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ESTIMATING SURFACE CURRENT FROM A SATELLITE IMAGE

by
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requirements for the degree of Master of Science

ABSTRACT

Surface current velocities can be estimated by careful use of
surface characteristics obtained from a satellite image, together
with other oceanographic data and simple oceanic dynamic approxima-
tions. Three simple approaches are used to estimate the propagation
speed of a meandering current, the tangential velocity of a circu-
lating eddy and the cross-current velocity of a deflected plume jet.
Three case studies are also presented to verify these approaches.
The results show that the estimated Gulf Stream propagation speed off
Cape Hatteras is approximately 160 cm/sec; the maximum tangential
velocity of the Gulf Stream warm core ring is approximately 180 cm/sec,
and the cross-current velocity off Brazos Santiago Entrance Channel
is of order 15 km/day. These estimated speeds are consistent with
the representative oceanographic local data. This method offers a
convenient and economical way to estimate the surface current from
an image. However, careful approach selection and careful surface
characteristic measurements from an image should be made in order to
avoid serious errors.

Thesis Supervisor: Erik bbllo-Christensen, Professor of Oceanography
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1. INTRODUCTION

1.1 Reviews of Surface Current Estimation from the Satellite Images

There are generally two broad methods to estimate ocean surface

current quantitatively from a satellite image. The first method is to

use the variation of sea surface characteristics obtained from success-

ive images and their time digEexences as- data to estimate surface cngrent.

The surface characteristics can be current boundaries, water masses,

sea surface temperatures, ocean waves, a defleted plume, and many other

sea surface and subsurface physical characteristics that can be sensed

from satellites. The variation of these characteristics, usually mea-

sured in distance, with the time elasped of the corresponding images,

can be used to estimate the surface current speeds. The second method

is to attempt to apply some surface physical or subsurface characteristics

which are obtained from one image, to simple mathematical approaches

or models so that the surface current can be estimated accordingly. The

surface characteristics can be the wave length of a surface wave or

a meander, the diameter of an ocean ring or eddy, the defleted angle,

the width and the curvature of a plume trajectory, etc. Usually a

cloud-free satellite image, either infrared or visible, can show these

features quite clearly. Obviously, the ideas of current estimation from

these two methods are quite different. The first method tries to esti-

mate the surface current from a sequence of successive images, while the

second one attempts to estimate it from only one image, with the

assistance of simple models or concepts.

Many investigators have used satellite images to detect the

main currents around the world oceans. In the Gulf Stream region,
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Wilkerson (1967) used Nimbus II meteorological spacecraft, carrying a

television camera and two infrared radiometers, MRIR (Multi-channel Medium

Resolution Infrared Radiometer) and HRIR (High Resolution Infrared

Radiometer) to detect the boundary of Gulf Stream. The results showed

that the position of the boundary are in good agreement between the

satellite data and the ship and airplane observation. He also concluded

that the combined data would be adequate for the study of synoptic

changes of the Gulf Stream. Rao et. al. (1971), DeRycke and Rao (1973)

and Stumpf and Rao (1975) discussed meanders and eddies of the. Gulf Stream

and their evolution, using satellite infrared data obtained from

NOAA satellite series. Vukovich (1976) and Vukovich and Crissman (1978)

studied a cold eddy on the eastern side of the Gulf Stream using NOAA

satellite data and the ship data. The cold eddy was observed for

about two weeks and moved southwest and finally entrained- warm Gulf

Stream water into its outer fringes. Maul and Hansen (1972) also inves-

tigated the western edge of the Gulf Stream surface front structure by

ship, aircraft and satellite. They found that the sea surface tempera-

tures at the Gulf Stream front obtained from HRIR of Nimbus II and IR

scanner of aircraft are in quantitative agreement with the ship data.

In other parts of the world ocean, for example, Duing and Szekieda

(1971) observed the Somali Current for several years using Nimbus series

satellites. They were able to determine the synoptic temperature of

this region, which allowed them to study the development of the baro-

clinic structure of the Somali Current in response to the South-west

Monsoon; Szekielda (1972) also observed the Bengula and Agulhas Cur-

rents, using Nimbus II HRIR; Warnecke et. al (1968, 1969, 1971)
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repeatedly observed the Falkland and the Brazil currents and their

thermal boundary using Nimbus series satellites and found that the

boundary between these two currents is changing significantly every day.

Recently a satellite radar altimetry technique has been developed,

and provides a direct measurement of the sea surface topographic height.

From such measurements the geostrophic component of the surface current

can be computed directly (McGoogan, 1975). Leitao and Huang (1979)

used the altimeter data of the Geos 3 satellite to detect the Gulf

Stream surface boundaries. Results point out that the radar altimeter

can sense the Gulf Stream boundaries with as much precision as the

infrared-derived data analysis, and it also gives excellent agreement

with the in situ data.

Almost all the investigators mentioned above observed the currents

and current boundaries from satellite data and obtained sea surface

temperature distributions and the positions of the boundaries. There

were very few cases in which the current systems were related dynami-

cally to their propagation of features and current speeds. Only very

recently some investigators introduced the concept of dynamical inter-

pretation of satellite data to estimate the surface current (speed).

Tseng, et. al (1977) analyzed the thermal boundaries between the Falk-

land and the Brazil currents obtained from about seventy Nimbus IV

and V THIR (Temperature humidity infrared radiometer). From this

analysis, the speeds of the movement of the current fronts (east and

west direction) in every season can be estimated. The results are in

good agreement with ground truth data. Emery and Mysak (1980) applied

two series of VHRR (Very High Resolution Radiometer) from NOAA 5, to
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estimate the frontal wave propagation speeds off Vancouver Island and

also to test a simple stability theory (Mysak, 1977). The winter

series of three images exhibits cold tongues, extending seaward from

Vancouver Island, which have separations (wavelengths), northwest

phase speeds and growth rates consistent with a model of baroclinically

unstable waves; an earlier summer series of eight images displays no

such propagation behavior. Vukovich and Crissman (1980) also investi-

gated the Gulf Stream western boundary eddies using NOAA-5 VHRR and ship

data. The propagation speed of the wavelike western boundary was

determined by analyzing successive positions of the wave crest versus

time. Best estimates were obtained when crest positions were established

from satellite imagery obtained at least two days apart. Although the

spatial resolutions of the satellites are still low and the distortion

of the images high, these investigators were attempting to estimate

the current speed from many successive images. This method, as I

classified it into the first method of estimating surface current, is a

direct measuring method from images, not related to interpretations or models.

The second method of current estimation from a single image was

proposed recently, because in general, many cloud-free successive images

are difficult to obtain. Such methods attempt to estimate the current

by employing some surface or subsurface characteristics of the ocean,

which can be measured from any satellite image, to a simple mathematical

model of ocean dynamics. In this approach, the surface current speed or

average speed can be estimated accordingly. Very few papers have been

published up to now, except for a paper written by Mollo-Christensen,

et. al. (1981). Although they did not mention this idea



-9-

as clearly as I defined here, their intention to estimate the current

velocity from an image is clear. Assuming barotropic instability

waves to be excited by M2 tidal oscillations, the phase speed is the

wavelength divided by M2 tidal period. This method applied to the

Gulf Stream beyond Cape Hatteras give estimates of current speed in

,general agreement with in situ observations.

1.2 Objectives of Study

The second method defined in the previous section seems to promise

to be a convenient and economical way to estimate surface current speed

that can not be "seen" directly from an image, from the surface or

subsurface characteristics, that can be obtained from an image. It is

generally possible to assess the order of magnitude of velocity of a

fluid from observations of some of the symptoms appearing on it. For

example, the characteristics of meanders between two different speeding

water masses can be.related to their relative velocity; the diameter

of a circulating ocean core ring can be related to its tangential

velocity; a deflected plume trajectory or sea floor sedimentary distribu-

tion can be related to the longshore current; a surface wave pattern

in a coastal area can be related to propagation by current; a surface

or internal wave pattern in the open ocean can be related to the wave

propagation in the ocean, etc. However, how to relate the surface or

subsurface characteristics obtained from a satellite image to surface

current speed is still a task left to research and exploration.

My purpose in this study is therefore intended to further explore

this new idea and present methods of current investigations of the pos-
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sible relations between the surface characteristics to the surface

current, either through simple ocean models or through simple oceanogra-

phy concepts. Some case studies will be chosen as examples to apply

these methods. Due to the unavailability of the ground-truth data, the

results will be compared only with some average data of those regions.

Another purpose is intended to use the newly-installed RSMAS 'system

for image interpretation. This system, equipped with a navigation

subroutine enables us to measure the distance very rapidly and accu-

rately.



2. SOME APPROACHES FOR SURFACE CURRENT ESTIMATION

2.1 Meander of the Current

The meanders of a current, which are good indicators of a current

moving, can usually be observed from an IR image as well as a visible

one. As we know, most of the principal currents in the world form

sharp boundaries with their adjacent waters, and these meanders generally

show up on the boundaries. The mechanism of forming meanders is still

unclear; however, it is felt to.be something related to the instabilities

of the currents (Stommel, 1965). The most famous current, the Gulf Stream,

has its meanders; the other currents, for example, the California

Current, the Norweigian Current, the Kuroshio Current, the Brazil Cur-

rent and the Falkland Current are also known for their meanders. These

meanders can generally be observed clearly from the cloud-free satellite

images, either infrared or visible.

Current meanders can be produced by the instability of the velocity

profile across the current. Stommel (1965) noted that the meandering of

the Gulf Stream may be due to instability, either barotropi,

baroclinic, or both. In the theoretical studies of the meandering

of the western boundary currents by Orlanski (1969) and Orlanski and

Cox (1973), they concluded that the meandering of the Gulf Stream

between Miami and Cape Hatteras can be attributed to baroclinic insta-

bility, and this result can also be compared with the observations.

