
TIJE ROLE OF CUMULUS CONVECTION

IN THE

DEVELOPMENT OF EXTRATROPICAL CYCLONES

by

MARTIN STEVEN TRACTON

B. S., University of Massachusetts

(1966)

S. M., Massachusetts Institute of Technology

(1969)

SUBMIT TED IN

PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

May, 1972

Signature of Author . . . . . . . . . . . . . . . . . . . . . . . -

Department of Meteorology, May 5, 1972

Certified by . . . . . . . . ...... ' ".. ......

Thesis Supervisor

Accepted by . . . .. . . .

Chairman, Departmental Comniittee

f a Ir--i A a on Gra duate Stud ents



MITLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.5668 Fax: 617.253.1690
Email: docs@mit.edu
http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Some pages in the original document contain pictures,
graphics, or text that is illegible.

Two pages numbered 61.



THE ROLE OF CUMULUS CONVECTION
IN TH E .

DEVELOPMENT OF EXTRATROPICAL CYCLONES
by

MARTIN STEVEN TRACTON

Submitted to thesepartment of Meteorology on 5 May2972
in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy.

ABSTRACT

The goal of this study is to determine whether cumulus
convection plays a role in the development of extratropical cyclones,
and if it does, to determine the nature of that role. The basic ap-
proach is to ascertain whether there is a systematic relationship
between the observed extent and degree of convective activity ac-
companying cyclogenesis and the departure of actual storm evolution
from that predicted by large-scale dynamic models.

On the basis of intensive analysis of the two storms
initially chosen for study, the following hypothesis was formulated,
andthe balance of the investigation directed primarily towards as-
certaining its validity:

In some instances of extratropical cyclo-
genesis, cumulus convection plays a crucial role in the
initiation of development through the release of latent
heat in the vicinity of the cyclone center. In such cases,
dynamical models which do not adequately simulate con-
vective precipitation, especially as it might occur in an
environment that is unsaturated, will fail to properly
forecast the onset of development.

Evidence either to support or refute the hypothesis
was derived, in part, from detailed analysis of seven additional
storms and cursory examination of twelve others. In addition,
both qualitative and quantitative aspects of the physical mechanisms
involved were considered. Although possibly not conclusive proof
of the hypothesis, the evidence does indeed support it.

The case in support of the hypothesis is presented in
terms of four arguments: i) in some storms, there was a coinci-
dence in time between the initial development and the occurrence
of convective showers in the vicinity of the low center. Almost
invariably, the environment in which the convection occurred was
unsaturated; ii) in those cases in which the initial development was
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accompanied by convective showers in the vicinity of the low center
and the environment in which the convection occurred was unsaturated,
the dynamic prognoses systematically failed to properly forecast
the onset of development, apparently because of the models' failure
to predict the convective rainfall; iii) the importance of the latent
heat release by cumulus convection to the initiation of development
of some extratropical cyclones, whichis implied by the apparent
source of the systematic error, is physically plausible and quanti-
tatively reasonable; and iv) there appears to be no defensible alter-
native explanation for the observed systematic error.

The nature of the error in predicting the initiation of
cyclogenesis, namely, a lag in forecasting the time of the onset of
development, suggests that the release of latent heat by cumulus
convection initiates cyclogenesis, in some cases, prior to the time
when it would occur if larger-scale motions and processes alone
were operative.

Significant shower activity occurred in the center of
storms generally only during the early phases of their life history.
Convective activity which was not in the immediate vicinity of the
low center did not appear crucial either to the initiation of develop-
ment or to the trend of continued development following the onset
of cyclogenesis.

Thesis Supervisor: Frederick Sanders
Title: Professor of Meteorology
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CHAPTER I

INTRODUCTION

'la. Background and Statement of Problem

It has been well established that cumulus convection plays

a vitally important role in the development and maintenance of tropical

cyclones. From an observational standpoint, Riehl and Malkus (1961)

have demonstrated that the important dynamic and thermodynamic

processes of a hurricane are highly concentrated in deep cumuli within

the storm's core. From a theoretical and numerical modeling point of

view, Charney and Eliassen (1964), Kuo (1965), Ooyama (1969), and

others have shown that tropical cyclones are forced circulations driven

by the release of latent heat in organized convection. In addition, the

intense vertical currents of convective cells significantly influence

the cyclonic-scale circulation through the vertical transports of heat,

momentum, and moisture.

Cumulus convection also frequently occurs in association

with the development of extratropical cyclones. This is evident from

the presence of convective showers as revealed by radar observations,

recording raingauge data, and/or surface synoptic reports. In mid-

latitudes, unlike the tropics, however, the fundamental mechanism

of cyclogenesis is the baroclinic instability of the meandering wester-

lies (Charney, 1947; Eady, 1949). Extratropical cyclones thus have
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as their basic source of energy the large-scale temperature contrast

between air masses. Consequently, the importance of cumulus

convection with respect to the larger-scale baroclinic processes in

the evolution of mid-latitude storms is not clear, a priori, and has

not yet, in fact, been established observationally or theoretically.

One aspect where convection might play a role in extra-

tropical cyclogenesis is in the diabatic process of latent heat release.

It has been established that this process per se is often an important

contributing factor in overall storm development. Aubert (1957),

for example, found released latent heat tended to lower the heights

of isobaric surfaces in the lower troposphere and raise them in the

upper troposphere. These changes resulted in deepening of the low-

level cyclone and acceleration of the rate of movement. Danard (1964,

1966) demonstrated the release of latent heat could contribute sig-

nificantly to the rate of generation of kinetic energy. Furthermore,

Danard showed that the positive contribution of heating to generation

of available potential energy is normally greater than the negative

effect arising from the enhanced vertical motion. Consequently,

cyclogenesis is not merely accelerated through the influence of

condensational heating, but the difference in the kinetic energies

between final and initial states is greater.

In these and other investigations of this question, little

if any consideration is given to the fact that, for whatever difference

it might make in either the total amount of condensation or in the

temporal and spatial distribution thereof, much of the precipitation
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accompanying an extratropical storm may be produced by convective

updrafts rather than by the more gradual slope ascent characteristic

of larger-scale baroclinic processes (Tracton, 1969).

In addition to the release of latent heat, other possibly

more subtle influences of convection in extratropical storm develop-

ment might be the vertical transports of such quantities as heat,

momentum, and moisture. These processes are significant in tropical

cyclogenesis, and there is no reason to believe that they may not be

of some importance in the development of extratropical cyclones.

The goal of this thesis is to determine whether cumulus

convection plays a role in the evolution of extratropical cyclones, and

if it does, to determine the nature of that role. It is felt this question

warrants consideration because of its importance to a complete under-

standing of the complex phenomenon of cyclogenesis and its implications

to numerical weather forecasting.

lb. Basic Approach

A direct and comprehensive analysis, either descriptive

or dynamic, af the interactive role of cumulus convection and large-

scale baroclinic development would be exceedingly difficult, if at all

physically or economically feasible. Observationally, a very dense

network of stations would be required to describe the interactions of

convective and larger-scale motions and processes. Existing meso-

scale networks, such as that operated by the National Severe Storms

Laboratory in Oklahoma, have areal coverages which are small
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compared to the domain of a cyclone and, furthermore, they are fixed

geographically. From a theoretical standpoint, the problem is

analytically intractable. Numerical integration of the governing

equations wherein the cumulative effects of convection on the synoptic-

scale development are parameterized is possible; however, the compu-

tational and physical complexities of a dynamic model designed explicitly

for investigation of the role of cumulus convection in extratropical

cycl.ogenesis would be numerous. Moreover, it is often as difficult

in a numerical model as in the real atmosphere for one to keep track

of all possible interactions and their consequences.

Thus, an indirect approach was adopted for this investiga-

tion Wherein it was sought to determine whether there is a relationship

between the extent of convective activity within extratropical cyclones,

as ascertained from conventional meteorological data, and the depar-

ture of actual storm evolution from that predicted by operational fore-

cast models. In so far as these models do not incorporate or adequately

formulate the effects of sub-grid-scale convection, the emergence of

a consistent relationship in the analysis of several storms would

indicate that cumulus convection systematically alters the course of

synoptic-scale development from that which would be expected if

larger-scale processes alone were operative. The nature of such a

relationship would, of course, reflect the nature of the role of convec-

tion in extratropical cyclogenesis and guide consideration of the physical

mechanisms involved.
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1c. Formulation of the Hypothesis

At the outset of this study, the role of convection in the

evolution of extratropical cyclones was not assumed, nor was it

explicitly assumed that convection indeed played a role. Rather,

the approach was to dive into myriads of data, forecasted and observed,

to see if anything physically plausible would emerge. Initially, two

storms were chosen for analysis; the intense cyclogenesis along the

East Coast of the United States, 11-13 November 1968, and the less

dramatic but nevertheless major development over the central

United States, 22-23 March 1969. The observed degree and extent

of convective activity associated with each storm was ascertained to

the fullest extent permitted by the data and methods of analysis outlined

in Section 2c. An extensive'analysis was then made of the difference

between the forecast and actual evolution of the storms.

In both cases, the numerical prognoses (the National

Meteorological Center's primitive equation model, NMC-PE) did

forecast cyclogenesis in terms of deepening the central pressure and

intensifying the cyclonic circulation of the sea-level system. The

forecasts, however, were not without errors. The most notable with

respect to possible implications of the role of convection was the

failure in the November case to properly forecast the initiation of

development. More specifically, the model lagged behind the real

atmosphere in forecasting the onset of development. The observed

initiation of cyclogenesis was accompanied by intense convective showers
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in the unsaturated environment of the cyclone center. Since the large-

scale processes which the model purports to represent require saturation

in order to produce precipitation, the forecasts failed to predict the

release of latent heat associated with the convection.

The initial development of the March storm was also

accompanied by convective showers in the vicinity of the low center.

In this case, however, the environment was sufficiently near saturation

so that the rainfall and concomitant latent heat release were predicted,

and the onset of development was properly forecast.

The analyses of these two cases therefore suggested that

the release of latent heat by cumulus convection may be, at least in

some instances, a critical factor in the initiation of cyclogenesis.

There were, in both cases, many errors in the detail

and magnitude of the forecast patterns, other than the lag phenomenon

in the November storm. These errors, however, did not appear to be

related to differences or similarities in the extent and degree of the

convective activity associated with the storms. Moreover, it was

evident from detailed analysis of the cases that if there are indeed

systematic errors in the numerical prognoses of cyclogenesis other

than the lag phenomenon, they would either likely be obscured by the

noise of other physical or computational limitations of the model, or

a prohibitively large number of storms would have to be analyzed for

their existence to become apparent. Prohibitive here is defined in

terms of the difficulty and cost of acquiring data and the time neces-

sary for analysis of each case.
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At this point in the study, therefore, the following hypothe-

sis was formulated, and the balance of the investigation directed primarily

towards ascertaining its validity.

In some instances of extratropical cyclogenesis,

cumulus convection plays a crucial role in the initiation of

development through the release of latent heat in the vicinity

of the cyclone center. In such cases, dynamical models

which do not adequately simulate convective precipitation,.

especially as it might occur in an environment that is un-

saturated, will fail to properly forecast the onset of develop-

ment.

Seven storms in addition to those discussed above were

analyzed in detail with respect to their bearing on the hypothesis, and

cursory examination was made of twelve others. Also, to complement

these basically empirical considerations, theoretical diagnostic calcu-

lations were performed to assess quantitatively the influence of latent

heat release on surface development.
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CHAPTER II

METHODS OF ANALYSIS

Za. Choice of Cases

Nine storms were analyzed in detail for this investigation.

In no instance was a storm chosen for analysis because of any prior

specific knowledge of the performance of the numerical prognoses or

the degree of convection associated with the observed cyclogenesis.

Criteria for selection were the intensity of actual development, availa-

bility, of numerical forecasts, and sufficient data to determine the extent

of convective activity from the structure of precipitation patterns.

A storm for which there was a 12-hour period having an

average surface deepening rate of at least one millibar per hour was

considered an intense development. Cases were restricted, except

for that of 25-27 December 1970, to storms that developed over the

relatively data-rich eastern two thirds of the United States or to storms

that remained close enough to the Atlantic Coast so that a major portion

of the precipitation either fell over land or was within the range of

land-based radar. Primary interest in the 25-27 December 1970 case,

a storm whose major development was well out over the Atlantic, was

a comparison of the NMC-PE forecasts to those available from test

runs of the limited area fine mesh version of this model (LFM). Em-

phasis on storms of the 1970-1971 winter season reflects operational

implementation in September, 1970, of the Fleet Numerical Weather
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Central's primitive equation model (FNWC-PE). (A brief description

of the general aspects of the models appears in Section 2d.)

Zb. General Procedure

For each storm, the actual course of the synoptic-scale

development was traced via NMC sea-level pressure analyses at 3-hour

intervals. It was found that in most instances the central pressure

served as an adequate indicator of the degree of cyclogenesis; however,

note was made of situations where development was manifested more by

an increase in the intensity of the cyclonic circulation, assessed quali-

tatively, than by a decrease of central pressure.

