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A computer has been constructed to sum Fourier
series having up to 30 terms. Although this is a one-
dimensional computer, it can be used for double and triple
summations by using standard trigonometric expansions.
Secondarily, it can be used for computing trial structure
factors.

O.D.F.A.C. sumsZF s 21rnx electrically. The
n -

trigonometric function is produced by a variable-angle
transformer known as a resolver. Each amplitude is set
by a variao which regulates the input to a particular re-
solver. The frequencies 21nx for 31 values of n are
arranged by gearing the rotors of the resolvers in ratios
0, 1, 2, . . . 30. The resultant individual currents are
added in parallel and the value at point x (in intervals of
1 1 , or i of a cell edge) is read on a voltmeter

6~ 1Zo 220
and the phase is read on an oscilloscope.

The relative speed of a computation is five to
ten times faster than the standard strip method. The
average error in a computation compares favorably with
the rounding off error in conventional two-place strips.

This computer has been utilized in the refine-
ment of the structure of cubanite. The original structure
determined by M. J. Buerger has been confirmed. The space
group is Pomn with a = 6.46A, b = 11.117 A, o = 6.233 A.

The intensities used in the refinement procedure
were corrected for Lorentz and polarization factors and
for absorption by the crystal. The refinement was carried



ii

out by successive Fourier approximations. First, the a
and q axis projections were refined, followed by the re-
finemlent of two plane sections. The final stage of re-
finement was carried out by passing three, mutually-per-
pendioular line sections through each atom. Difference
electron densities were also computed for these line
sections yielding the final atomic coordinates. The
final atomic coordinates are listed and the bond lengths
and bond angles are discussed.

Thesis Supervisor: Martin J. Buerger

Professor of Minerology and CrystallographyTitle: .
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INTRODUCTION

The work described in this thesis comprises two

distinct problems. The first part deals with the design

and construction of a one-dimensional analogue computer

for performing Fourier series summations. Fourier series

are continuously utilized in such crystallographic prob-

lems as structure determination, structure refinement and

others. Although this computer was designed for express

use in the crystallography laboratory, its application is

more universal, since Fourier series are used in solving

different problems in all fields of science.

The second part of this thesis describes the

procedure of refining the structure of oubanite. Since

the computer described in Part I was used extensively in

this refinement procedure, Part II forms a logical sequel.



Part I. A One-Dimensional Fourier Analogue Computer

Introduction

Elarlier computers. Fourier series are important

in many branches of science. One-dimensional, two-dimen-

sional, and three-dimensional Fourier series are especially

important in x-ray crystallography. Since the computation

of these functions is tedious, a number of devices have

been developed to perform the computation, only a few of

which have come into common use. Among these are the

electrical digital devices of Beeversl,1 2 , the electrical

analogue machines of H5.gg and Laurent3 , Ramsay, et al4,

the mechanical analogue devices of McLachlan and Champaygne5 ,

Rose6, Vand7 and Beevers and Robertson8. All these devices

sum one-dimensional series. Robertson9, Pepinskyl0 ,11,

and MoLachlan et a112 have devised electrical analogue

machines for two-dimensional Fourier summations.

Basis for desigg. When the number of Fourier

syntheses to be computed in the Crystallographic Laboratory

of 7.I.T. became large enough to warrant using a special

computing device, several of these machines were closely

investigated. Some were found to have obvious defects,

such as contact trouble when multiple telephone switches

were used. Most of them were found to handle too limited

a number of Fourier terms. Guided by this survey, a

decision was reached to build a one-dimensional electri-

cal analogue computer which would sum a comparatively



large number of Fourier terms. This was specifically set

at 30, since this is about as high as ever required in

the analysis of ordinary non-protein crystal structures.

McLachlan's computer 1 2 served as a guide and as a point of

departure. His machine compounds phases electrically by

using selsyns. It performs a two-dimensional synthesis

but is limited to 8 x 8 terms.

The transformation of an angle, 'f, into a

trigonometric function can be performed electrically in

many different ways. The two devices considered in the

early stages of designing ODFAC were sine potentiometers

and resolvers. A sine potentiometer consists of a con-

tinuous resistor winding tapped to produce a voltage which

varies as the sine of the angle of rotation of the main

shaft. A resolver is a transformer using as its primary

the rotor member and as its secondary two separate stator

windings placed 90 degrees apart. When a voltage is

applied to the primary winding the voltages of the two

secondary windings vary respectively as the sine and co-

sine of the angle of rotation, Resolvers were chosen for

the construction of ODFAO because the isolating property

of a transformer makes the adding circuit independent of

variations in the input stages.

Principle of operation. Fig. 1 shows, in outline

form, the operation of ODFAC. The input to each resolver,

R, is fed from a variao, V. The variac thus controls the
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amplitude or Fourier coefficient, A, of the Fourier oompon-

ent of a particular resolver. The two outlet leads of the

resolver then deliver voltages proportional to A cosY and

A sinY. The shafts of 30 such resolvers are geared so

that the shaft displacement of a particular resolver, n,

is an integral multiple, n, of the shaft displacement of a

fundamental shaft. The outputs of the individual resolvers

are therefore a set of voltages proportional to

A0

A, Cosf A1 sin Ii

A2 COS'P 2  A2 sinf 2

A30 008 30 A30 sin Y30

if the outputs are appropriately coupled, the machine pro-

duces voltages proportional to

30 30
An 0os and A sin

n=0 n=O

which can be read on a voltmeter, VM. In crystallographic

problems f = 2 nx where n is the number of the harmonic
n

and x is the sampling interval expressed as a fraction of

one complete period.
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ODFAC OutlineFig. 1



Design and construction

Mechanical features. The production of thirty

harmonics in the Fourier series requires that one complete

rotation of the rotor in the first resolver corresponds

to two complete rotations of the rotor in the second re-

solver, etc., up to thirty complete rotations of the rotor

in the thirtieth resolver. This is accomplished in ODFAC

by means of a gear train represented by Fig. 2.

The main shaft leading from the motor is geared

by worms and worm gears to three horizontal shafts whose

relative angles of rotation are given by the ratios of the

worms and gears. Each horizontal shaft carries a series

of spur gears which engage with the spur gears mounted on

the rotors of the individual resolvers. The angle of ro-

tation of each rotor shaft is, therefore, a function of

the ratio of its spur gears modified by the angular rota-

tion of the horizontal shafts. The actual gear train is

shown in Fig. 3. This particular gear train has several

advantages. One is that most gears used are commercially

available, stock sizes. Only 10 of the 82 gears are non-

standard size and had to be obtained by special order.

