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THE ROLE OF CUMULUS CONVECTION
IN THE
DEVELOPMENT OF EXTRATROPICAL CYCLONES
by
MARTIN STEVEN TRACTON

~ Submitted to the-separtment of Meteorology on 5 May..1972
in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy,

ABSTRACT

The goal of this study is to determine whether cumulus
convection plays a role in the development of extratropical cyclones,
and if it does, to determine the nature of that role. The basic ap-
proach is to ascertain whether there is a systematic relationship
between the observed extent and degree of convective activity ac-
companying cyclogenesis and the departure of actual storm evolution
from that predicted by large-scale dynamic models,

: On the basis of intensive analysis of the two storms
initially chosen for study, the following hypothesis was formulated,
and. the balance of the investigation directed primarily towards as-
certaining its validity:

In some instances of extratropical cyclo-
genesis, cumulus convection plays a crucial role in the
initiation of development through the release of latent
heat in the vicinity of the cyclone center. In such cases,
dynamical models which do not adequately simulate con-
vective precipitation, especially as it might occur in an
environment that is unsaturated, will fail to properly
forecast the onset of development,

Evidence either to support or refute the hypothesis
was derived, in part, from detailed analysis of seven additional
storms and cursory examination of twelve others. In addition,
both qualitative and quantitative aspects of the physical mechanisms
involved were considered, Although possibly not conclusive proof
of the hypothesis, the evidence does indeed support it,

The case in support of the hypothesis is presented in
terms of four arguments: i) in some storms, thcre was a coinci-
dence in time between the initial development and the occurrence
of convective showers in the vicinity of the low center. Almost
invariably, the environment in which the convection occurred was
unsaturated; ii) in those cases in which the initial deveclopment was

-2




accompanicd by convective showers in the vicinity of the low center
and the environment in which the convection occurred was unsaturated,
the dynamic prognoses systematically failed to properly forecast

the onsect of development, apparently because of the models' failure

to predict the convective rainfall; iii) the importance of the latent
heat release by cumulus convection to the initiation of development

of some extratropical cyclones, which’'is implied by the apparent
source of the systematic error, is physically plausible and quanti-
tatively reasonable; and iv) there appears to be no defensible alter-
native explanation for the observed systematic error,

The nature of the error in predicting the initiation of
cyclogenesis, namely, a lag in forecasting the time of the onset of
development, suggests that the release of latent heat by cumulus
convection initiates cyclogenesis, in somie cases, prior to the time
when it would occur if larger-scale motions and processes alone
were operative, ‘

Significant shower activity occurred in the center of
storms generally only during the early phases of their life history.
Convective activity which was not in the immediate vicinity of the
low center did not appear crucial either to the initiation of develop-
ment or to the trend of continued development following the onset
of cyclogenesis.,

Thesis Supervisor: Frederick Sanders
Title: Professor of Meteorology
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CHAPTER I

INTRODUCTION

“la. Background and Statement of Problem

It haé been well established that cumulus convection plays
a vitally important role in the development and maintenance of tropical
cyclones. Frc;m an observa.tionai standpoint, Riehl and Malkus (1961)
have demonstrated that the important dynamic and thermodynamic
processes of a hurricane are highly concentrated in deep cumuli within
the storm's core. From a theoretical and numerical modeling point of
view, Charney and Eliassen (1964), Kuo (1965), Ooyama (1969), and
cthers have shown that tropical cyclones are forced circulations driven
by the release of latent heat in organized convection. In addition, the
intense vertical currents of convective cells significantly inﬂuence
the cyclonic-scale circulation through the vertical transports of heat,
momentum, and moisture,

‘ Cu£nu1us convection also: frequently occurs in association
with the develapment of extratropical cyclones. This is evident from
the presence of convective showers as revealed by radar observations,
recording raingauge data, and/or surface synoptic reports. In mid-
latitudes, unlike the tropics, however, the fundamental mechanism
of cyclogenesis is the baroclinic instability of the meandering wester-
lies (Charney, 1§47; Fady, 1949). Extratropical cyclones thus have
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as their basic source of energy the large-scale temperature contrast
" between air masses. Consequently, the irhpprtance of cumulus
convection with respect to the larger-scale baroclinic processes in
the evblution of mid-latitude storms is not clear, a priori, and has
" not yet, in fact, been established observationally or theoretically.
One aspect where convection might play a role in extra-
- tropical cyclogenesis is in the diabatic process of latent heat release.
It has been establishe-d that this process per se is often .an important
contributing factor ih overall storm development, Auberf (1957),
for example, found released latent heat tended to lower the heights
of isobaric surfaces in the lower troposphere and raise them in the
upper troposphere, These changes resulted in deepening of the low-
level cyclone and acceleration of the rate of ’movement. Danard (1964,
1966) demonstrated the release of latent heat could contribute sig-
nificantly to thé rate of generation of kineti;: energy. Furthermore,
Danard showed that the positive contribution of heating to géneratioh
of available potential energy is normally greater than the negative
effect arising from the enhanced vertical motion. Consequently,
cyclogenesis is not merely accelerated through the influence of
condensationaiheating, but the difference in the kinétic energies
between final and initial states is greater,

In these and other investigations of this question, little
if any consideration is given to the fact that, for whétever difference
it might make in-either the total amount of condensation or in the

temporal and spatial distribution therecof, much of the precipitation
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accompanying an extratropical storm may be produced by convective
updrafts rather than by the more gradual slope ascent characteristic
of larger-scale baroclinic processes (Tracton, 1969), |

In addition to the release of latent heat, other possibly
" more subtle influences of convection in extratropical storm develop-
ment might be the vertical transports of such quantities as heat,
momentum, and moisture. These processes are signifiéant in tropical
cyclogenesis, and there is no reason to believe tﬁat they may not be
of some importance in the development of extratropical cyclones,

The goal of this thesis is to determine whether cumulus
convection plays a role in the evol\;tion of extratropical cyclones, and
if it does, to determine the nature of that role. It is felt this question
warrants consideration because of its importance to a complete under -
standing of the complex phenomenon of cyclogenesis and its implications

to numerical weather forecasting.

1b, Basic Approach

A éirect and comprehensive analysis, either descriptive
or dynamic, of the interactive role of cumulus convection and large-
scale baroclinic development would be exceedingly difficult, if at all
physically or economically feasible, Observationally, a very dense
network of stations would be required to describe the interactions of
convective and 1a'rger-sca1e motions and processes, Existing 1"neso-
scale networks, 'such as that opecrated by th.e National Severe Storms

Laboratory in Oklahoma, have areal coverages which are small
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compared to the domain of a cyclone and, furthermore, they are fixed
geograi:hically. From a theoretical standpoint, the problem is
analytically intractable. Numerical integration of the governing
equations wherein the cumulative effects of convection on the synoptic-
scale development are parameterized is possible; however, the compu-
tationail and physical complexities of a dynamic model designed explicitly
for investigation of the role of cumulus convection in extratr‘opical
cyclogenesis would be numerous., Moreover, it is often as difficult
in 2 numerical model as in the real atmosphere for one to keep track
of ali possible interactions and their consequences,

Thus, an indirect approach was adopted for this investiga-“
tion wherein it was sought to determine whether there is a relationship
between the éxtent of convective activity within extratropical cyclones,
as ascertained from conventional meteorological data, and the depar-
‘ture of actual sto.rm evolution from that predicted by operational fore-
cast models, In so far as these models do not incorporate or adequately
formulate the effects of sub-grid-scale convectién, the emergence of
a consistent relationship in the analysis of several storms would
indicate that cumulus convection systematically alters the course of
synoptic-scale development from that which ‘would be expected if
larger-scale processes alone were operative, The nature of such a
relationship would, of course, reflect the nature of the role of convec-
tion in extratropical cyclogenesis and guide consideration of the physical

mechanisms involved.
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lc. Formulation of the Hypothesis

At the outset of this study, the role of convection in the
evolution o:f extratropical cyclones was not assumed, nor was it
_explicitly assumed that convection indeed played a role., Rather,
tﬁe approach was to dive into myriads of data, forecasted and observed,
 to see if anything physically plausible would emerge. Initially, two
storms wére chosen for analysis; the intense cyclogenesis along the
East Coast of the United States, 11-13 November 1968, and the less
dramatic but nevertheless major developrﬁent over the central
United States, 22-23 March 1969, The‘obser;red degree and extent
of convective activity. associated with each storm was ascertained to
the fullest extent permitted by the data and methods of analysis outlined
in Section 2c. An extensive analysis was then made of the difference
.between the forecast and actual evolution oi.' the storms,

In both cases, the numerical prognéses (the National
Meteorological Center's primitive equation model, NMC-PE) did
forecast cyclogenesis in terms of deepening the central pressure and
intensifying the cyclonic circulation of the sea-level system. The
forecasts, ho;vever, were not without errors. The fnost, notable with
respect to possible implications of the rol}e of convection was the
failure iﬁl the November case to properly forecast the initiation bf
development. More specifically, the model lagged behind the real
atmosphere in forecasting the onsect of development. The observed

initiation of cyclogenesis was accompanied by intense convective showers
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in the unsaturated environment of the cyclone center. Since the large-
scale processes which the model purports .to represent require saturation
in order to produce precipitation, the forecasts failed to predict the
reléaée of latent heat associated with the convection.

The initial development of the March storm was also
accompanied by convective showers in the vicinity of the low center,

- In this éase, however, the environment was sufficiently near saturation
so th.a.t the rainfall and concomitant latent heat release were predicted,
and Ithe onset of development was properly forecast,

The analyses of these two cases therefore suggested that
the release of latent heat by cumulus convection ﬁay be, at least in
some instances, a critical factor in the initiation of cyclogenesis.

There were, in both cases, many errors in the detail
and magnitude of the forecast patterns, other than the lag phenomenon
in the November storm, These errors, however, did not appear to be
related to differences or similarities in the extent and degrée of the
convective activity associated with the storfns. ‘Moreover, it was
evident from detailed analysis of the cases that if there are indeed

/ .
systematic errors in the numecrical prognoses of cyclogenesis other

than the lag phenomenon, they would either likely be obscured by the
noise of other physical or computational limitations of the model, or
a prohibitively large number of storms would have to be analyzed for
their existence to become apparent, Prohibitive here is defined in

terms of the difficulty and cost of acquiring data and the time neces-

sary for analysis of cach case.
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At this point in the study, therefore, the following hypothe-
sis was formulated, and the balance of the investigation directed primarily
towards ascertaining its validity.

In some instances of extratropical cyclogenesis,
cumulus convection plays a crucial role in the initiation of
development through the release of latent heat in the vicinity

 of the cyclone center. In such cases, dynamical models
which do not adequately simulate convective precipitation,
especially as it might occur in an environment that is un-
saturated, will fail to properly forecast the onset of develop-
ment.

Seven storms in addition to those discussed above were
analyzed in detail with respect to their bearing on the hypothesis, and
cursory examination was made of twelve others, Also, to complement
‘these basically empirical considerations, theoretical diagnostic calcu-

lations were performed to assess quantitatively the influence of latent

heat release on surface development,
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CHAPTER 11

METHODS OF ANALYSIS

2a. Choice of Cases

Nine storms were analyzed in detail for this investigation.
In no instance was a storm chosen for analysis because of anyvprior |
specific knowledge of the performance of the numerical prognoses or
the degree of convection associated with the observed cyclogenesis.
Criteria for selection were the intensity of actual deir:elopment, availa-
bility of numerical forecasts, and sufficient data to determine the extent
of convective activity from the structure of precipitation patterns.

A storm for which there was a 12-hour period having an
average surface deepening rate of at least one millibar per hour was
considered an intense development. Cases were restricted, except
for that of 25-27 December 1970, to storms that developed over the
relatively data-rich eastern two thirds of the Unitéd States or to storms
that remained close enough to the Atlantic Coast so that a major portion
of the precipitation either fell over land or was within the range of
land-based radar. Primary interest in the 25-27 December 1970 case,‘
a storm whose major development was well out over the Atlantic, was
a comparison of the NMC-PE forecasts to those available from test
runs of the limited area fine mesh version of this model (LFM); Em-
phasis on storms of the 1970-1971 winter season rcflects operational

implementation in September, 1970, of the Fleet Numerical Weather
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Central's primitive equation model (FNWC-PE). (A brief description

of the general aspects of the models appears in Section 2d.)

