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Abstract

A global ocean general circulation model (GCM) with idealized geometry (two basins
of equal size, Marotzke and Willebrand, 1991) is coupled to an energy balance atmo-
spheric model with nonlinear parameterizations of meridional atmospheric transports
of heat and moisture.

With the coupled model that prescribes the atmospheric heat and moisture trans-
ports, the North Atlantic meridional mass overturning rates at equilibrium increases
as the global hydrological cycle strength increases. Furthermore, the equilibrium
overturning rate is primarily controlled by the hydrological cycle of the Southern
Hemisphere, whereas the Northern Hemispheric hydrological cycle has little impact.

The transition of the thermohaline circulation from the conveyor belt to the south-
ern sinking state is controlled by two factors, the hydrological cycle in Northern Hemi-
sphere, and the ratio of hydrological cycle strengths between the Northern Hemisphere
and the Southern Hemisphere. Increasing either of them destabilizes the thermohaline
circulation .

The large-scale dynamics of the North Atlantic overturning is mainly interhemi-
spheric, with the bulk of the overturning rising in the Southern Hemisphere. Multiple
intermediate states exist that are only quantitatively different, under very small salin-
ity perturbations.

The coupled feedbacks between the thermohaline circulation and the atmospheric
heat and moisture transports are demonstrated to exist in the coupled model, and all
of them are positive. In addition, it is identified that the coupled feedbacks associated
with the atmospheric transports in the Southern Hemisphere are also positive.

Two different flux adjustments are used in the coupled model, with one adjust-
ing the atmospheric transports efficiencies, the other adjusting the surface fluxes.
Different flux adjustments influence the coupled feedback intensities, and hence the



stability of the thermohaline circulation.
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Chapter 1

Introduction

1.1 Thermohaline circulation in the climate sys-

tem

Over the last billion years, in spite of cosmic disturbances and the volcanic and tec-

tonic activities of the earth's interior, the climate of the earth has remained sufficiently

hospitable to permit the continuous evolution of advanced forms of life. The stability

of the earth's climate system is largely due to the presence of a vast volume of water,

covering more than 70% of the earth's surface. This mobile reservoir, i.e, the global

oceans, with a large capacity for heat and chemical constituents, acts as a stabilizer

against chemical and climatic variations.

While the stabilizing buffer effect of the oceans can easily be appreciated, the role

of the oceans in the climate system is not limited only to that. Another significant

role of the oceans invokes ocean circulation, and its transport mechanisms of heat

and chemical components. The poleward oceanic heat transport is comparable to

that of the atmosphere (Fig.1-1), and can have an important impact on the climate
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Figure 1-1: The northward transport of energy as a function of latitude. The outer
curve is the net transport deduced from radiation measurements. The blank area is
the part transported by the atmosphere and the shaded area the part transported
by the ocean. The lower curve denotes the part of the atmospheric transport due to
transient eddies (from Vonder Haar and Oort, 1973).

variability and sensitivity.

The ocean circulation is composed of two different modes, the fast, shallow circu-

lation driven by wind stress, and the slow, deep circulation driven by air-sea surface

fluxes of heat and freshwater. The latter is called the thermohaline circulation . The

thermohaline circulation has multiple equilibria, and the cause of climate changes in

the geologic past has been suggested to be associated with the transitions between

different states of the thermohaline circulation .

Palaooceanographic data suggest that deep water formation in the North Atlantic

around Greenland was shut down during the last glacial maximum about 18,000 years

B.P.(before present), and again during Younger Dryas period (between about 11,000

and 10,000 years B.P.) (e.g, Broecker et al. 1985; Dansgaard, et al. 1993; Taylor,

et al. 1993). These interpretations are supported by observational evidence from

deep-sea sediment cores which suggest that deep water production was significantly

reduced during the last glacial maximum (e.g, Boyle and Keigwin,1987; Sarnthein et

20



al. 1994).

In this thesis, the goal is to study the role of the thermohaline circulation in

climate change. The focus will be on the fundamental dynamics of the thermoha-

line circulation , and the large-scale interaction processes between the atmospheric

dynamics and the thermohaline circulation . This thesis is aiming not for the state-

of-the-art simulation of the thermohaline circulation , but for understanding of the

processes. To this end, we choose simplicity over realism in the model set-up. As a

result, we are able to explore the sensitivity of the thermohaline circulation over a

wide range of parameters, and therefore, to identify the processes that are important

in climate change. Such knowledge will guide us to improve realistic climate models.

The thermohaline circulation can be depicted in a highly simplified schematic

picture, frequently referred to as conveyor belt (Fig.1-2). In the Atlantic Ocean, it

starts with deep convection processes in high latitudes (mostly in the Greenland,

Norwegian, and Labrador Seas), which lead to the formation of North Atlantic Deep

Water (NADW). The NADW flows southward through the Atlantic, effectively mixed

into the Indian and Pacific Oceans by the Antarctic Circumpolar Current (ACC). A

shallow warm current then returns to the North Atlantic to close the conveyor belt

circulation (Gordon, 1986). Even though the detailed paths of the circulation are

highly turbulent (Macdonald and Wunsch, 1996), the gross features of the thermoha-

line circulation are believed to be quite robust.

One climate impact is the substantial amount of heat transported by the thermo-

haline circulation . The oceanic heat transport across 240 N of the North Atlantic is

estimated as 1.2 ± 0.3PW (1PW=10 5 W) (e.g, Bryden et al, 1991; Roemmich and

Wunsch, 1985). The maximum contribution from the wind-driven circulation can

only account for less than 30% of the observed value (Wang et al., 1995; Boning et



Figure 1-2: Global structure of the thermohaline circulation associated with NADW
production. The warm water route, shown by the solid arrows, marks the proposed
path for return of upper layer water to the northern North Atlantic as is required to
maintain continuity with the formation and export of NADW. The circled values are
volume flux in 106 mIs- 1 which are expected for uniform upwelling of NADW with a
production rate of 20 x 106 m3 s-1. These values assume that the return within the
cold water route, via the Drake Passage, is of minor significance (from Gordon, 1986).



al., 1996). Therefore, the thermohaline circulation has to be the dominant transport

mechanism in the North Atlantic.

The transport mechanism of the thermohaline circulation has also been hypothe-

sized in studies of the biogeochemical cycles in the ocean. Significant interhemispheric

transport of carbon in the ocean has been proposed by Broecker and Peng (1992),

in order to reconcile observed air-sea carbon fluxes (Tans et al., 1990). Changes of

the thermohaline circulation intensity could effectively influence the oceanic uptake

of C02, and therefore the atmospheric C02 concentration. The latter is believed to

be able to cause global climate changes, as demonstrated in many climate models.

Modeling the thermohaline circulation has proved challenging, for the dynamics

spans small scale convection processes and global scale oceanic motions. As a result,

we now have a wide spectrum of models in use, from box models, to two-dimensional

models, to coarse 3D GCMs, to eddy resolving 3D models which can be run only for

simulated times of order decades. Another challenging aspect of the thermohaline

circulation arises from its boundary layer. The thermohaline circulation is driven by

fluxes of heat and freshwater through the sea surface. Since the surface fluxes depend

on the evolution of both atmosphere and ocean, any model of the thermohaline circu-

lation must include an atmospheric model. The atmosphere-ocean coupling processes

have not yet been well understood. So far, the so called mixed boundary conditions

have been widely used, which refer to a restoring of sea surface temperature (SST)

and a prescribed surface freshwater flux. It crudely represents the different coupling

processes for surface temperature and salinity.

Under the mixed boundary conditions, multiple equilibria of thermohaline circu-

lation have been found to be robust in every level of model complexity, from box

models (Stommel, 1961), to 2D models (Marotzke et al. 1988; Stocker and Wright,
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Figure 1-3: Scheme of the three essentially different steady states of the global ocean
GCM. + denotes sinking and deep water formation in the respective hemisphere, -
the absence of it. The third equilibrium, corresponds to the present circulation (taken
from Marotzke and Willebrand, 1991).

1991), to 3D GCMs (e.g, Bryan, 1986; Marotzke and Willebrand, 1991; Hughes and

Weaver, 1994). Marotzke and Willebrand (1991) (hereafter MW91) have attempted

to investigate the full range of possible equilibria of the global ocean in an idealized

geometry GCM. Four steady states were found, three of which are essentially different

(Fig.1-3). One of the equilibria corresponds to the observed global thermohaline cir-

culation pattern: The production of deep water in one basin, and none in the other.

1.2 How stable is the thermohaline circulation?

There exist a number of fundamental questions that remain unsolved. For example,

how stable is the present thermohaline circulation ? What causes the transition from

one state to another? Which processes are most important in the interaction between

the atmosphere and the ocean? These are among the most interesting questions to

be addressed by climate dynamists, and have been investigated in numerous previous

studies.



A series of reviews (e.g, Weaver and Hughes, 1992; Willebrand, 1993; Marotzke,

1994; Marotzke, 1996; Rahmstorf et al. 1996), have extensively addressed the most

up-to-date progresses on the thermohaline circulation topic. Here I'll only concentrate

on the coupled models studies.

The coupled models can be categorized into three classes, highly parameterized

coupled box models, fully coupled GCMs, and hybrid coupled models. Powerful as

they are in demonstrating the important processes of the thermohaline circulation

(e.g, Birchfield, 1989; Nakamura et al. 1994; Marotzke and Stone, 1995), the diffi-

culty with the coupled box models is their crude representation of 3-D ocean dynamics.

They are usually decoupled from the process of convection which is the most impor-

tant connection with deep water formation. Due to the absence of rotation, they are

unable to model the fundamental dynamical balance, geostrophy. The coupled box

models also lack of wind-driven circulation which is an essential mechanism for heat

and salinity advection. Therefore, their direct applicability to the real climate system

may be very limited.

The objection against the fully coupled GCMs is that an artificial flux adjustment

is needed in order to prevent the model from drifting away from the current thermo-

haline circulation (Sausen et al., 1988; Manabe and Stouffer, 1988; Murphy, 1995).

The need for flux adjustment implies that the atmosphere-ocean coupling processes

are not well understood. The source of the errors in the coupled GCMs is hard to

pinpoint, since both the atmospheric and oceanic components have major errors in

their simulations of heat transport. The atmospheric GCMs typically overestimate

the poleward heat transport in the atmosphere by 1 to 2 PW (Stone and Risbey,

1990; Gleckler et al. 1995). The ocean GCMs tend to underestimate the poleward

heat transport in the ocean, sometimes by more than 50% (e.g, Manabe and Stouffer,
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1988). Another difficulty with the coupled GCMs is that it is hard to separate the

individual contribution of a given process, and thus it is difficult to identify what is

essential and what is of secondary importance. (Also computation with the coupled

GCMs is very expensive).

The goal of this study has been to find the simplest coupled model which captures

the salient features of the thermohaline circulation , while at the same time, specifying

as little as possible. As will be seen, the model developed for this thesis is a hybrid

coupled atmosphere-ocean model. There already have been a series of such simplified

coupled models (e.g, Stocker et al. 1992; Saravanan and McWilliams, 1995; Rahmstorf

and Willebrand, 1995; Lohmann et al. 1996). Saravanan and McWilliams (1995) have

coupled an eddy-resolving two-level global primitive equation model of the atmosphere

to a zonally-averaged sector Boussinesq equation model of the ocean. The sector 2-D

ocean model did not include wind-driven gyres and convective adjustment process.

Rahmstorf and Willebrand (1995) developed a hybrid coupled model, with a global

idealized 3-D ocean GCM coupled to an energy balance atmospheric model. As to

the oceanic component, ours is, in most aspects, identical to their model. However,

the hydrological cycle in their model was fixed to the diagnosed freshwater flux from

the spin-up run, and did not interact with the model equilibrium state changes. In

contrast, our model will allow a self-consistent representation of the coupling between

the atmospheric hydrological cycle and the thermohaline circulation .

On the other hand, the coupled model developed by Lohmann et al.(1996) included

an interactive hydrological cycle in their zonally averaged energy balance model for the

atmosphere. But their ocean GCM has a simpler two hemisphere sector configuration,

while ours will be a two-basin global geometry. Also their coupled model involved sea

ice system, but ours is ice-free.



Overall, what distinguishes our hybrid coupled model from these previous models

are essentially two aspects, the handling of the atmospheric hydrological cycle, and

the global scope of the thermohaline circulation .

The handling of the atmospheric hydrological cycle was inspired by the work of

Nakamura et al. (1994, hereafter NSM94). We are going to incorporate a similar

coupling strategy, but within the framework of a 3-D global ocean GCM. The ocean

GCM configuration is, in most aspects, identical to the one used in MW91, with an

idealized global geometry.

There are basically two sets of questions that have not been explored before. First,

how the global thermohaline circulation responds to hydrological cycle changes has

never been investigated systematically. Actually, we don't even know how realistic the

modeled thermohaline circulation will be, if the surface forcing is derived from obser-

vations. Here, we explore the sensitivities of the thermohaline circulation to changes

of the surface forcing, in hopes that the dynamics that controls the global thermoha-

line circulation will be disclosed. Winton and Sarachik (1993) have found a series of

self-sustaining oscillations of the thermohaline circulation as the surface salinity flux

increased. Their model was limited to a one hemisphere sector configuration. It is

interesting to examine the thermohaline circulation in a global configuration.

The second set of questions is associated with the interaction between the atmo-

spheric transport processes and the thermohaline circulation . NSM94 identified a

destablizing feedback mechanism between the atmospheric moisture transport and

the thermohaline circulation , named EMT feedback. While the thermohaline circu-

lation represented in NSM94 is merely a three box model, an important question is

whether the same feedback acts in the complex model, as well as whether there is

any new feedback emerging from the complex model.
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The approach in building the coupled model has been to develop and test the

component models independently, and then to combine them. While the oceanic

component is a 3-D GCM with an idealized geometry, the atmospheric model is an

energy and moisture balance model with nonlinear parameterizations of the atmo-

spheric transports. The hope is that with such an intermediate level coupled model,

it may be easier to elucidate the coupled feedbacks between the thermohaline circu-

lation and the atmospheric eddy transports.

