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CONVERGENCE RATE FOR A
CURSE-OF-DIMENSIONALITY-FREE METHOD
FOR A CLASS OF HJB PDES*

WILLIAM M. MCENEANEYT AND L. JONATHAN KLUBERG?

Abstract. In previous work of the first author and others, max-plus methods have been ex-
plored for solution of first-order, nonlinear Hamilton-Jacobi—Bellman partial differential equations
(HJB PDEs) and corresponding nonlinear control problems. Although max-plus basis expansion and
max-plus finite-element methods can provide substantial computational-speed advantages, they still
generally suffer from the curse-of-dimensionality. Here we consider HJB PDEs where the Hamilto-
nian takes the form of a (pointwise) maximum of linear/quadratic forms. The approach to solution
will be rather general, but in order to ground the work, we consider only constituent Hamiltonians
corresponding to long-run average-cost-per-unit-time optimal control problems for the development.
We consider a previously obtained numerical method not subject to the curse-of-dimensionality. The
method is based on construction of the dual-space semigroup corresponding to the HJB PDE. This
dual-space semigroup is constructed from the dual-space semigroups corresponding to the constituent
linear /quadratic Hamiltonians. The dual-space semigroup is particularly useful due to its form as
a max-plus integral operator with kernel obtained from the originating semigroup. One considers
repeated application of the dual-space semigroup to obtain the solution. Although previous work
indicated that the method was not subject to the curse-of-dimensionality, it did not indicate any
error bounds or convergence rate. Here we obtain specific error bounds.

Key words. partial differential equations, curse-of-dimensionality, dynamic programming, max-
plus algebra, Legendre transform, Fenchel transform, semiconvexity, Hamilton—Jacobi—-Bellman equa-
tions, idempotent analysis
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1. Introduction. A robust approach to the solution of nonlinear control prob-
lems is through the general method of dynamic programming. For the typical class
of problems in continuous time and continuous space, with the dynamics governed
by finite-dimensional, ordinary differential equations, this leads to a representation of
the problem as a first-order, nonlinear partial differential equation—the Hamilton—
Jacobi-Bellman (HJB) equation or the HJB PDE. If one has an infinite time-horizon
problem, then the HJB PDE is a steady-state equation, and this PDE is over a space
(or some subset thereof) whose dimension is the dimension of the state variable of the
control problem. Due to the nonlinearity, the solutions are generally nonsmooth, and
one must use the theory of viscosity solutions [4], [10], [11], [12], [20].

The most intuitive class of approaches to solution of the HJB PDE consists of
grid-based methods (cf. [4], [7], [5], [14], [40], [16], [20], [24] among many others).
These require that one generate a grid over some bounded region of the state space.
In particular, suppose the region over which one constructs the grid is rectangular,
say, square for simplicity. Further, suppose one uses N grid points per dimension.
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CURSE-OF-DIMENSIONALITY-FREE CONVERGENCE 3053

If the state dimension is n, then one has N™ grid points. Thus, the computations
grow exponentially in state-space dimension n, and this is referred to as the curse-of-
dimensionality.

In [28], [29], [30], [31], a new class of methods for first-order HJB PDEs was
introduced, and these methods are not subject to the curse-of-dimensionality. A dif-
ferent class of methods which also utilize the max-plus algebra are those which expand
the solution over a max-plus basis and solve for the coefficients in the expansion via
max-plus linear algebra (cf. [1], [2], [28], [34], [35]). Although this new approach
bears a superficial resemblance to these other methods in that it utilizes the max-plus
algebra, it is largely unrelated. Most notably, with this new approach, the computa-
tional growth in state-space dimension is on the order of n3. There is of course no
“free lunch,” and there is exponential computational growth in a certain measure of
complexity of the Hamiltonian. Under this measure, the minimal complexity Hamil-
tonian is the linear/quadratic Hamiltonian—corresponding to solution by a Riccati
equation. If the Hamiltonian is given as a pointwise maximum or minimum of M lin-
ear/quadratic Hamiltonians, then one could say the complexity of the Hamiltonian is
M. One could also apply this approach to a wider class of HIB PDEs with semiconvex
Hamiltonians (by approximation of the Hamiltonian by a finite number of quadratic
forms), but that is certainly beyond the scope of this paper.

We will be concerned here with HJB PDEs of the form 0 = —H (z, VV), where
the Hamiltonians are given or approximated as

(1) A (2, VV) = max (H"(z,VV)},

where M = {1,2,..., M} and the H™’s have computationally simpler forms. In
order to make the problem tractable, we will concentrate on a single class of HJB
PDEs—those for long-run average-cost-per-unit-time problems. However, the theory
can clearly be expanded to a much larger class.

In [28], [29], a curse-of-dimensionality-free algorithm was developed in the case
where each constituent H™ was a quadratic function of its arguments. In particular,
we had

(2) H™(z,p) = (A™x)'p+ %x/Dmx + %p/Emp,

where A™, D™, and ¥ were n X n matrices meeting certain conditions which guar-
anteed existence and uniqueness of a solution within a certain class of functions.
First, some existence and uniqueness results were reviewed, and an approximately
equivalent form as a fixed point of an operator S; = P, cr, S7* (where © and ® in-
dicate max-plus addition/summation and multiplication, respectively) was discussed.
The analysis leading to the curse-of-dimensionality-free algorithm was developed. We
briefly indicate the main points here, and more details appear in sections 2 and 3.
In one sense, the curse-of-dimensionality-free method computes the solution of
0 = —H(z,VV) with Hamiltonian (1) (and boundary condition V(0) = 0) through
repeated application of §T to some initial function V°, say, N times, yielding approx-
imation SV = [S;]VV?, where T = N7 and the superscript N indicates repeated
composition. However, the operations are all carried out in the semiconvex-dual
space (where semiconvex duality is defined for the reader in section 3.2). Suppose

V= §TVO and that V° has semiconvex dual . Then one may propagate instead in

the dual space with a' = B,a" and recover V! as the inverse semiconvex dual of a'.
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3054 WILLIAM M. MCcENEANEY AND L. JONATHAN KLUBERG

It is natural to propagate in the dual space because one automatically obtains B, as
a max-plus integral operator, that is,

~ @
B.[a%)(2) = / B (2.y) ® a®(y) dy

n

(where the definitions are given below).  Importantly, one has li(z,y) ~
D, e B (2,y) where the B"’s are dual to the SI™’s. The key to the algorithm
is that when the H™’s are quadratic as in (2), then the BI’s are quadratic func-

0 to be a quadratic function, then a!(z) = B,[a°)(z) =

Der fﬂgi B (z,y) @ a®(y) dy = @, aq Gy (2) where, as the max-plus integral is
a supremum operation, the al,’s are obtained analytically (modulo a matrix inverse)
as maxima of sums of quadratics B™(z,y) + a®(y). At the second step, one obtains
a’(z) = Do, mocrnz a2, m,(z) where the a2, . (z)’s are again obtained analytically.
Thus, the computational growth in space dimension is only cubic (due to the matrix
inverse). The rapid growth in cardinality of the set of d’fmj} is what we refer to as
the curse-of-complexity, and we briefly discuss pruning as a means for complexity
attenuation as well (although this is not the focus of this paper). The method allows
us to solve HJIB PDEs that would otherwise be intractable. A simple example over
RS appears in [27].

