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Abstract

We consider linear least squares problems, or linear systems that can be formulated
into least squares problems, of very large dimension, such as those arising for exam-
ple in dynamic programming (DP) and inverse problems. We introduce an associated
approximate problem, within a subspace spanned by a relatively small number of
basis functions, and solution methods that use simulation, importance sampling, and
low-dimensional calculations. The main components of this methodology are a re-
gression/regularization approach that can deal with nearly singular problems, and an
importance sampling design approach that exploits existing continuity structures in
the underlying models, and allows the solution of very large problems. We also inves-
tigate the use of our regression/regularization approach in temporal difference-type
methods in the context of approximate DP. Finally we demonstrate the application
of our methodology in a series of practical large-scale examples arising from Fredholm
integral equations of the first kind.
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Chapter 1

Introduction

1.1 Problem Formulation and Background

We consider the solution of large-scale and complex systems that can be formulated

into linear systems of equations, which take the form of

Ax=b, (1.1)

where A is an m x n matrix, b is a vector in R'", and the solution x is a vector in

R'. The system can be either underdetermined or overdetermined. A closely related

problem is the fixed point solution of linear mappings that take the form of

T(x) = Ax + b,

where A is an n x n square matrix and b is a vector in R". These problems typi-

cally arise in fields such as dynamic programming (or reinforcement learning), inverse

problems, inference, scientific computation, operations research, etc. As the dimen-

sion of the system grows, solving the problem becomes increasingly expensive in terms

of storage requirements and computational cost, ultimately presenting a formidable

challenge in addressing problems of realistic complexity.

In the context of dynamic programming, Eq. (1.1) is known as the Bellman equa-



tion corresponding to a single policy, with x being the cost vector of that policy.

Solving the Bellman equation is known as policy evaluation, which is a critical step of

the policy iteration method for solution of dynamic programming problems (see the

book by Bertsekas [Ber07]). For the case of a decision process with a huge state space,

evaluating a single policy may be computationally expensive, let alone evaluating a

series of policies.

In the context of linear inverse problems, such systems like Eq. (1.1) typically

arise from integral or differential equations which are not necessarily linear, but can

be discretized into linear equations of very large but finite dimension [PWB09), such as

those encountered in finite element analysis, image processing, geophysical prospect-

ing, and astronomy [Gro07], [BB98]. When such a system results from discretization,

there is effectively no limit on the dimension. Problems of these types are often addi-

tionally complicated by near-singularity of the matrix A when A is square. Hence the

solution by conventional methods may not be possible, even if A is a square matrix.

We consider the least .squares formulation of Eq. (1.1), which takes the form of

min ||Ax - b|l|, (1.2)
XE n

where ( is a known probability distribution vector with positive components, and

|| - ( denotes the corresponding weighted Euclidean norm.1 We focus on the case

where n is very large, and m is either large or small. We consider an approximation

to problem (1.2), defined over a subspace

S = {<br I r E W},

where <b is an n x s matrix whose columns can be viewed as basis functions or features.

The choice of basis functions is a likely problem-dependent issue, and needs to be

addressed with care. Typical choices of basis functions include triangular functions,

Fourier functions, functions of the exponential family, etc. A special case is to use

'Regarding notation: all vectors are viewed as column vectors, a prime denotes transposition,
and 1 - 1 denotes the standard unweighted Euclidean norm.



basis functions involving powers of A, e.g. <D = [b, (I - A)b,..., (I - A)"-1 b], which

are the basis functions implicitly used in the context of Krylov subspace methods (see

[Saa03]). This is a natural choice because the solution of Ax = b lies in the space

spanned by (b, (I - A)b, .. .), assuming that A is contractive. Although these basis

functions may not be readily available, they can be approximated in the simulation

process [BY09). We also note the recent developments on basis function adaptation

methods, which optimize the basis functions over a parameterized family using a

cross-entropy method or gradient method (see the papers by Menache [MMS05] and

by Yu and Bertsekas [YB091). However, a detailed analysis and comparison of choices

of basis functions is beyond our scope. Throughout this thesis we will assume that <D

is known.

Our approach is an approximation approach based on Monte Carlo simulation. We

note that there is a large body of work on the exact or approximate solution of large-

scale linear systems of equations. One of the earliest attempts is by Lanczos [Lan58],

which successively approximates the solution without explicit matrix inversion. Since

then a number of iterative methods have been studied, such as the Landweber itera-

tion, the conjugate gradient method, the LSQR algorithm (see the survey [HH93] for a

comprehensive review of these methods). A projection-regularization approach, pro-

posed by O'Leary and Simmons [OS81], approximates the solution within a subspace

in which the projected coefficient matrix is bidiagonalizable. A related approach pro-

posed by Calveti and Zhang [DCZ99] suggests the use of Lanczos bidiagonalization

with Gauss quadrature. Later, a trust-region formulation was proposed by Rojas and

Sorensen [RS02], which poses the regularized problem as an inequality constrained

least squares problem.

Also, there have been several proposals in the literature relating to the solution of

linear systems of equations by using Monte Carlo methods, starting with a suggestion

by von Neumann and Ulam, as recounted by Forsythe and Leibler [FL50], and Wasow

[Was52] (see also Curtiss [Cur57], [Cur54], and the survey by Halton [Hal70]). We also

note recent work on simulation methods that use low-order calculations for solving

severely overdetermined least squares problems [SV09).



Our work differs from the works just mentioned in that it involves not only sim-

ulation, but also approximation of the solution within a low-dimensional subspace,

in the spirit of Galerkin approximation and the Petrov-Galerkin method (see e.g.,

[KZ72]). Our approach is also related to the approximate dynamic programming

methodology that aims to solve forms of Bellman's equation of very large dimension

by using simulation (see the books by Bertsekas and Tsitsiklis [BT96], and by Sut-

ton and Barto [SB98]). This methodology was recently extended to apply to general

square systems of linear equations and regression problems in a paper by Bertsekas

and Yu [BY09], which served as a starting point for the present work. The papers

[WPB09] and [PWB09] extended further this methodology in a number of ways and

are the basis for this thesis.

1.2 Approximation and Simulation Framework

The first step in our approach is to substitute Pr in place of x in problem (1.2) and

consider the approximate problem

min||A4r - b||'. (1.3)
rE R-

If the solution is unique, it is given by

r* = G-c, (1.4)

where

G = .VA'Z AP, c =: VA'Zb, (1.5)

Z is the diagonal m x m matrix having the components of ( along the diagonal. The

vector (Dr* is viewed as an approximation to an exact solution x* of the least squares

problem (1.2). The paper by Yu and Bertsekas [YB08] and the report [BY07] provide

bounds on the error Dr* - x*, which involve the weighted Euclidean distance of x*

from S.



The expressions in Eq. (1.5) involve the formation of sums of a large number of

terms (multiple summations of inner products of dimension n), so when n is very

large, the direct calculation of G and c is prohibitively expensive. This motivates

a simulation-based approach, analogous to Monte Carlo integration, which aims at

a running time that is independent of n, but instead depends on the variance of

the simulated random variables. The idea is that by using any positive probabilities

(j, a sum of a large number of terms Ei vi can be written as the expected value

E gj(v 2/(i), which can be estimated by sampling the values vj/(i according to the

probabilities (s.

In particular, to estimate the entries of G and c by simulation, we write

n n n n n

G =(Ciaia#$ c = (Cajjbj#j, (1.6)
i=1 j=1 5=1 i=1 j=1

where <j are the diagonal components of Z, aij are the components of A, and # is

the jth s-dimensional row of <b:

where #gj are the corresponding scalar components of <D. As suggested in [BY09], to

estimate a single scalar component of G, we may generate a sequence of index triples

{(i 0, Jo, jo), ... , (it, Jt JI)} by independently sampling according to some distribution

( from the set of triples of indices (i, j, j) E {1,. .. ,n}3 . We may then estimate the

fth-row-qth-column component of G,

n n n

Gfq= S S aa #g#ja jeojq
i=1 j=1 3=1

[cf. Eq. (1.6)], with Geq given by

aeq - t 11 13 (1.7)
t+Ik=O Ak jJk



where (1,j denotes the probability of the index triple (i, j, J). Similarly, to estimate a

single scalar entry of c, we may generate a sequence of index pairs {(i0 , jo), .. , (it, jt)}

by independently sampling according to some distribution ( from the set of pairs of

indices (i, j) E {1 .. , n} 2 , and then estimate the fth component of c with ae given

by

CE 1 ikakbZ#, (1.8)
t + 1 = ij

where (3, denotes the probability of the index pair (i, j). One possibility is to ap-

proximate r* by r = O-, where G and 8 are the matrix and vector with components

Geq and St. Note that all the above calculations are low-dimensional. Furthermore,

a comparison of Eq. (1.6) and Eqs. (1.7)-(1.8), and a simple law of large numbers

argument shows that G -+ G, a -+ c, and G8 -+ r* as t -+ oc, with probability 1.

Note that there are several options for estimation of components of G and c. At

one extreme we may generate a single sequence {(io 0, jo jo),. . , (it, jt, jt)} by sampling

independently according to some distribution from the set of index triples (i, j, j) E
{1,... , n}3 . Then we may estimate G and c with G and a given by

= 1 1 ak 1 a b
6 = (k kk t~ El 0i ikik i

At the opposite extreme we may generate a special sequence of index triples to es-

timate each component of G and c separately, by using Eqs. (1.7) and (1.8). There

are also intermediate possibilities whereby blocks of components of G are c are si-

multaneously estimated with a single sequence of index triples. The tradeoff involved

is that grouping components into small blocks costs more in simulation overhead,

but may result in variance reduction (and smaller number of required samples for a

given degree of accuracy) by tailoring the sampling distribution to the structure of

the block and the sparsity structure of <b, based on importance sampling principles

(see Chapter 3). For example, when estimating a component Gq using Eq. (1.7), it

is inefficient to generate sample triples (i, j, j) for which #ijjq = 0.

In addition, we remark that there are many ways to generate sample triples (i, j, J).



The simplest scheme is to sample ik, jk, and jk independently from one another, ac-

cording to distributions pl, P2, and P3, respectively. Then the marginal probabilities

for pairs (ik, jk) and triples (ik, jA, Jk) are

tikk - p1,ikMj, P2 ;kik -- 1,kp2jkp3,jk.

An alternative is to generate an independent sequence of indices {io, i1 ,. . } according

to a distribution p, and then generate jA and Jk conditioned on each ik, according to

transition probabilities qikik and 44k. In this case, the marginal probabilities are

ikjk q Nk qikik ikjkk k = Iikikqikik'

A somewhat more complex scheme is to generate a sequence of state transitions

{io, ii, ... } using an irreducible Markov chain with transition probability matrix P

and initial distribution (o. Sampling jA and jA according to some transition probabili-

ties q and 4ik;k yields marginal probabilities for pairs (ik, jk) and triples (ik, 1kj k):

ikjk ( )pk qik ikk3kk = W )kijk*

Here the choice of P should ensure that all row indices are sampled infinitely often,

so that 0 -- G and - c (and hence also O-i 4 r*) as t -+ oc, with probability 1.

In particular, if P is an irreducible Markov chain, we can use as ( the distribution of

long-term frequencies of state visits corresponding to P.

1.3 Overview of this Work

The preceding approach must contend with two main difficulties:

(a) The approximation error associated with restricting the solution to lie in the

subspace S. This has to do with the choice of the matrix <b, and is an important,

likely problem-dependent issue, which however we do not discuss in this paper.

(b) The simulation error associated with replacing G and c with sampling approx-



imations C and . For an accurate solution, the amount of sampling required may

be excessive, and this difficulty is exacerbated in the common case where G is nearly

singular.

We focus on the second difficulty, and we address it in two ways. First, rather

than approximating r* with r = O~a, we use a regression/regularization approach.

We write the equation c = Gr as

d r + e, (1.10)

where e is the vector

e = (G - G)r + -c, (.1

which we view as "simulation noise." We then estimate the solution r* based on Eq.

(1.10) by using regression, and an approximate sample covariance for e, which is

available at essentially no cost as a by-product of the simulation used to obtain C

and . 2 In Chapter 2, we discuss the corresponding methods and analysis, then we

derive confidence regions and large deviation bounds for the regression solution, so as

to quantify the effect of near-singularity of G, and the sample covariances of C and

c.

Second, to reduce the effect of the components (G-G) and (c-a) of the simulation

noise e [cf. Eq. (1.11)], we employ variance reduction techniques, based on importance

sampling ideas. The corresponding methods and variance analysis is discussed in

Chapter 3.

In summary, the contributions of this work are three-fold:

* The development of the necessary ingredients for a simulation-based solution

methodology that can address very large least squares problems. These include:

2 Given independent samples v 1,..., VT of a random variable v, by "sample variance of v" we
mean the scalar

T

T (Vt - )2,
t=1

where is the sample meanb = (1/T) t=1 vt. The sample covariance of a random vector is defined
analogously.



- A regression approach that can reduce the solution error (r* - i) by re-

ducing the effect of the simulation noises (G - G) and (c - ) through the

use of the sample covariances of G and 2, and by reducing the effect of

near-singularity of G through regularization (Chapter 2).

- Nearly optimal importance sampling schemes that can effectively reduce

the variances of the components of G and a (Chapter 3).