The thesis is organized as following. In Chapter 2, the component models of

atmosphere and ocean are presented , together with the coupling procedure. In

Chapter 3, the oceanic model is tested, forced with observed meridional atmospheric

transports. A series of sensitivity experiments are presented and discussed for various

hydrological cycles. A mechanistic box model is used to help understand the dynamics

underlying the model behavior. Chapter 4 deals with perturbation experiments of

the oceanic model to elucidate the interhemispheric dynamics of the thermohaline

circulation . Chapter 5 presents the coupled model calculations, and a series of

feedback mechanisms are identified in the perturbation experiments. Finally, Chapter

6 summarizes the results, and discusses the successes and failures of the model.



Chapter 2

Model Description

2.1 Introduction

In this chapter, the two component models will be presented individually, then the

coupling procedure between the two models will be described. Note that the atmo-

sphere and ocean models are on two different levels of complexity. While the oceanic

model is a three-dimensional primitive equation model, the atmospheric model is a

highly parameterized transport model. Therefore, the coupled model is hybrid. The

justification for such a hybrid coupled model comes from our interest in the thermo-

haline circulation on time scales of hundreds to thousands of years. On these time

scales, the atmosphere is assumed to be in statistical equilibrium with the underlying

ocean.

Since the atmospheric process model is not a standard model, but developed from

scratch, the model physics and parameterizations will be discussed in detail. On the

other hand, the oceanic model follows, in most aspects, the standard development of a

widely-used publicly available model (Cox, 1984; Pacanowski et al., 1990; Pacanowski,

1995). Thus, the description of the oceanic model will be brief.
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2.2 Oceanic model

The oceanic model is an oceanic general circulation model (GCM), provided to us

by GFDL. We use the version of the GCM developed by Pacanowski et al. (1990),

known as the Modular Ocean Model ( hereafter MOMI). The MOMI version is

based on the earlier Cox version (1984), but has major coding improvements. One

such improvement stems from its logical organization of the code with "hooks" readily

available for adding new physics to the model. This facilitates our coupling of a new

atmospheric model. Another improvement is that its modules do not interact with

each other, but interact with the main program in only a few places. This interfacing

strategy tends to localize code modifications, thereby keeping the code structure

simple, and easily modified.

Weaver et al. (1993) has compared two different GCM model configurations of

Weaver and Sarachik (1991) and Marotzke and Willebrand (1991). From several

experiments performed with various horizontal resolutions (e.g, 20 x 2' vs. 40 x

4 ), it was concluded that, within the context of coarse-resolution modeling, the

exact nature of the coarse resolution is not important in determining the stability

and variability properties of the thermohaline circulation . However, this conclusion

cannot be immediately extended to fine-resolution, eddy-resolving studies (Weaver et

al., 1993).

Here, we choose a coarse-resolution model configuration, and the model set-up is,

in most aspects, identical to that of MW91 (Fig.2-1). The horizontal resolutions are

3.75 in longitude and 4 in latitude. There are 15 levels in the vertical, with intervals

varying from 50 m near the surface to 500 m near the bottom. The bottom is taken

to be flat, and has uniform depth of 4500m. The model consists of two identical

basins of 60 width each. The ocean domain extends from 64 N to 64 S. A channel
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Figure 2-1: Geometry of the global model.

representing the Antarctic Circumpolar Current (ACC) connects the two basins from

480 S to 640 S. A cyclic boundary condition is applied for the ACC region.

The mass transport in the ACC is difficult to represent in a coarse resolution

model with flat bottom. Following MW91, the ACC transport is thus prescribed,

and a value of 140 Sv is used. The dynamics of the ACC is not important here, it

is only important that the ACC provides a connection between the two basins. The

two basins are identical in geometry, and can arbitrarily be referred to as Pacific or

Atlantic.

Constant mixing coefficients are used. To ensure numerical stability, the horizontal

viscosity AH must be large enough to allow the viscous western boundary layer to

be resolved (Bryan et al. 1975), and is taken as 2.5 x 105 m2 /sec, the same value

as MW91. The diffusivities follow MW91, with horizontal and vertical diffusivities

of KH = 31 m2 /sec, and K, = 5 x 10- 5m 2/sec. The only exception is the vertical

viscosity A,. We choose A, 10- 2m 2/sec, two orders of magnitude higher than MW91,
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in order to suppress inertial instability near the equator (Weaver and Sarachik, 1990).

It must be borne in mind, however, that the large-scale motions produced in an

OGCM can be sensitive to the particular choice of diffusion parameters. An example

concerning this sensitivity question is the study by Bryan (1987), which explicitly set

out to examine the sensitivity of the thermocline structure, meridional overturning,

and meridional heat flux to the choices of vertical diffusion. The numerical experi-

ment results demonstrate that the meridional mass transport increased as the vertical

diffusivity (K,) increased, exhibiting a 1/3 power dependence. In this study, the ver-

tical diffusivity is in the middle of the range explored by Bryan (1987), and has been

used as his standard.

Since the evolution of momentum is much faster than that of tracers (temper-

ature and salinity), Bryan (1984) suggested that the timesteps for momentum and

tracers can be split, to accelerate the integration to equilibrium, a technique called

asynchronous integration. The asynchronous integration is used during all the ex-

periments, with timestep of 2 hours for momentum, and 2 to 6 days for tracers. To

prevent leap frog time splitting, there is mixing between timesteps every 17 timesteps.

The convection scheme was provided to us by Yin and Sarachik (1994). The

scheme is the best of its kind. According to our trial runs, it not only completely

removes all static instability at each time step, but also proves to be the fastest

complete convection scheme.

The rigid lid (w = 0, at z = 0) approximation is used for the surface boundary,

and a free slip (- = 0) at the bottom, and no slip (V = 0) at the lateral walls.

There is no heat nor salt flux at the bottom and the lateral walls. At the surface,

the wind stress, taken from MW91 (Fig.2-2), is zonal and prescribed as a simple

function of latitude only, reflecting the major features of the observed distribution.
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Figure 2-2: Forcing fields of the OGCM: Zonal wind stress T in dyn/cm2 (left), and
restoring salinity field in psu (right), as functions of latitude.

The prescribed salinity profile, when a restoring condition is used, is from MW91

(Fig.2-2, no ITCZ). The model spins up from a motionless state with horizontally

uniform temperature and salinity distributions. The initial temperature is taken

from the observed globally averaged vertical profile (Levitus, 1982), and the initial

salinity is set to 34.2ppt at all levels. The spin-up is speed up if the deep ocean is fresh

(Bryan, 1986). The surface condition for the tracers involves the coupling between

atmosphere and ocean, and thus will be deferred to Section 2.4.

2.3 Atmospheric model

The atmospheric model developed here is based on the atmospheric component in the

coupled box-model by NSM. Their two-box atmospheric model has been expanded

into a 1-D (in latitude only), basin-dependent model in this study (fig.2-3). Mean-

while, the physical elements of the 1-D model are similar to that of the box model.
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Figure 2-3: Illustration of the atmospheric model

The development of the model is guided by three primary principles. First, the

model is highly parameterized, and the parameters are constrained by observations

of the annual mean states. Second, no atmospheric source of asymmetric forcing is

allowed. The atmosphere is assumed symmetric regarding to the two basins, or the

northern/southern hemispheres. The second assumption echoes the same hypothesis

underlying the ocean model set-up. MW91 tried to examine the asymmetry of the

thermohaline circulation that is purely internal. The possible attributions from ex-

ternal asymmetries, e.g, the basin geometry, or the inter-basin freshwater transport

were excluded. The third principle is that the model should reflect the box model

approach (NSM) as closely as possible, thus the knowledge from the box model can

be related directly to this study.

Hd- -

Fw - -



The first physical element of the model is the radiative parameterization. The net

radiative forcing at the top of the atmosphere is defined as,

R = Q(1 - a) - I (2.1)

where Q is the incoming solar radiation, oz is the planetary albedo, and I is the

outgoing longwave radiation. Following North (1975), Q is approximated as,

Q(y) = Q[1 + (3y2 - 1)] (2.2)
4 2

where y = sinoq, Qo = 1365Wm~ 2, and Q2 = -0.482.

The planetary albedo a, based on observations (Stephens et al., 1981), was fitted

by Legendre polynomials ( Miller, unpublished, 1990)(Fig.2-4). To remove the asym-

metric source, we average it between two hemispheres, and use a form symmetric

about the equator,

0. 2 31(y21 0 .08 6 (3y
a(y) = 0.322 + -(3y2 1) + (35y4 -30y 2 + 3) (2.3)

2 8

Note that the albedo a is held fixed during this study, therefore any feedback asso-

ciated with the albedo(e.g, ice-albedo feedback) is excluded.

The outgoing longwave radiation is estimated using the empirical relation of

Budyko (1969),
dFt

I = F0 + Ts (2.4)
dTs

where Ts is the surface temperature (in units of degree Celsius). ERBE longwave

radiation data (Trenberth and Solomon, 1994) and the observed SST (Levitus, 1982)
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Figure 2-4: Observed zonally averaged planetary albedo, Southern Hemisphere (dot-
dashed), Northern Hemisphere (starred), and the one used in this study (solid).

are used to determine the coefficients F0 and d2,

F0 =195Wm- 2 ; (2.5)

d F
__= 2.78 Wm-2 (oC)-1. (2.6)

dT,8

The longwave parameterization is one of the important 'hooks' between the atmo-

sphere and the ocean. The coefficient d2, as will be seen in next Chapter, determines

the Newtonian damping time scale of the SST in the ocean model.

The second physical element of the model is the atmospheric meridional heat/moisture

transport parameterization. The meridional transport mechanisms are different for

low and high latitudes. In low latitudes, the Hadley circulation is the dominant mech-

anism of poleward transports, whereas in high latitudes, eddies transport most of the

energy poleward (Fig.1-1, the lower curve). The eddy transport parameterizations are

the foci of this work, because the thermohaline circulation is mainly a high-latitude
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Figure 2-5: Observed zonally averaged atmospheric heat transport

phenomena. The thermohaline circulation is sensitive to the atmospheric moisture

transport in high latitudes (e.g, Manabe and Stouffer, 1994). On the other hand, the

moisture transport in low latitude has been shown to be of little importance to both

the existence and the strength of the thermohaline circulation ( Zaucker et al., 1994).

As a result, the transport mechanisms in low latitudes are not explicitly represented.

The latitudinal profile of atmospheric heat transport is prescribed based on ob-

servations. Two data sets are used, one from rawinsonde data (Oort,1983), the other

from ECMWF operational analysis products (Keith, 1995). We average the two

analyses, and modify the profile to be antisymmetric about the equator (Fig.2-5).

Furthermore, the profile is fitted by Legendre polynomial functions,

2.851 1.0165

H2(y) = 3.866y 2 (5y3 - 3y) 8 (63y5 - 70y 3 + 15 y); (2.7)

where y = sin#.

The moisture transport is taken from Baumgartner and Reichel (1975), modified in
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two ways. First, in order to close the water budget over the oceanic model domain, all

the freshwater flux beyond 64N/S is assumed to concentrate in the northern/southern

boundary region. The second modification is to average between the two hemispheres,

and to achieve a profile antisymmetric about the equator (Fig.2.3). Consequently,

the freshwater is also conserved within each hemisphere, and no moisture transport

crosses the equator. As with the heat transport profile, we fit the moisture transport

profile by Legendre polynomial functions,

F = 2.092y i 5.796P2 + 8.472P3 i 7.728P4 + 2.362P5; (SH: +; NH: -) (2.8)

where P1 = y, P2= -(3y2 - 1), and P3 = 1(5y 3 - 3y)

1 1
P4 = -(35y 4 - 30y 2 + 3), P5 = -(63y 5 - 70y 3 + 15y)

8 8
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Figure 2-6: Observed zonally averaged atmospheric freshwater transport



2.4 Coupling procedure

To mimic the atmospheric box model of NSM as closely as possible, the latitudinal

profiles of the atmospheric transports remain fixed during this study. However, the

amplitude of each profile is determined by parameterizations of eddy transports at

350 N/S respectively. We assume that the transports by the mean circulation at 350

N/S are negligible, compared to transports by eddy activity (e.g, Fig.1-1). The eddy

transport of heat is defined as,

Hd(350 ) = 2,rcos#j [pa(Lvv'Sq'+C,7T')]dz (2.10)

where Pa is the atmospheric density, L, is the latent heat of condensation, C, is the

specific heat of dry air at constant pressure, q is the specific humidity or mixing

ratio, and v and T represent the meridional velocity and the potential temperature,

respectively.

The eddy sensible heat transport is parameterized based on baroclinic stability

theory (Held, 1978; Stone and Miller, 1980),

v'T' = A( OT); (2.11)
Oy

While the eddy moisture transport is parameterized (Leovy, 1973; Stone and Yao,

1990) as,

V'q' rh{ ( )qs 2.2
OT

2.53 x 1011
q, ~ 0.622 2 e-(5420/T) (2.13)

P

where qs is the saturated mixing ratio, rh is the relative humidity. The overbar denotes



a zonal and temporal mean. The prime of a quantity denotes the deviation from the

quantity's zonal and temporal mean. The power law of the meridional transports

depends on both latitude and vertical stability (Branscome, 1983; Stone and Yao,

1990). Empirically, n is found to vary with latitude in the range from 1.6 to 4 (Stone

and Miller, 1980). Here, we choose a value appropriate for 35 N, n=2.5.