In [28], [29], the algorithm was explicated. Although it was clear that the method
converged to the solution and that the computational cost growth was only at a rate
proportional to n3, no convergence rate or error analysis was performed. In this paper,
we obtain error bounds as a function of the number of iterations. In particular, two
parameters define the convergence, with the first one 7' being the time-horizon and
going to infinity. The second 7 is the time-step size, and it goes to zero. Of course,
the number of iterations is T'/7. In sections 5 and 8, we indicate an error bound as a
function of these two parameters.

tions. If one takes a

2. Problem class. There are certain conditions which must be satisfied for so-
lutions to exist and to be unique within an appropriate class, and for the method to
converge to the solution. In order that the assumptions are not completely abstract,
we work with a specific problem class—the long-run average-cost-per-unit-time op-
timal control problem. This is a problem class where there already exist a great
many results, and so less analysis is required. More specifically, we are interested
in solving HIB PDEs of the form (1) and of course equivalently, the corresponding
control problems. We refer to the H™’s in (1) as the constituent Hamiltonians. As
indicated above, we suppose the individual constituent H™’s are quadratic forms.
These constituent Hamiltonians have corresponding HJB PDE problems which take
the form

(3) 0=—H"(x,VV), V(0)=0.

As the constituent Hamiltonians are given by (2), they are associated, at least
formally, with the following (purely quadratic) control problems. In particular, the
dynamics take the form

(4) £m =A™ + oM, & =z €R",

where the nature of o™ is specified just below. Let w € W = L¥¢(]0, 00); R¥), and
we recall that L¢(]0, 00); R¥) = {w : [0, 00) — R* : fOT |we|? dt < oo VT < oo}. The

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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cost functionals in the problems are

T

. 2
(5) @ T = [y D =
where we use | - | to indicate vector and induced matrix norms. The value functions
are V™ (x) = im0 SUp, ey J " (2, T;w). Lastly, ™ and 7 are such that ¥ =
Lom(emy.
Bt

We remark that a generalization of the second term in the integrand of the cost
functional to %w’ C™w with C™ symmetric, positive definite is not needed since this
is equivalent to a change in ¢™ in the dynamics (4).

Obviously, J™ and V™ require some assumptions in order to guarantee their
existence. The assumptions will hold throughout the paper. Since these assumptions
only appear together, we will refer to this entire set of assumptions as Assumption
Block (A.m), and this is as follows:

Assume that there exists ¢4 € (0, 00) such that

P’ A"r < —calr)>  Vz eR",me M.
Assume that there exists ¢, < oo such that
(A.m) o™ < ¢o Ym e M.

Assume that all D™ are positive definite, symmetric, and let ¢p be such
that

©’D"x < cplz]>?  VzeR", meM

(which is obviously equivalent to all eigenvalues of the D™ being no
greater than cp). Lastly, assume that v2/c2 > cp/c3.

We note here that we will take ™ = ¢ (independent of m) in the error estimates.

3. Review of the basic concepts. The theory in support of the algorithm can
be found in [28], [29] (without error bounds). We summarize it here.

3.1. Solutions and semigroups. First, we indicate the associated semigroups
and some existence and uniqueness results. Assumption Block (A.m) guarantees the
existence of the V™’s as locally bounded functions which are zero at the origin (cf.
[36]). The corresponding HJIB PDEs are

0= —H"(x, VV):—{%x’Dma: + (Amx)’VVné%)fn[(amw)’VV— 772|w|2}}
(6) =—{32' D"z + (A™z)VV + iVV'E"VV}
V(0) = 0.
Let R™ =RU{—oo}. Recall that a function ¢ : R — R~ is semiconvex if given any
R € (0,00), there exists kg € R such that ¢(x) + %R|x|2 is convex over Br(0) = {z €

R™ : |z| < R}. For a fixed choice of ¢4, ¢, v > 0 satisfying the above assumptions
and for any 6 € (0,) we define

ca(y—4)

2
95:{V : R"—10,00) | V is semiconvex and 0 < V(z) < 502 |z Va € R”}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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From the structure of the running cost and dynamics, it is easy to see (cf. [41],
[36]) that each V™ satisfies

(7) V™(z) = sup sup J™(z,T;w) = lim sup J™(z,T;w) = lim V™ (z,T)
T<ooweW T—o0wew T—oo

and that each V™ is the unique continuous viscosity solution of (cf. [4], [20]) 0 =
Vr — H™(z,VV), V(2,0) = 0. It is easy to see that these solutions have the form
vmof(z,t) = %x'Ptm’fx where each P™/ satisfies the differential Riccati equation

®) Pl =y Pl 4 piam 4 D g preismpmd - prd — o,

By (7) and (8), the V™’s take the form V™ (z) = 12/ P™x, where P™ = limy pm™7
One can show that the P™’s, are the smallest symmetric, positive definite solutions
of their corresponding algebraic Riccati equations. The method we will use to obtain
value functions/HJB PDE solutions of the 0 = —H(x, VV') problems is through the
associated semigroups. For each m define the semigroup

T
9) St[¢] = sup [/ HEm D — Flwnf? dt + o(ep) |
weW | Jo
where £™ satisfies (4). By [36], the domain of S} includes G5 for all § > 0. It has
also been shown that V™ is the unique solution in Gs of V- = ST [V] for all T > 0 if
§ > 0 is sufficiently small, and that V™7 (z,t +T) = SE[V™F (-, 1)](x).
Recall that the HJB PDE problem of interest is

(10) 0=—H(z,VV) = —max H"(z,VV), V(0)=0.

me

Below, we show that the corresponding value function is

~ T 2
(11) V(x) = sup sup J(z,w,u) = sup sup sup / (&) — l|wt|2 dt,
WEW p€Doo WEW p€Doso T<00 J0 2

where [/ () = $a/DFta, Do = {1 [0,00) — M : measurable }, and ¢ satisfies
(12) £= AME 4 ottw,, & = .

The computational complexity which will be discussed fully in section 4 arises from
the switching control p in (11).
Define the semigroup

~ T A’/Q
(13) Sr[¢] = sup sup l/@ l“(&)—;lwtlzdwcﬁ(&) ,

weW pneDr

where Dy = {§1: [0,T) — M : measurable }. One has the following.

THEOREM 3.1. Value function V s the unique viscosity solution of (10) in the
class Gs for sufficiently small 6 > 0. Fix any T > 0. Value function V is also the
unique continuous solution of V.= St[V] in the class Gs for sufficiently small 6 > 0.
Further, given any V € Gs, limp_,o0 Sp[V](z) = V(2) for all z € R™ (uniformly on
compact sets).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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We remind the reader that the proofs of the results in this section may be found
in [28], [29].

Let D™ be the set of n x n symmetric, positive or negative definite matrices. We
say ¢ is uniformly semiconvex with (symmetric, definite matrix) constant 8 € D™ if
¢(x)+ 32’ B is convex over R™. Let Sg = Sg(R") be the set of functions mapping R”
into R~ which are uniformly semiconvex with (symmetric, definite matrix) constant
B. Also note that Sg is a max-plus vector space [19], [28]. (Note that a max-plus
vector space is an example from the set of abstract idempotent spaces, which are
also known as idempotent semimodules or as moduloids; cf. [8], [25].) We have the
following.

THEOREM 3.2. There exists B € D™ such that given any 8 such that 3 — 3 > 0
(i.e., B— B positive definite), V € Sg and V™ € Sg for all m € M. Further, one may
take B negative definite (i.e., 17,Vm convet).

We henceforth assume we have chosen 8 such that 3 — 5 > 0.

