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Chapter 1

Introduction

Recent advances in high throughput genotyping technologies are making possible
previously unknown, large-scale studies in the areas of medical genetics, basic biol-
ogy, and human history. Datasets with information about hundreds of thousands
of genetic variants for thousands of human subjects are now common and continue
to be gathered. Additionally, whole-genome sequencing methods are becoming less
expensive and therefore more attractive for research study datasets. Whole-genome
sequence data contain a wealth of information, including genotypes for all genetic
variants in an individual.

Genotype data provide information about the genetic variants in an individual
that are present at specific locations on both genome copies—one copy inherited
from each parent. However, genotype data do not identify which of the variants at
multiple genotyped locations reside on the same homologous chromosome copy. A
genotype can therefore be thought of as an unordered pair of variants since either
variant could reside on either chromosome copy. An allele is a designation, often a
letter, for a particular variant form that resides at location, so a genotype is made up
of two alleles. A locus (plural, loci) is a specific location where a particular genetic
element, including a gene, variant, etc., occurs. Absent any outside information,
any combination of alleles across a series of genotyped loci may appear on the same
chromosome copy.

A haplotype is an assignment of each genotype allele to the homologous chro-
mosome copy it resides on and is useful in many contexts. Haplotypes can greatly
increase the statistical power of genome wide association studies and thereby aid in
identifying genes involved in human diseases. This increase in statistical power is par-
ticularly relevant to the study of human diseases with complex genetic contributions
to their etiology. As well, haplotypes are applicable to the study of the results of
meiosis—within a single generation or averaged across many generations—providing
the opportunity to detect patterns such as recombination hotspots or gene conver-
sions.

Besides medical and biological applications, haplotypes are useful in estimating
the age of a mutation event in a population. In individuals that carry a mutation, the
length of shared DNA surrounding that mutation in those individuals is a reflection of
the age of the mutation in the population. Longer lengths of DNA indicate that less
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Figure 1-1: (a) Homologous chromosomes labeled with one of the two possible hap-
lotypes for (b) three SNP genotypes on the same chromosome.

time has transpired since the mutation was first introduced into the population. Thus,
by comparing lengths of identical segment across a set of individuals’ haplotypes (i.e.,
haplotype blocks), one can study human history, including expansion, contraction, and
migration patterns.

Figure 1-1 shows three genotypes that correspond to two possible haplotypes, one
of which is shown. The second possible haplotype for the genotypes in the figure has
the A allele of the first locus on the same chromosome as the C allele of the third
locus. Genotypes are written with a slash between the two allele values. In this
example two of the three genotypes are heterozygous, meaning their two alleles differ.
The second genotype is homozygous, i.e., it contains two copies of the same allele.

In general, for n heterozygous genotypes on a chromosome, there are 2" ! possible
haplotypes. When the two chromosome copies are differentiated by delineating which
copy came from each parent, the number of possible haplotypes is 2". In the Figure,
we might differentiate the chromosomes by saying that the that the left homolog came
from the father and the right from the mother.

The genotypes in Figure 1-1 are for single nucleotide polymorphisms, which are
abbreviated SNPs and pronounced snips. At present, most genotyping assays target
this form of genetic variants, but there are several other common forms of genetic vari-
ants that occur and that can be assayed. A SNP occurs at a known genomic position
at which the resident nucleotide varies, i.e., is polymorphic, across genome copies and
individuals. There are four possible nucleotide molecules: adenine, cytosine, guanine,
and thymine. Nucleotides are abbreviated using the letter that beings the name of
the molecule, so A, C, G, and T are the possible alleles of a SNP genotype.

1.1 Molecular Haplotyping Methods

Molecular methods exist to determine haplotypes by direct means using an individ-
ual’s DNA, but these are of limited utility because they are time consuming, labor
intensive, and error prone. The most prominent molecular haplotyping technique is
allele-specific polymerase chain reaction (PCR). This technique requires somewhat
less work than others, but it only gives information over extremely short genomic
distances. It works by producing millions of copies of DNA segments from one of the
homologous chromosome copies across a short region. The segments are then isolated
using gel electrophoresis and sequenced to determine the haplotype for that chromo-
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some copy over the short region of interest. A primer is a short segment of DNA that
anneals to the target DNA at the location of interest and starts the copying process
for PCR. In allele-specific PCR, the primer includes a SNP locus and contains the
nucleotide that is complementary to (i.e., forms a base-pair with) one SNP allele. The
aim of this design is for the primer to anneal only to the homologous chromosome
copy that contains the specific complementary allele.

Unfortunately, the allele-specific primer can often mis-anneal to the alternate chro-
mosome copy, and in that case, segments get copied from both homologous chromo-
somes. Because sequencing cannot differentiate between these two segments, mis-
annealing of the allele-specific primer produces the same information as standard
genotyping.

Besides obtaining segments from both chromosome copies, another error that can
occur with allele-specific PCR is the construction of segments that do not exist in
vivo. The PCR copying process forms DNA segments of varying lengths, and it
often extends copying on short segments. Since both genome copies are substantially
similar, these short segments can also mis-anneal, and the copying be extended from
the alternate chromosome. In this case, the resulting “haplotype” segment contains
portions of the haplotypes from both chromosome copies and does not not actually
exist in vivo.

1.2 Computational Haplotyping Methods

The limitations of molecular-based haplotyping techniques have spurred the develop-
ment of computational approaches in order to quickly and reliably infer genome-scale
haplotypes. With the space of possible haplotypes being exponential in size, haplo-
typing algorithms must make assumptions based on genetic models to efficiently and
accurately compute haplotype reconstructions.

Algorithms for inferring haplotypes can be separated into two broad classes. One
class of haplotyping algorithms applies to unrelated individuals or to many family
trios that contain data for a father, mother, and one child. Techniques of this class
use probabilistic constraints governed by mathematical models of population dynam-
ics. Algorithms of this class [21, 19] include PHASE [24], HAPLOTYPER [22], and
HAP2 [17, 18]. The models these algorithms approximate are often insufficient to
prevent switch errors—i.e., positions with incorrectly assigned haplotypes relative to
the previous heterozygous locus [18, 24]—except across short genomic distances. Data
from unrelated individuals have been used in many studies, notably in the Interna-
tional HapMap project [25], but such studies can only discover information about the
results of meiosis (including the location of hotspots) averaged across thousands of
generations and both genders.

The second class of haplotyping algorithms applies to individuals with known
family relationships [6, 14, 1, 20, 12, 8, 9, 15, 16]. These algorithms infer haplotypes
using the laws of Mendelian inheritance and the fact that allelic variants in close
proximity to each other segregate together (i.e., genetic linkage). Haplotypes inferred
from family-based data are accurate across a large genomic region. Depending on the
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family size, they will contain few or no switch errors. Additionally, these datasets and
algorithms enable the identification of the probable sites of de novo meiotic recom-
binations and gene conversions (which appear as short double crossovers), and have
been used to build genetic maps of recombination rates [11] and identify hotspots [2].
Considering de novo meiotic recombinations and gene conversions enables the study
of differences in location and number of such events between individuals, including
gender-based differences. Haplotypes for family-based datasets are also used to per-
form linkage analysis to study the genetic basis of disease within families.

1.3 Hapi

Hapi is a new dynamic programming algorithm that infers both minimum-recombinant
and maximum likelihood haplotypes for nuclear families. Hapi has polynomial run-
time in practice and performs substantially faster than existing algorithms, which
have exponential runtime in general. Nuclear family derived genotypic data identifies
parents and their children, but provides no information about relationships within a
larger pedigree. Minimum-recombinant haplotypes assign family members’ genotypes
to homologs such that the number of recombinations that occur in the homologs the
parents transmitted to the children is minimized. Maximum likelihood haplotypes
utilize user-provided recombination frequencies between successive loci to calculate
the most likely haplotype reconstruction.

Maximum likelihood haplotypes are often substantially similar or identical to
minimum-recombinant haplotypes. Both approaches to haplotype estimation have
strengths and weaknesses. Minimum-recombinant haplotyping may yield suboptimal
results when the recombination frequencies between loci in some region varies widely.
For example, because recombination frequencies are correlated with genomic distance,
this can occur if the distance between some loci is much larger or smaller than others.
Maximum-likelihood haplotyping reports only the most likely haplotype, a feature
that can be misleading to a user when the difference in probability to alternate hap-
lotypes is small. Typically this occurs when the number of recombinations across the
alternate haplotypes are the same, and in such a case, minimum-recombinant haplo-
typing reports the ambiguities. It is worth noting that geneticists manually perform
minimum-recombinant haplotype assignment when analyzing small datasets. Hapi
enables this approach to be applied to the very large datasets currently produced by
high-throughput SNP genotyping.