- Extensions of the approximation-simulation methodology and analysis to a

broader class of related problems, particularly the problems of constrained

least squares and the problems arising from approximate dynamic pro-

gramming (Chapters 4 and 5).

* The derivation of confidence regions and a large deviation bound that quantify

the effect of near-singularity of G on the error (f - r*) (Chapter 2).

" The development of analytical tools that motivate efficient sampling schemes.

In particular, we propose a normalized measure of quality of a sampling distri-

bution, called divergence factor, which is used for the design of near-optimal

distributions (Chapter 3).

The regression and variance reduction ideas of Chapters 1-4 are brought together

in an algorithmic methodology that is successfully applied in Chapter 6 to some

standard examples of inverse problems of very large dimension (n > 109)3. The

regression approach, together with the confidence region and large deviation analysis

of Chapter 2, also apply to the more general system ar = , where G and are

simulation-based approximations to an s x s matrix G that is not necessarily positive

definite or symmetric, and a vector c.

3We acknowledge the efforts made by Nick Polydorides for development of these computational
experiments.



Chapter 2

Regression Methodology

According to the approximation framework introduced in Chapter 1, we want to

estimate the solution of the equation

G r = c,

based on the estimates C and 8 obtained by sampling. Direct solution of the estimated

system using i = OUl must contend with two potential difficulties: near-singularity

of G and the simulation error induced in estimating G and c. If G is close to be

singular, a small simulation error, i.e. G - G and c - C, may result in a large solution

error -r*.

This motivates us to consider a regularization/regression approach in solving the

system of equations with simulation error. We note that there exists a large body of

literature on linear regression methods and related topics, including the generalized

least squares method, the iteratively reweighted least squares method, the principal

component regression, the total least squares method, the Tikhonov regularization,

etc (see the books by Draper and Smith [DS66] and by Jolliffe [Jol02]). The iteratively

reweighted least squares method (IRLS) is used for solving optimization problems that

can be formulated into least squares problems with covariance matrix depending on

the unknown variables (see [BP79], [Gre84], [BL97]). This is an iterative method

that solves a series of least squares problems while updating the covariance matrix



accordingly, and has been proved to converge when the cost function is strictly convex

and satisfy certain additional conditions (see [BP79]).

Our approach bears similarity with the iteratively reweighted least squares method,

and can be extended to a more general context of solving systems of equations with

simulation error. We will later show that, our approach of iterative regression con-

verges locally under a relatively mild condition (Section 2.1). Furthermore, we will

analyze the error bound for the approximate solution P yielded by the regression. In

conjunction with the simulation framework introduced in Chapter 1, we will derive a

confidence region for P (Section 2.2), and an upper bound on the large deviation rate

for the convergence of P as the number of samples increases (Section 2.3).

2.1 Regression Using Sample Covariance

Let us consider the estimation of r* = G-c [cf. Eq. (1.4)] using the model

8= r +e,

[cf. Eq. (1.10)], where

e = (G - G)r + - c

[cf. Eq. (1.11)]. The standard least squares/regression approach yields the estimate

r arg min {(Or - a)'E- 1 (Or - 8) + (r - f)'P-(r - T)

where T is an a priori estimate (for example = -f8 or a singular valued-based

estimate of 0-1a), and E and P are some positive definite symmetric matrices. Equiv-

alently,

S= (O'E-10 + p-)-(O'El8 + F-1T). (2.1)

We propose to use as E an estimate of the covariance of e, which we can obtain

as a byproduct of the simulation. In particular, at the end of the simulation, we

have the samples {(Gk, ck) I k = 0, ... , t}, where the components of the matrix Gk



and the vector Ck are the terms appearing in the summations of Eqs. (1.7) and (1.8),

respectively:

Gk,iq = (k akk,3kJakfO Ck,f = (ikaibik $

We make a choice i of a fixed nominal value/guess of r (for example f = O1 B) and

we view the vectors

ek = (Gk -G)+( -ck), k=0,...,t,

as samples of e, with sample mean equal to 0 (by the definition of G and ), and we

use as estimate of the covariance of e the corresponding sample covariance matrix

= t+1 k t- 1 ((Gk -0)f + (a - c))((Gk -06) + (a -c . (2.2)-
Sk=0 k=0

In our experiments (see Chapter 6) we have estimated all the components of G

and all the components of c independently. For this case, we view samples of G as

vectors in R, 2 that are independent of the samples of c, since G and c are estimated

separately. We then calculate E using the sample covariances of G and c, and a

nominal value of r. In particular, we have

r' 0 ... 0 r 0 ... 0

0 r' ... 0 0 r ... 0
E = Ec + EG (2.3)

0 ... 0 r' 0 ... 0 r

-- sx8 2  
. 82 XS

where Ec is the sample covariance of c, and EG is the s2 x S2 sample covariance of G,



given by
cov(y(,#1 cov(y(,#6 . .. cov(y(,y'

GY = ov#, ) cov(Yi, Y) ... cov(§', y')

cov (§', cov( ', " . .. cov(y', §'

where cov(§', ') is the sample covariance between the ith and jth rows of O. Note

that the sample covariances Ec and EG are available as a byproduct of the simulation

used to calculate G and . Moreover, the size of these covariances can be controlled

and can be made arbitrarily small by taking a sufficiently large number of samples.

An alternative to using a guess f of r and calculating E according to Eq. (2.2)

or Eq. (2.3), is to use an iterative regression approach: iterate using Eq. (2.1), and

estimate r repeatedly with intermediate correction of the matrix E. This is the

iteration

rk+1 = (d'(rk)~ 1 0 + F-)-l ('E(rk)~18 + F-1i) (2.4)

where for any r, the matrix E(r) is given by

E(r) = t+ 1 ((Gk - )r + ck))_((Gk - 0)r + ck)
k=0

[cf. Eq. (2.2)].

It can be shown that this iteration converges locally in the following sense: given

any initial estimate r0 , it generates a sequence {rk} that converges to a fixed point i

satisfying

+= (O(f)-O + I 1 ) (O'E(i) 1a + P-ir),

provided that the sample covariances of the entries of C and d are below a sufficiently

small threshold.

A precise statement and a detailed proof of this local convergence property is

outside our scope, so we just provide a heuristic argument. If rq > 0 is an upper

bound to the sample covariances of the components of G, then from Eq. (2.3), E(r)



is written as

Ec + qj,7

where Wr,n is a matrix satisfying ||1r,,|| < qf|r||2?7 for some constant q. When = 0,

E(r) is the constant Ec [cf. Eq. (2.3)], so the mapping of Eq. (2.4),

r - (O'E(r)~l0 + r-1) -1 (O'E(r)-18 + Ir-ii),

is a constant mapping (independent of r), and hence it is a contraction of modulus

0. It follows that for small r, this mapping is also a contraction for r within a given

bounded region. This essentially guarantees the local convergence property stated

earlier.

Using the sample covariances of G and in place of some other positive definite

matrices makes sense on intuitive grounds, and has resulted in substantial benefits in

terms of solution error variance. This was empirically verified with the examples of

Chapter 6, as well as with small test problems; see Appendix B.1. Let us also note

that in our tests, the iterative regression scheme (2.4), when it converged, typically

converged within few iterations and gave on the average a small improvement in the

quality of the estimate r. However, the scheme is not guaranteed to converge, and

indeed it diverged in many instances where the simulation noise was substantial. It

may be argued that divergence of the iterative regression scheme is an indication that

the number of samples used is insufficient for a high quality estimate, and that more

sampling is required. However, this is only a conjecture at this point, and further

experimentation is needed to arrive at a reliable conclusion regarding the potential

advantages of iterating within our regression scheme.

2.2 Confidence Region

Up till now, we have introduced the essential elements of our approach to estimate

r* [cf. Eq. (1.4)] by using regression, based on the estimates G and a obtained using

a fixed number of samples. In this section, we will focus on quantifying the effect of



the number of samples on the quality of the estimate ? produced by the regression

methodology of Section 2.1, in conjunction with the simulation formulas of Eqs. (1.7)-

(1.8) given in Chapter 1.

We will derive a (1 - 0)-confidence region for the approximate solution i, where 0

is a given small positive scalar. We consider the case where regularization of the form

l-1 = #I is used, for some # > 0. Then the solution i of Eq. (2.1) can be rewritten

as

r = (O'E-O + 1) (O'E-+#F , (2.5)

where E is some positive definite symmetric matrix. We denote by r* the solution

that would be obtained if G = G and c = c:

rs= (G'E-'G + #I) - (G'E-lc + #F)

which differs from r* since # # 0.

We will now derive a confidence region for the error - r*. Let us denote

d = E-1/2(8 - Or*),

so from Eq. (2.5), the error can be written as

P - r* = (O'- O + 01) (OIE-1/2d + #(F - r*)) . (2.6)

Let also E be the covariance of (d - Gr*), and let

d 1/2( - Or*) = 1/21/2

For a large number of samples, we may assume that (K- Gr*) is a zero mean Gaussian

random s-dimensional vector, so that the scalar

|i|= 2 ( - Or*)'(8 - Or*)



can be treated as a chi-square random variable with s degrees of freedom. Assuming

this, we have

||dI| P- 1 (1 - 0; s) (2.7)

with probability (1 - 9), where P( ; s) is the regularized Gamma function of degree

s and P- 1 ( - ; s) denotes its inverse function. In our algorithm, E can be any positive

definite matrix, but we have focused on the case where E is the sample covariance of

(a - Of), where f is only a guess of r*, such as O1B; cf. Section 2.1. If f is close to

r*, then E is close to E and d is close to d.

We now derive the following confidence region for the error f - r* (assuming that

d can be treated as a Gaussian random variable).

Proposition 1 We have

P (1| - r* u -(E,j#)) > 1 -9,

where

(E,-1/21/2 p 1 (1 - 6; s)
+ m (2.8)

and Ai,.. . , As are the singular values of E-1/2d.

Proof. Let E- 1/ 2 O - UAV' be the singular value decomposition of E-1/20, where

A = diag{Ai,..., As}, and U, V are unitary matrices (UU' = VV' = I). Then, Eq.

(2.6) becomes

- r * = (VAU'UAV'+ #3I)y (VAU'd + #(f - r*))

= V(A 2 + #I) 1 AU'd + # V(A 2 + I)V'(f - r*)

= V(A 2 ++ #I 1AU'EZ/ 2Zi/2 d+#V(A2 +#I)-V'(f - r*),

where the third equality follows from Eq. (2.9). The matrix V(A 2 + #I)-1AU' in the

above equality has singular values Aj/(A? + #), while the matrix multiplying (f - r*)



= rC

r* = (G'EG + yI)' (G'E-c + ?yf)

Figure 2-1: Illustration of confidence regions for different values of the regularization
parameter #. For different values of # E [0, oo], the figure shows the estimates rp,
corresponding to a finite number of samples, and the exact values r>, corresponding
to an infinite number of samples. By Eq. (2.6), we may view r - as the sum of a
"simulation error" whose norm is bounded by the first term in the estimate (2.8), and
a "regularization error" whose norm is bounded by the second term in the estimate
(2.8).

has singular values +/(Af +#). Taking the norm of both sides and using the triangle

inequality, it follows that

|- r*| < max {Ai E/-1/2t1/2 ||d||+ max ||F - r*I.

Since Eq. (2.7) holds with probability (1 - 6), the desired result follows. U

Note that the constant o(E, #) of Eq. (2.8) is the sum of two terms. The first

term, reflects the simulation error, and depends on ||d||, which can be made arbitrarily

small by using a sufficiently large number of samples. The second term reflects the

regularization error (the bias introduced by the quadratic #||r -|| 2 in the regularized

cost function) and diminishes with #, but it cannot be made arbitrarily small by using

more samples (see Fig. 2-1).

Now consider the limiting case of the preceding proposition where # 0 and

E = E, assuming that G is invertible. In this case = O and the preceding proof

can be used to show that

P | - r*| < m { VP-1(1 -6; s)) > 1 - ,

with probability (1 - 0). This shows that the level of confidence is adversely affected

+ T (OE-1+ ??i)

r= G-1



by near singularity of the matrix G, and hence by near singularity of the matrix G

(since G is close to G). It is also possible to derive a confidence region involving the

singular values of G rather than G; see Appendix A.1. While the derivation is more

complicated, it supports the qualitative conclusion that the radius of the confidence

region is proportional to ||G-11.

2.3 Large Deviation Bound

In this section, we attempt to analyze convergence of the estimate [cf. Eq. (2.1)] as

the sampling effort grows. In particular, we focus on the large deviation behavior of

as the number of samples t increases, in conjunction with the estimation formulas

Eqs. (1.7)-(1.8).

Let t1 be the covariance of Gir* - ci where G1 and ci are estimates of G and c

using only 1 sample, so that

E1=t E.

Let also

d -_ = $1/2( - Or*) - 1/2E1/2d, (2.9)

hence dt is the mean of t independent unit gaussian random variables.

We now derive the following upper bound on the large deviation rate of the error

-r* (assuming that d can be treated as the mean of t independent Gaussian random

variables):

Proposition 2 For any y > 0, we have

1 /_
lim sup - log P | r*| ;> max ||rI -r*||+ y

1= )# 2?) Z (2.10)
< -- min Ai + - |E-1E1||~1,

2 i1 A

where A,,.. . , A, are the singular values of E-1/2C.