3.2. Semiconvex transforms. Recall that the max-plus algebra is the commu-
tative semifield over R~ given by a @ b = max{a,b} and a ® b = a + b; see [3], [23],
[28] for more details. Throughout the work, we will employ certain transform kernel
functions ¥ : R™ x R™ — R which take the form

1/’(3% Z) = %(ZII - Z)/O(ZII - Z),
with nonsingular, symmetric C satisfying C+ 3 < 0 (i.e., C+ 3 negative definite). The
following semiconvex duality result [19], [28], [34] requires only a small modification
of convex duality and Legendre/Fenchel transform results; see section 3 of [37] and

more generally [38].
THEOREM 3.3. Let ¢ € Sg. Let C and i) be as above. Then, for all x € R,

(14) ¢(z)= max [ (z, z) + a(2)]
52
(15) = - Y(z,2) ®a(z)dz = P(z,) ©al),
where for all z € R™,
(16) a(z)= — max [¢(z, 2) - ¢(z)]
52
(17) == L. Y(z,2) @ [=o(x)]dz = —{¥(,,2) © [-0()]},

which using the notation of [8],

(18) ={v(2) 0]}

We will refer to a as the semiconvex dual of ¢ (with respect to ).

Semiconcavity is the obvious analogue of semiconvexity. In particular, a function
¢ : R"™ — RU{+0o0} is uniformly semiconcave with constant 8 € D" if ¢(z) — 12/ Bz
is concave over R". Let S5 be the set of functions mapping R" into RU {+o0} which
are uniformly semiconcave with constant 3.

It will be critical to the method that the functions obtained by application of the
semigroups to the 1 (-, z) be semiconvex with less concavity than the 1 (-, z) themselves.
This is the subject of the next theorem. B

THEOREM 3.4. We may choose C' € D™ such that V,V™ € S_¢. Further, there
exist T > 0 and n > 0 such that

§T[¢(-72)]7 ST[’@[](vZ)] € S—(C+n[~r) VT e [Ovﬂ'

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



3058 WILLIAM M. MCcENEANEY AND L. JONATHAN KLUBERG

Henceforth, we suppose C,7, and 1 chosen so that the results of Theorem 3.4
hold.
By Theorem 3.3,
@ ~

(19) S, 2)(@) = [ w(x,y) @By, 2) dy = ¥(x, ) © B, (-, 2),

Rn
where for all y € R",

~ ® ~
(20) Brly.z)=— | (o) ® {50, 2)@)} dr={w(9) O [SLC O]} -

It is handy to define the max-plus linear operator with “kernel” B. as B. [a](z) =
Br(z,-) ©a() forall a € S

PROPOSITION 3.5. Let ¢ € S with semiconver dual denoted by a. Define ¢' =
S,[¢]. Then ¢' € Sg_p1r, and

¢! (x) = (z,) ©a' (),
where
a'(z) = By (z,-) ©al-).
THEOREM 3.6. Let V € S, let a be its semiconvex dual (with respect to 1), and
suppose B (z,-) © a(-) = ET[a](z) €S, for some d such that C +d < 0. Then

V=S.[V]

if and only if
@

a(z)= / B (2,y) ® ay) dy = B, (z,-) @ a(-) = lg’vr[a](z) Vz e R™.

n

AISO’ for each m € M and z € R™, S:n[¢(7z)] € S*(CJHZIT) and
S™ap(-, 2)](z) = Y(x,) © B™(-,2z)  Va eR",

where

(21) Br(y.2) = {v(,9) 0 [P, 2] () vyeR™

It will be handy to define the max-plus linear operator with “kernel” B as l§;” [a)(z) =
B(z,-) ® a(-) for all a € S_,. Further, one also obtains analogous results as those

for V above.

3.3. Discrete-time approximation. We now discretize over time and employ
approximate p processes which will be constant over the length of each time step. We
define the operator S; on Gs by

8.1 = sup mag | [ 1760 = Fphun P+ 062 (0) = e ST L6l

wew MEM meM
(22)
where €™ satisfies (4). Let

Brl1ns) = g BY(0:9) = € BPGiz) Vs R

The corresponding max-plus linear operator is B, = Drcm B\’Tn .

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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LEMMA 3.7. For all z € R, S;[¢(-, 2)] € S_(C4nir)- Further,
(23) S (-, 2)(x) = ¥z, ) @B, (-, 2) Vo eR™
With 7 acting as a time-discretization step-size, let

DI, ={p:[0,00) = M| for each n € N U {0}, there exists m,, € M
(24) such that u(t) =m, YVt € [nr,(n+1)7) },

and for T' = iir with 7 € N define DF. similarly but with domain [0,T) rather than
[0,00). Let M™ denote the outer product of M, i times. Let T = fi7, and define

(25) Srlél(z) = max {ﬂsfk}[é](x)Z(ST)"[é](O),

T -
{mk}zzg EM k:O

where the ] notation indicates operator composition with the ordering being given
by Z;S Sy = Gt g2 LSS0 and the superscript in the last expression
indicates repeated application of S;, @i times.

We will be approximating V by solving V = S.[V] via its dual problem a = B, ®a
for small 7. In [28], [29], it is shown that there exists a solution to V = S;[V] and that
the solution is unique. In particular, for the existence part, we have the following.

THEOREM 3.8. Let

(26) V(z) = lim Sy [0](z)

for all z € R™, where 0 here represents the zero-function. Then V satisfies
(27) VvV =25,[V], V(0) =0.

Further,

T 2
V(z) = sup sup sup [/ (&) — %|wt|2 dt|,
pEDI weW T€[0,00) LJO

where & satisfies (12), and 0 < V™ <V < Vv for all m € M (which implies V € Gs).
Lastly, with the choice of 3 above (i.e., such that C+B3 < 0), one has V € SgCS_c.

Similar techniques to those used for V™ and 1% prove uniqueness for (27) within Gj.
In particular, we have the following results [28], [29].

THEOREM 3.9. V is the unique solution of (27) within the class Gs for sufficiently
small 6 > 0. Further, given any V € G5, imn_00 5';\,7 [V](z) = V(z) for all z € R®
(uniformly on compact sets).

ProprosITION 3.10. Let ¢ € Sg C S_¢ with semiconver dual denoted by a.
Define ¢* = S.[¢]. Then ¢* € S_(c4nir), and

¢'(z) =v(z,-) ©al()

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



3060 WILLIAM M. MCcENEANEY AND L. JONATHAN KLUBERG

where _
a'(y) =B:(y,)®a(-) VyeR"

We will solve the problem V = §T[V], or equivalently 0 = -H (z,VV), with
boundary condition V(0) = 0, by computing a* = [B] * ©a° with appropriate initial
a’ (such as a = 0), where the k superscript of the right-hand side represents operator
composition k times. From this, one obtains approximation V" () = Y(z,-) 0 a*. We
will show that for k sufficiently large and 7 sufficiently small, Vk will approximate 1%
within an error bound of (1 + |z|?) for as small an € as desired.

4. The algorithm. We summarize the mechanics of the algorithm. The full
development may be found in [28], [29]. We start by computing P, A™", and R for
each m € M where these are defined by

ST (-, 2)l(x) = 5(z — AT2) PP (x — AT'2) + 52'R"2

and where the time-dependent n x n matrices P, A}*, and R}" satisfy P* = C,
AG =1, Rj* =0,
(28) P™ = (A™)'P™ 4 P A™ — [D™ + P™E™P™,

Am — [(Pm)—le _ Am} Arn7
P AT and R may be computed from these ordinary differential equations via a
Runge—Kutta algorithm (or other technique) with initial time ¢ = 0 and terminal time

t = 7. We remark that each P, A”", R™" need only be computed once.
Next, noting that each B is given by (21), one has

B (z,2) = % [x’Mfflx + x’Mffzz + z’(M{’fz)’x + z’Mg’fgz} ,
where with shorthand notation D, = (P™ — C),

(20) M{, = ~CD; P
(30) MJ, = ~CDZ'PIAT,
(31) Mgy = R — (A7) CDZ'PIAT.