'

2b. General Procedure

For each storm, the actual course of the synoptic-scale
development {zvas traced via NMC sea-level pressure analyses at 3-hour
intervals. It was found that in most instances fhe central pressure
served as an adequate indicator of the degree of cyclogenesis; however,
note was made of situations wherc development was manifested more by
an increase in the intensity of the cyclonic circulation, asséssed quali-
tatively, than by a decrease of central pressure.

| ‘The extent and degree of convective activity accompanying
the observed development were deduced from précipitation patterns in
the manner described below. The methods of analysis which were
employed p'errnitted depiction of the macroscale distribution and
magnitude of convection with respect to the surface cyclone. Once
this picture was clear, a comparison was made between the forecast

and actual evolution of the storm (see Section 2{),

-

2c. Methods Utilized in Analysis of the Convective Activity

It is assumed that significant convection occurs only in
regions of convective precipitation, Lapse rates in excess of the dry
adiabatic, necessary to sustain convection without condensation, are

infrequent, In addition, the influence of non-precipitating cumuli,
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through latent heat release or otherwise, is likely to be small compared
with that of cells which produce rain, | |

The extent and degree of convective shower activity
accompany&ng development of 2 storm was deduced from composite
analysis of weather radar data, tipping bucket rain-gauge traces,
héurly rainfall amounts, and surface-synoptic reports. The weather
radar observations are those of the National Oceanic and Atmospheric
Administration's network of WSR-57's, The location of the radars and
areal covérage of this network over the eastern two thirds of the
United States is shown in Fig. 1, Radar data are available in three
forms: i) summary charts of the nationwide distribution of precipita-
tion echoes, ii) data sheets that contain the record of observations at
individual stations,’ and iii) film records of the actual plan-position
indicator (PPI). The sumrr;ary charts enable one to depict the broad
features of the distribution and character of the precipitation pattern
about the storm in question, Fig. 2, for éxample, is a composite of
the radar chart and the simplified surface analysis for 12Z 4 Febru-
ary 1971. The meanings of the symbolé used on the radar charts appear
~in Table ,l.. It is seen from Fig., 2 that there is a solid line (squall line)
of thunderstorms extending southward from the low aiong the cold front.
The line is embedded in a more general region of scattered to broken
thundersl;’OWers which extends and broadens somewhat north of the low,
In the extreme northwestern area of the precipitation, some freezing
rain is indicated.

An important fcature of the radar data is the reported

heights of the top of cells, In Fig. 2, the maximum top rcported is
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that of a 39, 000 foot high cell located in the squall line. Generally
speaking, the greater the height of the célis, the more intense is the
convection,;

The radar éharts are generally available at‘3-hour
intervals, In the two storms analyzed initially for this investigation
(11-13 November 1968; 23-24 March 1969), time resolution of one hour
or less was obtained by constructing composite charts from the data
sheets of individual radar stations. In addition, the PPI films for
selected stations were examined to clarify the verbal and symbolic
~ description of the echo patterns, In the subsequent case studies,
however, ajfter formulation of the hypothesis, the radar charts é.t
3-hour intervals were considered adequate,

A more reﬁne@ and quantitative pictufe of the extent and
degree of convective activity than that obtained by radar was ascertained
from surface measurements of rainfall, Two types of data were
utilized: hourly précipitation amounts and tipping-bucket records of
the continuous temporal variation of rainfall rate. Of these, the
tipping -bucket data 1s more definitive in delineating the presence
and intensity of convective showers; however, a;s can be seen from
Fig. 1, the density of stations reporting hourly totals is much greater
than that Ifor tipping -bucket gauges,

In the analyses of the first two storms, tipping-bucket
records were obtained for all stations shown in‘Fig. 1 where there

was precipitation. In the subscquent detailed case studies, though,

only data for those locations thought pertinent to consideration of the
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“hypothesis were utilized; however, records from the entire network of
hourly reporting stations were surveyed. '

The tipping-bucket gauges record precipitation with a
time resolution gf about one-quarter minute, As can be seen from
comparison of Figé. 3 and 5, this is sufficient to differentiate between
rather steady stratiform rain and rainfall fluctuating rapidly in space
and time as is characteristic of convective showe.rs. The duration
of individual showers over a gauge depends upon their speed and
horizontal dimensions and is on the order of several minutes. Peak

 precipitation rates, which may be considered a measure of the intensity
of convection, usually are greater than .3 in hr"l and may often exceed
2 in hr-l.

From the spacing of shower peaks on the tipping-bucket
traces, it is evident that cells generally occur in groups and are
separated by continuous precipitation. Quantitative radar studies
(Austin and Houze, .1972) show these cell arrays, or mesoscale areas
as they are termed, reflect organization of the convection into areas
or bands wﬁose aimensions range from 102km2 to more than 104km2,
as would be the case for an extensive squall line, The continuous
p;'ecipitation that is observed between cells likely represents conden-
sate produced in convective updrafts that is spread by divergence
from near the top of the layer containing the cells (Melvin, 1968).
Alternatively, however, this so-called mesoscale component of the
precipitation ma& reflect stable ascent of some saturated layer between

the cells. Both mechanisms may contribute to some extent, but the
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relative corxtribution of each i.s nof known because of uncertainty in the
.nature of the mesoscale circulations involved. In any event, itis
clear that the mesoscale precipitation is intimately related to the
occurrence of convection. Therefore, for the purposes of this inves-
tigation, the prevci‘p.itatiOn that falls both between and beneath the shower
peaks is considered to be con{rectively produced. | |

Since the tipping-bucket gauges are geographically fixed,
they in effect record the instantaneous precipitation rate along line
segments which connect successive positions of the station with respect
to moving features of the surface system. For example, Fig. 3a is
the raingauge trace of Charleston, South Carolina, for the period
192 -23Z 11 November 1968. The line segment with respect to the
low center and fronts along which the precipitation cross section
applies is shown schematically. Fig, 3a shows £hat between 21Z and
2230Z Charleston experiences a series of heavy showers, which place
this convective acti\/"ity just to the north-northwest of the low., Peak
shower intensities are about 3 in hr™! with .46 in and . 84 in of rain
"recorded at Charleston between the hours of 21Z ai‘nd 22Z and between
22Z and 23Z, respectively. In comparison, the raingauge record
af Pensacola, Florida, between 09Z and 12Z 11 November 1968
(Fig. 3b) is indicative of the presence of convective showers, but the
activity is much more subdued than that exemplified by the Charleston
trace. In this case, the peak shower intensities of . 8 in hr_1 and the
one-hour pr‘ccipi‘tation amounts of , 15 in and . 35 in between 10Z and 112

and between 11Z and 122, respectively, characterize the convective
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activity just north of the low some twelve hours earlier in the storm's
development than does the Charleston recard. It should be notea that
in boith situations the radar charts (Fig. 4) and surface synoptic

i

reports serve only to indicate in a qualitative manner that there are
".showers ai'xd thunderstorms in the vicinity of the low center at the times
considered.
As further illustrations in the use of tipping-bucket data,
the traces of Montgomery, Alabama, between 09Z and 13Z 11 November
1968 and tiiat of New York City from 19Z to 23Z 12 November 1968 are
presented in Fig. 5, With reference to Fig. 3b, one can see that at
the same time the Pensacola trace indicates shower activity in the
vicinity of the low center, the Montgomery record shows steady,
| exclusively non-convective rainfall some 150 miles to the north.

The New York City gauge (I.?ig. 5a), on the other hand, is indicative
of light purely stratiform.precipitation near the storm center some

24 and 36 houi"é later, respectively, from when the area was sampled.
by the Charleston and Pensacola gauges,

V The same approach used in consideration of the tipping -
bucket rec;n‘ds can be applied to stations which report just the cumu-
lative one-hour precipitation amounts, Because the network of tipping-
bucket gauges is relaitively sparse, these data are used both to check and
supplemént the tipping-bucket observations. Although the intensity

of individual showers cannot be determined, the magnitude of the

convection can be assessed in terms of the hourly totalsl. Fig. 6a,

There is, of course, some uncertainty in assessing the hourly pre-
cipitation data because of the .inherent time smoothing involved, It is
possiblc, for example, that the sum of the reported totals for two
successive hours actually all {ell in a time span of one hour (or less).
Such possibilities were considered in the storm analyses.,
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for ekamplc, presents a histogram of the successive one-hour rainfall
amoﬁhts recorded during a series of thunderstorms atw ‘Tulsa.,' Oklahoma,
between 10Z and 15Z 4 February 1971 (see also radar chart Fig. 2).
Fig. 6# shtj)ws this histogram is, in effect, a cross section through
thébcenter'of the storm., As the low pasées over Tulsa between

12Z and 152, the one-hour fainfall amounts peak at , 80 in, In com-
parison, the largest one-hour precipitation amount recorded during the
same intef{ral of time at Lehigh, in southeastern‘Oklahoma, is . 36 in
(Fig. 6b). l. In this case, the cross section is _through the cold front

and its accompanying squall line, Although the intensity of individual
showers in this sector of the storm may be aé great or greater2 than
those occurring in the low center, fhe degree of convective activity

in terms of the net amounts of convective rainfall being produced is
significantly less. As will be seen in the discussion of the case studies
(Section 3b), at a later stage in the development of this storm, the
convection in the squall line is much heavier while there is virtually

no precipitation in the vicinity of the low center.
| From the above discussion it should be clear that through
judicious‘a‘nalysis of radar and raingauge data, a fairly detailed picture
of the extent a:nd degree of convective activity accompanying develép-

ment of a particular storm can be obtained. In the actual analyses,

a descripﬁon was compiled of the distribution and magnitude of

2 - . . .
The radar echo tops (Fig. 2) suggest the intensity of the squall
line showers is greater than those in the vicinity of the low center.
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convection on essentially a continuous basis as the storm evolved, i, e.,
time resolution of 1 to 3 hours. It should be emphasized here t};at no
attempt w;zré made to keep track of individual convective cells. Rather,
concern;{vass with the macroscale distribution and magnitude of convec-
tion with réspec;i to the developihg cyclone, The goal of this thesis is,

|
of course, to determine whether the convection so described plays

a role in the overall storm development,

2d. General Aspects of the Models

Threev dynamical forecast models were used in this
investigatio;lz i) the six-layer primitive equation model of the National
Meteorological Center (NMC-PE), ii) the limited area fine mesh
version of the NMC-PE (LFM), and iii) the five-layer primitive
equation model of the Fleet Numerical Weather Central (FNWC-PE),
The basié features of the NMC-PE have been described by Shuman
and Hovermale (1968) while Howcroft (1970) has discussed the LFM,
The routin.e programming and physical adjustments made in the
operational procedures at NMC are documented in a series of publi-

cations ehtitled Technical Procedures Bulletins and in the semi-annual

publication Numerical Weather Prediction Activities, The principal

aspects of the FNWC-PE have been described by Kesel and Winning-

hoff (1970).

The NMC-PE became operational in June, 1966, ‘while

the FNWC-PE was implemented in September, 1970, Forecasts are
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geherated twice daily from the nominal times of 00Z and 12Z. The
LFM forecasts utilized were test runs of this model made prior to
its 6;;>erational implementation in October, 1971, Table 2 summarizes,
for ‘th.e nine storms analyzed> in detail, the models which were con-
sidered for each of the relevant initial times,

For the first two storms analyzed in this study, the
. NMC-P‘IE data were obtained from copies of NMC's ‘so—called "B-3"
magﬁetic tapes. These tapes contain the grid point values of both
the \.objective analyses of the initial state and the forecasts through
36 h.ciur,s. Primarily because it was found that extraction of the
relevant data from the tapes was quite time consuming and expensivg,
the contoured forecast charts that are transmitted routinely over
facsilmile were, with some exceptions, used in the subsequent case
studies. The exceptions were certain forecasts for the cases of
1-3 April 1970 and 2-4 March 1972, which were retrievable only
from the appropriate tapes. Contour charts of the NMC-PE quanti-
tative precipitation forecasts are not transmitted over facsimile.
They are, however, archived at NMC by rRussel Younkin, from
whom copies were obtained., The FNWC-PE forecasts were in the
form of contm;r charts that were obtained directly ffom the Fleet
Numerical Weather Central, Monterey., The LFM data, which
were supplied by NMC, were contoured computer printouts of the
grid point values.

Each of the models integrates the primitive (hydrostatic),

hydrodynamic and thermodynamic equations and includes such physical
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effects as orography, solar and terrestrial radiation, sensible heat
flux between the atmosphere and oceans, énd moisture prediction
with'lthe feedback of latent heat, The respective horizontal and
vertical domains of integration are shown in Fig. 7. The NMC-PE
and FNWC-PE are hemispheric models with a horizontal grid spacing
of 380 km (at 60°N), while the LFM encompasses the general area of
. North A'rnerica with grid points separated by 190 km. Vertical
variétions in the FNWC-PE are represented in Philips (1957) sig-
ma-c'oordinate systefn in which pressure is normalized with the
underlying terrain pressure. The vertical coordinate in the NMC-PE
and LFM is a slight generalization of Philips' systém, The one more
level vof vertical resolution in the NMC-PE and LFM reflects explicit
consideration of a planetary boundary layer (50 mb in depth) that the
FNWC-PE does not recognize. |

Consideration of the forecasts' of more than one model,
when possible, was motivated by a desire to both check andvaugment
any deductions gleaned from one model's prognoses alone. The
equation systems and basic physics of the LFM are the same as those
of the NMC-PE; the principal differences are the areal coverage and
the horizontal ‘grid spacing. Thus any inconsistency in the‘ deductions
drawn from thé forecasts of these two models would likely reflect
either the lesser truncation error in the LFM or the more refined
specification of initial conditions., Differences between the NMC-PE
and FNWC-PE forecasts could reflect any one of a number éf physical

and computational dissimilarities. Particular interest, however, was
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on any difference in the forecasts that might reflect a difference in
the method of parameterizing small-scale convection, The NMC;PE
(and LFM) utilizes the so-called "convective adjustment' scheme
wherein the;lapse rate is adjusted to thé ,moist adiabatic when it is
forecast to exceed that value and at the same time the .grid column
is forecast to be saturated. In effect, the lapse rate is neutralized
through an upward transport of heat, There is no specific allowance,
however, for the convective rainfall that can occﬁr in an unsaturated
environmeﬁt3. In essence, the '"convective adjustment' in the
NMC-PE (and LFM) is more a mechanism for preventing the com-
putational instability that would result without such adjustment than
a meaningful attempt to incorporate convection. The FNWC-PE, on
the other hand, more explicitly considers convection through use of
a parameterization scheme aidapted frqm that utilized in the Mintz
Arakawa General Circulation Model., In this scheme, energy para-
meters are ﬁsed in conjunction with measures of the total upward
convective mass flux, as well as entrainment, to determine a specific
convective component of precipifation and the vertical redistribution of
heat and moisture. This parameterization scheme does give the

FNWC-PE the capability to simulate convective precipitation that

can occur in an unsaturated environment; however, the lack of

3 The NMC-PE and LFM can predict precipitation prior to the .timc when

grid-scale saturation is forecast, since saturation in the models is
defined in terms of a threshold value of relative humidity of between
80 and 100 per cent. The motivation in utilizing a reduced saturation
criteria is primarily to account for the stable (stratiform) precipita-
tion which can occur before grid-scale saturation, rather than to make
any meaningful attempt to sinmilate convective precipitation in an
unsaturated environment,
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sufficient vertical resolution in the model limits its ability to represent
the frequent pre-convective outbreak condition of a mixed moist layer

topped by an inversion with potentially very unstable air above.