The extent and degree of convective activity accompanying

the observed development were deduced from precipitation patterns in

the manner described below. The methods of analysis which were

employed permitted depiction of the macroscale distribution and

magnitude of convection with respect to the surface cyclone. Once

this picture was clear, a comparison was made between the forecast

and actual evolution of the storm (see Section 2f).

Zc. Methods Utilized in Analysis of the Convective Activity

It is assumed that significant convection occurs only in

regions of convective precipitation. Lapse rates in excess of the dry

adiabatic, necessary to sustain convection without condensation, are

infrequent. In addition, the influence of non-precipitating cumuli,
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through latent heat release or otherwise, is likely to be small compared

with that of cells which produce rain.

The extent and degree of convective shower activity

accompanying development of a storm was deduced from composite

analysis of weather radar data, tipping bucket rain-gauge traces,

hourly rainfall amounts, and surface-synoptic reports. The weather

radar observations are those of the National Oceanic and Atmospheric

Administration's network of WSR-57's. The location of the radars and

areal coverage of this network over the eastern two thirds of the

United States is shown in Fig. 1. Radar data are available in three

forms: i) summary charts of the nationwide distribution of precipita-

tion echoes, ii) data sheets that contain the record of observations at

individual stations, and iii) film records of the actual plan-position

indicator (PPI). The summary charts enable one to depict the broad

features of the distribution and character of the precipitation pattern

about the storm in question. Fig. 2, for example, is a composite of

the radar -chart and the simplified surface analysis for 12Z 4 Febru-

ary 1971. The meanings of the symbols used on the radar charts appear

in Table 1. It is seen from Fig. 2 that there is a solid line (squall line)

of thunderstorms extending southward from the low along the cold front.

The line is embedded in a more general region of scattered to broken

thundershowers which extends and broadens somewhat north of the low.

In the extreme northwestern area of the precipitation, some freezing

rain is indicated.

An important feature of the radar data is the reported

heights of the top of cells. In Fig. .2, the maximum top reported is
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that of a 39, 000 foot high cell located in the squall line. Generally

speaking, the greater the height of the cells, the more intense is the

convection.

The radar charts are generally available at 3-hour

intervals. In the two storms analyzed initially for this investigation

(11-13 November 1968; 23-24 March 1969), time resolution of one hour

or less was obtained by constructing composite charts from the data

sheets of individual radar stations. In addition, the PPI films for

selected stations were examined to clarify the verbal and symbolic

description of the echo patterns. In the subsequent case studies,

however, after formulation of the hypothesis, the radar charts at

3-hour intervals were considered adequate.

A more refined and quantitative picture of the extent and

degree of convective activity than that obtained by radar was ascertained

from surface measurements of rainfall. Two types of data were

utilized: hourly precipitation amounts and tipping-bucket records of

the continuous temporal variation of rainfall rate. Of.these, the

tipping-bucket data is more definitive in delineating the presence

and intensity qf convective showers; however, as can be seen from

Fig. 1, the density of stations reporting hourly totals is much greater

than that for tipping-bucket gauges.

In the analyses of the first two storms, tipping-bucket

records were obtained for all stations shown in Fig. 1 where there

was precipitation. In the subsequent detailed case studies, though,

only data for those locations thought pertinent to consideration of the
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hypothesis were utilized; however, records from the entire network of

hourly reporting stations were surveyed.

The tipping-bucket gauges record precipitation with a

time resolution of about one-quarter minute. As can be seen from

comparison of Figs. 3 and 5, this is sufficient to differentiate between

rather steady stratiform rain and rainfall fluctuating rapidly in space

and time as is characteristic of convective showers. The duration

of individual showers over a gauge depends upon their speed and

horizontal dimensions and is on the order of several minutes. Peak

precipitation rates, which may be considered a measure of the intensity

of convection, usually are greater than . 3 in hr and may often exceed

-1
2inhr .

From the spacing of shower peaks on the tipping-bucket

traces, it is evident that cells generally occur in groups and are

separated by continuous precipitation. Quantitative radar studies

(Austin and Houze, 1972) show these cell arrays, or mesoscale areas

as they are termed, reflect organization of the convection into areas

or bands whose dimensions range from 10 2km2 to more than 10 km2

as would be the case for an extensive squall line. The continuous

precipitation that is observed between cells likely represents conden-

sate produced in convective updrafts that is spread by divergence

from near the top of the layer containing the cells (Melvin, 1968).

Alternatively, however, this so-called mesoscale component of the

precipitation may reflect stable ascent of some saturated layer between

the cells. Both mechanisms may contribute to some extent, but the
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nature of the mesoscale circulations involved. In any event, it is

clear that the mesoscale precipitation is intimately related to the

occurrence of convection. Therefore, for the purposes of this inves-

tigation, the precipitation that falls both between and beneath the shower

peaks is considered to be convectively produced.

Since the tipping-bucket gauges are geographically fixed,

they in effect record the instantaneous precipitation rate along line

segments which connect successive positions of the station with respect

to moving features of the surface system. For example, Fig. 3a is

the raingauge trace of Charleston, South Carolina, for the period

19Z -23Z 11 November 1968. The line segment with respect to the

low center and fronts along which the precipitation cross section

applies is shown schematically. Fig. 3a shows that between 21Z and

2230Z Charleston experiences a series of heavy showers, which place

this convective activity just to the north-northwest of the low. Peak

shower intensities are about 3 in hr~ with .46 in and . 84 in of rain

recorded at Charleston between the hours of 21Z ahd ZZZ and between

22Z and 23Z, respectively. In comparison, the raingauge record

at Pensacola, Florida, between 09Z and 12Z 11 November 1968

(Fig. 3b) is indicative of the presence of convective showers, but the

activity is much more subdued than that exemplified by the Charleston

trace. In this ca'se, the peak shower intensities of . 8 in hr~ and the

one-hour precipitation amounts of . 15 in and .35 in between 1OZ and I1Z

and between I1Z and 12Z, respectively, characterize the convective
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activity just north of the low some twelve hours earlier in the storm's

development than does the Charleston record. It should be noted that

in both situations the radar charts (Fig. 4) and surface synoptic

reports serve only to indicate in a qualitative manner that there are

showers and thunderstorms in the vicinity of the low center at the times

considered.

As further illustrations in the use of tipping-bucket data,

the traces of Montgomery, Alabama, between 09Z and 13Z 11 November

1968 and that of New York City from 19Z to 23Z 1Z November 1968 are

presented in Fig. 5. With reference to Fig. 3b, one can see that at

the same time the Pensacola trace indicates shower activity in the

vicinity of the low center, the Montgomery record shows steady,

exclusively non-convective rainfall some 150 miles to the north.

The New York City gauge (Fig. 5a), on the other hand, is indicative

of light purely stratiform precipitation near the storm center some

24 and 36 hours later, respectively, from when the area was sampled

by the Charleston and Pensacola gauges.

The same approach used in consideration of the tipping-

bucket records can be applied to stations which report just the cumu-

lative one-hour precipitation amounts. Because the network of tipping-

bucket gauges is relatively sparse, these data are used both to check and

supplement the tipping-bucket observations. Although the intensity

of individual showers cannot be determined, the magnitude of the

convection can be assessed in terms of the hourly totals . Fig. 6a,

1 There is, of course, some uncertainty in assessing the hourly pre-
cipitation data because of the inherent time smoothing involved. It is
possible, for example, that the sum of the reported totals for two
successive hours actually all fell in a time span of one hour (or less).
Such possibilities were considered in the storm analyses.
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for example, presents a histogram of the successive one-hour rainfall

amounts recorded during a series of thunderstorms at Tulsa, Oklahoma,

between 1OZ and 15Z 4 February 1971 (see also radar chart Fig. 2).

Fig. 6a shows this histogram is, in effect, a cross section through

the center of the storm. As the low passes over Tulsa between

12Z and 15Z, the one-hour yainfall amounts peak at . 80 in. In com-

parison, the largest one-hour precipitation amount recorded during the

same interval of time at Lehigh, in southeastern Oklahoma, is . 36 in

(Fig. 6b). In this case, the cross section is through the cold front

and its accompanying squall line. Although the intensity of individual

2
showers in this sector of the storm may be as great or greater than

those occurring in the low center, the degree of convective activity

in terms of the net amounts of convective rainfall being produced is

significantly less. As will be seen in the discussion of the case studies

(Section 3b), at a later stage in the development of this storm, the

convection in the squall line is much heavier while there is virtually

no precipitation in the vicinity of the low center.

From the above discussion it should be clear that through

judicious analysis of radar and raingauge data, a fairly detailed picture

of the extent and degree of convective activity accompanying develop-

ment of a particular storm can be obtained. In the actual analyses,

a description was compiled of the distribution and magnitude of

The radar echo tops (Fig. 2) suggest the intensity of the squall
line showers is greater than those in the vicinity of the low center.
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convection on essentially a continuous basis as the storm evolved, i. e. ,

time resolution of 1 to 3 hours. It should be emphasized here that no

attempt was made to keep track of individual convective cells. Rather,

concern was with the macroscale distribution and magnitude of convec-

tion with respect to the developing cyclone. The goal of this thesis is,

of course, to determine whether the convection so described plays

a role in the overall storm development.

Zd. General Aspects of the Models

Three dynamical forecast models were used in this

investigation: i) the six-layer primitive equation model of the National

Meteorological Center (NMC-PE), ii) the limited area fine mesh

version of the NMC-PE (LFM), and iii) the five-layer primitive

equation model of the Fleet Numerical Weather Central (FNWC-PE).

The basic features of the NMC-PE have been described by Shuman

and Hovermale (1968) while Howcroft (1970) has discussed the LFM.

The routine programming and physical adjustments made in the

operational procedures at NMC are documented in a series of publi-

cations entitled Technical Procedures Bulletins and in the semi-annual

publication Numerical Weather Prediction Activities. The principal

aspects of the FNWC-PE have been described by Kesel and Winning-

hoff (1970).

The NMC-PE became operational in June, 1966, while

the FNWC-PE was implemented in September, 1970. Forecasts are



-33-

generated twice daily from the nominal times of OOZ and 12Z. The

LFM forecasts utilized were test runs of this model made prior to

its operational implementation in October, 1971. Table 2 summarizes,

for the nine storms analyzed in detail, the models which were con-

sidered for each of the relevant initial times.

For the first two storms analyzed in this study, the

NMC-PE data were obtained from copies of NMC's so-called "B-3"

magnetic tapes. These tapes contain the grid point values of both

the objective analyses of the initial state and the forecasts through

36 hours. Primarily because it was found that extraction of the

relevant data from the tapes was quite time consuming and expensive,

the contoured forecast charts that are transmitted routinely over

facsimile were, with some exceptions, used in the subsequent case

studies. The exceptions were certain forecasts for the cases of

1-3 April 1970 and 2-4 March 1972, which were retrievable only

from the appropriate tapes. Contour charts of the NMC-PE quanti-

tative precipitation forecasts are not transmitted over facsimile.

They are, however, archived at NMC by Russel Younkin, from

whom copies were obtained. The FNWC-PE forecasts were in the

form of contour charts that were obtained directly from the Fleet

Numerical Weather Central, Monterey. The LFM data, which

were supplied by NMC, were contoured computer printouts of the

grid point values.

Each of the models integrates the primitive (hydrostatic),

hydrodynamic and thermodynamic equations and includes such physical
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effects as orography, solar and terrestrial radiation, sensible heat

flux between the atmosphere and oceans, and moisture prediction

with the feedback of latent heat. The respective horizontal and

vertical domains of integration are shown in Fig. 7. The NMC-PE

and FNWC-PE are hemispheric models with a horizontal grid spacing

of 380 km (at 60 0 N), while the LFM encompasses the general area of

North America with grid points separated by 190 km. Vertical

variations in the FNWC-PE are represented in Philips (1957) sig-

ma-coordinate system in which pressure is normalized with the

underlying terrain pressure. The vertical coordinate in the NMC-PE

and LFM is a slight generalization of Philips' system. The one more

level of vertical resolution in the NMC-PE and LFM reflects explicit

consideration of a planetary boundary layer (50 mb in depth) that the

FNWC-PE does not recognize.