Note that each M{", M{"y, M3" need only be computed once.
In order to reduce notational complexity, for the moment we suppose that we

initialize the following iteration with an @ (the dual of Vo) which consists of a single
quadratic, that is, @°(z) = @°(z), where a° takes the form @°(z) = 3(z — 2°)'Q°(z —
z%)4+79. Next we note that, recalling a* = B,©{[B,]*! ® @’} with B, = @, v, B,

@@= D g, @

{m. }?:1 EMF
where each
@y (@)= B (o) ©ak (),

k=1
{mi}; 25

= %($ — %\?mi}i?:l)lQl{cmi}le (x — gfmi}le) + ﬁmi}i'c:l,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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where for each myy1 and each {m;}*_,,

(32) Ql;—i—l k+1 Mmk+1 ]\41 k+1D (Mmk+1) 7

—1 N
S a=— (Qh)  MIYTE,

~k+ 1 m -k 1 (2ok+1 Ak+1 -k+1
’I"{ }k+1 {mi},’le + §EM k+1z{m} -3 (Z{ }k+1) Q{ }k+1z{ et

1
D: ( mk+1 + Q{ml}f:1> )
o NAk ~k
E=DQn s Zimat, -

We see that the propagation of each a’;m_ » amounts to a set of matrix multiplica-
ifi=1

tions and an inverse. (Note in the case of purely quadratic constituent Hamiltonians
here, one will have all ?fm_ » = 0and all ?’{“mv}k = 0.) Thus, at each step k, the
v1Ji=1

vtJi=1

. —k . . .
semiconvex dual of V', @, is represented as the finite set of triples

O = {( @y By o Tl ) Imi € MVi€ (1,2, k} |

(/\\Ve remark that in actual impleAmentation, it is simpler to index the entries of each
Qy. with integers i € {1,2...,#Q}} rather than the sequences {m;}*_,.)
At any desired stopping time, one can recover a representation of V' as
(z)= . 3 (I = Ty, ),ﬁfml} ( flfmi},’;:l) + Plmayh
where
(33) Pl yi = CFQY,yx FC+ (FC - 1)C(FC - 1),

~k _ Dk L1 aAk AL (5 I DAk ok
Tmiyk =~ (P{mi}i;l) [CFQ{W};;IG“L (FC-1) CFQ{mi};;l] Zlmiyk_

ke _ k 1 (ok "TAr Ak Ak SABAE ~k
Pimiyt_, = Timiy, 3 (Z{m 5 1) [G Q{mi},’;:chfQ{mi},’sleCFQ{mi},’;:J Fmiyh
~ ~ 1
P (Q?mi}gl + C) ,
and

o (BAR
G= (FQf e, — 1)
—k
Thus, V' has the representation as the finite set of triples

(8 Pe={(Phuy Ty, Pl ) Imi€ MVi€ (1,2, k} |

We note that the triples which comprlse Pr. are analytically obtained from
the triples given explicitly as (Q{ {m . A’{“m b ) by matrix multipli-

cations and an inverse. The tranbference from (Q{ e ) to

(ﬁfmi}lej
of the algorithm propagation. We note that (34) is our approximate solution of the
original control problem/HJB PDE.

The curse-of-dimensionality is replaced by another type of rapid computational

cost growth. We refer to this as the curse-of-complexity. If #M = 1, then all

{m L {mi}i“:l
flfmv}k ,ﬁ’fm_}k ) need only be done once Wthh is at the termination
1JSi=1 vtJi=1
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the computations for our algorithm (except the solution of a Riccati equation) are
unnecessary, and we informally refer to this as complexity one. When there are
M = #M such quadratics in the Hamiltonian H, we say it has complexity M. Note
that

#{V{]ini}f:1|miEMViE{l,Q,...,k}}:Mk.

For large k, this is indeed a large number. In order for the computations to be
practical, one must reduce this by pruning and other techniques; see section 9.

Lastly, note that in the above we assumed @ to consist of a single quadratic a.
In general, we take @’ = D e, @)(x) with Jo = {1,2,..., Jo}, where each

() = (v — 2)'Qj(x — 27) + 7.

This increases the size of each @k by a factor of Jy. Denote the elements of ME =
{{mi}k_y |m; € MVi} by m* € M*. With the additional quadratics in @° and the
reduced-complexity indexes, one sees that at each step we would have Qj in the form

(35) s = {(Qbmty» 2y Tsmty ) | € Toym* € ME} .

5. Error bounds and convergence. There are two error sources with this
curse-of-dimensionality-free approach to solution of the HJB PDE.

For concreteness, we suppose that the algorithm is initialized with 7=
D,c V™. Letting T = N7, where N is the number of iterations, the first er-
ror source is

(36) cpr(z, N,7) = Sp [VO} (z) - 55 [VO} ().

This is the error due to the time-discretization of the p process. The second error
source is

(37) err(z, N,7) = V(z) — Sr [VO} ().

This is the error due to approximating the infinite time-horizon problem by the
finite-time horizon problem with horizon 7. The total error is obviously erp =
epr(x, N,T7)+err(z, N, 7). We begin the error analysis with the former of these two
error sources in section 6. In section 7, we consider the latter, and in section 8, the
two are combined.

6. Errors from time-discretization. We henceforth assume that all the ¢"™’s
used in the dynamics (4) are the same, i.e., c™ = ¢ for all m € M. The authors
do not know if this is required but were unable to obtain the (already technically
difficult) proofs of the estimates in this section without this assumption. The proof
of the following is quite technical. However, we assure the reader that the proof of
the time-horizon error estimate in section 7 is much less tedious.

THEOREM 6.1. There exists Ks < co such that, for all sufficiently small 7 > 0,

0< Sr[V™(z) — Sp[V™(z) < Ks(1 + |22 (7 + V/7)

for all T € (0,00), z € R™, and m € M.
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Proof. Fix § > 0 (used in the definition of Gs). Fix m € M. Fix any T < oo and
z € R™ Let ¢ > 0and e = (£/2)(1 + |2[*). Let w® € W, u* € Do be e-optimal for

(14,

N My

St[V™](x), i.e.,
N T 42
(38)  Srlv)a) [ / z“t<ff>—7|wf|2dt+vm<f;>] <e=

where §° satisfies (12) with inputs w®, p°.
We will let € satisfy (12) with inputs w® and &* € DI, (where 7 has yet to be

chosen). Integrating (12), one has
t i . teo
39) & = A v ows| dr+x  and & A€+ ows | dr + .
( ) t T T t T T
0 0
Taking the difference of these, one has
—-€ ¢ £ 7€ =€
-6 [ Ag - AT ar
0
t 5 —e t —e —
= / (A#: — ATR)EE dr + / A7 (¢ - €) ar.
0 0

(40)

Letting 2z = £[£ — £,|2 and using (40) yields
€ / € 7€ =€ / 7€ £ €

= (6 -F) (5 - A+ (6 -F) 47 (¢-F)

which, by using Assumption Block (4.m),
— ! 5 —e
< (g -8) (4 - A — 2005,
Noting that zyp = 0 and solving this differential inequality, one obtains
1 |¢e 7€ 2 ! —2ca(t—r) (e F€ ! e we\ e
He-g < /e (& -2) (4 —am) g an
0

(41)
Consequently, we now seek a bound on the right-hand side of (41), which will go to
zero as 7 J 0 independent of 0 < ¢t < T < oo. We will use the boundedness of [|£¢]|,

€]/, and ||w®||, which is independent of T for this class of systems [36]. (Precise

statements are given in Lemmas 6.6 and 6.7 below.)
For any given 7 > 0, we build @ from p& over [0, 7] in the following manner. Fix
7 > 0. Let N be the largest integer such that N'7 < t. For any Lebesgue measurable
subset of R, Z, let £(Z) be the measure of Z. For t € [0,T], m € M, let
It ={re0,t)|p;=m}, I ={rel0t)|m =m},
A= L(ZT).

