

I I ~ -J I

'3
m/=

21

M =

[-4cf gr
II ,

3 = +[Cf

i'1' = M(M+/)/r, )

m' = - I/
31

33l
33

= I/ r,

'11 = I/
3L

= m i m 1) / 2.
, and

7'

4

-65 -

m lm+-t1) , / [?, o3 + t2,> ] ,)

-tig /r; (2zg)]

= - cf r,



II) At the Lenter of the

= 0

J
d4r

= 1? - * , (0

'= 1 t3, 5

III) At the core-mantle boundary,

core

z

arbitrary

7 4 -

(3--28a)

(3-29a)

= b/a

mantle

=0c'

2 -~f7
7 Ii

and the energy terms are now given as:

4TI

l 5 2.

r b/ot

F
Cr.

wa er e

= (7 ,2- '.7 2

- -T = -
7 a - 7

V 4 , 25

, z

77.

3

75

z. ,
//i; r

--I- -

(3-36b)

(3-38b)

(3-44)

earth, r, = 0
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and P and Q have, respectively, the same expression as P and Q

with all the parameters having subscripts 1.

(3-2-2) - Integration Inside the Earth

At the center of the earth Z and Z vanish while some of the
5 7

coefficients appearing in equation (3-23a) are infinite. Thus, the

integration is difficult. To start with non-zero values of Z5 and Z7

and finite values of the coefficients we follow Longman (1963) and

introduce a homogeneous sphere of radius C (200 km) at the earth's

center (central sphere). On the surface of this sphere Z5 is expressed

in terms of the power series of G ( G/o) as:

7 5 t , + C C - -- (3-45)
5 o 2. I

substituting this expression in equation (3-23a) a recurrence formula,

for determining the coefficients . is found to be

L

2
C -. BC_ - L -,+(2n -5)+ 4-n -+ 6 (3-46)

Therefore, Z5 and Z7 are obtained on the central sphere within an

unknown factor, Q-. Using the matricant method (see Appendix III)

the integration inside the core is carried out. The values of Z5 and Z7

at the core-mantle boundary, in terms of their values on the central

sphere and the matricant of the core are, therefore, found to be
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= blIc.

(3-47)

rL~/OA.

where

/ (3-48)

Once Z5 is found at the core-mantle boundary equation (3-20a)

yields a relationship between Z and Z 2 So at the core-mantle

boundary, inside the mantle, we have:

I

C f

0

0

0

-Cf 2

'5

0(

/3

'1
(3-49)

which can be written as

Z~J. (3 -49a)
X

where the elements of vector X' are unknown.

Since equation (3-17a) includes a radially dependent source term
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we divide the mantle into K layers, Figure (3-1), thin enough so that

the density perturbation as well as the elastic properties in a layer

can be considered constant. The value of Z at the top of the ith layer

Z. , is expressed in terms of its value at the core-mantle boundary,

Z , the matricant of the medium located between the core-mantle

boundary and the top of the ith layer, , and the source term,
0

(see Appendix III), by

( . (3-50)
K- 0 0

We make the following assumptions in order to obtain a general form

of the solution in the mantle:

1) All the layers from i= 1,. . , n have no density anomalies.

2) The layers from i = n1 +1,. . ., n 2 have some unknown density

. anomalies.

3) The rest of the layers, i = n2+1,. . . , K, have some known

density anomalies.

The known density anomalies are due to the crustal and upper mantle

structure (see Chapter 2).

Let

'j Y (3-51)

[ ], (3-51)
17,+ 'rt
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(3-53)

X"i

* * * : ~
J J (3-54)

(3-55)
-A- +1

wherej > 77. . Using these definitions, togetlier with equation (3-49a)

equation (3-50) becomes:

1:

[-- X

/-X

'

and the boundary conditions at the earth's surface are:

.x

Here 5, )IC and )i. are found by omitting the first and third

rows of ~ , and r

wher e
J<7A2

and

(3-50a)

(3-50b)

(3-56)

respectively.
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(3-2-3) - Minimanization of the Energies and the Final Solution

To parameterize the problem we apply different weighting

factors to the shear-strain and gravitational energies, W and ,

respectively. Using equation (3-50b) and keeping in mind that the

second term in the right hand side vanishes when L. 4 n2 we combine

the two energy terms into a single expression.

5i~i ~4i
(3-57)-t- O

-T - -- T - T =T - -T
E ~ ~ =x -wx+ W -D rw-x+o- -ID- (3-57a)

Here

3 3.

L=I

-7-r.
=~1*5

Sep

-I

2

3

(3-58)

!~7. 5*/~~"
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where

~ L(3-59)

and.

r-p . = =,) Q~u
P( i) + Plt'-l)

Minimization of E subject to the constraints given by equation

(3-56) is a generalized least-squares problem. Adopting the method

of Lagrangian multipliers, this leads to the following simultaneous

first order linear equations:

1 2 -- (3-60)I =T -- I I

The solution vector, X, is given by (Arley and Buch, 1950):

= - - =T = - -- I ==-I

X X ,- W,)C Y I / X cV

-I =T -=T - ~

+ w, . It .)(2<.W,. A) - V- (3-61)

(3-2-4) - Test of the Nume2 ical Calculations

The following examples were computed in order to check the

computer programs utilized.



-73-

A) - Surface loading of an earth model:

The deformations of an earth model whose parameters are

given in Table (3-1) were determined for a surface mass of

iS o, qp) 3/cM2 . Figures (3-2a) and (3-2b) show the resulting values
3,o

of y1, y 3 and y 5 . The values of yI and y 3 agree with the plotted

results of Takeuchi, et al. (1962) while y 5 is greater than theirs by a

constant factor. Notice that the visible mass at the surface after

deformation is about . 78 times the initial one which indicates an

imperfect compensation of the load.

B) - An elastic layer overlying an incompressible liquid sphere

The deformation of an elastic layer overlying a liquid half-

space and subject to a surface loading has been studied by Jeffreys

(1959). We computed, however, the deformation of an elastic layer,

50 km. thick, 2. 74 g/cc density and 3. 45 x 101 dyn. /cm2 rigidity and

Lame constant, which overlies an incompressible liquid sphere with

6321 km. radius and 2x2. 74 g/cc density. The following loads were

considered:

1 - Surface loading. For an initial topography on the layer,

.365 x5(9,'r)cm, the radial displacement at the mid-surface of the
3,o

layer is found to be -. 186 xS(O,'i)cm which agrees with Jeffreys'
3,0

result and, moreover, shows that the compensation process is quite

perfect.