2e. Suitability of the Models as Tools for this Investigation

' The NMC-PE, LFM, and FNWC-PE are assumed to be
the best aynamical prognoses currently available for describing the
evolution of the cyclone-scale cifc:ulation corresponding to a particular
set of case studies. Despite their relatively high degree of theoretical
sophisticatipn, however, these models, with or without proper con-
sideration of sub-grid-scale convection, are far from perfect repre-
sentations of the real atmosphere, Therefore, it is not clear, a priori,
whether they are suitable tools for use in an investigation of this type.
The models do have inherent in them the fundamental mechanisms of
cyclogenesis, and each has indeed on occasion demonstrated an
ability to forecast the development of intense storms; however, errors
in the timing, magnitude, and spatial detail of the forecést patterns
on occasions when cyclogenesis is forecast and the complete failure
to predict development in other situations may reflect any one or a
combination of various physicél, dynamical, or computational limita-

. 4 . .
tions =~ other than inadequate treatment of convective processes.

Examples are lack of horizontal and vertical resolution, insuffi-
cient initial data, artificial boundary conditions, and initializing
and smoothing procedures.
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The question, then, is if convective activity does indeed ...
“play a role in cyclogenesis, would inadequate simulation of some
feature of the observed convection lead to a systematic error that
would emerge from the noise inherent in other failings of the models.
. As willvbe shown in the following sections, there does appear to be |
such a systematic error, so that, a posteriori, the use of the models

as tools is justified.

2f. Evaluation of Forecasts

The predicted storms are described primarily in terms

' 5 . .
of the central pressure of the sea-level system™, In most situations,
this served as an adequate measure of the degree of development, but

as with the actual storms, note was made of those occasions where

> Charts of the FNWC-PE sea-level pressure forecasts are contoured
in increments of 4 mb, with maxima and minima in the pressure
field appropriately identified and labeled with their respective numeri-
cal values. The computer printouts of the LFM sea-level pressure
prognoses are contoured in increments of 4 mb, as were the printouts
generated of the NMC-PE forecasts extracted from the "B-3" tapes.
Both the LFM forecasts and those NMC-PE prognoses which were
obtained from the tapes allow essentially an unambiguous determina-
tion of the predicted central pressures. Charts of the NMC-PE sea-
‘level pressure forecasts are contoured only in 8 mb intervals, The
location of maxima and minima are identified, but the numerical
values are often ecither not printed or are unreadable. Consequently,
there was some uncertainty in assigning a value to the predicted
central pressures of those NMC-PE forecasts for which only the con-
tour charts were available, The approach adopted in such cases was to
subjectively extrapolate the pressure gradient on the basis of: i) synop-
tic experience, ii) experience gleaned from examining contour charts
that do have the value of central pressure printed on them, and iii) ex-
perience obtained by comparing, when possible, contour charts with
computer printout of the B-3 data for the corresponding forecast, It
is felt that in no instance does the uncertainty (maybe 1-3 mb) affect
the validity of the discussions that follow.
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the intensity of tﬁé circulation, assessed qualitatively, was more

| representative. In evaluation of the perfofrnance of forecasts,
emphasis was on the departure between predicted and actual changes,
rather than on the absolute difference between observed and forecast
" at some given time. This is especially pertinent with regard to the
hypothesis where, for example, the absolute error in a 36-hour

. forecast of central pressure is less important than comparison of
the temporal evolution of the actual and predicted develépment.

It should be noted that the numerical prognoses are
through 24 or 36 hours from the initial time (either 00Z or 122Z)
with generally two or more successive initial times considered for
each case, Since the output of the numerical forecasts from some
given initial time is in 12-hour increments, comparison is with the
net 12-hour observed changes between the r'lominal times of 00Z and
12Z, Another foint to note is that the initial 12-hour forecast
changes of central pressure are reckoned from the minima of pressure
of the objectively analyzed fields of sea-level pressure from which
the prognoses are generated. Because of the inherent smoothing
that occurs in the objective analyses of data to a rather coarse
grid, the initi:;.lized values of central pressure were‘generally
somewhat greater (1-5mb) than the lowest pressures indicated on
the corresponding‘manually analyzed surface charts that kwere used
to trace the actual storm development. For several of the case

studies (Table 2), the actual objective analyses were not available,
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so that it was necessary to estimate the initialized values of central
pressure on the basis of experience gained in comparison of the
manually produced surface charts with the corresponding objective
anaijses. This matter is discussed further in Append;lx A,

In addition to development of the sea-level pressure
system, other potentially relevant items such as precipitation and

500 mb forecasts were examined,
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CHAPTER II1

ARGUMENTS I AND II: COINCIDENCE IN TIME BETWEEN
CONV ECTION AND INITIAL DEVELOPMENT;.
SYSTEMATIC ERROR IN THE NUMERICAL PROGNOSES

3a., Introduction

The principal observations and deductions of this inves-

tigation will be discussed with reference to the following hypothesis:

In some instances of extratropical cyclo-
genesis, cumulus convection plays a crucial role in the
initiation of development through the releas e of latent heat

_in the vicinity of the cyclone center. In such cases, dynami-
cal models which do not adequately simulate convective
precipitation, especially as it might occur in an environ-
ment that is unsaturated, will fail to properly forecast the

onset of development,

The hypothesis was formulated at an early phase of this
study as a statement of provisional conjecture, based upon intensive
analyses of twp case studies, The aim of the investigation thereafter
\ﬁ/:as directed primarily towards ascertaining the validity of the hypothe-
sis, Further evid_ence either to support or refute the hypothesis was
derived from detailed analysis of seven additional storms, cursory
examination of twelve others, and both qualitative and quantitative
consideration of the physical mechanisms involved. . The purpose of

the discussions in this and the following two chapters is to summarize
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“the evidence and show that, although it may not be conclusive proof

of the hypothesis, it does provide sufficient support to elevate its
stature from mere conjecture to an assertion which may be accepted
~as highly probable._

The case in support of the hypothesis may be summarized

in terms of the following four arguments: - ~=

I. In some storms, there was a coincidence in time
between the initial development and the occurrence
of convective showers in the vicinity of the low
center. ~ Almost invariably, the environment in

. : . 6
which the convection occurred was unsaturated .

1I. In those cases in which the initial development was
.accompanied by convective showers in the vicinity
of the low center and the environment in which the
convection occurred was unsaturated, the dynamic
prognoses systematically failed to properly forecast
the onset of ‘devélopment, apparently because of the

models' failure to predict the convective rainfall,

III. The importance of the latent heat release by cumulus
convection to the initiation of development of some
extratropical cyclones, which is implied by the
apparent source of the systematic error, is physically

plausible and quantitatively rcasonable,

A saturated region is defined here as one in which the mcan surface
to 500 mb relative humidity, as on the operational charts received
over facsimile, is in excess of 90 per cent, It is noted that the
concept of saturation and nonsaturation is in and of itself unimportant.
What is important is the fact that while saturation is a necessary
condition for significant stratiform precipitation, heavy convective
rainfall may occur in an environment which is unsaturated.
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IV. There appears to be no defensible alternative
explanation for the observed systematic error,
In this chapter, Arguments I and II will be discussed
and then dc;cumexutéd through descriptions of the case studies, Discus-
sién of Argumentsllﬂ and IV are presented in the two following' chapters.
| In order to facilitate the discussion of Arguments I and II,
Table 3 presents for each of the nine storms analyzed in detail, a
dichotompﬁs characterization of the inifial development with respect
to the folléwing: i) the occurrence or nonoccurrence of convective
showers in the vicinity of the low center, ii) saturation or nonsaturation
of the environment of the center of the storm,' iii) prediction or non-
prediction of the convective rainfall, if it occurred, and iv) adequate
or inadequate forecast of the onset of devclopment; Discussion of the
results of cursory examination of twelve additional storms is presented
in Section 3c.
| With regard to Argument I, Table 3 shows that the initia-
tion of development of six of the nine storms was accompanied by
con\fectivé shower activity in the vicinity of the low center, Of these,
in only oneu case was the environment of the low saturated. It follows,
of course, tha:t the initial development of three of thé nine storms was
not accompanied by shower activity, Furthermore, since the environ-
ment aboltllt the center of these storms was also unsaturated, therc was
little or no stratiform precipitation and, hence, latent heat releasec

wasnot a factor in the initiation of their development,
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- With reference to Argument II, Table 3 indicates that in
each of the five cases where the initial development was accompénied
by showers in an unsaturated environment, the dynamical prognoses
failed both 3f;o predict the convective prvec.ipitation and to adequately
kfor‘ecast the onset of development, In thé one storm in which convec-
tion océurred in an environment that was saturated, the 'precipita.tion
and the concomitant release of latent heat were predicted, as was the
initiation o.f development, Also, the onset of devélopment was properly
forecast in those cases where there was no convectién. Hence, the
d?namical prognoséé systematically failed to predict the onset of
cyclogenesis in those storms in which the initi.al development occurred
in associatio_n with convective shower activity in an unsaturated en-
vironment., Furthermore, the apparent source of the systematic
error was the failure of the 'modéls to simulate the rainfall produced
by cumulus convection in an environment which was unsaturated,.

| It should be noted that s;ignificant shower activity occurred
in the center of the storms generally only during the early stages of
their life history, Following an initial period of development, which
lasted anywhefe from 6 to 36 hours, the convection became dissociated
from the low cienter. Forecaéts which were generated subsequent to
the actual onset of cyclogenesis but prior to the dissociation process
were cons"istent with the notion of the importance of convection iﬁ the

low center to the initial development in that when the precipitation was

predicted, so too was the trend of contimied development,
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“ An additional significant point rclevant to A‘rguments I and II
is that convective activity appeared to be important to the onset or con-
tinue'd development of the storms only when it occurred in the immediate
" vicinity of the low center, That is, only when the convection occurred
in the low center was there a consistent contemporary relationship
between it and the observed storm evolution or was there a sys8tematic
error irll‘the numerical prognoses,

In order to further scrutinize and document Arguments I and
I, a brief discussion of the nine detailed case studies is presented. The
illustrative material ﬁertinent to Argument I includes the fbllowing:
i) plots of central pressure versus time (central pressure piotted generally
at 3-‘50ur intervals7), ii) composite charts of the mean surface toISOO mb
relative humidity and simplified surface analysis (12-hour intervals),
jii) selected composite charts of the radar echo patterns and simplified
surface analysis, and iv) selected tipping-bucket traces and histograms
of 1-hour rainfall amounts, :.together with schematic diagrams to indicate
the line segments with respect to the low center along which the precipi-
tation cross sections apply. The illustrative material relevant to Argu-
ment II includes: i) plots of the observed and forecast values of central

-

pressure versus time (central pressures plotted at 12-hour intervals

7 In situations where there was no definite minimum in the pressure
field prior to development, the pressure at the point along the trough
axis from which the low center ultimatcly developed was assigned as
the value of central pressure., With some exceptions which will be
discussed, it is felt that the indicated changes of central pressure are
an adequate mecasure of the degree of development,
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in terms of the d‘eparture from the value at the initial time), and
i) precipitation forecasts for relevant cases (cumulati_v‘e 12 -hour totals
with track of forecast low superimposed), Note is made that the
actual forecast charts of sea-level pressure and the appropriate initial
and vérifying analyses will be presented only when visual inspection
thereof is more enlightening than consideration of central pressure

alone. Also, the isohytal analyses of actual precipitation amounts
will be presented for corpi:.arison only when either it is 'not clear from
the discussion of the observed 1-hour precipitation amounts that the
forecast 12-hour amounts are negligible or it is readily apparent that

significant amounts of rainfall were predicted,

3b, Detailed Case Studies

Casel - February 4 to 5, 1971

During the 18-hour period prior to 12Z Feb. 4, a low-
pressure system moved without developing from N;e\v Mexico to central
Oklahoma., Through 09Z Feb, 4, there was no significant convective
activity in assoéiation with this system. The 09Z composite surface-
radar chart (Fig. 8) does show the presence of a small area of light
showers to the south of the low along the cold front, but to this point,
inspection of the hourly rainfall data indicated negligible amounts of
precipitation were produced. Between 09Z and 12Z, as shown by the
radar observations (}E;ig. 8), however, and more precisely between

11Z and 122, as was indicated by hourly precipitation data, there was
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an explosive increase in the extent and degree of shower activity.
Shortly after 12Z, the low began to deepen (Fig. 9).