1.3.1 Summary of Hapi’s Optimizations

Hapi is similar to existing haplotyping approaches that use HMMs and dynamic
programming, but it employs a novel set of optimizations that dramatically improve
its efficiency. These optimizations are based on properties we discovered about the
haplotyping problem that facilitate the elimination of a large number of states from
the analysis, and reduce the work required to transition between states at adjacent
loci. A summary of the optimizations Hapi implements follows:

16



1. When a parent is homozygous at a locus, Hapi only builds states for that locus in
which the homolog that that parent transmitted does not exhibit recombination
relative to the previous locus. In connection with this, Hapi does not build
states at loci where both parents are homozygous since recombination cannot be
observed at these loci. This optimization is natural for minimum-recombinant
haplotyping, but it requires special consideration in the context of maximum
likelihood haplotypes as we discuss later (see Chapter 3).

2. At loci where Mendelian inheritance cannot unambiguously infer for a set of
children which parent transmitted each allele, Hapi uses a novel, concise repre-
sentation of the ambiguities instead of forming an exponential number of states
for all the possibilities across all the children. It also avoids building any states
that represent recombinations on both homologs for any ambiguous children and
later evaluates whether such recombinations are consistent with nearby loci.

3. To transition between states at adjacent loci, Hapi considers a state at the previ-
ous locus as possibly transitioning to either two or four states at the next locus,
depending on the genotypes and possible phase assignments of the parents at
that locus. This optimization is actually a by-product of the first two optimiza-
tions mentioned above, but deserves separate consideration. Normally if two
adjacent loci each have s states, there are s possible state transitions (note
that s may be an exponential number). [13] introduced a fast Fourier transform
optimization that reduced the computational burden for transiton calculations
to O(s - log s), but Hapi’s transition runtime is only O(s), i.e., linear in the
number of states at a locus.

4. Some states encode the same transmissions of homologs from the parents to the
children and differ only in how the parents’ alleles are assigned to homologs.
These states are equivalent downstream of the current locus and Hapi only re-
tains the one with minimum recombinations or maximum likelihood. Kruglyak
et al. originally discovered a more general form of this optimization that applies
to all founders in a pedigree [12]. Hapi applies this optimization to parents in
a nuclear family.

5. The above optimization that removes states with equivalent homolog transmis-
sions from parents to children is most effective when none of the children are
missing genotype data. We devised a mechanism for comparing nearly equiva-
lent states in the presence of children with missing data that often enables the
detection and elimination of suboptimal states.

6. At each locus, Hapi only considers states that are consistent with Mendel’s
laws for the genotypes of the individuals and spends no time processing any
inconsistent states. Other algorithms also similar optimizations that help reduce
the number of states they examine [20, 1, 9].

We present a detailed discussion of each of these optimizations in Chapters 2 and 3.
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1.4 Other Family-Based Haplotyping Algorithms

Several existing programs for haplotyping related individuals are based on the Lander-
Green algorithm [14], including Merlin [1], GENEHUNTER (20, 12}, and Allegro [8,
9]. The basic approach of the Lander-Green algorithm uses hidden Markov models
(HMMs) to obtain a probability distribution of haplotype assignments for individuals
in a pedigree. A user can either sample a haplotype from this distribution, or, more
commonly, obtain the maximum likelihood haplotype assignment. The state space
for these HMMs is composed of inheritance vectors at each locus that are bit strings
encoding which chromosome homolog a parent transmitted for each child in the pedi-
gree at that locus. This state space is inherently exponential, with 22" possible values,
where n is the number of non-founders or individuals with at least one parent in the
pedigree.

Although Merlin, GENEHUNTER, and Allegro all employ techniques to reduce
space and time requirements of this basic algorithm, all are relatively inefficient; in
general, each requires exponential time in the number of non-founders in the pedigree.
One technique that all these algorithms employ is to avoid representing inheritance
vectors that are inconsistent with Mendelian inheritance. In addition, Merlin [1] uses
sparse gene flow trees that avoid redundant representations for states with identical
likelihoods or a probability of zero. Allegro [9] uses multi-terminal binary decision
diagrams (MTBDDs) [5], which are more general than sparse gene flow trees. MTB-
DDs are at least as sparse as Merlin’s sparse gene flow trees, and depending on how
they are constructed, can be smaller. The optimized representations that Merlin
and Allegro utilize are effective in reducing the state representations at a single lo-
cus. However, transition probabilities will, in general, differ for most or all possible
transitions between states at adjacent loci. Because of this, the algorithms must rep-
resent most or all of the 22" states in order to perform multipoint analyses, including
haplotyping.

Superlink [4] is another maximum likelihood haplotyping algorithm that uses
Bayesian networks. While Superlink employs several optimizations to improve its
efficiency, it performed slower than Merlin and Allegro in our experiments.

To compare Hapi’s runtime performance with existing work, we ran Merlin, Alle-
gro, Superlink and Hapi on a dataset containing 103 nuclear families. (We excluded
GENEHUNTER from these comparisons since Merlin has faster runtime [1].) Hapi
performed 3.8-320 times faster than Merlin, 6.4-2460 times faster than Allegro. Su-
perlink was unable to haplotype the entire dataset, so we ran it on a modified version
of the dataset. Hapi ran 17-448 times faster than Superlink for this modified dataset
(see Chapter 4). We also compared Hapi to PedPhase 2.0 [16], a system for com-
puting minimum-recombinant haplotypes. Whereas Hapi finished in 4.732 seconds,
PedPhase did not complete analyzing even one chromosome in over six hours’ time.
These results demonstrate the efficacy of Hapi’s optimizations in the context of real
genotype data.

Existing algorithms have limits in the size and number of families they can hap-
lotype. With Hapi, the efficient haplotyping of very large numbers of families as well
as families with large number of individuals is now possible. Because of the relative
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ease of gathering genotypes for nuclear families, we expect that the number of nu-
clear families within datasets will continue to grow and that Hapi will provide the
opportunity to haplotype this large quantity of data.

Besides haplotyping nuclear families, this thesis presents an algorithm for extend-
ing the techniques in Hapi in order to haplotype multi-generational pedigrees (see
Chapter 7). Current haplotyping algorithms cannot scale beyond pedigrees contain-
ing more than roughly 20 non-founders. This extension to Hapi promises to make
possible the haplotyping of moderate to large multi-generational pedigrees that cur-
rent techniques cannot haplotype.

1.5 Contributions

This thesis makes four primary contributions:

1. Hapi, a new algorithm for performing minimum-recombinant and maximum
likelihood haplotyping for nuclear families that includes several novel optimiza-
tions.

2. An implementation of the Hapi algorithm and an evaluation of Hapi compared
to several state-of-the-art techniques. This comparison demonstrates Hapi’s
efficiency in haplotyping real human genotype data for set of nuclear families:
Hapi performs orders of magnitude faster than other techniques.

3. An algorithm for extending Hapi to haplotype either particular loci or entire
nuclear families that are missing genotypes for one or both parents.

4. An algorithm for extending Hapi to haplotype multi-generational pedigrees.
This novel approach provides the possibility of haplotyping moderate or large
pedigree datasets that no existing algorithm can currently handle.

1.6 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents our minimum-
recombinant haplotyping algorithm and includes a detailed discussion of the optimiza-
tions implemented in Hapi. Chapter 3 describes the mechanism for modifying this
minimum recombinant algorithm in order to efficiently perform maximum likelihood
haplotyping. Chapter 4 provides experimental results comparing Hapi to existing
state-of-the-art haplotyping algorithms and gives a run-time complexity analysis of
the Hapi algorithm. Chapter 5 explains how Hapi could be used to perform linkage
analysis and genotype or sequence imputation. Chapter 6 describes how to extend
Hapi to handle loci and nuclear families that do not include genotype data for one
or both parents. Chapter 7 presents an algorithm for extending Hapi to efficiently
haplotype multi-generational pedigrees, and Chapter 8 gives conclusions.
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Chapter 2

Minimum-Recombinant
Haplotyping

Minimum-recombinant haplotype assignments apply to family-based datasets and
are those with the minimum number of recombinations in the chromosomes that
parents transmitted to their children. Hapi infers haplotypes for nuclear families, but
the minimum-recombinant definition also applies to pedigrees: the count is across
all chromosome transmissions for every parent—child relationship in the pedigree.
This minimum-recombinant count is summed across all children and over the entire
chromosome length. Hapi seeks, therefore, to find a haplotype solution that is globally
minimal across the chromosome length rather than locally minimal between successive
pairs of loci. Thus, a solution may contain a locus that has an alternate assignment
of individuals’ alleles to homologous chromosomes that yields fewer recombinations
from the previous locus (i.e., locally), but not over the entire chromosome length (i.e.,
globally). An example of such a locus from real data for a family of human subjects
is shown in Figure 2-6, which we discuss in Section 2.9.

