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ABSTRACT

APPROXIMATE INTEGRATION METHODS

APPLIED TO WAVE PROPAGATION

by

Donald van Zelm Wadsworth

Submitted to the Department of Geology and Geophysics on January 27
1958 in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

The standard techniques for handling the integral solutions to
geophysical wave propagation problems yield results of limited
applicability. Furthermore in attacking a particular problem it is
not always clear which techniques should be tried, as the relation-
ships between many of these techniques are not well systematized.

The purpose of this thesis is to explore new techniques based on
topological considerations as well as to extend standard techniques.
Also attention is given to clarifying the interrelation between the
standard techniques and to relating these to the new techniques.

The principal new technique developed is the "cliff" method of
integration originated by Dr. M. V. Cerrillo of the Massachusetts
Institute of Technology. This method will often yield compact solutions
to integrals associated with branch cuts when well-known methods such as
quadrature formulas are impractical to apply. The basic idea of the
cliff method is the use of rational function approximants to replace
branch cuts by chains of poles. Contour integration around the original
branch cuts then can be collapsed onto the poles and the solution
obtained by the Residue Theorem.

This cliff method is generalized in two ways. First, in the
"extended" cliff method the convergence of the cliff method is improved
by letting the number of poles in the approximants become infinite. For
certain applications the solutions can be given in compact form. Second,
the basic ideas of the cliff method are generalized by expanding the
argument of a function in rational functions. The branch cuts are then
replaced by more complicated singularities than the poles of the (simple)
cliff method.

Finally a means is given for extending the standard saddle point
methods by combining the topographic features of the saddle point methods
with either the cliff methods or with quadrature methods. The solutions



are convergent and reasonably compact.

As is shown by a number of examples, the cliff methods together
with the extension of the saddle point method offer a practical means

for overcoming the following limitations of standard integration methods:
(1) they make it possible to extend saddle point methods to integrands
having broad saddles and sharply curved steepest descent paths, (2) the
cliff methods offer a simple means of handling many integrals for which

quadrature methods are difficult to develop, (3) the cliff methods can
handle many singular integral equations which do not readily yield to
standard techniques such as Gaussian quadrature.

Thesis Supervisor: Dr. M. V. Cerrillo
Research Associate
Research Laboratory of
Electronics
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INTRODUCTION

Most of the geophysical problems connected with electromagnetic

and seismic wave propagation can only be solved approximately. The

method of approximate solution will depend on whether the problem is

formulated in terms of differential equations, integral equations or a

combination of these. In a particular case, it may be easier to deal

directly with the differential equation rather than a solution in inte-

gral form. Various techniques of approximate solution such as pertur-

bation calculations, variational methods and relaxation methods are

described, for instance, by P. M. Morse and H. Feshbach in "Methods

of Theoretical Physics" and by F. B. Hildebrand in "Methods of Applied

Mathematics". Some of these methods apply especially well to scattering

and diffraction problems. However, in this thesis, we shall restrict

ourselves to approximate methods which deal with solutions already in

integral form--perhaps multiple integrals, but no unknowns in the

integrands. Nevertheless an unanticipated fruit of the research is

that one of the methods developed--the "cliff" method--has important

applications to integral equations, as described in Appendix E.

The various techniques for handling the integrals we are concerned

with can be grouped under the two classifications:

(1) Topological Methods. These include the methods of complex

analysis which are concerned with: the nature and location of singular-

ities on a surface; the structure of a Riemann surface and mappings from



-U I

one Riemann surface to another; the topography of a surface, partic-

ularly with respect to saddle points and steepest descent paths. Spe-

cific examples are the powerful saddle point methods of integration and

the Residue Theorems.

(2) Non-topological Methods. These are the methods which are not

primarily concerned with the behavior of an integrand on a surface. In

fact the variable of integration is not generalized to a two-dimensial

or complex variable. In the case of single integrals, the operations

are in one dimension only. Specific examples include the quadrature

methods of integration such as Gaussian quadrature and Simpson's rule,

expansions in orthogonal functions with term by term integration

(Fourier series, Bessel series, orthogonal polynomial series, etc.),

power series developments with summation by continued fractions and

many others.

The topological methods possess an inherent power which the other

methods lack. All the effort in the latter is concentrated on one

fixed line in the complex. In the topological methods, we consider

the whole scope of the complex plane and can see where to move our line

of integration to the best advantage. For instance, the convergence of

the non-topological methods may be very poor on part of the fixed line

because of the nearness of a singularity. In the topological methods,

we can often deform our line of integration to a less sensitive position

where the convergence is improved.

Many of the integrals appearing in the solutions to geophysical

problems connected with wave propagation can be handled by the topolog-
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ical methods of complex analysis. In general they can be put in the form

where f(z) and w(z) may be multivalued functions and may contain param-

eters. The exponential behavior of the integrand is concentrated in w(z).

L is a prescribed contour in the complex z plane. The two principal

techniques for handling these integrals are the deformation of integra-

tion contours onto steepest descent paths (which usually pass through

saddle points) or onto the singularities of the integrand. In the former

case, the solutions are obtained by the saddle point methods of integra-

tion, while in the latter case, the solutions are obtained by the Residue

Theorem, if the singularities are poles. Of course a given problem may

require the use of both techniques.

For the type of integral of interest in wave propagation in disper-

sive media, these techniques have serious limitations. The saddle point

methods are asymptotic, so that the solutions are valid only in a

restricted region--usually the far field. In many cases the asymptotic

solutions cannot be differentiated. In the second technique, the

singularities which contribute to the final solution frequently include

branch cuts, besides poles. Often the integrals associated with these

branch cuts are as difficult to evaluate as the original integral, or

else the available (non-topological) methods of handling them yield

solutions which have reasonable convergence only in a restricted region.

This thesis is primarily concerned with exploiting the inherent
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power of the topological methods to overcome the above limitations.

This goal is attained, in part, through two principal developments.

First integration processes called "cliff" methods are developed to

handle branch cut integrals. Secondly the ordinary saddle point

methods are extended through application of the cliff methods and

through adaptation of standard quadrature methods.

The basic idea of the cliff methods can be seen by considering

the integral

=f (z),Cz) d2

where L is the lancet contour of Figure 0-1. The singularities of g(z)

are outside of this contour,whereas f(z) has a branch cut inside the

contour. Now by a theorem of Mittag-Lefler or a similar theorem by

Runge (see Appendix C) we can replace f(z) by a rational function approx-

imation with poles in the original branch cut position, as indicated in

Figure 0-2. We then collapse the contour L onto these poles employing

the Residue Theorem to obtain the approximation to the branch cut inte-

gral I. If the number of poles is increased indefinitely, we can cause

the approximation to converge to the true value of I. In most practical

cases only a few poles are needed.

This method of replacing the branch cut by poles or pole-zero

chains, since there are always zeros between the poles, and then using

the Residue Theorem has been called the cliff method of integration

(CerrillO, 1953). The name comes from the fact that the surface of the

function f(z) has a discontinuity like a cliff at the branch cut.
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The principal developments of this thesis are based on research

carried out since 1950 by Dr. M. V. Cerrillo of the Massachusetts

Institute of Technology. His investigations showed the practicality

of the developments by obtaining new forms for the solution to an

electromagnetic wave propagation problem (Research Laboratory of

Electronics Quarterly Progress Report, July 15, 1953). The integrals

associated with wave propagation problems appeared to be well suited to

the mathematical approach of these investigations. Since this

coincided with my interest in geophysics, I decided to make this my

thesis area.
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THESIS ORGANIZATION

Chapter I is concerned with the evaluation of branch cut integrals

by the cliff methods of integration. These methods are developed in

detail and compared with the non-topological methods of numerical

analysis.

Chapters II and III are devoted to integration methods which are

primarily concerned with saddle points and steepest descent paths.

Chapter II demonstrates how the cliff methods of integration can be

advantageously combined with the topographic features of saddle points.

Chapter III demonstrates how non-topological methods--quadrature

methods--can be used to extend the range of the well-known saddle point

methods of integration. The first part of Chapter III is devoted to a

review of the saddle point methods and their various modifications in

order to provide a basis for evaluating the quadrature method extension.

In Chapter IV the Sommerfeld dipole radiation problem is used to

illustrate the analytical steps which must be taken before applying

the approximate integration methods to a wave propagation problem.

A perusal of the Table of Contents will give a more detailed

picture of the organization.



Chapter I

CLIFF METHODS AND BRANCH CUTS

In this chapter the application of cliff methods of integration

to branch cut integrals will be developed. The results will then be

compared with the standard quadrature methods for handling these

integrals. In order to employ the cliff methods, three basic steps

must be taken.

First the integral to be evaluated must be put in the form

j g(z)f(z)dz where C is a lancet contour about the branch cut(s) of

f(z) and g(z) contains no singularities inside this lancet contour.

Later on these conditions will be relaxed somewhat.

Second, the function f(z) which is generated by branch cuts and

perhaps additional singularities must be approximated by rational

functions. The conditions under which this can be done and the

mechanism for finding the appropriate rational functions are given in

the section on Representation by Rational Functions. One method for

generating the approximations is given by the branch of analysis called

continued fraction analysis. It is a logical starting point, as it is a

well developed field. However for our purposes, a more general approach

comes directly from the Cauchy integral, and it is this latter method

which will be developed in detail.

The third step is to replace f(z) by its rational function

approximant. The poles of this approximant will be in the same position
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as the original branch cut, so we can collapse the lancet contour C onto

these poles. For the (simple) cliff method the integration around the

poles is accomplished by the Residue Theorem. The same is true for the

"extended cliff" method to be developed in this chapter. In the section

on the "general cliff" method, the integrations are performed in an

entirely different manner due to the fact that the approximant to f(z)

is no longer a rational function with simple poles but is a function

of a rational function.

The formal basis for what follows in this chapter is to be found

in the work of Borel, Hadamard, Mittag-Lefler, Weierstrass and others.

For instance the Weierstrass factorization theorem for entire functions,

a similar theorem for meromorphic functions by Hadamard and the Mittag-

Lefler theorem on partial fraction expansions are basic. However, only

a theorem by Runge (which includes the Mittag-Lefler theorem) will be

necessary for an orderly development of what follows. Rather than

couch the ideas in a great deal of mathematical rigor, I have decided to

make the presentation simpler by including a minimum of general theorems,

as these can be found in the references. This does not affect the methods

developed or the conclusions obtained. Also much of the conciseness of

formal mathematics has been sacrificed in order to make the ideas

accessible to a wider audience.

REPRESENTATION BY RATIONAL FUNCTIONS

By the theorem of Mittag-Lefler or of Runge, a function f(z) which

is generated by poles, branch cuts and essential singularities can be



approximated by rational functions which, of course, have only pole

singularities. Furthermore the rational functions can be made to

converge uniformly to the original function. In general, we have

where h(z) is a polynomial, as the expansion in rational functions.

If the sum is truncated after a finite number of terms, it is called

a partial fraction expansion. The partial fraction expansion together

with the polynomial form a rational function approximant to f(z). The

methods for locating the poles z. and determining the coefficients a.

will now be given.

The powerful methods of continued fraction analysis enable us to

obtain the coefficients a and the poles z. for the rational function

approximants to a large class of functions. There are quite general

theorems which show when the approximants obtained by these methods

converge uniformly to the original function. If the singularities

of a function are branch cuts, in general the poles and zeros of the

approximants will be in the position of the branch cuts. The theorems

and details are given by Perron and Wall.

This approach to finding the rational function approximants to

the original function is limited by a certain rigidity as to the shape

and position of the branch cuts involved. A more objectionable limitation

for our applications is that the positions of the poles of the approx-

imants are predetermined by the method, so that in general the poles
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are not optimally located with respect to the integration around the

branch cut. Also there is no simple method for obtaining the numbers

a. and z..
3 3

Now it can be shown (see Perron) that the representation given by

continued fraction analysis is equivalent to a representation of the

original function by Stieltjes integrals. This representation in turn

is, for our purposes, a special case of a more flexible method which

employs the Cauchy integral and is developed in what follows.

Since it is basic to the discussion, the Cauchy Integral Formula

also known as the Cauchy Integral Theorem is repeated here. If F(z)

is continuous on C and analytic interior to C then

F(Z) z interior to C

c 0 z exierior to C

where C is the smooth boundary of a finite, finitely connected region.

Generalizations and rigor are given in the references by Muskhelishvili,

Plemelj and Privalov among others.