Combining the constants together, we can rearrange the parameterizations as,

Hd(350 ) = (Cs + CLe(-5420/T))(OT)25 (2.14)
ay

Fw(350 ) = CFe(-5420/T) (T)2.5 (2.15)ay

The coefficient Cs represents the eddy sensible heat transport. The eddy latent

heat transport, thus the moisture transport, is given by the coefficient CL. Both

the transports of sensible and latent heat depend on a power of the temperature

meridional gradient at 350 N/S, but the latent heat transport (also the moisture

transport) is also affected by the temperature itself at 350 N/S, as defined by the

Clausius-Claperon equation (Eq.2.13). The parameterization is another important

'hook' between the atmosphere and the ocean.

The coupling procedure between the atmosphere and the ocean is illustrated by

Figure 2.4. We assume that the atmospheric heat capacity is negligible, so that the

divergence of the atmospheric heat transport, plus the net radiation at the top of

the atmosphere must be balanced by the surface heat flux. Similarly, the moisture

conservation of the atmosphere requires that the divergence of the moisture transport



equals the surface freshwater flux.
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Figure 2-7: Schematic illustration of the coupling between atmosphere and ocean

To estimate the oceanic surface fluxes of heat and freshwater, land has to be

considered. Land is treated in a simplified fashion here, because its dynamics is not

easily captured. The important point is that the land serves as a possible source/sink

for surface fluxes. The heat capacity of land is assumed negligible, therefore, the

surface heat flux over land is assumed zero. The land surface temperature is assumed

to be zonally uniform and equal to the zonally-averaged SST. Since the area ratio

between ocean and land is I at each latitude (except the ACC), a factor of 3 is

introduced in Eq. 2.16. Note however that the longwave radiation term I is allowed

to differ for the two ocean basins, if they have different temperatures, according to

ill Ill --- - , , Iiii i Ill I



Eq. 2.4.

The freshwater flux into the ocean depends on run-off from land. We assume

that the freshwater flux into the ocean is multiplied by a factor that varies from a

maximum of 3., to a minimum of 0.5, with 1.5 and 1. between. The multiple factor is

conceptually close to that used in the coupled box model (NMS; Marotzke, 1996). In

the four cases, we assume that there is no zonal transport of moisture between basins,

and each basin receives identical freshwater flux that is zonally uniform. Again, this

approach is consistent with our principle of no atmospheric source of asymmetric

forcing. Through the multiplicative factor, the hydrological cycle over the ocean can

be varied in a systematical way. The thermohaline circulation forced by these different

hydrological cycles will be presented in Chapter 3.

The ocean influences the atmosphere by affecting the temperature gradient, and

therefore the transports at 35 N/S. In the eddy transport formulae(Eq.2.14 and 2.17),

we use an atmospheric temperature profile determined by the SST field in the oceanic

model. The atmospheric temperature profile is assumed to have the form,

T
T(y) = To + T2 (3y 2 - 1) (2.18)

2

The polynomial function coefficients (To and T2) are determined by assuming that the

area-weighted SST over two latitude ranges (0 -35', 35 -64') are equal to the same

averaged atmospheric temperature. The reason for such an area-weighted average

approach is that the typical meridional scales of eddies that transport heat is 20' to

30' (Stone, 1984), and the transport should not respond only to smaller scale structure

in SST. It also is in close accordance to NSM's box model structure.

The coupling procedure can be summarized as following,



changing the thermohaline circulation -+ changing the SST field -±

changes the atmospheric temperature and its meridional gradient at

350 N/s -+ changes the atmospheric heat/moisture transports -+

changes the surface heat/freshwater flux -- + further changes the ther-

mohaline circulation .

4111MWvIMWMMMM iI ,,,



.. s 1. ...x:



Chapter 3

Thermohaline Circulation Driven

by Observed Atmospheric

Transports

3.1 Introduction

As the two component models and their coupling procedure have been described in

the previous chapter, here we will first test the oceanic component model with the

surface forcings derived from observed atmospheric heat and freshwater transports.

The starting point of this chapter is based on the work of MW91 and Marotzke (1996).

MW91 investigated the full range of possible equilibria of the thermohaline circu-

lation . In their spin-up process, the surface temperature and surface salinity were

restored to prescribed profiles with a 30 day relaxation time scale. At the end of the

spin-up, the freshwater flux was diagnosed from the model's steady state. The model

was then put through a series of perturbation experiments using the fixed diagnosed



freshwater flux, but still the same restoring of temperature. This combination of

surface temperature and salinity boundary conditions is known as " mixed boundary

conditions".

Under the mixed boundary conditions, depending on the initial state, the ther-

mohaline circulation can reach an equilibrium state corresponding to the observed

current thermohaline circulation pattern: In one basin (the "Atlantic"), North At-

lantic Deep Water is formed, and no deep water is formed in the other basin (the

"Pacific").

The surface heat and freshwater fluxes in the MW91 are actually what the ocean

model demanded, in order to obtain a realistic SST and SSS simulation. The surface

forcings are not directly related to atmospheric observations. If the surface forcings in

the ocean model differ from what an observation-based atmospheric model provides,

the coupled model will have to artificially adjust the discrepancy to prevent a drifting

away from the current climate.

Here, the OGCM is spun up with the surface forcings derived from the observed

atmospheric transports. While the atmospheric transports are prescribed from obser-

vations, the longwave radiation is still interactive with the local SST. Such coupled

box model were studied by Marotzke (1996). It is worth finding out how realistic the

thermohaline circulation will be in the OGCM. The hope is that if the OGCM with

observed atmospheric transports reaches a realistic conveyor belt circulation, we may

avoid artificial flux adjustments in later coupled models.

The experimental procedure is addressed in Section 3.2. The conveyor belt circu-

lation simulated in the ocean model is described in Section 3.3. Section 3.4 describes

the ocean model equilibrium response to changes of the hydrological cycle. The model

results are explained by a mechanistic box model in Section 3.5.



3.2 Experimental strategy

In this section, the experiment strategy is discussed. We will first describe how we

construct the surface forcings from the observed atmospheric transports. Then the

spin-up procedure for setting up the conveyor belt circulation is described.

3.2.1 Boundary condition

The boundary condition derived from the observed atmospheric transports is funda-

mentally a mixed boundary condition type model. As discussed in Section 2.3, in

the model, the freshwater flux is determined from the divergence of the atmospheric

moisture transport, on the assumption of atmospheric moisture conservation. Since

the atmospheric moisture transport is prescribed to the observation, the freshwater

flux for the ocean model is thus fixed.

On the other hand, the surface heat flux in the model is calculated from the

net radiative flux and the divergence of the atmospheric heat transport. With fixed

observed atmospheric heat transport and interactive longwave radiation term, this is

equivalent to restoring the temperature to a prescribed profile (T*) with longwave

radiative timescale.

In this sense, the model here is still similar to MW91 model, though we reform the

mixed boundary conditions based on a better physical basis, and directly relate them

to the observed atmospheric transports. As Fig.3-1 shows, the freshwater flux from

the model has stronger freshening in the high latitudes than that from the MW91

model. It is worth mentioning that the multiplicative factor reflecting the runoff is

chosen to be 1.5 (hereafter 1.5Fw) for our control run. The justification for such

choice will be deferred to Section 3.4.

The prescribed temperature profile T* in the model is defined as the temperature
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Figure 3-1: Comparison of two distributions of the ocean model's surface freshwater
fluxes, the one used in MW91 (dashed), and the one in the model with multiplicative
factor of 1.5 (solid).

that ocean is forced towards (Bretherton, 1982). It is the equilibrium temperature

that the ocean would reach in the absence of ocean currents (i.e, when there is no

oceanic heat transport). T* is calculated in the model using the observed atmospheric

heat transport and the net radiative forcing parameterization, while setting oceanic

heat transport to zero. Figure 3-2 plots T* as a function of latitude. In comparison,

the observed SST is also plotted. T* exhibits a much steeper meridional gradient.

The time scale for restoring to T* arises naturally from the model. It is solely

determined by the longwave radiative coefficient 4 (as 2.78Wm- 2 (C)- 1). It gives

a time scale of 288 days for a top ocean layer 50m thick, representing the time scale

to remove the global scale SST anomalies through longwave radiation to space.

On the other hand, the small scale zonal SST anomalies are removed in the model
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Figure 3-2: The Levitus (1982) zonal mean SST (solid), and the T* in the model
(starred), unit: 0 C.

by zonally averaging the SST within each basin at every timestep (2 days). Without

this zonal mixing, the location of the North Atlantic Deep Water formation is in

the mid-latitudes, rather than near the northern boundary of the model, because the

small scale heat flux anomalies in the surface shift the deep convection locations. The

experiment results (not shown) indicate that such small scale anomalies will disappear

if there is no wind in the model.

While the emphasis of the mixed boundary conditions in MW91 is on a realistic

simulation of SST and SSS, the model developed here puts more stresses on a real-

istic simulation of surface heat and freshwater fluxes. This is crucial to ensure an

appropriate coupling between the two components. The coupled model, if the ocean

model is perfect, can have an accurate simulation of both SST, SSS, and the surface
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fluxes. This is not possible with the normally used mixed boundary condition.

3.2.2 Spin-up procedure

, S
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Figure 3-3: Numerical procedure for spin-up

The spin-up procedure to obtain the conveyor belt circulation is, in most aspects,

identical to that used in MW91. The model spins up from an initial motionless state

with horizontally uniform tracers fields. The wind stress field is fixed and identical

to that in MW91(Fig. 2-2). The whole procedure can be divided into three stages,

as illustrated in Figure 3-3.

Stage I: For the first 1,000 years of integration, the restoring conditions for surface

temperature and salinity are used. The surface temperature, is restored to the T*

profile with a time scale of 288 days, using the observed thermal boundary condition

as discussed in Section 3.2.1. The surface salinity is restored to an idealized salinity

profile, with time scale of 30 days. The idealized salinity profile is taken from MW91

(Fig. 2-2). This restoring stage ensures that the surface salinity field is spun up

robserved mixed boundary conditionrestoring



quickly.

Stage II: In this stage, the salinity condition is switched to a fixed freshwater

flux derived from the observed atmospheric moisture transport, (i.e 1.5Fw), while

the temperature condition remains the same as in Stage I. These mixed boundary

conditions are used during the rest of the procedure (Stages II and III).

At the end of Stage I, the deep water forms in the northern oceans of both basins.

To reach the state with sinking in the North Atlantic only, the freshwater flux is

perturbed by 0.9m/y north of 40N, such that there is a zonal atmospheric freshwater

transport from Atlantic to Pacific. Note that the perturbation used here is 4 time

larger than that in MW91. The perturbation lasts for 2,000years, until the conveyor

belt circulation is fully set up. Then the perturbation is switched off in Stage III.

Stage III: To allow the conveyor belt circulation to reach the equilibrium state,

the integration is continued for another 3,000 years after the perturbation is switched

off. The time series of the globally averaged surface heat uptake is plotted in Figure

3-4. It shows that the model reaches statistically steady state at the end of the

integration.

3.3 Simulation of conveyor belt circulation

The equilibrium state at the end of Stage III has a North Atlantic Deep Water

(NADW) formation of 18 t 1 Sv near 480 N, and there is no deep water formed

in the North Pacific (Fig. 3-5). In comparison, the estimated NADW formation

based on the observational data is 27 i 3Sv near 48' N (Macdonald and Wunsch,

1996). Across 25' N, the North Atlantic overturning is estimated to be 17 + 3 Sv

by Macdonald and Wunsch (1996), while the model reaches about 10 Sv. As will

be seen in Section 3.4, the NADW formation rate is varied with the multiplicative
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Figure 3-4: Left: the time series of the globally averaged heat uptake (unit: W/m 2 ) in
the model after the perturbation was turned off. Right: the time series of the globally
zonal mean mass transport(unit: Sv) at 480 N, 1250m deep, after the perturbation
was turned off.

factor used in the freshwater flux calculation. We could tune that factor to achieve

a stronger overturning that is close to the observed value (e.g, 3Fw case in Section

3.4). But the stronger overturning is found unstable in a later fully coupled version

model. Therefore, the current model with the multiplicative factor of 1.5 is chosen

as the control run.

The barotropic mass streamfunction, which is essentially determined by the wind

forcing, is shown in Fig.3-6.

Despite its weak overturning strength, the simulated conveyor belt circulation

in the model captures some realistic features that are generally missing when the

conventional mixed boundary conditions are used. For example, the SST north of 480

N in the Atlantic is up to 90 C warmer than that in the Pacific (Fig.3-7), since the

deep water formation in the North Atlantic leads to more warmer water advected from

low latitudes. Such an inter-basin SST difference is not captured if the temperature
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Figure 3-5: The model of 1.5Fw with the observed atmospheric transports: steady
zonal mean meridional mass stream function (unit, Sv): Atlantic (left),and Pacific
(right).

restoring time is too short (e.g, 30 days used in the conventional mixed boundary

conditions).

One feature that fails to improve in the model is the oceanic heat transport. The

oceanic heat transport simulated is only about 50% of the observed, with a maximum

of 0.6 PW in the North Atlantic (Fig.3-8). The underestimation of the oceanic heat

transport can be attributed to several shortcoming of the model. First, the NADW

formation rate in the model is low, about 18 Sv, compared to 24 Sv in MW91. As

a result, the maximum heat transport in the North Atlantic of MW91 is about 50%

higher than of the present model.