The baroclinic instability of the boundary currents may be a source

mechanism for eddies in the eastern parts of mid-latitude basins and

that these eddies may induce the sort of wave-like temperature pattern

in the front dividing the cold slope water and the warm Gulf Stream.
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Niiler and Mysak (1971) analyzed a barotropic constant f-model in which

the velocity distribution and bottom topography of the continental shelf

were approximated by segments of constant potential vorticity and depth.

Unstable barotropic waves were possible in the model, because the

potential vorticity was chosen to contain maxima in its distribution

across the current. The arguments for these extrema are that the

cyclonic shear in the inshore region raises the relative vorticity

sufficiently to overcome the opposing effect of increasing depth of

the shelf and slope. If the slope is small enough, a maximum occurs

in potential vorticity. A region of anticyclonic shear on the seaward

side of the Florida Current over a slowly varying depth yields a mini-

mum in the cross-stream potential vorticity distribution, ]h studying a sequence

of infrared images of the meanders off Cape Roman and Cape Fear,

Stumpf and Rao (1975) suggested these meanders are influenced by topo-

graphy and by instability of the Florida Current. In short, several

mechanisms for generation in the Florida Current have been identified:

barotropic and baroclinic instability in the presence of topography,

bottom features forcing deflections and downstream lee waves,

excitation of propagating waves by atmospheric forcing. Nonlinear

mechanisms are yet to be explored, as are the effects of the downstream

(Fofonoff, 1980).

In a model study of the stability of California Undercurrent off

Vancouver Island, Mysak (1977) attempted to show that the mesoscale

variations observed in the temperature and the currents off Vancouver

Island may be due to baroclinic instability of the California Undercur-

rent which flows northward along the continental slope. He found
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that the wavelengths of the most unstable waves agree very favorably

with those associated with the cellular pattern in the sea surface

temperature. A sequence of three VHRR infrared images from winter of

1979 exhibits a wavelength, phase speed and growth rate reasonably con-

sistent with the baroclinically unstable model. It is possible that

the observed wave is a marginally unstable, gravest mode nonlinear

wave that has equilibrated (Emery and Mysak, 1980).

Hydrographic and current observations of the Norwegian Current

show a considerable amount of low-frequency variability. Mysak and

Schott (1977) considered a number of simple barotropic and baroclinic

instability models of the mean flow in an attempt to explain these

fluctuations. The theoretical results suggest that the current fluctuations

most likely are due to baroclinic instability of the mean flow.

The Kuroshio Current, which flows along the coast of Japanis also

known to meander. The most conspicuous properties of the meanders are

large and long-lived. Some meander continued as long as 10 years

(Shoji, 1972). The Kuroshio meander south of Japan exists for a

period of years, disappears for other years, and then reappears for ano-

ther period. Decay of the meander appears to be a much slower process

than generation. The three periods in which cold water masses

occurred continuously are during 1935-44, 1953-55, and 1959-63. Obser-

vations indicate that it is present when the baroclinic transport of

the Kuroshio is weak and is absent when the transport is large. When

present, the wavelength of the meander is directly related to the

magnitude of the transport. White and McCreary (1976) proposed that this

large quasi-steady meander can be modeled as a Rossby lee wave phenomena
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induced by a zonal baroclinic inertial jet passing past a coastal

perturbation, scaled to represent Kyushu Island. However Solomon (1978)

and Taft (1978) opposed this theory. Solomon objected primarily to

the hypothesized influence of the Izu Ridge on the current path. Taft

pointed out an apparent contradiction between theory and observation:

in 1971 there was no meander in spite of the fact that relatively low

values of transport were measured off Enshunada. McCreary and White

(1979) discussed again their theory and explained their points of view.

Although the theory of the Kuroshio meander is still being argued,

the mechanisms for generation of meanders could be similar to the Gulf

Stream, i.e., the barotropic and baroclinic instability in the presence

of topography; bottom features forcing deflections and downstream lee

waves; and excitation of propagating waves by atmospheric forcing.

The mechanisms of meander generation for the Brazil and the Falk-

land Currents are still unknown; however, the complexity of the meanders

are observable from most of the cloud-free images (eg. Tseng,et. al., 1977;

Szekielda, 1976).

2.1.1 Stable Meanders

Certain types of meandering might exist in which stratification and

inertia are dynamically important. The density stratification of the

real ocean is approximated by a two-layer system. If a meander is wide

and stable, we can treat the problem as having uniform absolute vorti-

city. The absolute vorticity is conserved in the upper layer and, based

on this, I present the following method to estimate the phase speed

which is found to be very close to its current speed.
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Vorticity conservation gives:

+ - (2.1)

where h is the depth of the upper layer; h the value of h(x)

at x - oc ; f the Coriolis parameter; v the tangential or

meander velocity, which is close to the current velocity.

Where currents are curved or meandering, the centrifugal force

accompanying the flow curvature must be taken into account. When the

motion is anticyclonic, the centrifugal force augments the horizontal

pressure gradient force, and when the motion is cyclonic it augments the

Coriolis force f in both hemispheres. Then the equation of motion

in the upper layer is

-V i V f == ' (2.2)

where g' is reduced gravity; r the radius of curvature, which is

assumed much greater than the width of the current (positive for

cyclonic motion and negative for anti-cyclonic motion).

From Eq. (2.2) we can obtain v :
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(2.3a) for anticyclonic
motion

(2.3b) for cyclonic motionV= - - -+ + 4 ;)' k ) Y

In Eq. (2.3a) we have to choose the minus sign, and in Eq. (2.3b) we

choose the positive sign, in order to make v zero when the pressure

gradient vanishes. Eq. (2.3a) shows that, when 4 > L

v becomes imaginary. Therefore, the pressure gradient is less than

the Coriolis force in the anticyclonic case. We now consider the

cyclonic case, and substitute h from Eq. (2.1) into (2.2). We

obtain

Rrc

4A

I2
(2.4)

We regard the nonlinear term as small in comparison with others,

and express v in series form and proceed as Stommel (1965):

where

2 2. a x
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LrZ

Substitute this series in Eq. (2.4) and obtain

V,=R *

V*X R

19 -1 - irL

+ - ---

The solutions are

0-.
- R

3

V
at.

c -3.X
2 6

and

(2.5)

(2.6)

(2.7)
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We can also find the first approximation of h from Eq. (2.2)

by direct integration

o 
r

-. ( I- e
... r

- 2R x
(2.8)

where h is the value of h(x) as

x as h vanishing is approximated by

X -DI 00 . The value of

The total transport of the current T is

(2.10)

so

J , Ae X :r )
x= -12?1 

(

(2.9)
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Suppose the shape of the meander is

X = X, COS ( A - e+) (2.11)

where x is the amplitude of the meander, 1 is wave number,

e is the frequency. At time t=O , the rate of increase of

volume of water between ly=O and ly= IT due to the motion of the

meander is , e 4 .('.) . This, of course, must be equal to the

excess of transport through a crest (ly=0) over that through a trough

(ly= 1) , C -&v /3R r . But at t=0 and y=O , the radius of

curvature r is also given by ~' I= a'x /a __ , hence

the phase speed advances parallel to the y axis C is

Cy

C - _ (2.12)

where wave number, 1 , can be calculated from wave length 9A

which usually can be measured from an image. C is

usually known in the current. For example, in the Gulf Stream area,

the typical value of g' -- 1 cm sec-2 , h .~ 1 km, and yields

c = 3.2 ms 1. For a meander wave length of 300 km, the phase speed is

therefore about 23 cm/sec. For a meander wave length 150 km, the

phase speed becomes 95 cm/sec.



-20-

2.1.2 Baroclinic Instability

When a boundary current is considered to be baroclinically

unstable, it is due to the vertical shear in the basic current. This

also implies a horizontal temperature gradient and therefore the

presence of available potential energy. Otherwise the process only

depends on the existence of horizontal shear in the basic current.

This kind is a barotropic instability. Although all currents in the

atmosphere and the ocean. possess, to varying degrees, both horizontal

and vertical shear, it is helpful to simplify the situation if we

consider one of them as dominant in a current system. In order to

discuss baroclinic instability, and hopefully to relate it to our pur-

pose, i.e., to estimate the surface current, at least to estimate a

range of the current speed or the current speed as marginally unstable.

I would like to consider the simplest two-layer model. The two layers

of fluid,each with different constant density, lie on a plane rotating

with angular velocity f, + 0 v . The lighter fluid lies above the

heavier one. The fluid is bounded above by a rigid horizontal plane.

The lower boundary is nearly flat and the mean distances of the two

layers are h and h2 respectively. The deviation of the lower

boundary from perfect flatness is given by the equation for the

bottom 2, = *1 (X) where d *is an amplitude measure of the

bottom variation and 4 (X) yields the shape of the bottom, as

shown in Fig. 2.1 on the following page.
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Fig. 2.1 Geometry of Two-layer Model

For small Rossby number R , 4. , the governing

non-dimensional equations of motion are the quasi-geostrophic potential

vorticity equations (Pedlosky, 1976).