We shall now illustrate how the Cauchy Formula is applied to obtain

rational approximants to a function f(z). We shall take the specific

case f(z) = (1-z2) where we take the branch for which the real part of

this function is positive in the upper half plane when the branch cut is

chosen as in Figure 1-1. If C1 + C2 is the contour of Figure 1-1 then

(1-1) (i zl J- 2 d' .Lj' LYt6 lrit - Z iO

C,
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The integral on C2 vanishes as the radius of the circle is extended to

infinity, so that upon collapsing C1 onto the cut we are left with

where r(t) = 2sin~it. In this particular example, due to the symmetry,

we find it simpler to deal with the integration over (0,1) instead of

over (-1,1). The final integral above is in the form of a Stieltjes

integral where ? (t) is called the distribution function. We require the

Stieltjes form because the method of approximation we shall employ

cannot be developed with just the Riemann integral. In general the

distribution function is obtained by integration:

The properties of the Stieltjes integrals are described, for instance,

by Widder and will not be repeated here.

In order to obtain a rational function approximant from 1-2 we

approximate the distribution function (t) by the staircase function

f,(t) shown in Figure 1-2. Then by the definition of the Stieltjes

integral we have on substituting f, (t) into the final integral of 1-2

where Jq = are called jumps for obvious reasons. The
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exact meaning of the J is clearer if we use the definition of the

distribution functions to write

t

Now the function (1-z2 )-T has a cliff-like discontinuity at the branch

cut from -1 to +1 on the real axis. The face of this cliff is shown in

Figure 1-3. It is evident from the above integral representation that the

jumps Jq are just the areas of the cliff face between pairs of poles

t and t . In the general case when the branch cuts are not on the
q q-1

real or imaginary axes, the cliff will have a complex area so that the

jumps Jq will also be complex.

The position and number of poles in the right side of 1-3 will

depend on the particular application. Suppose we want to evaluate

f, g(z)(l-z2)4dz where C1 is the contour of Figure 
1-1. Then the

optimum position of the poles is determined by the weighting factor

g(z) and the accuracy desired. By the method of construction it is clear

that we are free to place the poles where we want them as long as they

are in the position of the branch cut. This is is contrast to the

continued fraction analysis approach in which the pole positions are

predetermined (see Perron or Wall).

Suppose that the weighting factor g(z) is such that we can take

the jumps Jq of Figure 1-2 to be equally spaced so that -J = /N.

Then (tq) = qTr/N so that tq = sin(qm/2N) . Consequently



24

(1-4) Jimz)~ p -X> ~: +

If N is finite, the right side of 1-4 is a rational function approximant

to (1-z2)d. If the limit process is carried out we obtain the function

on the left as expected. In this example the jumps are equally spaced.

In some problems it might be preferable to choose some other spacingor

we could choose the poles t to be equally spaced. Various theorems

on convergence and estimates on the error for a given number of terms

can be derived from the results of Perron.

CLIFF METHOD

The preceding section gave the mechanism for expanding a function

f(z) in terms of rational functions which we shall denote by Rn(z). The

theorems given Appendix C show that the R (z) can be uniformly convergent.
n

Even though these functions converge uniformly to f(z), this is no

guarantee that the right hand integral of

where Rn(z) is the rational approximant to f(z) will also converge

uniformly to the limit. In fact the limit may well be divergent.

Sufficient conditions for convergence can be obtained from the theorems

of Appendix C. If these conditions are met, then we can make some very

definite observations about the whole structure of the cliff method.
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In 1-5 let us substitute for R (z) its general form
n

where h(z) is a polynomial. Then we obtain

(1-6) = || ia /i n IM

where J are the jumps derived from the distribution function f(t) for

f(t). We have assumed C to be an appropriate contour such as that of

Figure 1-4, so that the Residue Theorem applies at the poles of R n(z).

That the a. can be replaced by J./27ri in the right side of 1-6

can be seen for the case f(z) = (1-z2)-f if we write the sum on the

right side of 1-3 in the form

(1-7) -z--Z i

where J = +Jq and t = +t q, the upper sign corresponding to j being a

positive number. Then since f(z) = lim Rn(z) = lim a /(z-tj) + h(z),

we have ai = J /2mri on comparing coefficients. It is not hard to

generalize this, but we shall omit the proof here.

Now if we take only a few terms of the sum on the right of 1-6 we

have the cliff method approximation to the integral I. The relation-

ship of this approximation to the Stieltjes definition of the original

integral can be seen if we replace f(z)dz by d f(z)/2] in the left hand

integral of 1-5 and collapse the contour C onto the cut. We then have

by a definition of the Stieltjes integral
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(1-8)~~aj 1 9 d9~ I~

where f(t) is the distribution function for 2f(t). The sum on the

right has the same form as the sum on the right of 1-6 if we remember

that the jumps J were defined in terms of the distribution function

for f(t) by J = ?(t )- '(t 1 ). It is clear now that the cliff

method approximation is just a partial sum of the Stieltjes definition

of the original integral along the banks of a branch cut.

Our method of approximate integration can viewed from these two

standpoints. In one we replace a branch cut by a chain of poles and

deform our contour of integration onto these poles. In the other, we

deform our contour of integration onto the banks of the branch cut and

simply use the Stieltjes definition of the resultant integrals. Since

we are dealing with contour deformations and singular lines (branch cuts),

the former viewpoint is probably more natural. In the general cliff

method described later, this viewpoint will be imperative. For the

cliff method and the extended cliff method of the next section, it will

be helpful to think in terms of the Stieltjes integral approach as well

as the purely topological approach of rational function approximants.

Before developing the extended cliff method, let us see how to apply

the cliff method when we do not have a lancet contour around a cut.

Suppose the integral to be evaluated is of the form 1-5, but that the

contour C only extends along one bank of the cut. As before, expand



f(z) in a rational approximant with poles along the cut position. We

then deform C onto these poles so that C consists of semicircles around

the poles plus straight line segments between the poles. Our cliff

method solution to the integral I is then given by taking one-half of

the values of the residues at these poles. (If we are dealing with

other than double valued functions, then the residues would be weighted

differently). We neglect the contribution from the straight line

segments in our approximation. That this should be done can be seen

by an appeal to the Cauchy Integral Theorem as explained in Appendix G.

Another way to see this is to employ the Stieltjes integral along the

bank of the cut and show that the approximation obtained in this manner

gives the same result as taking half residues.

EXTENDED CLIFF METHOD

It sometimes becomes necessary, in order to obtain a good approxi-

mation, to use a large number of steps in the staircase approximation

to the distribution function. Then the cliff method becomes impractical.

To see how this situation can be remedied, consider the general form of

the cliff method solution given in 1-6. If the sum index appears in

g(t ) and J. = f(t )- f(t. ) in certain ways, it is possible to perform

the finite summations and take the limit as the number of terms, and

hence poles, become infinite. But this is redundant if, in the summation

and limit, the poles become dense along the branch cut position. All we

succeed in doing is to obtain the original Stieltjes integral or an
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equivalent form, since we are actually dealing with a definition of the

point
Stieltjes integral. The importantgis that if the original integral is

unknown, we may be able to evaluate it approximately by replacing g(z)

and the distribution function for f(z) by approximate forms whose

Stieltjes integrals are tabulated functions.

A simple example will make the ideas clearer and at the same time

show the basic difference between the extended cliff method and quad-

rature methods. We shall evaluate the integral representation for the

Bessel function

e Z(1-10) " I jz

where C1 is the contour of Figure 1-1 and a is real.

The first step is to obtain a rational approximant to (1-z2 We

start with the right hand integral of 1-2 and replace the distribution

f(t) = 2sin~it by the straight lines shown in Figure 1-5. These two

straight lines, (t) and p(t) form an approximate distribution function

et) + P(t)- f(t). The next step is to approximate 9It) and

e(t) by the staircase functions G(t) andr (t) indicated in Figure

1-5.

If we take the jumps of (t) and f, (t) to be equally spaced, we

have J= 3/2N and J = 3/2N so that ?,t ) 3q/2N and tq) =
q q q

3/2 + 3q/2N . Then we can solve for t obtaining t = 3q/4N and
q q

tq = 3/4 + q/'4N . Next substitute 9,(t) and~1 (t) into 1-2 obtaining
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Z..2Z 7 7

If we now substitute the rational approximant on the right into 1-10

and employ the Residue Theorem, we obtain finally

(1-11) -e4) 7 (5o(co( 1
trN IV V )v

The extended cliff solution is obtained by letting N become infinite

in 1-11. We first perform the finite summations and then take the limit

obtaining

(1-12) 3c) a /#4 - 5/ .
Ira

When we let N become infinite, the stair case functions (t) and

t) became identical with the functions 7tkt) and X /t). Then the

only error introduced in our approximation is due to the difference

between t) + (f (t) and 0(t). In other words the extended cliff

method handled the function exp(iaz)of 1-10 exactly but approximated

the integral of (1-z2)-A --that is, the distribution function. The

actual error of the above approximation is a few per cent for small z.

The accuracy could be increased by choosing the ordinates in an

optimum fashion or using three or four straight lines to approximate

the arc sine. We could also have used the first few terms of a fourier

expansion or a higher order polynomial as an approximation to the arc
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sine.

In Appendix E, Figure E-3, the approximation 1-12 is compared

to a four point Chebyshev-Gauss quadrature for the integral obtained

by collapsing the contour of 1-10 onto the branch cut:

(1-13) (a)
-I

The interesting fact is that for this example, the extended cliff sol-

ution compares very favorably with the quadrature solution--in fact

the extended cliff solution stays with the Bessel function longer than

does the quadrature.

If we had started with the integral 1-13 along the banks of the

branch cut, and put it into the Stieltjes form

4T.(a) z {c5tfs,''
we could work directly with the distribution function. We simply make

the straight line approximation to the distribution function and obtain

the solution 1-12. This way we do not have to consider rational function

expansions or take limits as the poles become dense along the branch cut

position.

We see that the extended cliff method is equivalent to dealing with

the Stieltjes form of an integral along the banks of a branch cut. The

distribution function is approximated by simpler functions for which the

integrations can be carried out. In cases where it is difficult to



apply a quadrature rule, the extended cliff method has the advantage of

being easy to apply.

The past two sections have brought out the relation between

rational function approximants and approximations made directly to the

distribution function of a Stieltjes integral. In the general cliff

method section, the viewpoint of expansion in rational functions will

not be equivalent to a Stieltjes integral representation.

ERROR ANALYSIS

We shall now consider the errors introduced by the cliff and

extended cliff methods. First we shall examine a specific function to

illustrate what happens in the cliff method from the geometric stand-

point.

24-Let f(z) = (1-z ) in the left hand integral of 1-5 and let C be

the contour designated by C in Figure 1-1. We shall employ the
1

expansion 1-4 and keep the number of poles finite. We have on

substituting 1-4 into the above integral and using the Residue Theorem:

where J = 7T/N . Now as shown in Figure 1-3, the jumps J are the
q q

areas of the face of the cliff for (1-z between the poles tq and

t If the weight factor is unity, that is, g(z) = 1, then, exactly,
q-1.

At'



Since the integral is just the total area of the cliff face, we

need only a finite number of poles for an exact answer. In fact

two poles (at z = +1) would be sufficient.

Now if g(z) is not unity it is clear that the cliff method

weights the areas J by the value of g(z) at z = t so that g(z)

is approximated by a constant between each pair of poles.

Next compare this cliff method solution with a quadrature for

which f(z) = (l-z2)-I is a weight factor--the Chebyshev-Gauss formula.

In place of the crude step-like approximation to g(z) of the cliff

method, the quadrature rule with, say, m points approximates g(z) by

a 2m-1 degree polynomial. This is generally a considerable improvement

on the cliff method solution. However if f(z) does not have the form of

a weighting function of known orthogonal polynomials, then the cliff

method may be the most practical means for obtaining the approximate

solution. Moreover the method is straight forward and easy to apply. In

fact as the examples of Appendix E show, the cliff method solution is not

so crude as might be thought from the above comparison.

A tight error analysis for the cliff method is quite difficult to

develop. However a conservative analysis can be obtained by considering

the integral of 1-5. We have

where jf(z) is the distribution function for f(z). The approximation to

I is given by
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where for the cliff method 9h (z) is the staircase approximation to

(z) as indicated in Figure 1-2 for the case 9(t) = 2sin 1t. The

error is then

By collapsing C onto the branch cut we can consider this to be a line

integral with limits a and b. For this line integral we shall let

z = t. By the partial integration formula for Stieltjes integrals we

can then express the error as

'IA b

For the cliff method the set of points at which f(t)- ,(t) is

discontinuous has measure zero. Also we can assume () (t

is bounded on [a,b] . Then if g(t) is continuous and monotonic, it

can be shown by the methods of functional analysis that

Also if g(t) is merely of bounded variation on [a,b] and q'(t)-9f(t)

is continuous (as it is in the extended cliff method) then we have
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where lub means least upper bound and V denotes the total variation.

These inequalities enable us to set a bound on the error I-In'

However these bounds are very conservative. Until a better error analysis

is developed the best that can be done is to give some numerical exam-

ples to show that the cliff method can have high accuracy with only a

few terms. These examples are relegated to Appendix E and show that

the cliff method compares quite favorably with non-topological methods

such as quadrature rules.

