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Dry Process Fluorination of Uranium Oxides using Ammonium Bifluoride

by

Charles Burnett Yeamans

Submitted to the Department of Nuclear Engineering as Partial Fulfillment of the
Requirements for the Degree of Master of Science in Nuclear Engineering

ABSTRACT

An experimental study was conducted to determine the practicality of various unit operations for
fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double
salts from uranium dioxide and ammonium bifluoride, then decompose these salts to uranium
tetrafluoride through heating to temperatures near 425 'C in either a fluidized bed or a stirred bed.
Fluorination in the stirred bed was attempted without pretreatment of the reagents. For the fluidized
bed experiments, reagents were ball-milled prior to being heated in the bed. Experiments were
conducted in either argon or 4% hydrogen in argon.

The ball mill appeared to be an effective technique for fluorinating uranium dioxide with ammonium
bifluoride. Samples changed color from brown to bright green, and no oxides could be detected in the
x-ray diffraction pattern of the product.

It was found that stainless steel is a suitable material of construction for reaction vessels, whereas mild
steel parts corroded quickly. Only a small degree of fluidization provided adequate mixing in
fluidized beds, but a paddle mixing the stirred beds left an unmixed region around the bed perimeter.

Results from the stirred beds showed the initial fluorination reaction completed only when the reagents
were heated to 110 'C for at least three hours under argon. Decomposition took place under argon
with a temperature ramp up to 425 'C. The product UF 4 contained less than 1% oxide as an impurity,
and the decomposition appeared to be complete.

Fluidized beds were run with both argon and 4% hydrogen in argon as carrier gases. Experiments
with 4% hydrogen in argon produced uranium tetrafluoride, with ammonium uranium pentafluoride
and uranium dioxide as impurties. Experiments in argon produced uranium tetrafluoride, with uranyl
difluoride, ammonium diuranyl pentafluoride and triuranium octoxide as impurities. Minimum
temperatures and times needed to decompose the double salt in the fluidized beds were 200 minutes at
115 'C, a 500-minute ramp to 425 *C, and 200 minutes at 425 'C. The intermediate double salt
produced at 110 'C appeared to be triammonium uranium septafluoride.

Thesis Supervisor: Kenneth R. Czerwinski
Associate Professor, Department of Nuclear Engineering

Thesis Reader: John R. FitzPatrick
Technical Staff Member, Los Alamos National Laboratory
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Chapter 1: Introduction

1.1 Motivation

Ammonium bifluoride (NH4HF2, also known as ammonium hydrogen fluoride) has

been shown to fluorinate uranium dioxide (U0 2), and has been used successfully in the

preparation of both tetravalent uranium fluoride salts and ammonium uranium fluoride double

salts. Uranium dioxide can be converted to uranium tetrafluoride (known as "green salt" in the

nuclear power industry) by a number of industrially accepted methods. The commonly

deployed industrial processes use powerful fluorinating agents such as hydrogen fluoride at

temperatures above 600 'C [1]. Since ammonium bifluoride is much less toxic than hydrogen

fluoride, and the temperatures involved would be below 460 'C, it may prove a better

industrial fluorinating agent. Equipment could be constructed from less exotic engineering

materials; 300-series stainless steel is compatible with ammonium bifluoride whereas nickel

or Monel is required to handle the more powerful fluorinating agents [2]. Uranium

tetrafluoride can be reduced to uranium metal with calcium metal and iodine [3] and is also an

intermediate in the production of uranium hexafluoride, used for isotopic enrichment of

uranium by gaseous diffusion, through the Fluorox process reaction with air at 800 'C [4]:

2UF4 + 02 -+ U0 2F2 + UF6

This work attempts to demonstrate, on a small scale, the feasibility of operating a

fluidized bed process for the production of uranium tetrafluoride. Fluidized beds represent

one of the most studied chemical engineering unit operations, but since the primary focus

herein is on the applicability of this technology and not its optimization, very little effort has

been devoted to fluidized bed performance relative to the ammonium uranium fluoride system

thermochemistry. After finishing work with the stirred bed apparatus, it became apparent that

a better method for keeping reagents well mixed while removing decomposition products

would be necessary in order to develop an effective chemical process. The fluidized bed

presents itself as the logical option since a carrier gas provides a means of agitation and heat

transfer to reactants, while at the same time removing the more volatile decomposition

products and excess reagents. A fluidized bed has a distinct advantage over a rotating drum,

also commonly employed for processes involving solid-solid chemistry, in that it has no

moving mechanical parts. Mechanical simplicity, from which reliability usually follows,



constitute the foundation of any practical chemical engineering process, and constitutes the

primary motivation for use of a fluidized bed.

1.2 Experimental Overview

Uranium dioxide will be converted to uranium tetrafluoride by fluorination with

ammonium bifluoride to form the intermediate double salt tetra-ammonium uranium

octafluoride dehydrate, (NH4) 4UF 8-2H20. This double salt will then be thermally

decomposed, yielding uranium tetrafluoride and ammonium fluoride.

The first objective of this project was to investigate the chemistry of the ammonium

uranium fluoride system in a somewhat practical setting: the stirred bed reactor. Samples of

reaction products were taken after both the initial fluorination and after decomposition of the

double salt. At the intermediate stage, the primary impurity is oxygen remaining from

incomplete fluorination of U0 2 . Excess ammonium bifluoride reagent and ammonium

fluoride may also be present. After the vessel was heated above 400 "C, decomposition

should be complete, with partially decomposed ammonium uranium fluoride salts and

uranium oxides as the primary impurities. Although a stirred bed demonstrated the chemistry,

it fell short in enough practical areas to warrant development of a better unit operation.

The second, more practically applicable objective was to demonstrate this process in a

fluidized bed reactor. The fluidized bed concept attempts to affect the same chemistry as the

stirred bed, with analysis focused on the same points; however, it was necessary to first

determine the proper operating conditions, in particular the gas flow rate, before an apparatus

could be finalized. By first running a small sample in a glass chromatography column, visual

observation confirmed proper bed fluidization. A full-scale glass column provided an exact

analog for the final apparatus: a stainless steel column contained within a tube furnace to

provide the full range of desired temperatures. The stainless steel column attempts to

demonstrate effectiveness of the fluidized bed process for uranium fluorination, the materials

compatibility of stainless steel with this process, and the suitability of pure argon or hydrogen

in argon as a carrier gas.



Chapter 2: Background

2.1 Physical and Chemical Properties of Uranium Compounds

2.1.1 Oxides

Uranium dioxide is a brown or black solid with a cubic structure, melting at 2878 'C,

and having a bulk density between 2.0 and 5.0 grams per cubic centimeter [5]. Finely divided

uranium dioxide appears brown, whereas coarser-grained material appears black. Even small

amounts of oxidation to higher oxides (UO 2+8) will also cause U0 2 to appear black.

Non-stoichiometric oxides of uranium, UO2+x, where x is a continuous variable between 0 and

1, form spontaneously from the stoichiometric dioxide in the presence of oxygen (Figure 2.1).

Tetrauranium nonoxide (U40 9, or U02.25 ), a black solid, constitutes a genuine phase in the

phase diagram of uranium oxide. It forms slowly at 20 'C from uranium dioxide in the

presence of oxygen. Uranium dioxide is most easily prepared from higher oxides by

reduction with hydrogen at 300-600 *C. U308 is generally the most stable oxide of uranium

in air. Even under conditions where U30 8 is not the stable phase, it is often formed since the

reaction of U0 2 with oxygen is rapid compared to the reaction of U30 8 with oxygen.

w V

O: Ur

11 111
]aa

Figure 2.1 - Phase Diagram of the Uranium Oxide System: from Galkin NP, Sudarikov BN, et.
al., Technoloqy of Uranium, translated from Russian by USAEC, Springfield, Va : available from the
U.S. Dept. of Commerce, Clearinghouse for Federal Scientific and Technical Information, 1966, p 18.



2.1.2 Fluorides and Ammonium Fluorides

Uranium tetrafluoride is a green solid with a slightly distorted square antiprismatic

structure (eight-fold uranium-fluorine coordination, Figure 2.2). It melts at 960 'C and has a

negligible vapor pressure at ambient temperature. Bulk density of the tetrafluoride is between

2.0 and 4.5 g/cc, depending on the method of preparation. UF4 is stable in air up to at least

600 *C. The hydrated octafluoride double salt is a bright lime-green solid. Other ammonium

uranium salts are light green.

U F4

Square Antiprism

Figure 2.2 - Structure of Uranium Tetrafluoride

Uranyl difluoride (U0 2F2) is light yellow. It is stable in air up to 300 'C, after which

it begins to decompose to U30 8. Above 110 'C, hydrated forms lose water to form anhydrous

uranyl difluoride. It is highly soluble in water (65.6 weight % at 25 C). Preparation is

easiest from U0 3 and gaseous hydrogen fluoride at 300 'C, and can also be prepared with

greater difficulty from aqueous solutions of U0 3 and hydrofluoric acid [6].

2.2 Chemical Behavior of the Ammonium-Uranium-Fluoride System

Uranium (IV) oxide and 10% excess ammonium bifluoride will react at 80-125 0C in

an argon atmosphere to yield the dehydrated ammonium-uranium fluoride double salt

(NH4)4UF8 [7]. Ammonium bifluoride sublimes at 126 'C [8]. Although there is some debate

as to the actual behavior of the chemical system, current knowledge indicates it behaves as

described by Wani, Patwe, et. al. [9].



Fluorination:

1) U0 2 + 4 NH 4-HF2 -* (NH 4 )4 UF 8 -2H20
80-125 OC

2) (NH4)4UF8-2H20 -+ (NH4)4UF8 + 2H20

Decomposition:

3) (NH 4)4UF8 -> (NH 4)3UF7 + NH4F

4) (NH 4)3UF7 -* (NH 4)2UF6 + NH4F 125-425 0C

5) (NH 4)2UF6 -+ NH 4UF5 + NH4F

6) NH4UF5 -> UF4 + NH4F

Some older literature reports only NH4UF 5 in the decomposing system, although the

conditions described most likely lead to the formation of (NH 4)4UF8. Benz, Douglass, et al.,

[10] prepared samples of ammonium uranium fluoride compounds using a thermogravametric

analyzer to control both temperature and atmosphere. Any sample that could be removed

from the apparatus, remaining chemically and thermally stable, was considered a stationary

arrest. Compounds inferred from their weight, but not actually removed and analyzed, were

considered non-stationary arrests. Stationary arrests of (NH 4 )2UF 6, NH4UF 5, and NH 4F-3UF 4

as well as a non-stationary arrest of (NH 4)4UF8 were reported. Some experiments were done

under argon, others under vacuum, but the decomposition was always reported to complete

near 425 0 C. The tetrafluoride is sufficiently stable to preclude decomposition of the

tetrafluoride to the trifluoride [11].