2 - Body loading (a). A mass equivalent to that of'the initial

surface topography of example (1) was distributed uniformly
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throughout the thickness of the layer. The resulting displacements

at the mid-surface equal those of example (1). This result is expected

since the lateral dimensions of the loads (about 5000 km. ) are very

large compared to the thickness of the layer and, thus, the layer

deforms as a thin shell when it is subjected to this load.

3 - Body loading (b). In the foregoing examples three boundary

conditions at the surface, equations (3-24a), (3-25a) and (3-27a) were

used to calculate the deformations. For the present example, however,

we added another boundary condition, namely, the perturbations of the

gravitational potential at the surface obtained in example (a), and then

determined the density anomalies in the layer. This is just the inverse

problem of example (a) and the resulting density perturbations are

identical to those of example (a).

C) - Kaula's problem

As a final example we determined the lateral density

perturbations of the lower mantle of the earth model (Table 3-1),

specified by the spherical harmonic with n = 3 and m = 2. In the

calculation, the corresponding gravitational potential and topography

at the earth's surface and the density perturbations of the first two

layers of the model were taken from Kaula's model 1 (1963). The

density perturbations of the region between 38 and 350 km depths

were set to zero (this was due to the lack of storage in the computer).

The lower mantle was divided into L layers with radially independent
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density perturbations. These perturbations were then obtained by

satisfying the boundary conditions at the surface, equations (3-24a to

3-27a), and also minimizing the total shear-strain energy of the earth.

Figure (3-3) shows the totla shear-strain energy for seven

models. The energy decreases very rapidly as the single layer

model, L = 1, is replaced by the two layer model, L = 2. Thereafter

the energy decreases very slowly as a function of L. Shear-strain

energies associated with L values of 2, 3, 4, 6 and 9 are 1/3 of that

given by Kaula. Thus, Kaula's model should be somewhere between

the models with L = 1 and L = 2.

Figure (3-4) displays the radial variations of the lower mantle

density perturbations for different L values. It is evident from the

figure that the radial dependence of the density anomalies has an

oscillatory behavior. Kaula also found this kind of behavior in his

layered model approach and rejected it since he considered it to be

implausible. For this reason he adopted a third order polynomial

model for the radial variations of the anomalies (personal

communication, 1968). The polynomial model differs from a layered

one in that it yields smoothly varying density perturbations.

Considering a vector whose components are the density perturbations

in each layer (the density vector) the polynomial model has the effect

of minimizing the length of this vector. Thus, to make our results

comparable with the polynomial model of Kaula, we minimized the

total shear-strain energy together with the square of the length of the
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density vector. Two density models, L = 3 and L = 18, were computed

where we used a weighting factor of unity for the energy term and

weights of . 005 and . 01 for the density vector term respectively. The

results are included in Figures (3-3) and (3-4). Minimizing both the

amplitude of the density perturbations and the total shear-strain

energy increases the latter by about 7 per cent for L = 3 and several

hundred per cent for L = 18. But, in this case, the density pertur-

bations decrease somewhat continuously with depth. Their

maximum amplitudes are less than twice that of Kaula's results. This

discrepancy is probably due partly to the zero density anomalies

assumed for the region between 38 and 350 km. depths and partly to

the difference between the layered models considered and Kaula's

polynomial model.

(3-3) - Density Anomalies in the Mantle

As a final model of the density anomalies in the mantle we

present the density perturbations, specified by the spherical harmonics

with n = 2,...., 6 and m = 0,....n. These perturbations were

calculated for Gutenberg's earth model (Table 3-1) by satisfying the

following boundary conditions and constraints:

1 - The gravitational potential of the deformed earth is assumed

to be equal to the geopotential presented by Kaula (1967).

2 - Lee and Kaula's (1967) spherical harmonic representation of
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the equivalent rock topography is assumed to be the topography on the

surface of the earth after the deformation.

3 - The surface layer density model proposed in Chapter 2 is

used for all the harmonics considered.

4 - For harmonics with degrees smaller than four, the upper

mantle density anomalies determined in Chapter 2 are used. For

harmonics with degrees greater than three it is assumed that the

lower mantle is spherically symmetric and the density anomalies are

confined to the upper mantle and the crust.

5 - Both the total shear-strain energy of the mantle and the

amplitude of the density perturbations, associated with two different

weighting factors, are minimized. The final model is selected by a

trial and error variation of the weighting factor of density pertur-

bations.

In order to achieve a minimum total gravitational energy

associated with the density anomalies and, thus, eliminate the

oscillatory feature of the radial dependence of the density pertur-

bations it is found that the minimization of the amplitude of the

perturbations is more effective than the minimization of the gravi-

tational energy given by equation (3-38b). This is because die

gravitational energy of the accretion process of the density anomalies

computed by (Kellogg, 1953)

5 ~ (3-62)
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is an order of magnitude greater than the gravitational energy

associated with the deformation of the earth subject to the density

perturbations (equation (3-38b)). Therefore, following the

procedure adopted in the case of Kaula's problem we divide the

region with unknown density into L layers with radially independent

density perturbations. The minimization of the amplitude of those

perturbations is easily taken into account by adding 2 x U7 to the

diagonal terms of matrix W in equation (3-60), starting from the

fourth row. Here W3 is the weighting factor for the density vector
d

defined in the previous section. Table (3-2) is the list of the density

models constructed for different values of L and W The

variations of the total shear-strain energy with L and of are

illustrated in Figures (3-5) and (3-6). Included in the figures are the

perturbations specified by zonal harmonics. The energy values are

normalized to the energy associated with L = 3 and W = 0, respectively.