GENERAL CLIFF METHOD

Suppose the integral taken on the contour of Figure 1-4 has the

form

(1-14) 7~f () hdf7)c-
C

where the branch cut surrounded by C belongs to f(z). Neither g(z)

nor hjf(z) have any other singularities inside this contour. We shall

replace f(z) by a rational function approximant with poles in the posi-

tion of the original branch cut as before. However there is now a basic

difference in our method of approximate integration from that of the

(simple) cliff methods. We are now expanding the argument of a function

instead of the complete function in rational functions. The previous

methods are the special case for h being the identity operator. In

general, the singularities of the approximant hfRn(z) to hff(z)) will be



more complicated than the simple poles we encountered previously.

To illustrate why this generalization has a practical motivation,

let h be the exponential operator so that 1-14 becomes

(1-15) I -f j(z) e az

L

Our first thought might be to apply the (simple) cliff methods

after removing f(z) from the exponential by an appropriate transformation

or to expand exp f(z) itself in rational functions. In many cases the

first alternative is not feasible because of the complicated form of the

integrand. In most cases the latter alternative is impractical because

the methods available for obtaining a rational function expansion of an

exponential of this sort are very awkward. For these reasons it is

desireable to develop the ideas of the general cliff method.

In our example we replace exp f(z) by the approximant exp Rn(z)

which has essential singularities at the poles of Rn(z)= a/(z-z)
n

+ h(z) . We have now replaced the branch cut by a chain of essential

singularities. When the contour L is collapsed onto these isolated

essential singularities, we have the approximation

I a;M(Z-zij *ho) aj I{z-2,)+f e(-2,) -t htz)
(1-16) I lim jY(z)e dz = itn dz"

L

where near any of the poles zj the functions g(z) and am/(z-zm)

+ h(z) are nearly constant. These integrals can be evaluated by the
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method of Appendix F. If only a few terms are needed, then we have a

practical solution. Unlike the cliff methods developed previously, there

is no simple relation between our approximate solution and the partial

sums of the definition of a Stieltjes integral.

To illustrate the application of the general cliff method and some

of its limitations, let us consider a typical integral appearing in wave

propagation problems:

(1-17) IH, {(-P~~)d
C

H is the Hankel function of the first kind, C is the lancet contour on

the left side of Figure 1-6 and we assume the singularities of g(z) are

exterior to this contour. Suppose thatyA varies between .1 and 10 so

that quadrature methods are awkward to apply.

The first step in the general cliff method is to expand (1-z2)

in a rational function approximant Rn(z). At the zeros of this rational

function, the argument of the Hankel function is zero so that Ho DRn(z)j

has logarithmic singularities (logarithmic branch points) at these points.

At the poles of Rn(z) the Hankel function has branch points which we

shall call essential singularities. The contour C can then be collapsed

onto the singularities of He oRn(z) as shown in the right hand side of

Figure 1-6. The branch cutting is that for HoaRn(z)] and does not come

from the function being approximated. It seems reasonable that the whole

effect of the original branch cut which generated H 0f(1-z2)ijis

approximated by the singularities of Ho[,oRn(z)J which lie in the position
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of the branch cut and not by the new branch cuts introduced for H Rn(z) .

Nevertheless when we collapse the contour C onto the singularities of

H R Rn(z), we must consider the integrations along the banks of the cuts

for this function, as is demonstrated in Appendix F.

It now would appear that all we have succeeded in doing is to

replace a single branch cut integral by a number of new ones and have

therefor multiplied our difficulties. We shall return to this point

later, but for the time being assume that we can surmount these difficul-

ties.

We still have to consider the contributions at the branch points of

HoIR (z)] designated by 0 and X in the right side of Figure 1-6. Near

these branch points H4 0Rn(z)] can be replaced by its logarithmic or

x
asymptotic forms. Then if z are the poles and 9 are the zeros of

R (z), we have the approximation
n

{ yJR(Z ) z
(1-18) Zi =

+ contrib1on of branc /

x 0
where the loops about z and z are placed as shown in Figure 1-7. For

integrals of the type appearing in the Sommerfeld problem the integrations

about z vanish. The proof is straight forward. The integrations about

the i can be handled by the method shown in Appendix F if the angles of

the branch cuts issuing from the zj are adjusted so that the integrals
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converge and the phase requirements of the asymptotic forms are satisfied.

The problem remains of evaluating the integrals along the banks of

the branch cutting for Ho R (z)] . Theoretically, though not practi-

cally, it is possible to expand the original function HO (1-z ) in a

rational function approximant S n(z). Now compare this with the approximant

H [R (z)J . Both these approximants are generated by their singularities.

Since both are approximants to the same function, there must be a relation

between the poles of Sn (z) and the branch cuts and branch points of

H.pR (z)] . If we can find a practical relation between the integrations

around the poles of S (z) and the integrations along the banks of then

cuts for HJ/ R (z), it may be possible to evaluate the integrals along

the banks of the cuts by applying the Residue Theorem to the poles of

Sn (z). It also may not be necessary to have obtained the exact form of

Sn(z) first. These possibilities require careful investigation, but

were considered to be beyond the scope of the present thesis and are

left for future work.

In the present section we have considered two examples of the

general cliff method. In the first example, the operator h of equation

1-14 was the exponential function, so that the general cliff method

could be carried out. We did not give an actual numerical example, as

this will be done in Appendix E. In the second example of this section,

the operator h was the Hankel function. As we have seen, in this case

we run into difficulties in applying the general cliff method, although

more study is necessary before we can make definite conclusions.
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SUMMARY

The present chapter has shown that both the cliff and extended cliff

methods have practical applications to branch cut integrals. An error

analysis was given, but as shown in Appendix E, it is much too conservative.

A tight error analysis for the cliff methods is difficult to develop.

The examples of Appendix E do show that the error can be quite small-

in fact the cliff methods compare quite favorably with quadrature methods.

The important observation is that the cliff methods can be applied to

integrals which do not readily yield to quadrature methods either because

the weight factor is not the right form or because of singular behavior

of a factor of the integrand.

The general cliff method was carried to a point where it did not

appear too promising for functions such as the Hankel function. The

simpler example worked out in Appendix E also shows serious limitations.

However more work is necessary before definite conclusions are obtained.

As explained in the example of Appendix E, the cliff method also

can be applied to singular integral equations which are not readily

adaptible to methods such as Gaussian quadrature.



Chapter II

CLIFF METHODS AND SADDLE POINTS

The previous chapter was concerned with the application of cliff

methods of integration to branch cut integrals without any special regard

to whether the integral had exponential behavior in its integrand. For

many wave propagation integrals, the integrands do have a dominant ex-

ponential factor so that the main contribution to the integral comes in

the vicinity of saddle points. We shall show how it is possible to

combine the cliff methods with the properties of saddle points to obtain

a powerful extension to the ordinary saddle point methods. The reader

unfamiliar with saddle point methods will find this chapter clearer if

he first reads Chapter III.

The general type of integral we shall consider has the form

(2-1) R7e ) e U/ (Z) Wz
f L

where the contour L may be of several types as discussed in what follows.

We shall assume that f(z) does not contain terms of exponential order.

CLIFF METHOD--SEPARATED INTEGRAND

We shall apply the cliff method to evaluate 2-1 where we assume

this integral is of the "separated" form--that is, f(z) and w(z) do not

contain the same multivalued functions. For simplicity assume w(z) has

42
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one saddle point as indicated in Figure 2-1 and that L is a lancet contour

about a cut which belongs to f(z). The steepest descent line passing

through the saddle point is indicated in the figure.

There are three ways in which we can employ the cliff method:

(1) we can deform the cut together with the lancet contour L onto the

steepest descent path. Then we place the poles of the rational approx-

imant to f(z) in the position of this deformed cut, collapse L onto the

poles and employ the Residue Theorem. Since we are on a steepest descent

path only a few poles near the saddle point are needed for our approx-

imation. (2) we can first deform L onto the steepest descent path so

that it is an open contour. Then we deform the cut onto the steepest

descent path as indicated in Figure 2-2. Next we replace the cut by

the poles of the rational approximant to f(z). The approximate solution

is given by taking weighted residues at the poles.

The proper weighting and necessary assumptions are developed in

Appendix G. For double valued functions we take half residues at the

poles. Again we only need a few poles near the saddle point since we

are on a steepest descent line. If there are no other singularities

(such as branch points of g(z) ) near the saddle point, then this is

a practical method.

(3) we can first deform L as an open contour onto the steepest

descent path. Then we expand f(z) in a rational approximant Rn(z)

which approximates f(z) in the unshaded region of Figure 2-3. Interior

to the shaded region, R n(z) becomes vanishingly small by Cauchy's Integral

Theorem. The poles of Rn(z) lie along the boundary of the twc regions as
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indicated. The next step is to deform L back onto the shaded region in

a position such as L'. We are left with the loops around the poles on

the steepest descent path (again only the poles near the saddle point

are important) plus the integral on L'. In some cases, depending on

w(z), L' can be shown to vanish as we deform it toward the point at

infinity. Otherwise we can make the contribution from L' arbitrarily

small by taking enourh poles &ong the steepest descent path. This

follows from the well-known properties of the Cauchy Integral Formula.

From the form of R (z) we can set bounds on the value of the integral
n

along L', if necessary.

These approaches to the integration problem are primarily topolog-

ical. In practice it is easier to deform L onto the steepest descent

path and then throw the integral into Stieltjes form in terms of the dis-

tribution function for f(z). We then approximate this distribution

function by a stair case function as explained in Chapter I. The

result will be the same as would be obtained by (2) or (3) above.

Since we can place our poles as we wish, it is possible to follow

curved steepest descent paths and broad saddles.

CLIFF METHOD--MIXED INTEGRAND

Suppose that w(z) and f(z) both contain the same multivalued

function--say, (1-z 2 )2 with cuts as indicated in Figure 2-4. If we

deform the cut (from +1) together with the lancet contour L onto the

steepest descent path, we must expand both w(z) and f(z) before we collapse

L onto the singularities of the approximant. Since a rational function
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expansion in an exponent leads to essential singularities, we cannot

employ the (simple) cliff method. However, if we deform L as an open

contour on the steepest descent path, we can use the cliff method as

follows.

Suppose that the integrand of 2-1 contains a number of multivalued

functions. We can consider the Riemann surface rendering this integrand

single valued to consist of sheets each of which is subdivided into

two leaves corresponding to the two branches of (1-z2)i. Now we can

expand this subdivision into four sheets, two of which correspond to

(1-z2) in f(z) and two of which correspond to the (l-z2)$ in w(z).

In other words, we consider these as different functions, although

they have the same branch points.

Then to apply the cliff method, we remember that we are on one

sheet of our four sheeted subdivision. We deform the cut for the

(1-z2)i belonging to f(z) onto the steepest descent path. Then we

expand the (1-z2)$ of f(z) in a rational function which approximates

(1-z2) in the unshaded region of Figure 2-5. We next deform L back

into the shaded region. We are left with the residues at the poles on

the steepest descent path plus the contour L' which has wrapped around

the cut belonging to the (1-z2)f in the exponent.

Nbw note that we could have expressed our integral in Stieltjes

form along the steepest descent path, so that the distribution function

would be generated by f(z). If we then approximate this distribution

function in the usual manner with a stair case-like function, we obtain

the same approximate solution as we would from the rational function
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approach described above. The only difference between the two procedures

is that the more topological approach gives some idea of the error that

the integral on L' will introduce whereas the Stieltjes integral approach

does not consider this.

EXAMPLE OF CLIFF METHOD

As a numerical example, consider the representation of the Bessel

function

(2-2) e
Y

where Yis the contour of Figure 2-6 and is already on the steepest

descent paths for the two saddle points. In this case we can transform

our integral into a line integral along the steepest descent paths. The

result is the integral 'I of equation E-1 of Appendix E. In Table E

the result of approximating this integral by the cliff method is

compared with the solution obtained by the ordinary saddle point method.

For reference, the saddle point method solution is

(7.- )Cos (z )

At least up to z = 4Th the cliff method with five poles gives more

accurate results. For z (/4 the cliff method is not too good

(although it does not blow up as does the saddle point method solution).

For small z, if it were desireable, the cliff method solution could be

easily improved by choosing a different pole spacing.



GENERAL CLIFF METHOD

Suppose that w(z) contains the function (1-z2) with the cuts as

shown in Figure 2-4. Then we have the choices: (1) we can deform the

cut from +1 together with its lancet contour L onto the steepest descent

path and employ the general cliff method. (2) we can deform L as an

open contour onto the steepest descent path and expand w(z) in a rational

function Rn(z) which approaches w(z) in a region as indicated by the

unshaded area of Figure 2-3. Then exp Rn(z) has a ring of essential

singularities around this unshaded region. exp R (z) approaches

exp w(z) interior to the unshaded region and approaches unity in the

shaded region. This can be proven from Cauchy's Integral Theorem and

the theorems of Appendix C. Next we deform L onto the singularities

along the steepest descent path--again we need only those near the saddle

point--plus a contour L' in the shaded region. If the poles of R (z)

are close enough then exp Rn(z) f(z)dz approaches f(z)dz

which may be easier to evaluate.