Previous TGA studies of compounds in the ammonium uranium fluoride system

suggest the existence of a large number of stable and metastable uranium tetrafluoride-

ammonium fluoride compounds. Three polymorphic species were found for NH4UF 5, while

four were found for (NH 4)2UF6 [12]. The decomposition of ammonium uranium

pentafluoride contains two discrete steps [13]. The heavier compounds, between

(NH 4)4UF 8s2H20 and (NH 4)2UF 6, are somewhat difficult to identify by TGA alone because

one ammonium fluoride molecule has mass similar to two water molecules. Decomposition

of the double salt can easily be confused with the loss of hydrate water from

(NH4)4UF 8-2H20. Modem literature sites crystallographic evidence that the system does

contain the doubly hydrated octafluoride, and decomposition is sequential starting with the

hydrate water and continuing to ammonium fluoride from the dehydrated compounds.



Powder x-ray diffraction patterns are known for most compound in the ammonium

uranium fluoride system, with the most identifiable being the four phases of (NH4) 2UF6

(Figure 2.3). The distinct low 20 peak may be used to identify this intermediate species, as no

other ammonium uranium (IV) fluoride or uranium oxide has this peak. Ammonium uranyl

fluoride compounds have their most intense peak between 110 and 13'.

60 4S 40 36 30 to to to ~

Figure 2.3 - X-ray Diffraction Patterns of (NH4)2UF6 Phases: The peak just below 150
distinguishes these compounds from any other in the system of interest.
from Penneman RA, Kruse FH, et. al., Inorganic Chemistry, 3 #3 (1964), 309-315.

The use of ammonium bifluoride does raise the issue of solid-solid surface chemistry,

but reaction kinetics are sufficiently fast if the reactants are finely ground and the bed is

agitated during the reaction [14]. As a fluorinating agent, ammonium bifluoride is sufficient

to fluorinate the tetravalent oxide, but will not, by itself, fluorinate tetravalent uranium to UF6 .

As a reducing agent, no evidence is given for ammonium bifluoride reducing uranium oxides.

Uranyl difluoride (U0 2F2) will form when uranium dioxide reacts with ammonium bifluoride

in the presence of oxygen in the range of 25-180 'C [15]. Uranyl difluoride also forms from

the reaction of U30 8 and ammonium bifluoride in an inert atmosphere.



2.3 Common Methods for Preparation of Uranium Tetrafluoride

Uranium tetrafluoride can be prepared through the decomposition of ammonium

uranium pentafluoride, NH4UF5, which is commonly prepared by precipitation from aqueous

uranium solutions. Ammonium diuranate, (NH 4)2U20 7 , when reduced with zinc in

hydrochloric acid, forms uranium tetrachloride dissolved in aqueous ammonium chloride.

Upon treatment with aqueous hydrofluoric acid, ammonium uranium pentafluoride

precipitates. This can then be filtered and dried [16]. In another aqueous process, ammonium

uranium fluoride is precipitated directly from an aqueous uranium (IV) solution with aqueous

ammonium bifluoride [17]. Mixtures of ammonium bifluoride and hydrazine fluoride have

also been used to produce ammonium uranium pentafluoride [18]. The decomposition of

ammonium uranium pentafluoride has been studied both on a laboratory scale, [19,20,21] and

an industrial scale (see section 2.4). In the ammonium uranium (VI) fluoride system, double

salts of ammonium fluoride and uranyl difluoride can be reduced to uranium tetrafluoride

using a stream of Freon-12 (dichlorodifluoromethane) at 450-500 *C. [22]

2.4 Fluidized Bed Technology in Uranium Processing

A successful fluidized bed plant for the decomposition of ammonium uranium

pentafluoride was built and operated in South Africa in the early 1960's. Feedstock was

obtained from aqueous precipitation. Nitrogen was used to fluidize beds of approximately

500 kg of ammonium uranium pentafluoride per batch. Twenty six such batches were treated

to produce UF4 with less than 20 ppm nitrogen [23].

2.5 Fluidized Bed Behavior

Fluidized beds are common as unit operations in chemical processes involving

solid-solid chemical reactions. A carrier gas is forced upward through a vertical bed of small

solid particles, expanding and agitating the bed, giving it many properties of a liquid. In this

state, powders can be made to flow through valves and piping, so fluidization is a common

method of powder transport in the absence of a chemical reaction. When a reaction is desired,

a fluidized bed provides the degree of homogenization required for high yields in a

mechanically simple way compared to rotating blades or drums. Preheating the carrier gas



provides a simple method of temperature control within the bed, and due to the high degree of

mixing, heat and mass gradients within the bed are virtually non-existent.

The degree and nature of bed fluidization depend largely on the properties of both the

powder and carrier gas. The Archimedes number. Ar, Equation (2.1), is a representation of

particle size.

Ar=d 3PAP' =(d,*)3  (2.1)

A descriptive nondimensional fluid velocity is given by Equation (2.2).

U*=U- P (2.2)

where
U = actual upward superficial fluid velocity, volumetric flow per total

cross-sectional area

p = fluid density
Ap = difference between fluid density and particle theoretical density

= fluid viscosity
dp= mean particle diameter

g = gravitational constant

Grace [24] gives a map describing bed operation within a wide parameter space of d* and U*.

Particles are grouped based upon mean size and density. Uranium dioxide is generally in the

form of Geldart Group B particles [25].

For spherical particles, the terminal fluid velocity, alternately interpreted as the

velocity at which particles are entrained in the carrier gas stream and carried out of the bed, is

approximately fifty times the minimum flow needed to fluidize the bed [26]. This gives a

great deal of leeway in the operating parameters of a fluidized bed.

Different fluidization regimes (Figure 2.4) are characterized by an increasing bed void

fraction as upward gas flow is increased. In the aggregative fluidization regime, individual

particles remain largely in contact with one another, ideal for a bed in which a chemical

reaction between two components is desired. A freeboard distance must be given above the

top of the bed to allow for particles thrown up by normal spouting action to fall back into the

bed without being carried out of the system. This can be estimated as the transport



disengagement height (TDH). For columns on the order of 0.01 m in diameter, the theoretical

TDH is less than 0.1 m at all gas flows where aggregative fluidization occurs [27].

>171
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Figure 2.4 - Flow Regimes for Upward Flow of Gas through a Particle Bed: The aggregative
flow regimes are ideal for bed in which a surface chemical reaction is desired.
(from Grace JR, Canadian Journal of Chemical Engineering, 64 (1986), 353-363.)



T

THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 3: Experimental Equipment and Procedures

3.1 General Considerations

The decomposition of the ammonium-uranium fluoride system has been shown to take

place at temperatures in the range of 425 'C. After all of the uranium oxide reacts to form the

double salt, the temperature is ramped to -425 'C to decompose the tetra-ammonium uranium

octafluoride to produce an intermediate ammonium-uranium fluoride salt and ammonium

fluoride. The bed is maintained at an elevated temperature to complete the decomposition of

the salt to pure uranium tetrafluoride.

3.2 Experimental Descriptions

At ambient lab temperature (-20 *C), uranium dioxide and ammonium bifluoride were

mixed both manually and mechanically. Heating of the reactants was carried out in both

stirred and fluidized beds. Any experiment involving decomposition of ammonium fluoride

double salts was done in a fume hood. Uranium oxide used in the stirred bed trial and the

manually agitated ambient temperature trial was fairly coarse, thus the black color. For all

other trials, the uranium dioxide used was Alfa-Aesar Lot #K22M14, 99.8% metal basis U0 2,

finely divided (30 pm), brown in appearance. Ammonium bifluoride was supplied by Aldrich

Chemical: 99.999%, Batch #14207AB. Both pure argon and 4% hydrogen in argon were

supplied by BOC Gases.

3.2.1 Ambient Temperature Fluorination

3.2.1.1 Unagitated Reactants

At ambient temperatures (-20 *C), reactants can be mixed in Pyrex beakers because

etching of glass by ammonium bifluoride is slow at these temperatures. Ammonium

bifluoride rapidly etches glass at higher temperatures.



3.2.1.2 Manually Agitated Reactants

44.8 g of finely ground ammonium bifluoride was mixed with 52.4 g uranium dioxide.

A small borosilicate glass beaker placed in a fume hood contained the reactants. Contents of

the beaker were blended with a scoop once daily until the color was homogeneous throughout

the mixture. Progress was monitored visually for a period of 17 days.

3.2.1.3 Mechanically Agitated Reactants

14.60 g uranium dioxide and 12.98 g ammonium bifluoride were placed in a ball mill

(Spex Certiprep 8000M mixer/mill) for twenty minutes. The ball mill shakes the material

contained in the vessel with several small stainless steel balls. The final product is finely

divided but compacted, which was then ground by hand in an agate mortar to free the powder.

3.2.2 Stirred Bed

The reaction was attempted in a stainless steel stirred bed vessel (Figure 3.1) with a

diameter of six inches surrounded by a tube furnace capable of producing temperatures up to

600 'C. The entire apparatus was contained within a ventilation hood to prevent personnel

exposure to radioactive material and hazardous chemicals. A programmable electronic

controller connected to a thermocouple maintained the furnace tube temperature within 10 *C

of the setpoint. A separate thermocouple measured the temperature inside the reaction vessel.

Finely ground ammonium bifluoride (88.2 g) was mixed with of uranium dioxide (100 g). An

argon flow rate of 0.05 standard cubic feet per hour maintained an inert atmosphere within the

reaction vessel. The temperature ramp began after loading material into the crucible, which

was located near the bottom of the vessel. A Dayton 4Z435 gear motor, providing 26.2 in-lbs

of torque at 7 rpm, turned a paddle with %" of clearance from the inside of the crucible. Mild

steel shimstock (0.005") was added to the outside of the paddle blades in an attempt to

eliminate the gap between the paddle blades and the crucible wall.



Figure 3.1 - Stirred Bed Apparatus: A crucible sat within the reactor vessel (left) and reactants
were stirred by a paddle (right). The coating of rust visible in these pictures was the result of corrosion
of mild steel shimstock that had been attached to the paddle to aid in complete mixing. Very little
corrosion of stainless steel parts was seen.

Four different heating schedules were considered (Figure 3.2).
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Figure 3.2 - Heating Schedules for Mechanically Agitated Reactants: These trials are
characterized by the lower plateau temperature and duration, and the maximum temperature and
duration.



Trials 1 and 2 held the sample at -80 *C while trials 3 and 4 held the sample near

120 'C. Trial 3 held the sample above 400 'C for two hours whereas trial 4 allowed the

temperature to drop below 400 'C for most of the upper temperature plateau. Samples from

trials I and 2 were not analyzed due to distinctly black U0 2 visible in the final product.

3.2.3 Fluidized Beds

3.2.3.1 Small Glass Column

An 8.6 mm glass disposable chromatography column fitted with an argon flow line

was loaded with 1.5 g U0 2 and 1.25 g NH4HF2. Argon was forced upward through the

column frit at flows sufficient to fluidize the bed. The column was run in this manner at

ambient temperature for ten days. Initial observations on the smaller column showed a

significant variation between the calculated and actual bed properties.

3.2.3.2 Large Glass Column

A full scale, unheated apparatus (Figure 3.3) was made from a pesticide

chromatography column (Kimble-Kontes 420600-0000, 22 mm ID) loaded with 6.08 g of

ball-milled material. Heating was not available in this setup as NH4HF2 rapidly etches

borosilicate glass at elevated temperatures; however, this setup enabled the determination of

appropriate argon flow ranges, eliminating much of the experimental uncertainty in bed

fluidization since it could be verified visually in this setup (Figure 3.4).