Another advantage is that high gear ratios are avoided,

the largest step-down ratio being 5:4. This decreases

inaccuracies in the positioning of the resolver shafts.
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Because of low frictional losses, all 30 resolvers can be

driven at the desired speed by a small, 1 h.p. motor.
1500
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Gear TrainFig. 3
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Electrical circuit. The wiring diagram of the

electrical components of ODFAO is shown in Fig. 4. The

input voltage is fed from the variacs, V, through a DPiT

phase-selector switch, $, to the rotors of the resolvers,

R, whioh are linked by the gear train illustrated in Fig.

3. Each output line of the stator winding of the resolvers

contains a series resistancerof 500,000 ohms whose

purpose is to make any stray losses in the secondary cir-

cuit negligible. All the cosine (and sine) windings of

even harmonics are connected in parallel. Similarly

the cosine (and sine) windings of the odd harmonics are

connected in parallel. These lines lead to a gang switch

which permits various combinations of the lines to be made.

The use of a parallel, rather than a series adding

circuit is preferred for the following reasons: In a series

circuit all the stator windings would be directly connected

causing a cumulation of errors due to mutual inductance

between the individual primary and secondary windings and

the secondary windings of adjacent resolvers. The addition

of voltages in a series circuit would also have the dis-

advantage of building up very high voltages and currents

with possible damage to the windings. All of these dis-

advantages are overcome by a parallel circuit in which

the isolation of the individual resolvers limits the current

in each secondary winding to that induced by the primary.



Fig. 4 Wiring Diagram

11.

120V 400,v

Reference
Voltage
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This isolation permits the insertion of a large resistance

to minimize losses in the line. The maximum output voltage

obtained from such a circuit can never exceed the input

line voltage because the individual voltages are averaged

over all 31 branohes.

The output voltage lines pass through a 4-gang

switch which selects combinations of odd and even harmonics

of the sine or cosine lines for transmission to the volt-

meter or oscilloscope. In practice, there are four such

lines, viz. the lines for cosine even, cosine odd, sine

even and sine odd. Each line is connected to appropriate

terminals of the gangs. Thus, when the switch is rotated

to a given position, it makes contact with only those leads

that are connected at that positions The combinations

presently available are: o 1 in, sino, o0 e +

cos , s + cos + sin, and .oso+ sin The separa-

tion of the odd and even harmonics into separate lines per-

mits the utilization of the symmetry inherent in sine and

cosine functions. This is standard practice in crystallo-

graphic applications13.

The meter has a 50,pa movement and three ranges

which correspond to the voltages expected from the number

of variacs supplying input voltages. A fourth range, ac-

tuated by a push-button, permits a clear reading of low

voltages. The actual meter circuit is illustrated in Fig. 5.
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The cathode-ray tube is part of a standard

oscilloscope circuit not having a sweep generator. The

circuit is illustrated in Fig. 6. The output voltage is

placed across two deflecting plates and a reference volt-

age across the other two. Since both sets of plates have

the samae frequency applied to them, the resulting Lis-

sajous figure on the tube face is a straight line whose

angular inclination depends on the magnitude and relative

phase of the output voltage.

Construction details. The rear view of the

assembled machine is shown in Fig. 7. The resolvers are

held in place by aluminum clamps (see also Fig. 3) which,

in turn, are fastened to two aluminum angles forming a

tack-like shelf. Each shelf holds five resolvers and

supports its horizontal drive shaft mounted in ball-

bearing supports. The clamps have built-in means for

adjusting the angular position of the resolvers, con-

sisting of a slot to accept a gear-bearing key which

engages with the gear on the resolver body, permitting

minor variations in angular alignement after the re-

solver has been positioned. The horizontal drive shafts

are driven by the main drive shaft which runs vertically,

in the center of Fig. 7, from the motor (hidden by the

bottom shelf) to the control mechanism.

The control mechanism is connecte& directly to

the drive shaft by a set of change gears. It consists of
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Fig. 6 Oscilloscope Circuit

LEGEND

3.OM potentiometer (Horizontal centering)

3.OM potentiometer (Vertical centering)

2.OM potentiometer (Vertical gain control)

0.5M potentiometer (Horizontal gain control)

250K potentiometer (Focus control)

250K potentiometer (Intensity control)

82K 1 w

l.oM 1 w

l.2M 1 w

470K 1 w

2.2K 1 w

750K 1 w

100K 1 w

270K 1 w

70K 1 w

250K 1 w

.005 ,a f 1000 v

.002 , f 1000 v

.05 / f 400 v

10 f 25 v

.4 y f 1000 v

8 / f 450 v

Power transformer (Chicago, PCC-60)

Filter choke (UTC, CG-45)

selenium rectifiers (6, Federal, TR 1159)
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Control Mechanism

Resistor
Banks

Motor

Motor-Generator

Fig. 7 ODFAO, Rear View

C.R.O.

Reference
Voltage



a shaft which carries a change gear and a cam. The cam

actuates a micro-switch which controls the number of

revolutions made by the motor for the sampling interval.

The motor is a dynamic-braking motor which can be stopped

instantaneously by applying a reverse field to its rotor.

The actual control circuit is illustrated in Fig. 8. A

horizontal shaft, permanently geared to the main drive

shaft, rotates a dial on the front panel indicating the

angular position of the main shaft. The change gears in

the control mechanism permit the selection of intervals

of 1 ,1 . or 1 of one complete period.

The motor-generator set at the bottom of Fig. 7

provides the input voltage (120 v., 400; ) to the variaos

only. The driving mechanism and service components operate

on the regular line voltage. The purpose of the motor-

generator set is to provide a constant current source

with an undistorted wave shape, making the adding circuits

in ODFAC independent of line fluctuations.
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CAM1
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Performance

Operation. A front view of ODFAC in operation

is shown in Fig. 9. The variacs are numbered and arranged

on removable panels in sets of five. The amplitudes are

set by means of a friction-drive dial permitting an ao-

ourate, rapid setting from 0.100. The phases are set

by means of a plus-minus toggle switch placed directly

above each dial. Each bank of five resolvers can be

switched in or out of the input curouit by means of an

additional toggle switch on the left of each panel. The

numbering and location of the dials is such that the

operator sits facing the first sixteen dials, the next

fifteen dials being within arm's-length to his right.

The dials need be set only once for each one-dimensional

summation.

A panel to the left of the operator contains

the meter on which the value of the Fourier series is read,

the CRO tube on which the positive and negative quadrants

are marked, the sine-cosine selector switch, and a push-

button that advances the computer mechanism to the next

sample setting. A pilot light indicates that the motor

has advanced the computer to the next sample setting and

the meter may be read. Once the amplitudes (variao dials)

and the phases (plus-minus switches) have been set, and
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Fig. 9 ODFAC, Front View
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the type series (sine or cosine) has been selected, all

the operator does is read the meter, note the phase, and

push the button to advance to the next reading. A drop-

leaf table is attached to the front of ODFAC to provide a

convenient surface for recording readings.