SUMMARY

The cliff method provides an important extension to the saddle point

methods because, as shown in this chapter, the method can handle broad

saddles and curved steepest descent paths. These are just the cases in

which the ordinary (asymptotic) saddle point methods break down.

Because of the difficulties described in the section on the

general cliff method of Chapter I and in Appendix E, the application

of this method to steepest descent paths is not yet very practical.



Chapter III

SADDLE POINT METHODS

The preceding chapter brought out the power of the cliff methods of

integration when applied to steepest descent paths. In this way the cliff

methods provide a powerful extension to the popular saddle point method of

integration, known also as the method of steepest descents and the sta-

tionary phase or col method, depending on the application. In this chap-

ter another means of extending the ordinary saddle point method will be

given. Basically this extension is the application of quadrature methods

to steepest descent paths and will be called the quadrature saddle point

method. A review of the ordinary saddle point method and some of its var-

iations will first be given in order to make the presentation clearer.

The general type of integral handled by the saddle point method is

F(t)=SFS)e ds

where L is the contour of integration in the complex s plane, F(s) and

W(st) are analytic functions on this contour and t denotes any parameters.

If F(s) is slowly varying, the exponential factor will dominate the inte-

grand. The goal of the saddle point methods is twofold: to "bunch" the

integrand about a point sc and to deform L through sc in such a way that

the exponential factor does not oscillate on the deformed contour L'. For

functions which are analytic on L', these twin goals are compatible.

First assume we can deform L through a point sc with the property that

Re[W(s,t)-W(sc,t) becomes increasingly negative on both sides of sc as

we move along the deformed contour L'. If the rate of increase is suffi-

ciently rapid, then most of the integral comes from the vicinity of sc
50
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Furthermore the rate of increase of Re[W(st)-W(sc,t) as we move away

from s will be maximized if we choose L' so that ImfW(st)-W(sc,t is
C

constant on this contour. This follows from the property of analytic

functions that keeping the real or imaginary part constant causes the

conjugate part to vary at its maximum rate. We have thus achieved our

goal of bunching the integral about a point sc on a contour for which

the exponential factor does not oscillate.

There are many points which will satisfy our requirements on sc'

Generally, the most useful are the solutions of dW(st)/ds = 0 which are

also saddle points. For these points, the first derivative term in the

Taylor expansion of the exponent will vanish for all t, so that we have

a simpler form. The term saddle point comes from the fact that the

Re W(st) or Im W(st) when plotted over the s plane often has the

appearance of a saddle near this point. On the contour L' we come up

one side of the saddle, pass the midpoint at sc and then descend the

other side. These are lines of steepest descent from the midpoint at sc

If these lines are steep enough, then the whole contribution to the

integral comes from a small region about the saddle point sc. We shall

denote the segment of L' which lies in this region by L'.

For convenience in what follows, set W(s,t)-W(sct) = P + iQ so that

P and Q are the real and imaginary parts of this function. In this nota-

tion the contour L' passing through sc must satisfy the conditions that

P be nonpositive and Q be constant. In fact the latter condition must be

Q = 0 since W(s,t)-W(sct) vanishes at the saddle point. We can say that

the contour L' is a Q = 0 line in the s plane. On this contour the

oscillatory part of the exponential factor is eliminated. Also function



52

theory shows that P will decrease monotonically as we move along L'

away from the saddle point, unless there are other saddle points nearby.

Our original integral can now be replaced by the following integral on

the finite segment L":

R(t Wk)fF(S) C 'cs

Any error introduced in this step can be made as small as we like by

increasing L".

The power of the saddle point method comes from the fact that we can

often approximate our integral on the segment L" by certain standard

integrals which are well known. It will not matter if the approximation

breaks down outside of L" (assuming F(s) is slowly varying) because of

the behavior of the exponential factor in both the given integral and in

the standard forms.

FIRST ORDER SADDLE POINT METHOD

In the first order saddle point method we assume that on the segment

L" we can approximate F(s) by a rational function and W(s,t) by a Taylor

series truncated after the second derivative term. As an illustration

the cases when F(s) can be approximated by a polynomial or a simple pole

are worked out here. The term "first order" as used here corresponds to

"second order" in the reference by Cerrillo (1950).

In the Taylor series expansion W(s,t) = W(sct) + WI(sc,t)(s-sc)

WII(s,t)(5-c) 2/2. the second term vanishes if sc is the saddle point.
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Then P + iQ = W (sc,t)(s-sc)2/2. Next let W"(sct)/2 heia and

s-sc = re*P so that P = hr2cos(a + 2P) and Q = hr2sin(a + 23). From

the condition Q = 0, we have = n= n7T/2 - a/2 (n = 0,1,2,3) so that

P = hr2cos n7T. Our contour must correspond to the Q = 0 lines for n = 1,3.

The situation is shown in Figure 3-1 where the regions of negative P are

shaded and the direction of the integration is indicated by the arrows.

The P = 0 lines bisect the angles between the Q = 0 lines as shown. In

general the contour L" will be curved near the saddle point. The three

term Taylor expansion implies that L" can be approximated by a straight

line of length 2r as shown in Figure 3-2. In fact the two lines must be

tangent at the saddle point. Our integral now has the form

.' e+ e f F(re e4$-

e ' te'A'f [F(re ')+r(re'A)*'" e'rj

00where #l = Tr/2 - a/2. If hr2 is large enough at r0 we can take the

range of integration to be infinite.

If F(s) has the form s where m is a positive integer, we have

(3-1)

e

where we have employed the standard form

>)
0 2 ~h~
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Evidently if the order m is even the solution vanishes. The extension to

polynomials multiplied by a factor s where 0)-1 follows directly. We

can also handle the case of a pole when F(s) = 1/(s-s). Then we have

e W(.,t) I h -kre)- fo7F, + e'rr -v )e d

where e "iP(sP-sc) = v. If we let r2 = u, we can put this integral in

a standard form appearing in a table of Laplace transforms. The final

result is

(3-2) ~ r e Er()

where Erfc is the error function complement defined by

Erf(x) b e 2t=| - e~ dt

The finite integral on the right is the tabulated error function. Notice

there is no restriction on how far the pole is displaced from the saddle

point. The only restriction is that argWII(sct)(sP's C)2e-21211< 7T. If

s = 0 the pole coincides with the saddle point and we have simply

f&-) 2 4.'7r e ke

Although a different approach is employed, the method of van der Waerden

(1951) for handling poles is essentially equivalent to that presented here.
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Just what is meant by saying that F(s) is slowly varying, how to

handle the case of multiple saddle points, the proof that the solutions

are asymptotic and other considerations are given in the more detailed

analysis in the references.

EXTENDED SADDLE POINT METHODS

When we require more than three terms of the Taylor series to

approximate W(s,t) on the segment L", the first order method fails and the

analysis becomes more involved. The case when we truncate the Taylor

series after the third derivative term is called the second order saddle

point method. The standard integrals which approximate our given integral

are extended Airy-Hardy integrals. These are discussed, for example, by

Cerrillo (1950) and tables are given in Cerrillo (1951). This method will

sometimes work when there is a definite curvature in L" at the saddle

point. However if our approximation requires still higher order terms of

the Taylor series, the second order method also fails. In special cases

the solutions for higher order terms have been worked out, but if we

require too many terms of the Taylor series the method becomes unworkable.

In some cases a power series expansion other than the Taylor expansion

will produce faster convergence.

If the segment L" is sharply curved at the saddle point, it is

usually possible to transform the integrand so that the Q = 0 lines become

straight. The price we pay is that W(st) and F(s) may be more complex in

form and the transformed F(s) may be dependent on the parameter t. (For

some applications this obscures the physical interpretation of the



solution.) If in the transformed plane, e can be represented along L"

by the expansion e = cjehjr2 we can then employ the first order

saddle point method. The saddle points for each of the terms of the sum

will be displaced from the saddle point of the original function and we

can speak of these as satellite saddle points. The details and some

examples are given by Wernlein (1957).

A method of extending the range of the saddle point method in certain

cases by the use of partial asymptotic expansions is given by Clemmow (1950)

and an example of the applications is given by Pearson (1953).

LIMITATIONS AND STEEPEST DESCENT PATHS

In order to illustrate the limitations of the saddle point method

as well as to compare it with other methods, we shall evaluate an integral

appearing in the Sommerfield problem. This integral has the form

where a and/oare positive real numbers and up (I1/21, 31T/2>,

arguP'>31T/4. The argument of the Hankel function is defined on the

Riemann sheet B given in Figure D-1. The branch cuts and contour of

integration are shown in Figure -3.

As shown in Appendix A, if O(1-u2)1 ~3 we can approximate the

Hankel function by

q.1
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Then the exponentially varying part of the integrand has the exponent

W(u) = iau + i(1-u2- ln(l-u2 ). If uc is the saddle point then we have

W(U) - 1/(gV)

(3-4) .I~lc,

The saddle points are found from

This can be put in the form of a fourth degree equation

If we make the approximation +/(z+ a2)«41, we can factor this equation

into

Since u = + 1 are branch points they cannot be saddlepoints. The other

roots are

To see which Riemann sheet these points lie on, we can examine WI(u) on

sheet B for small values of u. We have WI(u)zia - iu + u/2 = 0. If

L then u = a/f so that the saddle point on sheet B is

The other root corresponds to a saddle point on sheet A.

When a = 0 we can find the saddle points exactly. The analysis
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shows that there are four saddle points -- one at the origin on sheet B,

one at the origin on sheet A and two more on sheet A at the points

u = + (1 + 1/(41))1. For the case a l 0 the exact analysis shows that

the roots at + 1 in the approximate analysis correspond to two saddle

points which are near these branch points and lie on sheet A.

Consequently we have only one saddle point to consider on sheet B. The

analysis that follows will be simplified if we approximate the saddle

point by uc = a/(/O + a 2) , though this is not a necessary restriction.

Then our saddle point lies on the real axis in the interval (0,+1) so

that it is no problem to deform our contour of integration through the

saddle point.

In order to apply the first order saddle point method we need the

second derivative in the Taylor expansion of W(u). This is

IlrV) + L) 3.

so that

In the notation of the first section argW (uc) = a 2 -7/2. As a glance

at Figure 3-1 shows, our contour crosses the saddle point in the

opposite sense to that indicated by the arrows so that we must prefix a

minus sign to our solution. Then from the standard form for the first

order method with a pole we have the solution

(3-5) I ~-(ir) e~ Frf3e)

/4 V



Now this solution is only valid when the second derivative in the

Taylor expansion is much larger in magnitude than the higher order

derivatives. In order to get a quantitative figure on the range of

validity of our results we first form the derivatives

(/ I-YUL ( I--,q7)

W .. i __ti ____-t

Then

t, /+L

If uc ( this ratio behaves as 1/3uc and if uc approaches +1 this ratio

approaches zero. In other words only as the saddle point approaches the

origin can we use the first order method. As the saddle point approaches

the branch point at +1 the second derivative no longer dominates and we

expect the Q = 0 lines become sharply curved. In the same manner we find

that )W4)/W (/) ~ -a for uc(j and vanishes as uc

approaches +1. This indicates that the second order saddle point method

will not give much improvement. If it were desireable the actual errors

in neglecting the higher order derivatives could be related to the error

in the approximate integral, but this is somewhat tedious and the purpose

here is merely to indicate the limitations of the saddlepoint method.

Analyzing the error by comparing terms of the Taylor series

expansion can be cumbersome as the above sketch indicates. A qualitative

insight as to the errors involved can be obtained by examining the



Q = 0 lines of the function W(u)-W(u ). If we include the logarithm
C

term we must deal with transcendental equations. However if the saddle

point is not close to +1, we can drop the logarithm term without

affecting the analysis very much. Otherwise we could include the

logarithm term in F(s). In any case we shall take the exponent in the

form W(u)-W(uc) = iau +yi(l-u2) - i( +a2)i. The saddle point is

easily found to be uc = a +a2)- = (1 + k2)- where we let/.O/a = k.

We shall also use the abbreviation (1 + k = A in what follows.

Now to obtain the steepest descent lines, substitute u = x + iy in

(3-6) iau *iPi~ +~ P

and solve for Q. After some algebra we obtain the solution

(3-7) y= & X(t(A-L]

The quantity in brackets will be real when (1 + k2) ((A + Q/a)2 as can

be shown by differentiation of the second term in the brackets with

respect to x. When Q = 0 equation 3-7 gives us the steepest descent and

steepest ascent lines which pass through the saddle point. These are

given in Figure 3-4 for k = 4. The dashed lines of that figure indicate

the position of the lines if the branch cuts are moved. If for any reason

we did not want to stay exactly on the Q = 0 line during integration, then

equation 3-7 will tell us how far off the Q = 0 line we can stray and still

keep Q within, say, ten degrees of its initial zero value.