In order to find a minimum-recombinant haplotype solution, Hapi explores all
possible haplotype assignments by an approach that uses dynamic programming and
applies a novel set of optimizations.

2.1 Inheritance Vectors

As in related algorithms, Hapi uses inheritance vectors, which are stored as bit vectors,
to encode which chromosome homolog the parents transmitted to each child at a locus.
Given an assignment of parents’ alleles to homologs at a locus—i.e., a haplotype
assignment, also known as a phase assignment—inheritance vectors identify which
homologs the parents transmitted to the children. Inheritance vectors imply the
children’s haplotypes since they indicate which homolog, and therefore which allele,
the parent transmitted.

An inheritance vector for a single locus contains 2¢ bits, where c is the number of
children in the nuclear family—one bit for the result of each meiosis. Since parents
have two homologous chromosomes, it suffices to identify the homologs with a single
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Figure 2-1: A nuclear family with phased alleles for a single locus and the correspond-
ing inheritance vector values for each child. The inheritance vector for this locus is
the composite of the individual child inheritance bits: 011011.

bit, either 0 or 1, that indicates which homolog a parent transmitted at a locus.

Figure 2-1 shows an example three-child family with phase assignments for each
person at a single locus and the corresponding inheritance vector values for the chil-
dren. Because the first child received allele a from the father, i.e., the allele on the
father’s first homolog, the corresponding inheritance vector bit is 0. Similarly, this
child received allele d from the mother, or the allele from the mother’s second ho-
molog, so the resulting inheritance vector bit is 1. Overall, the inheritance vector for
these three children is 011011—the concatenation of the inheritance bits for each of
the children.

2.2 Minimum-Recombinant Haplotyping Equation

To haplotype a chromosome, Hapi considers each locus successively in the order they
reside physically, moving from one end of the chromosome to the other. Starting
at one end of the chromosome is not strictly necessary. The algorithm produces
equivalent results for any starting point, and can process the loci sequentially in either
direction, as long as it processes adjacent loci in succession. Proceeding in order in one
direction along a chromosome is necessary to enable the most fine-grained comparison
of inheritance vector values (i.e., counting of recombinants) between loci and thereby
produce optimal minimum-recombinant (or maximum likelihood) haplotypes.

A dynamic programming equation for calculating minimum-recombinant haplo-
types is given below. The function R(l,¥) calculates the minimal number of recom-
binations necessary to reach inheritance vector ¥’ at locus I:

R(L,%) = min{R(l - 1, %) + H(&,7)}. (2.1)

Here, R(l — 1,%) is the minimum number of recombinations necessary to reach an
inheritance vector W at the previous locus | — 1. H(w, %) is the number of recom-
binations between vectors w and ¢, which is equal to the number of bits that differ
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between them, i.e., the hamming distance. The initial number of recombinations at
locus [ = 0 is defined natural as R(l = 0,7) = 0.

An efficient implementation of the hamming distance function uses the exclusive-
or operator on the two inheritance vectors, which Hapi stores as unsigned integers.
For every bit position where the two operands differ, the exclusive-or result contains
a 1 bit in that position; if the two operand bits are the same, the corresponding bit
is 0. Counting the number of bits in the result of the exclusive-or operation gives the
number of recombinations between the inheritance vectors.

A naive implementation of the dynamic programming recurrence given in equation
(2.1) would initialize all 2%¢ possible inheritance vectors at locus [ = 0 and would
model most or all of these vectors at successive loci. Hapi functions differently: the
initial locus has only one inheritance vector, and successive loci model a very small
number of inheritance vectors.

2.3 Hapi States

Hapi uses what we term a locus state to store the information computed in the
dynamic programming equation. A locus state stores:

1. An inheritance vector.

2. The assignment of the heterozygous parent’s or parents’ genotype alleles to
homologs that is consistent with this inheritance vector.

3. The minimal number of recombinations necessary to reach this state/inheritance
vector value.

4. A pointer to the state or states at the previous locus that yields this minimal
number of recombinations.

5. A bit vector encoding which children have ambiguous inheritance values (nec-
essary for some kinds of loci as we describe in Section 2.4.2).

Because the parents’ allele to homolog assignments imply part or all of the inheritance
vector values, there is only one consistent parent assignment for each inheritance
vector. Note that it is possible for multiple states at the previous locus to yield the
minimum number of recombinations at the current locus, i.e., there are sometimes
ambiguities. We discuss this issue in Section 2.7.

2.3.1 Back Tracing

After evaluating equation (2.1) by building the necessary states for all loci, it is
straight forward to deduce haplotypes. Hapi does this by performing the assignments
of alleles to homologs as dictated by the minimum-recombinant state at the final
locus and then back tracing to states at previous loci. Assigning alleles to homologs
is simple for the parents since the state explicitly stores these assignments. For
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Figure 2-2: A pictorial representation showing the relationship between states at
different loci. Each row of boxes correspond to a locus; boxes represent a state and
indicate the numbers of recombinations the state incurs; arrows point to previous
state(s). Once the system deduces a single state at some locus—shown here as the
bottom box—it back traces by traversing the pointers and assigns the haplotype
values from the states it encounters. The numbers are not from real data.

the children, the inheritance vectors encode a bit for each parent—child relationship
that designates which homolog the parent transmitted to the child at that locus. It
suffices to designate one homolog for each child as transmitted by each of the parents
and assign the allele that a given parent transmitted to its respective homolog. After
performing these allele assignments for the family at the final locus using its minimum-
recombinant state, Hapi back traces by following the pointer from this final state to
the state at the previous locus and repeats the process again.

Rather than waiting until the final locus to make these assignments and perform
back tracing, Hapi does this work whenever a locus yields only one state (which
happens frequently). The one state at that locus and those leading to it at previous
loci are guaranteed to have minimum recombinations. Performing this process before
the final locus allows the system to reclaim the memory used to store states.

We give an illustrative example of what the graph of states generated by our
algorithm may look like in Figure 2-2. In this graph, boxes represent states, and
each row of boxes corresponds to the states for a single locus. The number in each
box represents the minimal number of recombinations necessary to reach that state.
The first locus (top-most box) has only one box/state with an initial value of 0
recombinations. At the second locus, there are four states that have between 1 and
5 recombinations. Note that at the third locus, the second state has pointers to two
different states at the previous locus. The final locus has only one state. Once the
system determines this final state, it performs back tracing along pointers to previous
states, and uses the haplotype values stored in the encountered states to make the
allele assignments as we just described.
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2.3.2 Building States

Hapi builds states for a locus based on the states at the previous locus and the
genotypes of the individuals at the locus being considered. Utilizing states from
the previous locus is necessary for two of Hapi’s optimizations: not introducing re-
combinations at a locus where a parent is homozygous (see Section 2.4.1), and the
ambiguous inheritance vector values optimization (see Section 2.4.2). The system also
uses previous locus states at loci where children are missing data (see Section 2.8).
The initial state for a chromosome cannot depend on previous locus states and is
therefore built differently. We describe the process for building an initial state in
Section 2.6.

Hapi builds states for every possible phase assignment for the heterozygous par-
ent(s). For each such assignment, Hapi determines which alleles the heterozygous
parent(s) transmitted to each child and assigns the corresponding values in the in-
heritance vector accordingly. The algorithm assigns the inheritance values for a ho-
mozygous parent as we describe in Section 2.4.1.

When both parents have the same heterozygous genotype, a heterozygous child
will have the same genotype as both its parents and could have received either allele
from either parent. The corresponding inheritance vector values for each such child
is ambiguous, and in this case, Hapi uses its optimization of a novel representation
to encode the possible inheritance vectors in a single state (see Section 2.4.2).

We next describe each of the optimizations Hapi implements. The goal of each op-
timization is to reduce the number of states Hapi must build and retain. A side effect
of these optimizations is to reduce the number of state of possible state transitions
between loci, as the next section explains.