During the initial period of development between 12Z and
182 Feb-;'.‘i,, ”the radar observations display a line of thundershowers
(i.e. , a squall line) which extended south of the low and which was
embedded in a more general area of scattered to broken showers
and thundérstorms that extended and broadened somewhat to the
north of the low., Itis evident ffom the composite surface-mean
’relative humidity charts (Fig. 10) that the convection occurred in
an unsaturated environment, As an indication of the magnitude of the
shower’act{vi’cy, the rainfall histograms of Tulsa and Lehigh, Oklahoma,
are presented in Fig. 11, The Tulsa histogram, which represents a
cross section through the low center between 11Z and 15Z, indicates a
peak 1-hour rainfall amount of . 80 in, In contrast, the largest 1-hour
total deposited as the squall line passed over Lehigh was .36 in, The
1-hour amounts north of the storm were similarly less. Thus, al-
though the .intensity of individual shbwel_‘s, as implied by the radar echo
,tops,.was greatest in the squall line, the degree of convection in terms
of the net amounts of rainfall that were being produced was greatest
in thg;center of the storm. The only available fipping—bucket gauge
relevant to the immediate discussion was that of Springfield, Missouri
(Fig. 12), which indicates that the intensities of showers in the center
of the low between 15Z and 18Z were generally from .50 to 1,0 in hr-l,
though one peak was in excess of 2,0 in hr-l. Subséquent to 18 Z Fcb. 4,

the storm continucd to intensify as it tracked northeastward towards the
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Great Lakes;. As can be seen clearly from the series of surface radar
charts (Fig. 8), };owever, the convective é.ctivity began to spread cast-
warci away from the center of the storm between 18Z and 21Z. By
00Z Feb, 5, there was virtually né precipitation in the vicinity of the
low centef. The squall line, théugh, became more extensive and, as
" exemplified by the Memphis histogram (Fig. 13}, was producing more
" precipitation than it had been prior to 002 Feb. 5.

At this point, it is desirable to note that the configuration
of the shoxlver activity during the initial i)hase of development of this
storm is characteristic of each storm in whiqh the onset of development
was accompanied by an outbreak of convection. More specifically,
reference is made, first, to the radar echo pattern shown, for example,
by the 12Z surface-radar chart and, second, to a maximum in the
convectively produced amox.mts of rainfall within the center of the storm.
It is also noted that with one exception (Case V), the dissociation of
significant shower activity from the center of the storm oécurred, asv
in this case, while the storm was continuing to intensify.

One can see from Fig, 14 that neither the NMC-PE or
FNWC-PE prognoses generated from 12Z Feb, 4 properly forecast the
i;nitiation of development. The models did forecast cyclogenesis in the
sense that significant deepening was predicted between 12 and 24 hours
after the initial time, but it is clear from Fig. 14 that each lagged
behind the real atmosphere in the onset of development. Fig, 15
shows that during the 12-hour period immediately following 12Z Feb, 4,
when the observed initial development occurred, both models produced

negligible amounts of precipitation ( .25 in).
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It is noted that both the NMC-PE and FNWC-PE prognoses
generated from 00Z Feb, 5, which was after the showef activity became
diséociated from the low center, properly forecast the continuation of
de\;elopment in the 12-hour period immediately following the initial
time (Fig. 16). The degree of the forecast development, which was
about the same in both cases, was less than observed, but there was
no lag in the trend of continued development, What is important in
this regard is that while the FNWC-PE predicted a significant fraction
of the precipitation that occurred in association with the squall line,
the NMC-PE produced negligible amounts (Fig. 17). The implication,
therefore, which was corroborated by the other case studies,‘ is that
there was no systematic error in the numerical prognoses related to
the occurrence of cumulus convection other than when it occurred in
| the center of the storms during the initial phase of development, It
should be emphasized that this does not neces‘sarily rule out the pos-~
sibility that extensive shower activity at the periphery of the storm
plays some role in the detail or magnitude of the actual storm evolution,
since the approach employed in this investigation may not héve been
adequate to deduce such a role. What can be said, though, is that
(;onvective activity which was not in the immediate vicinity of the low
center did not appear to be crucial either to the continuation of develop-
ment following tile onset of cyclogenesis, as illustrated here, or to the
actual initiation of development, as will be explicitly discussed with

reference to Case VIL.
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Case II - April 1 to 3, 1970

At 12Z April 1, an invertedAtroug.h extended northward
from central Texas through Oklahoma. The composite surface-radar
charts (Fig. 18) indicate that at this time there was an area of broken
light showers, with a few thunderstorms embedded to the north-northwest
of the trough axis; however, there was no precipitation in the interior of
the tr\ougﬁ itself, as was the case through 182, Between 12Z and 182
some surface development occurred in terms of the appearance of a
minimum of pressure (2-3 mb deepening along the trough axis) and
a slight increase of the circulation about the trough, but the actual onset
of cyclogene51s did not occur until the 6-hour period followmg 182
(Fig. 19). As canbe seen from the 21Z April 1 and 00Z April 2 surface-
radar charfs (Fig. 18), the initiation of developmentv_coincided with an
outbreak of extensive shower activity in the center of the low,

It is interesting to note that the storm deepened 6 mb
between 18Z and 21Z April 1, but that there was little further decrease
of central pressure during the 3-hour penod thereafter. What occurred,
rather, as illustrated by Fig., 20, was that between 212 and 00Z, the |
low center was in the process of redeveloping northeastward such that,
although th:ere was virtually no net change of central pressure, the
observed 3-hour pressure falls of 4-5 mb along the Illinois-Kentucky
and Indiana-Kentucky borders were developmental components of the
isallobaric field, The contemporary relationship which cxisted between

the shower activity and the redevelopment and continued deepening of the
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low therecafter through about 06Z is clearly demonstrated by the tipping-
bucket traces of Cairo, Illinois; Evansvillé, Indiana; and Louisville,
Keﬁtﬁcky (Fig. 21). Peak intensities of the showers within the new low
center Wer;e well in excess of 2,0 iﬁ hr_l, with 1-hour totals generally
greater thz‘m . 50 in and often in éxcess of 1,0 in (Louisville recorded
1,73 in between 04Z and 05Z April 2). Except for the extreme southern
. poftion of ,the squall line, these amounts were considerably greater than
those reported elsewhere in association with the storm,

Following 06Z April 2, as the storm continued to intensify,
the heaviest shower activity became dissociated from the low center.
What shower activity there was in the center of the storm was much
subdued from that prior to 06Z (l-hour amounts less than .20 in),

With reference to the series of surface-mean relative
humidity charts (Fig. 22), <.>ne can seec that through 00Z April 2, although
the area to the north of the low was ;aturated, the environment of the
low center itself was not. By 12Z April 2, however, the region about.the
center of the storm had become saturated. |

Inspection of Fig; 23 indicates that the 12-hour NMC-PE
prognoses :ger}erated from 12Z April 1 completeiy failed to predict the
observed initial development, Some deepening (3 mb), however, was
forecast between 12 and 24 hours after the initial time, and major
development followed during the 12-hour period thereafter.. Thus,
although the model did predict cyclogenesis, the onset of development
was not properly forecast, As can be seem from Fig. 24a, although

precipitation was forccast to the north of the low between 12 Z April 1
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and 00Z April 2, none was predicted in the unsaturated environment of
the low center itself. The forecasts generated from 00Z April 2 (Fig, 23b),
whic;h was prior to when significant convection became dissociated from
the low center, did predict the continued trend of development, without
lag. As shown‘by Fig, 24b, the model also forecast substantial amounts
of pfeéi,pitation in association with the forecast center of low pressure

during the 12 hours immediately following the initial time,

Case III - November 11 to 13, 1968

At 00Z November 11, a weak low-pressure area was located
in the vicinity of Galveston, Texas. During the 12-hour period prior
to this time no precipitation was aésociated with this system as it
drift.ed across Texas without developing. In the 12-hour period following
00Z, the low deepened slowly (Fig, 25) as it tracked eastward along the
Gulf Coast to a point just to the southeast of Pensacola, Florida. The
06Z and 122 surface-rada;i‘a charts (Fig., 26), plus the tipping-bucket
trace of Pensacola (Fig, 27), serve to illustrate that the initiation of
development was accompanied by an outbreak of shower activity.

Between 12Z and 18Z Nov, 11, the storm began to track
northeastward towards the central Atlantic Coast, It is interesting to
note that during this period there was little or no further development
(Fig. 25), and as illustrated by the 15Z surface-radar chart (Fig. 26),
the shower activity in the central region of the storm dissipated. The
radar obse;vations indicate some light showers to the northwest of the

low and an arca of thunderstorms to the southeast, but there was no
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activity in the center of the storm. At about 18Z, however, as exem-
p].ified~by the surface-radar charts and the rainfall histogram of
Bruvnswick, Georgia (Fig., 28), heavy showers reappeared in the low
center, and development recpmmenced shortly thereafter (Fig. 25).

The tipping-bucket trace of Charleston, South Carolina,
and rainfall histograms of Cape ﬁatteras, North Carolina (Figs. 29 and 30)‘,
illustrate that shower activity remained in the central region of the
storm through about 66 Z Nov, 12. During the 3-hour period there-
after, as the storm continued to intensify while moving northward along
the Atiantic Coast, significant convection spread eastward away from
the low center,

It can be’ seen from the series of surface-mean relative
humidity cha.rts (Fig. 31 ) that although the area to the north and north-
west of the storm was saturated,. the immediate environment of the
low center through 00Z Nov, 12 was not, By 12Z Nov, 12, the area
about the low had become saturated.

It is evident from Fig, 32a that thé NMC-PE {ailed to
properly forecast the initiation of development. The predictions
generated from 00Z Nov, 11 erroneously filled the low through 24 hours
after the initial time. Not until the 24 to 36-hour forecast period was
the onset of cyclogenesis predicted, It is noted also that the forecasts
generated from 12Z Nov, 11 (Fig, 32b) lagged behind the real atmos-
‘phere in the continuation of development, That is, no further deepening

was forecast until 12 to 24 hours after the initial time., Figs. 33 a-b
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show that ncither the prognoses generated from 00Z or 12Z Nov, 11
forecast the heavy convective rainfall obéerved in the center of the
storm duriﬁg the 12-hour period immediately following their respective
initial times. The prognoses from 00Z Nov, 12 (Fig. 32c) did forecast,
without lag, the observed continuing development, and did foreéast
significant amounts of precipitation in association with the predicted

low center (Fig. 33c).

Case IV - March 2 to 4, 1971

At about 15Z March 2, showers and thunderstorms
developed axlong the entire length of a stationary front that extended
from southern Texas to the southeast Atlantic Coast (Fig. 34).
Between 15Z March 2 and 00Z March 3, the inverted trough which
was situated about the front began to deepen, and a nascent wave
cyclone developed in southern Mississippi, where, as can be seen
from thé 00Z surface-radar chart, the most intense convection had
become cohcentrated.

During the 24-hour period following 00Z March 3, the
low develé;ped slowly (Fig. 35), but steadily, as it tracked northeast-
ward to the coast of North Carolina., The tippiﬁgfbucket trace of
Macon, Georgia (Fig. 37), and the 00Z March 4 s;r‘face-radar
chart (Fig, 34) illustrate the fact that there was extensive convective
activity in the vicinity of the low center for this entire period.

Between 00Z March 4 and 007 March 5, the storm
_intensified explosively while it moved northward along the Atlantic

seaboard to New England. Radar data and ship observations indicate,
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however, that significant shower activity became dissociated from the
center of the storm shortly after 00Z March 4.

Fig. 36 shows that the environment about the storm center
was unsaturated through IIZZ March 3, but had become saturated by
00Z March 4.

One éan see from the NMC-PE sea-level pressure
charts which were geﬁerated from 12Z March 2 (Fig. 38) that the
model did not deepen the inve;ted trough or produce an incipient
center of low pressure until 12 to 24 hours after the initial time
(see also plot of forecast and observed central pressures vs, time,
Fig. 39a). .That is, the prognoses lagged behind the real atmosphere
in the onsét of develoi;ment. Comparison of the observed and predicted
precipitation between 12Z March 2 and 00Z March 3(Fig. 40a) shows
that, although the model did forecast some precipitation in the north-
east and southwest portions of the trough, it did not produce any
rainfall corresponding to that observed in association with the develop-
ment of the incipient low,

Both the FNWC-PE and NMC-PE forecasts from 00Z
and 12Z March 3 predicted the continuation of development, without
lag (Figs.. 39b and 39c, respectively). As canbe seen from Figs. 40b
and 40c, thé NMC-PE also forecast significant precipitation in associa-

tion with the low centcr8 during the 12-hour periods immediately‘

8 With regard to the NMC-PE forecast from 00Z March 3, it is noted
that the environment about the actual low center was unsaturated
through 12Z March 3; however, with the reduced saturation criteria
of 90 per cent, the modecl did saturate the region about the low in the
12-hour period after 00Z Mar (,h 3, and hence, was ablc to produce
precipitation,
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following thé respective initial times., The F'NWC-PE precipitation
forecasts were not available and, thereiore, one can only specuiate
that this model also simulated the convective rainfall,
| It is noted that both modelé.predicted major development
to .occur in the first 12-hour period following the initial time of
062 March 4 (Fig. 39d), although the magnitude of that development

was not as great as observed. (No precipitation forecasts available

for either model.)