If we let (Ax-l)/k = 7then the steepest descent line can be put in



the parametric form

(3-8) X = 7 y = .

Several steepest descent lines for different values of k are given in

Figures 3-5 and 3-6. In the former the slopes and points used for the

rapid construction of these curves are given for any k.

Whether we integrate along a Q = 0 line or some other Q = constant

line, we shall want to know how far out the integration must be carried

until there is negligible contribution to the integral. This information

is given by the level lines for P = -D where D is a positive constant.

As we follow a Q line away from the saddle point, we cross P lines with

consecutively larger values of D. Beyond D = 4 or 5 the contribution

to our integral is negligible since the factor e of the integrand will

have a strong attenuating effect. By an analysis similar to that for

the Q lines, we obtain from 3-6 the equation of the level lines for P:

(3-9) ( = .

Setting P = -D gives us the desired level lines. The level lines for

D = 4 with a = 0 ando = 8 is given in Figure 3-7. The case D = 4 with

a = 16 andO 4= 64 is given in Figure 3-8.

From the figures, the increase of the curvature of the steepest

descent lines as the saddle point approaches the branch point at +1 is

quite apparent. The segment of the Q = 0 line which can be approximated

by the straight line of the first order method rapidly decreases in

length. For instance when the saddle point is at the origin and
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consequently a = 0, we see from Figure 3-6 that the approximation breaks

down when Iu = ro In the notation of the first section of this

chapter, if we require hr 2 ' 4 so that the exponential factor will
0

dominate, then h > 4. Recalling that h = (W.Luc))J /0/2 we find that

/> 8 in order to apply the first order saddle point method. As

expected, the analysis with the higher order derivatives of the Taylor

expansion gives approximately the same answer.

QUADRATURE SADDLE POINT METHOD

The preceding methods have several disadvantages. For one thing the

solutions are asymptotic which can cause difficulty if they must be

differentiated. Also it may not be possible to represent W(st) by only

a few terms of the Taylor expansion. Since along a Q = 0 line of W(st)

the integrand does not oscillate, it may be possible to approximate the

integral by some quadrature rule such as Simpson's rule. In this way the

integration can be carried out on the actual Q = 0 line of W(st) no

matter how sharp the curvature at the saddle point. Also the actual form

of W(st) is used. If the quadrature rule is suitably chosen, it can be

shown that the solution will always be convergent (see Lanczos, p. 402).

Although this is a method of numerical analysis, the solution is analytic

in that the parameters are left in completely general form. When F(s) has

a polynomial representationonly a few terms are needed. Unfortunately if

F(s) has a pole near the saddle point, this method converges slowly.

However by suitably combining this method with the first order saddle

point method this situation also can be handled.

For the type of integral appearing in the Sommerfeld problem the



Gaussian quadrature is probably the best suited and will be illustrated

in the following example.

We shall evaluate the integral of equation 3-3 by the use of a

modified Hermite-Gauss quadrature and then compare the answer to that

obtained by the first order saddle point method. Since we want to

integrate along the steepest descent or Q = 0 line, we shall use the

relations of 3-8 to express the integral in terms of the variable 7.

From 3-8 we can obtain the following relations valid on the Q = 0 line.

L) 7t 7 .2-7 -K
dr A 4 elT T L| -

(3-10)1
d7 A A(3t)

/

Upon substituting these relations into 3-3 and employing the asymptotic

form of the Hankel function, we obtain the integral

(3-11) LI-
We shall take o 1 and up = -.40 which choice will overlap the range in

which the first order saddle point method is valid. A glance at Figure 3-6

for the steepest descent line with k = d or a = 0 shows that we pass

fairly near the pole up. Nevertheless a three term quadrature formula



will give sufficient accuracy. If the path were much closer to the pole

it would be better to subtract off from the integrand the effect of the

pole, handling this by the first order method, and treat the balance by

the quadrature method. In our present case, in terms of the quadrature

formula our integral 3-11 becomes

+/

Are 4-V~ ' (ILr 3dE a- )y (7)1j
(3-13) /.7/ (/ + 7;-2

where '

and are weight factors. Both 1 and lv depend on/ .

This formula is obtained from the results of Chapter 8 of Hildebrand.

In that chapter the following Hermite-Gauss formula is given for an

integral of the types

(3-14) e (5)$5

For a three term formula the weight factors and the abscissas si have

the values

.29f -Y/.. a4 22'7.

The integral we have has the form

If =en ti itr a

If we let , 7*(f7')= s2 in this integral we obtain
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'

Comparison with 3-14 shows that we must identify gf .r J A' with f(s)

so that the quadrature formula for M is

7 .

where - and 7 -(I f I

The nature of these formulas is such that if there are m terms in the

formula, then the formula is exact for any polynomial f(s) of degree less

than 2m.

In some situations it may be preferable to use the Gaussian

quadrature formula with equal weights. Then we would have in place

of 3-13,

where the weights/-i*and the 7can be obtained from tables given in part

by Hildebrand, for instance. In this formula the complete form of the

integrand including the exponential factor is preserved. However the

convergence is somewhat slower than the Hermite-Gauss formula if the

exponential varies rapidly.

Upon inserting the value0 = 500 in the right side of 3-13 we obtain
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I 22 +i.20

In Figure 3-9 the variation of the real and imaginary parts of g(7) along

the path of integration is shown together with the points of interpolation

used in obtaining 3-15. Now the first order saddle point method applied

to 3-3 yields to two significant figures,

which agrees, as expected, with the quadrature method.

For smaller values of/ we can see from Figure 3-9 that the effect

of the pole is greater since our interpolation points are spread out more.

For 4 = 20 the three term formula is not accurate enough, but calculations

which are similar to the foregoing show that a five term formula gives

satisfactory results. For still smaller values of/ or for a pole very

near the saddle pointit is better to subtract off the effect of the pole

before applying the quadrature formula. For /a = 20, say, as we increase

a, the effect of the pole is diminished since the pole to saddle point

distance increases. Therefore our five term formula fort = 20 and

a = 0 will actually improve as a becomes larger. It turns out that a

five or seven term quadrature formula, combined when necessary with the

ordinary saddle point method, will at least handle the whole region for

which we can use the asymptotic form of the Hankel function. In fact

the method is not limited to this region. In the next chapter, for the

Sommerfeld dipole radiation problem, the region of validity of the
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quadrature saddle point method is compared graphically with that of the

ordinary saddle point method.

When a pole lies very near the saddle point, the quadrature saddle

point method converges slowly, but this can remedied by subtracting

off the effect of the pole and handling this term by the ordinary saddle

point method. It is not always necessary to combine the first order

saddle point method with the quadrature method. Sometimes it is

sufficient to indent the contour of integration near the pole and still

apply the quadrature method. The Q line analysis given earlier in this

chapter will indicate when this is possible.

SUMMARY

In this chapter we have shown the relationship between the various

modifications of the (asymptotic) saddle point methods. We have also

shown how the saddle point methods can be extended to handle the case

of broad saddles and curved steepest descent paths by employing

quadrature methods. This extension was described as the quadrature

saddle point method.

The advantage of the quadrature saddle point method is that it will

work where the first order saddle point method breaks down. (In the

example of the previous section this occured when the saddle point

approached the branch point at +1). Furthermore if there is a pole

near the saddle point, the first order method requires a table of the

error function or error function complement for complex arguments. If

the arguments are not multiples of 450 then considerable labor is



involved, as complete tables are not available (see Rosser). The

quadrature method requires no special functions other than those given in

the integrand.

The relation between the quadrature saddle point method and some

other methods given in the literature will be brought out in the next

chapter for the solutions to the Sommerfeld dipole radiation problem.

The relationship between the cliff method and the quadrature method

applied to steepest descent paths was illustrated in the numerical

example of the previous chapter. As shown in Appendix E, the cliff

method compared very favorably with the quadrature methods. A

quantitative appraisal of the situation can only be made by comparing

error analyses. While such analyses are available for the quadrature

methods, no equivalent analysis has been developed for the cliff

methods. As explained in the previous chapter, one of the principal

advantages of the cliff method is that it can often be applied to

integrals for which it is difficult to develop a good quadrature.



Chapter IV

APPLICATION TO THE SOMMERFELD PROBLEM

Since the object in developing the methods of approximate inte-

gration is to apply them to physical problems, the present chapter is

included to illustrate the various additional steps which are necessary.

For instance, before we can apply the integration techniques, we must

choose the proper Riemann sheet for integration. Also certain poles

must be located if contour deformations are involved. These and other

analytical steps will be illustrated in detail for the Sommerfeld dipole

radiation problem. This particular problem was chosen as an illustration

because it has features which appear in a number of geophysical problems

concerned with wave propagation. Furthermore it is a problem that has.

been thoroughly analyzed in the literature.

INTRODUCTION

In 1909 Arnold Sommerfeld published a solution to the problem of

finding the electromagnetic field due to an electric or magnetic dipole

element located above a flat earth of finite conductivity. Certain

parts of his solution, however, were controversial, particularly his

expression for a surface wave. In 1919 H. Weyl obtained an independent

solution which did not agree with Sommerfeld's solution. Since that time

a host of papers, both theoretical and experimental, have appeared on

this subject which is certainly one of the most thoroughly considered

aspects of radio wave propagation. No attempt at a review of this work

will be made here, as there exist several historical accounts (see, for

instance, the final chapter of Electromagnetic Theory by J. A. Stratton).

74
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A number of explanations have been published for the discrepancy

between Sommerfeld's 1909 solution and the independent solutions obtained

by H. Weyl in 1919, A. Sommerfeld in 1926, Balth. van der Pol and K. F.

Niessen in 1930 and W. H. Wise in 1931. These latter solutions all agree

and have been verified experimentally, whereas the 1909 solution does

not agree with experiment. The correct reason for this discrepancy was

given by K. F. Niessen in 1937. In order to understand the situation

fully, I went carefully through the mathematics of the above papers.

As the results are of interest, I will mention them briefly.

First, no one bothers to mention that in the 1909 paper by

Sommerfeld there is a mistake in the form of the boundary conditions in

equation 5 of his paper. This propagates through to his final answers

which can be corrected by multiplying them by a factor of 2. It is

probably one of those errors which enter when a manuscript is revamped

for publication. Otherwise Sommerfeld's 1909 general solution given in

equation 47 is entirely correct and agrees with his 1926 solutioni The

discrepancy which has caused so much comment is due to an error in sign

which appears when the general solution is specialized by replacing a

parameter a by h. From the definition given by Sommerfeld in equation

41, it is clear that a -p whereas Sommerfeld used a =7. Wherever

/0 appears in Sommerfeld's paper, the correct forms can be obtained by

replacing it by -,p.

As will be shown here, the contour chosen by Sommerfeld was such that

he had to add the contribution of a pole to his branch cut integral.

Superficially, we can correct Sommerfeld's solution (in terms of? ) by
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dropping the pole contribution, as this gives the same result as changing

the sign of /o . This coincidence has led some authors to claim the pole

does not exist. However since we can show the pole must be included, the

proper way to correct Sommerfeld's solution (in terms of/o ) is to make

the above mentioned change of sign.

FORMAL SOLUTION

First we shall set up the dipole radiation problem in the form in

which it was originally solved. Cylindrical coordinates will be employed

with the z axis perpendicular to the air-earth interface which is at z=0.

For simplicity, the dipole element is assumed to be at the origin. Only

the case of a vertical electric dipole will be considered as the other

cases can be worked out in a similar manner. The current in the dipole

element then flows in the z direction and is assumed to vary sinusoidally

with time. The oropagation constants of the air and earth are, respectively

k = k4 andk = to+ Z7 where) 60 og are the permea-

bility, permittivity and conductivity of the earth (in MKS units) while o

is the angular frequency of the source.

From Maxwell's equations we obtain the Helmholtz equation which the

components of the field vectors must satisfy. Following Sommerfeld we

shall use the Hertz vector 1 which in this problem has only a z compon-

ent and is related to the other field vectors by E = grad divff + k2

and I = (-ik2/c// )curlt. The usual method of solution is to solve the

Helmholtz equation div gradl + k2 1l= 0 by separation of variables in

cylindrical coordinates and then to apply the boundary conditions. These

boundary conditions, obtained from the continuity of Er and H. at z = 0,



are.l= n21 , and J 2 =cL/JZ where n2 = k /k . is the Hertz

vector for the air and I, is the Hertz vector for the earth. Finally

the radiation condition is applied to the solution. When these steps are

carried out we obtain the solutions

oA(4-1) = 2cT. (e (r W)dw Z> W0

0 /N
where C = -ICfdz/4M , I = current in dipole element dz,

N = (n2,.w2). + n2(l.w2)i . The factor C will be suppressed in what follows.