-+ -41 A-13 4 T (2.13)

S~ - + +B( -- i -;t) (2.14)

-21-
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P, U1 V1

X,u
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and associated boundary conditions

J-n 
1

where x and y are longitude and latitude coordinates, 4', and I?

are the non-dimensional geostrophic streamfunctions.

d c*/ 1 A 0 '

2.U

The function

tial vorticity

mean potential

generalize the

either x or

of an external

Ti, (., , -t ) are some unspecified sources of poten-

for each layer which will be responsible for altering the

vorticity of the current along its path. We want to

conditions and assume there are nonzonal basic flows in

y direction. Nonzonal basic flows imply the existence

forcing field. This forcing field can be wind stress on

ZO
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the surface or friction force at the interface between layers, or

bottom friction force. Consider now the basic state to examine the

stability of the flow. We write

$1 ""is =U, )+ V. X + N .,3,t)

where U1 , U2, V1 ' V2  are constant. If Eqs. (2.15) and (2.16) are

inserted into Eqs. (2.13) and (2.14), linearized and neglected the

second order of 0 ; we obtain the perturbation equations

21= X

!I) VL+ ( - ')\J +-

2-0)( ±

(2.15)

(2.16)

(2.17)

(2.18)



-24-

where T =- - L %/fU (topographic parameter). For cy < O

the bottom slopes upward toward the coast as shown in Fig. 2.1

The associated boundary conditions are

-O 0 at 0 I j 7) = ), 2

If we seek traveling wave solutions of Eqs. (2.17) and (2.18)

+1=Re 1 A ., P-
Z(R -6't )

)&

without loss of generality we take > > o and 0

Also we can choose A where *- '- + -

Substituting and into Eq. (2.17) and (2.18), we

obtain

- B C e '- '- -V1Q-)= (

A ';% '1WirxI2. = Re BW e - (11 - Y-0

(2.19)
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A , 'T , + U2 k - \i.1 ) -

+ V12r - -- T =0

Solve Eqs. (2.19) and (2.20), and- obtain the dispersion relation

a. + b +- A-.. - 0

(2.20)

(2.21)

and = - 1l.
2A, .

(1- 4 ma)

. I t'F,4 V. )

b ~ ~ = , + 0 , + 2 A'( A , .

t ( p2+ F,) I

+ .( + )-1 FF.0 j

K 2

0,

. + k

= Ui.-Vft

.A

-r .
0 o .4L- V 'I. 'krrn\ 1

where

and

8, \, ( R'r+ U2,-k - \l. A)
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If we change frequency

becomes

to phase speed c . Eq. (2.21)

A'tZ' -+ "-=

where

' O U + )+ [ -+ T )+ U,,.

0, 1 kv- F.

A

v, = , x = V,/

and

The phase speed c may be written in terms of its real and

imaginary parts, and c = cr + ic where cr = Re( o')/K

c. = Im(G')/K.

(2.22)

OL I -= V, + r , -* T-, )

,~01. pA g , -
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A nontrivial solution exists for arbitrary Am provided that

--- (Cr+ Vi) (2. 23a).M r S+

( .
(2. 23b)

The velocity components in each layer are computed from the relation

and V =

e- t
U1 to,~ AA.(Lj I

T =
Ti ~ e- Co5(.

. Their forms take

- fr) AAA Inn '

- 6 t ) C.OS -Mf xn

Ge t
e, , k -

(2.24)

e. Co S -G-- t +- A) CO sn 7 X

Re (&- )

) &,. 4 \- 4

t8

erwhere

[(C,.+VI C '

LA = --

= -Ip I A , '
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The solution of phase speed in Eq. (2.21) can generally deter-

mine the instability criteria of the flow motion. In order to simplify

the problem, we assume the following cases.

Case I: U2 V2 = 0 and T = 0 . This means no mean flows in

either direction in lower layer and without topography. Substitute

U1 = -U in Eqs. (2.19) and (2.20). We obtain

(2.25)

A,(c) Ex -8,{ ( k J - FU ] =o

These equations are exactly equal to the non-zonal two-layer equations

(Pedlosky, 1979), and

where

a. K P
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In particular, the minimum critical shear required for instability

is either

Uc =

UC.-

.1

/

> 0 (2.26a)

< 0 (2. 26b)

However, for k = 0 , will vanish, so that any shear will

be unstable to such a disturbance as long as U1 / 0 for k = 0

This requires only that the shear flow have some nonzero component

in the y-direction. That is for k = 0

.1
Thus, as long as < . (F-I , , the basic flow will be

unstable to the mode with k = 0 , and therefore no minimum shear

is required for instability.

Case II: U = U2 = 0. This means no zonal mean flows. Eqs. (2.19)

and . (2. 20) become

+ (r-I T-, AKL+ F1) T + Z~
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d 'a tV v '( v,- )(, -v - T;- )

Case III: When rotation of earth can be neglected, i.e.

also no zonal flows, i.e., U1 = U2 = 0 . Then

p = 0,

b = - -+ (.v + v, + k v -a(F -F ) -T(k +F 1
6= -( [0 a V*V .y)- F, T(

These equations are for a baroclinic two-layer model with meridional

flow in both layers (Mysak, 1977, Mysak and Schott, 1977).

Case IV: When either no mean flow in x direction or in y direction,

i.e., U1 = U2 = V1 =V 2 = 0 , and also = 0 , then

(2.27)t? = t (R 'L+. , ) T / k' + T-, + F, )
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which represents the dispersion relation for a topographic planetary

wave in a two-layer system which propagates in the y direction.

In principle, the dispersion relations stated above allow us to

find a criteria shear or shears to be unstable, which is a function

of wave number. Referring to some other parameters of a current

system, a wave length obtained from a satellite image can be

obtained from a satellite image to be unstable. Its corresponding

wave speeds can also be varified to be unstable.

2.2 Eddies or Core Rings in the Ocean

A warm or cold core ring in the ocean is a flow structure asso-

ciated with an isolated mass -of anomalous water, significantly warmer

or colder, saltier or fresher, that its surroundings. The rings are

approximately circular structures which are generally considered by the

pinching off of a current meander. Many currents are known by their

"rings". The Gulf Stream and the Kuroshib are the most well-known.

The East Australian Current (Andrews and Scully-Power, 1976), the central

North Pacific (Bernstern and White, 1974), in the Arctic Ocean (Newton,

et. al., 1974; Hunkins, 1974), etc. have also been found to have a large

or small ocean eddy.

Many investigators have already studied or observed cold or warm

core rings in the Gulf Stream. As far as we know, the cold core rings of

the Gulf Stream, formed south of the stream, have a central core of very

cold slope water surrounded by a-ring of high-velocity cyclonic currents.

The warm core rings, formed to the north of the Stream, are an isolated

lens of warm Sargasso water lying on top of the colder slope water



-32-

surrounded by a ring of high-velocity anticyclonic current. While the

exact physics of the separation process is not known, it is known that

the meanders of the stream become sufficiently large to form detached

cold eddies (Parker, 1971; Fuglister, 1972; Gotthardt, 1973) and

warm eddies to the north (Saunders, 1971) of the stream at irregular

intervals. A cold ring may keep its integrity for as long as two

years (Richardson, et. al., 1973) with warm water slowly encroaching,

or it may be reentrained in the Gulf Stream.

In the region of the Kuroshio Current east of Japan, large-scale

anticyclonic eddies are generated on its left side and cyclonic eddies

on its right. The anticyclonic eddies have warm cores which are con-

sidered to represent water separated from the protruding ridges of the

meandering main stream axis. Many research vessels operated by several

institutions of the Japanese Government have cooperatively taken oceano-

graphic observations in a grid over the sea area adjacent to the

Japanese Islands almost simultaneously for 17 years, from 1957 through

1973. They provided the.characteristics of 154 examples of typical

warm eddies at the confluence zone of the Kuroshio and the Oyashio

Currents. The eddies are elliptical forms with an average diameter of

about 130 km (70 n mi), and usually move to the north or northeast with

a speed of 0.5 - 3.6 km/day (0.3 - 2.0 n mi/day) along the contours of

the continental slope. Their sizes and maximum core temperatures

decrease as they move to the north (kitano, 1975). The depth of the warm

eddy in the Kuroshio and the Kuroshio Extension is about 200 m,

shallower than in the Gulf Stream (Kawai, 1972). The cold eddies were

found south of the coast of Japan, associated with the large-scale
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meandering of the Kuroshio. The cold eddies have low salinity and

high oxygen content at depths between 200 m and 500 m (Masuzawa,

1955a, 1955b, 1956) in the Kuroshio Extension. The temperatures of

cold eddies are below 3 or 4*C which seems to be lower than those in

the Gulf Stream (LaFond, 1968).

Many investigators also found warm core eddies off east Australia.

Wyrtki (1962) suggested that these eddies are separated from the

main current and probably drift south down the coast, and the eddy

diameters range from 200-250 km while drift rates are estimated 5-8

km/day (Boland and Hamon, 1970). Andrews and Scully-Power (1976)

observed an intense, anticyclonic warm winter eddy off the east coast

of Australia with an airborne radiation thermometer, expendable

bathythermographs, and a continuously recording surface thermosalinograph.

They found the eddy had a diameter of 250 km and a mixed layer depth

extending to over 300 m in the core. A strong current ring was present

halfway from the center to the edge of the eddy with the surface speeds

ranging from 0.6 to 1.78 m sec ~. The interior deep mixed layer was

completely enclosed by a shell of isothermal water, and indicated that

large-scale entrainment of surface water may be an important feature of

eddy generation off East Australia.

In the Atlantic area, Phillips (19661 and Swallow (1971) found

baroclinic eddies in the deep North Atlantic with length scales from

300 -to 400 km and time periods of 50 to 100 days, and also in upper

500 m (Bernstein and White, 19741. Based on the xesults of closely

spaced BT and fixed moorings data in this area, Bernstein and White

(1974) indicate that the eddies are not composed of a uniform water mass
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carried along by the mean flow, and propagate at a phase speed in

excellent agreement with the non-dispersive baroclinic planetary waves

( ~ 4.2 cm/sec). In the mid-latitude North Pacific Ocean eddies with

remarkable similarity in scales to the North Pacific Ocean were also

found (Bornstein and White, 1977). Even these eddies are present

further east with the California Current (Reid, et. al., 1963;

Bernstein, et. al., 1976).