Another shortcoming is the coarse resolution of the ocean GCM. So far, two

processes were identified that can underestimate the oceanic heat transport when

the horizontal resolution of the GCM is not eddy-resolving. The first process is,
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Figure 3-6: The model of 1.5Fw with the observed atmospheric transports: barotropic
mass streamfunction, unit: Sv.

as noted by Veronis (1975), the parameterization of eddy mixing by a horizontal

diffusivity in coarse resolution oceanic model. In the frontal region near the western

boundary, the diapycnal diffusion induces a strong upwelling of cold water, and thus

reduces the amount of deep water transported towards lower latitudes and across the

equator. This shortcut in the North Atlantic overturning was found to underestimate

the oceanic heat transport (Boning et al., 1995). The second process is associated

with the horizontal resolution. Wang et al. (1995) found that, due to the weak

temperature advection by the western boundary current, the heat transported by

the western boundary current can be underestimated by 50% for a coarse horizontal
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Figure 3-8: The model of 1.5Fw with the observed atmospheric transports: the
oceanic heat transport (PW) at the steady state.

resolution (40 x 40) model.

In the present model, both the atmospheric heat transport and the shortwave

radiative forcing are constrained by the observations. If in addition, the longwave

radiative forcing was also fixed to the observations, the oceanic heat transport would

have been equal to the observed value in the steady state. Since the longwave radiation

is parameterized as a linear function of SST, the model can compensate its low oceanic

heat transport by obtaining a much stronger equator-to-pole gradient of SST, and

hence a stronger differential longwave radiative forcing. As will be seen in Chapter 5,

this will cause the fully coupled model to drift away from the observed climate, and

a flux adjustment cannot be avoided.

3.3.1 Surface density flux

In this section, we diagnose the terms forcing the circulation. The purpose is to search

for dynamical properties that may control the thermohaline circulation intensity.



The thermohaline circulation is driven by the surface heat and freshwater fluxes.

In a purely dynamical context, one naturally does not distinguish the two forcing

fluxes, but the combination of the two, the density flux. The surface density flux is

defined as:

F, = -p(aFT - iFs) (3.1)

where FT is surface temperature flux, and Fs is surface salt flux. The surface density

flux F, converts water from one density to another. When F, > 0, water mass is

transformed to higher density, and vice versa. If the ocean is close enough to a

statistically steady state, this surface density conversion must be reversed somewhere

else within the circulation. In other words, water parcels experience a motion in

density space, which has to be coordinated with motions in physical space. This means

that knowledge of the motion in density space can be translated into knowledge about

the circulation in physical space.

This idea was initiated by Walin (1982), who attempted to use the surface heat

flux to infer the thermal circulation in the ocean. Speer and Tziperman(1992) ap-

plied the same idea to estimate water mass formations in the North Atlantic, using

climatological data for surface heat, and freshwater fluxes, and the surface density of

the North Atlantic. The North Atlantic annual average sinking that escapes across

the equator was estimated to be about 9 Sv.

Here, we apply the same idea to the ocean model, but with a different intention.

We are interested in the latitudinal distribution of the surface density flux, and the

relative contribution from the surface heat flux and the surface freshwater flux. Our

intention is to identify the large-scale pattern of the density flux, and to relate it to

the dynamics of the thermohaline circulation .

The Atlantic surface density flux in the model is plotted in Fig. 3-9, as a function
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Figure 3-9: The model of 1.5Fw with the observed atmospheric transports: At-
lantic surface density flux (solid), thermal component (starred), and haline component
(dashed) diagnosed from the steady state. Unit: 10-6Kgm-2s- 1 .

of latitude, together with the thermal and haline components. The haline component

of the density flux is linearly proportional to the freshwater flux, while the thermal

component is nonlinearly related to the heat flux, due to the nonlinear state equation

used in the model. The thermal expansion a used is approximated as,

a = -0.072 - 0.01 x T (3.2)

Compared to the annual mean surface density flux map based on observations in

the North Atlantic (Schmitt et al. 1989), the one from the model has similar large-

scale features, with density gain in the middle and high latitudes, and density loss

in the low latitudes. But there is significant difference between the observed map



and the model on the separate contributions of heat and salt to the density flux in

the high latitude. Schmitt et al.(1989) found that the heat/salt density flux ratio

is around 10 near 600 N, while the one in the model is about 1 in that region. The

reason for such discrepancy is not clear.

On the other hand, there is no similar observed density flux map for the South

Atlantic so far. The density flux diagnosed in the model indicates that, south of 40'

S, the water mass is converted towards less dense water. That is, the density loss

associated with freshening overcomes the density gain associated with cooling. It

implies that the deep water upwells in the high latitude of the South Ocean.

The purpose of diagnosing the surface density flux is to look for large-scale dynam-

ical properties that control the thermohaline circulation intensity. From the above

analysis, it appears that in the high latitudes of the North Atlantic, water mass is

transformed towards heavy dense water from the surface. At the steady state, this

transformed water must be carried away from the sources, by the circulation, and, in

other latitudes, has to be converted back to lower density. The analysis shows that

there are two regions that have water transformation towards lower density, one is

the low latitude region, the other is the high latitude of the South Atlantic. The

next section will attempt to pinpoint which of the two is the location of the reversed

conversion for the North Atlantic Deep Water in our model.

3.4 Conveyor belt circulation under different hy-

drological cycles

To study the large-scale dynamics of the thermohaline circulation, we vary the surface

freshwater flux systematically to force the thermohaline circulation . A set of surface



freshwater fluxes with different multiplicative factors is displayed in Fig. 3-10. The

1.5Fw case corresponds to the run in last section. The same spin-up procedure in

Section 3.2.2 is applied in all runs. All the runs achieve conveyor belt circulation

patterns at the end of the integrations.

Surface freshwater fluxes

0
Latitude (degree)

Figure 3-10: The four surface freshwater fluxes (unit,
runs.

m/year) used in the sensitivity

For all four runs, the conveyor belt circulation intensity increases as Fw increases,

as shown in Fig. 3-11. The 3Fw run has the strongest overturning of 28 Sv, whereas

the 0.5Fw run has the weakest overturning of 12 Sv. The result that the conveyor belt

circulation is stronger under stronger freshwater flux is counter-intuitive. Enhanced

freshening in high latitudes of the North Atlantic is expected to reduce the NADW

formation, and therefore, to weaken the overturning, as evidenced in the global warm-

ing scenario of Manabe and Stouffer (1994, hereafter MS94). MS94 found that, as

CO 2 increases, the atmospheric moisture transport gets stronger, and the stronger



freshwater flux causes the North Atlantic overturning to weaken or even disappear.

The apparent contradiction is resolved if we note the existence of multiple equi-

libria of the thermohaline circulation . What we found is actually the conveyor belt

equilibrium under the different freshwater fluxes, while MS94 found a transition to the

southern sinking equilibrium. It is also easy to switch to the southern sinking state

in our model, by simply changing the initial state of the thermohaline circulation

The switching between different equilibria will be studied in the next chapter.

Note that we compare the thermohaline circulation equilibrium responses within

the same category (i.e, the conveyor belt type). Under the different freshwater fluxes,

the strongest freshwater flux run obtains the warmest SST in the North Atlantic high

latitudes, as well as the strongest northward oceanic heat transport (Fig. 3-12).

The latitudinal distributions of the Atlantic surface density flux are compared in

Fig. 3-13 for the 3.Fw, 1.5Fw and 1.Fw runs. As it shows, the three surface density

fluxes in the North Atlantic north of 500 N are actually very close, even though their

haline components are different. Whereas in the South Atlantic south of 50* S, the

surface density fluxes differences are mainly caused by the different freshwater fluxes.

The strongest freshwater flux case has the maximum density conversion towards lower

densities.

The average density transformation is defined as,

f FpdS (3.3)
f dS

where dS is an element of the surface area.

We calculate the average transformation of each hemisphere. The hemispheric dif-

ference of the average transformation is defined as the interhemispheric surface density

transport. The correlation between the interhemispheric surface density transport
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Figure 3-12: The Atlantic latitudinal distributions of SST
northward oceanic heat transports (right, unit of PW) for
and lFw.

(left, unit of 0 C), and the
three runs of 3Fw, 1.5Fw

and the North Atlantic overturning intensities are plotted in Figure 3-14 for the four

runs. The overturning intensity is approximately proportional to the interhemispheric

surface density transport linearly.

A similar linear relation between the overturning intensity and the gradient of

steric height P, has been found by Hughes and Weaver (1994) (Fig.3-15). The steric

height P measures the depth-integrated pressure above a reference level. In a verti-

cally stratified model, the dynamical quantity is no longer the surface density, but the

steric height P. Taking the mid-depth of the overturning cell as the reference level,

Hughes and Weaver demonstrated that the North Atlantic overturning is almost lin-

early proportional to the meridional difference in zonally-averaged steric height P

between the latitude of the maximum zonally-averaged surface density in the north

to the boundary of the South Atlantic.

Latitude
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Figure 3-13: The Atlantic latitudinal distributions of the surface density fluxes in the
steady states of 3Fw, 1.5Fw and 1Fw runs.

3.5 A mechanistic box model

There are two distinct types of box models, concerning the large-scale dynamics of

the thermohaline circulation . One is Stommel's (1961), in which the flow is assumed

proportional to the density difference between the high latitude box and the low

latitude box (Fig.3-16). The Stommel box model was the first model to predict

the existence of multiple equilibria, and has served as the theoretical foundation

for many high level models of the thermohaline circulation . But the Stommel box

model suggests that as the freshwater flux Fw increases, the flow will decrease, which

is opposite to our GCM results in the last section.

The other type of box model was proposed by Rooth (1982). He conceptualized the

thermohaline circulation , with a three-box model, as a pole-to-pole deep circulation.
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In the three-box model, the flow is parameterized as a linear function of the density

difference between two polar boxes (Fig.3-17). The Rooth box model is frequently

used to illustrate that the thermohaline circulation can have a steady asymmetric

pattern about the equator, even though the forcing is symmetric (e.g, Bryan, 1986).

There was one result in Rooth (1982) that has attracted little attention. The

result was for how the flow strength varies with the hydrological cycle intensity. It

was derived assuming that the temperature was constant and symmetric about the

equator. It showed that the flow strength # followed the square root dependence on

the hydrological cycle intensity, Fw, i.e,

# oc VF (3.4)

The square root law between # and Fw arises from the asymmetric density changes

in the two polar boxes. The density pi is little influenced by Fw change, because of the
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Figure 3-15: North Atlantic overturning (Sv) versus the meridional gradient of
zonally-averaged depth-integrated steric height P (10- 6 kg/m) between 47.250 S and
the latitude of the maximum zonally-averaged surface density in the North Atlantic
(from Hughes and Weaver, 1994).

counterbalancing between the Fw forcing change and the change of advection of salty

water from low latitudes. On the other hand, the density p3 is directly influenced by

the Fw change, and gets smaller as Fw gets stronger without being counter-balanced

by advections from low latitudes. As a result, the steady state flow intensity increases

as Fw increases.

The results from the GCM runs are compared to the prediction from the square

root law of the Rooth box model (Fig. 3-18). The agreement between the two models

results is reasonably good, in the sense that they both increase with Fw. It suggests

that the large-scale dynamics in the GCM is overwhelmed by the interhemispheric

picture. However, it must be noted that the agreement breaks down as Fw goes to

zero. For the extreme case of no freshwater flux, the GCM can not maintain conveyor
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belt circulation because there is no salinity gradient to sustain the asymmetry between

the two basins. As will be shown in the next chapter, the thermohaline circulation

under no freshwater flux will be the state with sinking in both basins, and the strength

of the overturning depends on the thermal forcing.

The interhemispheric dynamics analysis in Rooth (1982) was only partial. More

extensive analyses have been carried out by Rahmstorf (1996), and Scott et al. (manuscript

in preparation, hereafter SMS96). Their work has supplied insightful paradigms for

our GCM results.

One result from Rahmstorf (1996) and SMS96 is that, in Eq.3.4, the Fw that

appears is actually the freshwater flux in the southern hemisphere (hereafter Fw-S).

Rooth assumed the same Fw in both hemispheres, and did not explicitly distinguish



between the two hemispheres. The appearance of Fw-S only in the square root law

has the surprising implication that the freshwater flux in the northern hemisphere

(hereafter Fw-N) does not control the steady flow intensity at all.

The asymmetric role of the two Fw's on the steady flow identified in the box

model, if robust in more complex models, will have important implication on the

climate sensitivity. We will carry out perturbation experiments in the next chapter

to test how robust the box model's results is in our OGCM.
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Chapter 4

Interhemispheric Dynamics of

Thermohaline Circulation

4.1 Introduction

In this chapter, the interhemispheric dynamics of the thermohaline circulation is fur-

ther explored through a series of perturbation experiments. As demonstrated in last

chapter, the global ocean GCM agrees reasonably well to the Rooth three-box model

on how the steady overturning strength varies with the hydrological cycle strength

in the observed range of surface forcings. This indicates that the thermohaline cir-

culation dynamics in the GCM can be as simple as the three-box model, to zero

order.

The basic assumption in the three-box model is that the upwelling of the deep

circulation is concentrated in the southern high-latitude box, in the contrast to the

uniform upwelling assumption in the classic Stommel-Arons deep circulation theory

(1960). Warren's (1981) review of the deep circulation shows how many of the key

deep western boundary currents have been successfully found, yet there is not a sense



that the basin-wide uniform upwelling has been verified. On the other hand, the

tracer distributions suggest that special sites like the Southern Ocean and the Equator

contribute a great deal to the upwelling, and that it may be otherwise rather unevenly

distributed in space. For example, the distinct patterns of silicate, nutrients and

salinity, plus particularly radiocarbon, have all demonstrated that the deep water of

the North Pacific rises only to mid-depth (about 2500m), and flows southward toward

further rising site in the Southern Ocean (e.g, Fiadeiro, 1983; Toggweiler and Samuels,

1992). Rhines (1993) speculated that the extensive high-latitude outcropping region

in the Southern Ocean may be a dominant site for upwelling from great depth, since

strong, widespread upward Ekman pumping assists the uplift of the deep water.