Consideration of the forecasts of more than one model,

when possible, was motivated by a desire to both check and augment

any deductions gleaned from one model's prognoses alone. The

equation systems and basic physics of the LFM are the same as those

of the NMC-PE; the principal differences are the areal coverage and

the horizontal grid spacing. Thus any inconsistency in the deductions

drawn from the forecasts of these two models would likely reflect

either the lesser truncation error in the LFM or the more refined

specification of initial conditions. Differences between the NMC-PE

and FNWC-PE forecasts could reflect any one of a number of physical

and computational dissimilarities. Particular interest, however, was
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on any difference in the forecasts that might reflect a difference in

the method of parameterizing small-scale convection. The NMC-PE

(and LFM) utilizes the so-called "convective adjustment" scheme

wherein the lapse rate is adjusted to the moist adiabatic when it is

forecast to exceed that value and at the same time the grid column

is forecast to be saturated. In effect, the lapse rate is neutralized

through an upward transport of heat. There is no specific allowance,

however, for the convective rainfall that can occur in an unsaturated

.3
environment . In essence, the "convective adjustment" in the

NMC-PE (and LFM) is more a mechanism for preventing the com-

putational instability that would result without such adjustment than

a meaningful attempt to incorporate convection. The FNWC-PE, on

the other hand, more explicitly considers convection through use of

a parameterization scheme adapted from that utilized in the Mintz

Arakawa General Circulation Model. In this scheme, energy para-

meters are used in conjunction with measures of the total upward

convective mass flux, as well as entrainment, to determine a specific

convective component of precipitation and the vertical redistribution of

heat and moisture. This parameterization scheme does give the

FNWC-PE the capability to simulate convective precipitation that

can occur in an unsaturated environment; however, the lack of

3 The NMC-PE and LFM can predict precipitation prior to the time when
grid-scale saturation is forecast, since saturation in the models is
defined in terms of a threshold value of relative humidity of between
80 and 100 per cent. The motivation in utilizing a reduced saturation
criteria is primarily to account for the stable (stratiform) precipita-
tion which can occur before grid-scale saturation, rather than to make
any meaningful attempt to simulate convective precipitation in an
unsaturated environment.
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sufficient vertical resolution in the model limits its ability to represent

the frequent pre-convective outbreak condition of a mixed moist layer

topped by an inversion with potentially very unstable air above.

Ze. Suitability of the Models as Tools for this Investigation

The NMC-PE, LFM, and FNWC-PE are assumed to be

the best dynamical prognoses currently available for describing the

evolution of the cyclone-scale circulation corresponding to a particular

set of case studies. Despite their relatively high degree of theoretical

sophisticatipn, however, these models, with or without proper con-

sideration of sub-grid-scale convection, are far from perfect repre-

sentations of the real atmosphere. Therefore, it is not clear, a priori,

whether they are suitable tools for use in an investigation of this type.

The models do have inherent in them the fundamental mechanisms of

cyclogenesis, and each has indeed on occasion demonstrated an

ability to forecast the development of intense storms; however, errors

in the timing, magnitude, and spatial detail of the forecast patterns

on occasions when cyclogenesis is forecast and the complete failure

to. predict development in other situations may reflect any one or a

combination of various physical, dynamical, or computational limita-

4
tions other than inadequate treatment of convective processes.

4 Examples are lack of horizontal and vertical resolution, insuffi-
cient initial data, artificial bounda ry conditions, and initializing
and smoothing procedures.
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The question, then, is if convective activity does indeed

play a role in cyclogenesis, would inadequate simulation of some

feature of the observed convection lead to a systematic error that

would emerge from the noise inherent in other failings of the models.

As will be shown in the following sections, there does appear to be

such a systematic error, so that, a posteriori, the use of the models

as tools is justified.

2f. Evaluation of Forecasts

The predicted storms are described primarily in terms

5
of the central pressure of the sea-level system In most situations,

this served as an adequate measure of the degree of development, but

as with the actual storms, note was made of those occasions where

Charts of the FNWC-PE sea-level pressure forecasts are contoured
in increments of 4 mb, with maxima and minima in the pressure
field appropriately identified and labeled with their respective numeri-
cal values. The computer printouts of the LFM sea-level pressure
prognoses are contoured in increments of 4 mb, as were the printouts
generated of the NMC-PE forecasts extracted from the "B-3" tapes.
Both the LFM forecasts and those NMC-PE prognoses which were
obtained from the tapes allow essentially an unambiguous determina-
tion of the predicted central pressures. Charts of the NMC-PE sea-
level pressure forecasts are contoured only in 8 mb intervals. The
location of maxima and minima are identified, but the numerical
values are often either not printed or are unreadable. Consequently,
there was some uncertainty in assigning a value to the predicted
central pressures of those NMC-PE forecasts for which only the con-
tour charts were available. The approach adopted in such cases was to
subjectively extrapolate the pressure gradient on the basis of: i) synop-
tic experience, ii) experience gleaned from examining contour charts
that do have the value of central pressure printed on them, and iii) ex-
perience obtained by comparing, when possible, contour charts with
computer printout of the B-3 data for the corresponding forecast. It
is felt that in no instance does the uncertainty (maybe 1-3 mb) affect
the validity of the discussions that follow.
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the intensity of the circulation, assessed qualitatively, was more

representative. In evaluation of the performance of forecasts,

emphasis was on the departure between predicted and actual changes,

rather than on the absolute difference between observed and forecast

at some given time. This is especially pertinent with regard to the

hypothesis where, for example, the absolute error in a 36-hour

forecast of central pressure is less important than comparison of

the temporal evolution of the actual and predicted development.

It should be noted that the numerical prognoses are

through 24 or 36 hours from the initial time (either OZ or 12Z)

with generally two or more successive initial times considered for

each case. Since the output of the nunerical forecasts from some

given initial time is in 12-hour increments, comparison is with the

net 12-hour observed changes between the nominal times of OOZ and

12Z. Another point to note is that the initial 12-hour forecast

changes of central pressure are reckoned from the minima of pressure

of the objectively analyzed fields of sea-level pressure from which

the prognoses are generated. Because of the inherent smoothing

that occurs in the objective analyses of data to a rather coarse

grid, the initialized values of central pressure were generally

somewhat greater (1-5mb) than the lowest pressures indicated on

the corresponding manually analyzed surface charts that were used

to trace the actua.l storm development. For several of the case

studies (Table 2), the actual objective analyses were not available,
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so that it was necessary to estimate the initialized values of central

pressure on the basis of experience gained in comparison of the

manually produced surface charts with the corresponding objective

analyses. This matter is discussed further in Appendix A.

In addition to development of the sea-level pressure

system, other potentially relevant items such as precipitation and

500 mb forecasts were examined.
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CHAPTER III

ARGUMENTS I AND II: COINCIDENCE IN TIME BETWEEN

CONVECTION AND INITIAL DEVELOPMENT;

SYSTEMATIC ERROR IN THE NUMERICAL PROGNOSES

3a. Introduction

The principal observations and deductions of this inves-

tigation will be discussed with reference to the following hypothesis:

In some instances of extratropical cyclo-

genesis, cumulus convection plays a crucial role in the

initiation of development through the release of latent heat

in the vicinity of the cyclone center. In such cases, dynami-

cal models which do not adequately simulate convective

precipitation, especially as it might occur in an environ-

ment that is unsaturated, will fail to properly forecast the

onset of development.

The hypothesis was formulated at an early phase of this

study as a statement of provisional conjecture, based upon intensive

analyses of twp case studies. The aim of the investigation thereafter

was directed primarily towards ascertaining the validity of the hypothe-

sis. Further evidence either to support or refute the hypothesis was

derived from detailed analysis of seven additional storms, cursory

examination of twelve others, and both qualitative and quantitative

consideration of the physical mechanisms involved. . The purpose of

the discussions in this and the following two chapters is to summarize
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the evidence and show that, although it may not be conclusive proof

of the hypothesis, it does provide sufficient support to elevate its

stature from mere conjecture to an assertion which may be accepted

as highly probable.

The case in support of the hypothesis may be summarized

in terms of the following four arguments:

I. In some storms, there was a coincidence in time

between the initial development and the occurrence

of convective showers in the vicinity of the low

center. Almost invariably, the environment in
6

which the convection occurred was unsaturated .

II. In those cases in which the initial development was

.accompanied by convective showers in the vicinity

of the low center and the environment in which the

convection occurred was unsaturated, the dynamic

prognoses systematically failed to properly forecast

the onset of development, apparently because of the

models' failure to predict the convective rainfall.

III. The importance of the latent heat release by cumulus

convection to the initiation of development of some

extratropical cyclones, which is implied by the

apparent source of the systematic error, is physically

plausible and quantitatively reasonable.

A saturated region is defined here as one in which the mean surface
to 500 mb relative humidity, as on the operational charts received
over facsimile, is in excess of 90 per cent. It is noted that the
concept of saturation and nonsaturation is in and of itself unimportant.
What is important is the fact that while saturation is a necessary
condition for significant stratiform precipitation, heavy convective
rainfall may occur in an environment which is unsaturated.
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IV. There appears to be no defensible alternative

explanation for the observed systematic error.

In this chapter, Arguments I and II will be discussed

and then documented through descriptions of the case studies. Discus-

sion of Arguments III and IV are presented in the two following chapters.

In order to facilitate the discussion of Arguments I and II,

Table 3 presents for each of the nine storms analyzed in detail, a

dichotomous characterization of the initial development with respect

to the following: i) the occurrence or nonoccurrence of convective

showers in the vicinity of the low center, ii) saturation or nonsaturation

of the environment of the center of the storm, iii) prediction or non-

prediction of the convective rainfall, if it occurred, and iv) adequate

or inadequate forecast of the onset of development. Discussion of the

results of cursory examination of twelve additional storms is presented

in Section 3c.

With regard to Argument I, Table 3 shows that the initia-

tion of development of six of the nine storms was accompanied by

convective shower activity in the vicinity of the low center. Of these,

in only one case was the environment of the low saturated. It follows,

of course, that the initial development of three of the nine storms was

not accompanied by shower activity. Furthermore, since the environ-

ment about the center of these storms was also unsaturated, there was

little or no stratiform precipitation and, hence, latent heat release

wag-not a factor in the initiation of their development.
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With reference to Argument II, Table 3 indicates that in

each of the five cases where the initial development was accompanied

by showers in an unsaturated environment, the dynamical prognoses

failed both to predict the convective precipitation and to adequately

forecast the onset of development. In the one storm in which convec-

tion occurred in an environment that was saturated, the precipitation

and the concomitant release of latent heat were predicted, as was the

initiation of development. Also, the onset of development was properly

forecast in those cases where there was no convection. Hence, the

dynamical prognoses systematically failed to predict the onset of

cyclogenesis in those storms in which the initial development occurred

in association with convective shower activity in an unsaturated en-

vironment. Furthermore, the apparent source of the systematic

error was the failure of the models to simulate the rainfall produced

by cumulus convection in an environment which was unsaturated.

It should be noted that significant shower activity occurred

in the cent-er of the storms generally only during the early stages of

their life history. Following an initial period of development, which

lasted anywhere from 6 to 36 hours, the convection became dissociated

from the low center. Forecasts which were generated subsequent to

the actual onset of cyclogenesis but prior to the dissociation process

were consistent with the notion of the importance of convection in the

low center to the initial development in that when the precipitation was

predicted, so too was the trend of contirmed development.
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An additional significant point relevant to Arguments I and II

is that .convective activity appeared to be important to the onset or con-

tinued development of the storms only when it occurred in the immediate

vicinity of the low center. That is, only when the convection occurred

in the low center was there a consistent contemporary relationship

between it and the observed storm evolution or was there a sytematic

error in the numerical prognoses.

In order to further scrutinize and document Arguments I and

II, a brief discussion of the nine detailed case studies is presented. The

illustrative material pertinent to Argument I includes the following:

i) plots of central pressure versus time (central pressure plotted generally

7
at 3-hour intervals ), ii) composite charts of the mean surface to 500 mb

relative humidity and simplified surface analysis (12-hour intervals),

iii) selected composite charts of the radar echo patterns and simplified

surface analysis, and iv) selected tipping-bucket traces and histograms

of 1-hour rainfall amounts, together with schematic diagrams to indicate

the line segments with respect to the low center along which the precipi-

tation cross sections apply. The illustrative material relevant to Argu-

ment II includes: i) plots of the observed and forecast values of central

pressure versus time (central pressures plotted at 12-hour intervals

In situations where there was no definite minimum in the pressure
field prior to development, the pressure at the point along the trough
axis from which the low center ultimately developed was assigned as
the value of central pressure. With some exceptions which will be
discussed, it is felt that the indicated changes of central pressure are
an adequate measure of the degree of development.
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in terms of the departure from the value at the initial time), and

ii) precipitation forecasts for relevant cases (cumulative 12-hour totals

with track of forecast low superimposed). Note is made that the

actual forecast charts of sea-level pressure and the appropriate initial

and verifying analyses will be presented only when visual inspection

thereof is more enlightening than consideration of central pressure

alone. Also, the isohytal analyses of actual precipitation amounts

will be presented for comparison only when either it is not clear from

the discussion of the observed 1-hour precipitation amounts that the

forecast 12-hour amounts are negligible or it is readily apparent that

significant amounts of rainfall were predicted.

3b. Detailed Case Studies

Case I - February 4 to 5, 1971

During the 18-hour period prior to 12Z Feb. 4, a low-

pressure system moved without developing from New Mexico to central

Oklahoma. Through 09Z Feb. 4, there was no significant convective

activity in association with this system. The 09Z composite surface-

radar chart (Fig. 8) does show the presence of a small area of light

showers to the south of the low along the cold front, but to this point,

inspection of the hourly rainfall data indicated negligible amounts of

precipitation were produced. Between 09Z and 1ZZ, as shown by the

radar observations (Fig. 8), however, and more precisely between

11Z and 12Z, as was indicated by hourly precipitation data, there was
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an explosive increase in the extent and degree of shower activity.