The speed of a computation on ODFAC depends

primarily on the type of series desired, i.e., one-

dimensional, two-dimensional, etc., and only secondarily

on the number of terms or frequency of interval of sampling

desired. The machine time for a complete cycle from 0 to

217 has been selected to take 7 minutes. If the time for

setting the variaos and recording the values obtained is

added to this, the total computing time amounts to approxi-

mately 10-15 minutes, depending on the sampling interval

selected. The relative time of computing an average two-

dimensional series on ODFAC ranges from 1 to 1 of the time
1 T1 117

consumed using standard strip methods14 , 15* The more terms

there are in the series and the finer the interval of

sampling desired, the more efficient ODFAC becomes when

compared with strip methods.

Accurao. The accuracy of the components used

in OIfAC is the highest attainable at a reasonable cost.

The resolvers are accurate to within 1 mechanical degrees.
2

The variacs and resistors are accurate to within 1% of

maximum ratings. The meter is accurate to better than
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1% of full seale deflection. The backlash in the gears

is almost non-existent and the angular accuracy of the

gear settings is within a fraction of one degree.

Table 1 shows an actual comparison of the meter

readings of ODFAC with those computed using three-place

trigonometric tables. The amplitudes for this one-

dimensional series were supplied by Professor M. I. Buerger

from a Harker line synthesis for realgar. In the same

table are listed corresponding values as computed with

the aid of Patterson-Tunell strips14 and Beevers-Lipson

strips15. If the deviations from the true values are

examined it is evident that the errors in the values

given by ODFAC are, on the average, as small as, if not

smaller than, those due to the rounding-off errors in-

herent in the strip methods.

Finally, by making all operations other than

recording the numerical values automatic, ODFAC eliminates

the ever-present source of error - the human error.

Conclusions. The chief advantages of ODFAC

are its ability to handle up to 31ooefficients in a

Fourier series and to perform the summation rapidly with

an accuracy adequate for most purposes. The simplicity

of the design of the machine virtually eliminates almost

all possibilities of electrical or mechanical failure. In

the event such failure should occur, all components are



24.Table 1

One-Dimensional Fourier Synthesis

OompLLted Patterson- Deevers-

ODFAC Deviationvaluie

30.0

33.3

32.4

17.2

-0*3

-4.0

0.9

2.5

6.5

24.1

49.0

70.5

89.4

110.9

119.2

98.0

59.0

29*5

17.6

10.1

3.0

-0.7

-2*3

31.4

3303

31.8

15.5

0

-3.6

0

1.5

5.6

23.*6

47.8

7000

88*3

111.0

118.0.

98.5

59.0

29.2

16.0

9.3

1.0

-1.5

-3.1

+1.4

0

-0.6

-1.7

-0.3

-0.4

-0.9

-1.0

-0.9

-0.5

-1.2

-095

-1.1

+0.1

-1.2

+0.5

0

-0.3

-1.6

-0.8

-2.0

008

+0.8

+0~8

Tumell

30

34

32

16

0

-4

-1

3

7

24

50

71

89

112

120

98

60

28

17

9

2

-2

.3

Deviation

0

+0.7

-0.4

-1.2

-0.3

0

-1.9

+0.5

+0.5

-0.61

+1-0

+0-5

-0.4

+1.1

+0.8

0

+1.0

-105

-0.6

-101

-1.0

+1.3

+0.7

Bars**..Lipson

30

35

30

16

0

-2

-1

4

7

24

48

72

89

113

118

98

60

29

17

10

4

-2

-5

Deviation

0

+1.7

-2.4

-1*2

-0.*3

-2.0

-1-*9

+1-5

+0.5

-0 -1

-1.0

+1.5

40.4

+2.1

-1.2

0

+1.0

-0 * 5

-0.6

-0 .1

+1.0

+1.3

+2.7



-9.9

-16*9

-4.0

31.7

66*6

76.8

66.1

58.0

-11.8

-17.9

-2.6

32*5

66.7

77*5

68*5

56.5

+1.9

+1.0

-1.4

+0.8

+0.1

+0.7

+2.4

-1 * 5

+1. 1

+0.*1

0

+0.3

-o.6

-0.8

-0.1

0

+0 -1

+0.1

-2.0,

-1*7

-o0.6

-0-.8
+0.9

* 0

25.

-11

-17

-4

32

66

76

66

58

-10

-17

-2

30

66

76

67

58
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readily accessible and removable for repair.

The slowest part of the operation of ODFAC

lies in reoording the results. It is proposed to add an

automatic recorder for this purpose.
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Extension to two dimensions

Use of two units. One ODFAC unit performs a

two-dimensional synthesis by means of a Beevers-Lipson

expansion. A combination of two such units performs

this summation more rapidly. If these units are equipped

with chart-type recorders, the most complicated two-

dimensional series having 30 x 30 Fourier coefficients

can be performed in an afternoon. The utilization of

two such units follows the plan indicated below.

The series to be summed has a general expression:

/ (xy) 003Fhk cos 21(hx+ky))
h k

Fhk cos 2 lkyJ oos 2IThx hz Fhk sin 2fkyi sin 2'hx
h k h k

The summations over k are first performed at the same

time by the two units worging independently. The results

of these first summations are then used as ooefficients

for the second summation over h. In the second operation

the two units are connected in parallel to only one recorder,

which thus records the results of the final two-dimensional

summation.

Two-dimensional computer. A more elaborate ex-

tension to two-dimensions can be built by combining two
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resolvers for every term in the series. The construction

entails building k ODFAC units and one "master" ODFAC

having h resolvers (without variacs) for each harmonic k.

Such a plan is illustrated in Fig. 10 for k a h 4.

The ODFAC units, whose resolvers have angular

speed ratios proportional to their particular h, are

shown in solid lines. The rectangles in the dotted

lines represent the resolvers of the "master" unit. All

of these latter resolvers have the same angular settings

proportional to k.

The coupling between all units is electrical

only. The resolvers of one ODFAC unit produce voltages

proportional to:

Fhkl cos 2Th1x

h2kl cos 2th2

FhI. -0c 2th x

which are fed to the resolvers, R, of the master unit.

The outputs of these resolvers are thus proportional to:

(Fhik 1cos 2lh 1x) cos 2k y
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(Fh2k 1cos 2rrh 2X) Cos 2kk yy eto.