Models (2) and (8) are selected as the final density model of the

mantle because: 1) they produce nearly a minimum total shear-strain

energy, 2) they just cease to show oscillatory features with depth, and

3) they happen to divide the mantle into regions in agreement with other

gtophysical investigations (Chinnery and Toks~z, 1967; Toksl3z, et al. ,

1967; Press, 1968). The spherical harmonic coefficients of the density

perturbations of the mantle deduced from thue - 1odels arc tabulate d

in Table (3-3). Using these values the lateral variations of the final

density anomalies are contoured at different depths (Figures (3-7 to 12)).
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Figure (3-13) shows their radial variations under shield (0 = 400,

Cf = 2000), tectonic (9 = 1000, Cf 180 0), and oceanic (0 - 500,

= 2000) areas. The upper mantle is characterized by positive

density anomalies under the shields and negative ones under the

oceans. The large density anomaly under southwcstern Africa may

not be realistic and is probably due to the unrealistic harmonic

representation of the seismic traveltime residuals which were used

as an input in the analysis. The large change -at 400 km. depth is

due to the modeling effect. Using different values for LO0 and/or L

it is possible to obtain smaller changes there. In general, the

density anomalies decrease with depth. In the crust they are on the

order of 0. 3 g/cc, in the upper mantle 0. 1 g/cc and in the lower

mantle 0. 04 g/cc.

Figures (3-14 to 19) display the lateral variations of the radial

displacements and the perturbations of the gravitational potential at

the surface of the earth, at 800 km. depth, and at the core-mantle

boundary. The radial variations at specified latitudes and longitudes

are illustrated in Figure (3-20). It is evident from the figures that

the shield areas are lifted up and the oceanic areas are depressed.

But, the maximum displacements occuring at about 800 km. depth

indicates that, down to 800 km. the shield areas are contracted while

the oceanic areas are expanded, and from 800 km. to the core-mantle

boundary the materials beneath the shield areas are expanded while

those under the oceanic areas are contracted.
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The maximum shear-stresses associated with the final density

model were determined. Figures (3-21 to 23) show their lateral

variations at depths of 30, 163 and 426 km. , and Figure (3-24) shows

their radial variations at specified latitudes and longitudes. These

figures illustrate the correlations between the surface features of

the earth with maximum shear- stresses existing at shallow depths.

In general shield areas and oceanic basins are characterized by small

stress differences while tectonic areas appear. to have large stress

differences. In the deep mantle, however, the effect of the surface

features on the stress differences disappear. The radial

dependence of the stress differences is not a smoothly varying

function but, rather, exhibits three maxima and minima. The

largest stress difference, about 1 Kbar occurs at about 400 km.

and the other maxima are at about 30 and 2100 km. depths. The

maxima at 400 km. are most likely due to the assumption that the

lower mantle density perturbations are specified by spherical

harmonics through only the third degree. Including higher

harmonics may reduce this value significantly. Figure (3-24) also

contains the stress differences associated with Kaula's density

model 1 (1963). These are about four times smaller than the results

of the present studies. This difference is due to: a) the large

density anomalies in the crust and upper mantle inferred fr om

seismic data which requires large density perturbations in the lower

mantle in order to obtain a gravitational field similar to the observed
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one, and b) the higher harmonics, n = 5 and 6, included for the

density variations in the present studies.
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LIST OF TABLES FOR CHAPTLR 3

Table

(3-1) Gutenberg's earth model (Alterman, et al. , 1961)

MU = /x , rigidity (10" dyn/cm 2 )
LAMBDA = , lame constant (10" dyn/cm 2 )

(3-2) Models of density perturbations

N = degree of spherical harmonics
L = number of layers with density perturbations

independent of depth

wd = weighting factor for the density vector term

(3-3) Spherical harmonic coefficients of the density
perturbations of the mantle (units are in 10-2 g/cc)
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Table (3-1)

GUTENBERG'S EARTH MODEL

NO DEPTH RHO VP VS MU LAMBDA G
KM G/CC KM/S KM/S (10 DYN/CM2) CM/S2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

0
19
38
50
60
70
80
90

100
125
150
175
200
225
250
300
350
400
450
500
600
700
800
900

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
2898
3000
3500
4000
4500
4982
5121
6371

2.74
3.00
3.32
3.34
3.35
3.36
3.37
3.38
3.39
3.41
3.43
3.46
3.48
3.50
3.53
3.58
3.62
3.69
3.82
4.01
4.21
4.40

4.56
4.63
4.74
4.85
4.96
5.07
5.19
5.29
5.39
5.49
5.59
5.69
9.40
9.55
10.15

v a. I v

11420
11.50
12.00
12.30

6.14
6.58
8.20
8.17
8.14
8.10
8.07
8.02
7.93
7.85
7.89
7.98
8.10
8.21
8.38
8.62
8.87
9.15
9.45
9.88

10.30
10.71
11.10
11.35
11.60
11.93
12.17
12.43
12.67
12.90
13.10
13.32
13.59
13.70
8.10
8.23
8.90

9.97
10.44
10.75
11.31

3.55
3.80
4.65
4.62
4.57
4.51
4.46
4.41
4.37
4.35
4.36
4.38
4.42
4.46
4.54
4.68
4.85
5.04
5.21
5.45
5.76
6.03
6.23
6.32
6.42
6.55
6.69
6.80
6.90
6.97
7.05
7.15
7.23
7.20

3.45
4.33
7.18
7.13
7.00
6.83
6.70
6.57
6.47
6.45
6.52
6.64
6.80
6.96
7.28
7,84
8.52
9.37

10.37
11.91
13.97
16.00
17.70
18.49
19.54
20.81
22.20
23.44
24.71
25. 70
26.79
28.07
29. 22
29.50

3.42
4.32
7.97
8.04
8.20
8.38
8.54
8.59
8.37
8.11
8.31
8.76
9.23
9.67

10.24
10.92
11.45
12.15
13.38
15.32
16.73
18.47
20.79
22.66
24.71
27.41
29.06
31.45
33.90
36.63
38.92
41.27
44.80
47.80
61.71
64.72
80.42
964 58

111.39
125.34
138.66
157.34

982
983
984
985
985
986
986
986
986
987
988
989
989
990
991
992
993
995
996
997
998
998
997
995
993
990
986
983
982
nO1

984
989
997

1011
1037
1015
908
800
631
469
422
000
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Table (3-2)

DENSITY MODELS

MODEL N L WD

1 1 - 3 3 0.0

2 1 - 3 3 0.001 *

3 1 - 3 3 0.01

4 1 - 3 4 0.01

5 1 - 3 6 0.01

6 1 - 3 8 0.01

7 4 - 6 3 0.0
-5

8 4 - 6 3 10 *
-4

9 4 - 6 3 10
-3

10 4 - 6 3 5*10

11 4 - 6 3 0.1
-5

12 4 - 6 1 10

13 4 - 6 2 10
-5

14 4 - 6 5 10
-5

15 4 - 6 7 10

* Final models
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Table (3-3)