Figure 3.3 - Full Scale Glass Column: Argon flow is regulated and measured by
the flowmeter at right, and flows upwards through the column at left. A water bubbler
(at center) retains any uranium powder that may escape the system.

Figure 3.4 - Detail of Full Scale Glass Column During Operation:
Fluidization is evident from the appearance of the bed.



. .. ... ....

3.2.3.3 Full-Scale Stainless Steel Column

3.2.3.3.1 Experimental Apparatus

The final setup constructed from stainless steel allowed for heating to achieve the full

range of required temperatures. See Appendix A for detailed engineering drawings. The full-

s cale column consisted of a one-inch diameter 304 stainless steel pipe (Figure 3.5), mounted

vertically and fitted with a 20 gm mesh disk (Figure 3.6) to support the bed. Fifteen inches of

freeboard provided particle arresting, as did an expansion to two-inch diameter just upstream

of the gas outlet. Carrier gas flowed through copper tubing wound around the outside of the

main tube as a pre-heater before passing through the bed. The tube was supported in the

center of a two-inch tube furnace (Barnstead/Thermolyne 21100), which kept the bed at a

controlled temperature (Figure 3.7). Thermocouples inserted below the bed and at the top of

the freeboard section measured temperature, recorded by a digital thermometer (VWR Double

Thermometer with Computer Output #23226-656) fitted with Type K thermocouples.

Figure 3.5 - Main Column Piece: Copper tube was wound around the column to act as a
pre-heater for the inlet argon stream. The bed is located at the bottom of the column, which is on the
far right side of this photo.

Figure 3.6 - Frit Disk



Figure 3.7 - Full Scale Steel Column: The entire setup was contained in a fume hood.

3.2.3.3.2 Temperature Monitoring and Control

Rigid Type K thermocouples were mounted at both ends of the column. The primary

thermocouple sat about 1/8" below the bed, vertically in the gas stream. A secondary

thermocouple measured temperature near the column outlet, just above the top column flange.

Temperature was controlled by the built-in controller (Eurotherm 2116) on the furnace.

Furnace tube temperature could be set, as well as ramp rates and dwell times. Since the

temperature difference between the furnace tube and the bed varied slightly between trials,

furnace setpoints were adjusted accordingly to maintain proper bed temperature.

3.2.3.3.3 Temperature Cycles

Heating cycles were designed to heat the bed to a lower plateau temperature within

five degrees of 115 'C. Upper plateaus were designed to hold the bed within five degrees of

425 'C. Hold times are given for the actual measured values, not set dwell times, and are

reported based on the time for which the measured temperature was within two degrees of the

given bed temperature value. The outlet temperature responded much more slowly to changes

in furnace tube temperature, thus the actual outlet temperature hold times were less than those

for the bed temperature. Table 3.1 contains important parameters for heating cycles used.

Figure 3.8 plots a typical heating cycle.



lower plateau upper plateau
sample time (min) bed temp outlet temp time (min) bed temp outlet temp
CBY-01 112 81 68 132 427 257
CBY-02 64 101 n/a 156 439 183
CBY-03 186 108 80 116 437 185
CBY-04 172 111 73 n/a n/a n/a
CBY-05 245 120 75 238 428 179
CBY-06 190 114 91 262 426 215

Table 3.1 - Important Values from Temperature Cycles
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Fi gure 3.8 - Measured Temperatures versus Time for Sample CBY-05

3.2.3.3.4 Feedstock

Most fluidized bed samples (CBY-02 through CBY-06) were prepared using a ball-

milled mixture of ammonium bifluoride and uranium dioxide with 2.37% excess ammonium

bifluoride by weight. Sample CBY-01 was prepared from a similar feedstock that had not

been ball-milled.

. . . . . ...... ............ .... ..................... ................ ......... ....



Chapter 4: Analytical Methods

4.1 General Comments

Different analytical methods were used to analyze stirred bed samples than were used

to analyze fluidized bed samples. This chapter describes all methods used, and to which

samples they apply. In general, the method used was selected based on availability. The

thermogravametric analyzer was not purchased until after the stirred bed experiments were

completed, nor was the x-ray diffraction equipment available at that point. For this reason,

the samples from the fluidized bed experiments received significantly better analytical

treatment than those from the stirred bed.

4.2 Uranium Mass Fraction

For samples prepared in the stirred bed reactor, uranium mass fractions were

determined by liquid scintillation counting.

For those prepared in fluidized beds, a small sample, in the range of 10mg, was

removed and dissolved in 1OmL concentrated nitric acid. The dissolved sample was diluted

with de-ionized water to 25 mL in a volumetric flask. This solution was transferred to a

scintillation vial from which 1mL of solution was pipetted to a separate vial with 7mL of

dionized water. This brought the uranium and acid concentration into a proper range for

inductively-coupled plasma atomic emission spectroscopy (ICP-AES), usually 0.01 to 0.05

grams uranium per liter. The ICP-AES instrument used was a SpectroFlame PMC FMD-07

(SN 4605/92). Calibration curves were obtained for each session from standard samples

prepared by dilution of a PlasmaCAL 1000 gg/mL uranium standard (Lot SC22359 1).

4.3 Soluble Uranyl Fluoride Content

To exploit the solubility difference between uranium (IV) and uranium (VI)

compounds, water dissolution was performed to determine the fraction of uranium in water

soluble species. 25 mg samples were dissolved in dionized water. After nine hours, these

samples were diluted to 25 mL and the uranium concentration measured using ICP-AES.



4.4 Oxygen Content

Material prepared in the stirred bed were analyzed for oxygen content by heating

samples in a graphite crucible to 1000 IC under an inert atmosphere. The CO concentration

was then measured, and the oxygen content of the sample interpolated using a calibration

curve.

4.5 Nitrogen Content

Samples prepared in the stirred bed were analyzed for total nitrogen content by ion

chromatography. Free NH 3 and soluble NH4/ was determined by water dissolution, followed

by ion chromatography.

4.6 Thermogravametric Analysis

Thermogravametric analysis was performed on a Perkin Elmer, Pyris 1 TGA using

sample sizes between 5 and 40 mg. There was no offgas analysis. Details of heating cycles

are provided with each data set in the lower part of all TGA data figures. Argon was used as

both a blanket gas and pneumatic gas. There was no oxygen removal system on the gas inlet.

4.7 X-Ray Diffraction

X-ray diffraction patterns were obtained with a Rigaku RU200 x-ray tube with a

rotating copper anode. The copper Kai line was used for the analysis in a 185 mm

diffractometer. Samples were run using the maximum power available from the tube: 18 kW,

operating at 60 kV and 300 mA. Sample scans covered a 2-theta range from ten to one

hundred degrees, and patterns were analyzed using JADE (version 5.0) software. This

software removed amorphous background peaks and Ka2 lines from the raw pattern. Output

is a list of possible matches to known compounds based on the observed pattern. This

software contained powder diffraction files for most uranium compounds, but these files were

listed as "questionable." Data analysis takes on a much more heuristic character with the

apparent lack of reliable data, as patterns from unknown samples could be compared to those

obtained with standard uranium compound samples. Similar peak locations and sizes can be

compared, but no quantitative analysis can be performed with this method.



Corundum (A12 0 3) was added to samples in order to calibrate the 20 axis. Corundum

lines are present in all XRD patterns. The stronger lines contained in the JADE powder

diffraction file are shown in Table 4.1.

20 1/l&
25.578 0.45
35.152 1.00
37.776 0.21
43.355 0.66
52.549 0.34
57.496 0.89
61.298 0.14
66.519 0.23
68.212 0.27
76.869 0.29
77.224 0.12

Table 4.1 - Strong X-ray Diffraction Peaks of Corundum
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Chapter 5: Results

5.1 Fluorination of Uranium Dioxide

5.1.1 Unagitated Reactants

Experiments at ambient temperature (-20 C) demonstrated that fluorination of UO2 to

(NH 4)4UF8 -2H20 progresses slowly: visible amounts of unreacted U0 2 and NH 4-HF2

remained after 17 days (Figure 5.1). When heated to near 125 *C, this reaction proceeds

quickly.

0 days 2 days 10 days 14 days 17 days

Figure 5.1 - Ambient Temperature Fluorination: The reaction between ammonium bifluoride and
uranium dioxide progressed slowly at room temperature, evident by the slow change from black
uranium dioxide to the green ammonium fluoride double salt.

5.1.2 Mechanically Mixed Reactants

5.1.2.1 Stirred Bed

Because no samples from the stirred bed were taken before the heating cycle began,

any conclusions about the effectiveness of fluorination must be made based upon samples

from intermediate decomposition stages. Oxides in the intermediate may be left over from

incomplete fluorination or come from oxygen in the cover gas. Based on the visible presence

of uranium oxides in stirred bed trials I and 2 (Figure 5.2), and the lack of visible oxide in

trials three and four, it appears that three hours at 80 'C is not sufficient to allow' the

fluorination reaction to go to completion if the reactants are not finely ground.



5.1.2.1

Trial #1 Trial #2

Figure 5.2 - Product After Incomplete Fluorination in Stirred Bed: Black
U02 powder is visible in green UF4. The fluorination reaction is slow at 800C.

Ball Mill

After being ground for twenty minutes in the ball mill, the mixture of finely divided

uranium dioxide and ammonium bifluoride turned the color of hydrated ammonium uranium

octafluoride (Figure 5.3). A ball-milled mixture with larger-grained uranium dioxide showed

no color change initially (Figure 5.4); however, after being left for 24 hours, the color of the

mixture was similar to that of the product from the experiment with finer uranium dioxide.

Figure 5.3 - Ambient Temperature Fluorination, Fine U0 2 : When the brown reagents (left)
were ground in a ball mill for twenty minutes, a pronounced color change to bright green (center)
occurred. After the powder was fluidized in argon for two days, the color was slightly lighter (right).

.. . ..................... ........... .. I ............. ..



Figure 5.4 - Ambient Temperature Fluorination, Coarse U0 2: When black U02 and NH4HF2
(left) were ground in a ball mill for twenty minutes, no color change occurred initially (right). After
twenty four hours, the color was similar to that of the product from finer-grained uranium dioxide. The
larger particle size slows the fluorinations reaction, but not so severely as to impede actual processing.

Samples prepared using the ball mill from both coarse and fine U0 2 were analyzed

using TGA (Figure 5.5 and Figure 5.6). The analysis of Benz, Douglass, et. al., used TGA

run times near 1000 hours, but since this amount of time was not available, shorter runs were

used. Different heating cycles were used in an attempt to economize time expenditure, and

since later analysis revealed both ball-milled samples to be the same material, TGA data was

interpreted assuming analysis of one sample could be applied to the other. The first heating

cycle used appeared to be too fast to allow for the decomposition steps to complete in a

discrete and identifiable manner, so a slower heating cycle was used. Theoretical weight

fraction values for TGA of (NH 4)4UF8 -2H20 are shown in Table 5.1.

species composition molecular fraction of
U F NH4  H20 0 weight initial wt.