Later, in Section 2.5, we present a classification of loci into four locus types that
are based on the parents’ genotypes at a locus. Different optimizations apply to each
locus type, and that section describes and gives examples of how these optimizations

apply.

2.4 Hapi’s Optimizations

Hapi implements six optimizations that allow it to very efficiently infer minimum-
recombinant haplotypes. Hapi also utilizes these optimizations to calculate maximum
likelihood haplotypes, as we describe in Chapter 3.

This section provides details about five of the optimizations Hapi implements.
The last optimizations applies at loci where one or more children are missing data,
and we discuss it in Section 2.8.

2.4.1 Non-Recombinant States for Homozygous Parents

When one or both of the parents at a locus are homozygous, the alleles are identical,
and therefore, which homolog the homozygous parent(s) transmitted is ambiguous.
A naive implementation of the Lander-Green algorithm builds states corresponding
to all possible homolog transmissions for the homozygous parent. This yields 2¢
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inheritance vector values for each homozygous parent, which produces at least that
many states at the locus in question. Consider a locus with one heterozygous parent
and one homozygous parent. If s is the number of possible inheritance vector values
corresponding to the heterozygous parent, then there are s - 2° possible states.

Instead of building and tracking this exponential number of states, Hapi copies the
inheritance vector values corresponding to the homozygous parent from the states at
the previous locus. There are typically a small number of unique inheritance vector
values for the homozygous parent in the states at the previous locus. If there are
t unique values for the homozygous parent’s inheritance bits at the previous locus,
there will be s-t states. Note that while ¢ can be large, or even an exponential number,
other optimizations serve to limit the number of states in general. Our experimental
results demonstrate that the number of states is low in practice.

This approach of copying inheritance vector values for the homozygous parent
assumes a lack of recombination for this case when the results of meiosis cannot
be observed; this will always yield minimal recombinations. The next locus that is
heterozygous for the parent in question indicates if a recombination has occurred.
The exact location of any such recombination is unknown—the maximum likelihood
approach makes use of recombination frequencies to estimate the location—but must
be between that later locus and the most recent upstream locus heterozygous for the
parent under consideration.

For loci where both parents are homozygous, all 22 possible inheritance vectors
are consistent with the genotypes since the homologs in each parent contain the same
allele at this locus. Rather than tracking all possible states at loci where both parents
are homozygous, and rather than copying exactly all the states from the previous
locus, Hapi simply skips these loci. Subsequent loci utilize the states located at the
most recent locus for which states exist; this locus will be the most recent one with
at least one heterozygous parent.

Figure 2-4 shows states for a locus in which one parent is homozygous and the
other parent is heterozygous. The inheritance vector values corresponding to the
homozygous parent, parent p;, are shown as the second element in each of the ordered
pairs in the rows labeled . The inheritance vector values in states a and b are the
same as those in the previous state since, as we have described, Hapi copies these
values. Without some form of optimization for this case, the two states shown would
instead correspond to 2 - 2¢ states.

Other algorithms, including Merlin [1] and Allegro [9], have techniques to reduce
the number of states they represent in the presence of uninformative meioses. Merlin
uses sparse binary trees to encode inheritance vector probabilities and has an opti-
mization that applies to homozygous parents. The bit value of an inheritance vector
determines which edge to traverse through the tree. A full tree would contain 22+ —1
nodes, but typically there are much fewer than 22¢ nodes. For a homozygous parent,
either bit value yields the same probability and Merlin places an internal “symmetric
node” to indicate that the tree stored for the alternate bit yields identical results.
(Note that Merlin uses the binary trees to determine the probability of inheritance
vectors at the current locus. It calculates state transition probabilities separately,
performing calculations across many more states than Hapi does. See Section 2.4.3
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for how Hapi transitions between states.) This optimization is effective, but Merlin
must still build a large number of states. At loci where both parents are homozygous,
the system builds 2¢ nodes; if one parent is homozygous, it builds roughly 4c nodes.

2.4.2 Ambiguous Inheritance Vector Values

At loci for which both parents are heterozygous with the same genotype (which we
later term “partly informative”), heterozygous children have the same genotype as
their parents. As a result, these children are a priort ambiguous as to which parent
transmitted each of their alleles: either parent could have transmitted either allele.

Existing algorithms build states corresponding to all possible inheritance vector
values for these ambiguous children. For a given assignment of the parents’ alleles
to homologs, each heterozygous child has two possible inheritance vector values. For
h heterozygous children, there are 2" possible inheritance vectors for each of the
four possible assignments of parents’ alleles to homologs. Therefore, there are 4 - 2"
inheritance vectors/states consistent with individuals’ genotypes at these loci.

Instead of building this exponential number of states, Hapi again uses the states
at the previous locus to reduce the number of states it must build. The system maps
each previous state to four states corresponding to each assignment of parents’ alleles
to homologs. Note that multiple previous states can map to the same state, so the
number of states usually does not quadruple. Also note that homozygous children
have only one inheritance vector value that is consistent with a given assignment of
parents’ alleles, so they do not increase the number of necessary states.

Hapi assigns heterozygous children’s inheritance vector values based on the inher-
itance values in the previous state. These children have two consistent inheritance
vector values for a given assignment of parents’ alleles to homologs, and these two
values are opposite each other. If the inheritance value in the previous state is equiv-
alent to one of these two values, Hapi uses the value equivalent to the previous state
in the state being built. The other inheritance value results in two crossovers for the
child, one from each parent. Such an event is extremely unlikely, yet if it were to
take place, downstream loci that are fully informative would reveal its occurrence. In
that rare case, Hapi will mark the partly informative locus as ambiguous during back
tracing, since it is impossible to know whether these two recombinations took place
at the earlier partly informative locus or at the later fully informative locus. (Maxi-
mum likelihood haplotyping determines the location of the recombinations based on
recombination frequencies.)

In the case that the inheritance value in the previous state is not equal to one
of the two ambiguous inheritance values, the previous inheritance value must differ
from these two values in exactly one bit. For example, if the previous value is (0, 0)
and is not equal to either of the values at the current locus, they must be (0,1) and
(1,0). (Otherwise one of the values would be (1, 1), and the opposite value of (0,0) is
equal to the previous value.) The differences between the two consistent values and
the previous one represent a recombination in one or the other parent. Which parent
recombined is ambiguous at this locus and can only be determined at later loci.

Rather than creating separate states for these two inheritance values—which
would yield an exponential number of states across multiple children—Hapi instead
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marks the child as having ambiguous inheritance. A child’s inheritance being marked
as ambiguous means that its inheritance vector value can be inverted without inducing
additional recombinations—both possibilities result in the exactly one recombination.
The choice of which of the two inheritance values to store in the state is arbitrary, and
Hapi indicates that a child is ambiguous using another bit vector. For our explanation
here, we designate ambiguous values with the ? symbol. One can view an ambiguous
inheritance value as a set of values, so (0,0)? = (1,1)? = {(0,0),(1,1)}. For the
earlier example with a previous inheritance value of (0, 0), the resulting inheritance
value would be (0,1)?. The use of these ambiguous values effectively merges the ex-
ponential number of states that would otherwise result. Merging the states in this
way suffices because (1) Hapi can later resolve which of the unambiguous inheritance
vectors is optimal, and (2) the number of recombinations remains the same regardless
of which unambiguous inheritance vector ultimately results.

If the previous inheritance value is itself ambiguous, the resulting value must also
be ambiguous. If there is a recombination, the resulting value is unequal to the
previous value, such as with (0,0)7 and (0, 1)?.

Hapi resolves ambiguous inheritance values for a state during the back tracing
process discussed earlier (see Section 2.3.1). While back tracing, if the system en-
counters a state that has one or more ambiguous inheritance values, it compares these
values to the corresponding values at the next—already resolved—locus. If the un-
ambiguous form of this value (i.e., that without the ? symbol) or its opposite is equal
to the inheritance value at the next locus, the system assigns the equivalent value at
the current locus. If neither is equal, recombinations occur on either side of this locus
and the inheritance value is truly ambiguous. In this rare case, Hapi’s output reports
the child’s haplotype at this locus as ambiguous.

This optimization significantly improves Hapi’s efficiency. Removing this opti-
mization would cause the number of states to grow unwieldy whenever Hapi encoun-
tered a locus that has heterozygous parents with the same genotype. Even with all
the other optimizations in place, the increase in the number of states would propagate
to subsequent loci that have one parent that is heterozygous and the other homozy-
gous. The optimization that applies to such loci propagates inheritance vector values
from the previous state and is effective when the number of such states is small.