SPHERICAL HARMONIC COEFFIZIENTS OF THE DENSITY ANOMALIES
IN THE MANTLE (10 G/CC)

UPPER MANTLE

DEPTH(KM)
50 - 125

DEPTH(KM)
125 - 225

DEPTH(KM)
225 - 400

4 M ANM

2.175
.377
.522
.084
.326

-1.654
.146

1.027
.925

-0.698
.186

-0.503
-1.391
-0.060
-0.024
-0.672
-0.512

1.231
-0.345
-0.593
-0.230

.247
-0,131
-0.195

.173

BNM

0.0
1.483

-1.132
0.0

-0.599
.774

1.007
0.0

-0.786
.040
.082
.276

0.0
.066
.361
.878

-0.689
.598

0.0
-0.212
-0.883

.959

.311
-1.256
1.694

ANM

2.175
.377
.522
.084
.326

-1.654
.146
.410
.368

-0.279
.076

-0.201
-0.546
-0.024
-0.011
-0.262
-0.237

.481
-0.131
-0.227
-0.088

.095
-0.046
-0.075

.067

BNM

0.0
1.483

-1.132
0.0

-0.599
.774

1.007
0.0

-0.314
.017
.032
.111

0.0
.026
.141
.343

-0.270
.237

0.0
-0.084
-0.337

.369

.120
-0.480

.652

ANM BNM

2.175 0.0
.377 1.483
.522 -1.132
.084 0.0
.326 -0.599

-1.654 .774
.146 1.007

-0.036 0.0
-0.019 .033
-0.005 -0.015
-0.021 -0.001

.014 .003

.044 0.0

.002 -0.005
-0.018 -0.009

.045 -0.036

.047 .029
-0.054 .006

.024 0.0
.030 -0.003
.010 .005

-0.012 -0.040
.026 -0.007
.008 .071

-0.005 -0.067

LOWER MANTLE

DEPTH(KM)
400 - 1000

AN4 BNM

-1.332 0.0
-0.222 -1.273
-0.030 .702
-0.172 0.0
-0.504 .487

1.237 -0.770
-0.174 -0.580

DEPTH(KM)
1000 - 2000

ANM BNM

-0-C12 0.0
-0.004 -3.003
-0.026 .017

.011 0.0
.034 -0.027

-0.065 .055
.011 .013

DEPTH(KM)
2000 - 2898

ANM BNM

.331 0.0

.052 .324
-0.019 -0.162

.039 0.0

.114 -0.108
-0.272 .180

.039 .114

N M

2 0
2 1
2 2
3 0
3 1
3 2
3 3
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FIGURE CAPTIONS FOR CHAPTER 3

Figure

(3-1) Layers for the integration process

(3-2a) y1 and y 3 versus depth for the surface laoding of the earth
model

(3-2b) y 5 versus depth for the surface loading of the earth model

(3-3) Total shear-strain energy of the earth versus L for Kaula's
model

(3-4) Radial variations of the lower mantle density perturbations
with different values of L for Kaula's model

(3-5) Total shear-strain energy of the earth versus L. Normalized
for the energy corresponding to the case when L = 3.

(3-6) Total shear-strain energy of the earth versus Od. Normalized
for the energy corresponding to the case when W d = 0.

(3-7 to
3-12) Lateral variations of density in the regions between 50-125,

125-225, 225-400, 400-1000, 1000-2000, 2000-2898,
respectively. Units are in g/cc.

(3-13) Radial variations of the density perturbations under shield,
tectonic and oceanic areas. Units are in g/cc.

(3 -14 to
3-16) Lateral variations of the radial displacements at the surface

of the earth, at 800 km. depth, and at the core-mantle
boundary. Units are in meters..

(3 -17 to
3-19) Lateral variations of the gravitational perturbations at the

surface of the earth, at 800 km. depth and at the core-mantle
boundary. Units are in 106 ergs.

(3-20) Radial variations .f the radial displacements and the
per L'uibations of the gravitational potential.

(3-21 to
3-23) Lateral variations of the maxiinum shear stresses at 30, 163

and 426 km. depths. Units are in bars.
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(3-24) Radial variations of the maximum shear stresses at given
latitudes and longitudes. The figure also includes Kaula's
results.
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CHAPTER 4

Geophysical Interpretation of the Density Anomalies

In Chapter 3 we were concerned with the mathematical studies

of the elastic deformation of an earth model subject to the surface

and body loads.. We solved a boundary value problem, through

which the density perturbations in the mantle were determined. This

chapter is devoted to the geophysical interpretation of these density

anomalies. Before going into the interpretation let us emphasize,

once more, that the solution of the problem is not unique. The

density anomalies selected have relatively smooth radial variations

and satisfy the boundary conditions imposed, while they produce a

minimum total shear strain energy in the earth. Furthermore, these

density anomalies yield the seismic travel time residuals and the

gravitiational perturbations similar to those discussed in Chapter 2.

In this chapter we compare the computed densi ty anomalies

and the corresponding stress field in the earth with the lateral vari-

ations of the seismic structure of the mantle and tectonically active

regions. We also discuss the anelastic behavior of the earth and

determine the relaxation time of the stress field.

(4-1) - Lateral variations of seismic structure of the mantle

Lateral variations of the upper mantle velocities have been

observed (Dorman, et al., 1960; Takeuchi, et al., 1962; and Toksz,



et al., 1967), and it has been concluded thaL the oceanic and the

continental upper mantle shear wave velocities differ by about 0. 3

km. /sec. Assuming that the variations of P and S wave velocities

of the upper mantle are related by:

\ )/(z.6--r1)] . (4-1)

where 6 is Poisson's ratio ( ( .28), the corresponding lateral

variation of P wave velocity is found to be about 0. 5 km. /sec. On

the other hand, Hayles and Doyle's (1967) empirical relationship for

the upper mantle beneath the United States:

\ o. Ev 5  (4-2)

yields a value of about 0. 2 km. /sec. Therefore, lateral variations

of approximately 0. 3 km. /sec. seem to be plausible for P wave

velocities in the upper mantle. Using Birch's (1964) equation, these

variations correspond to density perbations of about 0. 1 g/cc which

agrees with the average density difference between the shield and the

oceanic upper mantle obtained in our study.