(NH4)4UF82H 20 1 8 4 2 0 498.2 E1.000

(NH4)4UF8 1 8 4 0 0 462.1 0.928

(NH4) 3UF7 1 7 3 0 0 425.1 0.853

(NH4) 2UF6 1 6 2 0 0 388.1 0.779

NH4UF5 1 5 1 0 0 351.0 0.705
UF4 1 4 0 0 0 314.0 0.630

U0 2 1 0 0 0 2 270.0 0.542

Ammonium

to the blue
Table 5.1 - Theoretical Weight Loss Valuesfor Compounds in the
Uranium Fluoride Double Salt System: These values correspond
dashed lines drawn on subsequent TGA plots.



A loss of what was most likely hydrate water and some ammonium fluoride occurred

below 80 'C, and further loss of ammonium fluoride continued up to 110 *C. At 110 0C, the

product weight matched that calculated for (NH 4)3UF7. Another distinct loss step began near

150 'C with a final weight matching that of (NH 4)2UF6 . All weight loss steps above 200 C

did not lead to a weight corresponding to any compound observed in the ammonium uranium

fluoride system. The sharpest weight loss occurred at 278 *C, with one additional distinct

step starting just above 300*C.

50 100

(NH )UF*2H O
4 20

(NH)U~44 8

(NH ) UF

43 7
(NH 4)2 UF6

(NH')UF
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Figure 5.5 - TGA Curve of Ball-Milled Sample: (upper) Dashed lines show theoretical plateau
values for various intermediate compounds in the ammonium uranium fluoride system. The curve
starts above a mass fraction of one to account for removal of excess ammonium bifluoride. The lower
plot shows the heating cycle used.
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Figure 5.6 - TGA Weight Loss Rate Curves of Ball-Milled Samples: Rate of weight
loss is plotted versus temperature. Five distinct weight loss steps are observed.

Since no powder diffraction file existed for the hydrated double salt, these samples

could only be analyzed for the presence of uranium oxides. It was assumed interference from

the pattern of (NH4)4UF8 -2H20 would not be strong enough to preclude the observation of

uranium oxides, and that a pattern in which no uranium oxides were detected was sufficient

evidence for complete fluorination. No uranium oxides could be identified in the XRD

spectra of the ball-milled products.

5.1.2.3 Small Fluidized Bed

Samples produced in the small fluidized bed were light green in color and showed no

visible signs of dark U0 2 . XRD analysis did not identify the compound formed, but

identified excess NH 4HF2, and did not identify the presence of U0 2 (Table 5.2). No powder

diffraction file existed for the hydrated double salt, (NH 4)4UF 8-2H20, therefore it is possible

for the compound to be present without being identified.

pattern match figure of merit comment
Corundum, Al 20 3  6.3 standard used for 20 calibration

NH 4HF2  25.9 excess reagent
Al(OH) 3  32.4 spurious match
A160 3N4  43.6 spurious match

Aluminum Oxide, A120 3  39.8 likely from corundum standard

Table 5.2 - Search Match List for Small Column Samples: Only excess ammonium bifluoride
and corundum were identified in the small column sample. No uranium oxides were matched,
demonstrating the completeness of the fluorination reaction after one week without any mechanical
grinding of the reagents.



TGA curves from small column samples (Figure 5.7) showed at least three distinct

weight loss steps, but weight loss exceeded expected values.

1.1
(NH) 4 UF*2H O

(NH4)4UF'

(NHUF7

(NH4)2UF'

(NH4 UF,
UF
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Figure 5.7 - TGA Curves of Small Column Samples: At least three distinct weight loss steps are
evident. The second trial, CBY-smcol2-2, was an attempt to gain greater resolution in the higher
temperature region by slowing the ramp rate. Weight loss exceeds expected values.
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5.2

5.2.1

Decomposition of the Double Salt

Stirred Bed Reactor

Samples from trials 3 and 4 were taken after the lower heating plateau and from the

final product. These samples were dried at 120 'C to remove atmospheric water and analyzed

for oxygen and nitrogen impurities, and for overall uranium content (Tables 5.3 and 5.4).

sample uranium (g/g) oxygen (ppm)*
intermediate run #3 0.5155 270

intermediate run #4 0.5187 1700

pure (NH4)4UF8  0.5149 0

99% (NH4)4UF8 with

U02 as the impurity 0.5171 1000

* assuming U02 is the only impurity present at this stage

Table 5.3 - Impurity Analysis on Intermediate Products from Stirred Bed Experiments

uranium oxygen Nitrogen (pg/g)
sample (g/g) (ppm) Total NHg/NH4'
product run #3 0.7480 640 3900 530

product run #4 0.7207 910 15100 3700

pure UF4  0.7580 0

Paducah UF4  -1000

Table 5.4 - Impurity Analysis on Final Products from Stirred Bed Experiments



5.2.2 Fluidized Bed

5.2.2.1 Intermediate Product

Samples removed from the column after a dwell time of 172 minute at 110 'C were

analyzed to determine the chemical speciation at this temperature and to detect signs of

uranium oxides. UO2 produces a simple x-ray diffraction pattern (Figure 5.8), with the most

intense peak at 28.2', and is easily identified by JADE (Table 5.5). Scans were run over a 20

range from 100 to 100'.

LKLI
10 20 30 40 50 60 70 80 90 100

Figure 5.8 - X-Ray Diffraction Pattern of U0 2 with Corundum Standard, Intensity versus 2 0.
This pattern was obtained from U02 used as a starting material. Although this scan begins at 20=200,
no significant peaks exist below 20* in the pattern of U02.

pattern match figure of merit comment
U0 2  1.7 likely species

Corundum, A120 3  6.0 standard used for 20 calibration

Table 5.5 - Search Match List for U0 2 Sample: U02 and the corundum
standard were the only likely species identified by x-ray diffraction.

............... ............. ..... .... ........ -



TGA curves of the intermediate product (Figure 5.9) yield no useful information on

the composition of the intermediate. Since no oxygen trap was installed in the inlet line to the

TGA, oxidation of the sample may have occurred, and would explain the constant weight loss

slope apparently superimposed over the discrete steps of the double salt decomposition.

(NH 4)3UF7

(NH )2UF

(NH 4}UF5

UF4

150 200 25C 300

temperature (OC)
350 400 450 500

intermediate product
removed after dell at 110 0C

50 100 150 200 250
time (min)

Figure 5.9 - TGA Curve of Intermediate Product Sample, Removed at 110 'C: This sample
was removed from the column after the dwell period at 110 *C. Product is expected to be an
ammonium uranium fluoride double salt close in stoichiometry to (NH4 )3UF7.
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By comparing the rate of weight loss from an intermediate sample to that of a

ball-milled sample, it is possible to determine if the intermediate decomposes through the

same steps as the starting material once the starting material has been brought to the

temperature at which the intermediate was made. Figure 5.10 shows such a plot; however, the

ramp rates for the two samples were different. This means the plots cannot easily be directly

compared. It can be seen that the plots do have similar features, with those for the

intermediate being more spread out along the temperature axis. This follows from the

intermediate analysis being done at a faster ramp rate than for the starting material.

15

10 -

E

0 1 1II

50 100 150 200 250 300 350 400 450

temperature (OC)

ball mill product
intermediate decomposition product

Figure 5.10 - TGA Weight Loss Rate Curve of Intermediate Product: Rate of weight loss is
plotted versus temperature. Features appear similar to those in the plot for the ball-milled samples,
but since ramp rates and sample sizes were different (2 *C per minute for the intermediate versus one
*C per minute for the bal milled sample), the two plots cannot be directly compared.
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5.2.2.2 Final Product: UF 4

After the full heating cycle, samples were typically light green in color with a visible

coating of darker material on the outside of particles and clumps of particles. Interior areas of

larger particle clumps contained no brown or black uranium oxides, indicating the oxygen

source was most likely external to the bed. For samples prepared in argon, the darker color

was black. The sample prepared in 4% hydrogen had a brown coating. Yields were above

97.8% once carrier gas flow (Appendix E) was lowered to the channelized fluidization

regime.

Table 5.6 - Masses and Yields of Fluidized Bed Samples

sample initial mass theoretical UF4 yield actual final mass gross yield
9 9 9

CBY-01 2.8042 1.7248 1.2749 73.9%
CBY-02* 2.7958 1.7196 1.3508 78.6%
CBY-03 2.857 1.7573 1.5275 86.9%
CBY-04' 2.8018 2.3333 2.3036 98.7%
CBY-05 2.8218 1.7356 1.6982 97.8%
CBY-06 2.814 1.7308 1.72282 99.5%
* Since the high argon flow rate carried a large amount of the sample onto the top flange of the column, the

number given here is the sum of both samples CBY-02a (top flange) and CBY-02b (bed).
This sample was an attempt to decompose the sample to its intermediate product at 110 'C. Based on TGA

analysis, the intermediate product appears to be (NH 4)3UF7, so this value was used instead of that for
LF4 in calculating theoretical yield.

Final product samples from beds fluidized by both argon and 4% hydrogen in argon

were analyzed with a simple TGA heating ramp. Pure UF 4 should show only a slight weight

loss at elevated temperatures due to sublimation of pure UF 4 (Figure 5.11).
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Figure 5.11 - TGA Curves of Final Product Samples: Samples prepared in the fluidized bed
were compared against a UF4 standard. The sample prepared in 4% hydrogen showed a 0.7%
weight loss over the standard while a sample prepared in argon showed a 1.6% loss.

X-ray diffraction analysis looked for the primary pattern of UF 4, trace patterns of U0 2

and U30 8 , ammonium uranyl fluoride compounds, and ammonium uranium fluoride

compounds. The measured x-ray diffraction pattern of UF4 is given in Figure 5.12, and

search match results in Table 5.7. UF 4 is clearly identified.

LL

10 20 30 40 50 60 70 80 90 100
Figure 5.12 - X-ray Diffraction Pattern of UF4 with Corundum Standard, Intensity versus 26
This pattern was obtained from UF4 prepared by aqueous precipitation. Even pure UF4 produces a
relatively complicated pattern compared to U02.
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pattern match figure of merit comment
UF4  12.2 likely species

Corundum, A120 3  18.2 standard used for 20 calibration
Aluminum Oxide, A120 3  39.8 likely from corundum standard

Table 5.7 - X-ray Diffraction Pattern Match for Sample UF4: UF4 and the
corundum standard were the only likely species identified by x-ray diffraction.

Based on the x-ray diffraction pattern of the product (Figure 5.13), 4% hydrogen as a

carrier gas appears to produce a mixture of UO2 and UF 4 (Table 5.8), the actual ratio of which

must be determined by chemical analysis. The most intense peak of UO 2 (measured at

20=28.2*) is clearly visible in the pattern, with the two next most intense peaks (46.95' and

55.7') also appearing, but somewhat obscured by peaks from UF4. Since the relative intensity

of the 20=28.2 UO 2 signal is only 30.0% of the maximum intensity in the pattern, the less

intense U0 2 peaks may be difficult to resolve from those of UF 4 .