GENEHUNTER |[20] identifies some constraints on inheritance vector values that
relate to those we describe above. However, merging an exponential number of inher-
itance values into a single state through the use of ambiguous inheritance values is
novel and unique to Hapi. Our ambiguous inheritance values optimization reduces the
state space much more significantly than do the ideas described in GENEHUNTER.
As well, the authors of GENEHUNTER chose not to include the optimization re-
lating to this sort of scenario in the program itself because a non-trivial number of
operations are necessary to check for constraint violations.

2.4.3 State Transitions Between Loci

The optimizations in the previous two subsections (Sections 2.4.1 and 2.4.2) describe
how Hapi uses the states at the previous locus to build states at the current locus.
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Besides reducing the number of states at a locus, these optimizations also reduce
the number of possible state transitions between loci. In general, any state at a
previous locus can transition to any state at the next locus. However, because Hapi
does not consider state transitions that include recombinations from a parent that is
homozygous, and because it uses ambiguous inheritance values, the number of possible
state transitions is limited. The state transition optimization that this subsection
describes actually comes as a by-product of the two optimizations we have already
outlined. Yet the effects of these optimizations on the complexity of state transition
calculations merit a separate discussion.

At each locus, Hapi considers transitions from the states at the previous locus to
either two or four states. If only one parent is heterozygous at the locus, each state
at the previous locus can transition to only two states at the current locus. These
two states correspond to the two possible phase assignments for the heterozygous
parent. A particular phase assignment for the heterozygous parent uniquely defines
the inheritance vector bits that that parent transmits. The system copies the other
inheritance vector bits from the previous state, which can only transition to states
with those inheritance bits (see Section 2.4.1). Thus, when one parent is heterozygous,
each locus at the previous state can only transition to two states at the current locus.

If both parents are heterozygous at a locus, then the parents have four possible
phase assignments, and each state at the previous locus can transition to four states
at the next locus. The ambiguous inheritance vector optimization makes this possible.
Heterozygous children at loci in which both parents have the same heterozygous geno-
type would otherwise produce an exponential number of states. Instead, for a given
phase assignment for the parents, a state at previous locus uniquely determines the
inheritance vector it can transition to (see Section 2.4.2). If the parents are heterozy-
gous with differing genotypes, the children’s genotypes at the locus unambiguously
determine the complete inheritance vector that corresponds each parent phase assign-
ment. Thus, exactly four inheritance vectors are possible, and each previous state
can transition to these four states.

The efficiency gains of our approach are significant. Without this optimization,
haplotyping algorithms must consider all possible state transitions between loci. If
two adjacent loci each have n states, other algorithms compute transition probabilities
corresponding to all n? state transitions. Use of a fast Fourier transformation reduces
the computational burden of these optimizations from a quadratic O(n?) to O(n -
logn). With Hapi’s optimizations there are only 2n or 4n possible transitions, so the
computational burden is linear, O(n). The speed of computing state transitions—in
addition to and in connection with tracking of very few states at each locus—enable
Hapi to perform haplotyping calculations very efficiently.

2.4.4 Equivalent States

At many loci, it is possible to unambiguously deduce which allele each heterozygous
parent transmitted to each child. In that case, the bits that correspond to trans-
missions from this parent can take on exactly two values depending on the parent’s
phase assignment. The inheritance bits in these two values are opposite each other,
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since the parent transmits the same allele in each case, but the alleles reside on oppo-
site homologs for the opposite phase assignments. The locus in Figure 2-4 illustrates
these ideas. For this locus, it is easy to deduce which alleles the heterozygous parent
transmitted to each child. As well, the two states have opposite inheritance values
corresponding to this parent, consistent with their opposite phase assignments.

Two inheritance vectors with opposite bits corresponding to one parent and equiv-
alent bits for the other parent are equivalent in terms of the number and locations of
recombinations at downstream loci. Hapi uses inheritance vectors to detect recombi-
nations. A recombination occurs when the homolog a parent transmitted to a child
differs between two loci. Because the parent’s inheritance values in these states are
exactly opposite each other, each of these inheritance vectors encodes the same set
of children as receiving a given homolog. The two states merely use opposite labels
for the homologs as implied by the parent’s opposite phase assignments. Choosing
one of the states instead of the other results in all downstream loci having opposite
phase assignments for the parent, consistent with the chosen phase assignment in
the upstream state. The number and location of downstream recombinations are the
same regardless of which state the system chooses at this locus because the sets of
children that share a common homolog are the same between states.

In general, any states with opposite inheritance values for one parent and either
equivalent or opposite inheritance values for the other parent are equivalent. This
means that, if both parents are heterozygous, there are four states that are equivalent
to each other and only the state with the fewest recombinations must be retained.
Hapi detects these states at loci and eliminates any suboptimal states as needed.

Kruglyak et al. [12] first discovered a more general form of this optimization,
finding that equivalent states exist for all founders in a pedigree. A founder is an in-
dividual with no parents in the pedigree. For each founder, the number of inheritance
vectors is decreased by a factor of 2. So, whereas there are 2™ possible inheritance
vectors in a pedigree, where n is the number of non-founders, this optimization re-
duces the state space to 22~/ inheritance vector, where f is the number of founders.

For a nuclear family, f = 2, so this optimization reduces the state space by a factor
of 4.

2.4.5 States Consistent with Mendel’s Laws

Although there are 22¢ possible inheritance vectors for every locus, the genotypes of
the individuals at a locus often make many of these inheritance vectors inconsistent
with the Mendelian laws of inheritance. For example, a parent that is heterozygous
with genotype a/b cannot transmit its b allele to a child that is homozygous with
genotype a/a. Hapi builds states based explicitly on the genotypes at each locus
and spends no time processing any inheritance vectors that are inconsistent with the
genotypes at the locus.

Merlin [1], GENEHUNTER [20], and Allegro [9] all contain optimizations that
reduce the number of nodes/states each represents on the basis of inconsistent inheri-
tance vectors. In Merlin’s sparse binary trees, when a given branch of the tree has an
impossible inheritance vector, the algorithm uses a premature leaf node with 0 prob-
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ability to reduce the number of nodes. Even so, the trees will contain many nodes
to reach various terminal branches for level of the tree (which corresponds to each
meiosis). GENEHUNTER uses bit masks that encode which inheritance vector bits
must be set to a certain value in order to be consistent with Mendelian inheritance. It
thereby forgoes representing any inheritance vectors it determines to be inconsistent
with the genotypes at a locus.

The various packages’ optimizations are roughly equivalent, though Hapi functions
differently in that it does not spend any computation on incompatible inheritance
vectors—other algorithms spend some small amount of time ruling them out. Each
program’s optimizations provide a significant reduction in the state space that each
considers. Though the storage and computational approaches differ, deducing the
results of meiosis for one parent removes roughly half the inheritance vector values
from the analysis.

2.5 Locus Types

Hapi’s optimizations apply in different contexts. In particular, we have identified four
types of loci with different parents’ genotypes for which different technical issues arise
and different optimizations apply. Figure 2-3 summarizes these locus types, listing
the number of states that result at each type if there are n states at the previous
locus. The figure also includes the average number of states that occur at relevant
locus types for the dataset we evaluate in Chapter 4. Further details about each type
and the number of necessary states follow.

The figure lists names we use to refer to each locus type. In the genetics com-
munity, a parent’s locus is said to be informative if it is heterozygous. Such loci are
informative for meiosis—they can be used to determine which chromosome homolog a
parent transmitted and thus whether a recombination occurred relative to some pre-
vious locus. By their nature, homozygous loci are uninformative because their two
alleles are identical. One cannot distinguish which of the two alleles or chromosome
homologs a homozygous parent transmitted to its child.

We now describe each of the locus types in turn and provide more details about
Hapi’s implementation.

2.5.1 Fully Informative for Both Parents Loci

At a fully informative for both parent locus, Hapi keeps only one state regardless of
the number of states at the previous locus. Both parents are heterozygous but have
differing genotypes at this type of locus. In this case, it is simple to deduce which
allele each parent transmitted to each child; thus, for a particular phase assignment
for both parents, there is only one possible inheritance vector. With two possible
phase assignments for each of the two parents, there are exactly four inheritance
vectors/states that are consistent with Mendel’s laws at this type of locus.