Appropriate electrical ocoupling of the resolvers in the

master unit then produces a voltage proportional to

,E I F hkcos 21r(hx +ky)
h k
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Part II* The Refinement of the Structure of Cubanite

Introduction

The crystal structure of cubanite was determined

by M.J. Buergerl6 in 1947. The ferromagnetic property of

cubanite and the possibility of its relationship to the

structure of another ferromagnetic mineral, pyrrhotite,

made the knowledge of the exact structure of cubanite of

more than routine interest. For these reasons this writer

decided to use the refinement of the structure of cubanite

as a vehicle for demonstrating the application of the com-

puter described in the first half of this thesis.

The space group of cubanite is Pomn. The cell

constants reported by Buerger16 are a = 6.463 A, b
0

11.117 A, o = 6.233 A and were found to be in agreement

with those determined from the measurements of the pre-

cession photographs taken in the course of this investiga-

tion. This cell contains 4 CuFe 2S3*
In this part of the thesis the refinement pro-

cedure will be described, with special emphasis on the role

ODFAC played in simplifying the attendant computations.

The refinement was carried out in three stages. During the

first stage successive Fourier refinements were carried

out in the (Okl) and (hkO) zones. In the second stage
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the complete three-dimensional intensities were used to

refine the x and z atomic coordinates with the aid of

plane sections. In the third stage, three line sections

were passed through each atom, and difference maps were

used to determine the final atomic positions.



33.

Experimental Procedure

Photographio Technique. The crystal selected

for intensity measurements came from the Frood Mine,

Sudbury, Ontario and is the same crystal that was used

by M.J. Buerger in the original structure determination16

The crystal was mounted on its b crystallographic axis

and placed on the Buerger precession 17 camera. The

(hko) and (Okl) zones were then photographed with moly-

bdenum Koc radiation and the intensities were measured

by the M.I.T. modification of the Dawton18 method.

The complete set of three-dimensional intensities

was determined similarly. The individual levels of the
* *

reciprocal lattice perpendicular to the a and o axes were

first photographed. Due to the blind area arising in the

center of upper-level precession photographs, it was

necessary to take additional photographs at another set-

ting* It turns out that for crystals having orthorhombio

symmetry all the missing intensities can be found on re-

ciprocal lattice planes perpendicular to A1Ol (see Fig.

11 )* It was therefore necessary to make only one additional

setting of the crystal to obtain all the intensities con-

tained in the limiting sphere of reflection.

The symmetry of the reciprocal lattice combined

with the repeated appearance of the same spots on more than



Shaded area represents
area swept out by a*
and c* precession ~
photographs.

Fig. 11 Reciprocal Lattice

34.
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one photograph provided the possibility to make four in-

dependent measurements of approximately 70% of the observ-

able intensities. The remaining intensities were measured

independently at least twice. The averages of these

measurements were then used as the final observed inten-

sities.
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Conversion of Intensities to Structure Factors.

The intensities were corrected by applying the Lorentz

and polarization factors as determined for the zero-level

precession photographs by iaser 9 and upper levels by

Burbank20and Wells and Abrahams21. The charts prepared

by the above-mentioned authors were enlarged to a radius

of 10 cm. and printed on transparent film. These films

were then placed over a reciprocal-lattice net drawn to

the same scale. The use of these enlarged charts and

reciprocal-lattice nets rather than the original films

allows a more accurate and rapid determination of the

value of the correction.

The intensities were next corrected for absorp-

tion by the crystal. Since the crystal was an irregular,

jagged fragment, an exact determination of the absorption

correction was nearly impossible. It was therefore decided

to apply an absorption correction based on the assumption

that the crystal was spherical. Although this assumption

is not strictly valid, it was felt that such an absorption

correction would, nevertheless, appreciably decrease the

errors in the observed intensities due to absorption effects.

The absorption corrections made were based on a

method suggested by Ekstein and Evans 22 . The radius r'

of the sphere is first determined. In this case the

average radius of the crystal (r = 0.0175 om.) was used.
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The value of the radius is then multiplied by the linear

absorption coefficient of the crystal, in this case

, 1 = 127.5 cm ~ . The per cent transmission as a function

of 8 can then be determined by forming the product

fli'r = 2.23) and referring to the above-cited tables.

The tables list the per cent of x-radiation transmitted
0 o 0 1 oat the angles = 04, 22 ', 450, 67- and 90 4 These

values are then plotted and the best curve drawn through

them. In this case the plot of transmissivity was made

against sin 8 rather than e as suggested by Evans 22, and

is shown in Fig. 12. The absorption correction was then

applied to the observed intensities by reading the per cent

transmitted corresponding to the value of sin 0 for the

reflection concerned and dividing the observed intensity

by this value.

Finally, the square root of the corrected inten-

sities was taken and these values were used as the observed

structure factors. The observed structure factors were

placed on an absolute basis, by determining a temperature

factor and applying it to the computed structure factors.

The procedure used is described in Appendix I and the ob-

served structure factors are listed in Appendix II.
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Transmission of X-Rays

Cuban ite
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C
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C
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0 .100 .200 .300 .400 .500 .600 .700
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Fig. 12 Absorbtion Correction Curve
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Refinonent of Coordinates

Refinemnt in Pro :eotion. The atomio coordinates

determined by Buorger 1 6 (see Table II PP. 56) were used

as the starting point. The phases determined by these co-

ordinates were ased to oompute the electron density/)(a),

rig. 13.

The equation for this projeotion is:

for - a

/D(ya)- F r os 2 Wky oos 2Y lz

0

ka2n

kol

k-2n+l

for j - 2n+1

jz) - 0

*In this equation and all those that follow x, y, j are

fractional coordinates representing dimensionless ratios

between the true distance from vhe origin in Angstrom and

the parallel translation distances also expressed in Ansgtroma.
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Fig.13 p(yz)



41.

The appearance of only even values of 1 permits

the actual synthesis to be carried out with a dummy index
1

lt am. This has the effect of halving the true o axis
2 1

and makes the sampling interval (_ -6) equal to 10

the true o axis.

As expected, the atoms are well resolved in

this projection. The new atomic parameters (see Table

II) were then used to compute a new set of structure

factors. This new set gave a residual coefficient of

19% and showed no changes in phase for any reflection.

It was therefore concluded that no further refinement

was possible with this projection.

The new coordinates were then used to compute

the structure factors for the (hkO) reflections. These

computations yielded a residual ooefficient of 9.7%

which vas so low that it was felt that nothing could be

gained by attempting a refinement in this projection,

particularly since the o axis projection contains an

overlap of each atom by another.
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Refinementby Plane Sections. The possibilities

for refinement in projection thus being limited, it was

decided to continue the refinement in sections taken through

the crystal. Since the symmetry requires that two of the

four atoms in the asymmetric unit, viz., copper and sul-

phur,, lie on the mirror plane perpendicular to the b

axis at y ,this plane was chosen as one of the sections

to be computed. The other two atoms, in the asymmetrio unit,

iron and sulphur2, lie on a plane perpendicular to b at

(see Fig. 13) and so this plane was chosen for the other

section.