O
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Figure 5.13 - X-ray Diffraction Patterns of UO2, UF4, and Sample Prepared in 4% H: The
pattern most closely resembles UF4, with the largest U02 peak also visible at 20=28.2*.



pattern match figure of merit comment
UF4  16.8 likely species

Corundum, A120 3  17.2 standard used for 20 calibration
AIO(OH) 25.0 spurious match

U02  36.3 likely species
N5H5  40.5 spurious match
U30 7  42.7 possible, but no solid evidence

UO3H 2O 43.0 possible, but unlikely in H2

Aluminum Oxide, Al20 3  44.0 likely from corundum standard
U0 3  44.2 possible, but unlikely in H2

AIF 3  45.0 spurious match
(NH4) 2UF6  47.4 possible incomplete decomp.
H2U30 10  49.8 possible, but unlikely in H2

Table 5.8 - Search Match List for Final Product Prepared in 4% Hydrogen:
UF4, U02, and the corundum standard were the only likely species identified by x-ray
diffraction. Small amounts of (NH4)2UF6 may also be present, as well as NH4UF5,
which may not have been identifiable by JADE.

Theoretical values for chemical analysis of compounds of interest are presented in

Table 5.9.

species

(NH4)4UF8-2H20
(NH4)4UF8
(NH4)3UF7

(NH4)2UF6
NH4UF5

UF4

U02

U308

composition

U F NH4  H20
1 8 4 2
1 8 4 0
1 7 3 0
1 6 2 0
1 5 1 0
1 4 0 0
1 0 0 0
3 0 0 0

Table 5.9 - Theoretical Chemical

molecular
0 weight
0 498.2

0 462.1

0 425.1

0 388.1

0 351.0

0 314.0

2 270.0

8 842.0

Analysis Values

weight
fraction U

0.478
0.515
0.560
0.613
0.678
0.758
0.881

0.848

Results of chemical analysis required some post-collection interpretation, as the

numbers returned showed the nitric acid dissolution analysis technique was not properly

executed. Results for UO2 standards came out well below theoretical values. This difference

is most likely the result of dissolution kinetics. Samples were dissolved for a period of two

days, but since the dissolution kinetics of uranium (IV) compounds are quite slow, even in



concentrated nitric acid, the dissolution may not have been complete. Given this, normalizing

the data by using the known composition of the U0 2 standard was considered as a valid

correction. Results are shown in Table 5.10. Results of the water dissolution are shown on

Table 5.11.

sample mass U gU/g normalized
mg g/L gU/g

CBY-Iggcol-1 10.6 0.0177 0.335 0.521
CBY-bm-2 10.1 0.0163 0.323 0.504

CBY-01 11.7 0.0267 0.456 0.710
CBY-02a 11.6 0.0262 0.452 0.704
CBY-02b 14.0 0.0327 0.468 0.728
CBY-03 10.8 0.0258 0.478 0.745
CBY-05 11.3 0.0270 0.477 0.743
CBY-06 10.1 0.0255 0.504 0.785
CBY-04 14.6 0.0282 0.386 0.601

U02  15.7 0.0444 0.566 0.881
UF4  10.0 0.0119* 0.476 0.742

*diluted to 50 mL

Table 5.10 - Chemical Analysis Results: Results are normalized to the
theoretical value for U02 to account for incomplete dissolution of samples.

Figure 5.14 shows graphically the results of nitric acid dissolution chemical analysis.
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Figure 5.14 - Results of Nitric Acid Dissolution Analysis: Blue dashed lines are drawn at
uranium mass fraction values for the theoretical compounds. Points represent actual samples
analyzed, normalized to the experimental value obtained for U02.
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sample mass volume [U] soluble gU/g
mg mL g/L

CBY-bm-2 24.0 25 0.092 0.096
CBY-01 16.0 25 0.095 0.149

CBY-02a 22.5 25 0.372 0.413
CBY-02b 20.2 25 0.184 0.227
CBY-03 25.5 25 0.309 0.303
CBY-05 27.6 25 0.361 0.327
CBY-06 24.9 25 0.225 0.226
CBY-04 25.3 25 0.168 0.166

U02 51.4 25 0.007 0.003
UF4 33.5 25 0.100 0.075

Table 5.11 - Results of Water Dissolution: Uranium (VI) compounds formed are readily soluble in
water. The most likely uranium (VI) compound is uranyl fluoride (U02F2) and its associated
ammonium fluoride double salts.

The data in Table 5.11 can be modified to account for the presence of uranium oxides

and UF 4 in the final samples. By subtracting the concentration of soluble uranium obtained

for the UF 4 standard, the contribution from other soluble uranium compounds can be obtained

(Table 5.12 and Figure 5.15). Based on the assumption that U0 2 and U308 behave similarly

in terms of water solubility and dissolution kinetics, the result for U0 2 can applied to samples

in which U308 was a more likely species.

sample soluble gU/g
adjusted

CBY-01 0.071
CBY-02a 0.335
CBY-02b 0.149
CBY-03 0.225
CBY-05 0.249
CBY-06 0.148
CBY-04 0.088

Table 5.12 - Adjusted Water Dissolution Results: These values were
adjusted to account for the dissolution of UF4 and uranium oxides.
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Figure 5.15 - Results of Water Dissolution: This plot shows values of
soluble uranium mass fraction. Values have been adjusted by subtracting
measured values for uranium tetrafluoride and uranium dioxide.

Dividing the adjusted soluble uranium content by the total uranium content gives the

fraction of soluble uranium that cannot be attributed to uranium oxides or uranium

tetrafluoride. Soluble uranium is most likely in the form of uranyl difluoride or partially

decomposed ammonium uranyl fluoride double salts.

sample soluble gU/g normalized not UF4 or UOx
adjusted gU/g (likely uranyl difluoride)

CBY-01 0.071 0.710 9.96%
CBY-02a 0.335 0.704 47.53%
CBY-02b 0.149 0.728 20.50%
CBY-03 0.225 0.745 30.18%
CBY-05 0.249 0.743 33.50%
CBY-06 0.148 0.785 18.80%
CBY-04 0.088 0.601 14.63%

Table 5.13 - Soluble Uranium not Attributable to Uranium Tetrafluoride or Uranium Oxides



Very little corrosion appeared on stainless steel surfaces within the column. Even

after ten cycles at elevated temperatures, the 20gm mesh maintained its structural integrity,

and was able to support the bed with no loss of material. At higher argon flows, much of the

bed was carried into the upper part of the column, where it settled for lack of a particle arrest

and return mechanism. By removing the top column piece, finer particles could be recovered.

Larger conglomerations of particles were retained on top of the mesh in the lower part of the

column. At lower argon flows, the majority of the sample was retained in the bed at the

bottom of the column.

5.4 Bed Fluidization

Fluidization could be observed in the full-scale glass column at a variety of gas flow

rates. Partial channelized fluidization at lower flow rates did not fully agitate the bed,

although individual particles appeared to move through regions of fluidization. Based on this

observation, it was decided that this fluidization regime could provide adequate agitation to

the bed. After fluidizing samples of ball-milled material in this bed with argon for three days

at 20 'C, the powder was light green in color, showing no visible signs of the darker-colored

uranium oxides.

5.3 Materials Durability and Structural Integrity



Chapter 6: Conclusions

6.1 Effectiveness of Ball Mill Technique for Fluorination

The larger particle size slowed the fluorination reaction by at least a factor of ten: from

less then twenty minutes to on the order of one day; no difference in the fluorinated double

salt products formed could be observed from X-ray diffraction (Figure 6.1).
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Figure 6.1 - Samples Prepared from U0 2 with Different Particle Size: These two samples are
essentially the same, differing only by the amount of corundum standard.

Based on the visual color change and x-ray diffraction data, the ball mill appeared to

be a viable method of preparing ammonium uranium fluoride double salts from uranium

dioxide and ammonium bifluoride.



6.2 Effects of Plateau Temperatures

6.2.1 Lower Plateau Temperature

The lower plateau temperature effect can most easily be investigated in the stirred bed

samples. In these, since the reactants were not finely ground, the lower plateau temperature

was that at which the fluorination took place. At 80 'C, the fluorination reaction did not

proceed sufficiently fast to complete the reaction in 4 hrs, but at 110 *C, the reaction was

complete in 2.5 hours.

Trials with the ball milled reagents were less useful in determining what effect the

lower hold temperature has on the overall process, only that the conditions used were

sufficient to begin decomposition. The presence of U30 8 in the intermediate sample

(Table 6.1 and Figure 6.2) indicates the reformation of uranium oxides at 110 'C. The most

probable oxidizing agent was molecular oxygen as a contaminant in the carrier gas, since

oxidation appeared to take place preferentially on the outside of larger clumps of particles.

No ammonium uranyl fluorides were found in this sample, indicating that either they form at

temperatures higher than 110 'C, or there was no sufficiently complete powder diffraction file

to identify them.

pattern match figure of merit comment
Corundum, Al20 3  3.0 standard used for 20 calibration

Aluminum Oxide, Al, 3  39.2 likely from corundum standard
U308  39.7 probable species
U2 N3  45.2 possible, but unlikely to form
UN, 46.1 from ammonia at 110 0C

(NH4)2UF 6  48.0 trace amounts

Table 6.1 - Search Match List for Intermediate Product Sample: U308 was identified in the
sample, although the bulk of the sample was most likely (NH4)4UF8 and (NH4) 3UF7, which would not
have been identified by the JADE pattern match program.
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Figure 6.2 - X-ray Diffraction Pattern of Intermediate Product: U308 appears in the pattern of
the intermediate product, which was removed after a hold at 110 0C.

6.2.2 Upper Plateau Temperature

Although not in the original experimental design, by looking at the difference between

samples CBY-02a and CBY-02b, the decomposition temperature of (NH 4)2UF 6 and

(NH 4)2(UO 2)2F6-3H20 can be inferred. CBY-02a was removed from the top of the column,

on the flange just below the outlet, while CBY-02b was removed from the bottom of the

column on top of the mesh support. Since temperature was being measured in both locations

(Figure 6.3) and conditions were otherwise identical, the presence and size of several low-20

peaks (Figure 6.4) gave some hints as to the temperature speciation of the material in the

column. (NH 4)2(UO 2)2F6-3H20 and NH 4 (UO 2)2F5 3H20 account for the larger peaks at 120 in

the pattern of the sample from the top of the column. The presence of the 15' peak indicated

a much larger fraction of (NH 4)2UF6 in the top of the column than in the bottom. Based on

this, these compounds appear to decompose above 180 C.
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Figure 6.3 - Temperature Measurements for Samples CBY-02a and CBY-02b: Since samples
were collected from both the bed (CBY-02b) and the top column flange near the upper thermocouple
(CBY-02a), analysis of the samples essentially analyzed these two temperature cycles.
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Figure 6.4 - X-ray Diffraction Patterns of Samples CBY-02a and CBY-02b: Except for
decomposition temperature, conditions for these two samples were identical. The strong peaks from
(NH4) 2(UO2)2F6 3H20 and NH4(UO2)2F5 4H 20 are clearly visible in the top column samples, but is
much less prevalent in the bottom sample.
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6.3 Effects of Hold Times

6.3.1 Lower Hold Time

The lower temperature serves two different purposes depending on preparation of the

reagents. The mechanically ground reagents were fully fluorinated, so the lower temperature

plateau was solely to affect the first decomposition steps of the double salt. Based on the

difference between samples made in the stirred bed, a hold time of at least three hours is

necessary for ammonium bifluoride to fluorinate uranium dioxide when the reagents are still

somewhat coarse.