The four states Hapi builds have either opposite or identical inheritance vector
values corresponding to each parent. As such, the equivalent states optimization ap-
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Number of States

Locus Type Parent p| Parent q 7 previous states l Ave

Fully Informative

for Both Parents a/b lajcorc/d 1 N/A

After informative for parent q: 1
a/b |a/a or ¢/c| Previous states unambiguous: < n|1.81
Previous states ambiguous: < 2n
Partly Informative| a/b a/b <4n 6.04

Uninformative a/a |afa or b/b 0 N/A

Fully informative
for One Parent

Figure 2-3: The four types of loci our algorithm handles separately with the names
we use to refer to them. The figure lists the number of states that Hapi produces for
each type if there are n states at the previous locus, and gives the average number of
states produced for haplotyping the dataset we evaluated in Chapter 4. We include
further details in the sections that discuss each type. Note that either parent may
have the genotypes listed for parents p and q.

plies at this locus type, and all four states are equivalent. Hapi therefore eliminates
all but one state, retaining only the stat that has the minimum number of recombi-
nations. With only one resulting state, Hapi back traces and reclaims the memory
associated with states at upstream loci.

Note that though this locus type is advantageous, most SNPs are bi-allelic, and
therefore this locus type will not occur in SNP genotype datasets. However, as we
will see in the next section, two successive loci that are fully informative for each of
the parents has the same effect as a fully informative for both parents locus.

2.5.2 Fully Informative for One Parent Loci

The number of states that Hapi retains at a fully informative for one parent locus
depends on the previous locus type. There are three possibilities, and we describe
each in this section. In brief, let n be the number of states at the previous locus. In
general, if the previous locus states do not have any ambiguous inheritance values,
Hapi produces n or fewer states at the current locus. If the previous locus is fully
informative for the parent that is homozygous at the current locus, Hapi retains only
one state at the current locus. Such a case is analogous to encountering one locus
that is fully informative for both parents. Finally, if the previous locus states have
ambiguous inheritance values, the number of states Hapi retains for this locus will be
no more than 2n.

To build states at this type of locus, Hapi first deduces the inheritance vector
values corresponding to the heterozygous parent according to its two possible phase
assignments. This defines two possibilities for half of the inheritance vector values, but
leaves undefined the half corresponding to the homozygous parent. In Section 2.4.1,
we described an optimization that copies the inheritance values for the homozygous
parent from the states at the previous locus. This is the next step in processing this
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Parents Children
Do | P1 Co I 1 ‘ Co | C3 | Cq # Rec
Prev | U (0,1)(1,1)[(1,1)[(0,0) [(1,1)}| O
State [ hap|(a, g) | (a,a}|| (g, a) | (a,a) | (a,a) | (a,a)|(a,a) 4
a 7] (1,1)|(0,1)(0,1){(0,0)|(0, 1)
State | hap| (g, a) | (a,a) | (g, a) | (a,a) | (a,a) | (a,a)|(a,a) 1
b 0] (0,1)1(1,1)|(1,1) [(1,0)|(1,1)

Figure 2-4: An example of a fully informative for one parent locus showing one state
at the previous locus and the two states Hapi builds based on this previous state. This
example is from the real dataset discussed in Chapter 4. The rows labeled ¥ show the
states’ inheritance vectors and the rows labeled hap give haplotype assignments of the
alleles. Hapi copies the inheritance vector values corresponding to the homozygous
parent from the previous state to states a and b. Recombinations result from differing
inheritance vector values from the previous state; these differences appear in bold and
the states’ total number of recombinations appear in the right-most column. Note
that the heterozygous parent’s inheritance vector values in the two states are exactly
opposite each other and are therefore equivalently labeled.

locus type; the algorithm builds complete states at the current locus by copying the
values for the homozygous parent. All pointers to previous states are to states with
identical inheritance values for the homozygous parent. This ensures that the states
never incur any recombinations for this uninformative parent. These steps result in
2n or fewer states—fewer if multiple previous states have the same inheritance values
for the homozygous parent.

After building all states using the inheritance values from states at the previous
locus, Hapi applies the equivalent states optimization (see Section 2.4.4). Each previ-
ous state can transition to two states at the current locus with equivalent inheritance
vector values since the bits corresponding to the homozygous parent are the identi-
cal, and those corresponding to the heterozygous parent are opposite. Hapi therefore
eliminates half the states that get built, retaining the state with fewer recombinations
for each equivalent pair of states.

If the previous locus was heterozygous for the parent that is currently homozygous,
only two inheritance values occur for that parent at the previous locus, and these are
opposite each other. Therefore, in this case, Hapi builds four equivalent states, and
it retains only the one with the fewest recombinations.

Note that Hapi utilizes three of its four optimizations—all but the ambiguous
inheritance value optimization—at this type of locus. This includes the two opti-
mizations mentioned above, as well as not building any states that are inconsistent
with Mendelian inheritance.

Figure 2-4 gives an example from real data of a fully informative locus with one
state at the previous locus. To make the inheritance vectors more readable, we display
them using ordered pairs for each child. It can be seen in this example that the system
copies the inheritance vector values for homozygous parent from the previous locus
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Figure 2-5: An example, modified from Figure 2-4 and not from real data, showing a
state with ambiguous inheritance values (marked by 7) at the previous locus, and the
two states Hapi builds based on it. For unambiguous children’s inheritance vector
values, the system copies the bits corresponding to the homozygous parent from the
previous state. For ambiguous children, two opposite inheritance values are valid for
the previous state, and the system uses the homozygous parent bit from the inheri-
tance value that matches the heterozygous parent’s bit in the state being built. Both
of the two inheritance values are necessarily represented, one in each of the resulting
states. As the underlined values show, the inheritance values for the homozygous
parent differ across the two outputs. As such, the states are not equivalent, and Hapi
cannot eliminate either. Bold values indicate recombinations.

state. As well, the inheritance vector values corresponding to the heterozygous parent
are opposite each other in the two states a and b. These two states therefore have
equivalent inheritance vectors and, because state b has fewer recombinations, it is
retained and state a is eliminated.

Ambiguous Inheritance Values and Fully Informative for One Parent Loci

Ambiguous inheritance values complicate the handling of fully informative for one
parent loci. At this locus, we apply an optimization to propagate the inheritance
vector bits for the homozygous parent from the previous locus. This requires only
copying in the case of unambiguous inheritance values, and results in two equivalently
labeled states.

The situation is different when a previous state has children with ambiguous inher-
itance values. In that case, the corresponding two inheritance vectors that Hapi builds
are not equivalent because, for children with ambiguous inheritance values, the ho-
mozygous parent’s inheritance bits are opposite one another rather than equivalent.
At the same time, the homozygous parent’s inheritance bits for any unambiguous
children remain identical across the two values.

Consider the example in Figure 2-5, which is modified from the example in Fig-
ure 2-4 to include ambiguous inheritance values. As usual, the inheritance vector
values for the heterozygous parent are opposite in the two states. However, the
ambiguous inheritance bits correspond to two entirely opposite values, so the two
resulting states do not have identical inheritance vector values for the homozygous
parent (we underline these differing values in the figure). Because the two inheritance
vectors are not equivalent, the algorithm cannot eliminate one of the two states. Even
S0, because the heterozygous parent’s inheritance values are still exactly opposite, if
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the next locus is fully informative for the other parent, Hapi can produce one state at
that locus. Note that although these two inheritance vectors are not equivalent, other
previous states may map/transition to states that are equivalent, thereby enabling
the elimination of some states. In other words, the number of states does not always
double when there are ambiguous inheritance values.

2.5.3 Partly Informative Loci

Partly informative loci (and children with missing data; see Section 2.8) are the
primary reason the haplotyping problem for families is challenging. This locus type
came up earlier in the context of the ambiguous inheritance vector values optimization
(see Section 2.4.2).

Processing partly informative loci consists of deducing the inheritance vector val-
ues for any homozygous children and applying the ambiguous inheritance values opti-
mization for the heterozygous children. Hapi determines, for each of the four parents’
phase assignments, which homolog the parents necessarily transmitted to their ho-
mozygous children. It also determines the two valid inheritance vector values for the
heterozygous children and applies the aforementioned optimization by mapping the
states at the previous locus to the current locus.

Whereas the number of states would otherwise always be 4 - 2%, this optimization
limits the number of states to be less than or equal to 4n where n is the number
of states at the previous locus. While generally this number could grow unwieldy
from successive partly informative loci, there actually exists a bound on the number
of states that can result across a series of partly informative loci (see Section 4.3.2).
Section 4.3 analyzes Hapi’s runtime complexity in detail.