In the Arctic, on the other hand, smaller eddies of 5-20 km diameter

have been observed (Newton, et. al., 1974; Hunkins, 1974) and some of

them are believed to be originally related to baroclinic instability

(Runkins, 1974). Also, many small eddies and related low-frequency

current motions have been observed in relatively small bodies of

water such as gulfs, straits and lakes (Otterman, 1974; Simons, 1976;

Chang, et. al., 1976).

Usually ocean eddies have been modeled in two different ways.

One is a diffusive model with consideration of an isolated vertex on

the f-plane (Molinari, 1970; Schmitz and Vastano, 1975), and the other

is the studies of mesoscale eddies on a s-plane with numerical models

(Bretherton and Karweit, 1975; Flierl, 1977). However, a simple

two-layer frictionless model based on the assumption of geostrophic

balance and inviscid constant potential was developed by Csanady (1979)

and improved by Flierl (1979) in order to discuss cold-core more

accurately. Later Nof (1981) applied this model to test his model

for the shape and structure of an Amazonian lens, and the results seem

to be qualitative agreement. This simple model is applicable to

calculate the tangential velocity of an ocean ring and to predict the
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decay lifetime of a core ring. Although the tangential speeds obtained

from some examples in the Gulf Stream seem too large, this model is

still a good example and method to relate the current speeds to

the surface characteristics obtained from a satellite image.