Shortly after 12Z, the low began to deepen (Fig. 9).

During the initial period of development between 12Z and

18Z Feb.' 4, the radar observations display a line of thundershowers

(i. e., a squall line) which extended south of the low and which was

embedded in a more general area of scattered to broken showers

and thunderstorms that extended and broadened somewhat to the

north of the low. It is evident from the composite surface-mean

relative humidity charts (Fig. 10) that the convection occurred in

an unsaturated environment. As an indication- of the magnitude of the

shower activity, the rainfall histograms of Tulsa and Lehigh, Oklahoma,

are presented in Fig. 11. The Tulsa histogram, which represents a

cross section through the low center between 1lZ and 15Z, indicates a

peak 1-hour rainfall amount of .80 in. In contrast, the largest 1-hour

total deposited as the squall line passed over Lehigh was . 36 in. The

1-hour amounts north of the storm were similarly less. Thus, al-

though the intensity of individual showers, as implied by the radar echo

tops, was greatest in the squall line, the degree of convection in terms

of the net amounts of rainfall that were being produced was greatest

in the center of the storm. The only available tipping-bucket gauge

relevant to the immediate discussion was that of Springfield, Missouri

(Fig. 12), which indicates that the intensities of showers in the center

of the low between 15Z and 18Z were generally from . 50 to 1.0 in hr~

-1
though one peak was in excess of 2. 0 in hr . Subsequent to 18 Z Feb. 4,

the storm continued to intensify as it tracked northeastward towards the
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Great Lakes. As can be seen clearly from the series of surface radar

charts (Fig. 8), however, the convective activity began to spread east-

ward away from the center of the storm between 18Z and 21Z. By

OOZ Feb. 5, there was virtually no precipitation in the vicinity of the

low center. The squall line, though, became more extensive and, as

exemplified by the Memphis histogram (Fig. 13), was producing more

precipitation than it had been prior to OOZ Feb. 5.

At this point, it is desirable to note that the configuration

of the shower activity during the initial phase of development of this

storm is characteristic of each storm in which the onset of development

was accompanied by an outbreak of convection. More specifically,

reference is made, first, to the radar echo pattern shown, for example,

by the 12Z surface-radar chart and, second, to a maximum in the

convectively produced amounts of rainfall within the center of the storm.

It is also noted that with one exception (Case V), the dissociation of

significant shower activity from the center of the storm occurred, as

in this case, while the storm was continuing to intensify.

One can see from Fig. 14 that neither the NMC-PE or

FNWC-PE prognoses generated from 12Z Feb. 4 properly forecast the

initiation of development. The models did forecast cyclogenesis in the

sense that significant deepening was predicted between 12 and 24 hours

after the initial time, but it is clear from Fig. 14 that each lagged

behind the real atmosphere in the onset of development. Fig. 15

shows that during the 12-hour period immediately following 12Z Feb. 4,

when the observed initial development occurred, both models produced

negligible amounts of precipitation (( . 25 in).
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It is noted that both the NMC-PE and FNWC-PE prognoses

generated from OOZ Feb. 5, which was after the shower activity became

dissociated from the low center, properly forecast the continuation of

development in the 12-hour period immediately following the initial

time (Fig. 16). The degree of the forecast development, which was

about the same in both cases, was less than observed, but there was

no lag in the trend of continued development. What is important in

this regard is that while the FNWC-PE predicted a significant fraction

of the precipitation that occurred in association with the squall line,

the NMC-PE produced negligible amounts (Fig. 17). The implication,

therefore, which was corroborated by the other case studies, is that

there was no systematic error in the numerical prognoses related to

the occurrence of cumulus convection other than when it occurred in

the center of the storms during the initial phase of development. It

should be emphasized that this does not necessarily rule out the pos-

sibility that extensive shower activity at the periphery of the storm

plays some role in the detail or magnitude of the actual storm evolution,

since the approach employed in this investigation may not have been

adequate to deduce such a role. What can be said, though, is that

convective activity which was not in the immediate vicinity of the low

center did not appear to be crucial either to the continuation of develop-

ment following the onset of cyclogenesis, as illustrated here, or to the

actual initiation of development, as will be explicitly discussed with

reference to Case VII.
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Case II - April 1 to 3, 1970

At 12Z April 1, an inverted trough extende-d northward

from central Texas through Oklahoma. The composite surface-radar

charts (Fig. 18) indicate that at this time there was an area of broken

light showers, with a few thunderstorms embedded to the north-northwest

of the trough axis; however, there was no precipitation in the interior of

the trough itself, as was the case through 18Z. Between 12Z and 18Z

some surface development occurred in terms of the appearance of a

minimum of pressure (2-3 mb deepening along the trough axis) and

a slight increase of the circulation about the trough, but the actual onset

of cyclogenesis did not occur until the 6-hour period following 18Z

(Fig. 19). As can be seen from the 21Z April 1 and OOZ April 2 surface-

radar charts (Fig. 18), the initiation of development coincided with an

outbreak of extensive shower activity in the center of the low.

It is interesting to note that the storm deepened 6 mb

between 18Z and 21Z April 1, but that there was little further decrease

of central pressure during the 3-hour period thereafter. What occurred,

rather, as illustrated by Fig. 20, was that between 21Z and OOZ, the

low center was in the process of redeveloping northeastward such that,

although there was virtually no net change of central pressure, the

observed 3-hour pressure falls of 4-5 mb along the Illinois-Kentucky

and Indiana-Kentucky borders were developmental components of the

isallobaric field. The contemporary relationship which cxisted between

the shower activity and the redevelopment and continued deepening of the
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low thereafter through about 06Z is clearly demonstrated by the tipping-

bucket traces of Cairo, Illinois; Evansville, Indiana; and Louisville,

Kentucky (Fig. 21). Peak intensities of the showers within the new low

-1
center were well in excess of 2. 0 in hr , with 1-hour totals generally

greater than . 50 in and often in excess of 1. 0 in (Louisville recorded

1.73 in between 04Z and 05Z April 2). Except for the extreme southern

portion of the squall line, these amounts were considerably greater than

those reported elsewhere in association with the storm.

Following 06Z April 2, as the storm continued to intensify,

the heaviest shower activity became dissociated from the low center.

What shower activity there was in the center of the storm was much

subdued from that prior to 06Z (1-hour amounts less than .20 in).

With reference to the series of surface-mean relative

humidity charts (Fig. 22), one can see that through OOZ April 2, although

the area to the north of the low was saturated, the environment of the

low center itself was not. By 12Z April 2, however, the region about the

center of :he storm had become saturated.

Inspection of Fig. 2 3 indicates that the 12-hour NMC-PE

prognoses generated from 1ZZ April 1 completely failed to predict the

observed initial development. Some deepening (3 mb), however, was

forecast between 12 and 24 hours after the initial time, and major

development followed during the 12-hour period thereafter. Thus,

although the model did predict cyclogenesis, the onset of development

was not properly forecast. As can be seem from Fig. 24a, although

precipitation was forecast to the north of the low between 12 Z April 1
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and OOZ April 2, none was predicted in the unsaturated environment of

the lw center itself. The forecasts generated from OOZ April 2 (Fig. 23b),

which was prior to when significant convection became dissociated from

4=l1ow center, did predict the continued trend of development, without

lag. As shown by Fig. 24b, the model also forecast substantial amounts

of precipitation in association with the forecast center of low pressure

during the 12 hours immediately following the initial time.

Case III - November 11 to 13, 1968

At OOZ November 11, a weak low-pressure area was located

in the vicinity of Galveston, Texas. During the 12-hour period prior

to this time no precipitation was associated with this system as it

drifted across Texas without developing. In the 12-hour period following

OOZ, the low deepened slowly (Fig. 25) as it tracked eastward along the

Gulf Coast to a point just to the southeast of Pensacola, Florida. The

06Z and 12Z surface-radar charts (Fig. 26), plus the tipping-bucket

trace of Pensacola (Fig. 27), serve to illustrate that the initiation of

development was accompanied by an outbreak of shower activity.

Between 12Z and 18Z Nov. 11, the storm began to track

northeastward towards the central Atlantic Coast. It is interesting to

note that during this period there was little or no further development

(Fig. 25), and as illustrated by the 15Z surface-radar chart (Fig. 26),

the shower activity in the central region of the storm dissipated. The

radar observations indicate some light showers to the northwest of the

low and an area of thunderstorms to the southeast, but there was no
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activity in the center of the storm. At about 18Z, however, as exem-

plified by the surface-radar charts and the rainfall histogram of

Brunswick, Georgia (Fig. 28),heavy showers reappeared in the low

center, and development recommenced shortly thereafter (Fig. 25).

The tipping-bucket trace of Charleston, South Carolina,

and rainfall histograms of Cape Hatteras, North Carolina (Figs. 29 and 30),

illustrate that shower activity remained in the central region of the

storm through about 06 Z Nov. 12. During the 3-hour period there-

after, as the storm continued to intensify while moving northward along

the Atlantic Coast, significant convection spread eastward away from

the low center.

It can be seen from the series of surface-mean relative

humidity charts (Fig. 31 ) that although the area to the north and north-

west of the storm was saturated, the immediate en-vironment of the

low center through OOZ Nov. 12 was not. By 12Z Nov. 12, the area

about the low had become saturated.

It is evident from Fig. 32a that the NMC-PE failed to

properly forecast the initiation of development. The predictions

generated frorn OOZ Nov. 11 erroneously filled the low through 24 hours

after the initial time. Not until the 24 to 36-hour forecast period was

the onset of cyclogenesis predicted. It is noted also that the forecasts

generated from 12Z Nov. 11 (Fig. 32b) lagged behind the real atmos -

phere in the continuation of development. That is, no further deepening

was forecast until 12 to 24 hours after the initial time. Figs. 33 a-b
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show that neither the prognoses generated from OOZ or 12Z Nov.. 11

forecast the heavy convective rainfall observed in the center of the

storm during the 12-hour period immediately following their respective

initial times. The prognoses from OOZ Nov. 12 (Fig. 32c) did forecast,

without lag, the observed continuing development, and did forecast

significant amounts of precipitation in association with the predicted

low center (Fig. 33c).

Case IV - March 2 to 4, 1971

At about 15Z March 2, showers and thunderstorms

developed along the entire length of a stationary front that extended

from southern Texas to the southeast Atlantic Coast (Fig. 34).

Between 15Z March 2 and OZ March 3, the inverted trough which

was situated about the front began to deepen, and a nascent wave

cyclone developed in southern Mississippi, where, as can be seen

from the OOZ surface-radar chart, the most intense convection had

become concentrated.

During the 24-hour period following OOZ March 3, the

low developed -slowly (Fig. 35), but steadily, as it tracked northeast-

ward to the coast of North Carolina. The tipping-bucket trace of

Macon, Georgia (Fig. 37), and the OOZ March 4 surface-radar

chart (Fig. 34) illustrate the fact that there was extensive convective

activity in the vicinity of the low center for this entire period.

Between OZ March 4 and OOZ March 5, the storm

intensified explosively while it moved northward along the Atlantic

seaboard to New England. Radar data and ship observations indicate,
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however, that significant shower activity became dissociated from the

center of the storm shortly after OZ March 4.

Fig. - 36 shows that the environment about the storm center

was unsaturated through 12Z March 3, but had become saturated by

OOZ March 4.

One can see from the NMC-PE sea-level pressure

charts which were generated from 12Z March 2 (Fig. 38) that the

model did not deepen the inverted trough or produce an incipient

center of low pressure until 12 to 24 hours after the initial time

(see also plot of forecast and observed central pressures vs. time,

Fig. 39a). That is, the prognoses lagged behind the real atmosphere

in the onset of development. Comparison of the observed and predicted

precipitation between 12Z March 2 and OOZ March 3(Fig. 40a) shows

that, although the model did- forecast some precipitation in the north-

east and southwest portions of the trough, it did not produce any

rainfall corresponding to that observed in association with the develop-

ment of the incipient low.

Both the FNWC-PE and NMC-PE forecasts from OOZ

and 12Z March 3 predicted the continuation of development, without

lag (Figs. 39b 'and 39c, respectively). As can be seen from Figs. 40b

and 40c, the NMC-PE also forecast significant precipitation in associa-

tion with the low center8 during the 12-hour periods immediately

8 With regard to the NMC-PE forecast from OOZ March 3, it is noted
that the environment about the actual low center was unsaturated
through 12Z March 3; however, with the reduced saturation criteria
of 90 per cent, the model did saturate the region about the low in the
12-hour period after OOZ March 3, and hence, was able to produce
precipitation.
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following the respective initial times. The FNWC-PE precipitation

forecasts were not available and, therefore, one can only speculate

that this model also simulated the convective rainfall.