(42) - .
A= L),
At the end of any time step n7 (with n < N7T), we pick one m € M with the largest

(positive) error so far committed and we correct it, i.e., let
{)\ZIT - )\7(111171)7'} ’

m € argmax
meM

(43)
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and we set
(44) r=m  ¥Yre[ln—1)7nt).
Finally, we simply set

(45) 7E € argmax{\}* — ARz} Vre [NTr, T).
meM

Obviously, for all 0 < r < T the sum of the errors in measure is null, that is,

STom-am =Y A N ar=r-r=o.

meM meM meM

With this construction we also get the following. -

LEMMA 6.2. For anyt € [0,T] and any m € M, one has A" — \[* > —7.

Proof. Let us assume that at time n7, it is true (which is certainly true for n = 0).
We first consider the case (n 4 1)7 < T. Since )\ Ant — AL = 0, there exists 1m
such that A7 — A2 > 0. Hence, maxmem(A{h 1), —Any) = maxmepm (A7 — A7) > 0.
Now, choosing m by (43) (for time step (n + 1)7), we have
(46) B~ X 20,

Now let t € [n7, (n + 1)7]. Then, by (46),
/\;ﬁ - 5‘? > _( ZLZJrl)T - )‘fl) - (;\;ﬁ - 5‘17?7')
which by (44) and the choice of m,
= —(\agnr = AT = (= n7)
and since A" — A\7* < (¢t — s) for all m and ¢ > s,
>(t—(n+1)7)—(t—n1)
(47) =T
Now since 7iZ = m for all r € [n7, (n + 1)7), X = X" for all r € [n7, (n + 1)7)
and all m # m. Consequently, for ¢ € [n7, (n + 1)7] and m # m,
/\;n - 5‘?: )‘Tfn - ;\:’Ln'r > A:’LnT - ;\:’Ln'r
which by the induction assumption
(48) > —T.
Combining (47) and (48) completes the proof for the case (n + 1)7 < T.

We must still consider the case nt < T < (n + 1)7. The proof is essentially
identical to that above with the exception that (n + 1)7 is replaced by T, m €
argmax,, c \({ N7 — A} is used in place of (43), and (45) is used in place of (44). We
do not repeat the details. O

Using this, we will find the following.

LEMMA 6.3. For any t € [0,T] and any m € M, one has A\j* = A\* < (M —1)7.
Proof. Since ) (AP — A" =0, for all m € M,

A= A== > A =AY

m#m
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which by Lemma 6.2,
< (M —1)r. O

We now develop some more-delicate machinery, which will allow us to make
fine estimates of the difference between £ and Ei For each m we divide Z{" into
pieces f,zn’t of length 7 as follows. Let K™ = max{k € N U {0} |3 integer n <
t/7 such that A™ = kr}. Then, for k < K™, let n? = min{n € NU {0} | \™ = k7}
and T,:’t = [(ny — 1)7,ni*7]. Let K" =]1, K[ where for any integers m < n,
Jm,n[ denotes {m,m + 1,...,n}. Loosely speaking, we will now let f,zn’t denote a

. Zm, t . =
subset of Z;* of measure 7, corresponding to I? . More specifically, we define I,T’t

m,

as follows. Introduce the functions ®, t(r) which are monotonically increasing (hence
measurable) functions (that will match Z, "~ g [(ny* — 1)7; n*7] with f,T ") given by

@Zl’t(r): inf {p €0t A = (k=17 +[r— (ng" — 1)7’]}

=inf {p € [0,8] [\ =r+ (k- n)T},

where, in particular, we take @Zl’t(r) = t if there does not exist p € [0,¢] such that
Ayt =1+ (k—np')T. We note that @ (r) are translations by part. Then (neglecting
the point r = ¢ Whic/l\l has measure zero anyway) f,:” = @ZM(TZZ t).

We also define f;m as the last part of Z;", with length E(T;Lt) < 7, and I}n’t
as the last part of Z;”* not corresponding to an interval of length 7 of T;n. That is,
Qm,t = Qm,t Zm,t Zmit
I/ = I \Upern Ir " and Ip°' = T\ Upeem 210

With this additional machinery, we now return to obtaining the bound on |£§ —fi |.
Note that

e~ 2eat /O t eZear (fi - Zi)/ (Aﬂi - Aﬁi) & dr

— ezt 3 { / e (g ) Argdr - /1 erear (fi—Ei)/Amgidr}.

meM

Combining this with (41) yields

Le-gf et 3 { | (g -g) argar [ e (&i—Zi)'A’"sidr}
meM Zn fzn
N/
_erae oy [ [ e (6-8) angar
meM | keK™ IZM
nthT car € ==\’ m ~€
_An?,t_l)T 62 A (gr _Er) A §r dT:|

+ /f?,t S () WA /%}m eear (6-8) ame dr},
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which by the definition of ®}"",

m,t
—2c e T 2048 (r s m
= ¢ 2eat Z { Z |:/ . e2ea®y( )(gsqﬂkn,t(r) iy @L"’f(r))/A €Eq>7k"’t(r)

mem | kekp /(g =17

—eear (g2 - ) Ames dr]

(49) o e (@-g) arga- [ e (6 -8) ang dr} :
f

f

Note that

oAy (1) (fscpgw(r) - quagt(r))/Ame@gt(r) —eear (ff - fi)lAmff
- / e [2cAe2cAp (6-8) Amg + e (6 -5) am (A6 + ou)

AN (A g — ATRE) AT dp

M 2cat €12 | 17512 <12
(50) < Ky (1652 + [ I2 + wp ) dp

for proper choice of K; independent of r,t,z, m, k, and € > 0. Substituting (50) into
(49) yields

1 |ee =) T 2t €12 | 252 <12
He-gls S O |0 [T T m (PR 4wl dof dr
meM kGK{” (nk’ —1)r r
2c 4 (r—t) e g€ I oee _ 2cp (r—t) e _ 7€ " im e
(51) +/f?’te (6-%) argar /%;n)te (6-8) ame dr}.
Define
B () = () if () > B (1) = ) if OP(r) <,
k o otherwise k A otherwi
) wise.
Then

m,t r m,t,+ r
(pk()K 12 (2512 2) g = i ()K c12 o, [F512 =2) ¢4
1 |£p| + |£p| + |wp| Pl = 1 |£p| + |€p| + |wp| P

(5) [ E (P R+ i) dp
@;n‘t‘_(r)

where at most one of the integrals on the right is nonzero. We need to evaluate the
distance |®}""(r) — 7| for r in [(n]"" — 1)1, nj""7].