Proof In analogy with Eq. (2.6), we may write

P - r* = Wdt + (O'E 1O + #I) (f - r*), (2.11)

where we define W (O'E-O + I OE~1/2. According to the proof of Prop.

1, the second term of the righthand-side of Eq. (2.11) satisfies that

O'ElG # #( - *)< max ||f - r*||.

By comparing the above relation with Eq. (2.11), we may obtain, for any y > 0, that

P (|| - r*I| > max { < ||f - r*|| + y) P(IIWdtI| > y). (2.12)_=1,...,I Ai + #

Note dt = $-1/ 2 (Or* - 5)' is the mean of t independent unit gaussian random

variables. So Wdt is the sum of t independent gaussian random variables with covari-

ance WW'. According to the large deviation theory for multi-dimensional gaussians,

we have

lim 1 log P(||Wdt|| 2 Y) = ||WW'|-K1y2 = ||WI|2y2. (2.13)
t+0o t 2 2

Using the matrix norm inequality and the singular value decomposition given in the

proof of Prop. 1, we obtain

<l| (0'E-10j +#I (OE1/

FOO+ (O'E-1/2) -1/21/2

< max Ai } -1/2t 1/2

-~~ i i=,.. 2A +#



Hence (2.13) becomes

11 2 ___ <J-/212
limsup logP(|WdJ| 2 y) -1y max

t-+oo t 2 =1,...,S A2 +

- iAi + -2 1||~
2 i=1,... i Ai

Finally, by combining the above relation with (2.12), we complete the proof. M

Let us consider again the limiting case where # 0 and E = ti, assuming that

G is invertible. Now the approximate solution is f = O-1, and the preceding proof

can be used to show that

lim sup log P (1|O-I 6 - r*| y) < - - min {Af } y2,
t-+oo t 2i1.

where A1,. . . , A, are singular values of E 1 1120. This implies that the rate of expo-

nential convergence of f is determined by near-singularity of the matrix G, and hence

by near-singularity of the matrix G (since G is close to G). On the other hand, by

taking # to be a reasonable positive value, we may tune up the rate of convergence of

^ (corresponding to the righthand-side of Eq. (2.10)), while enduring a small constant

bias (corresponding to the term max | 1r - r*|| on the lefthand-side of Eq.
( #

(2.10)).

Remarks:

Our regression approach has been applied successfully to several temporal difference-

type methods used in solving approximate DP problems (given in Chapter 5), and

to several large-scale practical inverse problems (given in Chapter 6). The analysis

of Sections 2.2 and 2.3 provides an analytical justification. It shows that the error

(r* - O-C') is strongly affected by the norm of G- 1 , so if G is near-singular the error

can be very large even when the number of samples used is large; this is consistent

with long-standing experience in solving linear equations. In this case, by using a

regularization term, we can greatly reduce the error variance at the expense of a rel-

atively small bias in the estimates G and . While the choice of the regularization



matrix F is not clear a priori, this should typically not be a major problem, because

trial-and-error experimentation with different values of F involves low-dimensional

linear algebra calculations once C and become available.

We finally note that the ability of our regularization/regression approach to deal

with near-singular problems suggests that it should be successful in dealing with

general square linear systems of the form Gr = c, where G is not necessarily symmetric

and positive definite, but may be nearly singular. If the components of G and c

are computed by simulation together with corresponding sample covariances, reliable

estimates of r may be obtained using the regression/regularization formula (2.1). The

theoretical results on confidence regions and the large deviation bound of Sections

2.2 and 2.3 also apply to this general case, provided that the estimates C and have

known statistics.



Chapter 3

Variance Reduction by Importance

Sampling

In this chapter, we return to the simulation framework introduced in Chapter 1 and

focus on the issue of variance reduction of simulation. In particular, we will consider

the use of importance sampling and some related theoretical aspects (Sections 3.1-

3.2). Then we will propose a few practical approaches for designing near-optimal

sampling distributions, in the context of our approximation-simulation framework for

solution of large least squares problems (Section 3.3).

Recall from Chapter 1 that the simulation that generates the estimates G and 8

using Eqs. (1.7)-(1.8) can be carried out in several ways. For example, we may gener-

ate a single sequence of independent index triples {(io, jo, Jo),... , (it, jt, Jt)} according

to a distribution (, and estimate all entries of G and c simultaneously; or at the other

extreme, we may generate a separate sequence of independent index triples (or pairs)

with a separate sampling distribution for each scalar component of G and c. The

motivation for this is that we may tailor the sampling distribution to the component

with the aim of reducing the variance of the corresponding estimation error, based

on ideas from importance sampling. In general, we may specify a partition of G and

c into blocks of components, and generate a separate sequence of index triples per

block.

Importance sampling (IS) is a basic simulation technique for estimating multidi-



mensional sums or integrals (see the survey paper by Halton [Hal70) and the book

by Evans and Swartz [ESOO]). Recent developments on importance sampling have fo-

cused on changing the sampling distribution adaptively, in order to obtain estimates

with nice asymptotic behavior [0B92], [LC98], [DW05]. We will next provide a vari-

ance analysis of a nonadaptive type of importance sampling that we have used. In

particular, we will derive estimates of the covariances of the estimation errors G - G

and 6 - c, and a normalized measure of quality of the sampling distribution (, called

divergence factor, which will in turn motivate various suboptimal but practically

implementable choices of .

3.1 Variance Analysis for Importance Sampling

The estimation of components of G and c using Eqs. (1.7)-(1.8) amounts to estimation

of a sum of a large number of terms (as many as n' for components of G and as many

as n2 for components of c). When a single component of G or c is estimated, this is

a sum of scalars [cf. Eq. (1.2)]. When a block of components of G or c is estimated,

this is a sum of multidimensional vectors. To cover all cases, we will consider the

problem of estimating sums of the more abstract form

z = v(w), (3.1)

where Q is a finite set and v : Q j Rd is a function of w E Q. In the case of estimation

of components of G (or c), w is a triple (i, j, j) [or pair (i, j), respectively).

According to the importance sampling technique, we introduce a distribution (

that assigns positive probability ((w) to every nonzero element w E Q, and we generate

a sequence

{Wi,. . .WT}



of independent samples from Q according to (. We estimate z with

1 = -w . (3.2)

Clearly is unbiased:

E[ ] = : (w) v(w) v(w) = z.
t=1 WEP P) WE

Furthermore, by using the independence of the samples, the covariance of 2 is given

by

cov 1)v=EZw) v)(w} ) 'cov~s () -z-
t=1 WEQ VW )Z

which can be written as

1 v(w)v(w)'(
cov( ) = T ()- zz' (3.3)

WEn

A natural question is to find the sampling distribution ( that minimizes a measure

of this error covariance for a fixed number of samples T. We will consider separately

the two cases where z is one-dimensional (d = 1), and where z is multi-dimensional

(d > 1).

(i) d = 1: Then Eq. (3.3) becomes

z 2 (V(W)/z)2
var (s) =-- - 1 .(3.4)

Assuming that v(w) > 0 for all w E Q,1 the optimal distribution is * v/z and

the corresponding minimum variance value is 0. However, (* cannot be computed

without knowledge of z.

'This may be assumed without loss of generality. When v takes negative values, we may decom-
pose v as

v =v+ _vy-

so that both v+ and v- are positive functions, and then estimate separately zi = En v+(w) and

Z2 = Z nv-(w).



(ii) d > 1: In this case, the covariance of 2 [cf. Eq. (3.3)] is a matrix that cannot be

minimized directly. One possibility is to minimize instead an estimate of a norm of

the matrix > (v(w)v(w)'/(()). We have

v(W)v(w)' _ tv(w)v()'j|

W ((W) -E ((W) '

Minimizing this upper bound yields a near-optimal sampling distribution:

(*(W) C - |Iv(W)v(w)H w E , (3.5)

where C is a normalizing constant.

If we are only interested in the uncertainty of 2 along a particular direction y E W

we may minimize y'cov(2)y, which is determined by the term

I (E v(w)v(w)'\ Y (y'v(W))2
~(w) J (w) *

In this way, we map the uncertainty of 2 to a one-dimensional subspace. Under the

assumption that y'v(w) > 0 for all w E Q, the corresponding "optimal" sampling

distribution is
y'v(w)

w( = , , I E Q. (3.6)
y z

Note that calculating exactly (* is impractical with both formulas (3.5) and (3.6).

In both cases (i) and (ii), we see that ( should be designed to fit some function,

which we generically denote by v. In the one-dimensional case, v = v. In the multi-

dimensional case, v =|v'1/2, if we want to minimize the upper bound for some

norm of cov{2}, or v = y'v if we are interested in the uncertainty of 2 along a specific

direction y. The probability distribution (* minimizes the cost function

F E 2 (3.7)



over all distributions (, and is of the form (*(w) = C - |v(w)j, where C is a positive

normalization constant [C-' = s- v(w)]. In our subsequent analysis, we assume

without loss of generality that v(w) > 0 for all w E Q, so we may write

C - E Q, (3.8)

with C- = EZsE v(w).

Since computing (* is impractical (C is as hard to compute as the sum z that we

wish to estimate), we are motivated to use a suboptimal sampling distribution. One

possibility is to introduce a restricted class of distributions E, and try to optimize

the cost Fg of Eq. (3.7) over all ( E E. For example, - may be a class of piecewise

constant or piecewise linear distributions over Q. We have adopted a related approach,

whereby instead of = C -v, we use a suboptimal distribution ( of the form

C(w) = C. -(w), w E Q, (3.9)

where ii is an approximation to v and 0' = E Dw), such that for all w E Q, we

have fl(w) > 0 if v(w) > 0. We select 1) by "fitting" v from some restricted class of

functions, using the values of v at a relatively small subset of "trial" points.

The overall estimation procedure is as follows:

(i) Choose the target/desired function v.

(ii) Generate pairs of trial points and corresponding function values

(iii) Approximate v with a function iD from a restricted class of functions, based on
the trial pairs, and obtain the corresponding sampling distribution (= C -D'.

(iv) Generate the sample sequence { (w1, v(wi)),.. ., (WT, V(WT)) } according to and
compute the estimate using Eq. (3.2).



For further insight into the preceding procedure, it is useful to introduce the

following normalized version of the cost function Fe of Eq. (3.7):

De= 12___ (3.10)
(ZWEQ )) wE (W)

which we call the divergence factor. The minimization of F can equivalently be

written as

minimize D

s.t. Z (w) = 1, ( > 0. (3.11)
wEn

Using Eqs. (3.9)-(3.10), we can express D as

_*(w)2 0-i _(_2

LUE E() (WEOv w) 2 EO i'w

We have

w1 Zk~w)C-= _(W) . max ,

and

< max v(w)

i'(w) - (wEn L (W)

so by combining the preceding relations, we obtain the following bound:

___) v(w)
D < max . max . (3.12)

~ wEn v(w) wEO zI(w)(

This provides an intuitive interpretation of our approach: by fitting v with C', we keep

the ratios i/v and v/C' near the unit function. This keeps the upper bound (3.12) to

De small, and hence also the cost function F small.

As a final remark of this section, there are situations where (* has a compli-

cated form but can be written as the product of a finite number of relatively simple



distributions, i.e.,

This is often the case when (* is multidimensional and the simulation is done sequen-

tially. Then it is convenient to approximate the simple distributions *,. . . , ( with

(1.. . , (K respectively, and then to calculate ( by

Let D be the divergence factor of ( with respect to *, and let D , be the divergence

factor of (k with respect to ( . We can show that

*( ) . . 2  .2 .
D = --- =D- ---D-

WEQ 1(w) ' K (EQ K

Hence by using estimates of divergence factors for the simple distributions, we may

obtain an upper bound for the divergence factor of the product distribution.

3.2 Variance Analysis of IS Distribution Obtained

by Piecewise Approximation

Let us consider approximation of the optimal sampling distribution * = C - v [cf.

Eq. (3.8)] by piecewise approximation of v. Given a partition {Qk}K 1 for Q, we

approximate separately v on each Qk with some function iD. Then we approximate

y and (* by
K

1 ,Zvk -1k, V()C() Vw EQ,
k=1

where 1Q denotes the function that is equal to 1 within Qk and 0 otherwise, and C

is the normalizing constant.

We select a special point Wk within each set Qk, at which the approximation is

"anchored" in the sense that ).k(Wk) = v(wk). We assume that Q is a subset of a



Euclidean space, and we introduce the scalar

p = max sup ||w - wkI,
k=1,...,K W E k

which is a measure of how fine the partition is. In the following analysis, we will view

v(w), w E Q, as the values of a continuous function (also denoted v for convenience),

which is defined over the convex hull of Q. From the estimate of Eq. (3.12), we see

that under reasonable assumptions on v, the deviation of [/v from the unit function

decreases as p decreases. As a result we can control D and thus the corresponding

simulation error covariance, and make them as small as desired by using a sufficiently

fine partition.

We will now discuss the cases of piecewise constant and piecewise linear approx-

imation, as examples of the broader class of polynomial approximation methods.

Other types of approximating functions may be used, such as Fourier series up to

some order, and weighted sums of Gaussian functions. Their analysis may follow a

similar line, based on the bound of Eq. (3.12) for the divergence factor Dg.