The upwelling in the GCM is not evenly distributed in space either. Besides strong

upwelling near the western boundary in the mid-latitude, half of the overturning flows

across the equator, of that, half upwells in the high-latitude of the South Ocean (see

Fig. 3-5). How the hydrological cycles change the upwelling process has not been

systematically studied with a GCM. The studies with the box model suggest that

the roles of the hydrological cycles in the two hemispheres are highly asymmetric

(Rahmstorf, 1996; SMS96).

Here we are going to apply two different kinds of perturbations to the model

to study the roles of the hydrological cycles in the two hemispheres. In particular,

the emphasis is on the transient responses of the overturning to the changes of the

hydrological cycles. The perturbation methods are described in Section 4.2, and the

results of the model under the perturbations are presented in Section 4.3 and 4.4.



4.2 Perturbation methods

The two kinds of perturbations applied to the coupled model are both finite ampli-

tude perturbations. One is an internal perturbation, where only the initial fields of

some variables are altered. The internal perturbation can make the model shift from

one equilibrium state to another, but the equilibrium structure in the phase space

will not be altered. Internal perturbations have been widely used to determine the

stability of the equilibrium states that are qualitatively different (far apart in the

phase space). However, it becomes impractical for a model characterized by many

multiple equilibria, some of which are only different quantitatively. As will be shown

in Section 4.3, our coupled model has the latter behavior.

The second type is an external perturbation, applied to certain boundary forcing

terms. Such perturbations can change the equilibrium structure of the phase space,

possibly destablizing existing types of equilibria and creating new types of equilibria.

A example of an external perturbation is a scenario where the atmospheric C02 con-

centration doubles over a century or so (e.g, Manabe and Stouffer, 1994). With a fully

coupled GCM, the significant effect of doubling CO2 is global warming, which results

in an enhanced atmospheric hydrological cycle. As a rough imitation of the C02 in-

creasing scenario, we design an external perturbation on the atmospheric hydrological

cycle. We perturb the freshwater flux Fw profile of each hemisphere separately and

jointly. The intention is to distinguish the roles of Fw in the two hemispheres. The

equilibrium state to which we apply the perturbation is the coupled model(1.5Fw)

steady state. The Fw profile of each hemisphere is varied slowly in time, at a constant

linear rate of 0.1% per year.



4.3 Random wind perturbations and the overturn-

ing predictability

In the perturbation experiments, the zonal wind stress field is also perturbed uni-

formly in space by random variations, north of 460 N. The random variation has

Gaussian distribution, with standard deviation of 1 dyn/cm 2 and zero mean value.

The deviation of the variation is based on the ECMWF wind stress data (Stammer,

personal communication). The perturbation is applied in every time step (2 days).

It mimics the seasonal cycle of the wind in the annual mean coupled model.
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Figure 4-1: The time series of the North Atlantic overturning strength (unit of Sv),
as Fw-N is increased at 0.1% per year. The right panel is with the random wind
variation, while the left one without.

Two perturbation experiments are performed, one with random wind variation,

the other without. Fig. 4-1 shows the time series of the North Atlantic overturning

strength, which is defined as the maximum value of the overturning below 960m

depth (to exclude the Ekman layer) in the North Atlantic. The freshwater flux in the

northern hemisphere (Fw-N) is perturbed to increase by 0.1% per year. The random



wind variation greatly accelerates the collapse of the overturning (The reason for the

collapse will be explained in Section 4.4). Fig.4-2 displays the vertical cross sections

of salinity at 62 N. The time snapshots of the two runs indicate that without the wind

variations the deep convection site can self-sustain even when the zonal freshwater

flux is increased by 50% (upper panel of Fig. 4-2), whereas the convection is shut off

much more rapidly in the presence of the wind variations (lower panel of Fig. 4-2).
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Figure 4-2: The time snapshots of the vertical sections of salinity on 62' N in the
Fw-N increasing perturbations experiments. Upper panel is snapshots for the run
without the wind variations, at 500 years (al), and at 1000 years (a2). Lower panel
is snapshots for the run with the wind variations, at 200 years (bi), and at 500 years
(b2).

The self-sustained convection is associated with a positive feedback (e.g, Lenderink

and Haarsma, 1994). Once the convection is triggered, it creates favorable conditions

for further convection there. Convection mixes down cold and fresh water from the

surface, and brings up warm and salty water from the deep ocean. In the coupled



model, SST relaxation to prescribed T* leads to a rapid loss of the additional heat in

the surface layer which thus becomes denser, meanwhile the surface salinity remains

higher than before the onset of convection. As Fig.4-2 shows, this positive feedback

is so powerful that the convection does not shut off until the freshening is virtually

doubled at the convection site (around year 1000).
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Figure 4-3: The snapshots of the North Atlantic overturning (unit of Sv) at year
200(left), and year 400(right), while the Fw-N increases 0.1% per year.

This positive feedback is apparently weakened by the random zonal wind varia-

tions. The random wind variations generate perturbations in the Ekman currents,

and the noises are propagated downward to the deep layers. As Fig. 4-3 illustrates,

the random wind variations cause oscillation in the overturning strength, and even

when no deep water is formed in the North Atlantic (e.g, at year 400), there are still

oscillations in the deep North Atlantic. That is why the North Atlantic overturning

strength in the time series with the wind variations (Fig. 4-1) does not settle down

to zero after the state is switched to the southern sinking. On a whole, the random



wind variation technique accelerates the changes in the convection sites, and therefore

speeds up the model response to the external perturbation. 1

To assess the possible effect of the random wind variation technique on the charac-

ter of the model, we compare the perturbation runs with the wind variations to those

without the wind variations (Fig.4-4). Note that the time scales of the two panels

are not the same. Although the transitions are speeded up by the technique, the

character of the model is not fundamentally altered by the random wind variations.
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Figure 4-4: The time series of the North Atlantic overturning strength (unit of Sv),
as the Fw-S (top panel), Fw-N (middle panel) and Fw-NS (bottom panel) increase
0.1% per year. The left panel is without wind variations, and the right panel with
wind variations.

Although the fundamental character of the overturning is not changed by the

random wind variations, it is worth finding out whether the overturning is sensitive

to choices of random seeds in the wind variation calculations. Since different ran-

dom variations represent transient weather-type perturbations to the overturning,

'Incidentally, the locking of the convection sites has also been a problem for modeling the ocean
carbon cycle, because these convection areas have far too high biological productivity due to the
large nutrients supply (Sarmiento, personal communication). The random wind variation technique

developed in this study may have its application in the biological model too.
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the question is in fact pertinent to the predictability of the overturning. Three runs

with different random seeds are performed, as the Fw-N increases 0.1% per year. To

objectively compare the collapse times of the North Atlantic overturning, we apply

the 10-year averaged, zero-phase forward and reverse filter to the time series of the

North Atlantic overturning strength. The criterion for the collapse time is defined

as the time when the North Atlantic overturning strength falls below 6 Sv. As Fig.

4-5 shows, the collapse times of the three runs are year 270, year 340, and year 440

respectively. The sensitivity of the overturning to the random seeds suggests that

the predictability of the overturning is surprisingly limited, and the weather-type,

transient random noises have the capability of influencing the overturning temporal

evolution paths in phase space. To exclude the effect of the random seeds, all the

experiments in the following use the identical random seed to calculate the wind

variation.
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Figure 4-5: The time series of the maximum North Atlantic overturning (unit of Sv),
as the wind variations are calculated with three random seeds. The Fw-N increases
0.1% per year. The left panel is the original time series, and the right one is the
filtered time series. The filter is 10-year averaged, zero-phase forward and reverse
digital filtering.



4.4 Internal perturbation experiments

First, we report some results from internal perturbation experiments. An initial salin-

ity anomaly is applied to the Atlantic surface between 600 N and 64' N of the steady

state (1.5Fw) in the coupled model. The salinity perturbation mimics meltwater input

in the North Atlantic during deglaciation. The purpose of the salinity perturbation

is to identify the relative stability of the equilibria in phase space.

Three different salinity anomalies (0.01ppt, 1ppt, and 10ppt) are applied to the

initial field of the steady state (1.5Fw). Fig. 4-6 shows the time evolutions of the

North Atlantic maximum overturning strength under the three salinity perturbations.

We found two intermediate equilibria that are qualitatively similar to the control

steady state, but have different overturning strengths (11 Sv and 15 Sv respectively).

Such intermediate equilibrium states were also found in Hughes and Weaver (1994).

The corresponding perturbation experiments with random wind variation are also

shown in Fig. 4-6, where the technique does not alter the pattern qualitatively. The

existence of multiple intermediate states of the conveyor belt circulation is attributed

to the existence of multiple steady convection patterns under a given surface forcing

but different initial states (Rahmstorf, 1995).

It is worth mentioning that such multiple convection patterns so far have not been

observed in fully coupled GCMs (e.g, Manabe and Stouffer, 1995). We speculate that

the convection sites in the GCMs may be locked to particular locations when realistic

topography and stochastic atmospheric forcings are present. With our idealized model

configuration, there is no topography or coastline to constraint the convection sites,

and it is easy for the convection to flip-flop. Thus it becomes difficult to track the

stability characteristics in phase space by using internal perturbations.
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Upper: without wind perturbation; Lower: with wind perturbation.
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Figure 4-6: Temporal variations
three salinity perturbation runs.
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of the North Atlantic overturning obtained from

4.5 External perturbation experiments

We first investigate the model transient responses to changes in hydrological cycles.

The random wind variations are applied in the following perturbation experiments.

The perturbation is applied separately in each hemisphere, in order to identify the

possible asymmetric role of the hydrological cycle in the two hemispheres. Then, in a

similar way, the hydrological cycle is decreased. Implications for climate changes are

discussed at the end.

4.5.1 Increasing hydrological cycles

The freshwater flux of each hemisphere is increased linearly with time, first separately

and then jointly. The strength of the North Atlantic overturning is defined as the

0.01 ppt

1 Oppt

I I



maximum value of the zonal mean mass transport streamfunction below 950m depth

in the North Atlantic. The temporal variations of the North Atlantic overturning

strength are described in order of the experiments when the hydrological cycles of the

southern hemisphere, northern hemisphere, and both hemispheres increase.

Southern Hemisphere

Fw-S increases 0.1\% per year

400 500 600
Time series (year)

1000

Figure 4-7: The time
as the Fw-S increases

series of the North Atlantic overturning strength(unit of Sv),
0.1% per year.

Fw in the southern hemisphere (Fw-S) is increasing linearly with time at 0.1%

per year. In response to the perturbation, the North Atlantic overturning increases

gradually with time, at quite a small rate (Fig. 4-7). It indicates a significant re-

sponse delay of the North Atlantic overturning to changes in the southern hemisphere,

consistent with the advection time scale from the South Ocean to the North Atlantic

sinking region being more than several hundreds years. The state at the end of the

perturbation (year 1,000) has not reached equilibrium. To demonstrate this, the forc-

ing after 1000 year is held fixed, i.e, Fw-S at 3Fw, and Fw-N at 1.5Fw. Another
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Fw-N-->1.5Fw; Fw-S -- >3Fw
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Figure 4-8: The time series of the overturning strength (unit of Sv) in the North
Atlantic (upper panel), and in the North Pacific (lower panel), under the fixed forcing
of Fw-S at 3Fw, and Fw-N at 1.5Fw.

2,500 years integration is carried out, until the equilibrium state is reached. The

final steady state has northern sinking in both basins, rather than the conveyor belt

equilibrium state. Fig. 4-8 displays the time series of the overturnings in the North

Atlantic and North Pacific under the fixed forcing. Within 400 year of integration,

the conveyor belt state is switched to the northern sinking in the both basins. The

steady sinking strengths of the two basins are close to each other, and are about 24

Sv in each basin.

Northern Hemisphere

As the freshwater flux in the northern hemisphere (Fw-N) increases linearly at 0.1%

per year, the GCM shows the overturning remains essentially unchanged until it
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Figure 4-9: The time series of the North Atlantic overturning strength (unit of Sv),
as Fw-N increases 0.1% per year.

suddenly collapses to sinking in the Southern Ocean (Fig. 4-9). The collapse time is

year 270, when Fw-N has increased about 27%.

Two possible mechanisms can be cited to explain the collapse of the overturning.

The first is the fine-scale convection mechanism. The convection can be wiped out by

excessive fresh water capping over the convection sites. This collapsing mechanism is

used to explain the weakening of the thermohaline circulation caused by atmospheric

C02 increase (Manabe and Stouffer, 1994). As C02 increases, the atmospheric mois-

ture transport becomes stronger due to warming, and the enhanced freshening shuts

off the deep convection, resulting in the weakening of the thermohaline circulation .

The second possible mechanism, recognized by SMS96, is related to the large-scale

processes. Their analysis indicated that the stable equilibrium state will move towards

an unstable regime as the ratio of Fw between the two hemispheres (FwN/Fws)

increases beyond a critical value. Here, the ratio is indeed increased, as Fw-N increases

with time. To examine whether there is indeed a transition from the stable regime



to the unstable one, we perturb the freshwater flux of the collapsed state (around

year 370) to re-establish the conveyor belt state. The new conveyor belt state reaches

about 19 Sv of NADW formation under the fixed Fw-N of 2Fw, and Fw-S of 1.5FW.

Furthermore, the state is stable (Fig. 4-10).

After the perturbation is off
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Figure 4-10: The time series of the maximum overturning
North Atlantic, under the fixed forcing of Fw-S at 1.5Fw

strength (unit of Sv) in the
and Fw-N at 2Fw.

The fact that the re-established conveyor belt state is stable indicates that the

collapse of the overturning is not a transition towards an unstable regime, rather the

collapse depends on the perturbation procedure. This is consistent with the finding

in Section 4.3 where the overturning is sensitive to the random seeds choice in the

wind variations.