Case V - February 12 to 13, 1971

Between 00Z and 09Z Feb., 12, a; well -defined nascent
cyclone developed from a general area of low pressure that at 00Z wa ;
situated over Texas and Oklahoma, Although during this period, while
the storm drifted across southern Arkansas, there was virtually no
net change of central pressureg, there was a definite increase in the
cyclonic cikrculation (Fig. 41). The“initiation of development, as can
be seen from the 06Z surface-radar chart aﬁd rainfall his’tOg‘ram of
Foreman, Arkansas ( Figs. 42 and 43, respectively), was accompanicd
by an outbfeak of significant shower activity in the vicinity of the low
center, It caz; be inferred, in addition, from the 00Z Feb. 12 surface-
mean relative humidity chart (Fig., 44) that the environment in which

the storm first developed was unsaturated,

9 There was approximately 1-2 mb dcepening between 00Z and

09Z Feb. 12, if account is taken of the normal diurnal tendencies,
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‘The surface-fadér charté (Fig. 42) serve to illust. ate
that significant convection became dissociated from the center of the
storm by 12Z Feb, 12, Thereafter, although the are- was saturated
(Fig, 44), there was little or no precipitation, either stratiform or
convecti\}e, within the low center for th;a balance of the storm's life
history. | __

| It should be noted that unlike Cases I-IV and Case VI,
develop‘ment did not continue, either in terms of a decrease of
central pressure (Fig, 45) or an increase of the cyclonic circulation
during the dissociation of the convective activity from the center of
the stvorm. In féct, there was little further development until about 03Z
Feb. 13, when the low began to develop rapidly as it tracked north-
eastward towards Pennsylvania, Apparently, when the convection
became dissociated from the low center, large-scale motions and
processes alone were not yet conducive to fufther development,

It can be seen from co.mparis.on of the 12-hour NMC-PE
sea-level pressure chart generated from 00Z Feb. 12 with the initial
and verifying analyses (Figs, 41 and 46) that the model failed to pre-
dict the onset of developrﬁcnt. The model did not, in fact, produce
a minimum of pressure corresponding to the observed storm until
24 to 36 hours after the initial time. Fig., 47 illustrates that
negligible amounts of precipitation were forecast between 00Z and
12Z Feb. 12, when the observed initiation of development occurred,

Each of the models available for the initial time o.f

12Z Feb. 12 forecast some decpening between 12Z Feb, 12 and
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00Z Feb. 13 and, with the exception of the LFM (for reasons not revadily
apparent), predicted more significant development, as was observed,
during the 12-hour period thereafter (Fig. 48a); however, although the
FNWC-PE prognoses generated from 00Z Feb, 13 forecast the continua-
'tioﬁ of dévelopmént‘without lag, the NMC-PE forecast from 00Z Feb, 13
did not predict further development until 12 to 24 hours after the initial
time (Fig. .48b). The failure by the NMC-PE to properly forecast the
continued development cannot be ascribed to the occurrehce of convec-
tive showers, but it is emphasized here that this particular forecast

was the only case in which this situation was encountered.

Case VI - March 23 to 24, 1969

Between 00Z and 06Z March 23, an ill-defined minimum
in the pressure field drifted slowly across the Te.xas Panhandle without
developing., The radar observations (Fig, 49) indicate that during this
interval of time there was some shower activity in association with the
low, but only light amounts (£, 10 in) were recorded by hourly rainfall

stations,

During the 6-hour period following 06Z, the low began
to deepen (f‘ig.’ 50), and, as illustrated by the 12Z surface radar
composite (Fig. 49) and the rainfall histogram of Lake Bridgeport,
Texas (Fig. 51), the onset of development was accompanied by an
explosive increase in the extent and degree of convection, Between
15Z and 182, whi_ie the storm was continuing to intensify, significant

shower activity became dissociated from the low center,
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It can be seen from the surface-mean relative humidity
charts (Fig, 52) that the area about the low at 00Z March 23 was quite
dry. At; 12Z, however, shortly after the major outbreak of convective
activity, the envircsnment of the storm center was indeed saturated.

Fig, 53 indicates that the NMC-PE prognosés from
00Z March 23 fore'cast the initiation of development, as was observed,
during the first 12 hours following the initial time. The model also
‘predicted during this same interval of time significant ainounts of
precipitation in association with the forecast center of low pressure
(Fig. 54).

It is noted that the progndses generated from 12Z March 23
(Fig., 53 ) predicted the continuation of development, without lag, a;d

also forecast substantial amounts of precipitation in association with

the forecast low,

Case VII - February 26 to 27, 1971

Between 06Z and 12Z Feb, 26, a weak low-pressure system
began to develop (Fig. 55 ) as it tracked north-northeastward from central
Nebraska towards eastern Minnesota., The radar-surface charts of
12Z and 18Z Feb. 26 (Fig. 56 ) show that some light showers were as-
sociated with the initial development, but as exemplified by the tipping-
bucket trace of Minneapolis, Minnesota (Fig., 57), the activity can be
considered negligible. The peak intensity of the shower at Minneapolis
was just , 35 in hr.-l with only .08 in of rainfall recorded in the hour

during which the shower occurred (172 - 18Z),
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In terms of the net 12-hour changes of central pressure,
the onset of development did not actually occur until between 127 Feb. 26
and 00Z Feb, 27 (Fig. 58). In fact, the low filled 2 mb during the 12-houxr
periba prior to 12Z Feb, 26, Fig, 58a shows that both the FNWC-PE and
NMC-PE prognoses generated from 00Z Feb, 26 predicted this trend of
events, Twenty-four hours after the initial time there was a large error
in the a‘;solute difference between the predicted and observed values of
central pressure; however, what is significant is .that there was no lag
in prediction of the initial development, or in other words, the time of
the onset of'cyclogenesis was properly forecast. The same is true for
the prognoses from 12Z Feb, 26 (Fig. 58b), Although the magnitude
of the predicted initial development was not as great as that observed,
the rr;odels did forecast the onset of development during the 12-hour
period immediately following the initial time,

As an illustration of the apparent unimportance to the
initiation of development of convective activity which occurs at the
periphery of the storm area, reference is made to the following: the
expanded areal coverage of the 12Z Feb, 26 surface-radar chart
presented in F1g 59 illustrates that there was extensive and obviously
intense shower activity in the southern United States which was not
directly associated with the devclopment of this storm, That is, the
convection appeared well before the onset of cyclogenesis and persisted
through the later stages of development., Both the NMC-PE and
FNWC-PE prognoses generated from 00Z Feb, 26 did adequately fore-

cast the convective rainfall between 12 and 24 hours after the initial
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time (i.e., the period during which the onset of development occurred),
but the. 12-hour forecasts from 12Z Feb. 26 produced negligible amounts
of precipitation during that same period. It is noted, however, that
both models in the forecasts generated from 00Z and 12Z Feb. 26 properly
forecast the onset of development. The imﬁlication, therefore, which
was corroborated by other case studies, is that convective activity on
the‘ perii)hery of the storm area was not crucial to the initiation of

development,

Case VIII - December 25 to 27, 1970

The initial development of this storm occurred between
15Z and 18Z Dec. 25 (Fig. 60) when what had been an innocuous
minimum in the pressure field drifted eastward from the border of
North and South Carolina across the Atlantic Coaét. Thereafter, the
storm intensified to near hurricane proportions as it tracked north-
eastward to a position just south of Nova Scotia at 00Z Dec. 27.

The center of fhe storm was within range of the radar at
Cape Hatteras, North Carolina, until 00Z-Dec, 26, and through that
time, there was no indication of shower activity, The extent and degree
of any convection there might have been about the center of the storm
following 00Z is not known (no pertinent ship observations available),

Fig. 61 clearly indicates that the models did forecast the
onset of development, as was observed, Abetween 12Z Dec, 25 and 002

Dec. 26, and predicted the trend of continued development in the 12-hour
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period thereafter. It is noted that the models did not predict significant
.precipitation in the vicinity of the forecast low center between 00Z and
127 Dec. 26. .Hence, if there was any precipitation about the actual
4storm center vduring this period, it was not crucial to the continuation

. of development subsequent to 00Z,

Case IX - January 25 to 26, 1971

Between 127 and 15Z Jan, 25, a minimum of pressure
appeared in the southeastern extremity of a broad cyclonic area that
extended from Idaho to Iowa, Development commenced shortly there-
after (Fig, 62) as the low moved eastward towards the Great Lakes.
The only precipitatioﬁ accompanying the initiation of development was
some inconsequential light snow to the north of the low center.

It can be seen from the charts “c»f the FNWC-PE and
NMC-PE 12-hour forecasts generated from 12Z Jan, 25 (Fig. 63),
that both models produced well-defined 1000-mb cyclones (see also
plot of forecast vs. observed central pressure, Fig. 64a). The
predicted storms are not as deep as the observed, but the onset of
development was indeed forecast, It is noted, also, that the prognoses

forecast the continued development subsequent to 00Z Jan, 26 (Fig. 64b).

"3c, Results of Cursory Examination of Twelve Additional Cases

In order to augment the nine detailed case studies, a
cursory examination was made of twelve additional storms. Each

of the twelve cases, as were the nine storms analyzed in detail,
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’was an intense cyclogenesis which occurred over the eastern two
thirds of the United States or western Atlantic.

Data utilized in analysis of the convective activity were
re'st‘ricted to the "SM' surface synoptic; reports and 6-hour precipita-
tion totals receiyed over teletype at M.I.T., and to radar charts
received over facsimile. These data alone are not sufficient to
descrllbe the detailed distribution and rnagnitude of convection ac-
coxﬁpan?ing a storm's development; however, one can deduce from

these data whether there was significant shower activity in the vicinity
of the low center during the initial development,

Emphasis on storms of the 1971-1972 winter season
reflected operational implementation of the LFM in October, 1971.
-Oniy NMC-PE and/or LFM forecasts were considered and were in
the form of contour charts received over facsimile, The LFM

precipitation forecasts are received over facsimile, but NMC-PE

precipitation forecasts are not. However, prediction or nonprediction

of rainfall can be inferred from whether or not the model produced
saturation about the forecast center of low pressure (relative
humidity forecasts are recéived over facsimile).

‘ The results of the analysis of the twelve storms are

presented in Table 4. In those cases where the forecasts of both

models were available, the conclusions to be drawn from each were

consistent with one another, It can be secen that the initial development

of six storms was accompanied by an outbreak of convective showers

in the vicinity of the low center. Of these, in five cases the environment



62
of the low was unsaturated, the convective precipitation was not
~adequately simulated, and the initiation of development was not
properly forecast, In the one storm in which the co.nvection occurred
in a saturated environment, the precipitgtion was predicted, as was
" the initiation of development. In the six other storms, there was
little or no precipitation, either convective or stratiform, in associa-
tion with the initial development and, in each case, the onset of

cyclogenesis was properly forecast.
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CHAPTER IV

ARGUMENT 1II: PHYSICAL PLAUSIBILITY AND
QUANTITATIVE REASONABLENESS

4a, Introduction

1

In this chapter, attention is focused upon Argument III:
the importance of latent heat release by cumulus convection to the
initiation of dévelopment of some extratropical cyclones, which is
implied by the apparent source of the systematic error, is physically

plausible and quantitatively reasonable,

4b, Physical Plausibility

The importance of latent heat release to the development
and maintenance of extratropical cyclones has been well established.
Danard (1964), for example, has shown that the ;‘elease of latent heat
amplifies the upward motion and thereby increases the low-level con-
vergence, As a result, the sea-level ( or 1000-mb) system tends to
intensify and rhove with the center of heaviest precipitation. However,
Danard, as have others who explicitly considered the question (e. g.,
Bullock and Johnson, 1971; Petterssen, 1956), expressed the belief
that condensational heating does not play a role in the initiation of
cyclogenesis, but rather that it effects the subsequent growth, The

underlying idea behind this premise is that significant precipitation
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in association with intensc extratropical storms does not occur until
after development has commenced and large-scale cloud systemé have
been “forme‘d; in other words, after brdadscale saturation has been
achieved,

Heavy convective rainfall, though, can occur in an
unsaturated environment. Moreover, as was documented in the previous
chapter, the initial development of some storms does indeed coincide
with an outbreak of shower activity prior to large-scale saturation. It
is therefoxie physically plausible that the released latent heat, through
enhancemenf: of the upward motion, plays an important role in the onset
of cyclogenesis,

. It is noted that the mechanism which is generally ascribed
to the initiati.on of cYclogenesis, when the release of latent heat is not
taken into account, is the Sl'lpel‘pOSitiOn of a region of positive vorticity
advection in advance of an upper?level trough over a low-level baroclinic
(frontal) zone along which the thermal advection is discontinuous
(Petterssen, 1956). Prior to development, when the vorticity advec-
tion is well to the rear of the surface ffont, the induced vertical
motion is 6ppos ed by the distribution of horizontal advective cooling,
When the region of pgsitive vorticity advection has advanced sé that
the opposing inﬂuénée of thermal advection beneath it is weaker or