LEMMA 6.4. For all m € M, """ (r) < nZﬂrtQT + (r — nv'r) for all v €
(" = 1)r,n"'r] and k €]1, K™ -2, and O (r) >t 4 (r—nttr) for all

re [(npt — 17,0 7] and k €]M + 1, Km|.
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Proof. 'We prove each of the two inequalities separately. Suppose there exist
meM,re[n —1)7r,n" ], and k €]1, KJ",[C K" such that

(53) @?’t’+(r) > TLZL_,’_ZT + (7" — n’,:’tT) )
By definition,

t
kr+r—mn" = Al

@ZL’t(r)

which by Lemma 6.2,

= Agrty T

= )\gzl’t(r) - A;nzl_*’_t27'+r—nzl’tf + )\?Z:‘_’;T+r—nzl’t7 -7
which by (53) and the monotonicity of A\,
(54) = )\ZFLZZ;ZTJrrfn;”’tT -7
However, note that
(55) A =T+ p— n}n’tT for pe [(n;nt -1), n;.n’tr]

t t t t
and that n,7or +r —ny"'r € [(n), — 1)7,n,57], and so

j\m

it = (k+2)7 + anzT +r—nptr — nZﬂér =(k+2)T+r—n"'r.
Consequently, (54) yields
kT4+r—ntr > (k+2)7+r —nptr — 7 >kt +r—n',

which is a contradiction.
Now we turn to the second inequality. Suppose there exist m € M, r € [(nZ” —
1)7,n; 7], and k €)M + 1, K*[C K™ such that

(56) @Z“t’*(r) < TLZitMT +(r— n;n’tT).
Again, by definition,
m,t__ \m

kt+r—mn. 1= )\(I,Zl,t(r)

which by Lemma 6.3,
S )\g;nt(r) + (M — 1)’7’
which by (56) and the monotonicity of A\,
(57) SNt e A+ (M =17,
k—M k

Noting that n}"" 7+ —n}"'t € [(n]""; — 1)7,n;"",7] and again appealing to (55),
one sees that X?m,t Tty = (k— M) +7—n}""'r, and so (57) implies
k—M k

kT—I—T‘—?’LZL’tTS(k—M)T—I—T‘—TLZL’tT—f—(M—l)T:(k—l)T-l—T—TLZL’tT,

which is a contradiction. O
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LEMMA 6.5. Suppose f(-) is nonnegative and integrable over [0,T]. For any

€ [0,7) and any m € M,
nZl’tT t

> U dr} g(M+2)T/ f(r)dr
(n;”‘tfl)r 0

Proof. Using the first inequality of Lemma 6.4, one has

keK™
n;”‘tr <I>Z“t’+(r)
> / 1) dpr
(nzl’tfl)r r

keK™

@;n‘t(r)
f(p)dp

m,t

m,t [(nk+2fnk )T+T|AL
Y

keK™

where 7" mit nZL if £ < I?tm and ﬁ;n’t = +oo otherwise, and with a change of
variables, this is

[(nk+2 T+p
-> [ / ' fs) ds dp
t-1)r4p

keK™

(A —1)T+p]At (RS —1)T+p]At
>[4 fs)ds+ [ F(s)ds b dp
0 [(ﬁz:_tl—l)T-‘rp]/\t (n;n‘t—l)7'+p

keK™
[(ﬁz:_tz—l)7'+p]/\t [(n’k"_*’_tl—l)f—i-p]/\t
Z/{( f(s)ds + Z/ f(s)ds 3 dp

/T
0 | rerm gt —1)T+plAt kerm (0 to)T+p

<58></OTzfotf(smmp:zT/otf(s)ds

To handle the @Zl’t’_ terms, one can employ the second inequality of Lemma 6.4.
In particular, one finds

Z / mt_q), /q)mt_(r)f(P)dpdr

keK™
<> / / . fp)dpdr,
kEK™ )T nk MT+T ny T]VO0
where 7" - =n" Yifk>1and n Amt = —oo otherwise, and again with a change of
variables, this becomes
(nk e 1)1+p
- / / f(s)dsdp
k}EKm’ (n;n t]w T+p
(A, —1)T+p]VO
= Z / Z / im f(s)dsdp
keK™ m=— Ayt = 1)THpVO

—1)7+p]VO

I 5 Z/K e (s) dsdp

m/=— MkeKm k+nr’_1)T+p]\/0

g/ ) /f ) ds dp

m
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(59) :M/OT/Otf(s)dsdp:MT/Otf(s)ds. O

Applying Lemma 6.5 to (51) yields

—|2 ¢ e —c e
Ve -2 <> {(M+2>T/ Ky (1€ + [ + lwil?) dp
meM 0
=\ 4 m £ ca(r— € ==\ m €
(60) +/fm 2ealr=t) (gg_gr) A™ES dr_/%mt@ Alr=t) (57._57«) A™E; dr}.
I f

Now, by the system structure given by Assumption Block (A.m) and by the fact
that the V™’s are in G5, one obtains the following lemmas exactly as in [36].
LEMMA 6.6. For anyt < oo and € > 0,

2
w7504 < 5 + 512

2 1 [ean? c
|: A e—CANT+_D:| |$|2
cz cA

LEMMA 6.7. For anyt < oo and € > 0,

2 = > 1]
/|§5|2dr<_”_ C—U<CTD+7—)+— 2

[0ca \ & 2 ca |
t
/0

Applying Lemmas 6.6 and 6.7 to (60), one obtains

—e\/
) {K2<1+|x|2>7+ e e P
t

meM
(61) —/%}mte%*‘ 0 (g-5) Ames dr}

for proper choice of K5 independent of z, ¢, and € < 1.

and

2
dr <

=€

&,

2ec2 [ [c 2 1]
7"+ —"(—D+7—)+— |z,

£c
§c [dca \ & 2 ca |

1 |¢e =e|?
3186 —&| <

Now we deal with the end parts (the integrals over f}nt and 7?7 t). By Lemma 6.3,
for any m € M, A%, — A%, < (M — 1)7. By the monotonicity of A™, this implies

/\;n - 7%‘7’ < Mr,

and this implies E(f}n’t) < Mt for all t € [0,7]. Also, by the definition of %;m,
,C(T;m) <t— N'r <7 forallme M and t € [0,T]. Also, note that

d €12 €12 € € €12 0127 €12
— &) < =2¢al€|” + 2¢5[£7[[w®| < —cal€®|” + —=[uwf|
dt cA

which implies

2
C(T

(62) 617 < Jaf? + <2 |2
CA
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for all ¢t € [0, T]. Combining this with Lemma 6.6 implies
(63) §° < Ks(1+2*)  vt=0

for appropriate choice of K3 independent of £ < 1 and ¢ € [0,00). Similarly, one
obtains

(64) &7 < Ks(1+ )  Vt>0,

independent of € <1 and ¢ € [0,00). Now note that

—=\'/ N/
Lo (g-g) angar- [ a0 (g-g) argar
I}n’t If )

2 2
g/ da 3|€E1% + dr+/ da 3€1 + dr
i—}n,t 2 f?};mt 2

(where we recall d4 = max,,cap |A™|), which by (63) and (64),

g/ 2dAK3(1+|x|2)dr+/A
f;n,t f?f’n,t

£ g

2dAK3(1 + |z|?) dr,

which by the remarks just above
(65) < 2(M +1)daKs3(1+ |z*)r.
Combining (61) and (65) yields

12
(66) g - & < Ka(l+ o)
for proper choice of K, independent of z, ¢, and € < 1.
—=€
Now that we have a bound on 3|¢f — &,|?, we also obtain a bound on fot 118 —

Ei|2 dr in a similar fashion. Note that

d tl € €2 1
at . 5|§r—fr| dr =3

which, using &£§ — Z; =0,

[ (g-8) wrg-amg)ar

2

)

& - ¢

t
0
t , t /
- [(g-8) (- gars [ (6-8) 4 (g -5) ar
< —2CA/Ot%|£f—Ei|2dr+/0t (- &) 4% (g &) ar

In other words, letting z; = fot 1les —& |2 dr, we have £ < —20,42—1—]3 (e5—E.) APr (g5 —
Zi) dr where zg = 0. Solving this differential inequality yields

t 2 t r —e\/ R .
(67) /0 1 dr < /0 e~ 2ealt=r) /0 (gg—gp) (A“p—A“n) & dp dr.