6.3.2 Upper Hold Time

The final decomposition steps took place at temperatures near 425 'C. Based on

analysis of samples CBY-03 and CBY-05, the upper hold time had little impact on the

chemical composition of the final products. These samples were prepared under similar

conditions, except that the overall temperature cycle for CBY-05 was twice as long as that of

CBY-03. Given this, since both chemical and XRD analysis failed to distinguish a difference

between the samples, any partially decomposed double salt remaining in the sample is more

likely attributable to plateau temperature, not hold time.

6.4 Effects of carrier gas

Samples CBY-05 and CBY-06 were prepared under similar conditions, except carrier

gas. CBY-06, prepared in 4% hydrogen in argon, had 15% less soluble uranium than CBY-

05, as well as showing no traces of uranyl difluoride or its associated double salts in its XRD

pattern.

A reducing environment is necessary to avoid the formation of uranyl difluoride and

U30 8 impurities. Depending on the subsequent use of the product UF4, this may or may not

be important. If UF4 is being made as feedstock for a Fluorox process, UO2F 2 is an

unimportant impurity as it is a product of the Fluorox process anyway, and the subsequent

separation of UF6 from U0 2F2 is easily accomplished utilizing the high volatility of UF6. In

this case, it would not be necessary to maintain reducing conditions during the fluorination

and decomposition process.



If UF 4 is being made to use in a calcium reduction of UF 4 to uranium metal, any

oxygen impurities will react highly exothermically with calcium metal, making it difficult to

maintain the physical integrity of the reacting UF 4 and calcium metal. Instead of obtaining an

ingot of uranium metal topped with calcium fluoride slag, the heat of reaction with oxygen

compounds tends to disperse the uranium metal. For this application, a reducing environment

would lower the overall oxygen content of the UF 4, thus making it better suited for calcium

reduction.

6.5 Suitability of Construction Materials

Based on visual inspection of the stainless steel fluidized bed apparatus, stainless steel

is a suitable material of construction for this type of process equipment. Even the

bed-supporting mesh, with its high surface area, was not corroded by the reagents and

temperatures used. In the stirred bed trials, mild steel components corroded quickly, reducing

their functionality as mechanical parts and likely adding iron oxide as an impurity to the

material in the bed.

6.6 Fluidized Bed versus Stirred Bed

6.6.1 Advantages of the Stirred Bed

With the stirred bed, it was not necessary to preheat the incoming gas stream, as the

flow was low enough to allow the temperature to be controlled in the bed without

necessitating preheating of the inlet gas. As the extensive amount of copper tubing used in

the preheater was a likely source of oxygen contamination in the fluidized bed apparatus, the

lack of a preheater is a significant simplification that eliminates this problem. Oxygen

impurity levels were most likely lower in the stirred bed than the fluidized bed.

6.6.2 Advantages of the Fluidized Bed

The fluidized bed is a much simpler mechanical device, and this advantage became

apparent in the difficulty in fully mixing the stirred bed. In an attempt to fully mix the vessel,

mild steel shimstock attached to the paddle corroded and was only marginally effective in

closing the gap between the paddle and crucible wall.



Even with a lower flow rate than is needed for full fluidization, channelized

fluidization provided adequate mixing. With the variation in particle size inherent in

commercial U0 2 , it would be impractical to specify a particle size consistent enough to design

a fluidized bed with a particle arresting and return system, as was absent in this fluidized bed

apparatus. A tapered shim to cover the flat flange at the top of the column could serve as a

rudimentary particle return system, thus allowing for fluidization with less loss of material. In

addition, oxygen impurity levels could be lowered by installing an oxygen getter near the inlet

to the bed.
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Appendix A - Engineering Drawings for Stainless Steel Column
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Figure A.1 - Bottom Column Part: The bed is supported on the top
flange, which mates to the bottom of Part 2.
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Appendix B X-ray Diffraction Patterns and Search Match Lists
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Figure B.1 - Search Match List and X-ray Diffraction Pattern for U0 2 Sample
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Figure B.2 - Search Match List and X-ray Diffraction Pattern for ?08 Sample
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Figure B.3 - Search Match List and X-ray Diffraction Pattern for UF4 Sample
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Figure B.4 - Search Match List and X-ray Diffraction Pattern for Small Column Sample
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R 40 HitS Sattd O0 FigranOf-M911l FM 4% 2T(91 dfd(0) PDF4 J 0
i Corundum, ay- AI20$ 5.6 58 0.000 1.000 48-1212 + D
2 AIH3 - Aluminum Rlydrvd 14.3 70 0.120 1.000 23-0761 + F
3 APF3 . Aluminum Fluoride 33.5 63 4.120 1.000 47-1659 + 0

4 A1203. Aluminum Oxide 34.4 25 0060 1.000 52-0003 * )
5 AIF3 - Aluminum Fluoride 36.6 27 0.060 1.000 44-0231 + 0
* (NHA)2UF6 - Ammonium Uranium Fluoride 38,2 80 0.000 1.000 100750 7 V
7 A1903N7 - Alumiaum Oxide Nitride 39.1 64 0.120 1.000 48-1582 + V

& AI506N - Aluminum Oxide Nitride 44.3 64 0.120 1.000 48-0686 + D,

9 A003N4 - Aumlum Oide Nitride 47.7 20 0.120 1.000 48-1579 + V
10 UNOMP5NI2 - UWrnlum HydroxytamIne H... 48.0 23 0.060 1.000 23-0711 ? V
11 1 (N2M$)UF7 - Hydrazine Uranium Fluoride 48.5 21 0.000 1.000 23-0165 ? V

0
X

C>

010 20 30 40 50 60 70 80 90 100
20

Figure B.5 - Search Match List and X-ray Diffraction Pattern for
Ball-Milled Sample Prepared from Coarse U0 2
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[i~47613AW') CBY4M-2

$CAN: 10.0/100.0I0.0Sd.75(n~ee), Cw, lIsmaxp2451, 07/23/03 23:04

NOTE: Intonsfty * Counts, 2T(0w0,0(*), S/M: Default Search Match (Use Chemistry PlFtr)

J-Colun: [+] CommoniGood Pattersn, (] UncommoniNon-Amblent Patterns* I O IntrmWdiat Pat..

D-Columnw: C*Calculatd, DP0alractewmter, F3Densitometer, VefTlimVisaalR, XmOther0Unknown

8 40 Ia Sorted on Pguro-Of-Morf POM 1% 2T(S) 4"40 1P0.# 0
I Corundum, syn - 1203 3.2 63 0.000 1.000 46-1212 + 0

2 AMH3 - Aluminun IHydride 13.2 47 0.120 1.000 23-761 + P

3 AI04#1 - Alwminum Oxide itrIda 17,5 47 0.000 1.000 48006 + 0
4 A#03N7 - Aluminum Oxide Nitride 10.6 47 0.060 1.000 4.1582 + V

5 AWF3 - Aluminum Fluoride 20.6 38 0.0. 1.000 47-1659 + 0

* A2O3 - Aluminum Oxide 20.5 46 0.120 1.000 520603 + D

7 (NH30H)A4lH20 - Hydreryiammonlum f... 31.2 21 0.000 1.000 46-100" ? V

o U2O5 - Uranium O*id* 31.3 26 0.120 1.000 10099 ? X
* U308 - Uranium (Oxid, 31.4 23 0.060 1.000 31-1425 1 C

10 UN2 - Uranium Nitride 36.9 25 0.00 1.000 65-2973 ? C
11 A103N4 - Aluminum Oxide Nitride 39.8 1$ 0.0*0 1.000 48-1670 + V

12 Urantilte, syn . UO2 41,0 47 -0.000 1.000 60266 ? C

13 H#44103 -Ammonium Nitrate 42.3 46 0.00 1.000 47-006 ? D

14 (NH4}2UPS - Ammonium Uranium Florid* 43.5 31 0.000 1.000 1"0750 ? V

15 UMOHFSNH2 - Uranmium Rydrottylamine Hf.. 43.7 40 -0.120 1.000 23-0711 ? V

16 112P9 - Uranium Ploride 45.2 20 -0.060 1.000 04-00 7 X
17 2UO3iNH313H20 - Uranium Oxide Ammon... 41-0 48 0.000 1.000 3)11427 ? V

16 Hi 17U03 - Uranium Hydrogen Oxide 46.9 23 0.120 1.000 38-0039 ? V

C\j

CE
X

cxo

10 20 30 40 50 60 70 80 90 100
20

Figure B.6 - Search Match List and X-ray Diffraction Pattern for
Ball-Milled Sample Prepared from Fine U0 2
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SCAN 11100 0/0 0571 75{sec), Cu, lj4 27?0 07/1103 15 211

NO1T inteisity - Counts, ?T(Q0) l O S/M Default SearchMatchU Wse Chemistry Filte

a .olm ri (+J Commm*VGood Patterns [?] Uncomm4VNovtAmtent Pattoms. { I ltimmiIt Pallems [DJ Deia

D Columvn: CCAculated, DOiftractometer F=Uensitometer V=F.InvVisual .=Olh UnIQn-e

D 80 ds Sorted on Pgur.-Of-Mani

1 AIO3 Aluminum Oxide

2 Un-rio d mineral [NRI - U03-H20

3 1 (NH4)(U02)2F5t4H2O - Ammonium UtnyIl Fttone

4 | Corundum syn - A1203

5 1NH4)2(UO2)2F5!3H2O - Amnonium i0ranyi F lunr
6 k UF4 - Uranium Fuoride

7 (NR30H)AJF41H20 Hy-d(xyltiemmonkum fliuvalu

S'L)O2(OH)2 Uranyl Hydiomide

9 ! N2H4UF4 U rapiurn Fluonide Hydrauiw

10 AIF3- Aluminum Fluorde

11 I Diespore AIO(OIl

FOM

12 7

24 5
25 6
29 9C

33 Ii

44 2

442

46 0

48 9

49 4

2T(0)

0 060

0 060
43 060
I 060

I 120
0 000o o

i 000

0060

did(0)

1 100

1 000

1 000 i

000

1 000

1,000

1000

1 000

S000
10000
1 000

par-#

32-1401
48-1088

30-1403

26-1404

43-0435
05-355

D3 Denirtuy

x 339 
x
DI 43301
U 4.050

0J 4.280

DI 0 580

V 0 403

X( 5 620

V ?1

V n 1

10 20 30 40 50 60 70 80 90 100

Figure B.7 - Search Match List and X-ray Diffraction Pattern for Sample CBY-O1

SlM Hit Listing(l14577,RAW] CSY-01



2145 R F.iAW CBY-02A SM Hit Usting

A i0/100 O/O 05i1 75(ser. C iGiaxis 196, 01i0 15 11

T& inienty - Gounts 2T(0)=0 0C), SM Defauft Search Match (Use Chemistry Flet)
Clumrt IJ CommonGood Patleris, [?] LnommorWNun-Ambiogg Pter1ms, [ I Intennediale Pallerns, [D] Deleted