2.5.4 Uninformative Loci

Uninformative loci are homozygous for both parents and therefore give no information
about recombinations. As such, Hapi does not build states at these loci, and when
the system analyzes the succeeding locus, it uses the states from the most recent
informative locus. The system does resolve the children’s phase at these loci, deducing
which is consistent with the parents’ genotypes and assigning the children’s alleles to
homologs as needed.

2.6 Initial State

To build the initial state from which to haplotype a given chromosome, Hapi uses
either a fully informative for both parent locus or two loci that are fully informative
for opposite parents. Beginning at the first locus on the chromosome, Hapi looks for
these types of loci to define the initial state. It skips any partly informative loci it
encounters before the initial state is defined. Later, after defining an initial state and
haplotyping the remainder of the chromosome, Hapi resolves haplotypes at these early
partly informative loci by performing reverse haplotyping starting from the locus that
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established the initial state. Uninformative loci do not depend on nor produce states,
so the system phases these loci whenever it encounters them.

It is straight forward to define an initial state using a locus that is fully informa-
tive for both parents. This locus type has exactly four possible inheritance vectors,
and deducing these vectors does not require any previous state. The choice of which
of the four inheritance vectors to use in the initial state is arbitrary, since, as dis-
cussed earlier, the inheritance vectors are equivalent. Different choices result in the
same haplotypes assigned to different homologs in the parents. That is, the parents’
haplotypes are merely labeled differently, but otherwise the results are identical.

A fully informative for one parent locus defines half of an inheritance vector,
giving information only for the bits that correspond to the heterozygous parent. This
locus type has two possible values for that portion of the inheritance vector, and
just as before, Hapi chooses between the two arbitrarily. The choice affects only
the homolog labels for the heterozygous parent’s haplotypes. The initial state thus
becomes partially defined with values for the heterozygous parent. Later, when the
system encounters a locus that is fully informative for the undefined parent (or a locus
fully informative for both parents), it fills in the inheritance vector values for the
undefined parent, and haplotyping proceeds forward normally from this point. The
system handles any intervening loci that are fully informative for the already-defined
parent in the normal way, while still leaving the homozygous parents’ inheritance
vector bits undefined.

Figure 2-6 (described in more detail in Section 2.9) gives an example of an initial
state defined from two fully informative loci (numbered 8 and 12).

2.7 Handling Ambiguities

As noted earlier, there is the possibility for ambiguities to arise—i.e., for more than
one state at a given locus to produce a minimum-recombinant haplotype assignment.
There are two ways this can occur. First, a fully informative locus that would oth-
erwise produce a single output state (starting back tracing) may have two or more
states that result in the same (minimal) number of recombinations. In this case, both
states are equally valid, and back tracing must consider both. The second type of
ambiguity occurs during back tracing, when a given minimal state has pointers to
multiple previous states states that each yield minimal recombinations.

In both of these cases, there are paths through multiple states at some number of
loci that are all minimally recombinant, and Hapi must consistently account for these
during back tracing. Note that, with the exception of partly informative loci, the
parents’ genotypes uniquely infer the children’s haplotypes. Ambiguity in states that
produce minimal recombinations therefore apply only to the haplotypes of the parents
and to heterozygous children at partly informative loci. To address ambiguities, the
algorithm first arbitrarily chooses one of the minimal states at the ambiguous locus
and assigns its haplotype values. The system then marks individuals’ haplotypes
ambiguous according to the differences in the states. If the phase for only one parent
differs between the states, the algorithm marks that parent as ambiguous. If the phase
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for both parents differ between the states then Hapi marks both parents as ambiguous.
At partly informative loci, if either parent is ambiguous, the heterozygous children’s
phase is also ambiguous and the system marks them as such.

After marking the necessary individuals as ambiguous, the system proceeds to the
previous locus, tracking all minimum recombinant paths to the locus. It then follows
the same procedure to assign any ambiguities with one change. Instead of arbitrarily
choosing a state to apply at this previous locus, it applies a state that leads to the
state assigned at locus the algorithm just visited. This ensures that the end result is
a consistent haplotype assignment (i.e., that it follows a valid path through the states
across loci).

2.8 Missing Data

Missing genotype data can result either because of quality control mechanisms asso-
ciated with genotyping technologies or because of non-Mendelian errors (which can
be removed using various software packages [26, 23]). It is straight forward to handle
loci that have children with missing data. Hapi simply copies the inheritance vector
values corresponding to the child with missing data from the state(s) at the previous
locus to the newly built states at the current locus. This approach assumes a lack
of recombination for that child, which suffices for the same reason that assuming no
recombination at loci where a parent is homozygous does. Because the inheritance
vector values for that child will no longer be opposite each other between states, but
will instead be identical, Hapi cannot eliminate states in the way it does when no
data is missing. However, it is possible to eliminate states in most cases. The fol-
lowing constitutes one of Hapi’s optimizations, in addition to the five mentioned in
Section 2.4.

Consider a set of states that have equivalent inheritance vectors when the missing
data children are ignored and with identical inheritance values for those missing data
children (i.e., states built based on the same previous state). Let  be the number of
children with missing data, and let r be the value of the smallest number of recom-
binations among this set of states. The states in this set are x or 2z recombinations
away from having equivalent inheritance vectors, depending on whether the inheri-
tance values are opposite each other for transmissions from one or both of the parents.
(Viewed another way, if two states have the same assignment of alleles to homologs
for one parent and opposite assignments for the other, the inheritance vectors are z
recombinations away from being equivalent. If both parents have opposite allele as-
signments, the inheritance vectors must be entirely opposite each other and therefore
2z recombinations separate them: the missing data children’s inheritance values are
identical, not opposite.) Considering states that are separated by = recombinations,
a state that has more than r + x recombinations will always be less optimal than the
minimal state and can therefore be removed. Even if all the missing data children
later recombine relative to the state with r recombinations, which would produce an
inheritance vector equivalent to the larger state, that minimal state would yield r +z
recombinations—i.e., fewer than that for the larger state.
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Although this technique will not always eliminate the same number of states as
if full data were available, it is quite effective. Our experimental results demonstrate
this as Hapi very efficiently analyzes a real dataset that includes missing data (see
Results). Often one state at a locus will have zero or one recombinations compared
to another state that has all or all but one child recombining. In such a case, the
technique just described can eliminate the state with more recombinations.

Hapi does not currently handle loci that are missing data for one or both parents.
Chapter 6 describes how it can be extended to do so.

2.9 Example

We give a brief example illustrating some aspects of our algorithm in Figure 2-6.
This example is from real data for one of the families in the Huntington’s Disease
Venezuela Collaborative Study [7] dataset discussed in Results. The initial locus 8
defines inheritance vector values for parent 1, the heterozygous parent, but leaves the
values for parent 0 undefined (designated by —). When analyzing this example, Hapi
produces a complete initial state at locus 12, where it deduces inheritance vector
values for parent 0 and copies those for parent 1 from locus 8. (Note: this figure
omits uninformative loci.)

Locus 14 is partly informative, and with one state at the previous locus, it has
only four states corresponding to the four possible parents’ phase assignments. The
figure shows two of these four states, one on the left and one on the right. The two
omitted states have four and five recombinations at locus 14 and still more at locus
16 and 17.

The left side state at locus 14 has two recombinations. It transitions to two states
at locus 16, one with a total of three recombinations and one with five; the figure shows
the state with fewer recombinations. These two states at locus 16 each transition to
the same two states at locus 17, and we include the one with fewer recombinations
in the figure.

The right side state for locus 14 has three recombinations. Although this is greater
than the two local recombinations shown for the left side state, this state actually
yields fewer recombinations globally. It transitions to two states at locus 16, one
of which produces no additional recombinations, and likewise that non-recombinant
state produces zero recombinations at locus 17. This path of states therefore has only
three recombinations, which is minimal across these loci.

Although the above analysis considered the downstream effects of each state at
locus 14 separately, Hapi considers all states at successive loci at the same time and
does not revisit each locus. The four states at locus 14 each transition to two non-
equivalent (because of ambiguous inheritance values) states at locus 16, for a total
of eight states. Because locus 16 is fully informative for parent 1, the inheritance
vector values for that parent are equivalently labeled in these states. Locus 17 is
heterozygous for parent 0 and produces exactly four equivalently labeled states, and
the state with the fewest recombinations must be globally minimal. This globally
minimal state is on the right side of the figure.
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Figure 2-6: An example from one of the families in the Huntington’s Disease Venezuela
Collaborative Study [7] dataset discussed in Chapter 4. The loci are from chromo-
some 3 and we number them sequentially in the order they occur physically. For
simplicity and conciseness, we omit uninformative loci and one non-recombinant fully
informative locus for parent 0 between 8 and 12. Bold inheritance vector values des-
ignate recombinations. Each state/row lists its total number of recombinations. Note
that the state at locus 14 with minimum recombinations is ultimately not minimum-
recombinant globally. Section 2.9 contains a detailed discussion of the example in
this figure.