Both hemispheres

In the next experiment, Fw increases in both hemispheres with time. As Fig.4-11

illustrates, the collapse time of the Fw-NS run is year 500, delayed by about 230

years, compared to the Fw-N run with the same random seed. Using a different
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Figure 4-11: The time series of the North Atlantic overturning strength (unit of Sv),
as Fw-N and Fw-S increase 0.1% per year. The upper panel is without the filter, and
the lower one with the filter.

random seed, the two runs are repeated, and the collapse time in the Fw-NS run is

again about 200 years later than that in the Fw-N run (Fig. 4-12). The collapse

time differences between the two runs illustrate that the Fw ratio influences the

thermohaline circulation stability. This demonstrates the importance of the large-

scale processes. To predict the thermohaline circulation stability, the results here

indicate that we need to improve simulations of the surface forcing not only in the

northern hemisphere, but also in the southern hemisphere.

4.5.2 Decreasing hydrological cycles

The natural step to test further the above conclusion is to reverse the perturbation

sign. We decrease Fw at 0.1% per year for each hemisphere (Fig.4-13). The North
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Figure 4-12: The time series of the North Atlantic overturning strength (unit of Sv).
The difference from the left panel to the right panel is the random seeds of the wind
variations. The difference from the upper panel to the lower panel is the perturbation
method, Fw-N increasing in the upper panel, while both Fw-N and Fw-S increasing
in the lower panel.

Atlantic overturning decreases as Fw-S decreases, which is consistent with the notion

that the thermohaline circulation is controlled by the Fw-S.

For the case of Fw-N decreasing, the overturning rapidly increases. At the end of

the perturbation (year 1000), the state has not equilibrated. A continued integration

with fixed Fw (Fw-S=1.5Fw; Fw-N=0) shows that the additional convection sites

triggered by decreasing of freshening gradually die out. The overturning reaches a

steady state after 2,500 years, and settles down to 21 Sv, from the starting value of

30 Sv (fig.4-14). It is also shown that the deep water is formed in the North Pacific,

as well as in the North Atlantic.

Another interesting case is both Fw-N and Fw-S decreasing to zero, i.e, there is

no freshwater forcing in the model. Fig. 4-15 shows the time evolution of the North

Atlantic overturning, as the global freshwater flux reduces to zero, and remains zero

thereafter. The equilibrium strength of the North Atlantic overturning settles down

to about 15 Sv. Note, however, that the circulation has changed to a northern
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Figure 4-13: The time series of the North Atlantic maximum overturning (unit of Sv),
as the Fw-S (top panel), Fw-N (middle panel), and Fw-NS (bottom panel) decrease
0.1% per year.

sinking equilibrium state. On the other hand, the overturning strength in the box

model would reduce to zero, if the freshwater flux decreases to zero, as long as the

temperature difference between the two high latitude boxes is zero. Thus, this result

illustrates the break-down of the applicability of the box model, noted in Section 3.4.

In general, the results from all the perturbation experiments, with either increasing

or decreasing freshwater fluxes in each hemisphere, are apparently not in conflict

with the major conclusions from the pole-to-pole three-box model (SMS96). Some

results agree reasonably well, for example, the overturning strength increases as the

freshwater flux strength increases. In addition, the Fw ratio is important in both the

box model and the GCM. However, the difference between the GCM and the box

model is also provocative. It can be attributed primarily to the fact that there is no

convection adjustment process in the box model. This suggests that the dynamics of
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Fw-S-->1 SFw; FW-N decreases to zero, then fixs to zero
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Figure 4-14: The time series of the overturning strength (unit of Sv) in the North
Atlantic (upper panel), and in the North Pacific (lower panel), as the Fw-N decreases
to zero (in year 1000), and then remains zero, while Fw-S is 1.5Fw.

the thermohaline circulation in the GCM can be essentially explained by the interplays

between the fine-scale convection adjustment processes and the large-scale horizontal

pole-to-pole processes.

4.6 Applications to the global change scenario

In the light of the above results, the roles of the hydrological cycles in the two

hemispheres are highly asymmetric. While the hydrological cycle in the southern

hemisphere controls the steady states of the thermohaline circulation , the northern

hemisphere hydrological cycle has a direct impact on the transient behavior of the

thermohaline circulation . Furthermore, the stability of the overturning is governed

by the interplay between the convection processes and the large-scale processes. The

fine-scale convection adjustment represents a major element in the deep water for-

mation process, which in turn, is an integral part of the large-scale thermohaline

circulation process. Since the large-scale and fine-scale processes are operating on
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Figure 4-15: The time series of the overturning strength (unit of Sv) in the North
Atlantic, as the global freshwater flux reduces to zero, and remains zero.

different time scales, it is still appropriate to consider them separately in the context

of time scales. Over a few years, the convection variations can dominate the transient

behavior of the deep water formation, without affecting the global climate. If the

anomalies persist for sufficiently long time, the large-scale dynamics are capable of

making the transition permanent.

One example of such interplay is the thermohaline circulation responses to C02

increasing in the fully coupled GCMs (MS94). It was found that the North At-

lantic overturning became weaker or almost disappeared during the first 150 years of

the C02 increasing experiments (Fig.4-16). This was mainly due to the freshwater

capping of the high latitude convection sites, where the excess of precipitation over

evaporation increased markedly due to the enhanced poleward moisture transport in

the warmer model troposphere. In our idealized model, a similar perturbation has

been simulated by increasing Fw-N slowly with time.

However, MS94 further found that the North Atlantic overturning almost recov-

ered its original intensity by the 500th year for C0 2-doubling integration. According
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Figure 4-16: Temporal variation of the intensity of the thermohaline circulation in the
North Atlantic from the 4XC, 2XC, and S integrations. Here the intensity is defined
as the maximum value of the streamfunction representing the meridional circulation
in the North Atlantic Ocean. Units are in Sverdrups. (from Manabe and Stouffer,
1994)

to MS94, the recovery of the overturning was associated with the development and

intensification of a subsurface positive temperature anomaly in low and middle lati-

tude of the North Atlantic, which resulted in increased density contrast between the

high and low latitudes in the North Atlantic.

Here, based on our perturbation results, we provide a different possible reason

for the recovery in MS94. A close look up of MS94's maps of temperature change

in the CO 2 increasing experiments indicates highly asymmetric responses in the two

hemispheres, with dramatic warming and increased salinity (not shown here) in the

northern hemisphere (Fig.4-17), but relatively minor changes in the high latitudes of

the southern hemisphere. We thus suggest that the pole-to-pole forcing gradient of the

overturning experienced minor changes in the doubling of C02 experiment; therefore,

the overturning recovered to its original strength after the initial weakening. The

initial weakening of the overturning reveals the role of the fast convection processes.

While the recovery of the overturning indicates the unchanged large-scale dynamical

----- 111111 _



2-2

400-500
90N 60 30 EQ 30 60 90S

LATITUDE

Figure 4-17: The Atlantic latitude-depth distribution of zonal mean difference in
temperature (0 C) between the 2XC and standard run for the 400th-500th-year period
(taken from MS94).

constrain in the model. On the other hand, the permanent collapse of the overturning

in the quadrupling of C02 experiment indicates that the large-scale dynamics has

been fundamentally altered.

Another possible application of our experiments is related to the predictability of

the thermohaline circulation . The sensitivity experiments of different random wind

variations suggest that the overturning is sensitive to the details of the perturbation

procedure. This implies that the responses of the thermohaline circulation to C02 in-

creasing will depend not only on how much C02 is increased, but also on how fast the

C02 increases with time. Furthermore, it may be well possible that the transient vari-

ations of the atmospheric state can influence the thermohaline circulation responses

to the C02 changes. It thus presents a great challenge to the current climate model's

ability to predict the global change.
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Chapter 5

Feedbacks affecting the

thermohaline circulation

5.1 Introduction

In the previous two chapters, the annual mean atmospheric meridional transports of

heat and freshwater are prescribed from the observations, and thus are not allowed

to interact with the ocean model. The longwave radiative term is the only interac-

tive coupling between the atmospheric model and the ocean GCM. This version of

the coupled model is defined as the 'non-interactive' model, and corresponds to the

preliminary stage of ocean-atmosphere coupling.

Here, we are going to construct a series of coupled models with different couplings

to the atmospheric transports, of which the highest stage is the coupled model with

fully interactive atmospheric transports. The purpose is to understand feedbacks

associated with the meridional transports in the atmosphere and the thermohaline

circulation. The proceeding here closely follows the conceptual framework of NSM94,

Marotzke and Stone (1995), and Marotzke (1996). We will emphasize the feedback in-
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tercomparisons between the GCM version coupled model and the coupled box model,

in particular, since some new feedbacks arise from the more complex coupled model.

Since flux adjustments are applied in our fully interactive model, another goal

in this chapter is to investigate how different flux adjustment methods affect the

strengths of the feedbacks, and therefore the climate sensitivity and stability of the

thermohaline circulation. The flux adjustment scheme used in this study is discussed

in Section 5.2. Then external perturbations are applied to the different versions of

the coupled models, and the feedbacks are examined in a systematic way in Section

5.3. Two different flux adjustment methods are compared and assessed in Section

5.4.

5.2 Why flux adjustment is needed

In the fully interactive model, the meridional transports of heat and freshwater in

the atmosphere are no longer held fixed, but are determined interactively by the

parameterizations described in Section 2.4. We use the conveyor belt state of the

'non-interactive' coupled model (1.5Fw) as the initial state for the fully interactive

model. Upon coupling, the fully interactive model immediately drifts away, and settles

down to a new state without deep water formations in either basin (Fig.5-1).

The drift of the fully interactive model is not surprising, when we compare the

atmospheric northward heat transport and the zonal mean surface heat flux from

the non-interactive model, with those from the fully interactive model (fig.5-2). The

surface forcings from the two models are apparently incompatible, and the discrep-

ancy mainly results from the difference between the modeled SST and the observed

SST (Levitus, 1982). As Fig. 5-3 shows, the meridional gradient of the zonal mean

modeled SST is stronger than that of the observed SST. Therefore, the modeled at-
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Figure 5-1: The Atlantic meridional mass streamfunction (Sv), at the initial state
(left), and at the drifted state (right) of the fully interactive model.

mospheric eddy transports, which are proportional to the 2.5th power of the modeled

temperature gradient (Eq. 2.10), are too strong, compared to the observed values (fig.

5-2). As a result of that, the fully interactive model drifts away under the excessive

oceanic heat/freshwater fluxes.

The strong meridional gradient of the modeled SST arises because of the weak

oceanic heat transport in the model, which is about half of the observed value, as

shown in Section 3.3. When the ocean GCM is forced with the observed atmospheric

heat transport, if the longwave radiation is also fixed from observations, the GCM

would have transported the observed amount of heat in the ocean. However, since

the longwave radiation is not fixed, but parameterized as a linear function of the

modeled SST, the model can compensate its low oceanic heat transport by obtaining

a much stronger meridional gradient of SST, and hence a stronger differential longwave

radiative forcing.
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Figure 5-2: The atmospheric northward heat transports (left, unit of PW) and the
zonal mean oceanic surface heat fluxes (right, unit of W/m 2 ), at the initial state
(starred), and at the drifted state (solid) of the fully interactive model.

Fundamentally, the drift of the fully interactive model results from the incompat-

ibility between the atmospheric model and the ocean model in poleward heat trans-

ports. The weak oceanic heat transport in the model can be attributed to several

defects of the GCM, among them are the coarse horizontal resolution, the low North

Atlantic Deep Water formation, the diffusive mixing scheme in the western boundary,

to name a few. Improvements (e.g, the Gent and McWilliams (1990) scheme) were

not available for the GCM (MOM1 version) until half way into this study. Also it

still underestimates the oceanic heat transport (Boning et al. 1995). To maintain

the consistency of the work, we decided not to modify the model in the middle of

the study, but to continue to apply flux adjustment to prevent the drift of the fully

interactive model.

The flux adjustment developed here is based on the observation that the atmo-

sphere and the ocean actually are comparable in their heat transport efficiencies

(Trenberth and Solomon, 1994). To preserve this character, we adjust the atmo-

spheric heat transport efficiency to match the oceanic one, so that the two models
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Figure 5-3: The zonal mean modeled SST and the observed SST (unit of C), as a
function of latitudes.

can have comparable heat transport efficiencies. This approach is different from the

conventional flux adjustment (e.g, Sausen et al., 1988; Manabe and Stouffer, 1988;

Murphy and Mitchell, 1995), in which the fluxes are adjusted by constants. We believe

that the efficiency adjustment serves better for the purpose of this work, because to

preserve the relative efficiency of the two models may help recover the original charac-

teristics of the interaction between the atmosphere and the thermohaline circulation

. A further assessment for the two flux adjustment schemes will be discussed in a

later section of this chapter.

To adjust the heat transport efficiency of the atmospheric model, we tune the

coefficients in the parameterization (Eq. 2.10), to give the same atmospheric heat

and freshwater transports as the observed values,

CI( s )(dTmodel )2.5 = CL 8 s dTobserv 2.5

0T dy T dy
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[ '+C( W dTmodel 2.5 = [Cs+CL(T)]( dTobserv) 2.5 (5.2)[C'+ LiT dy ) TW dy

The two adjusted coefficients (CI and Cs) are about 30% of the original ones.

After the adjustments, the surface forcings from the fully interactive model are the

same as those from the non-interactive model, and therefore, the initial state of the

model remains the same upon fully coupling. The same flux adjustment is applied in

all the following feedback experiments.