DC)Iurmni C Calculated. DDiffractometer F=Densitometer V=Fireita, XaQtherAnknown

40 iuts Soried on Figure-Of-Men
(NH4'AUO2)2F6l4H2O - Ammonaum Erny1 Fluorid
Unnamed mwiera [NRI - U03-H20
UF4 - Lkranwim Fluodde
UO2(OH)2 - Urany1 Hydronde
(NH4)2(U02)2F5!3H20 Amnoniumn Uranyl Pluor
Corundum, syn- A1203
Diaspore - AXO(OH)
H21U3010 Hydrogen Uranium o(Jxide
N5H5 - Hy(Iravine Aidde

J2F2 F V1 5"2c - tirarnyl Fluaonde Hydrate

N2H4UF4 - Uranum Fluonde Hydrazine
AI23 - Alumnum Oxide
(,NH3OH)AIF41H20 - Hydruoamomonium fluoreal4k
U02 87 - Urnrum Onde
(NH4)x+2(PxO3x+1) 1 Ammonium po 5mpfphate

U03 - rUnium OQXrd

AIF3- Akrmnum Fluoride

I UO2F2'2H20 Uijwr1yl Fluundare Hydrate
'I larende - U07(tj'OH)20

Li? (NHif3iOH -Uranium Arme Fhuonde Hydrox

Ai Ni33 4#H20 - Aluminum Niraie Hydrqote

U38 -Uranium Oxde

FOM
13,15
150
152

20,0
211 0

30.1

13.
308

3 1

37 1

411

44.4

45.0

45 5
45 5

46 1

4A 0

2T(0)
0060
~o 1213
0.000

-0,060
-0.000
0 000

0.0
-0060
0060
0 t2o
0120
0060
0 120

-0.060
-0060
-0060
0 120
0(060
0 0
0060

0060

df(o)

1,0001.000
10000

1.000
1 000
1000
1000
1 000

1 000
1 000

I coo0

I 000
1,000
1 000

1 000
1 000

1 000
I 000
t 000

PDF-4
26.0096
51-1483
32-1401
30-1403
25-0048
10-0173
05-0355
270201
25-0751
24-1154
28-1404

31-0026
4-1086
46-449
44-0739
46-0952
43-0435
47-0577
120212
172 87
01 4436

43-1419

D Density
o 4,130

D 0,560

X 5820
D 4.280
D 4.050
D 3440
C 6851
V 1,400
V 4,120
V
D
V 0,403
X 11342

X
X 11351

D 0.201
V 5.160
V

X

V tN900

10 20 30 40 50 60
ALdi Li~ Ik~i~A#LW~AL~

70 80 90 100
20

Figure B.8 - Search Match List and X-ray Diffraction Pattern for Sample
CBY-02a: This sample was removed from the top flange of the column.
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SCAN 100 100I20 0I6A75(SOC), CWrnqxi= 1356, 0711/3 I 22

NOTE Intensdy = Couits, 2700 O(" SM IDefaul Search_Match (Use ChemsIry F0iIr}

J-Coumn [4-] C omrn/Good Paleara, i[7 J)UwrnrnconfNon-Arnmbird PaiemTs, I Parlert n Ptms, [D Deleted

D-Coumn C=CaIculated,." DIfrcToomete f=Densstometer V=Filmiisual, X=Other/UJnkianwn

# 40 Hits Sorted on igure-fa-# Medit F 11 2TO)d drri(0) PDF4A J 0 Denisdy

1 1 UF4 - Uranium Flun'de 146 73 0120 1 000 124701 I V US55

2 1 Corndtm, sy - A1703 24 0 43 0060 1000 10-0113 i+ D 4 0
I I r)iaspore - AIO(OH) 257 25 0 W) 1 1)00 05-356 + D 3 44i

4 I Unnamed mineral [NR] - UO3-H2O 29 2 25 0 ()A 1 00 1456 '7 x
5 A1F3 - Aluminum Fluoride 32 5 20 0000 rK00 43-0435 + V 2 81

& 003 - Uranium Oxide 34 5 43 0 060 1 CM 18-1429 ?V 540

7 anthinite - J07(OH}20 3 1 1 0 7 E0 000 12-0272 V 5 160

8 UO3lzNH3'xH20 - Ammonua Uraniumt Oxide Hydr 3V 10 .060 1 00 14-0340 7 V

9 |JO2(OH)2 Uranrylydroxide 38 2 t 0120 1?000 301403 ? X 5 120

10 A203 - Aluminum Owde 3 4 0000 00 50-W1496 + . 39i

11 NSH5 Hyd-ne Atnde 42.2 51 0X0 25-0751 V 1 400

12 (NH412(UO2-1F3H20 - Ammoium Uranyl Fuo 42 4 23 0 W60 100 254045 7 D 4 4280

13 H20 - lee 43 9 060 1000 15-0565 7 V 1%

14 NH4HF2 ~ Ammonium Hydrogen Fluonrde 45 2 1 0) 060 1 000 120302 + F 1 499

15 H2U3010 - tydrogen Uraniumx 48 9 72 C 060 1 00 274201 '? C 605i
16 U308 - Uranium Ode 4.3 611 1120 1 000 20 1345 ? D 11 809

17 U02.86!1 5H20 - Uranium Oxide Hre 49 10 I, 00 1 W00 2 V 5 590

0

10 20 30 40 50 60 70 80 90 100
20

Figure B.9 - Search Match List and X-ray Diffraction Pattern for Sample
CBY-02b: This sample was removed from the bed.

(Z14579,RAW] CSY-42B |SIM Hit isbong



,tAN 100 0 U 05J 1 75er i C mu 1(miar 1990 0711003 15 29

NC)TF, Ineresdiy -Counts, SIM4 Of I R6M Defaull Search _ Match (Use Chemasiry Filler)

I (2kjmn [+ Cnmorn/Good Pattems, [3 UrwommnNon Amrtneri Patiems. I ntermediate Paiterns, {D3 Deleted

Doumn - a1culated D-DdfEratrneer, F=Dnstometerm V f ilmVisual, X-OtherUnknown

# 40 HIts Sorted on fgwre-O-Menrt FOM 1% 2T{O) did(0) PDF-# J 0 Density

1 - I Corundun, syr -A1203 121 34 -0,060 1,000 10-173 + U 4(060

2 I UF4 Urankum Fluonde 14 6 88 -0060 1,000 32-1401 ? 0 0.500

i IOtaspore - AIO(-1) 285 47 0,000 1 000 05-0355 + Q 3440
4 .1 A1203 - Aluminum Oxide 32,3 31 0,060 1000 50 1490 + X 3391

5 Unrnamed miraeral [NR U034120 a5&7 14 -0.000 1000 15-069 X

6 sanihmite - U607(01-120 382 0.000 t 000 12-0272 7 V 5 150

7 H2U3010 Hydrogen Uranium axide 42.3 6 0000 1 000 27-0201 7 C 6.851
8 003112O nUforit Oinde Hydrate 42.8 31 0 M0 1 000 11-0325 ? V

9 UO2()H)2 Uraagt Hydronde 449 9 0060 1 000 30-1403 X 5.820

Iii I

Jul LA .1ibf

Or

10 20 30 40 50 60 70 80 90 100
20

Figure B.10 - Search Match List and X-ray Diffraction Pattern for Sample CBY-03
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[Z14759.RAW) CRY-04

SCAN: 10.0f/00,0/05i7(Sj), Cu, (maxlw3290, 07/23W03 22:40

NOTE: intensity = Comats, 2TO)n0.0('% SM Ofautt Search Match (Use Chemistry F4ter)
J.Coiumn: [+1 Commomlood Patterns, (?] UncommeMnon-Ambient Patterns, ( I litermediate Put
D.Column: CuCalculated, sDiffractomter, FD'ensitoneter, Val'ilmaisual, Xa0therfUnknown

40 Me S ortd on PiguOif-iPvt FOM 1% 2T(0) &Id(0) POP-4 J 0
1 I Corundum, syn - A1203 3.0 50 0.000 1.000 46-1212 + 0
2 AlP3 - Aluminum Fluoride 22.1 25 -0.060 1.000 44-0231 * D
3 A506N - Alhmiuum iOxide Nitride 24.9 33 0.120 1.000 4&-0686 * D
4 AI903N4 - Aluminum Oxide Nitride 28.1 12 0.060 1.000 4$-1$79 v
5 A1903N7 - Aluminum Oxide Nitride 28.6 33 0.120 1.000 4#0-10S2 - V
6 A1703N5 - Aluminum Oxide Nitride 35,7 12 0.000 1.000 4&1500 - V
7 A12O3 - Aluminum Qxide 39.2 15 0.000 1.000 500741 f V
* U308 - Uranium Oxide 39.7 33 0.000 1.000 43-1419 ? V
9 All 96028N4 - Aluminum Oxide NItride 41.6 18 0.060 1.000 200043 X

10 U2N3 - Uranium Nitride 45.2 17 0.000 1.000 154426 ? 0
i UN2 - Uraniusn Nitride 46,1 20 0.060 1.000 5.-2973 7 C

12 110NH4}2UP6 - Amnonium Uranium Fluoride 48.0 23 0.000 1,000 18.0750 ? v

C\J

0

10 20 30 40 50 60 70 80 90 100
20

Figure B.11 - Search Match List and X-ray Diffraction Pattern for Sample CBY-04



[21458tRAWJ CBYOWL Hi Ut igi

SCAN 10 N100 O00 051 1S4sec, Cu tmaVP2006. 07/11/03 1545

fm Intenity Counts 2TfDF0 Of 5. S/M Default Search atcMUse Chemistry Filter)

2 ,CoIuam j] CommoniGood Pattoms PM UnenmmorNN-Ambvent Patterns, [] Intermediate Pattems, pD Deleed

-Column C=Caiculated, =Diffractometer. F Densaarnoiet VxFnIrVisua X=Other/Un*nown

9 40 Hite Sorted on Figur-Of-Meni POM 1% 2T(D) did(G) PDF4 J D Density

S F4 -Uraum Fuoride i 6 86 0.060 1.000 32-1401 ? D 0.500
2 Corundum syn - A123 23.4 31 0 000 1000 10-0173 + D 4,050

3 rasporj . A10(0H) 24,3 46 -0 120 1000 05-03 6 + D 3,440

4 A12f3 - Akwonum 0*de 29f 40 000 1,000 50-149 X 3391

R2 lc 38.2 41 -0120 1.000 42-1141 ? C 091r

6 'U3010 Hydogen Lranium Onde 480 R5 0 060 1 000 27-0201 C 6 851

Alf" - Aluminum Fiuande 444 5 0060 1000 43,0436 e V 2.815

S 1 U03- Uranrum Onde 455 69 -120 1,000 t8-1429 7 V 8.540

9 NSH, ~ Hydrazine Ande 46 7 2M 0 060 1 000 264751 + V 1 400

1 0 F4 - Uranium Oxide Fluoride 4H B 43 a 060 1 000 31-1429 ? V 5,700

1 1 iUO3H2 - Uranium Oxid* Hydfrate 4Yt6 31 04060 1.000 11-0325 7 V

C) .i i j1

X

LO)

10 20 30 40 50 60 70 80 90 100
20

Figure B.12 - Search Match List and X-ray Diffraction Pattern for Sample CBY-05bl: This
sample was selectively picked from CBY-05 to try to get a majority of the black powder from the
sample while avoiding the green powder.