3.2.1 Piecewise Constant Approximation

Given a partition {Qk}k1=j of Q and the point Wk E Qk for each k, consider the

piecewise constant approximation

l/k(W) V (Wk), V w ECk

Then
K

v V(Wk) - 1 Q, (3.13)
k=1

and the corresponding sampling distribution is

K

k=1V(Wk)
k=1



where
K

0-i = Znk V(W),
k=1

and nk is the number of points in the set Ok.

The following propositions provide upper bounds for the divergence factor Dg
based on Eq. (3.12), under some reasonable smoothness conditions.

Proposition 3 If logv exists and is Lipschitz continuous with Lipschitz constant

1 > 0, then

D < e24,

Proof. By the Lipschitz continuity assumption we have I log v(x) -log v(y) '| x -y|

for any x, y E Q, which implies that

max fVW v(x) emYEok IIX-yII < e27.

This together with Eq. (3.12), yields the desired result. U

Proposition 4 If v is Lipschitz continuous with Lipschitz constant 77 > 0, and for

some fi> 0 we have v(w) > / for all w E Q, then

Dg 1+ )2.

Proof. For any w E Qk, by the Lipschitz continuity of v we have

Iv(wk) - v(w)f 5 rqIwik - w1 7rp.

Using the assumption v > #, we obtain

v(wk) Iv(w) - v(wk)| I p
v(w) ~ v(w) - #

and by symmetry, the same bound holds for v(w)/v(wk). This together with Eq.

(3.12), yields the desired result. U



3.2.2 Piecewise Linear Approximation

Let us assume that v is differentiable, with gradient at w denoted by Vu(w). Given

a partition {Qk}k-.i of Q and the point Wk E Qk for each k, we consider a piecewise

linear approximation whereby the function v is approximated within Qk by the linear

function

Ok(W) = V(Wk) + Vv(Wk)'(w - Wk), W E Qk-

The following proposition gives a corresponding upper bound for Dg.

Proposition 5 Assume that Vv is Lipschitz continuous with Lipschitz constant 77 >

0 and that for some / > 0 we have v(w) > 3 for all w E Q. Then

D (I

Proof. For any k and any w E Qk we have

v(w) = v(ok) +11 VV(Wk + t(w - wk))dt

= v(Wk) + Vu(Wk)'(UW - Wk)

+ 1
(VV (wk + t(w - wk)) - VV(wk) ) dt.

Using the Lipschitz continuity of Vv, we have for all t [0,1],

HenV(whk + t(w - Wk)) - VV(uk)nd e tbr2/ - wich i e tt7P.

Hence the third term in Eq. (3.14) can be bounded by 17p 2/2, which implies that

Iv~ ~ ~ 77 - -wI~ 2' VW E Q.

Since v ;> #, we see that an upper bound for both maxw{i(w)/v(w)} and maxw{v(w)/D'(w)}

Iv(w) - ['(w)1 1 +
v(w)

|v(w) -- D(w)| }
I(w)

(3.14)

max 1+ 2

-2#3

+ 
.I )



This together with Eq. (3.12), yields the desired result. U

The qualitative advantage of piecewise linear versus piecewise constant approxi-

mation for small p can be seen by comparing the bound of Prop. 4 (which involves

p) with the one of Prop. 5 (which involves p2 ).

Let us finally mention that in the case of a piecewise approximation, there is a

bound for the divergence factor that is slightly sharper than the one of Eq. (3.12). It

is given by

K kW) K v(W)
D2 (ykmax- Z 7k max

k=1 k v(w) k=1 WEk /(L)
where

7 Z =IWEk V()

E7 WEQ v (W)

Using this bound one may obtain slightly sharper but qualitatively similar estimates

to the ones of Props. 3-5.

3.3 Designing Near-Optimal Sampling Schemes

3.3.1 An Importance Sampling Scheme for Estimating Gfq

As an illustration of the preceding importance sampling ideas, let us focus on the

estimation of the component Gq by generating a sequence of index triples and using

the following equation [cf. Eq. (1.7)]:

k=O ikcjk,jk

In this case the sample space Q and the function v are

= {1, . .. , n}3 , v(i, j, j) = (iaij aj-' j, 30 .

We want to design the sampling distribution ( so that it is close to * and belongs to

some family of relatively simple distribution functions.

We have used a scheme that generates the indices i, j, and j sequentially. The



optimal distribution satisfies

Q* oc ( #je ||ajj|j) (#3,||aj||11)|| a a 1 '

where we denote by aj the jth column of A, and denote by ||ajI|1 the L1 norm of a,

(i.e., ||aj lli = =_ 1 | JajI). We approximate (* by approximating the functions

with distributions

, ((i | j, j),

respectively, so is approximated with &j. = ( ( (i | j, j).
Let us denote by T(-) the approximation operator that maps a set of trial values of

v to an approximation of the entire function v. For instance, we can take T(-) to be a

piecewise constant approximation: for any y E R' and I {ii,. .. , iK} C {1, ... ,

K

T ([yi]iEI) = yi, 1 ([(k-1 + ik)/2, (ik + ik+1)/2),
k=1

where 1 denotes the function that is equal to 1 within the corresponding interval, and

0 otherwise, and we define io = -i 1 and i*K+1 = 2n - ZK. For another example, we

may take T to be the piecewise linear approximation,

K-1

T ([yi]icj) = L ((ik, Yzk), (ik+1, Yik+l)) 1 ([ik, ik+11) ,
k=1

where we denote by L the linear function that takes value Yik at ik and value Yik+l

at ik+1, and assume without loss of generality that i1 = 0 and iK = n. The resulting

importance sampling algorithm is summarized in what follows.



An Importance Sampling Scheme for Estimating Gq:

1. Select a small set [aijji,jer of components of A, and a corresponding small set
of rows [jEr of CD.

2. Generate the sample triple (Nk, jA, Jk) by

(a) sampling jA according to (jk o Tk ([je EiEI aijI E),

(b) sampling Jk according to (Jk x T 3,k [0ij EiEl aijjEI),

(c) sampling ik conditioned on jA and jA according to

(ik I jA, Jk) cx Ti, iaija ai; ]

where we denote by Tj(.) the jth component of T(.).

Figure 3-1 illustrates the last step of this importance sampling scheme, where A

is an 1000 x 1000 matrix, Z = I and T(.) is taken to be the operator of piecewise

constant/linear approximation. We start with a low-dimensional representation of A,

namely [ajj]iJEr, which can be implemented using a uniformly spaced discretization

as illustrated in Fig. 3-1(a). The resulting distributions ((ik I jc, jk) are plotted in

Fig. 3-1(b)-(c), and compared with the exact optimal conditional distribution.

3.3.2 Variations

The importance sampling scheme given in the preceding section is only one possibility

for generating samples to estimate Gq. An alternative is to replace the distributions

in steps 2(a) and 2(b) with

jk ax O/Jki, 3k a cx q

or with approximations of the above functions. This simplified version is easier to

implement, and may reduce the computational complexity greatly if 4D is known to

have a simple analytical form.

We may also change the order of generating 1k, jk, and jA. For instance, we can

generate i4 first, and then A and jk conditioned on ik, according to the distributions
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Figure 3-1: Illustration of step 2(c) of the proposed IS scheme for estimation of Geq.
In (a), the color field represents the 1000 x 1000 matrix A; the two vertical lines
represent the columns aj, and a3,; and the grid represents [aij]i,jer, which is an 8 x 8
discretization of A. In (b)/(c) the conditional distribution ((ik I jk, jk) (obtained by
piecewise constant/linear approximation using [aij]i,jeI) is plotted against the optimal
distribution *(N I i, jA). In (d)-(f) the same process is repeated with a finer 20 x 20
discretization of A.

cx Iaik 1, ({k I ik) c #/kaikk, ({ jk | i,) cX #4qaik

If A and <b have complicated forms, we may first replace them with coarse approx-

imations, and then introduce a step of function approximation when computing the

above distributions. When A has relatively sparse rows, by sampling the row index

first, we may greatly improve the efficiency of sampling.

The most straightforward scheme is to approximate the three-dimensional func-

tion v = (jaija #jedyOjq directly: first take trial samples from the sample space Q =

{1, ... , n} 3 and approximate v by fitting some function (e.g., a piecewise constant/linear

function) based on the trial samples. More specifically, we may take I c {1, ... , n}



and obtain [v(i, j, ~j)]i'j'I. Then we can compute the approximate function by

=T ([v(ij, ,

where we maintain the notation T(.) for the operator of function approximation, and

finally normalize D to obtain a distribution function. However, this scheme may be

computationally expensive, because it involves selecting trial samples from a three-

dimensional space and then sampling according to a three-dimensional distribution.

A critical choice in all the schemes mentioned above is the function approximation

operator T(-), and a good choice may depend on the characteristics of the problem

at hand, i.e., A and <D.

Also, as an alternative to the piecewise constant/linear approximation used in

Figure 3-1, we may consider an approximation approach based on a least squares fit

from some family of parameterized functions. In particular, we may approximate the

function v : Q '-* R by introducing a parametric family, which we denote by

{ (f I E RdI ,

where f 0 : -4 R is a function parameterized by q; or we may consider the family of

a finite sum of parameterized functions, in which case

= f" q E Rd, k = 1, . .. , M,
k=1

where M is a positive integer. Given the trial samples and corresponding function

values {V(i, j, J)}ijEI, we can approximate v with £D by minimizing the total squared

error corresponding to the trial samples, i.e.,

T j) argmin ||v(i,j,5) - i(i, j, I)||
i,j,jeI

This approach may be preferable under circumstances where v is known to have

some special structure, in which case we may choose a accordingly and improve the



approximation accuracy. As a final remark, although we have focused on designing

importance sampling schemes for estimation of the component Geq, the preceding

algorithmic approach can be easily extended to estimating components of c, and

more generally to estimating other quantities that take the form of a large sum.



Chapter 4

Extensions and Related Methods

In the preceding chapters we have focused on the least squares problem

min| Ax - b||' (4.1)
xER

[cf. Eq. (1.2)]. Now we want to extend the preceding methodology and analysis to

a broader class of problems. In particular, we will consider the projected equation

approach for square problems (Section 4.1), a special least squares approach for un-

derdetermined problems (Section 4.2), and the constrained least squares problems

(Section 4.3).

4.1 Projected Equation Approach for Square Prob-

lems

For square linear systems Ax = b [cf. Eq. (1.1)], we consider an alternative approxi-

mation approach to the least squares-based approach [cf. Section 1.2]. Equation (1.1)

may be written as a fixed point equation

x =T(x) = (I - A)x+b.



As earlier, we introduce an n x s matrix D, and assume that the columns of 1 are

linearly independent. Letting S be the subspace spanned by columns of 4, we want

to approximate the fixed point solution with x = (r. We consider an approximate

version of the fixed point equation,

dTr = HT(41r), (4.2)

where we denote by H the projection to S with respect to some weighted Euclidean

norm. This is known as the projected equation.

We assume that HA is invertible, so there exists a unique solution r* of Eq. (4.2).

We have

r* = argmin |1r - ((I - A)4r* + b))||g, (4.3)
rER8

where || - denotes the weighted Euclidean norm and ( is a probability distribution

vector with positive components. Equation (4.3) is equivalent to

r* = C-'d,

where we define

C = 'ZA(, d = 'Zb.

Note that this r* is different from the least squares solution of Eq. (1.4).

Now we may generate a sequence of indexes pairs {(io, jo), ... , (it, jt)} by inde-

pendently sampling according to the distribution (, and may estimate C and d with

1 a a 1 t

~kak~ f~ d= Z Oik (4.4)
kO Skik t1t+1k-O

Based on the estimates C and d, we may estimate the solution r* of the projected

equation using the regression approach of Chapter 2.

This projected equation approach may be less sensitive to simulation error, com-

pared with our least squares-based approach. Here estimating C and d using Eq. (4.4)

involves sampling from a two-dimensional space, while estimating G and c [cf. Eq.



(1.5)] using Eqs. (1.7)-(1.8) involves sampling from a three-dimensional space. As

a result, designing the importance sampling distributions for C and d is relatively

simple. Therefore the estimation of C and d is likely to involve less simulation error,

compared with the estimation of G and c.

In the context of a policy evaluation problem in DP, we take x to be the corre-

sponding cost vector, and take A = I - aP, where P is the probability transition

matrix corresponding to a single policy and a is a scalar satisfying 0 < a < 1. Solving

the simulation-based approximation to the projected equation is known as the LSTD

(least squares temporal difference) method, which we will discuss in more detail in the

subsequent Chapter 5.

4.2 A Special Case for Underdetermined Problems

In dealing with severely underdetermined problems (see [KS04] for examples of inverse

problems of this type), we can estimate the components of the high-dimensional

solution x* of problem (4.1) directly, without subspace approximation. Assuming

that m is reasonably small, we propose to take <D = I and adapt the preceding

regression and simulation methodology as follows.

Let E-1 = I, f1 = 1, and Z = I in Eq. (2.1) for some 3 > 0, and let 1 = < =

and z = <Df = . Equation (2.1) can be rewritten as

= + (A'A + 3I)-1A'(b - At). (4.5)

We now note that

A'(AA'+ 01) = A'AA'+ /3A' = (A'A + 3I)A',

and that both matrices (AA' + /I) and (A'A + B1) are positive definite and thus

invertible. Hence we have

(A'A + /1) 1 A' = A'(AA' + /I) .