Actually Sommerfeld used the variable of integration X = kow, but the

above form of the solution is more convenient for this discussion.

RIEMANN SURFACE

The above solution is not yet completely specified since the inte-

grands contain the multivalued functions (1-w2)i and (n2.w2)i . At every

point of the w plane (except singular points) each function has two

values differing only in sign. The four combinations of these signs

correspond to the four sheets of the Riemann surface which renders the

integrand single valued. On each sheet the integrand has a different

value, but as we shall see, only one sheet has physical meaning.

When the double valued functions are considered separately, they

are defined on Riemann surfaces of two sheets. These sheets are defined

in Figure D-1 . The four combinations of sheet A or B of (1-w2) and

sheet A or B of (n2-w2 )} correspond to the four sheets of the Riemann
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surface of the integrand.

It is apparent that the integral for flconverges only for sheet B

of (1-w2 )I, while that for 3 converges only for sheet B of (n2_w2)-T

Since the two integrals are connected by the boundary conditions, they

must converge together. Consequently the integral for must be eval-

uated on a path which lies on the sheet of the Riemann surface of the

integrand corresponding to the choice of sheet B for both multivalued

functions. The integrals are now single valued on this chosen sheet

which is the only sheet having physical meaning.

LOCATION OF THE POLE

The integrands contain pole singularities at w = + n(1 + n2)-A

The important point is that these poles do not lie on all four sheets

of the Riemann surface. In fact we can show that for the branch cuts

in the position shown in Figure 4-1, there is no pole on the sheet on

which the integration must be carried out. From Appendix B we see that

Inf> 1 so that the pole can only lie within the unit circle. Also the

branch points at +n must lie outside the unit circle in the angular

sectors 0 <arg w 4 7T/4 and 7T,4arg w <37T/4 .

Next let (1-w2) = Ar + iA., (n2_w2)i = Br + iBi and n = x + iy.

Then we have for the denominator in 4-1, N = xAr-yAi+Br+i(xAi+yAr+Bj).
Now a glance at the signature diagrams in Figure D-1 will show that Ar

and Br are always positive within the unit circle. In the first and

third quadrants Ai is negative within the unit circle. Since x and y

are positive numbers, it follows that the real part of the denominator
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cannot vanish in the first and third quadrants within the unit circle.

In the second and fourth quadrants A and B are positive so that the

imaginary part of the denominator cannot vanish here, and the proof is

completed.

We have now shown that if the branch cutting for the integrands of

4-1 and 4-2 is chosen as in Figure 4-1, then no poles appear on the sheet

on which we must integrate. By the same type of analysis we can show

that for the branch cutting given in Figure 4-2, a pole does appear on

the sheet on which we integrate. This pole lies within the unit circle as

indicated in Figure 4-2. Now as demonstrated by Sommerfeld, the real

axis integrals of 4-1 and 4-2 can be replaced by the following integrals

(4-3) L

2 L fAefZnj~~~~~/Z
where the contour L is indicated in Figure 4-1. The contour L can now

be deformed onto the two branch cuts as shown in Figure 4-1. Alter-

natively, if we use the branch cutting of Figure 4-2, the contour L

deforms onto the two branch cuts plus a loop around the pole. This latter

choice is the one used by Sommerfeld (with h=z= ). Thus we see that

he was correct in including a pole contribution. Sommerfeld could have

taken the branch cuts in vertical position in which case he would have

had no pole contribution, though of course the solution must be the same.

It is tempting to relate the pole residue to a surface wave since the

residue has the proper form for such a wave. However a proper (physically



significant) surface wave should appear in the far field solution. As

several authors have shown (see Kay, for instance) this is not the case.

This can be seen from the saddle point method solution. If we consider

a layered media--in contrast to a simple half space--then surface waves,

or guided waves, do appear in the far field solution and can be related

to poles of the integrand (see Kay and Lo). The important point is

that for the half space problem the contribution from the pole does not

have special physical significance.

APPROXIMATE METHODS OF SOLUTION

Since we are interested in applications, it will be interesting to

consider all of the integrals appearing in the Sommerfeld problem with

respect to the various methods of approximate integration. We shall

limit ourselves at first to the solutions for the field above the earth.

The derivations of the integral solutions are given, for instance, by

Sommerfeld and will not be repeated here. For compactness, let kor =f

and ko(h+z) = a . C was defined earlier in this chapter.

Vertical Dipole

The Hertz vector component is

where =f'

Al 4~t~t2M (~wQ,
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w> 5 ~ dw t~ - 0  ~ w di

A- f fUC)(i 2W

The contour Lw is given in Figure 4-1 while L is given in Figure 4-3.

The integrals in the u plane were obtained by the transformation

u = (l-w2)i as explained in Appendix D. In the u plane the contour Lu

surrounds only one branch cut while in the w plane I must surround two

branch cuts. For some applications the representation in the u plane is

more convenient because the algebraic factor of the integrand is simp-

lified in that it contains only one double valued function. In the u

plane there is no problem in locating the poleas is described in

Appendix B.

When a = 0, the above integrals can be solved in very compact form

for the complete range of the parameters /. and n by expanding the

algebraic factors in ascending or descending powers of u and integrating

term by term. When/o = 0, the integrals are also not hard to handle.

When ?1 0 and a + 0, solutions can be obtained by the saddle point

method of Chapter III. This is the asymptotic solution obtained by

Sommerfeld and is valid only for a restricted range of the parameter

values. Either the cliff method or quadrature saddle point method

described in Chapter III for the integral A' enables us to extend the

solutions to a much greater range of the parameter values.

In what follows we shall only speak of the quadrature saddle point

method,although the remarks apply to the cliff method as well. The



difference between the quadrature saddle point method and the ordinary

saddle point method of solution is illustrated in Figures 4-4 and 4-5.

The region indicated in Figure 4-4 where both the saddle point method and

the quadrature method are difficult to apply can be handled by expanding

the integrand of the original real axis integral in polynomials or

exponentials and integrating term by term with the Bessel function as

a weight factor.

Horizontal Dipole

In this case the Hertz vector has both a vertical and a horizontal

component. The solution will not be given in detail here as we are only

interested in the type of integrals appearing. The integrals for the

vertical component are similar to those for the vertical dipole if we

replace J0ow) by J I w)w . No new problems ariseso that the solutions

can be carried out in the same manner as those for the vertical dipole.

The integrals for the horizontal component are simpler analytically in

that the integrands do not possess poles in the finite plane. For a = 0

these integrals can be evaluated exactly. For a#0 either the saddle

point method or the quadrature method can be used. The latter works

especially well because there is no pole near the saddle point. The

difference in the range of parameter values these two methods can handle

is the same as for the vertical dipole and is given in Figures 4-4 and 4-5.

The solution for the fields in the earth is more difficult than

that for the field s in the air because the exponentially varying factors

of the integrands are more complicated. The ordinary saddle point method

can still be applied. However if we try to extend our solution by using
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the quadrature saddle point method we run into trouble, because we

have to solve a general quartic equation to find the analytic expressions

for the steepest descent lines. Though this is not impossible, it is a

laborious operation.

In other types of problems we may have to solve transcendental

or very high order equations to obtain the steepest descent lines. This

is a serious limitation on the quadrature saddle point method. In some

cases we can solve for the asymptotes to the steepest descent lines,and

this may be sufficient. In general we need to know the location of the

steepest descent lines more accurately to apply the quadrature saddle

point method. If the problem is being solved on a modern high speed

computer, it is possible to overcome these limitations by programming

the computer to find the steepest descent lines and then having it apply

the quadrature saddle point method. These remarks apply also to the

cliff method on steepest descent paths. In some cases the cliff method

will be easier to apply than the quadrature method.

It will be enlightening to compare our (topological)methods with

published solutions to the Sommerfeld problem which are intended to

extend the range of validity beyond that of the saddle point method.

None that I have seen employ quadrature or cliff methods along steepest

descent paths. Instead the treatment is usually non-topological and

consists in various series developments.

Two such treatments are those given by K. Norton of the Federal

Communications Commission and C. Burrows of Bell Laboratories. Norton's

solutions are valid only for (a2 0)$' )> - 20 or for a 4 so that his



results do not overlap the whole region covered by the quadrature or cliff

methods. Furthermore his solution requires the evaluation of an untabu-

lated function. As he admits, the method used by him does not permit a

reliable error estimate. The quadrature methods, on the other hand, can

yield an error estimate. Burrows solution, for(h + z)441, requires

three different series developments for as many ranges of the distance r

along the surface. A glance at his expression for the field intensity

of a vertical dipole ( page 63 of his paper) shows how involved the

method becomes. In the quadrature or cliff method approach we require

only one primary form for the solution--in fact we can write down the

general form of the solution directly from the integrand.

In contrast to the methods of these papers, the quadrature saddle

point method or cliff method on steepest descent paths is a general

technique and applies to a large class of integrals.



CONCLUSIONS

The class of integrals which can be conveniently handled by

approximate integration methods has been substantially increased by

the cliff methods developed in this thesis. It has been shown that

both the cliff and and quadrature methods of integration can be used to

remove the limitations of ordinary saddle point methods. This has been

accomplished by exploiting the inherent power of tpological methods.

The cliff method and extended cliff method offer a convenient means

of evaluating many branch cut integrals which do not readily yield to

non-topological methods such as Gaussian quadrature. As shown by the

examples of Appendix E, the accuracy of the cliff methods compares fav-

orably with that of standard methods, although a tight error analysis

is still lacking.

Both the cliff method and quadrature methods can be applied to

integrands with broad saddles and curved steepest descent paths--cases

for which the ordinary saddle point methods break down. The solutions

are convergent and reasonably compact.

As shown in Appendix G, the cliff methods can be successfully

applied to singular integral equations when these are impractical to

solve by standard techniques.

Finally it has been shown that the general cliff method needs

further development before it can be a useful integration tool.
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SUGGESTIONS FOR FUTURE WORK

The practicality of approximate integration techniques depends on

the labor involved and the errors committed. The methods presented

in this thesis need to be studied more extensively along these lines--

both from the theoretical standpoint and from working actual problems.

Specifically, the following points should be investigated:

Cliff and Extended Cliff Methods. A tight error analysis is needed

in order to compare these methods with quadrature methods. Also the

manner in which the distribution function is approximated needs to be

carefully studied in order to minimize the errors. The application

of the cliff methods to singular integral equations needs further

development. Here again a comparison with techniques such as Gaussian

quadrature is needed to determine which techniques, for a given tolerance,

require less labor for a given problem.

Saddle Point Methods. The improvements possible in the first and

higher order saddle point methods by using expansions for W(st) other

than the Taylor series need more consideration. The extension of the

quadrature saddle point method and cliff methods to problems where the

steepest descent paths cannot be found explicitly needs development.

In particular, a program for a high speed computer could be developed

to determine the steepest descent paths. This would not only extend

the usefulness of these methods but has important applications to higher

order saddle point methods. Specific problems that could be handled are



seismic and electromagnetic field solutions for dipole or multipole

sources above or in multilayered media and wave guide problems.

General Cliff Method. Means of overcoming the limitations due to

the summations required in the exponents should be investigated. Some

work could be done on eliminating the sensitivity of the approximations

in the exponents to the integration around the essential singularities.

For instance an expansion which appropriately considers the oscillations

around the essential singularities would be needed. Unpublished work

by Dr. Cerrillo indicates this could be done. The possibility of

handling the artificial branch cut integrals described in the section on

General Cliff Method of Chapter I needs further pursuit along the lines

suggested in that section.

Miscellaneous. To say that an approximation is uniformly convergent

does not necessarily imply that its derivative will be even a reasonable

approximation to the derivative of the function being approximated. This

problem is well known for polynomial approximations. As the cliff methods

are based on topological considerations, the possibility that they give

better approximations than non-topological methods from the standpoint of

differentiation should be worth investigating. This is important when we

have an approximation to a potential and wish to obtain field solutions.

From a broader viewpoint, a study of the underlying relationships between

approximate methods of solving a problem in integral form and approximate

methods for dealing with the problem in differential or other form should

prove fruitful.



Appendix A

HANKEL FUNCTIONS

This is a brief summary of some of the important properties of the

Hankel functions used in this thesis. We are primarily concerned with

functions of integral order since the functions of half integral order can

in terms of elementary functions.