5.3 Feedbacks in the coupled models

5.3.1 Experimental strategy

In the following, there are a total of nine different versions of the coupled models,

which are listed in Table 5.1. Models H1-3 have the atmospheric heat transport

interactive in the northern, southern and both hemispheres respectively. Models Fl-

3 are similar to the models H1-3, except that the atmospheric freshwater transport is

interactive, instead of the heat transport. Both transports become interactive in the

models HF1-3. A negative (positive) feedback is present when a perturbation weakens

(enhances) itself through the changes it causes. To elucidate feedbacks in the coupled

models, all the nine coupled models are subjected to the external perturbation of

increasing the global hydrological cycle 0.1% per year. That is, the moisture transport

coefficient increases 0.1% per year, but the latent heat transport as well as the total

heat transport remains unchanged. As shown in Fig. 4-11, with the non-interactive

model, the North Atlantic overturning collapses to the South Ocean sinking state

after several hundred years of such external perturbation. There, we have defined the

collapse time as the time when the maximum value of the North Atlantic meridional



Table 5.1: Definition of the coupled models. Hd and Fw indicate the atmospheric
heat and freshwater transports respectively.

Model # Hd interactive Fw interactive Hd and Fw interactive

N-Hem. interactive HI F1 HF1

S-Hem. interactive H2 F2 HF2

Both Hem. interactive H3 F3 HF3

mass streamfunction is less than 6 Sv below 960m deep, after a certain filter is applied.

Here, the goal is to examine how feedbacks modify the collapse time of each model,

and to assess relative importance of each feedback. The shorter the collapse time,

the less stable is the model. Furthermore, identical random wind variations are used

in all the experiments to exclude the possible effects of the random wind variations.

5.3.2 Thermohaline feedbacks

Following the notation in Marotzke (1996), we first review some feedbacks that are

associated with only the oceanic processes.

Feedback #1: Oceanic Heat Transport

decreased overturning -4 reduced advection of warm water to high

latitudes -+ increased surface density in high latitudes -- + increased

deep sinking -+ increased overturning.

This is a negative feedback, and is present in all versions of the coupled models
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(including the non-interactive model).

Feedback #2: Oceanic Salinity Transport

decreased overturning -+ reduced advection of salty water to high

latitudes -+ reduced surface density in high latitudes -- + reduced

deep sinking -+ further decreased overturning.

This is a positive feedback, and is fundamental to the existence of the multi-

ple equilibrium states under mixed boundary conditions (Walin, 1985; Marotzke,

1990). Notice that the surface heat flux is conceptually assumed fixed in feedback

#1, whereas fixed surface freshwater flux is assumed in feedback #2. Both feedbacks

are purely oceanic.

However, the focus of this work is on the coupled feedbacks that involve changes

in the atmospheric meridional transports, and hence changes in the surface heat and

freshwater fluxes. These coupled feedbacks have been studied using the box models

(NSM94, Marotzke and Stone, 1995; Marotzke, 1996), as well as more complex models

(e.g, Saravanan and McWilliams, 1995; Lohmann et al. 1996). This work has mainly

two new features. First, our applied perturbation is of large-scale as well as long time

scale, while the previous studies used only the local perturbation with a short time

duration (Saravanan and McWilliams, 1995; Lohmann et al. 1996). We believe that

the coupled feedbacks associated with the large-scale processes can only be elucidated

under the appropriate perturbation method. The perturbation of local scale (e.g, a

few certain gridpoints) with short time scale may not allow the coupled feedbacks to

respond before it is smoothed out by the local advection process. Second, our model

geometry is of two basins, whereas only single basin was used in the previous works

(Lohmann et al. 1996).

In spite of these new features, our coupled model approach follows that of the box
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model (NSM94), since we want to assess how robust the feedbacks in the simple box

model are in the frame of a complex ocean GCM.

Feedback #3: Atmospheric Heat Transport

decreased overturning -- increased SST gradient -- + increased atmo-

spheric heat transport -+ smaller SST gradient -- + decreased further

overturning

As discussed in Marotzke (1996), this is a positive, coupled atmosphere-ocean

feedback. It involves the fundamental negative feedback in the atmosphere between

the meridional temperature gradient and eddy activity and hence heat transport in

the atmosphere. The anomalous atmospheric heat transport tends to damp out the

change of SST meridional gradient, which limits the power of the negative oceanic

feedback #1; therefore, it acts as a positive feedback for the thermohaline circulation

To examine this feedback in the GCM, the perturbations are applied to two types

of coupled models, those with feedback #3 (Models H1-3) and the other without (non-

interactive model). The time series of these models are plotted in Figure 5-4, which

shows that the collapse times of the models with feedback #3 are, on the average,

about 200 years shorter than that of the model without the feedback. This demon-

strates that the atmospheric heat transport feedback identified in the box model acts

in a similar fashion in the GCM. In addition, we find that the feedback #3 loop is not

complete, it works only in the northern hemisphere. In the southern hemisphere, a

new feedback loop is identified, which differs from the feedback #3 loop in two places,

and works as follows,
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Figure 5-4: The filtered time series of the North Atlantic overturning strength, Top:
non-interactive model; Upper-middle: Hd interactive in the northern hemisphere;
Lower-middle: Hd interactive in the southern hemisphere; Bottom: Hd interactive in
both hemispheres.

decreased overturning -+ reduced equatorward oceanic heat transport

-+ reduced SST meridional gradient -+ reduced atmospheric heat

transport -- + increased SST meridional gradient --- + increased surface

density in high latitudes -+ reduced upwelling in high latitudes -+

further decreased overturning

The first difference between the two feedback loops is that the overturning upwells

in the southern hemisphere. Second, the oceanic heat transport of the overturning

is equatorward in the southern hemisphere. Due to these two signs changes, the at-

mospheric heat transport feedback still counteracts the negative oceanic temperature
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Table 5.2: Collapse times (unit of year) in the models with/out the atmospheric heat
transport, when the global freshwater fluxes increase 0.1% per year.

Collapse time Hd interactive

Non-interactive 490

N-Hem. interactive 270

S-Hem. interactive 280

Both Hem. interactive 280

feedback in the southern hemisphere, therefore, it is positive. We call it feedback #3'.

The existence of feedback #3' is consistent with the pole-to-pole dynamical picture

of the thermohaline circulation , as discussed in Chapter 4.

Table 5.2 summarizes the relative strength of the atmospheric heat transport

feedback in each hemisphere. From the criteria of the collapse time, the feedback

strength in each hemisphere is qualitatively similar. However, the temporal variations

of the overturning are not the same in each model. For example, the model with

feedback #3' hovers near 10 Sv (the intermediate equilibrium) for about 80 years

before collapsing, while other models (Models H1, and H3) maintain the original

state of 20 Sv, then collapse within 20 years (Fig. 5-4).

It is worth mentioning that the model with two positive feedbacks combined does

not become less stable than the model with one positive feedback. One possible ex-

planation is associated with the low latitudes, which serves as a link between the
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feedbacks in the two hemispheres. If this is the case, it is possible that the feedback

in the southern hemisphere can set back the feedback strength in the northern hemi-

sphere. For instance, as the overturning decreases, SST meridional gradient in the

southern hemisphere reduces, while the gradient of SST in the northern hemisphere

increases. Since mixing between the two hemispheres happens through the low lati-

tudes, the opposite changes of the SST gradient counteract each other, therefore, the

positive feedback in each hemisphere can be set back. Note that further diagnoses

are needed to validate the above speculation.

As a whole, the feedback #3 found in the box model is also identifiable in the

GCM. Additionally, we find a new positive feedback (feedback #3') operating in the

southern hemisphere, which is not addressed in the box model of one hemisphere.

Another interesting feedback studied in the box model involves the response of

the atmospheric moisture transport to changes in the SST meridional gradient:

Feedback #4: Atmospheric Moisture Transport

decreased overturning -+ reduced northward oceanic heat transport

-+ increased SST meridional gradient -+ increased atmospheric mois-

ture transport -+ reduced surface salinity in high latitudes -+ re-

duced surface density in high latitudes -+ further decreased overturn-

ing.

This is also a positive coupled atmosphere-ocean feedback, named EMT feedback

in NSM94. With a similar argument, this feedback destabilizes the thermohaline

circulation by enhancing the oceanic positive salinity feedback #2. Figure 5-5 displays

the temporal variations of the North Atlantic overturning in the models with the

atmospheric moisture transport feedback, and the one without. On average, the

collapse time of those with the feedback is about 250 years shorter than that without
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the feedback.
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Figure 5-5: The filtered time series of the North Atlantic overturning strength, Top:
non-interactive model; Upper-middle: Fw interactive in the northern hemisphere;
Lower-middle: Fw interactive in the southern hemisphere; Bottom: Fw interactive in
both hemispheres.

The equivalent feedback in the southern hemisphere is also found to be positive,

decreased overturning -- + reduced equatorward oceanic heat trans-

port -+ reduced SST meridional gradient -- + reduced atmospheric

moisture transport -+ increased surface salinity in high latitudes -- +

reduced upwelling in high latitudes -+ further decreased overturning.

Here, the two sign changes are similar to that of feedback #3'. We call this new

positive feedback of the atmospheric moisture transport in the southern hemisphere

as feedback #4'.
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Table 5.3: Collapse times (unit of year) in the models with/out the atmospheric
moisture transport, when the global freshwater fluxes increase 0.1% per year

Collapse time Fw interactive

Non-interactive 490

N-Hem. interactive 240

S-Hem. interactive 240

Both Hem. interactive 240

Table 5.3 gives the relative strengths of the atmospheric heat transport feedback

in each hemisphere. From the criteria of the collapse time, the feedback strength in

each hemisphere is qualitatively similar, but with different collapsing paths. Again,

the agreement between the box model and the GCM concerning the atmospheric

moisture transport feedback is reasonably good.

Since the latitudinal profile of the moisture transport is prescribed in this study,

small scale changes on the moisture transport in high latitudes are not captured.

Lohmann et al. (1996) found that, when local temperature effects are included,

the moisture transport feedback is weaker than that in NSM94. However, studies

with coupled atmospheric GCMs (e.g, Schiller et al, 1996) have indeed observed

moisture transport changes due to large-scale changes in the temperature gradient,

thus confirming the feedback #4 in the coupled system.

The combined atmospheric transports feedbacks are illustrated in Figure 5-6. One
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interesting feature of this set of perturbation is the significantly different responses

between the model with feedbacks in the northern hemisphere and that in the southern

hemisphere. It cannot be explained by the results from the previous studies and the

current work.

Hd and Fw feedbacks, Fw-NS increase with time
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Figure 5-6: The filtered time series of the North Atlantic overturning strength, Top:
non-interactive model; Upper-middle: Hd and Fw interactive in the northern hemi-
sphere; Lower-middle: Hd and Fw interactive in the southern hemisphere; Bottom:
Hd and Fw interactive in both hemispheres.

A summary of the coupled feedbacks is presented in Table 5.4. The coupled

feedbacks in both hemispheres are found to destablize the thermohaline circulation

. Notice that there is one exception, the Model HF2 (with feedback #3' and #4') is

actually more stable than the Model F2 (with only feedback #4'). The stabilizing

effect is associated with the atmospheric heat transport feedback. If it is strong, the
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Table 5.4: The collapse times in the coupled models. Hd and Fw indicate the atmo-
spheric heat and freshwater transports respectively.

Collapse time Hd interactive Fw interactive Hd and Fw interactive

Non-interactive 490 490 490

N-Hem. interactive 270 240 170

S-Hem. interactive 280 240 310

Both Hem. interactive 280 240 280

temperature gradient is tightly confined, so is the atmospheric moisture transport, and

the feedback #4' is less powerful, as previously noted by NSM94, Marotzke and Stone

(1995), and Marotzke (1996). Recently, Krasovskij and Stone (1996, submitted) have

found an analytical solution including the nonlinearity in the atmospheric transports

feedbacks with a box model.

5.4 Flux adjustment revisited

The insight gained about the feedbacks between the oceanic and atmospheric trans-

ports can directly guide us in assessing the validity of flux adjustments. Flux adjust-

ments are performed to correct for incompatible transports in model ocean and model

atmosphere. If a transport is in error, so is the associated feedback. For example,

too strong an atmospheric moisture transport leads to artificial destabilization of the
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feedbacks in the models with additive flux adjustment
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Figure 5-7: The time series of the North Atlantic overturning (unit of Sv) in the cou-
pled models that use additive flux adjustment. Top: non-interactive model; Middle:
model with the atmospheric moisture transport feedback; Bottom: fully interactive
model

thermohaline circulation . The flux adjustment developed in this study is to adjust

the atmospheric transports efficiencies to match the oceanic ones, even though the

oceanic transports are in error.

To evaluate the effects of our flux adjustment, we construct a different flux ad-

justment scheme, in that the fluxes are adjusted by constants. We call it an additive

flux adjustment. The additive flux adjustment does not change the observed atmo-

spheric transports efficiencies, but subtracts constant fluxes to match the observed

atmospheric fluxes,

Hobs = [Cs + CL( , )]( d ) - Constant
0 dy
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Efficiency adjustment (solid) and additive adjustment (dashed)
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Figure 5-8: The time series of the North Atlantic overturning strength (unit of Sv)
in the fully interactive models, with the additive flux adjustment (dashed), and the
efficiency adjustment (solid), when the global freshwater fluxes increase 0.1% per
year.

This is in contrast to the scheme constructed in Section 5.2, in which,

og =C[ dTs
Ha =[CS + Cq(_'||{ )"

Hob = C' T dy
(5.4)

Since in the latter scheme, the atmospheric transports efficiencies are multiplied by

constants, we call it an efficiency adjustment. Notice that the scheme used here is

different from the multiplicative flux adjustment proposed by Marotzke and Stone

(1995), which was designed to conserve the original stability of their box model. The

scheme used here does not necessarily have such a property.