The equation for / (m) for the space group

Pnma is:23

Oo
h+1-2n, k-2n

(xyz) =
0

F cos 2Rhx cos 21Tky cos 2lz -

h+1=2n6 k=2n+l

F hkl coo 2rhx sin 21?y sin 2Triz -
h k 1

0

h+1=2n+l Ok-2n

zF sin 2Thx cos 2rky sin 2r1 -
h k 1

0

h+1=2n+l k=2n+l

Fhkl sin 2trhx sin 27rky cos 21lz
k 1
0
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1
When y this

h+1=2n,

1 h0

kw2n

Kk

o6

h+1-2n=1,

0

can be written in the form:

(-1)2) oo 2 7hz -

k-2n+1

F (-1) - sin 2lrhxj cos 271z -m

h+1-2n, k=2n+1

F (-1)

-0l

2 oos 2 Trx +

h+1-2n+1

0

k=2n

Fhl (-1)

k1

2) sin 21rhx J sin 2'lrzj.

1
When y = the form of the equation is the same except

that the summation over k takes the form:

when k = 2n,
2Tk

F coS-
hkl 12

when k = 2n+1,

F 27Ik
hkl sin -

12

1 2) 8)
/0~~ 2 

O
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As can be seen from the above equations the first

summation to be performed is that over k. This can be

done most expediently with the help of some computational

aid like the Patterson-Tunell stripsl4. Since only one

value of y is required the time consumed setting the dials

of 8DFAO is greater in comparison.

The next step of the summation, on the other hand,

can be carried out most efficiently by ODFAC. Since for

any given value of 1, the terms having h odd or even

are combined separately and then added, it is possible to

put all the terms into the machine and by putting the

selector switch on + sin or cos + sin, as the case

may be, perform both summations simultaneously and obtain

their combined sum directly. The final summations over

1 are then performed in the usual manner.

The two sections (x z) and are shown

in Figs. 14 and 15. As can be seen, the atoms are clearly

resolved and are spherical in shape, indicating that the

phases are correct. The weak background may be due to

stray electrons or just to a cumulation of series termina-

tion errors.

The changes in the atomic parameters obtained

from these two sections were very slight (see Table II).

Only the weak intensities were recomputed at this stage,
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a12 Fig.14 p(xjz)

Fig.15 p(x iz)
12
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and, since no phases changed, it was decided to proceed

with the refinement by means of line sections through the

individual atoms. The residual coefficient for the entire

three-dimensional set cf intensities at this state was 14%.
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Refinement by Line-Sections. The availability

of a one-dimensional computer strongly suggested that much

of the time spent in computing plane sections could be

saved by making instead line sections through the atoms.

At first thought it may appear that the location of the

centers of the atoms must be known rather well before a

line section can be expected to accurately locate the

center of the atom along that line. It turns out, how-

ever, that, due to the spherical symmetry of the electron

distribution about the atom, a line passed through a point

several tenths of an Angstrom away from the true center

still locates the deasest accumulation of electrons (the

center) quite accurately.

A.line section parallel to the a, b, o axes

was passed through each atom. Since two of the parameters

are held fixed, the values of x and z as determined by

the plane sections were used to first determine the values

of g for the two atoms (iron and sulphur2) located in

general positions. The newly determined values of z were

then used in the computations of the other two line

sections. The complete set of twelve line sections is

shown in Figs. 16, 17, 18, and 19.

The forms of the equations used in computing the

line sections can be illustrated by the ones used for iron,

the others being identical except for the values of the
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Fig. 19 Line Sections for SI



49.

respective x, y and z coordinates.

For refining y

k=2n h+1=2n

Fhkl coo 21h cos 2172l -

h+1=2n+1

h 1

5a
F sin 2irh*MM sin 21l~ ocs 2 lrky -
bl 60 0

k-2n+1 h+1=2n

- F cos 2th sin 2 1 +

k 1h 1

h+1-2n+1

Z: ZF sin 2rh cos 21 sin 2 ky
a 1 bkl 60 1 ) i

The summations over h and 1 were carried out first

with the aid of Patterson-Tunell strips. The summations

over k were performed on ODFAC with the selector switch

set on cos + . The sampling interval used was of

a cell edge in all of these computations.

7, y ) 7
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For refining x

h+1=2n km2n

(X, /) Fhkl oos 2Ttkg)Oos 2ri8 -A

ki2n+1

(y F sin 2 fg2)sin 2 o1 os 2h -

h+1=2n+1 k=2n

(2 Fk os 21rkgl)sin 2 1 +

k-2n+1

(Z Faksin 2'rh cos 291r. sin 21tiz

The summations over k and 1 were carried out first

with the aid of Patterson-Tunell strips. Since the summation

over k will be required again for the section along z, it

was carried out first. The final summations over h were then

performed on ODFAC.
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For refining z

h+1-2n k=2n

/( , 2,z) 8 >Z F: ( kF oos 2vkm2 )cos 2h d60 "c11 hk1) 600

h+1=2n+l
k=2n+1

(2' Fhklisin 2nkZ. )sin 2rh cos 21z -

h+1-2n k-2n+l

(Z Fhksin 2irck )cos 27th+

h+1=2n
k-2n 0

{(Fkl cos 2kkg2 )sin 27tfhz5 sin 29i1

The summation over k having been done before, only

the summations over h and 1 remained. The summation over ha

can be done efficiently on ODFAC since for a given 1 the

terms for ha odd and even are combined separately and then

added. The final summations over 1 were then also performed

on ODFAC.

As can be seen from Figs. 16, 17, 18 and 19, the

shifts in the atomic positions indicated by the line sections

are very slight. It was therefore decided to use a more pre-

cise indication of the amount of movement required. To this

end the "difference" electron densities suggested by Cochran24

were used.
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Since the line sections based on the observed

structure factors had already been computed, it was decided

to compute line sections using computed structure factors

separately and then to subtract the two resulting electron

densities to form the difference synthesis:

D=-
/'obs. (/calc.

To this end scattering factors given by the

Internationale Tabellen25 were used. A temperature factor

obtained by plottingJ4 1 as a function of sin2 0 was

applied to the computed structure factors so that they

would be on the same scale as the observed structure fac-

tors. The procedure used is outlined in Appendix I.

The line sections based on the computed F's are

also shown in Figs. 16, 17, 18, 19. As can be seen by com-

paring the electron densities based on observed and computed

structure factors, the indicated shifts of the atomic centers

were not always the same. The difference of the two eleo-

tron densities was, therefore, plotted, and is shown in

Fig. 20.