It is noted that both models predicted major development

to occur in the first 12-hour period following the initial time of

OOZ March 4 (Fig. 39d), although the magnitude of that development

was not as great as observed. (No precipitation forecasts available

for either model.)

Case V - February 12 to 13, 1971

Between OOZ and 09Z Feb. 12, a well-defined nascent

cyclone developed from a general area of low pressure that at OOZ wa;

situated over Texas and Oklahoma. Although during this period, while

the storm drifted across southern Arkansas, there was virtually no

9
net change of central pressure , there was a definite increase in the

cyclonic circulation (Fig. 41). The initiation of development, as can

be seen fr-om the 06Z surface-radar chart and rainfall histogram of

Foreman, Arkansas (Figs. 42 and 43, 'respectively), was accompanied

by an outbreak of significant shower activity in the vicinity of the low

center. It can be inferred, in addition, from the OOZ Feb. 12 surface-

mean relative humidity chart (Fig. 44) that the environment in which

the storm first developed was unsaturated.

There was approximately 1-2 mb deepening between OOZ and
09Z Feb. 12, if account is taken of the normal diurnal tendencies.



-56-

The surface-radar charts (Fig. 42) serve to illust..ate

that significant convection became dissociated from the center of the

stoim by 12Z Feb. 12. Thereafter, although the are- was saturated

(Fig. 44), there was little or no precipitation, either stratiform or

convective, within the low center for the balance of the storm's life

history.

It should be noted that unlike Cases I-IV and Case VI,

development did not continue, either in terms of a decrease of

central pressure (Fig. 45) or an increase of the cyclonic circulation

during the dissociation of the convective activity from the center of

the storm. In fact, there was little further development until about 03Z

Feb. 13, when the low began to develop rapidly as it tracked north-

eastward towards Pennsylvania. Apparently, when the convection

became dissociated from the low center, large-scale motions and

processes alone were not yet conducive to fui'ther development.

It can be seen from comparison of the 12-hour NMC-PE

sea-level pressure chart generated from OOZ Feb. 12 with the initial

and verifying analyses (Figs. 41 and 46) that the model failed to pre-

dict the onset of development. The model did not, in fact, produce

a minimum of pressure corresponding to the observed storm until

24 to 36 hours after the initial time. Fig. 47 illustrates that

negligible amounts of precipitation were forecast between OZ and

12Z Feb. 12, when the observed initiation of development occurred.

Each of the models available for the initial time of

12Z Feb. 12 forecast some deepening between 12Z Feb. 12 and
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OOZ Feb. 13 and, with the exception of the LFM (for reasons not readily

apparent), predicted more significant development, as was observed,

during the 12-hour period thereafter (Fig. 48a); however, although the

FNWC-PE prognoses generated from OOZ Feb. 13 forecast the continua-

tion of development without lag, the NMC-PE forecast from 0OZ Feb. 13

did not predict further development until 12 to 24 hours after the initial

time (Fig. 48b). The failure by the NMC-PE to properly forecast the

continued development cannot be ascribed to the occurrence of convec-

tive showers, but it is emphasized here that this particular forecast

was the only case in which this situation was encountered.

Case VI - March 23 to 24, 1969

Between OOZ and 06Z March 23, an ill-defined minimum

in the pressure field drifted slowly across the Texas Panhandle without

developing. The radar observations (Fig. 49) indicate that during this

interval of time there was some shower activity in association with the

low,but only light amounts (( . 10 in) were recorded by hourly rainfall

stations.

During the 6-hour period following 06Z, the low began

to deepen (Fig.' 50), and, as illustrated by the 1ZZ surface radar

composite (Fig. 49) and the rainfall histogram of Lake Bridgeport,

Texas (Fig. 51), the onset of development was accompanied by an

explosive increase in the extent and degree of convection. Between

15Z and 18Z, while the storm was continuing to intensify, significant

shower activity became dissociated from the low center.
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It can be seen from the surface-mean relative humidity

charts (Fig. 52) that the area about the low at OOZ March 23 was quite

dry. At 12Z, however, shortly after the major outbreak of convective

activity, the environment of the storm center was indeed saturated.

Fig. 53 indicates that the NMC-PE prognoses from

OOZ March 23 forecast the initiation of development, as was observed,

during the first 12 hours following the initial time. The model also

predicted during this same interval of time significant amounts of

precipitation in association with the forecast center of low pressure

(Fig. 54).

It is noted that the prognoses generated from 12Z March 23

(Fig. 53 ) predicted the continuation of development, without lag, and

also forecast substantial amounts of precipitation in association with

the forecast low.

Case VII - February 26 to 27, 1971

Between 06Z and 12Z Feb. 26, a weak low-pressure system

began to develop (Fig. 55 ) as it tracked north-northeastward from central

Nebraska towards eastern Minnesota. The radar-surface charts of

12Z and 18Z Feb. 26 (Fig. 56 ) show that some light showers were as -

sociated with the initial development, but as exemplified by the tipping-

bucket trace of Miineapolis, Minnesota (Fig. 57), the activity can be

considered negligible. The peak intensity of the shower at Minneapolis

was just . 35 in hr. with only .08 in of rainfall recorded in the hour

during which the shower occurred (17Z - 18Z).
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In terms of the net 12-hour changes of central pressure,

the onset of development did not actually occur until between 1ZZ Feb. 26

and OZ Feb. 27 (Fig. 58). In fact, the low filled 2 mb during the 12-hour

period prior to 12Z Feb. 26. Fig. 58a shows that both the FNWC-PE and

NMC-PE prognoses generated from OOZ Feb. 26 predicted this trend of

events. Twenty-four hours after the initial time there was a large error

in the absolute difference between the predicted and observed values of

central pressure; however, what is significant is that there was no lag

in prediction of the initial development, or in other words, the time of

the onset of cyclogenesis was properly forecast. The same is true for

the prognoses from 12Z Feb. 26 (Fig. 58b). Although the magnitude

of the predicted initial development was not as great as that observed,

the models did forecast the onset of development during the 12-hour

period immediately following the initial time.

As an illustration of the apparent unimportance to the

initiation of development of convective activity which occurs at the

periphery of the storm area, reference is made to the following: the

expanded areal coverage of the 12Z Feb. 26 surface-radar chart

presented in Fig. 59 illustrates that there was extensive and obviously

intense shower activity in the southern United States which was not

directly associated with the development of this storm. That is, the

convection appeared well before the onset of cyclogenesis and persisted

through the later stages of development. Both the NMC-PE and

FNWC-PE prognoses generated from OOZ Feb. 26 did adequately fore-

cast the convective rainfall between 12 and 24 hours after the initial
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time (i. e., the period during which the onset of development occurred),

but the 12-hour forecasts from 12Z Feb. 26 produced negligible amounts

of precipitation during that same period. It is noted, however, that

both models in the forecasts generated from OOZ and 12Z Feb. 26 properly

forecast the onset of development. The implication, therefore, which

was corroborated by other case studies, is that convective activity on

the periphery of the storm area was not crucial to the initiation of

development.

Case VIII - December 25 to 27, 1970

The initial development of this storm occurred between

15Z and 18Z Dec. 25 (Fig. 60) when what had been an innocuous

minimum in the pressure field drifted eastward from the border of

North and South Carolina across the Atlantic Coast. Thereafter, the

storm intensified to near hurricane proportions as it tracked north-

eastward to a position just south of Nova Scotia at OOZ Dec. 27.

The center of the storm was within range of the radar at

Cape Hatteras, North Carolina, until 00Z-Dec. 26, and through that

time, there was no indication of shower activity. The extent and degree

of any convection there might have been about the center of the storm

following OOZ is not known (no pertinent ship observations available).

Fig. 61 clearly indicates that the models did forecast the

onset of development, as was observed, between 12Z Dec. 25 and OOZ

Dec. 26, and predicted the trend of continued development in the 12-hour
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period thereafter. It is noted that the models did not predict significant

precipitation in the vicinity of the forecast low center between OOZ and

12Z Dec. 26. Hence, if there was any precipitation about the actual

storm center during this period, it was not crucial to the continuation

of development subsequent to OZ.

Case IX - January 25 to 26, 1971

Between 12Z and 15Z Jan. 25, a minimum of pressure

appeared in the southeastern extremity of a broad cyclonic area that

extended from Idaho to Iowa. Development commenced shortly there-

after (Fig. 62) as the low moved eastward towards the Great Lakes.

The only precipitation accompanying the initiation of development was

some inconsequential light snow to the north of the low center.

It can be seen from the charts of the FNWC-PE and

NMC-PE 12-hour forecasts generated from 12Z Jan. 25 (Fig. 63),

that both models produced well-defined 1000-mb cyclones (see also

plot of forecast vs. observed central pressure, Fig. 64a). The

predicted storms are not as deep as the observed, but the onset of

development was indeed forecast. It is noted, also, that the prognoses

forecast the continued development subsequent to OOZ Jan. 26 (Fig. 64b).

3c. Results of Cursory Examination of Twelve Additional Cases

In order to augment the nine detailed case studies, a

cursory examination was made of twelve additional storms. Each

of the twelve cases, as were the nine storms analyzed in detail,
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was an intense cyclogenesis which occurred over the eastern two

thirds of the United States or western Atlantic.

Data utilized in analysis of the convective activity were

restricted to the "SM' surface synoptic reports and 6-hour precipita-

tion totals received over teletype at M. I. T., and to radar charts

received over facsimile. These data alone are not sufficient to

describe the detailed distribution and magnitude of convection ac-

companying a storm's development; however, one can deduce from

these data whether there was significant shower activity in the vicinity

of the low center during the initial development.

Emphasis on storms of the 1971-1972 winter season

reflected operational implementation of the LFM in October, 1971.

Only NMC-PE and/or LFM forecasts w'ere considered and were in

the form of contour charts received over facsimile. The LFM

precipitation forecasts are received over facsimile, but NMC-PE

precipitation forecasts are not. However, prediction or nonprediction

of rainfall can be inferred from whether or not the model produced

saturation about the forecast center of low pressure (relative

humidity forecasts are received over facsimile).

The results of the analysis of the twelve storms are

presented in Table 4. In those cases where the forecasts of both

models were available, the conclusions to be drawn from each were

consistent with one another. It can be seen that the initial development

of six storms was accompanied by an outbreak of convective showers

in the vicinity of the low center. Of these, in five cases the environment
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of the low was unsaturated, the convective precipitation was not

adequately simulated, and the initiation of development was not

properly forecast. In the one storm in which the convection occurred

in a saturated environment, the precipitation was predicted, as was

the initiation of development. In the six other storms, there was

little or no precipitation, either convective or stratiform, in associa-

tion with the initial development and, in each case, the onset of

cyclogenesis was properly forecast.
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CHAPTER IV

ARGUMENT III: PHYSICAL PLAUSIBILITY AND

QUANTITATIVE REASONABLENESS

4a. Introduction

In this chapter, attention is focused upon Argument III:

the importance of latent heat release by cumulus convection to the

initiation of development of some extratropical. cyclones, which is

implied by the apparent source of the systematic error, is physically

plausible and quantitatively reasonable.

4b. Physical Plausibility

The importance of latent heat release to the development

and maintenance of extratropical cyclones has been well established.

Danard (1964), for example, has shown that the release of latent heat

amplifies the upward motion and thereby increases the low-level con-

vergence. As a result, the sea-level ( or 1000-mb) system tends to

intensify and ihove with the center of heaviest precipitation. However,

Danard, as have others who explicitly considered the question (e. g.,

Bullock and Johnson, 1971; Petterssen, 1956), expressed the belief

that condensational heating does not play a role in the initiation of

cyclogenesis, but rather that it effects the subsequent growth. The

underlying idea behind this premise is that significant precipitation
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in association with intense extratropical storms does not occur until

after development has commenced and large-scale cloud systems have

been formed; in other words, after broadscale saturation has been

achieved.

Heavy convective rainfall, though, can occur in an

unsaturated environment. Moreover, as was documented in the previous

chapter, the initial development of some storms does indeed coincide

with an outbreak of shower activity prior to large-scale saturation. It

is therefore physically plausible that the released latent heat, through

enhancement of the upward motion, plays an important role in the onset

of cyclogenesis.

It is noted that the mechanism which is generally ascribed

to the initiation of cyclogenesis, when the release of latent heat is not

taken into account, is the superposition of a region of positive vorticity

advection in advance of an upper-level trough over a low-level baroclinic

(frontal) zone along which the thermal advection is discontinuous

(Petterssen, 1956). Prior to development, when the vorticity advec-

tion is well to the rear of the surface front, the induced vertical

motion is. opposed by the distribution of horizontal advective cooling.

When the region of positive vorticity advection has advanced so that

the opposing influence of thermal advection beneath it is weaker or

10nonexistent, an imbalance is created and development commences.