[Z145681RAWJ COY-05GR

SCAN 1001100.0MI 61 75(sec) Cu, I(max)=1747, 07/1103 15 37

NOTE Intenrsty = Counts, 2T{0)t) 0("), SM Defaiult SearchiMatch (Use Chemistry Filter

J-Cotumn: [+] Cc i ~oood Panemr [7) unommon/Non-Ambieni Patterns [] intermediate Ptm [DI Delt

D-Colrumn C=Calculed, tkDiractorneltt F Densitometer V=-Filmisual, X=OtherUnknown

# 40 Hits Sorted on Figqur-Of4Wlrit FOM [% 2T(0 d d0) PDF4 J D ry

I I UF4 Uranium Fluontde 9 9 6 0 0 1 000I 32,1401 ? D 0 56i0

2 Unrsamed mirI [R INR - U03-H20 30,6 20 0 000 1 00 15-069 7

3 1(NH4)2(U2)2Pf53H20 - Ammonium Lranyl FItjr 34 4 18 0 000 1x IEXX) 26X46 7 4 28G

4 1Diaspore ~ AIS(OH) 40 1 11 0 00 1 000 1-05:35 3 44G

5 1tanhwte - J607(OH)20 41 4 7 0 0X 1 000A) 120272 V 16

6 U02F2-*(OH)x12H20 - Lanyl Fuoride Hydrxide 47 4 10 U 000 2H-1411 D 3 800

7 Corundur, syn - A1203 48 0 36 U 060 1 000 10-0173 + D 4+050

0

X

10 20 30 40 50 60 70 80 90 100
20

Figure B.13 - Search Match List and X-ray Diffraction Pattern for Sample CBY-05gr: This
sample was selectively picked from CBY-05 to try to get a majority of the green powder from the
sample while avoiding the black powder.
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[Z14514-RAWJ CBY-6 smHit Usting

SCAN I10 0100 05!i1 7(sec), Cu limax)=1971 0711/03 1515H

NOfE Intensity = Counts, 2T(Q)=0 01 , W1 Ilefault SearchMatch (Use Chemistry Filteri
J-Coluwn: 1+) CommoiVGood Pattems [? UJncommordNon-Ambient Patterns f I Intermedate Pattems, (D) Deleted
D-Column C=Calculaled, D=Diffractometer. F,40ensilometer, V=FilnvVisual, XOthetfUnktrown

4 40 Mes Sorted on Figuw OfMel FOM 1% 2T(0} Id(q} PDF4- i D Density
1 1 LF4 - Uranium Fluodde 1688 94 0050 1000 32-1401 ? D 0,560
2 Conwidum, syn - A1203 172 21 0000 1 00 10-0173 + D 4,050
3 Diaspore AIO(OH) 250 50 0 Wo 1 000 05-0355 + D 3.440

4 Uramnrite, syn - l)2 3f6 3 21 0 050 1 000 65-0285 ? C 10.953

5 N5H vydrsvne, Abide 40 5 36 0 050 1 000 2-0751 + V 1 400

6 Urarinite ( Qyn - 0307 427 20 0 050 1,000 15-0004 ? V 11316

U030H20 - Uranium Oxide Hydrale 43 U 20 0 000 1000 1@ 1437 7 P 5,560
8 A1203 - Aluminum Oxide 440 25 0060 1000 50-1496 + X 3,397

9 U03- Uranium Oxide 44,2 70 0-120 1000 45-0657 ? V 8648
10 AIF3 - Aluminum Fluoride 46 G 7 060 1.000 43,0435 V 2,815
1 (NH4)2UF6 Ammonium Uronum Fluonde 47 4 7 0 060 1 000 16-0750 V

12 H2t1410 -iydroge ura um nL1de 49, 8 88 120 1 000 270201 ? C 6,851

10 20 30 40 50 60 70 80 90 100

20
Figure B.14 - Search Match List and X-ray Diffraction Pattern for Sample CBY-06
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Appendix C ICP-AES Data

C-I Total Uranium

background gross rate net rate
uranium concentration (cps) (cps) (cps)

sample g/L mol/L R ± a R ± a A ± F
std_0.005* 0.005 2.10E-05 22231 78.0 31144 10.33 8913 78.68
std_0.01 0.01 4.20E-05 22375 203.1 73373 319.8 50998 378.8
std_0.01-endt 0.01 4.20E-05 22314 216.6 72904 314.6 50590 382
std_0.02 0.02 8.40E-05 22335 190.1 105805 955 83470 973.7
std_0.02-endt 0.02 8.40E-05 22275 60.9 104817 1022 82542 1024
std_0.05 0.05 2.1OE-04 22187 174.4 278156 1620 255969 1629
std_0.05-endt 0.05 2.1OE-04 22433 169.1 277140 2760 254707 2765
std 0. 1* 0.1 4.20E-04 22262 156.9 442737 2301 420475 2306

* not used in calibration since these points fell well outside expected concentration values
t these standards were run after the unknown samples to check calibration

Table C.1 - Calibration Standard Data for Total Uranium Dissolution Analysis

Calibration Curve
cps=[U]*(1251840052-10532

[U] [=] mol U/L
R 3 =99.09%

uranium
sample background gross counts net counts concentration

ICP-AES # ID p ± a a (T ± p(Y g/L
1d-2 CBY-Iggcol-1 22453 63.8 105185 629 82732 632.2 0.0177 ± 0.0026
2d-2 CBY-bm-2 22257 137.2 97628 249 75371 284.6 0.0163 ± 0.0023
3d-2 CBY-01 22241 60.6 151928 1485 129687 1486 0.0267 ± 0.0038
4d-2 CBY-02a 22242 225.2 149723 708 127481 743 0.0262 ± 0.0038
5d-2 CBY-02b 22254 221.2 183847 840 161593 868.6 0.0327 ± 0.0047
6d-2 CBY-03 22060 63.5 147393 495 125333 499.3 0.0258 ± 0.0037
7d-2 CBY-05 22046 107.2 153311 272 131265 292.5 0.0270 ± 0.0039
8d-2 CBY-06 22216 165.3 145553 802 123337 818.9 0.0255 ± 0.0037
9d-2 CBY-04 22335 74.7 160095 1882 137760 1883 0.0282 ± 0.0041
1Od-2 U02  22415 209.8 245636 2777 223221 2785 0.0444 ± 0.0064
11x-3 UF4  22511 56.9 74618 571 52107 573.8 0.0119 ± 0.0017

Table C.2 - Unknown Sample Data for Total Uranium Dissolution Analysis



C-2 Water Soluble Uranium

sample [U] background (cps) gross rate (cps) net rate (cps)

g/L g a i± a i ± a
std_0.5 0.5 22906 474 1706000 14034 1683094 ± 14042

std_0.1 0.1 22672 433.5 459118 4154 436446 ± 4176.558
std_0.05 0.05 21557 1401 270049 1401 248492 ± 1981.313
st 0.005 0.005 21542 67.8 29962 2 87.9 8420 ± 111.0101

Table C.3 - Calibration Standard Data for Water-Soluble Uranium Dissolution Analysis

The calibration curve was done by linear interpolation between bracketing points.

for values between 0.1 and 0.5 g/L
slope: 3116620

intercept: 124784

for values between 0.05 and 0.1 g/L
slope: 3759080

intercept: 60538

for values between 0.005 and 0.05 g/L
slope: 5334933

intercept: -18254.7

sample background (cps) gross cpm net cpm [U] g/L
2f CBY-bm-2 20766 80.2 426392 ± 4186 405626 ± 4187 0.0918

3f CBY-01 21425 129.6 439653 ± 1998 418228 ± 2002 0.0952

4f CBY-02a 23205 133.8 1306000 ± 18593 1282795 ± 18593 0.3716

5f CBY-02b 22276 93.7 719307 ± 10129 697031 ± 10129 0.1836

6f CBY-03 22421 712 1109900 ± 4343 1087479 ± 4401 0.3089

7f CBY-05 21344 48.67 1271000 ± 11054 1249656 ± 11054 0.3609

8f CBY-06 21570 147.2 846461 ± 6474 824891 ± 6476 0.2246

9f CBY-04 21511 59.9 669818 7455 648307 7455 0.1680

1Of U0 2  21411 150.9 41024 572 19613 592 0.0071

11f-1 UF4  21636 11.03 457836 6749 436200 6749 0.0999

11f-2* UF4  21629 107.8 447726 565 426097 575 0.0972

Table C.4 - Unknown Sample Data for Water-Soluble Uranium Dissolution Analysis
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Appendix E Carrier Gas Flow Data

Gas flow was measured with a Bel-Art Riteflow® 150mm size 4 flowmeter (part number
H40407-0215). Values given are the flowmeter reading for the stainless steel float.

sample gas flow
CBY-01 100
CBY-02 30
CBY-03 20
CBY-04 20
CBY-05 20
CBY-06 15

Table E.1 - Carrier Gas Flow Values

I-

flowmeter reading air flow
stainless float mL/min

150 17430
140 16287
130 16194
120 14057
110 12944
100 11814
90 10607
80 9462
70 8307
60 7156
50 5977
40 4732
30 3464
20 2225
10 959

Table E.2 - Calibration of Flowmeter for Air at 1 atm, 70 'F
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Appendix F - Sample Masses and Run Yields

Sample CBY-lggcol-01 was used as feedstock for all fluidized bed samples except CBY-01.
CBY-01 used CBY-lggcol-4, which had not been ball milled, as feedstock.

Composition of sample CBY-lggcol-01:
19.8940 g U0 2
17.6848 g NH4HF2
4 2.37 weight percent excess NH 4HF2

Table F.1 - Masses and Yields of Fluidized Bed Samples

sample initial mass theoretical UF4 yield actual final mass gross yield
9 9 9

CBY-01 2.8042 1.7248 1.2749 73.9%
CBY-02* 2.7958 1.7196 1.3508 78.6%
CBY-03 2.857 1.7573 1.5275 86.9%
CBY-04' 2.8018 2.3333 2.3036 98.7%
CBY-05 2.8218 1.7356 1.6982 97.8%
CBY-06 2.814 1.7308 1.72282 99.5%

* Since the high argon flow rate carried a large amount of the sample onto the top flange of the
column, the number given here is the sum of both samples CBY-02a (top flange) and CBY-02b (bed).

t This sample was an attempt to decompose the sample to its intermediate product at 110 'C. Based
on TGA analysis, the intermediate product appears to be (NH4)3UF7, so this value was used instead of
that for UF4 in calculating theoretical yield.
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