Cochran24 gives criteria for computing the amount

of shift required. Essentially, his equations state that

the atom must be moved in the direction of the steepest

gradient by an amount proportional to the steepness of the
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gradient. In this case an empirical relationship based

on the measured gradient and the amount of shift indicated

by the corresponding electron density plot was worked out

and applied to all the atoms requiring a shift. Since the

criterion for correctness of an atomic position is that

the atom must be located on a slope of zero gradient, only

those atoms situated on definitely sloping gradients were

moved.

The resulting atomic coordinates (see Table II)

were then used to compute structure factors for the two

zones (hio) and (Ok1). The residual coefficients of 7.7%

and 11.0% respectively, indicated that the refinement had

been carried as far as experimentally available data would

permit.

As a final check, the entire three-dimensional

set of structure factors was computed and is tabulated

along with the observed structure factors in Appendix II.

The residual coefficient index for the entire set of strue-

ture factors is 11.9%. Difference syntheses based on these

intensities were also computed, similarly to the ones above,

and they are shown in Fig. 21. As can be seen from these

plots these atomic positions can be assumed to be final.
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Final Atomic Parameters. The final atomic

parameters and the corresponding residual eoefficients

for the structure factors computed using these parameters

are tabulated in Table II. The table is constructed to

indicate the basis of selecting the parameters, the para-

meters thus determined, and the resulting residual co-

efficient for each set of parameters.
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Parameter Changes

Basis
for

larameters

Buerger's
Original
Structure /co (yz) Line

Syntheses
Difference
Syntheses

Final
Parameters

x

Fe y

z

x

Cu y

z

.0835

.083

.135

.583

1/4

.122

S y

z

x

S2 y

z

,esidual
ffioient

.916

1/4

.270

.417

.083

.265

(Okl)
22%

.083

.085

.136

.583

1/4

.124

.916

1/4

.264

.417

.084

.274

(hko) (Okl)
9.7% 19.0%

.086

.088

.133

1/4

.130

1/4

.262

.084

.274

(Okl)
18%

.134

.583

1/4

.127

.913

1/4

.262

.415

.274

(hkl)
14%

.0875

.088

.134

.583

1/4

*127

.913

1/4

.262

.413

.0835

.274

(hkO) (Okl)
7.7% 11-*0%

.0875

-088

.134

.583

1/4

.127

.913

1/4

.262

.413

.0835

* 274

(hkl)
11'9%
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Discussion of Structure

The structure of cubanite is discussed in detail

by Buerger 16* "The structure [is] composed of slabs of

the wurtzite arrangement parallel to (010) and averaging

b/2 wide. Since the wurtzite arrangement is polar, the

metal coordination tetrahedra all point up, or else they

all point down. In the cubanite structure, the wurtzite-

like slabs are joined to one another by inversion centers

so that neighboring slabs have their tetrahedral apex

directions reversed...Since the inversion center occurs

at the midpoint of an edge of the iron tetrahedron, it

has the effect of joining all iron tetrahedra in pairs

which share this edge."

Since the sharing of a tetrahedral edge is

most unorthodox and since this sharing occurs for iron

tetrahedra only, it is difficult to avoid the correlation

of this curious feature with the unusual characteristic

of ferromagnetism. The reason for undertaking this re-

finement procedure was, primarily, to learn more about

the bond distributions in these iron tetrahedra.

The bond lengths and bond angles of the more

important atoms are tabulated in Tables III and IV. The

designations of the atoms refer to the illustration of the

structure shown in Fig. 22. The shared edge of the iron

tetrahedra is comprised of atoms labeled S2 (D) and S ()*
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C

12(C

Fig. 122 Structural Unit
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Coordinates

X, I z

x2' Y2, z2

x3, y3 , z,

x ,1/4, z 4

Neighbor

Fe (B

S2(c)

S2(D)

S2()

S, (F)

2S2 (C)

S1 (F)

S1 (G)

Fe(A)

Fe(B)

Fe

Cu( H)

S (D)

S (F)

S (G)

Cu(H)

Cu

2Fe(A)

S2 (E)

S, (G)

Representative
Coordinates

x3' 3, Z31 39 Y3# Z3

1/2+x3' 3,1/2-z3
1/2-13' Y3'1/24 3

x,14/4, z

X3' Y3, z3
x491/4, Z4

1/2-14,1/4,1/2+z
4

x1 y1 , Z

1/2+x, Y 1/2-z

x 2,1/4, Z2

1/2-x 91/4,/2+z4

12'1/4, 
z2

1/2-x2,1/4,1/2+ 2

Xl, yl, z 1

1/2-x , y 3 ,1/2+z3

l/2-14 ,l/4,1/2+z4

Bond Length

2.27 A
2*28 7*.7
2.245 A

2.271 A

0
2.33, A

2.292

2.275

2.287

2*2452.25
2.278

2.33 A
3.84 A

3.857 A
3.72 4

0
2.29 2A
'A2

2.275

2.271

3.73 A
3.76 2

* The subscripts 1,2,3,4 refer to the ooordinates of Fe,Cu,Slls

respectively, as tabulated in Table II.

Atom

Cu(H)

S2(D)

s, (F)

Fe A K
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Table IV

AngleBonded Atoms

32 (D)-Fe$ 2(E)

S2 (C)Fe-S 1(F)

S2(OC)-Fe-3 2 (D)

Sl(F)-Fe-S 2(E)

1050 36'

1090 57'

1140 44'

1110 35'

S2 (C )-Cu-S2(C)

S 2(F)-Cu-S (F )

S (F)-Cu-81(G)

S2 (c)-Cu-S1 (G)

1040 38t

1070 03'

1100 54'

1130 12'
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The length of this edge, S2 (D)-S2(E)-3.61 A is shorter
than the other sas distances (3.84 4 3.734, 3.857,0
3.762 A). The angle S2(D)-Fe -32(E)- 1050 36' is less

than the tetrahedral angle of 1090 28' and is also less

than the other S-Fe-S angles (1090 57', 1140 44', 111035').

A somewhat similar distortion occurs for the copper tet-

rahedron. The copper atoms are located in symmetry planes

and are coordinated by two sulfur atoms in the same sym-

metry plane and t wo other sulfurs symetrically displaced

from the plane. The two sulfurs in the plane are each

shared by two copper and two iron atoms, whereas the sul-

fur atoms not lying in the symmetry plane are shared by

one copper and three iron atoms. The bond length from the

copper to these latter sulfurs is longer (Cu-S2(C)2.33 9A)

than the Cu-S distances (2.292, 2.275A) in the symmetry

plane and the angle between the bonds to two such sulfurs

(104038t) is considerably smaller than the other S-Cu-S

angles (107003', 110054', 1130 12').