Thus Eq. (4.5) is equivalent with

x = ± + A'(F + I)d,

where we define the m x m matrix F and the m-dimensional vector d by

F = AA', d = b - A.

In analogy with the estimation of

generate one sample sequence {(io, jo),

estimate Fq and de respectively with

t +1 t

G and c by using Eqs. (1.7)-(1.8), we may

... , (it, jt)} per component of F and d, and

d$ = b - 1 a
t +1 aeO xik

(4.7)

Alternatively, in analogy with the estimation of G and c by using Eq. (1.9), we may

generate a single sample sequence {(io, jo),.. . , (itI, jt)} according to a distribution ,

and estimate F and d with

1 1 1 -

F _=t+1_ - a/., d=b- a

F + k=0 tikjk k=0 k

where a k denotes the ikth column of A. We now obtain the approximate solution 2

whose ith entry is computed as

-sj = Ti +a', (P$+BI-.

In this way, we are able to estimate components of x* directly, using only low-

dimensional vector operations. We have successfully used this approach in the so-

lution of some severely underdetermined inverse problems; see Sections 6.1-6.2 in

Chapter 6.

(4.6)



4.3 Constrained Least Squares Problems

4.3.1 Equality Constrained Problems

As a variation of problem (4.1), consider the following equality constrained least

squares problem

min ||Ax - b||'nEin (4.8)
s.t. Lx = 0,

where L is an 1 x n matrix. Following a similar approximation approach, we restrict the

solution of problem (4.8) to lie within the subspace S. Now the constraint Lx = 0

becomes L4?r = 0 or equivalently r'VL'LDr = 0, which is also equivalent with

'L'LDr = 0. Thus, we may write the approximate problem as

min||ADr - b|l,

s.t. D' L' L(r = 0.

We assume that there exists at least one feasible solution for this problem. Introducing

a Lagrange multiplier vector A E R1 and using standard duality arguments, we obtain

the following necessary and sufficient condition for (r*, A*) to be an optimal solution-

Lagrange multiplier pair for problem (4.9):

r*H = f, (4.10)
(A*)

where we define the 2s x 2s matrix H and 2s-vector f as

'A'ZAQ CVL'L' 'A'Zb
H = , f =.

H ' ( 0 (Dz)00

We may now apply our simulation and regression approach of the preceding chap-

ters to solution of the system (4.10) (which is always low-dimensional, even if L has



a large row dimension). In particular, similar to Eq. (1.9), we may generate a sample

sequence

{(io, j, ande .. ., ( dt, jt,Wt)

according to the distribution (, and estimate H and f with Ht and f given by

t+1
1 Cikk a a $ik k jkk4  1 $kJklikJk Oik 0/

i kik k' $30

and

t + 1
* a kb

k-O i

Alternatively, we may generate one sample sequence per component of H and f, and

estimate the components with formulas that are similar to Eqs. (1.7)-(1.8).

4.3.2 Inequality Constrained Problems

Another variation of problem (4.1) is the inequality constrained least squares problem

min ||Ax - b||'

s.t. Lx K g,

where L is an 1 x n matrix and the row dimension 1 is assumed to be small. We

consider an approximation of this problem restricted within the subspace S, given by

min|IA4r - bI2
rERS

s.t. L(br < g,

or equivalently

min r'Gr - 2c'r,
rE

s.t. Mr <Kg,



where G and c are defined in Eq. (1.5), and M = L. We may now apply the

simulation approach of preceding chapters. For example, we may generate one single

sample sequence, then estimate G and c with G and 2 using Eq. (1.9), and estimate

M with M given by
t

k=0 i

where we denote by 1i the ith column of L. Alternatively, we may generate one sample

sequence per component of M, and estimate Me with

Meq=t +1 L <ik

The resulting approximate problem,

min r'Or - 22'r,
rE RS

s.t. Mr < g,

is low-dimensional in both the cost function and the inequality constraints. Now we

can apply standard quadratic programming techniques to solve this problem. Note

that it is essential to assume that L has a small row dimension, so that M has low

dimension.



Chapter 5

Application to Approximate

Dynamic Programming

In this chapter, we consider the application of our methodology to the class of policy

evaluation algorithms for approximate solution of DP problems that are computation-

ally intensive. These algorithms come from the field of approximate dynamic pro-

gramming, or neuro-dynamic programming, or reinforcement learning (see the books

by Bertsekas [Ber07], by Bertsekas and Tsitsiklis [BT96], and by Sutton and Barto

[SB98], and see also the more recent books [Bor08], [CFHM07), [Liu01], [Mey07],

[Pow07]). In particular, we will focus on two popular methods for solution of pro-

jected Bellman's equation based on least squares: the LSTD (least squares temporal

difference) method and the LSPE (least squares projected equation) method.

5.1 Simulation-Based Projected Bellman's Equa-

tion

We focus on the evaluation of a given policy by solving the Bellman equation

J = g + aPJ,



where J is the cost vector, P is the state transition probability matrix specified by

the given policy, g is the transition cost vector, and a is a discount factor. We

approximate the cost vector using the linear architecture J = Dr, where D is the

basis matrix and its columns span the subspace S.

We introduce the Euclidean norm || - ||g where ( is the invariant distribution of

P, and we consider the projected Bellman's equation to S with respect to | - ||.

According to Section 4.1, the projected Bellman's equation can be written as

Cr* = d,

where

C = 'E(I - aP)4, d = 'Eg,

and - is the matrix with components of ( along its diagonal.

In the LSTD (least squares temporal difference) method, proposed in [BB96], we

may generate a infinitely long sequence of state transitions {(i 0 , 1 ). ... , (ik, ik+1),

according to P, and estimate C and d with

1 k 
k

Ck = k + 1 1+1), d= k + 1 E ggitit. (5.1)
t=o t=o

Another possibility, proposed by [BY09), is to generate the sequence {io, . .. , i,...}

according to P, and to generate the transitions {(iO, jo),. . , (i, jk), ... } according to

transition probabilities Q. Then we may estimate C and d with

k k____0/ ( a, / __

C k +1 qt $3 dk = gi Oi, (5.2)

where pi , are the components of P and gay, are the transition probabilities of Q.
Note the similarity between with Eq. (5.1), Eq. (5.2) and the estimation formula Eq.

(4.4) in Section 4.1. Under certain irreducibility condition, it can be shown that

Ck -- C and dk -+ d with probability 1 (see [BY07] and [BY09]).

Based on the estimates Ck and dk, the LSTD method evaluates the approximate



cost vector by

rk = C 1 dk. (5.3)

Since C -+ C and dk -+ d, we have $4 -+ C- 1 d. So the LSTD iteration is guaranteed

to converge to the exact solution r* of the projected Bellman's equation.

The LSPE (least squares projected equation) iteration, proposed in [BI96] (see also

[NB03], [BBN04]), takes the form of

rk = rk_1 - yDk l(Ckrk_1 - dk), (5.4)

where y is a positive scalar and Dk is an estimate of the matrix D = VBE given by

I k

Dk = k + i 1 014s (5.5)

The convergence of LSPE has been proved in [BBN04]; and as suggested in [Ber09],

this analysis is through for a more general context where Dk is not of the form of Eq.

(5.5) , provided that the mapping of iteration (5.4) be asymptotically contractive .

5.2 Regression-Based LSTD

The LSTD method must also contend with the difficulty induced by near-singularity

of C (and also Ck) and the simulation errors Ck - C and dk - d. These two factors

together may amplify the solution error:

- r* = C,71 dk - C-'d.

As an alternative to the standard LSTD iteration [cf. Eq. (5.3)], we consider the

estimation of r* using the regularized regression approach given in Chapter 2. This

yields the regression-based LSTD (reg-LSTD) iteration:

rk = WkIET7Ck C p_4 (C k + Fr) (5.6)



where E and F are some positive definite symmetric matrices, and f is an prior guess

or nominal value of r*. For example, one simple choice is to let

f= 0, E = I, F-= #I,

so Eq. (5.6) becomes

rk (CkCk +,31) Ckdk-

Due to the regularization, this regression-based version of LSTD is less susceptible

to near-singularity of C and the simulation error of Ck - C and dk - d, as justified in

Chapter 2. However, when passing the limit to k -* oc, we have

lim rk = lim (C4E-1 Ck + ~1)l (C E 1 dk + F-W)
k-+oo k-4oo

= (C'E-1c + p-1) (C'E 1 d + F-1 F).

Therefore we have shown that reg-LSTD incurs a constant bias, and converges to a

limit point other than r*.

Let us also mention the limiting case when # decreases to zero. We can show that,

as # -+ 0, Eq. (5.6) converges to

rk - Cdk, (5.7)

where t denotes the Moore-Penrose pseudoinverse; 1 see Prop. 8 in Appendix A.2.

Hence Eq. (5.7) can be viewed as a special form of reg-LSTD, in which the pseudoin-

verse solution k happens to be the minimal norm solution of Ckr = dk. Moreover,

Eq. (5.7) implies the potential possibility of extending the traditional LSTD [cf. Eq.

(5.3)] to the case where <b may have linearly dependent columns. It can be shown

that this version of LSTD still converges to a solution of the projected Bellman's

equation. A stronger conclusion is that, the high-dimensional behavior of iteration

(5.7) is invariant under different representations of the subspace S; see Prop. 9 in

Appendix A.3.

'The MoorePenrose pseudoinverse At of an m x n real matrix A is defined as the unique n x m
matrix satisfying AAtA = A,AtAAt = At,(AAt)' = AA+, and (AtA)' = AtA; [Moo20], [Pen55].



5.3 Iterative Regression-Based LSTD

Based on the regression formula Eq. (5.6), a particular approach of interest is to let

where Ek is an estimate of the sample covariance of Ckr* - dk and the prior estimate

f is taken to be the latest iterate. In this case, Eq. (5.6) becomes

rk (CkE 1 Ck + r_1>_' (Ckl 1 dk ± Fr k-1), (5.8)

or

/k k-1 - dk). (5.9)

This type of reg-LSTD becomes an iterative algorithm. We will now establish its

convergence.

We note the similarity between iteration (5.9) and LSPE [cf. Eq. (5.4)]. This

similarity may imply a proof of convergence for this iterative reg-LSTD that is similar

to the proof of convergence for LSPE. We may view Eq. (5.8) as a scaled LSPE

iteration:

rk = rk-1 ~ Dk (Ckik._ - dk), (5.10)

where D- 1 is the matrix

D-1 = (CE 1Ck+ F-1)f 1

As suggested in [Ber09], the line of analysis of the convergence proof of LSPE is

through in a more general context, where Dk is not necessarily symmetric. In par-

ticular, it can be shown that, the scaled LSPE converges asymptotically to r* with

probability 1 if the matrix I - Dk jCk eventually becomes contractive.

Now let us show that the mapping of iteration (5.9) will become strictly contractive

eventually. First we give the following lemma:



Lemma 1 Any s x s positive definite symmetric matrices A and B satisfy that

II(A + B)-1B|| < 1.

Proof. Since A is positive definite, there exists an s x s invertible matrix C such that

A = C'C. We have

(A + B)B (C'C + B)B =C1 (I + (C1)BC-)1 (C- 1 )'BC- 1 C.

Since B is positive definite and C is invertible, the matrix (C-)'BC is also pos-

itive definite and symmetric. So we may write its eigenvalue decomposition as

(C-i)'BC- 1 = V'AV, where V is an unitary matrix, A = diag{A1,,..., As} and

A,. . . , A, are the positive eigenvalues.

We have

(A + B) 1 B =0(I + (C )'BC-1) (C- 1)'BC-1C

= C-1(I + V'AV)>V'AVC

=C 1 (V'V + V'AV)-V'AVC

=C- V'(I + A) 'AVC

(VC)-diag A 1 , . VC.
1 +A'' '1 + A,

Hence we have obtained the eigenvalue decomposition of (A + B)-1 B. Noting the

fact that i < 1 for all ), we obtain that eigenvalues of (A + B)B are strictly

contained in the unit circle. This implies that II(A + B)- 1BI| < 1. U

Now we are ready to establish the convergence results for iteration (5.9):

Proposition 6 Assuming that Ck -+ C, dk -+ d and Ek -+ E, where E is a positive

definite matrix, the iterative reg-LSTD iteration (5.9) converges to r* = C-ld almost

surely.

Proof. Consider an arbitrary sample path, along which Ck -4 C, dk - d and Ek -* E.



We have

I - D'C, -* (C'E-'C + F 1  p- 1

where C'E1C and F 1 are positive definite and symmetric matrices. Now we may

use a similar line of analysis as used in [YB06] and [BBN04], i.e., the convergence of

iteration (5.9) hinges on its deterministic portion.

Using Lemma 1 we have

|| (c'E-1c + r-1) -1|| < 1.

Since is a continuous mapping, there exists c > 0 such that

||I - D'CII < || (C'EC + fr1)- r |1 + c< 1,

for all k sufficiently large. This implies that (5.9) eventually becomes strictly contrac-

tive, so that fk will converge to the fixed point r* of the limiting mapping. Noting

that the set of all convergent sample paths has a probability measure equal to 1,

therefore we obtain that fk -+ r* with probability 1. M

Here we have proposed to use Ek, which is equal to an estimate of the sample

covariance of Ckr* - dk, following the idea of Section 2.1. For estimation of this

sample covariance, one possibility is to calculate Ek to be the sample covariance of

{CiT - diC .. ,CkT - dk},

where T is a prior guess or nominal value of r*, and Ck and dk are the sample matrices

and vectors summed up for calculating Ck and dk. Using a law of large numbers

argument, we can show that this Ek converges to a positive definite matrix, i.e. the

covariance matrix of the corresponding probability space. Another possibility is to

use the sample covariance of

{C1o - d1,...,Ck_1 - dk}.