The Bessel functions (of the first kind) can be expressed in terms

of Hankel functions:

(A-1) J n(z) = H (z) + H (z) (n = 0,1 . . .nn n
2

This can be reduced to Hankel functions of the first kind by the relation

1) zn+l 0) r(A-2) Hnz) = (-1)nH (e z)

When we apply the asymptotic formulas to H (1-u2)}, it will be

necessary to relate the phase of u to that of z = (1-u2)j. In Appendix D

we define the Riemann sheets A and B for (1-u2)i. We shall now relate

these sheets and the branch cut positions to the phase of z. A constant

factor in front of (1-u2)j in the Hankel function argument will not

essentially alter the analysis. To agree with Watson (1952) we shall

take the principal value of z to be -Tr 4.arg z 4+Tr.

First consider how the Riemann surface of (1-u2)i maps onto the

z plane. Sheet B is shown in Figure A-1 for straight line branch cuts.



Figure A-2 shows how sheet B maps onto the shaded region of the z plane

which is doubly covered. The unshaded portion of the z plane is the

region into which sheet A maps. For our purposes we can consider the

branch cut angle to be i/2)/f>/O. Then points in the shaded region

always lie within r >avryZ)-r/2.

From these results we have the convention,

(A-3) (points on sheet A) = e-i7(points on sheet B)

Also (1-u2)i(on a1 bank of branch cut) = e-IT(lu2)$(on a3 bank of cut)

so that

(A-4) H (1-u2)k (on a1 bank) = (-1)n+lH( (l-u2)i (on a bank)n 3

where (1-u2)i is taken on sheet B.

For large value of z (and hence u) we have Schlifli's asymptotic

formula with an upper bound on the error. The general form given by

Watson becomes for order zerot

* ,0 ;Z) rp! Oi2)

The equality sign holds if 3Tr/2 >arg z -T/2 so that this result is

valid on sheet B for z = (1-u2)i. Also 19,1j or Isec arg zI according

as Im z is positive or negative. For p = 1 we have for the expression in

the brackets (1 + 6 , so that if we neglect the second term, the

error for Iz)> 1, is less than about 17%. From this we see that the

usual asymptotic expression obtained by setting p = 0 in A-5 is valid in

a rough way for jzI> 1.



Appendix B

LOCATION OF BRANCH POINTS AND POLE

The complex index of refraction n is defined by

-0 60 ( -

where k and k1 are the propagation constants in the air and earth, C,

and G, are the permittivity in the air and in the earth, o is the

conductivity of the earth and W is the angular frequency, all in MKS

units.

From the possible values of these physical parameters we can locate

the positions of the branch points of (n2.w2)i and (n2-l+u2)i which are,
resecivey~=+and=4 ( 2  A

respectively, w = + n and u = + i(n -1) . Also we can find the

permissible region for the pole of one of the integrals, which is at

-1/(n2 , 1)+ . After some algebra and using the fact that C, ;?,6, and

77/6,c>,O we obtain the results in Figures B-1, B-2, and B-3.



Appendix C

BASIC THEOREMS

A basic theorem used by Aronszajn in his work on the decomposition

of analytic functions will be repeated here, as it justifies some of the

developments in this thesis. Essentially this theorem is a restatement

of a theorem due to Runge.

RUNGE'S THEOREM "Let B be the union of a finite number of open connected

domains which together contain the entire singular set of an analytic

function f(z). If R(z) is a rational function, then the difference

f(z) - R(z) can be made arbitrarily small in the complement of the

closure of B. The poles of R(z) may be chosen completely arbitrarily

within B as long as there is at least one in each of the domains

composing B."

Another form of the theorem ist

"If G is the region on which an analytic function f(z) is defined and if

F is the set disjoint with G, then there is a rational function R(z) which

in G is arbitrarily less than f(z) and on F is arbitrarily less than zero.

Moreover if Rn(z) is a series of rational functions they converge uniformly

to the limit." It is assumed that no essentially singular points are on

the boundary of G in this latter form of the theorem.

Several theorems which form a rigorous basis for some of the

developments on cliff methods of integration are presented here. They

are given without proof since they are either proven by Behnke and Sommer



or can be derived from theorems by the same authors. The theorems are

not the most general but will serve for many purposes. The

symbol {fn(z) will mean *the sequence of functions f n(z)". The path

of integration L is assumed to be simple, closed and rectifiable. Uniform

convergence implies that the limit is bounded.

THEOREM C-1 If fn(z)l are continuous and uniformly convergent for

z G L and if L is finite, then

J) RZ ~i

THEOREM C-2 If L is the path from a to vo , and if on each bounded

segment of L, fn(z)j are continuous and uniformly convergent and if

further

is uniformly convergent on the closed path L, then

5 4.Zd

THEOREM C-3 The conditions of Theorem C-2 are satisfied if

fn (z) = F(z)hn(z) (n = 1,2,...) where F(z) on each bounded closed

segment of L is continuous,

exists and Ihn(z) are continuous and uniformly convergent for ze L.

THEOREM C-4 Let jfn(z)l satisfy the first conditions of Theorem C-2



I ) uniformly
and let f n(z)dz exist. Then and only then pn(z) are/convergent

on the closed path L if for every e an n and a z exist such that for
0 o

all n / n and all z e f

1 (Z ) 21 < 6
THEOREM C-5 If {fn(z)I is continuous and uniformly convergent and

f 9 [fn(z)J( and g(limf(z)) are continuous, then g [fn(z)j is

uniformly convergent and g(limfn (z)) = limg(f n(z)), for finite z.

This last theorem enables us to apply the preceding theorems to the

type of approximations used in the general cliff method.



Appendix D

RIEMANN SURFACES

The type of integral considered in this thesis contains multivalued

functions. In order to employ certain analytic tools, these functions

are rendered single valued by defining them on a Riemann surface. This

surface in turn is cut up into separate sheets by appropriate branch

cuts. It is important to know the analytic structure of the functions

on these sheets for the following reasons: only certain sheets corre-

spond to the physical problem at hand, integrals do not converge on every

sheet, contour deformation requires the knowledge of which sheets contain

poles and the behaviour of the function as a branch cut is crossed. It

is assumed the reader is familiar with the concept and terminology of

Riemann surfaces as described, for instance, by Courant (1925), Nehari

(1952) or Ahlfors (1953).

DOUBLE VALUED FUNCTIONS

The Riemann surface of a double valued function will have two

sheets which correspond to the two branches of the function. To be

specific, consider the function (1-w2)i which has branch points at w = +1.

The two sheets and consequently the two branches of this function can be

uniquely characterized by specifying the branch cutting and the sign of the

Re(1-w2 ) at the origin. We shall define sheet A to be the sheet for

which Re(1-w ) is negative at the origin. Then sheet B will correspond

97



to the branch having Re(l-w2)} positive at the origin. It follows

from a property of analytic functions, that defining sheets A and B

in the above manner automatically determines the complete sign distribu-

tion of the real and imaginary parts of (1-w2 ) on these sheets.

These sign distributions or signatures are given in Figure D-1 for

sheet B. The zero lines of the real and imaginary parts are indicated by

circles while the solid lines are branch cuts. It is only necessary to

reverse all the signs in these diagrams to obtain the signature for

sheet A.

In order to see how these signature diagrams are developed, consider

P + iQ = (1-w 2) where P and Q are the real and imaginary parts of this

function. If we let w = he then we have P + iQ = (I icosig -hsin2f .

In order to find the zeros of P and Q set sin 2y = 0. Then P + iQ =

for f = 0 or 7T and P + iQ = (I-tr)for f' = /2 or 37r/2. The zeros follow

directly.

Having determined the zero lines (which always terminate in branch

points in our case) and chosen the position of the branch cuts, we now can

determine the signature by studying the signs of the real and imaginary

parts of the function in the vicinity of a branch point while making a

complete circuit around the branch point. The resuIts; are shown in

in Figure D-1.

In the case of (n 1 -WLlet n = pe and w = he . Then in P + iQ

cr set pf fn2S-r'5i/2f = 0 to obtain the

zeros of P and Q. The solutions of this last equation are hyperbolas

with the real and imaginary axes as asymptotes. Then on these hyperbolas



P + iQ =(p 020-fP i2OCt2fso that P = 0 when sin 2(f-P )/sin 2f (0

and Q = 0 when sin 2(f- 0)/sin 2f >0. If we choose Re(n2_w2)i to be

negative at the origin on sheet A of this function, the complete

signature follows as shown in Figure D-2. The signatures for (n2.ilw2)i
a

and(/-w)given in Figures D-3 and D-4 were developed in the same manner.

For the applications in this thesis the parameter n of the signature

diagrams has the meaning of a complex index of refraction. Because n can

take on only certain physically realizable values, the branch points in

these diagrams are restricted to certain regions which are determined in

Appendix B. For convenience the positions of the branch points given

in the signature diagrams are compatible with these requirements.

INTEGRAL TRANSFORMATIONS

Some of the integrals encountered in wave propagation problems have

the form

00

,a . -60J

where g is itself a single valued analytic function of its arguments and

is not of exponential order for large w. Since the integrand contains

two double valued functions, its Riemann surface will have four sheets.

In general the integral I will have four different values depending on

which sheet is used for the integration. In practice the physical

conditions of the wave propagation problem will dictate which of the four

sheets over the w plane is the appropriate one.

For certain applications, the analytic form of D-2 will be
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simplified by applying the transformation u = (1-w2)$. Then we have

(D-3) 1) .1p~y(-y (U I
L

The integrand now has a four sheeted Riemann surface over the u plane.

The original contour on one of the sheets over the w plane is mapped by

this conformal transformation onto each of the four sheets over the u

plane. However the same physical considerations which singled out one of

sheets over the w plane will also single out the appropriate sheet over

the u plane.

If the original contour over the w plane is a-s shown in Figure D-5

then the conformal image of this contour will have the positions shown in

Figure D-6. If we choose a to be a positive number in the integral of

D-2, then only the upper contour designated by L will lead to convergent

integrals.

One further transformation will prove useful. We shall assume that

the integrand of D-2 has the same value on both sheets of (1-u2)+ and

replace the Bessel function by the relation given in equation A-1 of

Appendix A. The contour L can be deformed into the position shown by the

dotted line in Figure D-6. The integral I can now be written as the sum

of two integrals along the left bank the cut from the branch point +1 a

(D-3) e~ - V iili (b~~~L~uL j C 0  /~ ,-&i via

From Appendix A we see that the second integral in D-3 can be

replaced by an integral, on the right bank of the cut, with a Hankel function

of the first kind in its integrand. Since the integrals on the left and
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right banks of this cut then have the same integrands, it is easy to

show that the integral of D-3 and consequently that of D-1 is equivalent

to the following intergral taken on the lancet contour indicated:

(D-4)

If

would h

fl

we had performed the contour deformations in the w plane, we

ave the less compact form:

1,WLI

I r .kt

(D-5)
LCA (--W~t r~

2.

th

which is valid only if the integrand of D-1 is an odd function of w.



Appendix E

EXAMPLES

CLIFF METHOD

We shall evaluate the integral representation of the Bessel function

J (z),

by the cliff method. As mentioned in Chapter I it is simplest to throw

this into a Stieltjes form rather than expand the double valued function

in a rational function with poles inside a lancet contour. We then have

where (t) = 7T/2 - sin 1/t is given in Figure E-1. The integration

only needs to be carried out to tN due to the damping effect of the expo-

nential. We determine tN by z(t, - 1/tN) = 4 or tN = 2/z + (1 +

The next step is to approximate r(t) by a staircase function Pn(t)

as shown in Figure E-1 by the solid line approximation. For convenience

we shall take the jumps Jq to be of equal size. (We could take the

abscissas t to be equally spaced instead). If we use this form ofpn(t)

the error will be quite large. We obtain a great improvement if we shift

the graph of en(t) down one half jump to the position indicated by the

dotted line in Figure E-1. Then the errors tend to cancel.

102
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All the jumps are the same size except the two end jumps J and JN which

are half size.

We have for the above spacing, J = f (tN)/N (q ' 0,N) and

J0 = JN = '(tN)/2N . From the figure we see that the equation for the

abscissas t9 should be P (tq) = qf(tN)/N so that ts =/'CO%)V17-

One word of caution here is that if a Stieltjes integral has the

range of integration [a,b] , then the staircase distribution function

Fn(t) cannot have jumps at both t = a and b . This follows directly

from the properties of the integral. In the present case, howeverwe

can consider the range of integration to go beyond t = tN so that we can

have jumps at both to and tN * A similar artifice will hold for other

integrals. The particular problem will determine what is the best

procedure. This actually is a very important point if we wish to keep

errors small.

On substituting fn(t) into E-1 we obtain

Z osz + ~tg siz

Vo

where t and J are defined above. In Table E-1 we have plotted the cliff

method approximation to I obtained with N = 4. The accuracy is better

than 1% beyond z::-.T/4.

To show how conservative the error analysis of Chapter I is, we shall

apply equation 1-7 and 1-8 to this problem. Here lub)q(t) - gn

(tN)/2N. We can take 60)-,q&)I C5 24- z5#.2t. 1'. Since

(t) andfn(t) have the same values at the ends of our range of integration,

we have for the error E
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IF I
2-A

For large z, N4 - S- 1*

Since the Bessel function behaves as (2/rZ) for large z, the relative

error is ~ 1/N which is much too conservative.