The above, geometrical description of the struo-

ture can be used to draw some inferences regarding the re-

lationship between the bond distribution in cubaeite and

the property of ferromagnetism. The ground state of iron

requires that 18 of its 26 electrons comprise the argon

core, six be in the 3d state and two in the 4s state. The

magnetic properties of the transition group elements are
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attributed to the magnetic properties of the 3d electrons.

According to Siater26 "... the required condition for ferro-

magnetism is that there be an inner partly-filled shell of

electrons, whose radius is as small as possible compared

with the interatomic distance." If we consider the Fe-S

distances, we find that one distance (FeS 2 (E)n2.24 5 ) is

shorter than the other three. Since the ionization pot ent-

ials of the 3d and the 4s electrons (.60 and .58) are nearly

the same, it is reasonable to assume that the four tetra-

hedral bonds of iron are formed by three unpaired 3d eleo-

trons and one unpaired 4w electron, one of the 4s electrons

of the ground state having been raised to the 34 state.

This bond distribution is opposed to an earlier explana-

tion of the ferromagnetism of oubanite27 which postulated

an Fe-Fe bond leaving one unpaired electron. In addition

to the lower potential energy attained by pairing all the

electrons, the shortening of the shared edge of the iron

tetrahedra casts serious doubt on the validity of th1is

earlier view.
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APPENDIX I

Temperature Factor Determination

To facilitate the comparison of observed and

computed structure factors they must be placed on the

same scale. If the structure is correct, the ratio be-

tween the observed structure factors, measured on an

arbitrary scale, and the computed structure factors

should be constant, i.e.

The assumption that the atoms are at rest,

made in computing the structure factors, is not valid

at room temperatures. If a temperature factor is in-

troduced to correct for the thermal motion of the atoms,

the ratio between observed and computed structure factors

becomest

sin 2e0 - k exp (-2B sin
2

or Fi
or log k - 2B sin--

loge IFoI e2

The later equation is an equation of a straight

line and is useful in determining the value of B, the
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unknown quantity in the above equation.

Since the temperature factor is a function

of sin2 0 it is convenient, in practice, to first coni-

pute the ratio between IF) and IFI and then to determine

the average value of this ratio for limited ranges of

sin 2. A plot of these values vs sin20 is then used

to determine the temperature correction.

The actual plot used in this c ase is re-

presented by Fig. 23 which shows the plot of

Log a2 vs sin2 for the final set of computed

structure factors. The accompanying tables show the

details of the computations.

The final computed structure factors, on an

absolute basis, are listed along with the observed struo-

ture factors in Appendix II.
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2o IFblI svnGol 0 F IQI

1 0 2 .016 5 7 .71

1 2 2 .020 10 17 .59

1 3 2 .026 10 1/2 17 1/2 .60

1 4 2 .032 10 18 .56

2 0 2 .026 10 15 1/2 .65

2 1 2 .026 12 17 .71

3 0 2 .040 6 1/2 9 1/2 .68

3 2 2 .045 15 27 1/2 .55

1 0 3 .032 8 17 .47

1 2 3 .036 12 27 1/2 .44

1 3 3 .042 21 48 .44

1 4 3 .049 13 28 1/2 .46

2 0 3 .041 24 1/2 50 .49

2 1 3 .043 14 1/2 28 1/2 .51

Average value of k g - .53
7
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.050 <Sin20e> .100

hkl sin2 e IF0) JFQk

1 9 0 .086 15 1/2 32 1/2 .48

3 5 0 .054 3 6 1/2 .46

4 6 0 .086 14 35 1/2 .40

5 3 0 .086 11 27 .41

1 8 1 .073 7 1/2 15 1/2 .48

2 6 1 .053 4 1/2 7 1/2 .60

2 7 1 .067 10 22 1/2 .44

4 0 1 .051 5 8 1/2 .59

4 1 1 .053 9 20 1/2 .44

4 3 1 .061 4 7 .57

4 5 1 .078 7 16 .44

4 6 1 .089 2 6 1/2 .31

5 0 1 .077 3 9 .33

5 2 1 .082 8 1/2 18 .47

5 3 1 .087 8 6 1.33

5 4 1 .095 8 1/2 19 1/2 .44

0 7 2 .063 15 1/ 31 1/2 .49

0 9 2 .096 4 6 1/2 .61

1 6 2 .053 2 4 1/2 .44

1 8 2 .082 5 10 .50

1 9 2 .099 7 12 1/2 .56

2 5 2 .051 6 12 .50

2 6 2 .063 6 12 1/2 .48
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sin2

.075

.051

.057

.063

.063

.063

.089

.099

.093

.097

.070

.097

.051

.067

.078

.091

.078

.079

.088

.052

.088

.063

.063

7

14 1/2

15 1/2

5

7

6 1/2

5 1/2

6 1/2

6

5

7

7

8

10

20

12

18

8 1/2

6 1/2

13

7

5

6 1/2

14 1/2

29

30 1/2

7 1/2

16 1/2

14 1/2

11

14

10 1/2

10

13 1/2

18

16

22

42

26

39 1/2

23

12

24

20

11 1/2

11

.48

.50

.51

.67

.42

.41

.50

.46

.57

.50

.52

.39

.50

.45

.48

.46

.46

.37

.54

.54

.35

.43

.59

F F0



IF 0

8

4

17 1/2

4 1/2

21

5

The average of k

sin 2e I F 0

I5s
IFOI

2 3 4

1 2 5

13 5

14 5

2 0 5

2 1 5

.088

.088

.093

.099

.092

.092

20 1/2

6 1/2

44

7 1/2

45

7

*39

.62

.44

.60

-47

-71

*415

A WON M



76.