Now proceeding exactly as above, but without an _ea’ch(T’p) term in the integral
(which was irrelevant in the above bound on (& — &, |2, one finds

& &,

(68) /0 (-8 (45 - 47 g dp < Ki(1 4 faf)r
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for all z € R™, € < 1, and r € [0,00). Substituting (68) into (67) yields
K - K K,

(69) / 3les &2 dr < / e AT R (1 [af*) 7 dr < = (1 + [af)r.
0 0 cA

Now that we have the above bounds on these differences between &; and Ej, we
turn to bounding the difference between Sp[V™] and 5’; [V™]. Note that

T 2 T 2
S (c€ 2 e mee ws (€ v € m (€
| v - Sl ar+v (@)—l/o v (&) - SlwfPdt+ v (&)1
T < —€ _ge—€ —\’ —e
() =4 | gDrig ~EDE d+ dery P - b (&) PER
0
We work first with the integral terms on the right-hand side. One has
T 5 —e —e —g T 5 —
| v -gomga= [y (0 - 076 ar
0 0
T —c —e ! —e—&
() + [ i - (&) D
Also
T —e —e ! —e—¢g
| @rorie - (&) priE; ae
0
T —\/ o= —€
= [ (&+€) D7 (& -€) dt
| (e+g) o7 (s -)
T .
< [0 e - | @
0

<ep /OT}gf—Ei2dt+2|ff||{/oT

) 1/2
dt ,
which by (69) and Lemma 6.7,
< 2ep M2K5(1+ [a?)7 + 2 {Ke(1 + 22)} /> {2M2K5(1 + [2[2)7} '/
(72) < K:(1+|z*)(r+V7)

2
& -5 +2¢)

& - €

for appropriate K5, Kg, and K7 independent of z,T, 7, and £ < 1.
Now we turn to the first integral on the right-hand side of (71). Bounding this

term is more difficult, and we use techniques similar to those used in bounding |££ —Ei|
above. Note that

/OT@’ (p#i — DF?) ¢ at

> {/Im (&) D™ e dt — /i? (&) D"e; dt}

meM T
nm’TT
-y {/AM@'D%M [ (Ei)’D"‘Eidt}
meM keK,E”’J .’ ("kY 71)7

+ /2?,T<5f>’D"‘5f dt — /%}m 7€) D dt}
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which as in (49)—(51),

m, T

-3 {g{j? { /@},;1)7 (pr®) D€ r (0 - €y D76 dt]
+ /%?,T@f)’Dmff dt - /%’;“ P (E) D7E dt}

M;M {g{:? {/(ingT_l)T /tqﬂlzmu
+/§¢,T(5f)/Dméf dt*/?;hT(&f)/Dmgf dt}

=15

+/f;n,r<€f>/D’"€f dtf/%?%;p@f)’D"‘&i dt}

)
2(£5) D™ (A#igj + gwj) dr dt]

m,T
n T

[T,

‘bZhT(t) 2 2
/ 2K (€517 + [wi]?) dr
t

IN

:

k

for appropriate choice of Kg independent of x,T, 7, and € < 1. By Lemma 6.5, this
implies

T . . T
JAGHCEEDEREDS {<M+2>r | R+ i) ar

meM
Y DMEE qt — ) pmee g
+/§¢,T<st> & i /%;”(St) 2 t},

which, by Lemmas 6.6 and 6.7,

<Ko+ o+ Y { L eyprea- /EmyT(ﬁf)’Dméfdt}
f f

meM

for appropriate choice of Kg independent of z,T,7, and é < 1. Then, applying the
. . =€ ..
same steps as used in bounding |5 — &, |, this is

(73) < Kio(1 4+ |z[*)7

for appropriate choice of K1g independent of z, T, 7, and & < 1. Combining (71), (72),
and (73),

T
(74) / DM E EDFE dt < Kr(1+ |af?)(r 4+ v7) + Kio(1+ |af*)r.

Now we turn to the last two terms in (70). As with the above integral terms,

|

< cp [2K4(1+ o) + 20/ K T+ [al? V2K (1 + [2P)7

|2 =€
& —&| T28] |6 - &

(&) P — (€5) PrEa< | P [

which by (66) and (64),
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where cp = max,,em |[P™,
(75) < Kn(14 |z (7 + V7)

for appropriate choice of K71 independent of x,T, T, m, and € < 1.
Combining (70), (74), and (75),

T 2 T —E 2 —€
| v - Lot P+ v - [ | @ - Lt e+ vEn)
0 0
(76) < Ks(1+ |2[*)(m + V/7)

for appropriate choice of K5 independent of =, T, 7,m, and £ < 1.
Combining (38) and (76), one has

T 2
ST[Vm]($>—/O V&) — Tl P dt+ V)< S (L + laf?) + Ko(L+ [2f)(7 + V7).

N ™

This implies

SrlV™(x) — Sp[V™(2)< (1 + |ef?) + Ks(1+ |e|?) (7 + V7),

DN | My

and since this is true for all € € (0, 1], we finally obtain
SrIV™)(@) = SpV™) ()< Ks(1+ o) + V),

which completes the proof of Theorem 6.1. O

Recall that a reasonable initialization is V' = D,cr V™. Using the max-plus
linearity of §T, one easily sees that Theorem 6.1 implies the following.

COROLLARY 6.8. There exists Ks < oo such that, for all sufficiently small 7 > 0,

=T —0]

0 < 5r[V)(2) — Sp[V°)(2) < Ks(1+ [a)(r + V7)

for all T € (0,00), z € R™, and m € M.

7. Finite-time truncation errors. Going back to our main subject, we want
to get an estimate of the convergence speed of 5’; [VO](x) toward V(z) as T — oo and
7 J 0. In the previous section we have already obtained an estimate of the convergence
of §; [Vo] (z) to St [VO] (). We now need to evaluate the difference between Sy [VO] (x)
and V(z) as T — oo.

THEOREM 7.1. For all § > 0 satisfying V € G, Ve Gs, there exists K5 such that
for allT >0 and all v € R™,

- . K
(77) SrVi(@) = V(2)| < Z (1 +al’).
Proof. The proof is similar to results in [28], [29], [36]. In particular, let 6 > 0 be
=2 .2
such that with 32 = (v — §)2, one has 24 > 1, and suppose V € Gs, i.e., such that

2
C5CD

2
cA”Y
(78) 0<V(x) < 5o ||2.
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Recall the integral bound from Lemma 6.7 (which held for all ¢ < co and € € (0, 1]).
As in [28] and [36], applying the bound to the integral between 7'/2 and T, one finds
that, for any T > 0, there exists T' € [T'/2,T] such that

2 [2ec c? cp 72
62<T Yo “D L 2
i< {F e[ (R 5) 2 e
2 (22 2 v 1 9
< = 2 | =+ = — 1 .
) FEE [ (3 E) e

Also, for all t > T one has by (62),

e112
1 Zarm.1

€12 €12 Cg
&5 17 < 16717 + = lw
CA

which by Lemma 6.6,

250 cz [ep CA’Y 2
< = 1+ 2| —
~ 0 cqp +{ + oca LA + 2 &zl

Replacing [£5|% by its bound in (79) we find

250
2
|€t| — 5CA
2 2 2 2 1 2 2
w3 [E (g D) A Alz g
A A \Cy G5 CA cA [ ca cs

Ch Cy
Finally, for any 7' > 0 given and any w®, u° e-optimal on [0, T7,
Sr[V(z) < J(x, T, w®, u) +
< [ i) - Sl @ vien) +o
which by (78), (80), and V > 0,

T A2 _
< [ vie) - DhuiP e+ Piep) +e
0 N——

>0
~2
ca” 266 2 256
— 1
+ 22 {5 CA+T [5 +01]Cg( + || )}
>V(&s)

where the lower bracket bound follows from Assumption Block (A.m) and (80).
This is

~ ~ 72 (2 2 2 (2
< Sp[V)(x) + e + 2 {—”—”+—[ e +cl] Ca(1 + |z] )}

2c2 dcag T|0c
22
~ cay” [ 2eci 2 [2ec2
= — 1
V(z)+e+ 22 {5CA+T[5 +01]CQ( + |z| )}

Since this is true for all € > 0, one sees that for all T > 0,

SelV)(w) < V() + 247

T 202 C1Cao(1 + [x]?),
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which for proper choice of Kj,

() + 2201+ faf?).