Surface frictional effects must also be considered. That is, the
magnitude of the vorticity advection must be sufficient to offset
the opposing influence of friction as well as cold advection.
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In each of the storms analyzed in this investigation, the

development did occur in association with the advance of an upper

trough towards a low-level frontal system. As exemplified by Fig. 65,

however, in those storms in which the onset of cyclogenesis was ac-

companied by convective showers, the vorticity advection over the

incipient low center during the initial stage of development was,

qualitatively speaking, less than in the other cases. It would appear,

therefore, that an outbreak of convective showers creates the imbalance

necessary for development to commence prior to the time when vor-

11
ticity advection alone would initiate development . From another

point of view, it is recalled that the error in prediction of the initial

(or continued) development was manifest not in a complete failure to

predict the occurrence of cyclogenesis, but rather in a lag in the

forecast of the onset of development. Thus, it can be inferred that

the convective release of latent heat initiates cyclogenesis prior to

the time when it would have occurred if only the larger-scale

baroclinic processes were opewrative. In effect, the release of

gravitational instability by small-scale convection triggers the

baroclinic instability associated with the large-scale temperature

contrast between air masses.

Close inspection of the figures Petterssen (1954, 1956) presents
to illustrate that vorticity advection initiates cyclogenesis reveals
that, in some of the cases, there was not appreciable vorticity
advection over the incipient low at the time the initial development
occurred; however, there was thundershower activity in the vicinity
of the low center. It is hypothesized that, if numerical forecasts of
these storms had been performed and the convective rainfall not pre-
dicted, the initiation of cyclogenesis would not have been properly
forecast.
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4c. Quantitative Reasonableness

In order to establish dynamically the magnitude of surface

development consistent with the rainfall pattern observed in association

with the onset of cyclogenesis, solutions were obtained to the diagnostic

quasi-geostrophic omega equation for thermally induced motions (see,

e.g., Danard, 1964),

and to the vorticity equation,

-- (2)

where 9 is the geopotential;Ufd represents the vertical motion;

is the geostrophic relative vorticity;j 0 is a constant value of the

coriolis parameter; the stability parameter is a

function only of pressure; and Q is the diabatic heating.

It should be noted that the intent here is not to analyze

the effect of individual showers, but rather to examine the collective

influence of the latent heat released by convective activity in the

vicinity of the low center on the deepening of the cyclone. More

specifically, the question which is addressed is whether the latent

heat release alone can account for the observed initial development.
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The horizontal distribution of rainfall is modeled analy-

tically as an ellipse in which the maximum precipitation rate, Pm, is

at the center and values of P decrease exponentially therefrom. Thus,

f P L LA=FC(3)

where A and B are scale factors which specify the minor and major

axes (x and y, respectively) of the ellipse defined by P(x, y) = 1 Pm

It can be assumed that the precipitation recorded at the

ground is an adequate reflection of the vertically integrated heating.

As has been noted by others (e. g., Charney and Eliassen, 1964),

however, little is known about the vertical distribution of the latent

heat released by cumulus convection. Therefore, detailed treatment

of the vertical variation of heating and of other parameters is not

justified. Thus, a model with the simplified vertical structure shown

in Fig. 66 was adopted.

The omega equation was applied to levels 1 and 3. With

the assumption that the latent heat release is confined to the layer

between 900 mb and 200 mb, it can be shown that the heating at these

levels is as follows 1 2

^V Zq L ?N,(4)

Here/is an adju-stable parameter which measures the ratio of the

12 Stepwise integration of S Q i"V *
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upper to lower tropospheric heating (i. e.,y = Q 1/Q ),and L is the

latent heat of condensation.

When vertical derivatives are expressed in finite difference

form, the omega equation at levels 1 and 3 becomes:

7 o3+ r (5)6. 2 b .)"

The simultaneous solution of these equations foru) and\J 3

at the center of the precipitation distribution was obtained via a Fourier

transform technique which is outlined in Appendix B. A parabolic

profile was then fit to the values of U) 0(U) 0),1)W, andU )in

order to obtain at the 1000 mb surfac-e and thereby enable solution

of Eq. (1) for the 1000 mb geopotential tendency, which may readily

be translated to the deepening rate of the sea-level pressure system.

The Fourier transform method of solving Eq. (1) also appears in

Appendix B.

Observed one-hour precipitation amounts in the center

of storms during the initial phase of development were typically between

. 5 and 1. 0 in (see, for example, the rainfall histogram of Tulsa,

Oklahoma, Fig. 11). The value of Pm used in the calculations, there-

fore, was .75 in hr . On the basis of the characteristic dimensions

of the precipitation areas, the values of A and B utilized in Eq. (3)
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were such that the ellipse had major and minor axes of 750 and 250 km,

respectively. Average values of6 and & were ascertained from
11 2

the values of 6 and & 2 computed for each of the soundings available

within a radius of 500 km from the low center of Cases I - VI during

the initial stage of development. Numerically, the mean values of

-2 -2 -2 -2 -2
61 and 62 were 1. 2 x 10 and 7.4 x 10 m sec mb , respectively.

The computed deepening rates appear in Table 5. Values

range from -. 61 mb hr~ with( :: 3 to -1. 52 mb hr with:: .5. As

noted above, little is known about the vertical distribution of the latent

heat released by cumulus convection. Theoretical treatments by

various investigators (e.g., Kuo, 1965; Kasahara and Asai, 1967)

predict substantially different vertical variations of the heating. There

does appear, however, to be agreement that a larger portion of the

heating occurs in the upper rather than the lower troposphere with a

ratio of the upper to lower tropospheric heating having a maximum

value of about 3. Thus, the most reasonable computed values of

the deepening rate are between . 6 and 1. 2 mb hr . Typical values

of the deepening rate observed during the onset of cyclogenesis were

about the same.

At this point, a few comments are in order concerning

the suitability of the geostrophic equations in this study. The magni-

tude of the assumed precipitation rate was considerably greater than

the 2 cm or less per day consistent with the geostrophic assumption

(Phillips, 1957). Undoubtedly, if numerical integrations were to be
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performed with such a large value of the precipitation rate, serious

errors in the forecasts would result after a number of time steps. The

quantitative reliability of the instantaneous (i. e., diagnostic) relation-

ship between the precipitation rate and computed quantities is not

known.

Thus, although the computed deepening rates are

comparable with those observed, doubt concerning the quantitative

reliability of the geostrophic equations, as well as the relative

crudeness of the modeling approximations, must temper any conclu-

sions to be drawn. Nevertheless, the results of the computations

are indeed consistent with the notion that the release of latent heat

can account for the observed initial development. In other words,

it is 'quantitatively reasonable that cumulus convection through the

release of latent heat plays an important role in the initiation of

cyclogenesis.
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CHAPTER V

ARGUMENT IV: ALTERNATIVE SOURCES OF THE

SYSTEMATIC ERROR

This chapter presents a discussion of Argument IV:

there appears to be no defensible alternative explanation for the

observed systematic error.

The numerical prognoses utilized in this investigation,

with or without proper consideratien of cumulus convection, are not

perfect representations of the real atmosphere. Errors in the

predictions can be introduced by any one or a combination of various

physical, dynamical, or computational limitations, such as lack

of horizontal and vertical resolution, insufficient initial data,

initializing procedures, artificial boundary conditions, etc. The

possibility must therefore be considered that the failure to forecast

properly the onset (or continuation) of development was for reasons

other than the failure to predict convective precipitation.

A priori, the most likely alternative explanation is

the characteri'stic tendency for forecast 500 mb troughs to lag behind

their observed positions, while the associated surface features move

correctly'to the east or northeast. Fig. 67 illustrates this type of

error. In this 24-hour NMC-PE forecast, the surface low shows

only a small error in position, but the 500 mb trough is slow in its

translation eastward. The net effect is that the slope between the
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500 mb trough axis and the surface low is greater than that actually

13
observed13 In the forecast, therefore, the surface low is further

ahead of the region of maximum positive vorticity advection that lies

in advance of the upper-level trough. Consequently, the failure to

properly forecast the onset of development of some storms could

conceivably be attributed to failure to predict enough vorticity

advection over the incipient low center.

However, prediction of too great a slope between the

500 mb and surface systems is generally observed to be greatest

in the 36-hour forecasts and least pronounced, often nonexistent

(especially in the LFM forecasts), in the 12-hour forecasts; and in

most'cases, the adequacy in predicting the initial development was

evaluated on the basis of the 12-hour forecasts. Moreover, dif-

ference between the observed and forecast vorticity advection over

the incipient low centers, assessed qualitatively, was not systemati-

cally related to whether the onset of development was properly

predicted. The greater slope between the forecast 500 mb troughs

13 The nature of this type of error, with reference to the NMC-PE,
has been discussed by Fawcett (1969). The slowness in translation

of the 500 mb trough can reasonably be ascribed to truncation error.
The correct motion of the surface system, Fawcett asserts, can

be shown experimentally to be due to latent heat feedback. The
precipitation predicted in advance of a low tends to accelerate it
towards the center of heaviest rainfall; however, it is the experience
of this author that, although latent heat may accentuate the effect,
the relative slowness of predicted 500 mb troughs with respect to
the surface lows occurs also when no precipitation is forecast.
Furthermore, Fawcett (1967) indicates that this type of error was
a feature of the NMC-PE before precipitation was incorporated into
the model. Additionally, it is noted that this error is somewhat
greater in the FNWC-PE than in the NMC-PE and less in the LFM.
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and surface features likely contributed to the magnitude of the error

between the observed and predicted initial development, but it was

not crucial to prediction of the initiation of cyclogenesis.

Principal other alternative explanations for the failure

to predict the onset of development are: i) inability to resolve all

relevant energy-producing systems, and ii) initialization procedures.

The models can resolve motions only on a scale greater than twice

the grid interval, so that any processes occurring on a smaller

scale, which could be of importance, are eliminated. The smoothing

inherent in preparation of initial data for use in primitive equation

models could eliminate from the initial state detail that in the real

atmosphere was crucial to the onset of cyclogenesis. Although

these, and perhaps other alternative explanations as well, could

indeed result in failure to predict the initial development (or continued

development) in any given situation 14, there does not appear to be

any reason for the systematic error that was observed. That is,

no explanation can be given as to why the models consistently failed

to predict the initiation of cyclogenesis only when the actual initial

development coincided with an outbreak of convective showers and

the convective rainfall was not forecast.

14 It is recalled that in only one case did a model fail to predict
the continuation of development for reasons other than the
occurrence of convective showers (NMC-PE forecast from OOZ
Feb. 13 - Case V).
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The goal of this thesis has been to determine whether

cumulus convection plays a role in the development of extratropical

cyclones, and if it does, to determine the nature of that role. The

basic approach adopted in investigating this question was to determine

whether there is a systematic relationship between the extent and

degree of convection within cyclones and the departure of thietual

storm evolution from that predicted by operational forecast models.

On the basis of detailed analysis of the two storms

initially chosen for study, the following hypothesis was formulated,

and the balance of the investigation directed primarily towards

ascertaining its validity:

In some instances of extratropical

cyclogenesis, cumulus convection plays a crucial role

in the initiation of development through the release of

latent heat in the vicinity of the cyclone center. In such

cases, dynamical models which do not adequately simulate

convective precipitation, especially as it might occur in

an environment that is unsaturated, will fail to properly

forecast the onset of development.

Evidence either to support or refute the hypothesis was

derived from detailed analysis of seven additional storms, cursory

examination of twelve others, and both qualitative and quantitative
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consideration of the physical mechanisms involved. Although the

evidence may not be conclusive proof of the hypothesis, it does provide

sufficient support to elevate its stature from a statement of provisional

conjecture, which it was originally, to an assertion that may be accepted

as highly probable.

The case in support of the hypothesis was summarized

in terms of four arguments:

I. In some storms, there was a coincidence in

time between the initial development and the

occurrence of convective showers in the vicinity

of the low center. Almost invariably, the environ-

ment in which the convection occurred was unsaturated.

II. In those cases in which the initial development was

accompanied by convective showers in the vicinity

of the low center and the environment in which the

convection occurred was unsaturated, the dynamic

prognoses systematically failed to properly forecast

the onset of development, apparently because of the

models' failure to predict the convective rainfall.

III. The importance of the latent heat release by

cumulus convection to the initiation of development

of some extratropical cyclones, which is implied

by the apparent source of the systematic error, is

physically plausible and quantitatively reasonable.

IV. There appears to be no defensible alternative ex-

planation for the observed systematic error.

It was noted that significant shower activity occured in

the center of storms generally only-during the early phases of their
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life history. The characteristic distribution of the convection during

the initial stage of development was a line of thunderstorms which

extended south of the low and which was imbedded in a more general

area of scattered to broken showers and thunderstorms that extended

and broadened somewhat to the north of the low (for example, see Fig. 2).

In terms of the net amounts of convective rainfall that were being pro-

duced, the degree of convection was greatest in the center of the

storm. Following an initial period of development, which lasted

anywhere from 6 to 36 hours, significant shower activity became

dissociated from the low center.