Very little study has been devoted to lateral variations in the

lower mantle. From his studies of the t curves o seismic

arrivals at LASA, Montana, Fairborn (1968) deduced a value of about

0. 1 km. /sec. for the lateral variation of the P wave velocity at about
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1900 km. depth. Assuming that this velocity variation is due to the

density difference we determine the latter by Anderson's (1967)

equation of state,

0.323
0. It 9 *nq (4-3)

V V
P 3 - (4-4)

and m is the mean atomic weight. Differentiating equation (4-3)

with respect to V at constant radius yields

-0.6 ,-

=o. /55 17n 96 )
p

0+ 32
+ 0.4

setting '' = . 29 (Birch, 1952), V
p

= 12. 8 km. /sec. , V = 6. 9 km. /sec.
S

(Table 3-1), and m = 22, equation (4-5) is then reduced to

( .)a f)vf r
0..2 4 + 0.2 I _)

SV r

(-bi/ V,) equals zero if we assume no lateral variations of the
r

chemical composition at 1900 km. depth. In .lat case

b AV

where

-2 V r

3

. ~r
(4-5)

(4-5a)

(4-5b)
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which yields a lateral density variation of . 024 g/cc at that depth.

This density variation is larger than the maximum value of

0. 01 g/cc, obtained in Chapter 3. Thus, both in the upper and the

lower mantles the lateral density variations computed in this study

are comperable with, or less than, those implied by the seismic

observations.

(4-2) - Strenght of the Mantle

It is pertinent to question whether the real mantle can support

the stress field obtained in Chapter 3. Very little is known about

the creep strengths of materials at the high temperature and

pressure conditions existing in the mantle. Therefore, we can only

estimate them either by extrapolating laboratory data or from other

geophysical measurements, such as the gravity anomalies or the

stress drops through earthquakes.

A few laboratory data are available for igneous rocks (Lomnitz,

1956; Griggs and Handin, 1960). In any case the environmental

conditions (confining pressure, temperature and strain rate)

achieved in the laboratory experiments are not representative for

the mantle. The confining pressures and temperatures employed in

the laboratory studies are too low and the strain rates are too high

in comparison with the conditions in the mantle (Heard, 1968).

Nevertheless, from the extrapolation of the laboratory measurements,
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a creep strength on the order of 100 bars has been postulated for

the mantle materials (Or owan, 1960; and Robertson, 1964).

The gravity anomalies such as those associated with the

Appalachian Mountains, Hawaii, and the Indonesian arc, indicate a

value of about 100 bars for the strength of the mantle (Jeffreys, 1943;

Birch, 1955, 1964). Moreover, to support the extra buldge of the

equator a minimum strength of approximately 40 bars is required

for the mantle materials (Jeffreys, 1964; and Caputo, 1965).

Additional information about the strength (most probably the

yield strength) of the mantle can be deduced from the stress drops

associated with earthquakes. For intermediate magnitude earth-

quakes, stress drops of about 100 to 1000 bars are estimated at

focal depths between 10 to 700 km. (Aki, 1965; Berckhemer and

Jacob, 1968).

In summary, the available data indicate a creep strength of about

a hundred bars for the mantle materials, though their yield strengths

may be as high as one thousand bars. The average value of

maximum shear stresses resulted from our computed density

anomalies, however, is about 400 bars (Figures 3-21 to 24). There-

fore, we conclude that the real mantle can not support the density

anomalies presented in Chapter 3 and the density anomalies will

diminish in time unless they are supported by some dynamic processes.
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(4-3) - Tectonically active regions

Although the radial variations of the maximum shear stresses

obtained in Chapter 3 depend on the choice of the radial variations

of the density anomalies, their lateral variations depend strongly

on the input data (the lateral perturbations of geopotential, surface

topography of the earth, density anomalies in the crust and the

upper mantle deduced from seismic data). These input data are

closely related to the real earth. Therefore, assuming that the

earthquake foci are the regions where the existing shear stresses

exceed the strength of the materials, it would be interesting to

compare these regions with the maximum shear stresses obtained

in Chapter 3.

Figure (4-1) shows the geographic location of the earthquakes

with focal depths from 0 - 100 km. which occured from 1961

through 1967 (Barazangi and Dorman, 1968). Comparison of this

figure with figure (3-21) indicates that the maxima of the shear

stresses correlate with the earthquake epicenters in Central America,

the west Pacific region, and the eastern part of India. These are

the regions where our input data were reliable and relatively

abundant. The correlation is very poor where no data were available

and the spherical harmonic representations of the input data were

unreliable. Such is the case for the western part of South America.

The lack of correlation between the maxima of the shear-stress field

and deep earthquake epicenters is most.probably due to the
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localization of the epicenters which cannot be resolved by the low

degree spherical harmonics considered in the present study.

(4-4) - Relaxation Time of Stress 'Field

It has been pointed out previously in this chapter that the

shear stresses associated with the density perturbations obtained

in Chapter 3 are larger than the creep strength of the mantle. Thus,

the density anomalies can either be created by some dynamic process

such as convection (Runcorn, 1964) or be the residuals of large

anomalies creater in the past that are presently decaying (Munk and

MacDonald, 1960; and McConnel, 1968). With the available geo-

physical data it is difficult to study the time variations of the former

cast. Considering the latter one, however, it is interesLing to find

out the relaxation time of the stress field associated with the density

anomalies.

Relaxation times of surface loads with horizonal dimensions of

about 2000 km. have been observed to be abouL 4000 years (Heiskanen

and Vening Meinesz, 1958; and McConnel, 1965, 1968). For the

surface loads specified by the second degree harmonics, such as the

extra bulge of the equator, tirn constants varying between a thousand

to about one hundred million years are proposed (Jeffreys and Crampin,

1960; Munik a[ld MacDonald, 1960; Wang, 1966; and, McCcrnel, 1968).