It is desireable to compare the cliff solution with the standard

methods of handling 1I . Since I has a singular integrand, Simpson's

Rule will not converge very fast. Also II is not in convenient form to

apply a quadrature rule. However if we let -= t - 1 in I we obtain

77- f. )i 7L

which is well suited to Simpson's rule. With a five term Simpson's rule

over the range L0 , Th where =- tN - 1, we obtain the values listed

in Table E-1. Evidently the cliff method gives about the same error

as Simpson's rule (though of course we used a different integral to give

Simpson's rule a good chance). The important point is that there are many

cases--integral equations, for instance--when the cliff method will be

the easiest technique to apply.

We shall next take an example in which there is no exponential

damping term in the integrand. Again, for the Bessel function J (z) we

have the representation
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+1

(E-2) J Ofz Jt 2 s 2 (5

By the cliff method we have

Z Zj 4o>s(ztO) 7

where the jumps are taken equally spaced as shown in Figure E-2. Here

Jq = r/2 # 0N) and J = JN = 7T/4N . We have sin-lt = qwT/2N

or tq = sin q7T/2N . The approximation with N = 2 and 4 is shown in

Table E-1. The accuracy increases very rapidly as we increase N.

These results can be compared with a Chebyshev-Gauss quadrature

for the first integral of E-2. For a four point formula we have

3C 2 05 -I

kso

where we only have two terms because cos zt is an even function. This

formula is equivalent to fitting a seventh degree polynomial to cos zt

over 1-1,+11 . For a ten point formula, which is equivalent to fitting

a nineteenth degree polynomial over f-1,+13 we have

T 2~ 0 o 0

The error E in this last formula is bounded by

/WI < 1je7)ZO

which is conservative. In Table E-1 we show the results for the four point

formula. The five term (ten point) formula breaks down between 4TV and 4.57T

as the error analysis indicates. Only two check points are given. It is
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apparent that the cliff method is not as good as a quadrature rule of

the same number of terms but still is quite accurate for many purposes.

When it is difficulf to apply a quadrature then the cliff method comes

into its own.

EXTENDED CLIFF METHOD

In Figure E-3 the extended cliff method with two straight lines

approximating the distribution function 2sin"it is compared with a four

point Chebyshev-Gauss quadrature for the integral of E-2. The reason

the cliff method stays with the Bessel function longer becomes- clear

if we look at the basic difference between the methods.

Suppose we call (1-t2)i the "weight" and cos zt the "kernel".

Then the quadrature takes care of the weight exactly but approximates

the "kernel" by a polynomial. The cliff method handles the "kernel"

exactly but approximates the weight (actually the integral of -the weight

is approximated). Since polynomials do not follow an oscillatory function

very long, the quadrature rule does not do as well as the cliff method

when z is increased.

GENERAL CLIFF METHOD

Consider the integral representation of the Bessel function Ji(z)

(E-3) e
C

where C is a clockwise contour encircling the real axis cut from -1 to +1.

We take the branch of (1-u2)} for which the real part is positive in the

upper half plane. We already have the rational approximant to (1-u
2 )~
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given in equation 1-3. This is

N

where the distribution function 4?(t) = 2sin t . Thus the jumps are

We shall redefine (t) to be sin- t and employ the definition of

jumps given in Figure E-2. Then

N
(E-4) fitQL~4'~

where Jq =m/2N (q 0,N) and J= JN =r/4N . Also tq =

sin(qlr/2N) . To apply the general cliff method we substitute E-4

into E-3 and collapse C1 onto the essential singularities at u = t .

We then have

Next we can use the method of Appendix F to evaluate these integrals

around the essential singularities by setting t = t + v . If we drop

all terms of o(v) and greater we obtain by the analysis in Appendix F,

NtAt

where t = sin j7r/2N , Jj = 7/2N (i 0,N) and Jo = JN =T/4N . Por

N = 2 we obtain Jl(z)i- z/2 which is the correct first term in the Bessel

function series. For N = 4, we obtain
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which is no improvement although it is good for small z since

cosh x= 1 + x2/2' + ...

If we use the method of Appendix F with only the term in 1/v -- we

drop the constant term together with terms of o(v) and greater--we obtain

27Z ) a /-,) --ii

It is evident from this example that we need a careful analysis of

the effect of terms in the exponent on the integration around the essential

singularities at t. Though this example does not give an optimistic pic-

ture of the practicality of the general cliff method, more research is

needed before definite conclusions are reached.

CLIFF METHOD AND INTEGRAL EQUATIONS

The cliff method can easily be adapted to handle singular integral

equations, particularly those which are "weakly" singular. In this

respect the cliff method is more versatile than Gaussian quadrature

methods since the form of the kernel is not limited to the standard

weighting functions of known orthogonal polynomials. We shall illustrate

the procedure for Abel's integral equation. This equation is

Sf ( )'--X

where 0 Zct(1 and f(y) is a known function. The solution is
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which will enable us to check our approximate solution. We can rewrite

Abel's equation to be

#~) f >yV )I

To apply the cliff method, we put this integral in Stieltjes form

so that we have

#(y>= /_ /'(Yv) AI -(,-v) ]
/ -)

If we take our jumps in the same manner as in Figure E-2, we have

the cliff solution

/- N

/- of V

where J = 1/N (q 0,N) , J0 = 1/2N JN = 1 .1/2N and the abscissas

are found from ( Y '/M ( q = 0,1,...N). We obtain

. Taking a = } and f(y) = y we obtain finally

where we replaced g(yv ) by its approximation g*(yv ). We shall take

N = 2 and 4 to see how accurate the method may be. With N = 2 we find

while for N = 4 we find

These equations must now be solved for g (y). A general way to do this

is to expand the left hand side--in general this will be f(y)--and gy)

in power series and equate coefficients. In this particular case, if we
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expand in powers of yp we obtain for N = 2

*; ) - y

For N = 4 we obtain
zI

+ 7 2 a-/

The exact solution is g(y) = 2yf/Tr so the per cent errors are 15% and

4.7% for N = 2 and 4, respectively.



Appendix F

GENERAL CLIFF METHOD

CONTRIBUTION OF BRANCH CUTS

In the section of Chapter I on the general cliff method it was

stated that in the method of approximation, certain integrals along banks

of the branch cutting in Figure 1-6 could not be neglected. The

following example will demonstrate this for a fairly simple case.

Consider the integral

where L is the lancet contour taken in the counterclockwise sense about

the cut from +1 to +00 on the real axis. If the contour L is collapsed

onto the cut we obtain the finite value I = irexp(-a)/a by straight

forward means.

Suppose we use the general cliff method by employing the rational

function expansion (1-t2)i (l+t)i Rn(t) where the poles and zeros of

Rn(t) lie in the position of the original cut from +1 to +oo . The

function ln 1(l+t)iRn(t) will have a series of branch cuts issuing from

the zeros and poles of R n(t) in a pattern similar to that of Figure 1-6.

If we collapse the contour L onto the singularities of ln (1+t)'Rn(t) ,

it is not hard to show that the contributions from the zeros and poles

of R (t) vanish and that we are left only with the contribution along

the banks of the cuts for ln (l+t)fRn(t)J . This contribution must be

nonvanishing since we know the original integral is finite.

11l1
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INTEGRATION AROUND ESSENTIAL SINGULARITIES WITH BRANCH POINTS

In the section on the general cliff method, we had to evaluate the

contributions from certain branch points of the Hankel function as

shown in equation 1-18. The general form of the terms to be evaluated

is

zjz

where g(z) is slowly varying and R n(z) is the rational function

approximant with poles Ej, or simply z J First we make the linear

transformation z-= z + v so that from the general form for a rational

function we have

( F-2) ( z) +V) +z 0 + ) 

mpj Zj--2mV

( F-3) (Zj+-V ^) +$V+

where A and B are independent of v. As v becomes small, F-3 becomes a

very good approximation to R n(z). If we substitute F-3 into F-1 we obtain

to Ai i+go, /&

( F-4 ) V2Z -tv) jy

If we next assume we can remove the slowly varying factors from the

integrand, we are left with the following integral to evaluate:
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( F-5 ) Y4 e

where we have the restriction 7r> arfe(Z)>7P pr 2 >arf >7

due to the fact that we have employed the asymptotic form of the Hankel

function to obtain 1-18. The integral F-5 can be put in the form of a

known integral by letting i/aj/v = t. Then F-5 becomes

..1 t - cf-/t
(F-6) e t j d

L

where c 2 2a B and L is the contour in the t plane shown in Figure

F- 1.

The cut in Figure F-1 is chosen so that 27r + Tr , t -7T to satisfy the

restriction on arg a * In order to identify this integral with the

Bessel function we must take the cut along the negative imaginary axis.

Then since our integral vanishes in the left half plane, we are left

with the open contour in Figure F-2. With this contour, we can identify

our integral F-5 with the Sonine integral representation:
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(F-7)

Thus we have

(F-8) 2 y (a

where the angle 6 is determined from the relation arg v arg t..Tr - arg a.

and the fact that t = -7T/2 on the branch cut in Figure F-2. Thus

= - arg a .

Our solution and the form F-7 show the sensitivity of integrations

around an essential singularity. In F-5 we might have argued that we

could neglect the term i,4B v in the exponent because it is dominated by

if aj/v for small v. Then from F-8 we see our solution would have been

'"3j 27il |$TO since (2 - ' 7 f7r{f-99. Since

/V j$)is not necessarily a small quantity, we see that indiscrim-

inately dropping terms of o(v) in F-5 can lead to incorrect solutions.

The proper criterion for dropping this term is independent of v and is

thatfP(4?j 4)(1. Similar statements can be made for higher order terms

in v in the exponent. The method of expansion of R n(z) must justify in

some way the dropping of the higher order terms.

The reason for this sensitivity around an essential singularity can

be seen if we express the exponential factor in the integrand as the

product of an exponential damping term and a rapidly oscillating term.
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As we integrate around the essential singularity we are subtracting

large terms of about the same size--due to the oscillations. Very small

changes in the exponent of the damping factor are then magnified, since

it is the differences of large terms which count.



Appendix G

INTEGRATION ON BANKS OF BRANCH CUTS

Let I =f g(z)f(z)dz where C is the contour of Figure G-1 and

the cut belongs to f(z). We shall evaluate this integral by the cliff

method. First expand f(z) in a rational function R (z) with poles along
n

the cut position. Now when we deform C as shown in Figure G-2 we are

left with semi-circles about the poles and straight line segments

between the poles. It might appear that we are still stuck with line

integrals. However the approximation to the integral I is given by

adding up the residues at these poles and multiplying by a weight factor.

In other words we can still obtain our approximation by the Residue

Theorem.

To see this, expand f(z) by the Cauchy Integral Formula so that it

is approximated by a rational function RA(z) in the unshaded portion of

Figure G-3, with poles located as shown. In the wedge shaped section,

the approximation R'(z) becomes vanishingly small by Cauchy's Integral

Theorem. Now if we deform C as indicated in Figure G-3, we are left with

loops about the poles t' plus a contour C'. Now in the limit as the

poles become dense (on the lines) the integral , g(z)R'(z)dz must

vanish by Cauchy's Integral Theorem (assuming appropriate convergence

of the original integral). Therefore the approximation to I only needs

to include the residues a' at the poles t . For j sufficiently large,

the term , g(z)R'(z)dz can be made as small as we like. Thus we have
C n

our solution in terms of the residues a!.
3

116
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The final step is to relate the residues a' to the residues a at

the poles t in Figure G-2. This relation is obtained by comparing the
J

rational function expansions of f(z). By Cauchy's Integral Formula we

have

(G-1) ..7-.-. -

(G-2) f(Z)f-r2 f -2-
Mab -Lab

where Land M are given in Figures G-4 and G-5 and (t) is the distribu-

tion function for f(z). Now our method of producing poles is to

approximate the distribution function f(t) by a stair-case function.

Suppose on Lab and Mab we use the same stair-case approximation toq(t).

Then from G-1 and G-2 we see that the integrals which generate the

poles t and t are, respectively,

f J[~.t)-~(tJ] and . ____

where we let L and L approach the branch cut so that L = -L . We
ab ca ab ca

can also take Mab = L ab* The subscripts on the distribution function

refer to the value off (t) on the opposite banks of the cut. Then the

residues at t and t' are
21 21
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(G-3) a { j f=j0j~ .(* --1

(G-4) a = I-j

If For double valued function$, 50r= - , so that a' ja ,a'd our

weight factor is . In terms of Figure G-2, our approximate solution

to the integral I is then given by taking one-half the residues at the

poles t . The determination of the weight factor for any multivalued

function is easily obtained from G-3 and G-4.
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