The equations for conservation of momentum in the radial direction

and the potential vorticity equation in cylindrical coordinates for

f-plane are

~~~V1 -~~eu (2.28)
at3r a 19 r ar

IA ry j - + A -I = O (2.29)

where h is the depth of the moving upper layer, g' is its

reduced gravity, and Ur and U are velocities along r and 9

directions. The potential vorticity theorem then states that

-t Us=L~ (2.30)

where is the stream function, and considered the simplest

case in which the potential vorticity is conserved, as indicated by

Stommel (1965), i.e., r (\x') = 4.. /K and h0  is effectively

the initial thermocline depth for most of the Gulf Stream water.

Further, assuming that the motion on the upper layer is purely tangen-
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tial, i.e., Ur

(2.30) reduce to

and -4- . 0ae
, then Eqs. (2.28) and

LA

t0

In Eq. (2.31), there are several cases of approximation:

1) Geostrophic balance, i.e. -t and

can be neglected

2) Inertial balance, i.e., U and

can be neglectedj

3) Cyclostrophic balance, i.e., and

can be neglected.

Refering to the first approximation, Csanady (1979) assumed that

approximation of geostrophic balance, that it, U 2 term in Eq.

can be neglected, hence

'3 at

Substitute Eq. (2.33) in (2.32), obtain

r T-Y Rlp

(2.31)

(2.32)

r10

wL

the

(2.31),

(2.33)
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The solution with the boundary condition h = 0 at r = r0

~ (2.34)

and the tangential velocity distribution of a ring is

\ - _(2.35)

where i= /t , is the Bessel function of

order n.

From a cloud-free satellite IR image (or visible) it is possible

to measure the radius of an eddy or a core ring very accurately and

quickly by means of the MCIDAS system at MIT. This measured radius

shall be very close to the real r , i.e., the radius when h

approaches zero. The values of h , which are effectively the

initial thermocline depths for the current systems, are also known

for most currents, and accordingly R is known. The tangential

velocity distribution of such a ring can be calculated from Eq. (2.35).

It is possible to calculate the rate at which a ring is losing

its available energy and then to estimate the approximate time scale

for the initial rate of decay due to friction and due to entrainment.

V~j~1~.IT kb riI 2R ___ (2.36)

C4,'
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The decay time scale due to entrainment may be calculated from

e A di
T 2

Ye 2k. g

(2.37)

and a time scale for the initial rate of decay due to friction is

- 4+ YC?
A E/&t T's

E =

(2.38)
4C.4 ~'

.ii r ,A r= i' c /' the total potential
P' a energy

vir 4 *
the total kinetic
energy

- 2. Ar

pS

;L -n Ok X

where

cj~v
~tt



-39-

and the parameters

rr

r0/R t V

-C C C Ueinterface stress

Cd is a drag coefficient _ 0.3 0 .5x10 - in the case

where the interface is sharp and stable (Csanady, 1978).

J entrainment velocity

A is a proportional constant.

Eqs. (2.27) and (2.28) are very similar to each other, except for

the different constants Cd and A . The order of magnitude of the

two time scales tf and t depends on that of the parameter Cd

and A, . When the case for very diffuse pycnocline, tf and te

may have the same order of magnitude. When the density gradient

at the core of pycnocline is large, turbulence is suppressed. In

, = Al, f3
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this case ring decay due to entrainment can be neglected in comparing

to frictional decay.

The geostrophic approximation is fairly accurate for the warm

core rings, but not very good for the cold core rings (Flierl, 1979).

In case the centrifugal terms are not neglected, we may eliminate

one of the variables h by substituting h from Eq. (2.32) into

Eq. (2.31). We obtain a differential equation with U only.

Ue

and

( _.(2.40)
.; ar r

Scaling Eq. (2.39) and (2.40) by r R , Ue~ U , hh 0 and

set E = U/fR (the Rossby number), we obtain the non-dimensional

equations

-:- 1 (2.41)
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For warm core rings, the boundary conditions are

v = 0 at r = 0,

h = 0 at r = r
0

For cold core rings, the boundary conditions are

v-+O as r o

h = 0 at r= r
0

and vary £ Eq. (2.41) is a nonlinear eigenvalue equation for E

and should be solved numerically using a Runge-Kutta method. The solutions

of warm and cold rings were plotted in the same reference (Flierl,

1979, Fig. 6 and Fig. 10). One may read the maximum current speed

from these figures. Refering to remote sensing data, it is possible

to measure r from a cloud-free satellite image. The maximum tan-

gential speed at r = r can be estimated from those figures.
0

Refering to the second approximation, a particle moves in a

curved path in such a way that the centripetal acceleration due to

the deflecting force of the earth's rotation is balanced by the

centrifugal force of the path curvature, or I Ue = deLy ,

where U is the velocity of the particle relative to the earth.

Inerital motion on the earth is necessarily anticyclonic, and closes

a path having a radius r = U /f in the period of one-half pendulum day.

Since the Coriolis parameter f is a function of latitude, the

path of a body in inertial motion is circular when it is symmetrical
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with respect to the pole or when it is projected on the equatorial

plane of the earth where f is constant; that is, where f is inde-

pendent of the radial distance from the axis of rotation. The time

needed to complete a full path around the circle of inertia is

called the inertia period, Tr

Thus, the inertia period depends only on geographical latitude.

2T /J-L represents a sidereal day, which is about four minutes

shorter than a solar day. The inertia period is also known as "half

a pendulum day" since it is half the period of revolution of a Foucault's

pendulum. Thus, at the poles, T is approximately 12 hours, at
p

latitude 30*, T is approximately 24 hours, and at the equator T is
p p

infinite. For mid-latitude around 45*, f equals 10'4 approximately.

At this latitude a current of 10 cm/sec the radius of the inertia

circle is approximately 1 km and inertia period is approximately 17.4 h;

and a current of 100 cm/sec the radius of inertia circle is approxi-

mately 10 km, and with inertia period of 17-18 hr. Motion in an

inertia circle has been shown to be quite real in natural situations

where there is a sudden impulse which generates fluid motion and allows

the system to coast without further interference. The classical exam-

ple of inertia currents with a translatory motion superimposed was

obtained in the Baltic Sea by Gustafson and Kullenberg. Neumann (1968)

stated that the period of oscillation is about 14 hours which agrees

well with the theoretical inertia period of 14 hours and 8 minutes in

the latitude of observation. Some other recent examples were observed

in the deep sea at latitude of about 31.5 0N and 1430E, a distance

of 300 K m from Torishima (Nan'niti et. al., 1964).
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In regard to cyclostrophic motion, there is an approximation

of small scale motion where the Rossby number, which is the ratio

of inertial force to Coriolis force, is very large. In this case,

Ue2/r becomes much greater than the term f U, and the Coriolis

acceleration may be neglected. Pure cyclostrophic motion can be

cyclonic or anticyclonic depending on the initial rotation but the

pressure gradient must always be positive. In equatorial regions,

cyclostrophic motion can be expected to occur more frequently at

higher latitudes, because f is zero or approximately zero in that

area. For example, in mid-latitude, fel0 4 and in lower latitudes

around 4* or 5*, fZ10-5 , when a U = 100 cm/sec, r will be

10 km for mid-latitude and 100 km for lower latitudes at 4* or 5*,

approximately.

2.3 Deflected plume from inlets and bays.

Deflected plume trajectory is also a good tracer for determining

cross current, because the out-flowing plumes generally have their

special surface or near surface characteristics that can be sensed

quite clearly in a cloud-free image. These special characteristics can

be the sea surface temperature anomaly, the sea surface roughness,

and/or the sediment anomaly between the plume jet and the ambient fluid.

The sea surface temperature anomaly can be the result of the discharge

of heated water from a power plant. Typical condenser water flow

rate is about 1500 ft 3/sec (675x103 gal/min). This results in about

12*F for nuclear plants (Lee and Sengupta, 1978). If the heated water

is discharged finally to the ocean, it will affect the sea tempera-
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ture to some extent and the temperature anomaly on the sea surface

can be sensed by an infrared image. Similarly, the outflowing plumes

always carry a lot of suspended sediments, which are also good

tracers for the satellite visible images. When there is a cross

current flowing near or far field outside the mouth of the discharge,

the discharged flow becomes deflected (if the Coriolis parameter can

be neglected). There are two processes which are considered the

cases of a turbulent deflected flow: the entrainment of the

lateral momentum of the longshore current and a net pressure force

caused by eddying of the ambient fluid in the lee of the jet and

the distortion of the jet boundaries. If the bottom friction force

can not be neglected, another bottom drag should also be considered.

Many mathematical models have been desired to analyze the

characteristics of a surface plume. An excellent reveiw and evalua-

tion of 40 surface plume models has been presented by Dunn et. al.,

(1975). Some of the models are described hereafter. Edinger and

Polk (1969) present analytical solutions which assume that the

heated discharge is a point source of heat at the water surface on

the boundary of a uniform stream which is infinitely wide and deep.

Carter (1969) treats the case of a heated discharge from a channel into

an infinitely long and wide basin with uniform depth as the channel

and with a cross current that is flowing at right angles to the

discharge. Strazisar and Prahl (1973) modify Carter's model with

the effects of bottom friction for non-buoyant jet entering perpendi-

cular to a crossflow of constant depth that equals to that of the jet.

Hoopes (1968) treats the problem similarly to Carter and assumes that
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there is no vertical entrainment and that the constant depth jet is

discharged into an infinitely wide and deep basin. These models,

solved by the method of integral, have been widely used since they

have some predictive capability and are computed more economically

that numerical models (Wada, 1968; prych, 1973; Shirazi and David,

1974; Stolzenbach and Harleman, 1971). Numerical models are becoming

more and more popular because high speed computers are available

and numerical techniques are developed. More importantly, the

three-dimensional nature of buoyant plumes and also time dependent

behavior with time varying boundary conditions can be accurately

simulated (Sengupta and Lick, 1974; Waldrop and Farmer, 1974; Lee

and Sengupta, 1978).

In order to apply for the remote sensing data, I would like to

choose a popular model that is able to show the relation between the

cross current to the outflowing deflected plume trajector. More

perfect models are still available; however, they can be solved only

by numerical techniques (refer to previous section). This model was

developed by Stolzenbach and Harleman (1971) and discusses two parts:

one is non-buoyant surface jets; the other is buoyant jet. Non-buoyant

surface jets are considered with a discharge of water horizontally

from a rectangular open channel into a large body of water at the

same temperature as the discharge. No bottom slope and no ambient

crossflow is considered. Buoyant jets are considered with the hori-

zontal surface discharge of water from a rectangular open channel into a

large body of water. The temperature of the discharge is greater

than that of the ambient water. There is no bottom slope and no
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ambient cross current to be considered first. These effects will be

included later.

The two coordinate systensused in the development of the model

equations is shown in Fig. 2.2. The 'x , y , z system is a rectan-

gular Cartesian coordinate system oriented along the centerline of

the jet so that x direction is outward and tangential to a point at

centerline, y direction is perpendicular to x and toward right of

x , and z is vertically upward. The second system, designated

x,y,z is a rectangular Cartesian system centered at the center of

the outlet of the channel so that x is offshore, y is shore

parallel and z is upward. The angle between the x and y axis is

9 , the jet being discharged with an initial angle 9 . The cross

current velocity , V , may be a function of x but not y

These two systems are related by the equations
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V(X)
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top view\