For-the perturbations specified by the spherical harmonics with,

n - 1, , 6. the relaxation time of a surface load does not differ
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significantly from that of a body load. In comparison with the lateral

dimensions of these harmonics, the mantle is like a shell whose

responses for surface and body loads differ by less than a factor of 2,

To demonstrate this behavior the radial displacements of the earth

model adopted in Chapter 3 (Table 3-1) are determined for a mass

anomaly distributed; a) on the earth's surface; and, b) from the

surface to the core-mantle boundary, with constant radial dependence.

The following table shows the ratio of these displacements at the

earth's surface for different zonal harmonics

n y1 surf. y, body

2 1.09

3 1.19

4 1.43

5 1.67

6 1.96

Assuming that the mantle of the earth model obeys the creep law

of Jeffreys (1958) and following Jeffreys and Crampin (1960), the

relaxation times of the stress fields produced in the earth by the

surface loadings, are computed and listed in Table (4-1). It is

evident from the table that Jeffreys' creep law yields longer relaxation

times than the viscous models used in other studies. With the present

knowledge about the earth's interior it is difficult to draw conclusions

about the'relaxation times of the stress field in the earth. But, it is

most likely that the low viscosity upper mantle will play an important
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role in the decay of the loads.

(4-5) - Comparison with Model 1 of Kaula (1963)

To compare our density model with Model 1 of Kaula (1963), the

degree powers of Kaula's crustal density and the density of the surface

layer presented in Chapter 2 are computed and listed in Table (4-2).

It is evident from the table that the density anomalies of our surface

layer are about twice as large as Kaula's crustal density variations.

This table also includes the degree correlation coefficients that dis-

play a negative correlation fo. the second degree harmonic and

positive ones for the higher harmonics. In the case of the mantle,

Kaula has only listed the maximum values of the density perturbations

which are about two orders of magnitude smaller than the ones listed

in table (3-3). This difference is due to 1) the large upper mantle

density anomalies deduced from P wave travel time residuals, and

2) the difference between his polynomial model and the laycred model

adopted in the present studies.

Because of the large density anomalies the corresponding

deformations and stress fields obtained in Chapter 3 are, respectively,

about twice and four times greater than Kaula's results.



-122-

(4-6) - Conclusion

The main interest in this thesis has been to determine the lateral

variations of density in the mantle, which gives rise to a gravitational

field similar to the one deduced from artificial satellite data and which

als o takes into account the lateral variations of crustal thickness and

P wave travel time residuals. We have been concerned with broad

features specified by spherical harmonics through the sixth degree.

From these studies the following conclusions can be deduced:

1) There is no linear correlation between geopotential and surface

topography or crustal thickness. Thus, the perturbations of geo-

potential are due to density anomalies existing deep in the mantle.

2) P wave travel time residuals exhibit good correlation with

crustal thickness. The negative sign of their correlation coefficients

imply that the thicker crust is associated with shorter travel time

and vice versa. Bearing in mind that the continental crust is thicker

and has lower seismic velocity than the oceaiic one, this correlation

indicates that the upper mantle seismic velocities under continents are

higher than those under oceans.

3) The negative correlation between the P wave travel time

residuals and the geopotential shows that a common source affects

both phenomena.

4) Radial variations of the density models determined by

miniimizing only the shear-strain energy of the earth have oscillatory

behaviors. These oscillations disappear when we minimize both the
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shear-strain and the gravitational energy of the earth.

5) The selected density model is characterized by a decrease

with depth. A maximum value of about 0. 3 g/cc is found in the

surface layer with 50 km. thickness. In the upper mantle density

variations are about 0. 1 g/cc and in the lower mantle about 0. 04 g/cc.

These density variations are within the values indicated by seismic

staudies and also they are closer to the actual ones than those

obtained by Kaula (1963).

6) The selected density anomalies produce maximum shear

stresses of about 400 bars throughout the mantle which are larger

than the creep strengths proposed for the mantle materials. Thus,

the real earth, subject to these density variations, is in a creeping

state and the corresponding stress field will decay in time with a

relaxation time on the order of one million years.

At shallow depths (less than 100 km. ) the maxima of the stress

field fall, in general, at the epicenters of shallow earthquakes.
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LIST OF TABLES FOR CHAPTER 4

Table

(4-1) Relaxation times of surface loads (in million years).

(4-2) Correlation of Kaula's (1963) crustal model with the density
of the surface layer.
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Table (4-1)

Relaxation times of surface loads

T (my)

24

60

120

220

360

Table (4-2)

Correlation of Kaula's (1963) crustal model with the

density of the surface layer

Degree power (g/cc) 2

surface layer

0.0040

0.0053

4 0.0038

Correlation coefficient

Kaula's crust

0.0006

0.0015

0.0013

-. 54

.94

.89
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FIGURE CAPTIONS FOR CHAPTER 4

Figure

(4-1) Geographical locations of the epicenters of shallow earthquakes
(0-100 km. ) occurred from 1961 through 1967.
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CHAPTER 5

Suggestions for further studies

The density anomalies obtained through the treatments followed

in the present studies suffer from two major areas: 1) the lack of

sufficient available data, and 2) the unrealistic elastic model

adopted for the mantle of the earth.

Having large amounts of crustal data, distributed all over the

earth, will enable us to determine the density variations in the crust

more accurately. The density anomalies in the upper mantle will be

estimated more realistically from the large number of the obser-

vations on P and S wave travel time residuals by utilizing an adequate

relationship between density and velocity which, in turn, will be

obtained from the abundant laboratory measurements at high temper-

ature and pressure conditions. The availability of large seismic

arrays, such as LASA, at different parts of the earth will yield good

information about the lateral variations in the properties of the lower

mantle. This information together with the periods of the free

oscillations of the earth can be used as an other independent con-

straint to be satisfied in computing the density anomalies in the

mantle. To achieve this goal s ome intensive world wide studies are

required which may take several decades.
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To overcome the modeling errors it is necessary to adopt a

thermo-visco-elastic mantle in our studies. A viscus mantle

model has already been used to study post-glacial isostatic

adjustments of small regions (McConnel, 1963; and, Crittenden,

1963). Most recently the deformation of a visco-elastic earth model

subject to surface loading was also studied (Campbell, 1968). In the

present chapter we formulate the equilibrium equations of a thermo-

visco-elastic mantle model subject to surface as well as body

loadings. The numerical computation of the boundary value problem

analogous to the one treated in Chapter 3 is a suggestion for further

studies.