In those storms in which' the initial development was

accompanied by an outbreak of convective showers and the precipitation

was not forecast, the models generally did forecast cyclogenesis, but

the predictions lagged behind the real atmosphere in the onset of

development. It would appear, therefore, that the release of latent

heat by cumulus convection can initiate development prior to when it-

would occur if large-scale motions and.processes alone were operative.

Convective activity which was not in the immediate

vicinity of the storm center did not appear to be crucial either to the

initiation of development or to the trend of continued development

following the onset of cyclogenesis. This observation was based upon

the fact that only when the convection occurred in the center of the

storm was there a consistent contemporary relationship between it

and the actual storm evolution or was there a systematic error in

the forecasts of the initiation or continuation of development. However,



-77-

the possibility cannot be ruled out that convective activity on the

periphery of the storm, through the release of latent heat or otherwise,

plays some role in the detail and magnitude of the stoin evolution,

since the approach employed in this investigation may not have been

adequate to deduce such a role.

Each of the storms analyzed fo&r this investigation

developed over the eastern two thirds of the United States or western

Atlantic. In approximately half the cases, the initial development

was accompanied by an outbreak of convective showers in the vicinity

of the low center. On the basis of synoptic experience and the fact

that the storms selected for analysis were chosen without prior

specific knowledge of the extent of convective activity accompanying

their development, the sample is considered representative of the

intense cyclones occurring 'east of the Rocky Mountains. It should

be noted, however, that because of this region's close proximity to

a source of warm moist air, in the Gulf of Mexico and Caribbean

Sea, it is an area particularly susceptible to the generation of the

convective instability necessary for the occurrence of the shower

activity (Fawbush, et al., 1951). Some other geographical areas

are not so favored. For example, convective instability is less

likely over northern Europe because of the relatively cold waters

adjoining this region. The extent of convective activity is therefore

not as great in northern European cyclones as in storms occurring

over the eastern two thirds of the United States (Palmen and Newton,

1969). An additional point is that while significant shower activity,
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if any, is generally confined close to the center of a cyclone over land

(though not necessarily in the center itself), showers in oceanic cyclones

occur in the cold air to the west of the low center (Palmen and Newton,

1969). Thus, one can speculate that the release of latent heat by

cumulus convection is an important factor in the initial development

of a smaller fraction of storms occurring over northern Europe (or

other regions not especially conducive to the generation of convective

instability) than in storms east of the Rockies, and is an important

factor in storms developing over land more often than in oceanic

cyclones. A study such as presented in this thesis is recommended

to confirm this speculation.

Finally, it is noted that even in those cases in which

the initiation or trend of continued development was forecast, the

magnitude of the predicted development was generally less than

observed. Whether this reflects lack of incorporation or inadequate

formulation of some relevant physical process, computational limita-

tions of the models, or a combination thereof, is not known. Future

research should be directed towards answering this question because

of its importance both to numerical forecasting and to an improved

understanding of the complex phenomenon of cyclogenesis. The

most direct and possibly most productive approach to the problem

would be to perform several reruns of the prediction of selected

cases of cyclogenesis with various modifications of potentially

relevant parameters and processes. Presumably, those modifications
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which consistently yield the best forecasts will reflect the relative

importance of the various parameters and processes considered.

Particular emphasis should be placed on assessing further, through

improvement of parameterization schemes, the role of cumulus

convection, or more generally, the role of sub-synoptic-scale

motions and processes in extratropical cyclogenesis.
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Table 1. Symbols utilized in radar charts.

Character of Echoes

Symbol

~I1~

Note:&--"A
echo

Echo System.

Widely scattered area

Broken area

Solid area

Line of echoes (scat-
tered, broken, or
solid)

Definition

Related or similar echoes
covering 1/10 of the reported
area.

Related or similar echoes in
a pattern that covers 6/10 or
more of the reported area but
contains breaks or corridors.

Contiguous echoes covering,
usually, more than 9/10 of the
reported area.

Related echoes in an extended
pattern.

indicates position of individual cells imbedded in
system. HHH is height of echo top in hundreds of feet.

Characteristic Type of Precipitation

Symbol

R
S

RW, SW
TRW

Z

Symbol

Pr ecipitation

Rain
Snow

Showers
Thundershowers

Freezing Precipitation
Echo Intensity

Estimated Precipitation Rate (in hr )

V ery light (( . 01)
Light (. 0 1 - 0. 1)
Moderate (0. 1 - 1. 0)
Heavy (1. 0 - 5. 0)
Very heavy (7 5. 0)

Symbols and meanings as described in Weather Radar Manual (WBAN),

Part A, U. S. Dept. of Commerce, National Oceanic and Atmospheric

Administration, Washington, D. C.

++
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Table 2. Models considered for the initial times relevant

to the nine detailed case studies.

Initial Time NMC-PE FNWC-PE

12Z 4 Feb. 1971

OOZ 5 Feb. 1971

1ZZ 1 April 1970

OOZ 2 April 1970

OOZ 11 Nov. 1968

12Z 11 Nov. 1968

OOZ 12 Nov. 1968

12Z 2 March 1971

00Z 3 March 1971

12Z 3 March 1971

00Z 4 March 1971

OOZ 12 Feb. 1971

2zz

00Z
Feb. 1971

Feb. 1971

00Z 23 March 1969

12Z 23 March 1969

00Z

12Z

12Z
00Z

12Z
00Z

Feb.

Feb.

1971

1971

Dec. 1970
Dec. 1970

25 Jan. 1971
26 Jan. 1971

Objective analysis of the initial field of sea-level pressure
not available (see Section 2f and/or Appendix A).

Case LFM

III

IV

VI

VII

VIII

IX



Table 3. Characterization of the initial development

of the nine detailed case studies.

Convective Precipi-
tation in Storm

Center ?
Environment of
Low Saturated?

N

N

N

N

N

Y

N

Convective
Precipitation

Predicted?

N

N

N

N

N

Adequate Fore-
cast of the Ons et
of Develomen t ?

N

N

N

N

N

y

Ix

- Y : Yes

N : No

Case

II

IV

VI

VII

VIII



Table 4. Characterization of the initial development of the twelve

storms for which a cursory examination was made.

Convective Precipi- Convective Adequate Forecast
tation in Storm Environment of Precipitation of the Onset of

Case Center? Low Saturated? Predicted? Development?

6-7 March 1971' Y N N N

5-7 April 1971 Y N N N

14-16 Dec ember 1971 Y N N N

9-10 December 1971 Y N N N

3-4 February 1972 Y N N N

25-26 March 1971 Y Y Y Y

18-19 February 1971' N N Y

23-24 March 1971' N N Y

30-31 October 1971 N N Y

1-3 November 1971 N N Y

18-19 November 1971 N N Y

2-4 January 1972 N N Y

Y :Yes

N No

Note: NMC-PE forecasts were considered in all cases. LFM forecasts were available for
those cases indicated by an asterisk (*).



-84-

Table 5. Computed deepening rates.

N/= QQ3 1

3.0

2.5

2.0

1.5

1.0

Surface Deepening Rate (mb hr )

- .61

- .69

- .79

- .99

-1.15

-1.42

-1.52

.67

.50
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Fig. 1. Location of hourly rainfall stations, tipping-bucket
gauges, and weather radars. (The general operating range of radars
is 250 naut, mi. The effective range for detecting precipitation, how-
ever, is somnewhat less owingy to earth curvature effects and beam
spreading.
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33

Fig. 2. Surface-radar chart. Stippling indicates
areal echo coverage. Shading indicates area of squall line.
For the meanings of symbols, see Table 1.
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(a)

PENSA3OLA FLA-
NOV 1, 19E8 -

CI

09 10 12 13
TIME (GMT)

(b)

Fig. 3. Tipping-bucket recording rain-gauge traces with
schematics showing line segments along which precipitation
cross sections apply. Top figure of schematics indicates
geographical location of station at specified time, while the
bottom figure shows successive positions of station with
respect to the moving surface system.
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Fig. 4. Surface-radar charts. Same
as Fig. 2, except for times indicated.
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(a)

MONTGOMERY, ALA

It NOV, 1968

I INOV 12Z

22 o

09 10 li12 13

TIME (GMT)

(b)

Fig. 5. Precipitation cross sections.
Same as Fig. 3, except for New York and Montgomery.



TULSA, OKLA.
4 FEB 1971
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TIME (GMT)

(a)

0
0 9 1I 13

TIME (GMT)

(b)

Fig. 6. Rainfall histograms with schematic showing line segments
along which cross sections apply. Top figure of schematic indicates geogrV.phi-
cal location of stations, while the bottom figure shows successive positions of
stations with respect to the moving surface system. * Tulsa; + Lehigh.

LEHIGH, OKLA.
4 FEB. 1971
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Terrain

(c)

STRATOSPHERE

p 100 mb

p 200mb

p * 300mb

p * 500mb

p * 700mb

p * 900mb

P e 1000 mb

BO UN

6

(d)

Fig. 7. - (c) Vertical structure of FNWC-PE (after Kesel (1970)] ; (d) Vertical
structure of NMC-PE and LFM (after Shuman and Hovermale (1968)7.
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Fig. 8. Surface-radar
charts. Same a& Fig. 2, except
for times indicated.
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Fig. 9. Observed central pressure vs. time
(plotted generally at 3-hour intervals).
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Fig. 10. Surface-mean relative humidity
charts (per cent).
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Fig. 11. Precipitation cross section.
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Fig. 12. Precipitation cross section.
except for Springfield, Mo.

Same as Fig. 6.
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4 FEB 1971

9 1i 13 15
TIME (GMT)

Same as Fig. 3,
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21

MEM P HIS,TENN.
r--1 4-5 FER 1971

23 01

TIME (GMT)

Fig. 13. Precipitation cross section. Same
as Fig. 6, except for Memphis, Tennessee.
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CL -i

0

12 Z OCZ 12 Z
2/4 2/5 2/5

00Z
2/6

Fig. 14. Observed and forecast central
pressure vs. time in terms of departure from
initial value at 1ZZ 4 Feb. 1971 (values plotted
at 12-hour intervals).

(a) (b)
Fig. 15. FNWC-PE (a) and NMC-PE (b) 12-hour precipitation forecasted from
12Z 4 Feb. 1971. Solid line ( ) contours . 01, . 50, 1. 0, etc. Dashed line
(---) intermediate contours at . 25 in intervals. Track of forecast low center
(X * * * X) superinposed.
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Fig. 16.
vs. time in terms of
1971 (values plotted

Observed and forecast central pressure
departure from initial value at 0OZ 5 Feb.
at 12-hour intervals).

(a) (b) (c)

Fig. 17.. NMC-PE (a), FNWC-PE (b) 12-hour precipitation
forecasted from OOZ 4 Feb. 1971, and 12-hour observed precipitation,
OOZ-12Z 5 Feb. 1971(c).Contour intervals as in Fig. 15. Track of fore-
cast and observed low center (X . - - - X) superimposed.



-99-

Fig. 18. Surface-radar charts. Same as Fig. 2, except for times
indicated. Dashed line (---) in 1 April chart indicates
trough axis.
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Fig. 19. Observed central pressure
vs. time (plotted generally at 3-hour inter-
vals).
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Fig. 20. Surface analyses, 1-2 April 1970.
Locations of Cairo, Ill. (CIR); Evansville, Ind. (EVV);
and Louisville, Ky. (SDF) as indicated.
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Fig. 21. Tipping-bucket traces.
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Fig. 22. Surfac'e-mean relative humidity charts (per cent).
Dashed line (---) on 1 April 1ZZ chart for trough
axis.
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Fig. 23. Observed and forecast central
vs. time in terms of departure from initial
12Z 1 April 1970 (a) and OOZ 2 April 1970 (b).
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(a) (b)

Fig. 24. NMC-PE 12-hour precipitation
forecasted from 12Z 1 April 1970 (a) and OOZ
2 April (b). Contour intervals as in Fig. 15.
Track of forecast low center (X X) super-
imposed.
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Fig. 25. Observed central pressure vs. time
(plotted generally at 3-hour intervals).
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Fig. 26. Surface-radar charts.
Same as Fig. 2, except for times
indicated.
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Fig. 27. Precipitation cross section. Same as Fig.
except for Pensacola, Fla.
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Fig. 28. Precipitation cross
section. Same as Fig. 6, except
for Brunswick, Ga.
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Fig. 29. Precipitation cross section. Same as
Fig. 3, except for Charleston, S. C.
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Fig. 30. Precipitation cross section.
Same as Fig, 6, except for Cape Hatteras,
N. C.
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Fig. 31. Surface-mean relative
humidity charts (per cent).
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Fig. 32. Observed and forecast central

pressure vs. time in terms of departure from
initial value at 00Z 11 Nov. 1968 (a), 12Z 11 Nov.
1968 (b), and OOZ 12 Nov. 1968 (c) (values plotted

- at 12-hour intervals).
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(a) (b)

fo

(c)