Jet centerline

let boundaries

Fig. 2.2 - Characteristics of a Deflected Plume Jet

(after Stolzenbach and Harleman, 1971)

Motivated by experimental results from non-buoyant jet theory,

Stolzenbach and Harleman (1971) divide the jet conceptually into

four separate regions, as shown in Fig. 2.3. The physical character-

istics of the four regions are assumed as:

Region 1: An unsheared central core of half-width s and

depth r

Region 2: A vertically sheared region of thickness h below

the core.

Region 3: A horizontally sheared region of width b , laterally

adjacent to the core.
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Region 4: A region sheared in both directions.

In the unsheared regions, the velocity and temperature profiles

are assumed to be uniform, whereas in the sheared regions the profiles

are assumed to decay smoothly from their maximum values at the

interior edge of the region to zero at the boundary of the jet. The

similarity functions for velocity and temperature within the jet are

taken as

r (2.43)
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and () 3)=j ) and 1 _ Z 
3 b .k 4

The concept of entrainment velocity is very important for this model.

A lateral entrainment velocity Ve and a vertical entrainment velocity

We are assumed to exist on the three submerged sides of the jet,

and also further assumed to be proportional to the centerline

velocity Uc(x) . Thus

Ve = cCX ) L CC = u (x) for non-buoyant jet

and

V e L(x) wtJe = l x) for buoyant jet (2.44)

where c4 and v(, are lateral and vertical entrainment

coefficients, respectively. It is assumed that for buoyant jets the

lateral entrainment is not affected by the buoyancy and that the

lateral entrainment coefficient d is the same as derived from

the non-buoyant jet; however, vertical entrainment is affected by

buoyancy and should be corrected. From their studies

= s ( 01?L~ 1 - -K,& (2.45)
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where a: thermal expansion coefficient

A T = T -, temperature rise above ambient

in jet. Ta) ambient temperature

: the density of the ambient water

and

s>0

-( 1 - ) -= 0

where g is the spreading rate of a free turbulent region taken

to be 0.22 normally.

The equation of jet bending used only for nonzero cross current

is derived from the following integral conservation relationship:

d0 TrSb
0 ''~ V VI

0~
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The relation of a cylindrical coordinate system is defined

I aR = A

After these integrations are performed, the result is

L s + 2 .y cose

+ V' 2 -/ (s + b) r+A)4 -

t 0 ( Y+ T) =0

(2.46)

where

3+

}(0 )

S(S) &s

-s

2.

) ~

'.4.

= 0.4500

0.3160

Uc, r , S 0( , 1 ( z

.P -I

VA C. C S + b ,') ( r+ , 1,)

1At. V A^- a [(- -4s

are the following values
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For o

Y' I 

-d4 l-

and

o~ ~ ~~C (3- L L-TC&3) T

Furthermore, it is possible to measure the figures of b , bo ,

9 , 90 and the R from a satellite image using the MCIDAS system and

the cross current at that position can be calculated from Eq (2.46).

Dunn et. al. (1975) criticized this model as: "The bending only due

to entrainment. Furthermore, the model does not allow external forces,

such as wind stress acting at the surface or the drag of ambient

current, to bend the jet. Instead only the entrainment of ambient

momentum is considered." However, it is thought that momentum entrain-

ment is the major component of bending even within the integral models

that allow the drag force.

The sediments discharged by a river occasionally are transported

and dispersed along the coast to considerable distances from the

river mouth due to the cross current impinging on the coastal waters
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near deltas. In addition to the outflowing plume described before,

that can be shown in the satellite images, the accumulated sediments

on the ocean floor can sometimes be "seen" from an image (e.g.,

Landsat, Channel 4). In this case, the trajectory and the width of

the sediment sitting that represents the average sedimentary transport

can be traced approximately from this image. The average cross-

current velocity can also be calculated from Eq. (2.46). Sometimes a

wave-like suspended sedimentary distribution appears on an image;

this sediment transport can be mainly due to M2 tide. The sediment

is transported out of the sea and shifted to the direction of cross-

current during low tide period; no sediment is transported out of the

sea during high tide period. The wavelength of the suspended sediment

can be measured from MCIDAS system and the average period of M2

tide is also known. The transported speed which is approximately equal

to the cross current speed can be estimated.

-low
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3. SOME CASE STUDIES

3.1 Methodology

In order to varify the approaches presented in the previous

section, we present the following three case studies: to estimate

the propagation of the Gulf Stream, the tangential speeds for Gulf

Stream eddies and the cross-current off Brazos Santiago Entrance

channel. Each case follows the four steps of study: to study the

regional oceanographic data; to study the satellite images; to apply

the approaches; and to compare the results.

To study the oceanographic data, it is practical to review papers

existing in the oceanographic literature. From this study, we will

understand more thoroughly the ocean dynamics and the representative

oceanographic data of this area. These representative oceanographic

data can be used either as parts of the input of the approach or as

the velocity ground truth to be compared later with the results.

To study the satellite images is to varify the existing satellite

images either from the MCIDAS system or from the Landsat MSS images.

Then those images which can possibly provide us with better informa-

tion for our studies will be interpreted in detail, either through

the MCIDAS system or through visual interpretation. The MCIDAS system

will enhance and amplify the interesting parts of an image, as well

as measure the sea surface features, such as the radius of a core

ring, the wavelength of a meander, the distance from a reference posi-

tion and the location of any particular point. These data are used

as parts of the input, together with some other representative data
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from step one, to the approaches suggested in Section 2. This is

the third step of the study. The estimated velocities are only

compared with the representative velocities of that region due to

the inavailibility of the ground truth data. A general discussion

will be given at the end of this study to examine the possible

reasons that lead to incorrect results.
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3.2 Propagation of the Gulf Stream

In order to estimate the propagation speed of the Gulf Stream,

using the methods in Section 2.1, we have to do some research on

the average oceanographic data of this region, such as depth of the

thermocline, length scale, velocity scale bottom slope, etc., in

addition to those wavelengths of the meanders that can be measured

directly from the cloud-free images. These kinds of data, of course,

will change from place to place; however, my purpose is to search

the existing literature for more representative data for the Gulf

Stream.

sO* 7W, 60- so2 4W- 3o-

Fig. 3. 1 Chart showing the depth of the 10* isotherm in the western North
Atlantic (after Iselin, 1936).
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The depth of the main thermocline, which is always regarded as

the thickness of the upper layer of a two-layer instability model,

is usually defined as the depth of the 10*C isotherm. In the western

North Atlantic, a chart (see Fig. 3.1) showing the depth of the 100C

isotherm is presented by Iselin (1936). This temperature, which

represents the middle of the main thermocline, also meets the

definition of mid-thermocline* classified by Worthington (1976).

Referring to this chart, the 10C isothermal surface reaches a maxi-

mum depth between 800 and 900 meters under the Sargass Sea, and may

often rise to 200 meters in the slope water, and practically reaches

the surface in the vicinity of Nova Scotia and Newfoundland. The

average value is around 500 m under the main flow of the Gulf Stream.

Fuglister (1963) also presents a chart showing 100C isotherm depth

similar to that of Iselin. More detailed profiles at any particular

position can be referred to the Oceanographic Atlas at that area,

for example, the Atlantic Ocean Atlas by Fuglister (1960). However,

500 m can be a good representative value of 10C isotherm in the main

stream.

*

Worthington (1976)defines the mid-thermocline of the North Atlantic

as the water temperatures between 7 and 12*C.
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Regarding the length scale of the Gulf Stream, we may obtain

an idea from the Gulf Stream width. Then the measurement of the

Stream width will depend on the definition of the Gulf Stream bounda-

ries. Fuglister and Worthington (1951) suggested that the northern

edge of the Gulf Stream is the line along which the horizontal

pressure gradient is zero. Stommel (1965) defines that the Gulf

Stream is a band of swift current stretching from the continental shelf

off Cape Hatteras* to the 50th meridian of longitude, south of the

Grand Banks of Newfoundland, with a pronounced pressure gradient

between the warm, highly saline water to the south, and the colder,

fresher water to the north. Using this definition then, he also

defines the inner and outer limits or edges of the Gulf Stream to be

as the points where the pressure gradient becomes zero. These points,

as he explains, can be obtained from the cross current pressure

gradients, that are calculated from the deep, closely spaced tempera-

ture and salinity data. Another method to define the northern surface

boundary of the Gulf Stream for the width estimation is the location

*Iselin (1936, p. 73-75) defined the entire set of western currents to
be the Gulf Stream System and the Florida Current. The Gulf Stream was
retained for the section of the current between Cape Hateras and the
tail of the Grand Banks. The part between Tortugas, in the Florida
Straits, to Cape Hatteras was not included in Gulf Stream System. But
Stommel (1965) prefers to use the term of Gulf Stream System in a more
general sense than that proposed by Iselin; and restricts the use of

the Florida Current within the Florida Straits.
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of the 150C/200 m isotherm (Fuglister and Voorhis, 1965), which is

about 15 km away from its actual measured surface boundary. As

early as 1936, Iselin already had pointed out that the gradient zone

slopes downward at an angle on the order of one-half degree. This

will make the surface gradient about 20 km north off the subsurface

gradient. In a study of the relation between surface and subsurface

gradients across the northern edge of the Gulf Stream, Strack (1953)

also found relatively small horizontal displacements of about 18 km

between the surface and the subsurface gradients from November to

May. This result suggests that a surface gradient is a good indicator

of the position of the northern edge of the Gulf Stream. Remote

sensors nowadays can also locate the surface boundary of the Gulf

Stream. Many investigators define the maximum surface thermal gradient

as the northern thermal boundary of the Gulf stream (eg. Wilkerson,

1967; Rao, et. al., 1971; Maul and Hansen, 1972). From an observation

ofthe Gulf Stream surface front structure by ship, aircraft and

satellite, Hansen and Maul (1970) found that the surface boundary

obtained from IR images is an average 14.5 km north of the 15
0C/200 m

isotherm. This result is in good agreement with those of Iselin,

Fuglister and Voorhis, and Strack. Unfortunately, the outer boundary

of the Stream generally can not be "seen" as clearly in images (IR

or visible) as that of the inner side. These studies suggest that

the surface boundaries of the Gulf Stream are also good for us to

define the Gulf Stream, although they still have about 10% of the

position error to the subsurface 15
0C/200 m isotherm. Referring to

today's oceanographic literature, we don't have much difficulty finding
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the data of the Stream width, although most of the authors did not

mention very clearly how they measured it. Stommel (1948) says the

width of the region of strong northward current (I think he means the

Gulf Stream) is less than 100 km; Munk (1950) suggests 200 km and 250 km

as typical values for the widths of the western current and counter-

currents, respectively; Morgan (1956) finds the Stream width to be

150 km; Pickard (1975) estimates the Gulf Stream width, from tempera-

ture and salinity profiles of the Chesapeake Bay to Bermuda section

performed in August/September 1932 by Iselin, to be 120 km. I

personally estimate the Stream width, from the sharpest points of

the temperature and salinity gradients in both sides of two larger-