In this way, we avoid the step of guessing the value of r*. For this case, the asymptotic

behavior of Ek and the convergence of the corresponding reg-LSTD iteration is not

yet understood, and is a direction for further research.

5.4 Optimistic Versions

The standard LSTD/LSPE methods focus on evaluating a single policy by generating

an infinite number of samples. Now we consider their optimistic versions, in which

case the underlying control policy is updated every few iterations. For estimation of

Ck and dk, these optimistic algorithms make use of either only those samples generated

by the current control, or all samples with uniform weights, using the formula Eq.

(5.1) or Eq. (5.2); see [Ber07] and [BT96].

We consider an alternative way of reusing the historical samples, which is to use

discounted weights for historical samples instead of uniform weights. One possibility

is to update the policy upon taking each sample and induce a discount factor in

estimating C and d, given by

Ck (1 - 17)Ck-1 + #(b - apk dk (1 - )dk-1 + ik)

where r7 is a positive scalar such that 0 < r< 1.

Another possibility is to generate a number of samples after updating the policy,

and estimate C and d given by

k

Ck (1 - ry)Ck + k---- k i i (5.11)

t=Ic+1

and
k

dk = (1 - r7)dr + k I i (5.12)
k-k -

t=k+1

where k corresponds to the latest iteration in which the policy has been updated, and

pitj, are components of the transition probability matrix under the current policy.

For these cases, the asymptotic behavior of Ck and dk is not clear. To ensure the



convergence of these optimistic versions of LSTD and LSPE, we may add a decreasing

stepsize, e.g., to modify Eq. (5.9) into

-k = tk-1 - Tk (Ckj71 Ck + r1) Ckz 1 (Ck~k-1 - dk) , (5.13)

where 7k is a sequence of positive scalars decreasing to zero. Theoretical results on

the convergence of these optimistic algorithms are not yet established, and the effect

of regression is not fully understood. These are interesting directions that worth both

theoretical and experimental investigation.

5.5 Example: Parking Problem

In this section we experiment with a toy Markov decision process to demonstrate the

use of regression on LSTD/LSPE and their optimistic versions. For more compu-

tational experiments on these methods we refer to the paper by Yu and Bertsekas

[YB06], and the books by Bertsekas [Ber07] and by Bertsekas and Tsitsiklis [BT96].

We consider the well-known example of parking problem (see [BT96]), in which a

driver is searching for parking space through an area of N consecutive spaces. The

driver starts at state 1, and from state i he either parks and returns to state 1 or goes

next to state i + 1. Each space is vacant with probability p, independent of whether

other spaces are vacant or not. The driver can only observe whether a space is vacant

after arriving at that space. If the driver parks in space i he incurs a cost of c(i). If

the driver eventually reaches the space N, he must park and incurs a large cost c(N).

This problem can be formulated as a stochastic shortest path problem, and the

Bellman equation can be written as

J*(i) = p min{c(i) + aJ*(1), aJ*(i + 1)} + (1 - p)aJ*(i + 1), i 1,..., N - 1,

J*(N) = c(N),

where J* denotes the optimal cost vector and a denotes the discount factor. At an

arbitrary state i < N, the optimal policy is to park and return to state 1 if space i is



vacant and c(i) + aJ*(1) < aJ*(i + 1), or to continue driving otherwise.

We consider the case where

p = 0.05, N = 100, c(i) = i, c(N) = 1000.

For approximation of J*, we introduce a quadratic architecture and approximate J*

within the subspace

S = {<br | r E R31

where <b is the matrix whose ith row is #' = [1 i i 2 ].

Example 1 (Comparison of LSTD, LSPE and Reg-LSTD) For comparison of

LSTD, LSPE and their regression-based versions, we focus on evaluating a single pol-

icy of the parking problem. We generate a trajectory of state transitions {i, i 1 ),..., (ik, ik+1)

under this policy and calculate (Ck, dk) by using Eq. (5.1). We use the following iter-

ations:

LSTD: rk = Cddk

LSPE: rk = rk-1 - Dk (Ckrk_ - dk),

Reg-LSTD1: Eq. (5.6) with E = I, ,3 10-2, i

Reg-LSTD2: Eq. (5.6) with E = Ek, 3 = 10, f = k-l,

Reg-LSTD3: Eq. (5.6) with E = I, 3 = 10- 4 , f = 0,

Reg-LSTD4: Eq. (5.6) with E = >3k, j = 10-1, j = 0,

where Dk is calculated by using Eq. (5.5). Here Ek is the sample covariances of

{(Cir* - di), .. ., (Ckr* - dk)

and the values of / have been tailored to reach a near-optimal performance for each

algorithm. The computational results are illustrated in Fig. 5-1.



A first observation from Fig. 5-1 is that, the regression-based versions of LSTD

perform in a more stable manner compared with standard LSTD. Another qualitative

observation is that, the iterative versions of reg-LSTD using r = rk_1 (reg-LSTD1/2)

yield sequences of updates similar to that of LSPE.

Regarding convergence, the LSTD, LSPE and reg-LSTD with i = rk_1 (reg-

LSTD1/2) converge to one another and eventually converge to r*, which is consistent

with the analysis of [YB06]. On the other hand, the regression-based LSTD with

T= 0 (reg-LSTD3/4) incur a constant bias and converge to some limit other than r*,

which validates our analysis.

Example 2 (More on the Iterative Reg-LSTD) Continuing with the settings of

Example 1, let us focus on the iteration:

k (c-ICk + > (Ck- 1 dk + /3k-1)

/cf. reg-LSTD2 of Example 1], where Ek is the sample covariance of the samples

{ (Cir* - di),. . ., (Ckr* - dk)}.

We generate a single trajectory {(iO, i1 ), .. . , (ik, ik+1),... .} and experiment with alter-

native values of 0. We illustrate the corresponding results in Fig. 5-2.

As can be seen in Fig. 5-2, as # decreases to zero, the sequence of updates of

iterative reg-LSTD gets closer to the sequence of updates of LSTD, and becomes

more susceptible to simulation error. On the other hand, the iterative reg-LSTD

converges slowly for large values of 3; and may converge more slowly than LSPE

does, for # sufficiently large.

We have also experimented this algorithm with Ek being the sample covariance of

{(C1n0 - di),. wit tho-1 - d l).

The resulted sequences of updates are similar with those plotted in Fig. 5-2.
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Figure 5-1: Sequences of updates of Example 1 based on a single trajectory. Plotted
are sequences of one component of the updates of LSTD, LSPE, reg-LSTD1/2/3/4,
based on a single trajectory.

30 -0 
Limit

--- ISTD (Reg-LSTD: # - 0)

25 -350 LSPE

30 0Reg-LST: 0 = 100

20--- Reg-LSTD: = 10

250 Reg-LSTD: 0 = 1

1Lmit 4200

10.---- TTD (Reg-ISTM: 0 -10)
- LSPE 150

5--- Reg-LS1): = 100 100

-- Reg-ISTD: = 10

0Rag-LSTD1: ft= 1 50
0

0.5 1 1.5 2 2.5 0 0.5 1 1.5 2
k Xlg

4  
k X1

a = 0.95 a = 0.99

Figure 5-2: Sequences of updates of Example 2 based on a single trajectory. The
green curve corresponds the standard LSTD iteration, which is also the limiting case
when # -4 0; others curves correspond to iteration (2) with # taking alternative
values.



Example 3 (Optimistic Iterative Reg-LSTD using Uniformly Weighted History)

This example tests the optimistic version of iterative reg-LSTD [cf. Eq. (5.8)]. We

experiment with several values of # and generate 10 independent trajectories for each

#. Each trajectory {(i(0 , i1)... , (i, ik+1),...} is generated according to a policy which

is updated every 50 samples; and based on this trajectory, we calculate Ck and dk by

using Eq. (5.1) and calculate the updates of reg-LSTD by using Eq. (5.8). For com-

parison, we also test the optimistic versions of LSTD and LSPE. The corresponding

results are illustrated in Fig. 5-3.

We observe that, at one extreme, if # is very small, the reg-LSTD is largely affected by

the simulation noise and resembles the LSTD; at the other extreme, if # is too large,

the iteration of reg-LSTD has a modulus of contractiveness close to 1 and converges

very slowly.

Example 4 (Optimistic LSTD/LSPE/Iterative Reg-LSTD using Discounted History)

In this example we test the optimistic versions of LSTD/LSPE/iterative reg-LSTD

using discounted history. We generate 5 independent sample trajectories for each

method. For each trajectory, the policy is updated every K = 100 samples; and

Ck and dk are calculated as the discounted weighted average of all samples [cf. Eqs.

(5.11)-(5.12)] with T1 = 0.8. We illustrate the corresponding results in Fig. 5-4.

As illustrated in Fig. 5-4, the optimistic LSTD/LSPE, which does not use regu-

lariztion, does not converge under the scheme using discounted history. On the other

hand, the reg-LSTD converges well under this scheme. We have also experimented

with other values of K, y and #, but have only obtained convergent results in a few

cases. Further experiments and analysis is needed before the convergence of these

optimistic versions is better understood.
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Figure 5-3: Sequences of updates of LSTD/LSPE/iterative reg-LSTD using uniformly
weighted history of Example 3, with K = 50 and a = 0.98. Each figure plots the
updates of one component of rk based on 10 independent trajectories. The dots
correspond to the iterations of policy updation.
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Figure 5-4: Sequences of updates of optimistic LSTD/LSPE/iterative reg-LSTD using
discounted history of Example 4, with K = 100, a = 0.98 and rq = 0.8. Each figure
plots the updates of one component of i\ based on 5 independent trajectories. The
dots correspond to the iterations of policy updation.
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Chapter 6

Application to Practical Inverse

Problems

In this chapter we apply the proposed algorithmic methodology to a number of practi-

cal inverse problems, involving both underdetermined systems (Sections 6.1 and 6.2)

and square systems (Sections 6.3-6.6). These problems take the form of Fredholm

integral equations of the first kind, and are discretized into linear systems

Ax = b

[cf. Eq. (1.1)], where A is m x n or n x n, and n, the dimension of the solution space,

is taken to be n = 109. The matrix A is typically ill-conditioned and dense. The

components of A and b are accessible, and can be computed analytically.

We aim for the solution (or the least squares fit solution) x* of the discretized

system Ax = b. For square systems, we consider its approximate solution within a

subspace spanned by s = 50 or s = 100 multi-resolution basis functions, which are

piecewise constant functions with disjoint local support [KS04]. For underdetermined

systems, we use the approach introduced in Section 4.1 and estimate specific compo-

nents of x* directly. Note that the computational complexity is completely determined

by s (or m for underdetermined systems). Our experiments are run on a dual proces-

sor personal computer with 4GB RAM running Matlab. The estimates G and 6 (or



Figure 6-1: Comparison of the projection error ei, the subspace approximation er-
ror e2 and the simulation plus regularization error e3, where x* is the exact solu-
tion to Ax = b, Hx* is the projection of x* on the subspace S, Gr* is the high-
dimensional correspondent of the exact solution to the approximate low-dimensional
system [cf. Eq. (1.4)] and 44 is the high-dimensional correspondent of the approxi-
mate solution obtained by the proposed algorithm.

F and d for underdetermined systems) are obtained component-by-component based

on separate sample sequences using Eqs. (1.7)-(1.8) (or Eq. (4.7)). Each sequence is

generated by using the importance sampling scheme given in Section 3.3, where we

discretize the n-vectors involved (i.e., aj and #j) into vectors of dimension 100, and

use piecewise linear approximation to compute the sampling distributions. We have

estimated each component of G and c (or F and d) with 104 samples and each sample

takes 50ps on average.

In presenting the computational results, we will compare three types of error, as

illustrated in Fig. 6-1: (i) the projection error ei = 1x* - x*, which measures the

distance between the exact solution and the subspace S; (ii) the subspace approxi-

mation error e2 = 1r* - Lx*, which measures the distance of Dr* and the "best"

approximation of x* within S; and (iii) the simulation error e3 = (W - Gr*, which

can be made arbitrarily small by sufficient sampling. The performances of our impor-

tance sampling schemes are assessed with the total sample covariances of estimated

components of G and (or F and d for underdetermined systems).



6.1 The Inverse Contamination Release History

Problem

This is an underdetermined problem, whereby we seek to recover the release history

of an underground contamination source based on measurements of plume concen-

tration. Let u(w, T) be the contaminant concentration at time r and distance w

away from the source, and let x(r) be the source release at time T. The transport of

contaminant in the ground is governed by the advection-diffusion model [WU96]

au 892U au-=D 2-V- w;>0 T E{0,r],aT Cw aw,

subject to Cauchy initial and boundary conditions

u(0, r) = x(r), u(w, 0) = 0, lim u(w,T ) = 0,
w-4oo

where D and V are coefficients for the diffusion and velocity respectively. At a time

T > rf the plume concentration is distributed as

u(w, T) = dr A(w, T - r) x(T),

where A is the transport kernel

A(w, T -- ) = exp (w-
47r D(T-r)3 - 4D(T -,r)

In our experiment we take D = 0.8, V = 1, T = 300, and rf = 250, and we assume

the unknown release history to be

x(T) = r }exp
i=1
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Figure 6-2: The simulation-based approximate solution ^ for the contamination re-
lease history reconstruction problem, compared with the exact solution x*, with
m = 50 (left) and m = 100 (right).

where

r = {0.5, 0.4,0.3, 0.5, 0.5}, p = {60, 75,150,190, 225}, a = {35, 12, 10, 7, 3},

and we discretize it into a vector of length 109 , which is used as the vector x*.