. . . ' 10
nonexistent, an imbalance is created and development commences™ ,

10 Surface frictional effects must also be considerea. That is, the

magnitude of the vorticity advection must be sufficicnt to offset
the opposing influence of friction as well as cold advection.
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In each of the storms analyzed in this investigation, the
‘development did occur in association with 1.:he advance of an upper
trough towards a low-level frontal system, As exemplified by Fig. 65,
however, in those storms in which the onset of cyclogenesis was ac-
' companiedr by convective showers, the vorticity advection over the
incipient low center during the initial stage of development was,
- qualitatively speaking, less than in the other cases. It would appear,
therefore, that an outbreak of convective showers creatés the imbalance
necessary for development to commence prior to the time when vor-
ticity advection alone would initiate developmen’tl_l. From another
point of view, it is recalled that the error in prediction of the initial
(or continued) development was manifest not in a complete failure to
predict the occurrence of cyclogenesis, but rather in a lag in the
forecast of the onset of development. Thus_, it can be inferred that
the convective felease of latent heat initiates cyclogenesis prior to
the time when it would have occurred if only the larger-scale
baroclinic processes were operative., In effect, the release of
gravitational instabi.lity‘t;y small-scale convection triggers the
Vbaroclinic instability associated with the large-s'cale temperature

contrast between air masses,

1 Close inspection of the figures Petterssen (1954, 1956) presents

to illustrate that vorticity advection initiates cyclogenesis reveals
that, in some of the cases, there was notappreciable vorticity
advection over the incipient low at the tinie the initial development
occurred; however, there was thundershower activity in the vicinity
of the low center, It is hypothesized that, if numerical forecasts of
these storms had been performed and the convective rainfall not pre-
dicted, the initiation of cyclogenesis would not have been properly
forecast.
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4c., Quantitative Reasonableness

In order to establish dynami.cally the magnitude of surface
development consistent with the rainfall pattern observed in association
with the onset of cyclogenesis, solutions were obtained to the diagnostic
quasi-geostrophic omega equation for thermally induced motions (sec,

e.g., Danard, 1964),

(F+E5)o-duv0, o

and to the vorticity equation,

D?,,__ 0 2w
ot Jt 2P (2)

: e o , :
where @ is the geopotential;wz ag: represents the vertical motion;

? is the geostrophic relative vorticity;{o is a constant value of the

Chx i

function only of pressure; and Q is the diabatic heating.

coriolis parameter; the stability parameter = @ 2O is a

It should be noted that the intent here is not té analyze
the effect of individual showers, but rather to examine the collective
influence of the latent heat released by convective activity in the
vicinity of the low center on the deepening of the cyclone., More
specifically, the question which is addressed is whether the latent

heat relecasc alone can account for the observed initial development,
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The horizontal distribution of rainfall is modeled analy-

tically as an ellipse in which the maximum precipitation rate, Pm’ is

at the center and values of P decrease exponentially therefrom. Thus,
2

X
o %]

' -[
Py, ‘4) '-‘Eﬁ’ ‘ (3)

where A and B are scale factors which specify the minor and major

axes (x and y, respectively) of the ellipse defined by P(x,y)=.1 P

It can be assumed that the precipitation recorded at the
ground is an adequate reflection of the vertically integrated heating,

As has been noted by others (e. g., Charney and Eliassen, 1964),

.however, little is known about the vertical distribution of the latent

heat released by cumulus convection. Therefore, detailed treatment

of the vertical variation of heating and of other parameters is not
justified. Thus, a model with the simplified vertical structure shown
in Fig.. §6 was adopted,

The omega equation was applied to levels 1 and 3, With

the assumption that the latent heat release is confined to the layer

‘between 900 mb and 200 mb, it can be shown that the heating at these

- levels is as followslzz

o

25\ Py o
5750 (+Y)

G =
(4)

Q.- V29 L Py)Cuo
3 575 B (Q+Vv)

Here,V/ is an adjuétable parameter which measures the ratio of the
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; 12 Stepwise integration of ’}g‘ S%Q("f') OH"""\_ PRue
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upper to lower trépospheric heating (i. e.,¥y = Q3/Ql),/and L is the
latent heat of condensation,
When vertical derivatives are expressed in finite difference
form, the omega equation at levels 1 and 3 becomes:

&""<w3_3u3“) R
g apt T @R VQ

B
W+

a (5)

:, .(w,—?:uJ,,._____@__ Y72
vw3+’f5—3—57;5:2- Fes %

The simultaneous solution of these equations forUJ 1 and\WJ 3

at the center of the precipitation distribution was obtained via a Fourier

transform technique which is outlined in Appendix B, A parabolic

proﬁle was then fit to the values of W O(U.JO= O),’wl’ and 2 (w éf%\f} ) in

order to obtain 2w at the 1000 mb surface and thereby enable solution

o
of Eq. (1) for the 1000 mb geopotential tendency, which may readily
be translated to the deepening rate of the sea-level pressure system,
The Fourier transform method of solving Eq. (1) also appears in
Appendix B, )

Observed one-hour precipitation amounts in the center

of storms during the initial phase of development were typically' between
.5 axﬁd 1.0 in (see, for example, the rainfall histogram of Tulsa,
Oklahoma, Fig. 11). The value of Pm used in the calculations, there-

S | . < . .
fore, was .75 in hr =, On the basis of the characteristic dimensions

of the precipjtation arcas, the values of A and B utilized in Eq. (3)
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were such that the ellipse had major and minor axes of 750 and 250 km,

respectively., Average values of 6 '1 and 52 were ascertained from

the values of6 1 and 8 2 computed for each of the skoundings available
within a radius of 500 km from the low center of Cases I - VI during
the initial stage of development, Numerically, the mean values of

8 ) and §, were 1,2 x 1072 and 7.4 x 10" %m %sec ®mb %, respectively.

The computed deepening rates appear in Table 5. \'/'alues
range from -, 61 mb hr-l withY” = 3 to -1,52 mb hr~? withy™= , 5. As
noted above, little is known about the vertical distribution of the latent
heat réleas ed by cumulus convection. Theoretical treatments by
various investigators (e.g., Kuo, 1965; Kasahara and Asai, 11967)
predict substantially different vertical variations of the heating. There
does appear, however, to be agreement that a larger portion of the
heating occurs in the upper rather than the lower troposphere with a
 ratio of the upper to lower tropospheric heating having a maximum
value of about 3, Thus, the most reasonable computed values of
’ fthe deepening rate are between , 6 and 1,2 mb hr-l. Typical &alues
of the deepening rate observed during the onset of cyclogenesis were
about the same.

At this point, a few comments are in order concerning
the suitability of the geostrophic equations in this study. The magni-
tude of the assumed precipitaiion rate was considerably greater than
the 2 cm or less per day consistent with the geostrophic assum-ption

(Phillips, 1957). Undoubtedly, if numerical integrations were to be
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performed with such aillarge valuec of the precipitation rate, serious
errors in the forecasts would result after a number of time steps. The
quantitative réliability of the instantaneous (i, e., diagnostic) relation-
ship between the precipitation. rate and ’computed quantities is not
known.

Thus, although the computed deepening rates are
comparable with those observed, doubt concerning the quantitative
reliability of the geostrophic equations, as well as the relative
crudeness of the modeling approximations, must temper any conclu-
sions to be drawn, Nevertheless, the results of th_e compﬁtations
are indeed consistent with the notion that the release.of latént heat
can account for the observed initial development. In other words,
it is 'quantitatively reasonable that cumulus convection through the
release of latent heat plays an important role in the initiation of

cyclogenesis.,
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CHAPTER V

ARGUMENT IV: ALTERNATIVE SOURCES OF THE

SYSTEMATIC ERROR

This chapter presents a discussion of Argument IV:
there appears to be no defensible alternative explanation for the
observed systematic error.

The numerical prognoses utilized in this iﬁvestigation,
with or without proper consideratien of cumulus convection, are not
perfect representations of the real atmosphere, Errors in the
predictions can be introduced by any one or a combination of.various
physical, dynamical, or computational limitations, such as lack
of horizontal and vertical resolution, insufficient initial data,
initializing procedures, artificial boundary conditions, etc., The
possibili"c_y‘must therefore be considered that the failure to forecast
properly the onset (or continuation) 6f development was for reasons
other than th'e failure to predict convective precipitation,

A priori, the most likely alternative explanation is
the charavcteri‘stic tendency for forecast 500 mb troughs to lag behind
their obsefved positions, while the associated surface features move
correctly to the east or northeast., Fig., 67 illustrates this type of
error. In this 24-hour NMC-PE forecast, the surface low shows
only a small error vin position, but the SQO mb trough is slow in its

translation eastward. The net effect is that the slope between the
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500 mb trough axis and the surface low is greater than that actually
obsei'ved13. In the forecast, therefore, the surface low is furthér
ahead of the region of maximum positive vorticity advection that lies
in advance of ;che upper-level trough. Consequently, the failure to
properly forecast the onset of development of some storms could
' conceivably be attributed to failure to predict enough vorticity
advection over the incipient low'center.

However, prediction of too great a slope between the
500 mb and surface systems is generally observed. to be greatest
in the 36-hour forecasts and least pronounced, often nonexistent
(espe'cially in the LFM forecasts), in the 12-hour forecasts; and in
most cases, the adequacy in predicting the initial development was
evaluated on the basis of the 12-hour forecasts, Moreover, dif-
ference between the observed and forecast vorticity advection over
the incipient low centers, assessed qualitatively, was not systemati-
cally related to whether the onset of development was properly

predicted, The greater slope between the forecast 500 mb troughs

LY

13 The nature of this type of error, with reference to the NMC-PE,

has been discussed by Fawcett (1969). The slowness in translation

of the 500 mb trough can reasonably be ascribed to truncation error,

The correct motion of the surface system, Fawcett asserts, can
be shown experimentally to be due to latent heat feedback. The
precipitation predicted in advance of a low tends to accelerate it

towards the center of heaviest rainfall; however, it is the experience

of this author that, although latent heat may accentuate the effect,
the relative slowness of predicted 500 mb troughs with respect to
the surfacec lows occurs also when no precipitation is forecast,

Furthermore, Fawcett (1967) indicates that this type of error was
a featurec of the NMC-PE before precipitation was incorporated into
the modecl. Additionally, it is noted that this error is somewhat
greater in the FNWC-PE than in the NMC-PE and less in the LFEM,~
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and surface features likely contributed to the magnitude of the error
between the observed and predicted initial development, but it was

not crucial to prediction of the initiation of cyclogenesis.

Principal other alternative explanations for the failure
to predict the onset of development are: i) inability to resolve all
relevant energy-producing systems, and ii) initialization procedures.
The models can resolve motions only on a scale greater than twice
the grid interval, so that any processes occurring on a smaller
scale, which could be of importance, are eliminated, The smoothing
inherent in preparation of initial data for use in primitive equation
models co‘u‘ld eliminate from the initial state detail that in the real
atmosphere was crucial to the onset of cyclogenesis. Although
fhese, and perhaps other alternative explanations as well, could
indeed result in failure to predict the initial development (or continﬁed
development) in any given situation14, there does not appear to be |
any reason for the systematic error that was observed., That is,
no explanetion can be given as to Why the models consistently failed
to predict the initiation of cyclogenesis only when the actual initial
developmént coincided with an outbreak of convective showers and

the convective rainfall was not forecast.

14 It is recalled that in only one case did a model fail to predict

the continuation of development for reasons other than the

occurrence of convective showers (NMC-PE forecast from 00Z
Feb, 13 - Case V),
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The goal of this thesis has been to determine whether
cumulus convection plays a role in the development of extratropical
cycloneis, and if it does, to determine the nature of that role. The
basic approach adopted in in\)estigating this question was to determine
whether there is a systematic relationship between thevexten? and
degrée' of convection wifhin cyclones and th¢ departulr"e:t'iﬂf" ﬁ;“ctual
storm evolution from that predicted by operational forecast rhodels.

On the basis of detailed analysis of the two storms
initially chosen for study, the follovéring hypothesis was formulated,

and the balance of the investigation directed primarily towards

ascertaining its validity:

In some instances of extratropical
cyclogenesis, cumulus convection plays a crucial role
in the initiation of development through the release of
latent heat in the vicinity of the cyclone center, In such
“cases, "dynamical models which do not adequately simulate
convective precipitation, especially as it might occur in
an environment that is unsaturated, will fail to properly

forecast the onset of development,

Evidence either to support or refute the hypothesis was
derived from detailed analysis of seven additional storms, cursory

examination of twelve others, and both qualitative and quantitative



-75-

consideration of the physical mechanisms involved, Although the
evidence may not be conclusive proof of the hypothesis, it does provide
sufﬁcient support to elevate its stature from a statement of provisional
conjecture, which it was originally, to an assertion that may be accepted
as highly probable.

The case in support of the hypothesis was summarized

in terms of four arguments:

I, In some storms, there was a coincidence in
time between the initial development and the
occurrence of convective showers in the vicinity
of the low center, Almost invariably, the environ-

ment in which the convection occurred was unsaturated,

II, In those caseé in which the initial development was
accompanied by convective showers in the vicinity
of the low center and the environment in which the
convection occurred was unsaturated, the dynamic
prognoses systematically failed to properly forecast
the onset of development, apparently because of the

models' failure to predict the convective rainfall,

III., The importance of the latent heat release by
cumulus convection to the initiation of development
of some extratropical cyclones, which is implied
by the apparent source of the systematic error, is

physically plausible and quantitatively reasonable,

IV. There appears to be no defensible alternative ex-

planation for the observed systematic error.