scaled temperature and salinity profiles in the Atlantic Ocean Atlas

(Fuglister, 1960), to be roughly 200 km at 32*N and 120 km at 36*N.

Overviewing the above-mentioned data, I would prefer to take 120 km

as a reasonable length scale over the Gulf Stream System.

The velocity scale of the Gulf Stream can be roughly estimated

from the surface current measurements available. Earlier estimation

by dynamic computation shows that the surface velocity ranges from

100 to 120 cm/sec (2-2.4 knots) (Iselin, 1936). Later, using the

Loran system and the bathythermograph to track the path, Iselin and

Fuglister (1948) measured the surface velocities to be often as high

as 200 - 250 cm/sec (4-5 knots), which is almost twice of the earlier

estimation. Iselin and Fuglister (1948) also pointed out that the

previous data should be less than the real ones because the stations

used for the computations were too far apart to calculate the true

slopes of the isobaric surface. Worthington (1954) calculated the
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geostrophic current velocity from the closely spaced section showing

that the surface velocities are 180 cm/sec at station 4857 and 200

cm/sec at station 4859. Sometimes the average velocity of a current

can also be calculated from its mass flux. The mass flux of the Gulf

Stream has been estimated to be the range of 100-150 sv. south of

Cape Cod (Fuglister, 1963; Warren and Volkmann, 1968; Knauss, 1969).

However, the net wind stress driven transport is only 38 sv., because

most of the transport in the Gulf Stream is recirculated in the

western North Atlantic (Stommelet. al., 1978). Suppose that no interior

dissipation for the wind energy and widths of boundary current of

80-150 km and a depth of 500 m; these energy and mass fluxes require

a mean speed of 100 cm/sec -- 50 cm/sec in the western boundary current.

Von Arx (1962) pointed out that "the velocity of the Gulf Stream is

usually greatest at or very near the surface, where it may range from

100 cm/sec to values approaching 300 cm/sec. Unless local winds have

mixed the surface momentum downward, the velocity will decrease

regularly with depth to about the 500 meter level," and "reach values in

the order 1 to 10 cm/sec in depths between the 1500- to 2000-meter

levels." The direct measurements of the Gulf Stream velocities are

scarce. On a six-day cruise of the Bear and the Caryn in July 1952,

Malkus measured the vertical velocity profiles by the Malkus barhypi-

totmeter and checked by Watson propeller type meter. The results show

that the surface current speeds reach 4.5 - 5 knots and decrease

gradually with the depths, with the highest speed particularly at the

edge of the warm core, decreasing to approximately one knot at 200 m,

and approaching zero at 800 m. (Fig. 3.2). Justifying from the above-

mentioned
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knots
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OF 0 F

Fig. 3.2 Bathypitotmeter measurements of current at two stations
in the Gulf Stream. Both of bathypitometer soundings,
BP V and BP VI, were made in the left-hand edge of the
warm core, where the highest velocity was. Obtained
by Dr. William Malkus, June 1952 (after Stommel, 1965).
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data, we can choose the surface current velocity scale to be in the

order of 200 cm/sec (4 knots), and that of the bottom layer to be in

the order of 10 cm/sec (0.2 knot).

The bottom slopes in the coastal area very from place to place.

They are the steepest near Cape Hatteras, the less off Florida, and

the least off Cape Cod. From the Mercartor Maps of NOAA #11009 and

#13003 we estimate the average slopes of these three continental slopes

to be 1.17x10-2, 7.8x10-3 and 1.8x10-3, respectively.

From the above-mentioned studies, the more representative data

of the Gulf Stream chosen for our analyses are:

h or h = 500 m (depth scale of the upper layer)

h2 = 3000 m (depth scale of the lower layer)

L = 150 km (length scale)

U = 200 cm/sec (174 km/day) (velocity scale)

f = 10 rad/s

= -l.17x10-2 at the Cape Hatteras (bottom slope)

A /g = 1 cm/s2

Using these data scales, the nondimensional parameters of Fl , F2

T can be calculated as

Nor.,
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We can supply these data to the two-layer models in Section (2.1.2).

The most suitable model applied to the Gulf Stream System before reaching

Cape Hatteras is a two-layer flow without zonal flow, i.e., case III.

We choose two sets of typical nondimensional mean velocities to

represent the layers of the Gulf Stream: V, = 1 , V2 +0.2 and

V = 0.9 , V = +0.1. V and V stand for the nondimensional mean

velocities in the upper and lower layers, respectively. V1 = 1

corresponds to a northward dimensional flow of 173 km/day (200 cm/sec).

First I check which wavelength ranges of the Gulf Stream meanders off

Cape Hatteras are the most unstable; and then if we have some meander

wavelengths obtained from an image, we may check their instabilities
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and estimate the approximate phase speeds of these conditions and

also their mean velocity ranges in either layer. The formula to be

applied for this analysis is

c''+ b e' + d (2.21)

where

b =- ( ( v,+v) + ()- F,)

& = [aVIV + V',( v-v,. VT -v, ,3-T (kv,+Fv)J]

The results are shown in Figs. 3.3 and 3.4 , and summarized in

Table 3.1 . Figs. 3.3 and 3.4 shows that the wavelengths at

which the flow is in baroclinically unstable are from 88 to 103 km

with the fastest growing rate at 94 km for V1 = 0.9 , V2 = 0.1;

from 91 km to 113 km with the fastest growing rate at 100 km for

V, = 0.9 , V2 -0.1; from 85 to 100 km with the fastest growing rate

at 94 km for V , = 1 , V2 = 0.2 and from 97 km to 137 km with the

fastest growing rate at 107 km for V, = 1 , V2 = -0.2. The phase

speeds of the most unstable waves are 117.5 km/day, 100 km/day,

104.4 km/day and 82.3 km/day, respectively.

OW
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Fig. 3.3 Dispersion relation of
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Fig. 3.4 Dispersion relation of the Gulf Stream off Cape

Hatteras for mode m=l , with V1=1.0 ; V2= +0.2.
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Table 3.1 Summary of the Unstable Wave Properties for m=l

Unstable Wavelength
Range, Km

88-103

91-113

85-100

97-137

Most Unstable Waves
Period, days Wavelength, km phase speed

km,day

0.8 94 117.5
(136cm/sec)

1.0 100 100.0
(ll6cm/sec)

0.9 94 104.4
(120cm/sec)

1.3 107 82.3
(95cm/sec)

A TIROS N VHRR image was taken on March 23, 1979 as shown in

Fig. 3.5. With the assistance of the MCIDAS System, we interpret this

image and measure the wavelength of a Gulf Stream meander at the inner

boundary off Cape Hatteras between 35 and 35*30'N to be 110 km

approximately. The distance measurement error from the equipment is

quite small. In addition to some man-made error, we estimate this

measured error should not exceed 10%. This wavelength allows us to

estimate the wave phase speed both for the stable condition and for the

baroclinically unstable case. Except for the measured wavelength, X

is 110 km, the other representative data for this area, as studied

before, to be

Vi , V2

0.9,0.1

0.9,-0.1

1.0,0.2

1.0,-0.2
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Fig. 3.5 TIROS VHRR image showing the Gulf Stream
meander on March 23, 1979.
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Fig. 3.6. Relations between wavelength and shear of the Gulf Stream

off Cap Hatteras
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g = I (reduced gravity) z 1 cm/sec2

f x 10 /sec

h or h (upper layer depth) = 500 m

c = Fg = 2.24 m/sec

Assume the meander to be in a stable condition and to be wide

enough as explained in Section (2.1.1). The phase speed is

CC
1 2. (z'e)(211) t

This phase speed is much less than the current speeds as mentioned

before. However, in view of the baroclinically unstable case, this

wavelength in practice stays near that of the most unstable wave.

Fig. 3.6 shows the relation between the wavelength and shear of

the main flow, while also showing the properties of the most unstable

waves. Referring to Fig. 3.6 this wavelength (110 km) has a

maximum nondimensional shear of 0.8. When the lower layer is at rest,

this shear is correspondent to a upper layer mean flow velocity of

160 cm/sec (3.2 knots) when the velocity scale 200 cm/sec is used.

As the field measurements show, the lower layer of the Gulf Stream

also has a mean flow of the order of 10 cm/day, which is about 10%

of that of the upper layer, and the direction is practically the same

as the upper layer. That means V1 = 0.725 i V2 = 0.075. These
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nondimensional mean flows correspond to an upper layer mean flow

velocity of 145 cm/sec (2.9 knots) and a lower layer mean flow

velocity of 15 cm/sec. Unfortunately, the ground truth is not

available; however, these estimated speeds are in good agreement

with previous field measurements by Iselin (1936) and Seiwell (1939)

by roughly +7 - +15%, and less than those calculated by Worthington

(1954) by roughly 20%. But one must remember that those calculated

and measured data are the maximum surface velocities and should be

higher than the mean velocities in principle.

3.3 Tangential Speeds for Gulf Stream Eddies

Some typical data discussed in Section 3.2 are still applicable

for the Gulf Stream eddies. The thermocline depth, h , is also

of the order of 500 m. In order to estimate the tangential speeds for

the Gulf Stream eddies, we choose two TIROS-N VHRR images, which clearly

show the Gulf Stream warm rings centered at about 69*W and 39*N,

approximately five years apare in time.

The first image (the later one) was taken on March 23, 1979.

With the assistance of MCIDAS, we find its center position 39.166*N

and 68.862*W, which is located 281 km south-east of Cape Cod. After

repeated measurements we find the core ring is almost round with

the average radius 66 km (Fig. 3.7). The second one (the earlier image)

was taken on May 11, 1975 with the ring centered at 39.040*N and

69.0240W. The average radius is 88.5 km; the shape is round and

roughly circular (Fig. 3.8). The location of both rings are very 4lose it-that

of Ring L found by the RV/KNORR 65 in April 1977; but really can
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Fig. 3.7. TIROS-VHRR image showing a Gulf Stream
ring centered at 39.166°N and 68.862°W
on March 23, 1979.
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Fig. 3.8. TIROS VHRR image showing a Gulf Stream
ring centered at 39.040 o N and 69.024°W on
May 11, 1975.
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not be the same ring because of the short lifetime of a warm core

ring in the Gulf Stream. The measured radius is practically equal

to r , which represents the radius of the ring where the depth of

the upper layer, hl , vanishes. The radius, ro , is generally

obtained from the field measurements or calculated directly from the

known parameters of the initial thermocline depth, h , the deforma-

tion radius, R , and the volume of anomalous water in the ring. It

is very convenient and accurate to measure this radius from an image

using the MCIDAS system. The total error, as we estimated before, will

not exceed 10%. By knowing r , the term I (r /R) is fixed in

Eq. (2.35), then the tangential velocity of a ring and the tangential

velocity distribution in the ring can be calculated from the same

equation. The data for the first image are;

Location of ring center: 39.166*N, 68.862*W

Satellite and Sensor : TIROS-N VHRR

Date : March 23, 1979

Average radius r : 66 km measured from the image

Initial thermocline depth%: 500 m

-4
R = g'h/f = 0.01x500 / 10 = 22.36 km

Hence, r /R = 2.95

Substituting these data to Eq. (2.35), we obtain the tangential velocities

of the ring
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1, ( / 2./.'6 )

= 4'. 3 1 , ( r /AI.13 ) , CVw /sec.

The maximum tangential velocity of this ring is the velocity at

r = r , or

= 1 -0 ,3 Cw- /Sdc

The shape of the ring can be obtained from the h equation as

Eq. (2.34)

1, ( V/A)
\0 -C -it

le ( /.")

I~ ('-k)
I. (r./~)

= 4 .7 1 x 1 -'4

- I , ((/z. - )
= 22.36 X 1 i :_L-

1, (2.,415)

%'r /Sw-C

e- LAD A& = 4 7. 63 1., (6(, (,2/7.2.4)

It 50
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The tangential velocity distribution and the depth (shape) of this

ring at different radii are tabulated in Table 3.2 and plotted in

Fig. 3.9.

The volume of the anomalous water, decay time scale due to

entrainment and due to friction are:

Table 3.2 Tangential Velocity Distribution and Depths
at Different Radiicalculated from TIROS image, 3/29/79.

V l? f AAR= '7 , .|-= 3103 km2

- -e- - = 19 days for large

at e

-%-., 101 te

r /

= 19000 days (very slow to be neglected
compared with t )

The data for the second image are:

radius, 0 10 20 30 40 50 60 66
r, km

-u,,cm/sec 0 11 24 40 62 94 142 180

h , m 393 388 371 340 289 212 96 0
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Location of ring center

Satellite and sensor