.100 <Sin29) .150

hkl sin 2  $IF 0 c k

0 12 0 .144 17 1/2 53 .33

3 9 0 .110 24 1/2 58 1/2 .42

6 0 0 .110 22 1/2 59 .41

6 6 0 .140 18 1/2 53 1/2 .42

1 10 1 .111 7 1/2 19 1/2 .39

2 11 1 .144 4 11 1/2 .35

4 7 1 .104 9 18 1/2 .49

5 6 1 ,116 2 1/2 7 1/2 .33

5 8 1 .143 4 13 .31

0 11 2 .136 8 15 .53

110 2 .119 6 14 .43

3 8 2 .106 8 1/2 18 .47

3 9 2 .124 10 23 .43

3 10 2 .138 9 26 .35

4 7 2 .112 6 14 .43

5 4 2 .104 6 1/2 111/2 .57

6 0 2 .122 8 22 1/2 .36

6 1 2 .124 10 22 1/2 .44

6 3 2 .132 3 6 1/2 .46

1 9 3 .114 13 36 .36

1 10 3 .135 8 23 1/2 .34

2 9 3 .124 6 12 .50



hkl sin 2

4 5 3

4 6 3

4 7 3

5 0 3

5 2 3

5 3 3

5 4 3

5 6 3

2 6 4

4 0 4

2 6 5

4 0 5

4 3 5

0 0 6

0 1 6

0 2 6

0 3 6

0 4 6

0 5 6

1 2 6

1 4 6

2 1 6

3 0 6

I F0

.104 7 1/2

4116 14

.130 7 1/2

,104 6

.110 6

.114 14

.124 9

.144 4

.100 4

.101 3 1/2

.130 16 1/2

.134 15

*138 14

.116 3 1/2

.117 11

.120 3

.123 5 1/2

.130 3

.140 7

.122 5

.135 5 1/2

.130 5 1/2

.144 7

The average value of

IF1

18 1/2

34

22 1/2

14

21

38

23

12 1/2

9 1/2

10

40 1/2

38 1/2

4

6

.34

5

16 1/2

5 1/2

28

16

17

15 1/2

16
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441

.41

.33

.43

,29

.37

.39

.32

.42

.35

.41

.39

.58

.32

.60

.33

.55

.25

.31

.32

.35

.44

.402

k= JF 91

IF 01
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.. 150 (sin )0 > .200

hkl sin2 F F km IF40

2 12 0 .159 9 24 .38

4 12 0 .199 6 1/2 26 .25

4 9 0 .160 6 22 .27

7 3 0 .158 11 31 1/2 .35

8 0 0 .193 6 18 1/2 .32

2 13 1 .192 6 17 .35

5 10 1 .182 4 1/2 17 1/2 .26

7 2 1 .154 5 13 1/2 .37

7 4 1 .168 5 14 1/2 .35

0 12 2 .160 9 21 .43

0 13 2 .193 8 24 1/2 .33

6 5 2 .150 5 17 1/2 .29

6 6 2 .161 8 1/2 20 1/2 .41

6 7 2 .175 7 1/2 22 1/2 .33

7 3 2 .170 3 1/2 12 1/2 .28

1 12 3 .178 1 9 .11

2 11 3 .166 4 14 .29

2 12 3 .188 11 1/2 31 .37

4 9 3 .161 3 9 1/2 .32

5 8 3 .171 4 13 .31

5 9 3 .186 10 32 .31

7 2 3 .182 4 16 .25



I F 0

79o

jFJ0

7 3

7 4

0 12

3 9

1 9

5 3

0 6

0 7

0 9

18

25

2 7

3 4

3 6

*186

.195

.198

.160

.168

.166

.152

.167

.198

.194

.152

.176

*169

.178

1/2

1/2

1/2

8 1/2

5

4

5

13

11

3

10

4 1/2

3

3 1/2

5

12

4 1/2

The average value of Ik

hkl sin2

28

17

14

16

35

38

5

33

13

12

13

15

32

14

.32

.29

.28

.31

.37

.29

.55

.30

.35

.25

.27

.33

.38

.32

--m- I mi -0-0

F 01

1/2

1/2

1/2

= .329
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.200 (sin29).250 IF
hkl sin2F

1 15 0 .231 4 22 .18

7 9 0 .230 7 26 1/2 .26

8 6 0 .230 5 17 .29

4 13 1 .236 3 1/2 15 .23

2 13 3 .205 6 21 .29

4 11 3 .204 3 12 1/2 .24

4 12 3 .224 8 27 .26

5 10 3 .207 6 21 .29

8 0 3 .223 9 30 1/2 .29

8 1 3 .224 4 1/2 17 1/2 .26

2 12 5 .240 11 31 .35

5 9 5 .338 11 32 1/2 .34

1 10 6 .222 4 15 1/2 .26

3 8 6 .210 6 1/2 22 1/2 .29

3 10 6 .250 8 1/2 29 .29

6 1 6 .225 6 1/2 26 .25

0 0 8 .208 12 36 1/2 .33

0 1 8 .208 3 14 .22

0 3 8 .212 5 14 1/2 .35

1 3 8 .212 6 18 1/2 .32

2 0 8 .220 6 17 .35
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k am .Qo

hkl sin2  F 1F 0 F

3 0 8 .233 4 1/2 14 .32

3 3 8 .233 10 1/2 34 1/2 ..30

The average value of k - .285
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Appendix II

Final Structure Factors

This table lists all the observed and computed

structure factors placed on an absolute basis as described

in Appendix I.

A comparison of the observed and computed structure

factors shows an agreement as good as the experimental data

warrants. The largest disagreement occurs for the two

strongest reflections (060) and (330) and is probably due

to extinction for which no correction has been made.
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Biographical Note

Leonid Vladimirovitch Azaroff, son of Vladimir

I. Azaroff, Ph.D., and Maria Y. Azaroff, B.S., was born in

Moscow, Russia on June 19, 1926. He spent his early child-

hood in Riga, Latvia, where he obtained his elementary

education. In 1939, the Azaroff family emigrated to the

United States.

His secondary school education was completed

in the United States when he graduated from the Berkeley

Preparatory School, Boston, Massachusetts, in August, 1943.

In September of that year he was awarded a scholarship

at Tuft's College, and enrolled in the Physics Department

where he remained until called to enter the service in

1944.

During part of the two years spent in the service,

he attended the Virginia Polytechnic Institute, Blacksburg,

Va. where he studied civil engineering for three terms.

During the last year he was stationed at Fort Belvoir, Va.,

where he worked as a research assistant in the Infra-Red

Section of the Army Engineer Board. He was honorably dis-

charged in 1946.

Upon return to civilian life, he re-entered Tufts

College, from which he received a B.S., cum laude, in
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Physics, in June, 1948. While attending Tufts College he

was elected to EpT, Physics Honorary Society and be-

came a member of the American Association of Physics

Teachers and the American Institute of Physics.

In September of 1948 he was admitted to the

Graduate School of the Massachusetts Institute of

Technology where he worked towards a Ph.D. in geophysics.

In the summer of 1950, he attended a special summer course

in x-ray crystallography at Brooklyn Polytechnic Institute,

Brooklyn, N.Y., and upon returning to M.I.T. in the fall

changed his major field to crystallography. He held an

appointment as teaching fellow in 1952 and 1953 during

which time he assisted in the teaching of Elementary

Crystallography, Theoretical Crystallography and X-Ray

Mlineralogy. From September, 1952 to June, 1953 he was

appointed a full-time research assistant and conducted

research in crystallography. In 1952 he was elected to X,
Graduate Honor Society. He is also a member of the American

Crystallographic Association and the Mineralogical Society

of America. He presented a paper titled "A One-Dimensional

Analogue Computer" at the June, 1953 meeting of the A.C.A.

and has published an article titled "A Telescoping Direct-

Beam Tunnel" in the Review of Scientific Instruments. (1953)