Then we compute m borehole concentration measurements at locations {wi} 1 , as a

discretization of u(w, T) and form the vector b.

In accordance with Section 4.1, we formulate the problem into Eq. (4.6) and

estimate F and d using simulation. Then we compute 1000 entries of ^ using the

estimates F and d, the regularization matrix IP-1 = 10~"I and the initial guess

F = 0. In Fig. 6-2, we compare the resulted entries si against those of the exact

solution x*.

To analyze the effect of importance sampling, we evaluate the simulation error in

terms of the total sample variances for components of F and d. In Fig. 6-3 we com-

pare the reduction of simulation error for alternative importance sampling schemes

and alternative ways of function approximation. It can be seen that the proposed im-

portance sampling scheme substantially reduces the simulation error and improves the

simulation efficiency. Similar results have been observed in the subsequent problems.
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Figure 6-3: The reduction of simulation error for alternative importance sampling
schemes. The simulation error is measured in terms of the sum of sample covariances
for components of F and d. The solid lines represent the case where no approximation
is implemented and a uniform sampling distribution is used; the dotted lines represent
the cases where importance sampling is used, with distributions obtained by piecewise
constant/linear approximations. The left figure illustrates the reduction of simulation
error as the number of samples t varies, while the number of trial points (i.e., the
cardinality of I, which is introduced for the purpose of function approximation; see
Chapter 3) is fixed at q = 500; the right figure plots the results when q varies, with
the number of samples fixed at t = 1000.

6.2 The Gravitational Prospecting Problem

This is an inverse problem encountered in searching for oil and natural gas resources.

We want to estimate the earth density distribution based on measurements of gravi-

tational force at some distance away from the surface.

Here we consider a simplified version of this problem as posed in [Gro07], where

the spatial variation of the density is confined within the interior of a ring-shaped

domain, and the measurements b are take on a circular trajectory positioned at the

same plane but outside the ring. When the unknown density function x and the data

are defined on concentric trajectories, we express the problem in polar coordinates as

b(p) j dA( , O)x(), 0 < p < 27.

where

A(p, 0)- 2 - cos(o - 0)
(5 - 4 cos(V - 0))3/2
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Figure 6-4: The simulation-based approximate solution D = for the gravitational
prospecting problem, compared with the exact solution x*, with m = 50 (left) and
m = 100 (right).

In the experiment, we take the unknown density function to be

x(6) = Isin 0|+Isin 201, 0 < 6 < 21r,

so the measurement function b can be computed accordingly. We discretize the prob-

lem into a system of m = 50 and m = 100 equations, corresponding to m measure-

ments, with n = 109 unknowns. For regularization we use F-1 = 10-131 and f = 0.

The approximate solution X is illustrated in Fig. 6-4, compared with x* the exact

solution.

6.3 The Second Derivative Problem

This problem refers to differentiating noisy signals that are usually obtained from

experimental measurements. This problem has been extensively studied and the

solution has been shown to exhibit instability with increasing level of noise [Cul7l].

We denote by b the noisy function to be differentiated and denote by x its second

derivative. It is given by

b(w) = dr A(w, r)x(r) 0 < rw < 1,

I " i .........
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Figure 6-5: The simulation-based approximate solution W = i for the second deriva-
tive problem, compared with the exact solution x* and the projected solution IIx*.
The subspace S has dimension s = 50 for the left plot and dimension s = 100 for the
right plot.

where A(w, r) is the Green's function of the second derivative operator

A(w, r) { (T - W<T,
r(w -1) w > r.

In our experiment, we have used

x(r) = cos(27rT) - sin(67rr).

Following the approach of [Han94] we discretize the integral using the Galerkin

method, and obtain a system of n linear equations with n unknowns where n = 109 .

We consider the approximate solution of the system using the preceding method-

ology, with the initial guess f = 0 and the regularization matrix 1~ = 10'L'L3 , where

L 3 is the (s - 3) x s third-order difference operator. The obtained approximate solu-

tion Df is presented in Fig. 6-5, and is compared with the exact solution x* and the

projected solution Ix*.
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Figure 6-6: The simulation-based approximate solution X = I ir for the Fox-Goodwin
problem, compared with the exact solution x* and the projected solution Hx*. The
subspace S has dimension s = 50 for the left plot and dimension s = 100 for the right
plot.

6.4 The Fox and Goodwin Problem

This problem, introduced by Fox and Goodwin in [FG53], considers the solution of

the integral equation

b(w) = drv'w2 + r 2 x(r), 0 < w < 1.

As shown in [FG53], this is a severely ill-posed problem and the condition number of

its discretized integral operator increases exponentially with n. In our experiment,

we assume the unknown solution to be

x(r) = r, 0 < r < 1,

compute b accordingly, and discretize the system into a square linear system of di-

mension n = 109.

We consider its approximate solution in the subspace spanned by s = 50 or s = 100

multi-resolution basis functions, and introduce the regularization matrix -1 = 10-31

and the initial guess r = 0. The obtained approximate solution Dr is presented in

Fig. 6-6, plotted against the exact solution x* and the projected solution Hx*.



6.5 The Inverse Heat Conduction Problem

This problem seeks to reconstruct the time profile of a heat source by monitoring the

temperature at a fixed distance away [Car82). The one-dimensional heat transfer in

a homogeneous quarter plane medium, with known heat conductivity ca, is expressed

by the elliptic partial differential (heat) equation

OU _2U

=T aw ,T>20 r0,

u(w, 0) = 0, u(0, T) = X(r),

where u(w, T) denotes the temperature at location w and time r. Let b be the

temperature at a fixed location F) away from the source, and it satisfies

T

b(r) = j0dvA(v, T)x(v),

where A is a lower-triangular kernel given by

7 /= exp{_(/a}, 0 < r < v < T,
A (v, r) = 1 (--34v7

0, 0 <v <r < T.

In the experiment we take T 1 and take the unknown target temperature function

to be

x(r) = Ki exp{- , 0 < v <
ii=1

with K = {4,3,6} x 104, 1 = {0.3, 0.6, 0.8} and - = {0.1, 0.1, 0.05}, so b can be

obtained accordingly.

We discretize the integral equation into a linear square system of dimension n =

109 and consider its approximate solution within the subspace spanned by s = 50 or

s = 100 multi-resolution basis functions. Also we assume an initial guess r = 0 and

the regularization matrix l- 1 = #L'L 1 , where Li is the (s - 1) x s discrete first-order

difference operator and =10-5. The computational results are illustrated in Fig.

6-7.



6 8 10 0 2 4 6 8 10
index x 10 index x lop

Figure 6-7: The simulation-based approximate solution - = <W for the inverse heat
conduction problem, compared with the exact solution x* and the projected solution
]Ix*. The subspace S has dimension s = 50 for the left-hand plot and dimension
s = 100 for the right-hand plot.
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Figure 6-8: The simulation-based approximate solution ^ = <bf for the optics problem,
compared with the exact solution x* and the projected solution IHx*. The subspace
S has dimension s = 50 for the left plot and dimension s = 100 for the right plot.

6.6 A Problem in Optical Imaging

Consider light passing through a thin slit, where the intensity of the diffracted light

is a function of the outgoing angle and can be measured by some instrument. We

wish to reconstruct the light intensity at the incoming side of the slit based on these

measurements. Let x be the incoming light intensity as a function of the incoming

angle, and let b be the outgoing light intensity as a function of the outgoing angle, so

that J ,r/2b(p) = dOA(W,0)-x(/), 2, E [-w/2,ir/21,
_7r/2



where
eA(,0)= CosW+Cos)2 (sin(r(sin a + sin 0)) 2

r (sin o + sin 6) )
(we refer to [Jr.72] for further explanation of the physical aspects of this application).

We discretize this integral equation into a square system of dimension n = 109 , and

consider its approximation within the subspace spanned by s = 50 and s = 100

multi-resolution functions. The regularization matrix is taken to be F1 = #L'3L 3

and T = 0, where L3 is the third-order difference operator and = 10-. The

corresponding computational results are plotted in Fig. 6-8.



Chapter 7

Summary and Future Work

In this thesis, we have considered the approximate solution for large-scale linear

least squares problems on a subspace spanned by a given set of basis functions or

features. We have proposed an approximation-simulation methodology that relies

exclusively on low-dimensional calculations, and involves regularized regression, im-

portance sampling and designing near-optimal samplings distributions tailored to the

model matrices and basis functions. Our regression approach makes use of the sample

covariances obtained as a byproduct of the simulation, and can effectively reduce the

effect of near-singularity of the system and simulation error induced by sampling, for

which we have provided theoretical justification. This simulation-based regularized

regression can also be applied to large-scale problems with equality or inequality con-

straints, and to approximate policy iteration algorithms in the context of large-scale

DP problems.

The performance of our algorithmic methodology has been numerically evaluated

on a number of classical inverse problems of dimensions up to 109 . The computation

experiments demonstrate an adequate reduction in simulation noise after a relatively

small number of samples and an attendant improvement in quality of the resulted

approximate solution.

A central characteristic of our methodology is the use of low-dimensional calcu-

lations in solving high-dimensional problems. Two important approximation issues

arise within this context: first the solution of the problem should admit a reason-



ably accurate representation in terms of a relatively small number of basis functions,

and second, the problem should possess a reasonably continuous/smooth structure

so that effective importance sampling distributions can be designed with relatively

small effort. In our computational experiments, simple piecewise polynomial approx-

imations have proved adequate, but other more efficient alternatives may be possible.

We finally note that the use of regularized regression based on a sample covariance

obtained as a byproduct of the simulation was another critical element for the success

of our methodology with nearly singular problems.

The utility of our methodology will likely be judged on the basis of its ability to

solve challenging large-scale problems. Examples of such problems have been given in

this thesis and also the related papers [WPB09] and [PWB09]. Additional research,

targeted to specific applications, will be very helpful in clarifying the range of poten-

tial uses of our methods. Another direction worth investigating is the approximate

solution of infinite-dimensional least squares problems using approximation within a

low-dimensional subspace and simulation. The main ideas underlying such an ap-

proach should be similar to the ones of the present thesis, but the corresponding

mathematical analysis will likely be more complex.



Appendix A

Additional Proofs

A.1 A Different Confidence Region of Section 2.2

This is another derivation of an (1 - 6)-confidence region for the solution i of the

regression, as compared with Prop. 1 in Section 2.2. This version of confidence region

involves the constant quantities EG, c, G and c instead of G. Let us start with

the case where there is no regularization, so the exact solution for problem (1.3) is

r* = G-'c and our approximate solution is i = O-.
Based on the simulation formulas (1.7)-(1.8), the errors (g - y) [obtained by con-

catenating columns of (G - G)] and (c - ) are multivariate approximately normal

random variables, with covariances EG and Ec respectively. They will be treated as

normal in the following analysis, which is essentially true when the number of samples

is large. Accordingly, the term (g - y)'E- (g - y) is a chi-square random variable

with s2 degrees of freedom. Thus we may write the (1 - 6/2)-confidence region for y
as

RG = {y E 3S 2 G( - ~Y1 (g P 1 (1 - 0/2; s2) , (A.1)

where P(.; s2) denotes the regularized Gamma function with s2 degrees of freedom

and P- 1(.; s2) denotes its inverse. Similarly, (c - )'Ec1(c - ) is a chi-square random



variable with s degrees of freedom, so the (1 - 0/2)-confidence region for a is

Rc = E Rs (c - a)'Ec 1(c - a) 5 P 1 (1 - 0/2; s)}, (A.2)

where P(.; s) denotes the regularized Gamma function with s degrees of freedom and

P-1 (.; s) denotes its inverse.

Based on Eqs. (A.1) and (A.2), we can derive an (1 - 0)-confidence region for

0 -1 8 in the following proposition.

Proposition 7 If

P- 1 (1 - 0/2; s2) > IIEG|||G-I ||2 (A.3)

then

Prob(||i - r*| |IG-I||c|l |/|EZG||P-1 (1 - 0/2; s2)

+|Gc ||/||cI|P 1 1 - 6/2; s) + o (IIEGII + IIZGIIIIc-II) 1 - (

Proof. We will use the following matrix norm inequalities, for s x s symmetric positive

definite matrices A, B, and vector h E R

IAB| < ||Ai||B||, (A.5)

hAi :5 IAlIF, (A.6)

IA-1Ilh 11h|2 < h'Ah, (A.7)

where |tAll denotes the standard Euclidean norm of A (the largest eigenvalue) IIAIiF

denotes the Frobenius norm of the matrix A (the Euclidean norm of the s2-dimensional

vector comprising its components).