Date

Average radius r :

Initial thermocline depth

R = 22.36 km

39.040*N, 69.024*W

TIROS VHRR

May 11, 1975

88.5 kin, measured from the image

500 m

Thus, rO/R = 3.96 . Use the same method as in the first image. We

obtain the tangential velocities and the depths at diffent radii for

this ring as in Table 3.2

Table 3.2 Tangential Velocity Distribution and Depths
at Different Radii,calculated from TIROS image, 5/11/75

The relations between the radius and the tangential velocity and

between the radius and the depth of this ring are shown on the Fig. 3.9.

The volume of the anomalous water, decay time scale due to entrainment

3
and due to friction are 17660 km , 26 days and 26000 days. If we

apply Flierl's model (1979), the maximum tangential velocities in both

cases become much larger. These velocities are estimated to be

approximately 260 cm/sec and 230 cm/sec respectively.

The maximum surface velocities in the Gulf Stream are shown in
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Fig. 3.9 Relations between ring radius and tangential
velocity and between ring radius and depth.
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Section 3.2. The typical maximum surface velocity is of the order

of 200 cm/sec. Our estimations from Csanady's model are averaged to

be 179 cm/sec. If we compare this with the geostrophic current

velocity calculated by Worthington (1954) of 180 cm/sec at station

4857, this result happens to be the same. The approximate surface

velocities obtained from Flierl's model are averaged to be 245 cm/sec.

This figure also coincides with Iselin and Fuglister's (1948) measured

data. From the same images, the results are different from different

models application. Therefore, the choice of the models is very

important. The best way to test a model that can be correctly applied

to this study area is to have an ocean observation simultaneously by

ship and satellite. More reasons concerning the errors made by this

method will be discussed in the discussion section.

3.4 Cross-current off Brazos Santiago Entrance Channel

The Brazos Santiago Entrance Channel is the entrance of Port

Isabel on the southeastern coast of Texas (Fig. 3.10). It is one of

the inlets carrying water in and out of the Laguna Madre. This channel

has an average width of 91.5 m (300 ft.) and average depth of 11 m

(36 ft) as reported by the Corps of Engineers on April 1, 1971

(see Table 3.41. After examining hundreds of satellite images, mostly

from Landsat MSS, I found that the plume jet from this inlet is

especially pronounced. It is possibly due to the high content of

suspended sediments in the highly polluted water flowing out of the

Laguna Madre and the Laguna Madre Channel.
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Fig. 3.10 A map showing the location and bathymeters of Brazos
Santiago, Texas (after NOAA Nautical Chart No. 898-SC).
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The annual average rate of sedimentation exceeds 9 mm/yr close

to the inlet and decreases gradually to 4 mm/yr at about 40 km away.

This has been determined by 210 Pb isotope dating of cores extending

over the past 100 years (see Fig. 3.11). The distribution of the

sedimentation rate gives us an indication that the coastal cross-

current mostly flows from north to south. The direction and the

velocity of the coastal water circulation, as determined by air-

drifters at the station have been measured for several years. The

seasonal averages for all years are shown in Fig. 3.12. From this

figure, we find the trend of the coastal circulation. In the Spring

and Summer seasons, the surface currents flow towards the north and

in the Fall and Winter seasons toward the south. The strongest current

occurs in Spring with an approximate velocity of 10-15 km/day; the

weakest current occurs in Winter with an approximate velocity range

of 3-8 km/day. Another characteristic of the current drift is that

the bottom current directions are 40* to 90* left of the surface

direction, except for a few special cases. The average surface

velocities in Summer and Fall are approximately 8-12 km/day.

Two of the images that I chose for the purpose of cross-current

estimation were taken on Oct. 19, 1978 from Landsat MSS 4 & 5, and

are shown in Figs. 3.13 and 3.14. The maximum plume width is estimated

by visual interpretation (the image has not digitized in MCIDAS yet)

to be 1.5 km. The plume is still visible from the image up to 10 km

away from the discharged point. The initial discharged angle with

x axis (as defined in Section 2.3) is 90* and the reflected angle at

the maximum width is approximately 600 measuring from the enlarged image



Fig. 3.11 Rate of sedimentation in Brazos Santiago, in mm/yr
(after Berryhill & Trippet, 1980).
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SUMMER

Release dates

July 13 1970
August 29. 1972
July 242 1973
July 3, 1974

1971, 1975, no data

EXPLANATION
DRIFTER RELEASE

POINTAND VECTOR-
Open arrow, bottom
drifter; solid arrow, sur-
face drifter

4--- RATE OF MOVEMENT-
Length of line indicates
about 10 km/oay

a 20 KILOMETERS

a 10 NATIAL MILES

97O~ 037; cWOOru

FALL

Release dates
November 4. *970
October 4, 1972
October 10, 1973
October 1, 1974
1971, 1975, no data

EXPLANATION.
DRIFTER RELEASE

POINTANDVECTOR-
Open arrow, bottom
drifter; solid arrow, sur
face drifter

4- RATE OF MOVEMENT--
Length of line indicates
about 10 km/day

o 20 KILOMETERS

0 10 NAUTICAL MILES

Fig. 3.]2a Coastal water circulation of Brazos Santiago, Texas
- Summer and Fall - (after Berryhill & Trippet, ]980).
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14

WINTER

Release dates
January 16, 1970
December 6, 1971
January 18, 1973
January 23, 1974
January 15, 1975
1972, no data

EXPLANATION
DRIFTER RELEASE

POINT AND VECTOR-
Open arrow, bottom
drifter; solid arrow, sur-
face drifter

RATE OF MOVEMENT-
Length of line indicates
about 10 km/day

SPRING
Release dates

270' April 28, 1970
May 27, 1971
April 4, 1972
April 11, 1973
April 3, 1974
April 17, 1975

EXPLANATION
DRIFTER RELEASE

25M' - POINT AND VECTOR -
Open arrow, bottom
drifter; solid arrow, sur-
face drifter

4- RATE OF MOVEMENT-S4 . Length of line indicates
about 10 km/day

0 20 KILOMETERS

0 10 NAUTICAL MILES

Fig. 3.]2b Coastal water water circulation of Brazos Santiago, Texas

- Winter and Spring - (after Berrhill & Trippet, 1980).
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98-301 lJ098-001
ISOCT78 C 25-54 /\.1097-51 0028-042 N 25-54 /\.1097-53 4 D

Fig. 3.]3 Landsat MSS-4 image showing plume jets in the eastern
coast of Texas, on Oct. ]9, .]978.
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Fig. 3.J4 Landsat MSS-5 image showing plume jets ln the eastern
coast of Texas, on Oct J 9, J978.
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Fig. 3.]5 Enlarged image of Landsat MSS-4 in the part of Brazos

Santiago, Texas on Oct. 19, ]978~
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Table 3.4 Some information of Brazos Santiago Entrance Channel
(after supplemental data in the NOAA Nautical Chart 898-SC).

BROWNSVILLE AND PORT ISABEL HARBORS CHANNEL DEPTHS
Tabulated from surveys by the Corps of Engineers - report of Apni 1, 1971

Controliing depths in channe's entering from Project
seaoiard in feet at Mean Low Water Exist Dimensions

ing
dredg-

Left Middle Right Date ed Length Depth
Name of Channel outs-de half of outside I of width (naut. M.L.W.

quarter channel quarter Survey (feet) miles) (feet)

Entrance Channel 36.0 37.5 35.0 3-71 300 1.9 38
Laguna Mfadre Channel 33.0 36.0 36.0 2-71 200 2.2 36
Brownsville Ship Channel-

Junction Bas;n to Boca
Cnica Pass:ng Basii 37.5 38.0 37.5 2-71 200 3.4 36

Boca Chica Pass.ng
Basin to Goose 1.
Passing Basin 34.0 36.0 33.0 2-71 200 4.5 36 /

Gcose I Passing
Bas.n to Brownsville
Turing Basin 36.0 37.0 35.0 2-71 200 2.8 36

Brovnsville Turning Basin 35.0 36.0 35.0 2-71 500- 1.65 36
1000

Pcrt Isabel Channel 31.0 31.0 29.0 10.70 200 1.0 36
Port Isabel Turning Bas;.n 31.0 31.0 27.0 10-70 1000 0.2 36
Cut Off Channel 31.5 31.0 31.0 10-70 200 0.9 36

Note -The Corps of Engineers should be consulted for changing conditions subsequent to the above.
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in Fig. 3.15. Summarizing the above-mentioned'

b=
0

45.7 m = 45.7x10 -3km

b = 750 m = 0.75 km

h=
0

11 m = llxlO-3 km

9 = 90*
0

e = 600

x = 5.67 km

I, = 0.450 I2 = 0.316

From formulas in Section 2.3:

e/, I= 45 .x /o.nx.7

P, /tI, = I IxI 0' /O- x Sit

= 65-ItX I~ kw

-.. 5sA 2 x 16 k- <

which imply r = 0 ,

The relation between

U .. b 

ao

7 IN. u --- -
12, AxX

I 0

CO --

S,61-

II c ,o~x 40~ X &

0. 31 6 xou- .]

- 9 L - 1 9 x t i - . 0 - , 4 I

s = 0 .

- s RG, x ,5-LA *

=49,-t A 16' 1. &, o= 0,4.5o YO 0Ll /7
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Substitute in Equation (2.46) with s = r = 0

or

45.01) Xt UO - 0oL*3 UO -t- 34-.%a VO% L

V 2AS UO for small La

Because observations of the discharged velocity are not available, we

can only give an estimate, and assume it to be of the order of

10 km/day. Then V t- 15 km/day for u0 = 5 km/day ; V ,. 30 km/day

for u = 10 km/day. The speed of the coastal current is estimated

as ranging from 10 km/day (Fall season) (Berryhill and Trippet, 1980)

to 28 km/day (Vukovich, et. al., 1979), which is calculated from the

movement of the loop current boundary seen from NOAA and Nimbus infrared

data. The estimated data seem to be of the same order of magnitude

as the measured ones. However, I have to point out that the formula

in Eq. (2.46) is very sensitive to the deflection angle. A small

measured error can result in a big error in the estimation of cross-

current velocity. Further discussion will be given in the discussion

section later.
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4. CONCLUSIONS AND DISCUSSION

In an attempt to relate the surface features obtained from a

satellite image to ocean surface current velocities, we present three

possible simple approaches to enable us to estimate these velocities

in the ocean regions at current meandering, eddies, or core rings

and a deflected plume jet.

At the current meandering region, a stable and a two-layer

baroclinic instability model can be applied for this estimation. When

the current meander is wide, the stable approach may be used; other-

wise a two-layer baroclinic instability model may be applied. In

the application of these two types of instability to the Gulf Stream

system off Cape Hatteras, we found that the estimated velocities of

the current are around 60 cm/sec for the stable case, and 160 cm/sec

for the baroclinic case. The result also shows that the most unstable

wavelengths in mode one stay approximately 100 km under the assumption

of various mean flow velocities in either layers of the current.

The general wavelengths -measured from the satellite images off Cape

Hatteras are also around 100 km. This fits the two-layer baroclinic

instability approach quite well.

A geostrophic approximation eddy model is applied to estimate

the maximum tangential velocity and the velocity distributions of an

eddy or ring. The estimated maximum tangential velocity in two warm

Gulf Stream rings is approximately 180 cm/sec. This result is in

good agreement with the local representative data, although this

approximation is not thought to be a very representative one in that

region.
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The cross-current velocity off Brazos Santiago Entrance Channel

is also estimated using Stolzenbach and Harloman's model. The

estimated cross-current velocities range from 15 to 30 km/day,

depending on the discharged velocities of the channel mouth.

To obtain good results from this method, we shall'have simple

but representative oceanic dynamic approximations and accurate mea-

surements of the oceanic characteristics from a satellite image.

These simple approaches should have the relations between current

velocity and other oceanic parameters that can be measured from an

image. The others are also well-known in that study region. The

complicated models are usually not suitable for it, because of too

many unknowns in the approach. The ground truth data are essential

for this selection. The input parameters of the simple model shall

not be very sensitive to the estimation of velocities in case of a

small error included in the measurements. The cross-current velocity

obtained from a plume jet model is such an example. Because of the

difficulty in deflection angle measurement from an image and also

many other parameters in higher power, the estimated cross-current

velocity is very sensitive to small measurement errors for each para-

meter. Although it is a good and complete model for a plume jet, it

is not necessarily a good model for current estimation. However,

except for the doubt about requirements for data quality, this method

offers a promising idea for making estimates of ocean surface current

from satellite images. Further exploration and improvement of the method

are needed because it is also an interesting, convenient and economical

way to estimate a surface current without in situ observations.
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