It was noted that significant shower activity occured in

the center of storms generally only during the early phases of their
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life history. The characteristic distribution of the convection during
the initial stage of development was a line of thunderstorms which
extended south of the low and which was imbedded in a more general
area of scattered to broken showers and thunderstorms that extended
and broadened somewhat to the north of the low (for example, éee Fig, 2)..
In terms of the net amounts of convective rainfall that were being pro- |
duced, the degree of convection was greatest in the center of the
storm. Following an initial period of development, which lasted |
anywhere from 6 to 36 hours, significant shower activity becaﬁe
dissociated from the low center,

In those storms in which the initial development was
accompanied by an outbreak of convective showers and the precipitation
was not forecast, the models generally did fvorecast cyclogenesis, but
the predictions lagged behind the real atmosphere in the onset of
development. It would appear, therefore, that the release of latent
- heat by cumulus convection can initiate development prior to when it.

would occur if large-scale motions and.processes alone were operative,

-~ Convective acti‘;rity which was not in the immediate
vicinity of the storm center did not appear to be crucial either to the
initiation of development or to the trend of continued development
following the onset of cyclogenesis. This observation was based upon
the fact that only when the convection occurred in the center of the
storm was there a éonsistent contemporary relationship betwéen it
and the actual storm evolution or was there a systematic error in

the forecasts of the initiation or continuation of development, However,
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the possibility cannot be ruled out that convective activity on the
periphery of the storm, through the release of latent heat or otherwise,
plays some role in the detail and magnitude of the sto1m evolution,
since the aipproach employed in this investigation may not have been
adéquate fo deduce such a role, - .-

Each of the storms analyzed fer this investigation
developed over the eastern two thirds of the United States or western
Atlantic. In approximately half the cases, the initial development
was accompanied by an outbreak of cdnvective showers in the vicinity
of the low vcenter. On the basis of synoptic experience and the fact
that the st§rms selected for analysis were chosen without prior.
specific knowledge of the extent of convectivé activity accomi)anying
their develépment, the sample is considered representative of the
intense cyclones occurring ‘east of the Rocky Mountains, It should
be noted, however, that becéuse of this region's close proximity to
a source of warm moist air, in the Gulf of Mexico and Caribbean
Sea, it is an areak particularly susceptiblle to the generation of the
convective instability necessary for the occurrence of the shower
activity (Fawbush, et al., 1951), Some other geographical areas
are not so faviored. For example, convective instability is less
likely over northern Europe because of the relatively cold waters
adjoining.this region. The extent of convective activity is therefore
not as great in northern European cyclones as in storms occurring
over the eastern two thirds of the United States (Palmen and Newton,

1969). An additional point is that while significant shower activity,
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if any, is generally confined close to the center of a cyclone over land
(thougl'i not necessarily in the center itself), showers in oceanic cyclones
occﬁr in the cold air to the west of the low center (Palmen and Newton,
196.9). Thus, one can speculate that the release of latent heat by
cumulus convection is an important factor in the initial development
of a sfr}a].ler fraction of storms occurring over northern Europe (or
other regions not especially conducive to the generation of convective
instability) than in storms east of the Rockies, and is an important
factor in storms developing over land more often than in opeanic
cyclbries. A study such as presented in this thesis is recommended
to confirm this speculation,

Finally, it is noted that even in those cases in which
the ini’ciationv or trend of continued development was forecast, the
magnitude of the predicted development was generally less than
observed, Whether this reflects lack of incorporation or inadeéuate
formulation of some relevant physical process, computational limita-
tions of the models, or a combination thereof, is not known., Future
research should be directed towards answeri.ng this question because -
of its importance both to numerical forecasting and to an improved
understanding of the complex phenomenon of cyclogenesis. Thé
‘most direct and poséibly most productive approach to the problem
would be to perform several reruns of the prediction of selected
cases of cyclogenesis with various modifications of potentially

relevant parameters and processes. Presumably, those modifications
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which consistently yield the best forecasts will reflect the relative
importance of the various parameters and processes considered,
Particular emphasis should be placed on assessing further, through
improvement of parameterization schemes, the role of cumulus

convection, or more generally, the role of sub-synoptic-scale

motions and processes in extratropical cyclogenesis.
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Table 1. Symbols utilized in radar charts,

Character of Echoes

Symbol Echo System | S ~ Definition |
@ Widely scattered area Related or similar echoes
' covering 1/10 of the reported
area.
@ ‘ Broken area Related or similar echoes in

a pattern that covers 6/10 or
more of the reported area but
contains breaks or corridors,

@ Solid area ‘ Contiguous echoes covering,
usually, more than 9/10 of the
reported area.

Line of echoes (scat- Related echoes in an extended

tered, broken, or pattern.
— solid)

Note:e__H—Hﬁ- indicates position of individual cells imbedded in
echo system, HHH is height of echo top in hundreds of feet.

Characteristic Type of Precipitation

Symbol Precipitation
R Rain
S Snow
RW, SW " Showers
TRW Thundershowers
Z Freezing Precipitation

Echo Intensity

Symbol Estimated Precipitation Rate (in hr-l)

- Very light ({ .01).

- Light (, 01 - 0, 1)
Moderate (0.1 - 1,0)

+ Heavy (1.0 - 5,0)

4+ Very heavy (7 5.0)

-

- Symbols and meanings as described in Weather Radar Manual (WBAN),
Part A, U, S, Dept, of Commmerce, National Oceanic and Atmospheric

Administration, Washington, D, C.



Case

II

II1

Iv

Vi

Vi

VIII

IX

Table 2,

to the nine detailed case studies.,

12Z
00Z

12Z
002

00z
122
002

122
002
122
002

00Z
122
002

002
122

002
122

122
00Z

122
002

Objective analysis of the initial field of sea-level pressure

Initial Time

4 Feb, 19717
5 Feb. 19717

1 April 1970
2 April 1970

11 Nov, 1968
11 Nov. 1968
12 Nov. 1968

2 March 1971%
3 March 1971
3 March 1971
4 March 1971

12 Feb, 1971"
12 Feb, 1971
13 Feb, 1971

23 March 1969
23 March 1969

26 Feb. 19717
26 Feb. 1971

25 Dec, 1970
b
26 Dec. 1970

25 Jan. 1971
26 Jan., 1971°
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Models considered for the initial times relevant

NMC-PE FNWC-PE
X X
X X
X
X
X
X
X
X X
X X
X X
X
X X
X X
X
X
X X
X X
X X
X X
X X
X X

not available (sce Scction 2f and/or Appendix A).

LEM



Case

II
Il

v

Vi
VII
VIII

X

Table 3. Characterization of the initial development

of the nine detailed case studies,

Convective Precipi-
tation in Storm
Center?

Z 2 2 H +{ K < <K K

Environment of
Low Saturated?

Z2 2 2 < 2 2 Z 2 2z

Yes

Convective
Precipitation
Predicted?

Adequate Fore-
cast of the Onset
of Development?

w2 2 2 2 7

Mo K 2 2 2 2 4

-28_



Table 4. Characterization of the initial development of the twelve

storms for which a cursory examination was made.

f€8'

Convective Precipi- ' Convective Adequate Forecast
tation in Storm - Environment of == Precipitation of the Onset of
Case Center? Low Saturated? Predicted? Development?
6-7 March 1971" Y N N N
5-7 April 1971 ¥ N N N
14-16 December 1971 Y N N N
9-10 December 1971 Y N N N
3-4 February 1972 Y N N N
25-26 March 1971" Y Y Y Y
18-19 February 1971 N N - Y
23-24 March 1971" N N - Y
30-31 October 1971 N N - Y
1-3 November 1971 N N - Y
18-19 November 1971 N N - Y
2-4 January 1972 N N - Y
‘ Y = Yes
N = No

o

Note: NMC-PE forecasts were considered in all cases. LFM forecasts were available for
those cases indicated by an asterisk (%),
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Table 5. Computed deepening rates,

g

Ve ()3/(31 Surface Deepening Rate (mb hr"l)

300 ".61

2.5 - .69
2.0 - .79
1.5 - .99
1.0 -1,15
.67 | -1, 42

.50 | o -1,52
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Fig. 1, Location of hourly rainfall stations, tipping-bucket
gauges, and weather radars. (The general operating range of radars
is 250 naut, mi. The effective range for detecting precipitation, how-
ever, is somewhat less owing to earth curvature effects and beam
spreading.)
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Fig. 2. Surface-radar chart. Stippling indicates
areal echo coverage. Shading indicates area of squall line.
For the meanings of symbols, see Table 1,
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Fig. 3, Tipping-bucket recording rain-gauge traces with
schematics showing line segments along which precipitation
cross sections apply. Top figure of schematics indicates
geographical location of station at specified time, while the
bottom figure shows successive positions of station with
respect to the moving surface system,
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Fig. 6. Rainfall histograms with schematic showing line segments
along which cross sections apply. Top figure of schematic indicates geogriphi-
cal location of stations, while the bottom figure shows successive positions of
stations with respect to the moving surface system, ¢ Tulsa; ¢ Lehigh.
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Fig. 7. - (c) Vertical structure of FNWC-PE [after Kesel (1970)] ; (d) Vertical
structure of NMC-PE and LFM [after Shuman and Hovermale (1968)].
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‘Fig. 14, Observed and forecast central
pressure vs, time in terms of departure from

initial value at 12Z 4 Feb. 1971 (values plotted
at 12-hour intervals).

(2)
Fig.15, FNWC-PE (a) and NMC-PE (b) 12-hour precipitation forecasted from

12Z 4 Feb, 1971, Solid line {

(b)

) contours .01, .50, 1.0, etc. Dashed linc

(---) intermediate contours at , 25 in intervals, Track of forecast low center

(X ¢ » ¢+ X) superimposed.
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Fig. 16. Observed and forecast central pressure
vs, time in terms of departure from initial value at 00Z 5 Feb,.
1971 (values plotted at 12-hour intervals).
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Fig. 17.. NMC-PE (a), FNWC-PE (b) 12-hour precipitation
forecasted from 00Z 4 Feb. 1971, and 12-hour observed precipitation,
00Z-12Z 5 Feb. 1971{c)Contour intervals as in Fig. 15, Track of forc-
cast and observed low center (X . « . . X) superimposed.
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; Fig. 20, Surface analyses, 1-2 April 1970,
Locations of Cairo, Ill. (CIR); Evansville, Ind. (EVV);
and Louisville, Ky, (SDF) as indicated.



RLYAIR]

RAINFALL RATE

Snn et St Sl s e Sttt At { St M Ay T L AR SO M | 2Oy AL A e St Sk Sunn St R A Raan
PraAx ¥ 3 nsny ——‘ : PELK = 3 5 n/he
- ) . - [X-0 o d 7
) CLIRT 1L X h EVANSVILLE, IND
tAPR 197 : 1-2 APRIL 1970
- T (2174 =4 -~
- ; = 14— -
— - E P2~ -

: <
r.. l 1 w 10— -

! =
i i «

i I a
H -
8 k 3 8} ﬂ
]
| A z
i a
i — 4 6 -
i
!

u i -1 af— i
| g —— _
Qi |/|\|‘r-o-1/’1%1__L,-l_..x_-J___L_I'L_J...J - [o] ST ST SO § S WY ) IS T SIS S
21 22 23 o]} 23 00 o]} 02

TIME (GMT) TIME  {GMT)

20 T Al T T ‘ T A M T L N v ¥ \) T T

LOUISVILLE, KY 1A ~PEAK =30 S
© 2 aPRILISTO |/ )

18 R { | ]

yai f
S ’
PELK > 5 n/tr i
16— | -t
i
~ taf- i -
£
N
[ H
< 2 i .
- |
:‘_‘ i
<l
« o —
2 !
Z |
2 Bi. ¥ -
é ]
!
6 . ! -
0 t
i |
4 i
2 B ——
s [¢] TR SR Y arwy il | L MU ST I N S N P By
03 04 [RE) 06

TIME  (GMT)

k Fig. 21, Tipping-bucket traces,

-102-



-103-

o ] V \QF’/O\
. 70
\ 3 N
A 80 |
90 —X
70 =™ "
100 / —T1 2R ;
—"50 . .
L o) |
| e0 ]
70 05 7o .
/ - /Lso 2A%R)L
/ \ 1 APRIL\AZ 2 O

Fig, 22,

Surface-mean relative humidity charts (per cent),

Dashed line (~--) on 1 April 12Z chart for trough
axis,



I I
¢] S R | —
Theell —— OBSERVED
Tt~ el.. --- NMC-PE
-4}~
W
g -
w o
BE o
e
¢y
e
q - -
E; -12
z 4
82
"O"E -6
w s
538
a:ﬁ -0+
<
a
w
[=]
.24
122 002 122 00z
4/ 472 4/2 4/3
(2)
‘ .
8 —— OBSERVED
+8¢+ -
—=-- NMC-PE
3 +at -
A~
8E
«©~ X
a T +
23
-4 -~o .
§§ . ~~ .
- e r S~ =
35 \\\\
whk
oz \\\\
W~ -8 .~ -
2.3 T
T L
& -12F -
w
o
-16 | i
122 00Z 122 00z
as1 472 ar2 473
(b)
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Fig, 24, NMC-PE 12-hour precipitation
forecasted from 12Z 1 April 1970 (a) and 00Z
2 April (b). Contour intervals as in Fig., 15.
Track of forecast low center (X * * * * X) super-

imposed.
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Same as

Precipitation cross section,
Same as Fig. 6, except for Cape Hatteras
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1968 (b), and 00Z 12 Nov. 1968 (c) (values plotted
at 12-hour intervals). A
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(a) (b)

(c)

Fig, 33, NMC-PE 12-hour precipitation forecasted
from 00Z 11 Nov. 1968 (a), 12Z 11 Nov, 1968 (b), and 002
12 Nov. 1968 (c). Track of forecast low center (X * * -« * X)
superimposed, Contour intervals as in Fig, 15,
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Fig. 34, Surface-radar
charts, Same as Fig, 2, ex-
cept for times indicated,

-114-



1012

1508

1604

1000

930

992

%988

CENTRAL PRESSURE (mb)

984

980

976

972
9 68 A 3. 1 L i A A l A A 3 ] i 'y Y
122 2 127 002 122
372 33 3/3, 4 va

Fig. 35. Observed central pressure vs,
time (plotted generally at 3-hour intervals),

7 -
(R
; | A e 9°/>L
' 3mARaz N MR ey o0

Fig, 36, Surface-mean relative humidity
charts (per cent),

-115-



RAINFALL RATE (in/hr)

2.0

a
I

5
T

o
T

L

¥ T LI | T

T
PEAK >50 in/he

¥ T T

MACON, GA.
3 MAR.1971

N amagennz

TIME (GMT)

]

Fig. 37. Precipitation cross section,
Same as Fig, 3, except for Macon, Ga.