Consider any G E RG and a E Rc. Using Eq. (A.7), we have

|IG - O||F 9 - 2 riG 11 (9 - )G .<G(g - y), (A.8)

||c - ||2 < |Ic| (c - )E- 1(c - a). (A.9)



Combining Eqs. (A.8)-(A.9) with Eqs. (A.1)-(A.2), and using Eq. (A.6), we obtain

| lG - 0 I| C J|G - GIIF < VIIEG lIP- 1 (1 - 02; S2), (A.10)

and

|Ic - c|| < V/||Ec|| P- 1 (1 - 0/2; s). (A.11)

Then by Eq. (A.5) we have

||G-1 (O - G)|| 11 ||G | |I|G - Oll, (A.12)

so the smallest singular value of (I + G-1(G - O)) satisfies

-1 ~

(I + G 1 (G - G)) > 1 - JIG-'| ||G - G|| > 0, (A.13)

where the last inequality follows from Eqs. (A.10) and (A.3).

Using the relation

G - a- (I + G-(a - ) (G-1(G - 0)G-1) , (A.14)

we obtain

G-1 - - (I + G-1(O - G)) - G-1(O - G)J

||G-11 Ol - GI
< (A.15)

1 -||G-1|| G -

= |G-' 1 G - O'j + 0 JG - OJ1,

where the first inequality uses Eq. (A.5), and the second inequality uses relations

(A.12)-(A.13). Using Eq. (A.10) we can further bound the right-hand side of Eq. (A.15)

by

G-1 - 0 IG- 1 | /IIEG liP1 (1 - 0/2; s2) + 0 (|lEGI|)



Now we write the difference between i and r* as

f - r* = 0-1a - G 1 c

= (G- - -1)c - G - a) + (G-1 - O-1 )(c - 6), (A.16)

whose norm satisfies

||f - r*| 1 |JG- - 0-1t |tcn + ||G-' 1| ||c - al| + |G-' - - |ilc - a||

< ||G4I||cIl EIIjG jfP- 1 (1 - 0/2; s2) (A.17)

+ ||G-111 c|P- (1 - 0/2; s) + 0 (||EGtI + iiEGItii cii)

Since G and a are arbitrary, the relation (A.17) is satisfied for all (G, 6) in RG X Rc,

whose probability satisfies

P(RG X Rc) = P(RG) P(Rc) =1 - 0 + 0(02),

since C and a are independent. Therefore Eq. (A.17) is satisfied with probability

greater than (1 - 0), which proves the desired result.

Prop. 7 gives an approximate (1 - 0)-confidence region for i given by

E !Rs iir* - fll |iG 1 ||icl I|EG ttP- 1 (1 - 0/2; s2)
(A.18)

+|Gil~t/||Ec||P' (1 - 0/2; s)}

where the higher-order term has been omitted. This is consistent with the conclusion

of Prop. 1 that the level of confidence of f is adversely affected by a large value of

|IG 1 ||, which corresponds to a near-singular matrix G. We also note that as expected,

by reducing EG and c, through extra simulation, the confidence region can be made

arbitrarily small.

Moreover, the condition (A.3) of Prop. 7 indicates the amount of sampling efforts

needed for i to bear a certain level of confidence. In other words, if the number

of samples is not large enough to satisfy (A.3), the regression approach would not

yield any reliable estimate. According to the condition (A.3), we also note that, the



number of samples required becomes substantial if G is close to singular.

Let us now consider the case where we use regularization, i.e., P- f 0. Then

assuming that the inverses below exist, the approximate solution i of Eq. (2.1) can

be rewritten as

= (O + E'-lr) (2+ EO'~f-f1) , (A.19)

Now an approximate (1 - 0)-confidence region for i is

E Rs ||r* - f|| <; I(G + t)- 1 1|||c| ||EG fjP 1 (1- 0/2; s2)

(A.20)

where =

A.2 Connection Between Reg-LSTD and Pseudoinverse-

Based LSTD

Proposition 8 Let C be an arbitrary s x s matrix, E be an s x s positive definite

symmetric matrix and d be a vector in R8, then

lim (O'E-T O + #I) (O'E-Id+ #f) = OIS,

Proof. Since E is positive definite and symmetric, there exists an invertible matrix A

such that E = A'A. We may use the singular value decomposition and write AC

as AC = U'AV, where U and V are s x s unitary basis matrices and A takes the form

of

A =r diag{1 , ... A , s0 ... , 0},

where z is the rank of AC and A,, . . ., A, are the positive singular values of AC.



We derive

( a , z10 + 01 -1

=(V'AU'UAV +I)- 1 (V'AUAd + V'VF)

= (V'(A 2 + rl))- 1 V' (AUAd +VST )

= V'(A2 + /31- 1 AUAd +

0

Az

V'(A 2 ± OjI)-'V

... 0 0

... ..... . ... 0

him .= 01
#84ohA +'zr 2 =

Taking # -+ 0 on both sides of Eq. (A.21), we obtain

lim (OE-10 + #I) O'E-~1a+ = V'
0-+0 -

0 0 ... 0Al

0 0 ... 0

0 1 . 0

S00

0 ... ...... ... 0

where the last equality uses the property of pseudoinverse. Finally we have (AC)tAd =

CtAtAd = Otd.

=V'
0

0

0

0

0UAd+ V'

0
... A20

z

Note that

0 0

VT.

(A.21)

hm =
pO+oA +#

UAd = (AO)t Ad,



A.3 Feature-Scaling Free Property of Pseudoinverse-

Based LSTD

We are interested in the behavior of the pseudoinverse-based LSTD method [cf. Eq.

(5.7)] when the same feature space S is represented by alternative sets of basis func-

tions. Consider two sets of basis functions of S, columns of the n x s matrix (D and

columns of the n x 9 matrix T, which satisfy

S = Ra(5) = Ra(T).

Let {Ck,p, d,4} be the sequence generated by Eq. (5.1) (or Eq. (5.2)) and {Ck,,, dk,T}

be the corresponding sequence generated when 4 is replaced with T.

We denote by {re,k} the iterates generated by the LSTD-type iteration (5.7) using

{Ck,, dk,,}; and we denote by {f',k} the corresponding sequence generated by the

iteration using {C,,, dk,q} instead.

Proposition 9 The high-dimensional sequence obtained from the pseudoinverse-based

LSTD iteration (5.7) and the simulation process of Eq. (5.1) (or Eq. (5.2)), is feature-

scaling free, i.e.,

(Dk,, = WJTk

Proof. Assuming without loss of generality that s > 9, we first restrain the analysis

to the case when T has a full rank equaling 9. In this case, Ck,, is invertible for k

sufficiently large (which we assumes implicitly). Moreover, since (D and XI have the

same range, there exists some s x s matrix B such that 4 = 'IB and B has full rank

9. So the 9 x s matrix BB' is positive definite and thus invertible.

Let O(i)' denote the rows of T, so we have #(i)' = i/4i)'B for all i. Comparing

Eq. (5.1) (or Eq. (5.2)) and using this relation, we have, for all k, that

C,4 = B'CkqB, dk,D = B'dk,T. (A.22)



By definition for the Moore-Penrose pseudoinverse, we write for all k that,

Ck, , Ck', 4Ck, ( = Ck, 4. ( A.23)

Using Eq. (A.22) to replace Ck,, in Eq. (A.23), we obtain

(B'Ck,,B)Ct, (B'Ck, B) = B'Ck,,B. (A.24)

Multiplying Eq. (A.24) with B on the left side, and with B' on the right side, we have

B(B'C,, B)C,(B'Ck,,B) B' = BB'Ck,,BB',

and noting that BB' and Ck,, are invertible, we can cross-off them on both sides and

obtain

BCt B'= C . (A.25)

Also note that dk,4 = B'dk,,, then Eq. (A.25) implies

BCdk,, = Cj'dk,,. (A.26)

Finally, we multiply both sides of Eq. (A.26) with T, appeal to the fact 4 = APB,

and obtain

<b Ck,4dk,, = T C,dk, .

Now consider the general case when neither <D nor ' is necessarily full rank. Let

8 be the n x s matrix consisted of independent column vectors of 4', where we denote

by s the common rank of <b and IF. Consider the sequence {Ck,e, dk,e} generated by

Eq. (5.1) (or Eq. (5.2)) using 8 as the basis matrix. Note here 8 has the same range

as that of <k and 4, and e is full rank. Hence we can apply results of the previous

case and obtain

w Ct dk, = eC-edk, = <bCt, d

which is the desired equation. U



Appendix B

Additional Numerical Experiments

B.1 Test Problems of Section 2.1

We test the regularized regression of Section 2.1 in the following examples.

Example 5 (One-time regression using sample covariance) Let G be a 2 x 2

positive diagonal matrix, r* and c be vectors in !R2, given by

0[ei0 1 0 2i'

for scalars o and 0-2 . Let the simulation errors (G -- G) and (L-c) be normal random

variables, which have means at zero and covariances given by

o2 0 0 0

0 0 00 [0.01 0
EG ,

0 0 0 0 0 0.01

0 0 0 C-3

for some -3 > 0. The regularization matrix 17-1 [cf. Eq. (2.1)] is given by F = 3I

for some 0 > 0, and the prior guess r is taken at the origin.

The initial estimate ro is taken to be ro = O'. Then an approximate solution,

denoted by ri, is calculated by iterating Eq. (2.4) only once, starting from ro. For



800 1000 0 200 400 800
Trai Index

(a) 3 = 0.01

Figure B-1: Illustration of
errors; and Figure (b) is a

(b) # = 0.01 (zoomed- in version)

sample errors of Example 5. Figure (a) contains sample
zoomed-in version where outlying points are omitted.

8 .. --- - *[ .

42
0 -

6L 

-

0 200 400 O00 800 1000
Trai Index

(a) # = 0.005 (b) # = 0.05

Figure B-2: Sample errors of Example 5 for alternative values of #. Figures (a)
and (b) present the sample errors for # = 0.005 and # = 0.05 respectively, where
unspecified parameters are identical with those of Fig. B-1. Both (a) and (b) have
been zoomed such that outlying points are omitted. A comparison of (a) and (b)
reveals the tradeoff between the bias and the variance induced by regularization.
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Figure B-3: Sample errors of Example 2 with # = 0.001. Figure (a) presents the
sample errors of all 1000 trials, and figure (b) presents the errors of those trials in
which the iterative regression converges.

comparison, a third approximate solution, denoted by ri, is calculated using Eq. (2.1)

where E is taken to be the constant matrix

_[ 1 0.5
0.5 1

For given values of parameters (0-1 = 1, -2 = 10, o3 = 1, # = 0.01), the regression

method is tested on 1000 independent trial pairs (G, c) generated according to the

given normal distributions. Figure B-1 plots the errors 11r1 - r*|1, |Ir - r*|| and

||ro - r*|| for all 1000 trials, and Figure B-2 compares the results when alternative

values of # are used. Note that the plotted errors have been re-scaled by a factor

||r*|-1' in all numerical results.

Example 6 (Iterative regression using sample covariance) Under the same set-

tings of Example 5, the iterative regression method is tested against the regression

method that iterates once. For given values of a1 , a-2, o3 and #, 1000 independent

trial pairs (G, ^) are generated. For each (G, 6), Eq. (2.4) is iterated with the initial

estimate ro = -1e6, yielding r1 after the first iteration, and yielding the fixed point

approximate solution r if the corresponding iterates converge.

............ --- --- . .........
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(a) # = 0.0001 (b) # = 0.01

Figure B-4: Sample errors of converged trials for Example 2, with # = 0.0001 in (a)
and # 0.01 in (b), while other parameters are identical as those in Fig. B-3.

Fig. B-3 plots the sample errors of those trials in which the iteration converges,

compared with the samples errors of all 1000 trials. Comparing Figs. B-3(a) and B-

3(b), we see that the errors of "good" trials, in which the iteration converges, have far

smaller variance than general errors. This implies that the convergence of iterative

regression is a indicator of the quality of (G, ) thus the confidence of ro. For given

parameters (o1 = 1, 0-2 = 10, o3 = 1, #3 0.01), Figure B-4 plots the sample errors of

convergent trials when # varies.

B.2 Validation of Proposition 1

Example 7 (Validation of Confidence Region) Let G

nal matrix, r* and c be vectors in R 2, given by

be a 2 x 2 positive diago-

800 1000
Trail Index

100 0

0 a

j
JIG-la

1 100

1 C



where - is a positive scalar. Let the simulation errors (G - G) and (6 - c) be normal

random variables, which have means at zero and covariances given by

1000 0 0 0

0 1 0 0 0 0
EG= EC-

0 0 1 0 0 0

0 0 0 o2

Consider the estimate solution i obtained by using (2.1) with

IF-' = 0.5I, r r*,I

and E(r) is estimated with Z($*).

We compares the (1 - 6) error bounds [-(E(O 1 8),y)] with the actual sample errors

||fi - r*I| for (1 - 6) = 0.75,0.95 and -= 1, 10, 100. For each setting of parameters,

200 independent sample trials (G, ) are generated. The corresponding sample errors

and estimated error bounds are presented in the following table:

Cr= 1 U= 10 a= 100

Violation rate of 75% bound 11% 16.50% 17.50%

Violation rate of 95% bound 3.4% 7.10% 8.60%

These results demonstrate the soundness of the (1 - 0) error bound given by Prop. 1.

We also observe that, the (1 - 6) error bound is more likely to be overestimated, as

the system becomes closer to be singular (corresponds to small value of o).
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