Fig. 33. NMC-PE 12-hour precipitation forecasted
from OOZ 11 Nov. 1968 (a), 12Z 11 Nov. 1968 (b), and OOZ
12 Nov. 1968 (c). Track of forecast low center (X X)
superimposed. Contour intervals as in Fig. 15.
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Fig. 34. Surface-radar
charts. Same as Fig. 2, ex-
cept for times indicated.
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Fig. 35. Observed central pressure vs.
time (plotted generally at 3-hour intervals).
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Fig. 36. Surface-mean relative humidity
charts (per cent).
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Fig. 37. Precipitation cross section.
Same as Fig. 3, except for Macon, Ga.
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(a)

(b)

Fig. 38. NMC-PE 12- and 24-hour sea-level
pressure charts generated from 12Z 2 March 1970 (b),
verifying at OOZ and 1ZZ 3 March 1970 (a), respectively,

-117-



4.4

- ~-20 -

-28-

-24-

-32

1-28-- -

-36 -

.4018

-32-

22 ocz 122z 002 2 12 C, 122 OCZ 2
32 313 3/3 3/4 4 32 33 3/3 3/4 V4

(a) (b)

--- B0SERVED

--- MCv-P- OBSERVEO +6-
+8 ~C-P- NC-PE

F.*
- ---- FWC-Pt 1

+4

.8

.4

*6-

-24

3%

~a.f

-20-

-24-
-20

32333343" 312 313//3 V4 3

(c) (d)

Fig. 39. Observed and forecast central pressure vs.
time in terms of departure from initial values at 12Z 2 March 1971 (a),
0OZ 3 March 1971 (b), 12Z 3 March 1971 (c), and OOZ 4 March 1971 (d).
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(a)

(b) (c)

Fig. 40. - (a) NMC-PE 12-hour precipitation forecasted
from 1ZZ 2 March 1971 and observed precipitation for the verifying
12-hour period, 12Z 2 March to 0OZ 3 March 1971; (b) NMC-PE
12-hour precipitation forecasted from OOZ 3 March 1971; and (c) NMC-PE
12-hour precipitation forecasted from 12Z 3 March 1971.
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Fig. 41. Surface analyses, 12 Feb. 1971
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Fig. 42. Surface radar charts. Same
as Fig. 2, except for times indicated.
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Fig. 43. Precipitation cross section. Same
as Fig. 6, except for Foreman, Arkansas.
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Fig. 44. Surface-mean relative humidity charts
(per cent).
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Fig. 45. Observed central pressure vs. time
(plotted generally at 3-hour intervals).



(a)

(b)

Fig. 46. - (a) 12-hour NMC-PE sea-level pressure
chart from OOZ 12 Feb. ; and (b) verifying surface analysis.
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Fig. 47. NMC-PE 12-hour precipi-
tation forecasted from OOZ 12 Feb. 1971.
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Fig. 48. Observed and forecast central pressure vs. time in

terms of departure from initial values at 12Z 12 Feb. 1971 (a),

and OOZ 13 Feb. 1971 (b) (values plotted at 12-hour intervals).
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Fig. 49. Surface-radar charts.
for times indicated.
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Same as Fig. 2, except

Fig. 50. Observed central pressure vs. time (plotted
generally at 3-hour intervals).
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Fig. 51. Precipitation cross section. Same as
Fig. 6, except for Lake Bridgeport, Texas.
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Fig. 52. Surface-mean relative humidity charts (per cent).
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Fig. 53. Observed and forecast central pressure
vs. time in terms of departure from initial values at 00Z
23March 1969 (a) and 12Z 23 March 69 (b) (values plotted
at 12-hour intervals).
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Fig. 54. NMC-PE 12-hour precipitation
forecasted from OOZ 23 March 1969 (a) and 12-hour
observed precipitation, OOZ to 1ZZ 23 March 1969 (b).
Contour intervals as in Fig. 15. Track of respective
forecast and observed low centers superimposed.
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Fig. 55. Observed central pressure vs. time (plotted
generally at 3-hour intervals.
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Fig. 56. Surface-radar charts. Same as Fig. 2,
except for times indicated.
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26 FEB 1971
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Fig. 57. Precipitation cross section. Same as
Fig. 3, except for Minneapolis, Minn.
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Fig. 59. Surface-radar chart. Same
as Fig. 2, except for times indicated.
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Fig. 60. Observed central pressure vs. time
(plotted generally at 3-hour intervals).
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Fig. 61. Observed and forecast central pressure
vs. time in terms of departure from initial values at
12Z Z5 Dec. 1970 (a) and 00Z 26 Dec. 1970 (b).
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Fig. 62. Observed central pressure vs. time
(plotted generally at 3-hour intervals).
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(a)

(b)

Fig. 63. See next page.
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(c)

(d)

Fig. 63. FNWC-PE (a) and NMG-PE (b) 12-hour
sea-level pressure forecasts from 12Z 25 Jan. 1971 (c)
verifying at OOZ 26 Jan. (d).
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Fig. 64. Observed and forecast
central pressure vs. time in term-s
of departure from initial values at
12Z 25 Jan. 1971 (a) and OOZ 26 Jan.
1971.
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(a)

(b)

Fig. 65. 500 mb height and vorticity at time of initial develop-
ment of Case VII (a) and Case IV (b). @ indicates position of
incipient low center. Vorticity advection (geostrophic) is inversely
proportional to size of quadrilat erals formed by the contours and

isopleths. Note, vorticity advection over low in Case VII (a) is

greater, qualitatively speaking, than in Case IV. The initial de-

velopment of Case IV was acconpanied by a significant outbreak

of convwction, while Case -ViI was not.
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Fig. 66. Vertical structure of model
utilized in solution of the omega and vorticity
equations.
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(a)

(b)

Fig. 67. - (a) 500 mb analysis for 12Z 2 April 1970;
(b) NMG-PE 24-hour 500 mb forecast from 12Z 1 April 1970
(verifying at same time as ''a"). 0 indicates respective posi-
tions of observed and forecast center of low pressure.
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(a) (b)

Fig. 68.- (a) Operational (NMC), manually drawn sea-level pressure analysis;
(b) NMC objective analysis of field of sea-level pressure for same time as "a"
( tracing of the contoured grid-point data). Central pressure of low in "b" as
dictated by a grid point in low center, is 987 mb.

H

9~

Fig. 69. Same as Fig. 68, except for time indicated.
Central pressure of low center in "b" is 995 mb.

/
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APPENDIX A

DETERMINATION OF THE INITIALIZED

VALUES OF CENTRAL PRESSURE

In order to determine the initial 12-hour forecast change

of central pressure, it is, of course, necessary to know the value

of the initial state from which the prognosis is generated. This

value, however, is not necessarily the same as that of the corresponding

operational surface analysis (NMC) used to trace the actual storm

development. The former is derived from an objective analysis of

the surface data to an array of rather widely-spaced grid points,

while the latter is obtained from a detailed manual analysis. Thus,

since the objectively analyzed initial conditions are essentially a

smoothed version of the operational surface charts, the value of

central pressure from which a forecast is generated is generally

somewhat greater than that of the corresponding manual analysis.

The magnitude of the differences is primarily a function of the

intensity of the system in question and the amount of data incor-

porated in each type of analysis. Fig. 68, for example, compares

the manual and objective analyses (NMC-PE) of the field of sea-

level pressure for OOZ 24 March 1969 (Case VI). The more

detailed operational analysis indicates the intense low in Arkansas

has a central pressure of 982 nb. The central pressure derived
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from the objective analysis, on the other hand, is 987 mb. At this

point, it should be noted that the NMC objective analyrd*s scheme

utilizes only "SM" surface observations, while the manually-plotted

charts incorporate both "SM" and the more dense network of "airways"

observations. In this particular example, the 982 mb value of central

pressure is dictated by an observation that does not enter the objective

analysis routine. If one, in fact, eliminated the airways observations

from consideration, the manual analyses would indicate a 985 mb

low, or 2 mb rather than 5 mb less than the objective analysis value.

As a further example, Fig. 69 presents the objectively

and manually produced surface analyses for OOZ 4 March 1971. The

lowest pressure indicated by the operational analysis for the East

Coast system is 984 mb. The minimum of pressure derived from

the objective analysis is 985 mb. In this situation, the gradient

within the central region of the low is quite flat. Furthermore,

the surface station reporting the lowest pressure is a "SM" station,

and therefore, this observation is part of the input to the objective

analysis scheme.

For several cases (see Table 2), the actual objective

analyses were not available. On such occasions it was therefore

necessary to estimate the initialized values of central pressure on

the basis of experience gained from comparisons, as exemplified

above, of the manually-produced surface charts with the corresponding

objective analyses. In practice, surface analyses were constructed
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utilizing only "SM" observations. The value of central pressure derived

from these analyses was then subjectively adjusted upward by generally

1 or 2 mb, depending upon the gradient about the system in question.

It should be noted that the FNWC objective analyses were

not available for the cases where the FNWC-PE forecasts were considered.

It was inherently assumed, therefore, that the initialized values of

central pressure from which the FNWC-PE forecasts were generated

were the same as for the NMC-PE prognoses. Subsequent to completion

of the case studies, however, it was learned that the FNWC objective

analysis scheme does utilize the airways as well as the "SM" surface

observations; however, careful re-examination of the pertinent

initialized values of central pressure revealed that in no instance

would incorporation of the airways observations have modified the

subjectivel- estimated value by more than an insignificant 1 mb.

(This is primarily because initial conditions of pertinent cases

feature relatively flat gradients that are well-defined by "SM"

observations alone). An additional point is that the estimated values

of the initialized central pressure for the two detailed case studies

in which LFM'forecasts were considered were the same as the actual

values derived by the LFM objective analysis scheme.
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APPENDIX B

METHOD UTILIZED IN OBTAINING SOLUTIONS

OF THE

QUASI-GEOSTROPHIC OMEGA AND VORTICITY EQUATIONS

With vertical derivatives expressed in finite difference

form (and 0 . 1$/ ), the omega equation (Eq. 1) applied to

levels I and 3 (Fig. 66) becomes:

+ (j)3 3 W)~ .- \Q

12 2i :
g, W,

17Q

Q and Q3 are related to each other and to the precipitation

rate, P, as follows:

Q-t

(III)

where

5 75'f, (I+ V

1' 3and P can be expressed in terms of their Fourier

t4 , +
transforms, jj 1 0 vi 3 and P

A aPr 0 +L))

)~ ddI

I--

(IV)

CfT*)3 S-S
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400

W3 (ty, ) = 5 ,
(V)

.40

(VI)A0

When these expressions are substituted into Eqs. I and II, the following

relations are obtained:

t~3NL~*NWJ

(VII)

2

(VIII)

M~ tC~-~~?)

t'1~ ~

cv~R
Elimination of .)3 from Eqs. VII and VIII yields

1' Y 3-M'(&-t93)+ &3 S h

while elimination of U from Eqs. VII and VIII yields

where

(IX)

AO

stvW3 -4- A/ LA :z
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W - (X)

Eqs. IX and X represent the particular solutions of Eqs. I

and II. With the boundary conditions Li 0 4 - 0, it can be

shown that the homogeneous solutions are identically zero.

The Fourier transform of P can be obtained by application

of the appropriate theorems of two-dimensional Fourier transforms

to the tabulated expression of the Fourier transform of

(see, e. g., The Fourier Transform and Its Applications, McGraw-Hill,

1965, pp. 244-248). The result is

(XI)

Substitution of Eq. XI into Eqs. IX and X, followed by

substitution of the results into Eqs. IV and V yields the following

for L 1 and 3 (real part):

/ -,-N (o+ ) ( 1 -6 3) t~:i~'4
(XII)

3 7(XII

d~j ~(XIII)
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With the substitution

Eqs. XII and XIII take on a form suitable for numerical evaluation via

the 10-point Gaussian Herrmite Quadrature Formulation described in

the IBM manual Scientific Subroutine Package (p. 107).

In order to obtain a value of Z /z at 1000 mb ("*1)

and hence, enable solution of the vorticity equation,

(XIV)

for the 1000 mab geopotential tendency (or sea-level pressure tendency),

a.parabolic profile was fit to(w~ O) W,, and J2( O '

That is, the equation for the parabola

was applied to levels 0 1 .775 and 2 .55 to obtain

the coefficients a, b, and c in terms of 9 ' 1 and (A/3. Since

C 0 (UJ - 0 at5't 1),

(XV)

so that all that is required is the coefficient b. Algebraic manipulation

yields

b?.?w',- I.(U3
(XVI)
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The geopotential tendency,- , can be written in

terms of its Fourier transform:

(XVII)

Substitution of Eqs. XV, XVI, and XVII (withJ and U43 also written1 3

in terms of their Fourier transforms) into Eq. XIV yields:

(XVIII)

When Eq. XVIII is combined with Eqs.IX,X,and XI, the real part

of the solution of Eq. XVII becomes:

I,'.IL

(XIX)

YK6N (ii4A 40(C 1 -+ 4, 1 >.C) 4 NU

With the substitution

Eq. XIX can be solved via the 10-point Gaussian Hermite Quadrature

Formulation.

..t2X (k'y 41L

(kil) C Of ko

'A.

116 -4 + Ce IVQ
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