<

We note that we can repeat exactly the same reasoning with V (z) = Sp[V](z) on
the left side of the inequalities and S7[V](x) on the right side. Hence, we obtain the
result

Sr[Vi(@) - V()| < 2 (L + 2. O

8. Combined errors. We are now able to give a precise estimate of the conver-
gence of 57[V"] towards V as 7 | 0 and T — co. Indeed we have

=7 —0

S7[V'](2) < V(z) = Sr[V](2)
(1 +]z?)

For example, if we want 0 < V(z) — S [VO](x) < 2¢(1 + |z|?), we can choose

(1) T>Ks/e =T,

(2) 7 such that 7+ /7 < e/Kj.
Suppose that such a 7 satisfies 7 < 1. Then item (2) becomes T < [¢/(2K})]?. Hence,
to get an approximation of order ¢, it is sufficient to have N = T'/7 o< 3.

9. The theoretical and the practical. There are two aspects to this work.
One is the theoretical result that there exists a numerical method (for this class of
problems) which is not subject to the curse-of-dimensionality. The second is the
question of the practicality of the new approach. As with the interior point methods
developed for linear programming, where construction of increasingly fast methods
required further advances over the initial algorithm concept, it is clear that this will
be the case here as well. We will discuss the main theoretical computational cost
bound and then turn to some remarks on the issue of practical implementation.

Suppose one beginb the algorithm with an initial VO or equivalently an initial @,
of the form V' = @ VO for some set of initial quadratic forms V° = {Vo} . Let
Jo =]1, Jo[. From sectlon 8, one sees that we can obtain an approximate solutlon Ve
with error

0<V —VE<e(l+|z?),

where V& = S’;VT [VO] in N. = [(K /%) steps, where K may depend on ca, 4, ¢p, ¢s,7,
and choice of V°. Then the number of elements in the initial set of triples is #@0 = Jp.
Recalling the algorithm from section 4, at the k + 1 step, one generates each of the
triples in Op1 from the triples in Oy by matrix/vector operations requiring C(14n3)
operations where we recall that n is the space dimension and C is a universal constant.
Note that there are JoMP¥ triples in Qk at each step k. Consequently, we have the
following result, which is of theoretical importance as it clearly states the freedom
from the curse-of-dimensionality.
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THEOREM 9.1.  Suppose one initializes with V° = {‘Z-O}qul (where Vo=
@jil ‘//;-0 ). Then the number of arithmetic operations required to obtain a solution
with error no greater than (1 + |x|?) over the entire space is bounded by

~ Ne
ClJo [Z M*

k=0

(1+n?),

where N = f(F/53), K may depend on ca, A, cp,cqy,7, and choice of V°, and C is
universal.

Two remarks regarding the practicality are appropriate here. First, this approach
is clearly most appropriate when one is not attempting to obtain a solution with
extremely small errors, due to the curse-of-complexity (i.e., the exponential growth
with base M). Second, direct implementation of the algorithm of section 4 is likely not
reasonable without some technique for mitigation of the exponential growth rate. We
note the following techniques for reduction of the computational complexity, without
which the algorithm is not practical.

9.1. Initialization. In practice, we have found that the initialization 7 =
@%:1 V'™ (where we recall that each V'™ (z) = $2/P™x and P™ is the solution of
the Riccati equation for the mth constituent Hamiltonian) greatly reduces the com-

putation over the use of initialization V'~ = 0. The savings are due to the reduction
of N..
9.2. Pruning. We have also found that quite often the overwhelming majority

of the JoMP triples at the kth step do not contribute at all to Vk. That is, they never
achieve the maximum value over M at any point € R™ \ {0}, and this provides an
opportunity for reduction of computational cost.

Recall that with initialization a° = @ e @°, the solution at each step had the
representation given by (35). We now introduce the additional notation

~ =~ (Ak -k ~k
A(j,mk) = (Qu,mk)’ Z(j,mk) T(j,mk))

for all j € Jy and m* € M*. Given any Z]\%
step k + k be denoted by

Qb = {A’“J”’" |m~ e M“} :

Gty = V4G m med)

) € @k, let the set of all its progeny at

Lk
s

Let

iy (1) = 52 = 2 iy Qb (& = 2 iy) + 7 -

The following is obvious from the definition of the propagation.
THEOREM 9.2. Suppose (j,mk) € Jo x MF is such that

(81) a’gjmgk)(x) < Ek(x) Ve R™\ {0}.
Then, for all k > 0 and all m" € M",
A b ey (@) <T (@) Ve R™\ {0},

Let Of C Qx. We say O < Qy if (81) holds for all gf, ., € Qf.
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COROLLARY 9.3. Suppose @}Z co satisfies @Z =< @k. Let

A ANk, K
Qk—i—n = U Q(j,rﬂk)a

ok O *
4Gy €
-~ ~ ~ J— k -~
and Qj . = Qpan \ Q.- Let VI be the solution generated by Q} .. Then
V@) =V @) Yo e R

Let us say that qA% is strictly inactive if (81) holds. Then the corollary implies

mk)
that one may prune any and all strictly inactive elements at any and all steps k with
no repercussions. To give some idea of the computational savings with such pruning,
suppose that one happened to remove the same fraction f at each step of the iteration.

Then the fractional computational reduction from that given by Theorem 9.1 would be

Sl = f)MF
Zgio Mk

)

which is (very) roughly (1 — f)Ne.

In some of the examples tested so far, 1 — f was small, and so this type of pruning
has been useful in practical implementation of the approach. It should be noted
that condition (81) is not obviously easy to check. Instead we utilize the simple,
conservative test where we prune qA% ey 1f there exists (4,mF) such that

Af o (@) <l (@) Vo e R\ {0},

(Note that this test may be done analytically.) In spite of the apparent conservative-
ness of this test, it has produced excellent computational savings over implementation
without pruning in some (but not all) cases.

9.3. Overpruning. Note that the algorithm converges to V from any 7=
é e Vjo € G5 for sufficiently small § (with quadratic Vjo of course). Suppose that

for steps k € {1,2,..., K, } (for some finite K,,), one pruned elements of Q) which were

not necessarily strictly inactive. By viewing the resulting VKP as a new initialization,
we see that the algorithm will nonetheless converge to the correct solution. Noting
the curse-of-complexity, we see that this overpruning (removing potentially useful
triples) may be an attractive approach. In practice, we have employed this approach
in a heuristic fashion by, for a fixed number of steps, removing all triples whose
corresponding a’gj,mk) did not achieve the maximum over (j, m*) € Jy x M* on some
fixed, pre-specified, finite set &, C R".

For example, in some tests, we chose &}, to consist of the corners of the unit
hypercube. Note that in this case #X, = 2", and so by performing this overpruning
for a fixed number of steps we are introducing a curse-of-dimensionality-dependent
component to the computations. (However, the growth rate of 2" is extremely slow
relative to that for grid-based techniques.) In the examples so far tested, employing
this purely heuristic pruning for quite a few steps led to tremendous improvements in
computation time or equivalently, multiple orders of magnitude reduction in solution
error £(1 + |z|?).
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This leads to the question of whether some approach that overpruned the @k,

reducing the number of the (not strictly inactive) elements of Q) by some fraction
going to zero as k increased, might be a highly effective approach. Of course, one
would use a pruning criterion that was not curse-of-dimensionality dependent.
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