(5-1)- Stress Analysis in a Thermo-Visco-Elastic Mantle

The fundamental equations for a thermo-visco-elastic mantle

are the same as those for an elastic one except the stress-strain

relationship (equation 3-5a) which should be modified in order to

take into account the effects of temperature and viscosity.

Temperature variations in a medium causes a dilatational strain

due to the thermal expansion of the medium and produces the following

stress field (Sokolnikoff, 1956):

T. C ( 3 2-M) -G4 S.(5-1)
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Where P.D-t is the temperature and c4 is the volume thermal

expansion coefficient.

The stress-strain relationship in a visco-elastic body can be

expressed as (Lee, 1955, 1960):

9T-7..

J+ U

O, Q , and Q are, in general, different polynomials

. That is,

& ~tL

For the Maxwellian visco-elastic body (Bland, 1960)

e--

I.. e~~k 2 1" + Y 'a re..

Assuming that the visco-elastic properties of the mantle are

aeproximately the same as a Maxwellian body, the stress-strain

relationship of the mantle can be formulated by:

+ ~ ~ ~ o( ;0* 2 (5-6)

where j,

of ..

(5-2)

(5-3)

(5-4)

(5-5)

P 9, O'y Q)--



Replacing equation (3-5a) by equation (5-6) and following the same

technique adopted in Chapter 3 yields the following differential

equations.

-f 2.(A 7
~ ' r

" (z[,A&t )A 20 a

- o + 6{ +Z r)e +
S 'r 6; re05 6

+(Ie }

F j)('k" r

( e -e )e 9p

rs,6 0
a +-

Cot1ca ef

re

I i(3+z) Ez, I1 /)
= 0
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+ .- -
'- ; )j
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Here A is the Laplace transformation of A

and so on. It is worthwhile to notice that equations (5-7 to 11) are

analogous to those of the elastic case (equations 3-6 to 9) with the

following differences:

1. The equations are expressed in terms of Laplace transformations

of the variables.

2. The value -ol (3? +2) G' contributes to the perturbations of

the gravitational potential appearing in equations (5-8 to 10).

3. The rigidity /A is modified.to / in order to include
2.

the viscosity term.

4. A new parameter 3 is added to the equations because of the

Laplace transformations.

In the foregoing formulations it is assumed that f

o , and are time independent and furthermore all the second order

terms are negligible.

We will again consider a spheroidal motion:

( ,VU, p ) S (6,) (5-12)

and, if we assume that,
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(5-13)

we will have terms like

A? S (S,') -S
*77" "himk

(eb Cr)

appearing in the equations. Although we can, in general, express

them in terms of single harmonics, C $ (6, q')

given by:

-T 20dds

SC, C 9 C/ ga

where C..

C
7T ZIT

fSt'nO 0 dd0J J .L~OSdj

(5-14)
2

S. e,q)
'J

it is better to avoid complexity, in this state of the treatment, and

assume that 1, ,4 , o , and .4 are laterally independent.

Now we defin- some dependent variables, analogous to what

we did for the elastic case.

+4~J
X", +

y 3 V

Y5

>6 ~y4 TT&?U

'5 (o,<)s <0,q') s..O,<p)

(5-15)

4 V
V -
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Following the procedure adopted in Chapter 3 equation (5-7 to 10) are

reduced to the following simultaneous differential equations.

_ -2 ___ I

(2 - F%16~
+ 'n1(M?-H) L

(, y + -) Y~

'/2 (4t_)+j ff4t XY.5
rz -r 1 .5

r

I- [3;'- (y~(~A+i) _

(&,,"~~.1 + M , n-
q+ "+

371t y5-_
r (o (3

L77 G-y 6.

-4t'6 y~9(47#/)

3
-'7 iI)

t z
- T c&AJ.V

15

Boundary conditions of this problem are again analogous to the

elastic case. Thus, in order to carry out numerical cornputations it

is required to have the time variations ot the boundary conditions at

the earth's surface. The time dependence of surface-topography

dr

dre

d

dr

# + ef+ y< + I r 2 Y

gne,,,4 y+9)-ntn+!33+.+r2

+ Af j - e -*(3')/ .- b r

r /Z
YJ
r
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and crustal density may be estimated from the rate of continental

drift. For geopotential, on the other hand, we need long time

measurements which may take several decades. Therefore, the

satisfactory numerical calculations require long time data

collection. However, the thermo-elastic model does not need

time varying boundary conditions. So, with the presently available

data, this problem is solvable and will be considered in the near

future.
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APPENDIX I

Spherical Harmonic Analysis

In this appendix we describe the two different techniques used

to analyze the observed geophysical data, D (0, ? ), in terms of

the following spherical harmonics:

N)Ie o

wher e

6 = co-latitude

f = east longitude

5 = fully normalized spherical harmonic

e even harmonics

o = odd harmonics

1) - Simple least-squares method

This method requires a minimum squared error, E 2

E.=O (1-2)213

where

2
El LI~ ~(1-3)
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Here q is the number of data points.

Combining equations (I-1 to 3) yields:

\/-X =iR

V is a symmetric matrix, any element of which is a 2x2 matrix:

q- ee

6 $,-,,) $ (9 ,.r;) SG O,,
IM

nd
V=

and XR and R ar e two column vector s

o9-

k1

T0 0
g (ven . ) 0,-

given by:

If there were infinite numbers of evenly distributed data poi

we would use the orthogonality properties of the harmonics in ord

to solve equation (1-4) for X. In practice, however, there are

limited and unevenly scattered data. So we utilize Gauss-Jordan

reduction technique to determine X (Hildebrand, 1961).

2) - Weighted least-squares method

In the case of very limited and unevenly scattered data points,

(1-4)

(1-5)

(1-6)

ints

er
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V is an ill posed matrix and the coefficients obtained through the

simple least-squares method are mutually dependent. To make V

th
to be well posed we find a weighting factor, w., for the i data

point such that different spherical harmonics are orthogonal on the

weighted points. That is:

't o 2
~I 0.5 ~ . 9,).5 jS1i-iQ$ S 0. (1-7)

1=, Sv iet. erg.

where is the Kronecker delta function. If the harmonics were

orthogonal w. would be equal to Sin 9. . Therefore, w. is are

determined to be close to Sin 9. by minimizing V , where a is

defined by:

9 = fW~.S'o.j (1-8)

/=1

In computation we first solve equations (1-7) and (1-8) for w..