-116-




3IMARCY00Z

(a)

(b)

Fig, 38, NMC-PE 12- and 24-hour sea-level
pressure charts generated from 12Z 2 March 1970 (b),
verifying at 00Z and 12Z 3 March 1970 (a), respectively,
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(b) ()

Fig. 40, - (a) NMC-PE 12-hour precipitation forecasted
from 127 2 March 1971 and observed precipitation for the verifying
12-hour period, 12Z 2 March to 00Z 3 March 1971; (b) NMC-PE ~
12-hour precipitation forecasted from 00Z 3 March 1971; and (c) NMC-PE
12- hour precipitation forecasted from 1227 3 March 1971,
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Fig. 41. Surface analyses, 12 Feb, 1971
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Fig. 42, Surface radar charts, Same
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Fig. 46. - (a) 12-hour NMC-PE sca-lecvel pressure
chart from 00Z 12 Feb, ; and (b) verifying surface analysis,
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Fig, 47. NMC-PE 12-hour precipi-
tation forecasted from 00Z 12 Feb, 1971,
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Surface-radar charts,
for times indicated,
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Fig. 54, NMC-PE 12-hour precipitation
forecasted from 00Z 23 March 1969 (a) and 12-hour
observed precipitation, 00Z to 12Z 23 March 1969 (b).
Contour intervals as in Fig. 15, Track of respective
forccast and obscrved low centers superimposed.
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Fig. 59, Surface-radar chart, Same
as Fig, 2, except for times indicated.
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Fig. 63. Secec next page.



(d)

Fig. 63. FNWC-PE (a) and NMC-PE (b) 12-hour
sca-level pressure forecasts from 127 25 Jan, 1971 (c¢) -
verifying at 00Z 26 Jan, (d).
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(b)

Fig, 65. 500 mb hcight and vorticity at time of initial devclop-
ment of Case VII (a) and Casc IV (b).  indicates position of

. incipient low center, Vorticity advection (geostrophic) is inverscly

proportional to size of quadrilaterals formed by the contours and
isopleths, Note, vorticity advection over low in Case VIL (a) is
greater, qualitatively speaking, than in Case IV, The initial de-
velopment of Case IV was accompanied by a significant outbreak
of convection, while Case VIL was not,
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Fig. 66. Vertical structure of model
utilized in solution of the omega and vorticity
.equations,
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Fig. 67. - (a) 500 mb analysis for 12Z 2 April 1970;
(b) NMC-PE 24-hour 500 mb foreccast from 12Z 1 April 1970
(verifying at same time as "a'), @® indicates respective posi-
tions of obscrved and forccast center of low pressurec.
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(b)

Fig. 68.- (a) Operational (NMC), manually drawn sea-level pressure analysis;
(b) NMC objective analysis of field of sea-level pressure for same time as ''a"
Central pressure of low in ''b'"' as

(tracing of the contoured grid-point data).
dictated by a grid point in low center, is 987 mb.
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Same as Fig. 68, except for time indicated.
Central pressure of low center in 'b" is 995 mb.



-146-

APPENDIX A

DETERMINATION OF THE INITIALIZED

VALUES OF CENTRAL PRESSURE

In ofder to determine the initial 12-hour forecast change
of central pressure, it is, of course, necessary to know the value
of the initial étate from which the prognosis is generated, This
value, however, is not necessarily the same as that of the corresponding
operational surface analysis (NMC) used to trace the actual storm
developmerit. 'I'hé former is derived from an objective analysis of
the surface data to an array of rather widely-spaced grid points,
while the latte;‘ is obtained from a detailed manual analysis, Thus,
since the objectively analyzed initial conditions are essentially a
smoothed version of the operational surface charts, the value of
central pressure {rom Which a forecast is gerﬁerlélted is generally
somewhat greater than that of the corresponding manual analysis,
The magnitudeyéf the differences is primarily a function of the
intensity of the system in question and the amount of data incor-
porated in each type of analysis, Fig, 68, for example, compares
the manual and objective analyses (NMC-PE) of the field of sea-
level pressure for 002 24 March 1969 (Case VI). The more
detailed op(‘;ratic;nal analysis indicates the intense low in Arkansas

has a central pressure of 982 mb, The central pressuré derived
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from the objective analysis, on the other hand, is 987 mb. At this
point, it shéuld be noted that the NMC objective analys’s scheme
utilizes only "SM'" surface observations, while the manually-plotted
charts incorporafe both "SM' and the more dense network of Hairways"
observations, In this particular example, the 982 mb value ofjcentral
pressure is dictated by an observation that does not enter the objective
aﬁalysis routine, If one, in fact, eliminated the airways observations
from consideration, the manual analyses would indicate a 985 mb
low, or 2 mb rather than 5 mb less than the objective analysis value.

~ As a further example, Fig. 69 ‘presents the objectively
and ménnally produced surface anzilyses for 00Z 4 March 1971, The
lowest presbsure indicated by the operational analysis for the East
C‘oast system is 984 mb, The minimum of pressure derived from
the objective analysis is 985 mb,. In this situation, the gradient
within the centraliregion of the low is quite flat, Furthermore,
the surface station reporting the lowest pressure is a '""'SM'"' station,
ana therefore, this observation is part of the input to the 6bjective
analysis scheme,

For several cases (see Table 2), the actual objective
analyses were not available, On such occasioﬁs it was therefore
necessary to estimate the initialized values of central pressure on
the basis of experience gained from comparisons, as exemplified
above, of the manually-produced surface charts with the corre'sponding

objective analyses, In practice, surface analyses were constructed
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o utilizing only '""SM' observations. The value of centrai pressure derived
from these analyses was then subjectively adjusted ﬁpwa.rd by generally
1 or 2 mb, depending upon the gradient about the system in question.,

If should be noted that the FNWC objective analyses were
not available for the cases where the FNWC-PE forecasts were considered,
It was inherently assumed, therefore, that the initialized values of
central pressure from which the FNWC-PE forecasts were generated
were the same as for the NMC-PE prognoses, Subsequent to completion
of the case studies, however, it was learned that the FNWC objective
analysis scheme does utilize the airways as well as the ”SM" surface
obser~vations; however, careful re-examination of the pertinent
initialized values of central pressure revealed that in no instance
would incorporation of the airvgz-ays observations have modified the
subjectively estimated value by more than an insignificant 1 mb,

(This is primarily because initial conditions of pertinent cases
feiature’ relatively flat gradients that are well-defined by '""SM"
observations alone). An additional point is that the estimated values
of the initialized central pressure for the two detailed case stﬁdies
in which LFM'forecasts gvere considered were the same as the actual

values derived by the LFM objective analysis scheme,
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APPENDIX B

METHOD UTILIZED IN OBTAINING SOLUTIONS
OF THE

QUASI-GEOSTROPHIC OMEGA AND VORTICITY EQUATIONS

With vertical derivatives expressed in finite difference
form (and 3) P /‘f’o }, the omega equation (Eq. 1) applied to

levels 1 and 3 (Fig. 66) becomes:

’ 2 2 | a |
+ jio (\A)B-QUJ,)_- - R
Y &R (T Cpm.&VQ'

()

-

2 fwezwy) | R >
g’ g"._.‘)_l....-.------—“33 — ———
) v U)3+ 3?.:' a (A’Dq’ - ] Cfﬁ'))j 83 VQ3 (II)

Q1 and Q3 are related to each other and to the precipitation

réte, P, as follows: 2 -~
PP+ 8]

QBZ‘YQ\: Ep: EY;,),,C’

(III-)

where E"-’—' m‘,
| - 575R (\+VD

Wr w) 3 and P can be expressed in terms of their Fourier

] ¥ +* »
1:ransiorrns,u..)l , W 3 and P :

| AT L2 (Ry +4y)
Wikw)= S fw m,0e "y xv)
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(V)

400 o .
W 044) =50 wof () 30

. T
o AW (Ryly)
P(’%,v;): SP(V) < olbay (V1)
= o0

When these expressions are substituted into Egs, I and II, the following

relations are obtained:

"
¢}
S a)Wr NS = KEME
v .- (VII)
A
' * Kem P
(S AN W VW, = SR
(&s™M >w3+ I 23 (VIII)
where M5 HL oa(h\‘:, j:)

: X
Elimination of UJ 3 from Eqs. VII and VIII yields

u)*.._, Px\'( MQ'E A YN+, CSBMQ-}:%N)]

o N3y BN (6:48,)+ 5, § M+ N> ] (%)

3
while elimination ofw 1 from Egs. VII and VIII yields
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W :_?*\( ME 13N+ (S M+ 3N )]
o0 ’g133Y‘_3me(€51*83)+8]8,$"\“+%,\]13 (X)

Egs. IX and X represent the particular solutions of Eqgs. I
and II. With the boundary conditions W o= W, =0, itcanbe
shown that the homogeneous solutions are identically zero.
The Fourier transform of P can be obtained by applica'ti.on.
of the appropriate theorems of two-dimensional Fourier transform
()
to the tabulated expression of the Fourier transform of C

(see_, e.g., The Fourier Transform and Its Applications, McGraw-Hill,

1965, pp. 244-248). The resultis

(AR BXT)
P - f Bre

(XT)

Substitution of Eq. XI into Egs. IX and X, followed by
substitution of the results into Eqs., IV and V yields the following

for W ] and U) 3(real part):

o k% 3 A
LL} _4ABY Wi g g (kt*f)I.N (hiv+333)+41%, 8 R+t ﬂ X
nhv O LEXWW (HRL)(6+83) L1656, ()43 ™)
Jo-® | (X11)
23 kX
N e %
(> AnRy+14) e dR } C df

e -4 ?
w-_-t_;gg_'f_ﬁi:s §° (Ko )N (33 +33, V) 44205 6, (KL ™) |

-0 g..—:f?w N (R87) (6,:+83)+16x 8,55 (Re)ren?]

ARG } aat

(03w (RI0)E " (rle oLQ (XIII)
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With the substitution
R=42/Av

X = ;t/B’R’
Eqgs. XII and XIII take on a form suitable for numerical evaluation via

the 10-point Gaussian Hermite Quadrature Formulation described in

the IBM manual Scientific Subroutine Package (p. 107).

In order to obtain a value of 9W /93 at 1000 mb (% =1)
and hence, enable solution of the vorticity equation,
* 30 _ 4o dw

A
2~ 'P' 33, 3 v,

for the 1000 mb geopotential tendency (or sea-level pressure tendency),

a parabolic profile was fit tolWr O wl’ and W (W 2_“.1“;93 ).

J
That is, the equation for the parabola

W= (\—’5\10L + (-3)b +C

was applied to levels 30 =1, /)1 = .775and 3, = .55to obtain
the coefficients a, b, and ¢ in terms of \4/0, u/l, and W3. Since

C=0(W,-= Oat’b"l

aw) =-b
I 4o (XV)
so that all that is required is the coefficient b, Algebraic manipulation

yields

b= 77w, - |1

(XV1)
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The geopotential tendencyo *’}( , canbe written in

terms of its Fourler transform:

;'g ) SW— () aﬂmuﬁw |

(XVII)

Substitution of Eqs, XV, XVI, and XVII (withwl anduj3 also written
in terms of their Fourier transforms) into Eq. XIV yields:
X g9~

4 =M§%[7~7w,* “lw, ]

When Eq. XVIII is combined with Egs.IX,X,and XI, the real part

(XVIII)

of the solution of Eq. XVII becomes:

Z o L -¥RR> o,
__7,75" KE AGY §LN(*;,V+$3Q+W (™ )](m) D‘ﬂ(hy%e‘\_)cgfn hdk. oY
R Y (L) (6,483) 11601 6,5, (8T )+ SN olf
et | (XIX)
WP 4 2 2 SRS MRy 22
— L, kere Sw(”m%’a )77 § ()] o 7t E i 67' 8"
KPYIRE K:_'i’ (47 )(€1+85) +16%78, 65 (KL ) +aN ™
, }?v
With the substitution
R = @l
4=

. Eq, XIX can be solved via the 10-point Gaussian Hermite Quadrature

Formulation,
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