With the two different adjustment schemes, the primary concern is whether the
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conclusions of the previous section will be altered if the additive scheme is used. We

selectively repeat two perturbation runs using the additive scheme, and the results

are shown in Fig. 5-7. Both feedback #3 and #4 remain positive, the same as that

with the other adjustment scheme. However, the feedback strengths are sensitive to

the adjustment schemes. Under the two adjustment schemes, the fully interactive

model has different collapse times of the North Atlantic overturning when the global

freshwater fluxes increase linearly with time, as shown by Figure 5-8. The model with

the additive flux adjustment is less stable than that with the efficiency adjustment,

for the latter reduces the atmospheric transports efficiencies, and therefore reduces

the positive atmospheric transports feedbacks.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

This thesis has developed a hybrid coupled model which is simpler than coupled

GCMs, and yet can capture the salient features of the thermohaline circulation and

the large-scale coupling processes between the thermohaline circulation and the ex-

tratropical atmospheric dynamics. The coupled model is composed of an idealized

global ocean GCM and an energy balance model with nonlinear parameterizations

of atmospheric transports of heat and moisture. Two fundamentally important cli-

mate issues have been systematically investigated: (i) the large-scale dynamics of the

thermohaline circulation , and (ii) the coupled feedbacks between the thermohaline

circulation and the atmospheric mid-latitude eddy activities.

Though its limits of applicability to the real climate are as yet unclear, a prime

virtue of the coupled model is that it allows a self-consistent representation of ex-

tratropical, large-scale ocean-atmosphere coupling. In addition, the ocean model,

in major aspects, resembles that of the coupled GCMs (e.g, Manabe and Stouffer,

1988). The insight gained from this hybrid coupled model can carry over directly to
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the analyses of a coupled GCM, and provide useful guidelines to the improvement of

climate prediction.

If the thermohaline circulation behaves as in the model, the model results suggest

answers to the two questions about the thermohaline circulation which were posed

earlier.

I. How does the global thermohaline circulation respond to changes in

hydrological cycle?

The sensitivity experiments of Chapter 3 have systematically explored the equi-

librium responses of the conveyor belt circulation to the global freshwater fluxes with

different strengthes. There, the coupled model has been simplified with fixed ob-

served atmospheric transports of heat and moisture, and the only coupling is the

longwave radiative flux dependence on surface temperature. Surprisingly, it is found

that the North Atlantic overturning equilibrium strength generally increases with

the strength of the global freshwater fluxes. Following the reasoning of Manabe and

Stouffer (1994), who argued that the collapse of the North Atlantic overturning in

their global warming experiment with a coupled GCM was caused by the increase of

atmospheric moisture transport in the warmer climate, we had expected the stronger

freshwater flux to lead to a weaker overturning. In fact, Manabe and Stouffer's rea-

soning only applied to the northern hemisphere, where the increased freshwater flux

tends to reduce the sinking that forms the deep water, thus to reduce the overturning

strength. In the southern hemisphere where the overturning is rising rather than

sinking, the effect is the opposite, and in our model this effect dominates. This result

illustrates that changes in the thermohaline circulation can only be predicted correctly

in models that simulate the hemispheric asymmetries accurately. The conventional

freshwater flux adjustment used in coupled GCMs are generally highly asymmetric,
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and are in danger of possibly distorting the original character of the climate system.

Another implication is the different sensitivity of the overturning depicted by

hemispheric models and by global models. With a hemispheric model, Winton and

Sarachik (1993) found that, as the freshwater flux becomes stronger, the overturning

began to oscillate with periods of no deep water formation followed by sudden flushing.

Apparently, the overturning sensitivity changes significantly in our model of global

configuration. When the global freshwater flux exceeds a certain threshold, and the

surface becomes too fresh to sustain the deep water formation (e.g, the 4xCO2 case

in Manabe and Stouffer, 1994), the global model may exhibit similar oscillations to

those found in the single hemispheric model. Our results indicate that the oscillation

regime is not present in the global model within reasonable parameter choices.

One drawback of the global model is that the Antarctic Bottom Water formation

is very weak or even absent, and the dynamics in ACC is highly simplified. As a

result of that, there is little sinking in the southern high-latitude, and the GCM is in

fact a model for the North Atlantic Deep Water formation, with sinking and rising

in the high-latitudes of each hemisphere respectively. That's why the box model

(Rooth, 1982), which assumes the flow linearly proportional to the density difference

between the two high-latitude boxes, gives an analytical solution of the square root

law, if the temperature in the two high-latitude boxes are held identical. This, in turn,

confirms that the North Atlantic overturning is overwhelmed by the interhemispheric,

pole-to-pole dynamics.

To further substantiate the above hypothesis, a series of perturbation experiments

were performed using a special perturbation method, in which the freshwater flux

strength is varied 0.1% per year at each hemisphere separately and jointly. This

perturbation strategy allows us to probe the large-scale dynamics of the overturning
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in each hemisphere separately. The results suggest that, for realistic parameter values,

the equilibrated responses of the overturning is governed primarily by the freshwater

flux in the southern hemisphere. The freshwater flux in the northern hemisphere has,

surprisingly, little control on the equilibrium state of the overturning, simply because

of the compensation between the stronger freshwater flux and stronger salt advection.

Such asymmetric role of the two hemispheres freshwater fluxes is also found with the

Rooth's box model (Rahmstorf, 1996; Scott et al., 1996). Rahmstorf (1996) tested the

box model results in an ocean GCM, through the freshwater perturbation to certain

gridpoints. Although the perturbation strategies are different in Rahmstorf (1996)

and ours, the pole-to-pole dynamics of the overturning is found robust in these two

studies.

One feature which was not studied by Rahmstorf (1996) is the transient behavior

of the overturning. Here, our perturbation experiments illustrate that the change of

the freshwater flux in the northern hemisphere has major impact on the overturning

transient response, which is governed by the local convection dynamics. The convec-

tion process represents a major element in the deep water formation process, which

in turn, is an integral part of the large-scale thermohaline circulation process. Al-

though the large-scale and the local convection processes are operating on different

time scales, the interplay between the two processes is evident.

The experiments illustrate interesting behaviors of the overturning when a random

component is added to the zonal wind stress of the northern high latitudes. First, the

random wind perturbation accelerates the transient responses of the overturning to

changes in the hydrological cycle, but the fundamental character of the overturning is

not altered by the random wind variation. Second, the exact path of the overturning

evolution is sensitive to the choices of random seeds in the wind stress field, which
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implies that the weather-type random noise is remembered and sustained long enough

by the model to lead to changes in the overturning temporal paths. This suggests

that the long term prediction of the overturning may be very limited, if possible.

The interplay between the two different scales processes is also found affecting

the overturning stability. The results suggest two different modulations on the over-

turning stability. The first involves the freshwater capping over the high latitude

convection sites. This is a local destabilizing mechanism, and is used to explain the

collapse of the North Atlantic overturning in the global warming experiments (Man-

abe and Stouffer, 1994). The second modulation is associated with the large-scale

process. It was first identified in the box model (Scott et al., 1996) that increasing

the ratio of the freshwater fluxes between the two hemispheres (north vs. south)

destabilizes the flow state. Our results found that the Fw ratio affects the stability

of the global model as well.

II. How do the coupled feedbacks operate in the global model?

This question was the major focus of Chapter 5, where a series of coupled models

were developed, with different assumptions about the atmospheric transports, which

are shown to correspond to different stages of ocean-atmosphere coupling. When the

atmospheric transports were made interactive, the coupled model drifted away from

the conveyor belt circulation. The basic cause of the collapse is the ocean model's

underestimate of the poleward heat transport. The weak oceanic heat transport in

the model are attributed to several factors, among them are the weak North Atlantic

Deep Water formation rate, the coarse horizontal resolution of the model, the diffu-

sive mixing scheme, to name a few. Because of the underestimate, the temperature

meridional gradients are too strong. Thus when the atmospheric transports are made

interactive, the too strong gradients produce the atmospheric transports which are
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also too strong, so strong that surface waters in the high-latitudes of the North At-

lantic are now warmed by the atmospheric heat fluxes, rather than cooled, and the

deep water formation there is completely turned off. This is in fact a possible expla-

nation of why the overturning collapses in some coupled GCMs if no flux adjustments

are used (e.g, Manabe and Stouffer, 1988).

In order to prevent the drift of the coupled model, the atmospheric transports

parameterization were tuned, so that the the parameterizations produced the observed

atmospheric transports when the temperature structure of the coupled model was used

to calculate the transports, rather than when the observed temperature structure was

used. In effect, this introduces errors in the efficiencies of the atmospheric transports

which are matched to the errors in the efficiencies of the oceanic transports, and

thereby preserves a realistic balance between the atmospheric and oceanic processes.

This efficiency adjustment is quite different from the conventional additive adjustment

used in coupled GCMs, where specified latitudinal dependent constants are added to

the surface fluxes and held fixed. In light of Marotzke and Stone's (1995) discussion,

both adjustment schemes can not preserve the original stability of the thermohaline

circulation . But the efficiency adjustment is a more rational choice concerning the

relative efficiencies of heat transports in the two systems. Furthermore, the results

suggest that the coupled feedbacks are robust with either of the adjustment schemes.

The coupled feedbacks associated with the meridional transports in the atmo-

sphere that were identified in the box models (Nakamura et al., 1994; Marotzke and

Stone, 1995), are found operating in a similar fashion in the ocean GCM. The per-

turbation used in this study is of large-scale as well as long time scale, while the

previous studies used the local perturbation with a short time duration (Saravanan

and McWilliams, 1995; Lohmann et al. 1996). We believe that the coupled feedbacks
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associated with the large-scale processes are more effectively and correctly elucidated

under our perturbation method.

In addition, a series of new feedbacks are found operating in the southern hemi-

sphere, with the same signs as those in the northern hemisphere, but different feedback

loops. The differences arises from the upwelling of the overturning in the southern

hemisphere, as well as the equatorward oceanic heat transport by the overturning

there.

The feedback loop in the Southern Hemisphere acts as follows:

decreased the overturning -+ reduced equatorward oceanic heat trans-

port -- + reduced SST meridional gradient -+ reduced atmospheric

heat and moisture transports -+ reduced buoyancy in high latitude

-+ reduced upwelling in high latitude -+ further decreased the over-

turning

The results also suggest that the different adjustment schemes lead to the coupled

feedbacks with different amplitudes. Because of it, the stability of the thermohaline

circulation is in fact sensitive to how the flux adjustment is applied.

6.2 Outlook

On the basis of our numerical results with a global ocean GCM coupled to an en-

ergy balance atmospheric model, certain dynamical processes have been shown to be

essential in predicting the variability and stability of the thermohaline circulation

These include,

" large-scale dynamical processes;

" fine-scale vertical convection processes;
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* coupled feedbacks associated with the atmospheric eddy transports.

Some features of the model behavior have been explained only tentatively. This is

particularly true with regard to the fine-scale convection process. It is very likely that

the idealized lateral and bottom topography and coarse resolution may not represent

the convection well, or possibly distort it.

Although the model is successful in reproducing the conveyor belt circulation,

systematic discrepancies are also evident. In particular, the oceanic heat transport

was seriously underestimated in the model. One promising improvement is the inclu-

sion of the isopycnal mixing scheme (Gent and McWilliams, 1990), which was found

increasing the oceanic heat transport (Boning et al, 1995).

The conjecture that upwelling of the overturning is concentrated in the South

Ocean points strongly to the necessity of including more sophisticated dynamics in

that region. Meanwhile, since the wind stress was held fixed in this study, any possible

interactions between the wind-driven circulation and the thermohaline circulation are

not investigated. In particular, the upwelling may be well correlated to the wind

stress.

Another model improvement involves the prescribed latitudinal distributions of

the atmospheric transports. A more consistent formulation would allow the latitudi-

nal profiles internally determined, so that the local temperature effect on the moisture

transport could be included.

These modifications will likely allow an even better simulation of the thermohaline

circulation . If so, yet further progress can be made in answering the many questions

surrounding the thermohaline circulation .
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Appendix A

A.1 Conveyor belt circulation under different at-

mospheric heat transport

As a counterpart of the Fw variation on the thermohaline circulation , here we also

perform the sensitivity study to the atmospheric heat transport. The motivation for

this set of experiments comes from the study by Stone and Risbey (1990), where

they pointed out that atmospheric GCMs for climate study tend to overestimate

atmospheric heat transport by 50 to 100%. To assess the effect of stronger atmospheric

heat transport on the thermohaline circulation , the atmospheric heat transport is

increased by 30%, and is used for the runs of the 3.Fw and 1.Fw. Similar procedures

are applied to the two runs, as described in section 3.3.1. For the 1.Fw, the final

conveyor belt type circulation is 12 Sv (Fig.A-1), which is about 20% reduction,

compared to the 1.Fw with the observed atmospheric heat transport Hd. It can

be explained from the view of energy balance for the atmosphere and the ocean.

Increasing of the Hd will decrease the oceanic heat transport, if assuming the sum of

the two is approximately constant, this will result a weaker thermohaline circulation

. On the other hand, increased Hd will reduce the temperature meridional gradient,
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therefore, reduce the driving forcing for the thermohaline circulation (Fig.A-1). The

meridional mass transport, Atlantic meridional mass transport, Pacific
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Figure A-1: 1.Fw and 1.3Hd, Atlantic (left), Pacific (right)

3.Fw run with increased Hd can not sustain the conveyor belt circulation, even though

the initial state is perturbed to set up the conveyor belt type circulation, the final state

is the sinking in the southern ocean. The collapsing of the conveyor belt circulation

indicates that under the strong freshwater flux, the temperature increasing will cause

the surface layer too fresh and warm to sink in the North Atlantic. The southern

sinking becomes the only possible equilibrium state then.
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