Rewriting these equations in a more compact form we obtain,

F-w 1 (1-9)

T
Whr eI F is a pq(-10)

Where F is a pxq matrix:

F aIf _S A? (,o. 1 '. 11 (0 q'1. (1-
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with

=(N+I)( N+z) 1 (/-I)(N+2)+}Ij /2 (I-12)

N is the highest degree of the harmonics considered. W, , and B

are column vectors with q, q, and p rows respecitvely:

S B3 =m t9 6,j ''- ,5 (O,.,%qI) (1-13)

- -
and (W -1 ) is the transpose of ( -) .

Equations (1-9) and (I-10) are solved approximately by

minimizing G0 which is defined by:

G =(F-w-B) -(F-w-1)+&(w-.;}.(w-j) (1-14)
0

and the weighting factors are computed through:

W =(F -F+ I) ( F E.) > (1-15)

where I is an identity matrix.

Having obtained the factors we then expand the data in terms of

sphericai harmonics, the coefficieni:s of wlich are deternined by tLhe

following weighted least-squares formula.
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g. { Z (0,. - D ,-, .) = 'n imm'WW

The coefficients A and B are calculated by an equation similar to

(1-4) where Sin 9. is replaced byLg.

(1-16 )
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APPENDIX II

Correlation Coefficients and Regression Analysis

In Chapter 2 we correlated the spherical harmonic coefficients

of geophysical data. Moreover, the raw data of crustal thickness was

correlated withthose of density of the surface layer. This appendix

is devoted to the explanation of linear correlation coefficients between

two continuous and two discrete data. In the latter case the constants

of the regression line is also calculated.

Let-fO,q) and y(9,cf) be two continuous functions expressed in

terms of the following spherical harmonics:

IR% ,I 5 (9 oCP) ]5 S(9.,q,) - (11-1)

Their linear correlation coefficient i defined by:

r 00 (11-2)

10 0 0tO 0

Putting equation (II-1) into (1-2) and using the ortogonality properties

of the harmonics we obtain:

-r: '"=0 ." '" '=0Ni+(213 2

2JI-a)
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In the case of two sets of discrete data, X. and Y., the linear
1 1

correlation coefficient is defined by (Lee, 1956):

(11-3)
XY -x 6y

where X is the mean value of X and Ox is the standard deviation of X.

Equation (11-3) can be written in more explicit form as:

- Cl-

2 2. 9 - 1/2

T-7 X,- |=. -a

The regression line fitted to this data is given by:

Y = aX + b

where

/271T I x,.-
I XI .:

1:1~L1

I~>jx,.
1:1

9-
{ Xe.

9-

'~ I

(II-3a)

(11-4)

KI-(11-5)
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APPENDIX III

Matricant Method

I n Chapter 3 we adopted the matricant method in order to

integrate the following set of simultaneous linear first order ordinary

differential equations:

dr
+5- (III-1)

throughout the earth. In this appendix the properties of the

matricant are briefly outlined and the solution of equation (III-1) is

given in a compact form.

Let Y (r ) and y (r) be the values of y at r-r 0 and r=r

respectively. Y (r) can be expressed in terms of y (r, ), the

matricant of the medium between r and r,O( Fl) , and the term

due to the sources, S (r), located in this region in the following

form (Gantmacher, 1960):

ror

= ~/) /r 0 + l 5T)d' (112

where the matricant is defined by:

r'-
(A) A T) c 'r+ ACr, of-1. (11-3
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If the coefficient matrix A is independent of r,

(A) e ) (111-4)

Inside the earth A and the source vector S are radially dependent.

However, we divide each layer into sub-layers thin enough that inside

each sub-layer A and S can be regarded as constants. We then use

equation (111-4) to express the matricant of that sub-layer. The size of

the sub-layer is determined by the following procedure. First, the

matricant of the total layer is calculated and then the layer is divided

into two equally thick layers and the matricant of the total layer is

again calculated through the matricant of each s'ub-layer and the

following property of the matricant:

(A= nCA) )Pn A (III1-5)

The two results should be close to each other within a given tolerance.

Otherwise we continue to divide the layer into many sub-layers, until

the closeness of the matricants are justified.

We'also assume that S is located at the center of each sab-layer.

That is:

.5.. = . ( - -) (111-6)
-J J 2
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wher e S is the Kroniker delta function and

-4J
J _

J-I

et ) cSr -

Using equations (111-5 and 6), equation (111-2) is reduced to:

L r J

r Ju

r J.
.. Ji r 2

J-I

In our case the source term is a product of a scalor, d (density

perturbation), and a vector element of which depend only on the

properties of the medium so that:

A =c. D.
J J J

Putting equation (111-9) into (111-8) yields:

~>/(r 0 )

J~1

M.

wher e

N.
J - J+I

* R -D -
1. 2 j

J-iJ

It is worthwhile to notice that the coefficients of Yro) and cf. depend only
J

on the properties of the medium (in our case the unperturbed earth model.

(III - 7)

.- 4.
J

(III-8)

(111-9)

(III-10)

(11I-11)

(r,.)(9 )

J= n-
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A Remark on the Determination of e

If P has a large number of rows or its elements have large

magnitudes, a great number of terms should be included in the power

series expansion in order to obtain a good approximation. The

following procedure is used to avoid this difficulty.

Let us write

e = fe (111-12)

and expand inside the parenthesis in power series,

e~r P . (111-13)
2 27t n2 2 2 2

where C is the truncation error:

/ *e *[ - (III-14)

Here K is the number of rows (or column) of P and 1 is the elements

of P with -greatest absolute value (Frazer, et al. , 1965). There are two

parameters in equation (111-14), n and m, which should be chosen such

that the ratio

'In
- '=2-i =
(B2() * C )/1%I) (IH1-15 )
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falls within a given error, g That is:

2 (B) .E .%L(0) (111-16)

or

(III-16 a)
2

where

B . + + - -+ (III-17)
2 z

Putting equation (111-16) into (111-14) yields:

, *- (I-18)

The minimum amount of calculation, at least in our case, is when

is between .2 and .5. Thus, we determined n in order to make 9

to be within this limit and then determined m from equation (111-18).

Once we find B it needs only n multiplications to recover e
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