39



40



Chapter 3

Maximum Likelihood Haplotyping

We now formulate the problem of maximum likelihood haplotyping and show how to
solve it using the same techniques as those we employ for minimum-recombinant hap-
lotyping. Our maximum likelihood approach expands on the minimum-recombinant
techniques in order to efficiently process and represent the more complex haplotype
possibilities for maximum likelihood haplotyping.

3.1 Maximum Likelihood Haplotyping Equation

Suppose we have genotyped loci numbered 0. .. L for each member of a nuclear family
with ¢ children, and assigned inheritance vectors ¥ for each locus . Let 6; be the
user-provided recombination frequency (i.e., probability of recombination) between
locus l and I — 1 for all 0 < I < L. Also let 7(I) = H(%;-1,9;) or the number of
recombinations (hamming distance) between the inheritance vectors at loci [ -1 and
l. Then the probability of the assigned inheritance vectors is:

L
P=T16"-(1— )", (3.1)

=1

Using log likelihoods, this can be written as:

L= iln 6)-r()) +In(1—6)-[2c—r(l)]. (3.2)
=1

This formulation of the maximum likelihood problem shows clearly the relationship
of the maximum likelihood problem to the minimum-recombinant one. If all loci have
the same recombination frequency 8 < 0.5, then the maximum likelihood solution is
the same as the minimum-recombinant one since In(f) < In(1 — ) across all loci, so
decreased r(l) values increase the overall likelihood. However, when the recombina-
tion frequencies differ across loci, more recombinations at one locus may have higher
likelihood than fewer recombinations at another.

A dynamic programming equation computing maximum likelihood haplotypes can
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be written as follows, where [ is a locus, and ¥, W are inheritance vectors:

P(l, %) = max{P(l — 1,) - 677D . (1 — g,)@e-H @} (3.3)

Using log likelihoods, the dynamic programming formulation becomes:
L(l,7) = max{L(l — 1,%W) + In () - HwW,¥) +In (1 — ;) - [2c — H(w,7)]}. (3.4)

Immediate application of the above formula is problematic because we cannot com-
pletely ignore uninformative loci: they have non-zero recombination frequencies that
affect the overall probability of a solution. Without some novel insight, it is necessary
to model most or all of the 22¢/4 non-equivalent inheritance vectors at uninformative
loci, and at least 2°/2 inheritance vectors at loci that are fully informative for one
parent.

3.2 Recombinations at Uninformative Loci

In order to account for recombination frequencies at loci where both parents are
homozygous—i.e., at uninformative loci—Hapi computes modified recombination fre-
quencies at all other informative loci, including fully informative for one parent loci
where one parent is homozygous. (Section 3.3 discusses how we handle potential re-
combinations at homozygous parent at fully informative for one parent loci.) These
modified recombination frequencies include the recombination frequencies for all unin-
formative loci that occur between a given informative locus and the nearest upstream
informative locus. In calculating these probabilities, the algorithm is pre-computing
the effects of recombination frequencies at uninformative loci, allowing it avoid di-
rectly processing such loci.

We denote Hapi’s modified recombination frequency at a locus [ as ¢; and the
frequency of non-recombination (expressed above as (1 — 6;)) as ;. To calculate ¢,
and ¥ for a locus [, let [y be the nearest upstream informative locus and let Iy, ..., 1,_1
be the loci uninformative for parent p that appear between [y and [. Let [, = [ and
let I* be the locus with the highest recombination frequency, i.e., find I* € {ly,...,1,}
such that 6« = maz?_,6,,. Then:

n

d=0-- ] (1-86,). (3.5)
i=1,1; 1

Thus, the probability of recombination between locus Iy and I, = [ is equal to the
maximum between-marker recombination frequency within the region spanned by
these loci, or 6;«, multiplied by the probability of not recombining anywhere else.
Note that ;- is the probability of recombining between locus * and [* — 1, and either
or both of these loci can be uninformative. Hapi stores the locus number [* so that the

final haplotype solution includes any recombinations in their most likely positions.
A consequence of this formula is that at most one recombination can occur between
any two informative loci on a given homolog. Thus, within a region of uninformative
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loci, we do not model the possibility of intervening gene conversions or double recom-
binations. Not modeling such events make sense because it is impossible to observe
or verify them. Furthermore, haplotypes that include additional recombinations or
gene conversions not directly implied by the data are less likely than those without
these events since 6; < 0.5 means recombination is less likely than non-recombination.
Therefore, even if we were to model such events, they would not ultimately appear
in the haplotype solution, so we lose nothing by not modeling them.

The probability of not recombining between locus [y and I, = [ is the product of
non-recombination across each of the locus intervals:

n

Y =[] - 6.,). (3.6)

i=1

The equations for ¢; and ¥ utilize the recombination frequencies between each pair
of loci rather than a single recombination frequency spanning the region between [
and [. This is the case because the haplotyping output must place every recombination
at some discrete location between a pair of markers. There must exist a pair of
markers flanking every recombination, and sometimes one or both of these will be
uninformative. This matches the maximum likelihood approach employed by other
algorithms, which calculate the probability of recombining (or not) between each pair
of markers, not just those that are informative. A consequence of this formulation
is that ¢; + ¢y # 1. This occurs because, as we earlier noted, these probabilities
account for the possibility of only one recombination on a given homolog between any
two informative loci—more than one recombination will always be less likely. Some
applications—notably linkage analysis (see Section 5.1)—may benefit from using a
single recombination frequency between the region spanned by [y to I. Our algorithm
functions the same regardless of how we calculate ¢ and .

To increase numerical stability and efficiency, Hapi uses the log likelihood formu-
lation of this dynamic programming problem. This formula substitutes multiplication
for exponentiation and uses the values In(¢;) and In(¢;) which requires summation
instead of multiplication to calculate. The dynamic programming equation for max-
imum log likelihood haplotypes at a locus ! informative for parent p is then given by
the following:

L(1,7) = max{L(l - 1, @) +1n(¢0) - H(@,%) +In($) - e~ H@, D)} (3.7)

3.3 Complications Due to Fully Informative for
One Parent Loci

Hapi’s minimum-recombinant haplotyping algorithm does not model recombinations

at fully informative for one parent loci. For maximum likelihood haplotyping, it

suffices to initially only model states at fully informative for one parent loci that do
not exhibit recombination from the homozygous parent. If the child does not exhibit
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Locus . Locus . Locus .

Type Locus #| o Type Locus #| v Type Locus #| v
FI -1 ]{0,0) FI [—1 |(0,0) FI -1 [(0,0)

FI-PO l (0,0) FI-PO l (1,0) FI-PO l (1,0)
PI I+1 [{(0,1)7 PI [+1 [(1,0) PI I+1 |(1,0)
FI l+2 — FI [+2 - FI l+2 {{(0,1)

Figure 3-1: Possible assignments across a fully informative for one parent locus and
partly informative locus yielding different likelihoods depending on where the recom-
binations are located and on downstream assignments.

recombination from that parent at the next locus where that parent is heterozygous,
the lack of recombination at the earlier locus yields highest likelihood. However,
when the later locus does exhibit recombination, placing the recombination before
the earlier fully informative for one parent locus may increase likelihood.

A further complication to this issue of fully informative for one parent loci is
the interactions between such loci and partly informative loci. Figure 3-1 illustrates
with three possible inheritance value assignments across a series of loci. Here, the
inheritance assignment at locus [ — 1 is constant and assumed fixed. Locus [ is fully
informative for one parent and [ + 1 is partly informative. If a child that is heterozy-
gous at locus [ 4+ 1 exhibits recombination relative to the inheritance vector at locus
[, the system would normally mark the child’s inheritance as ambiguous, as Figure 3-
1(a) shows. Another possibility is to place a recombination from the homozygous
parent at locus I, which Figure 3-1(b) shows. In this case, the recombination at locus
[+ 1 no longer occurs. A further confounding factor is the inheritance assignments at
downstream loci; as Figure 3-1(c) shows, later loci may exhibit recombination relative
to the choice of lack of recombination at the partly informative locus.

Complex dependence between possible inheritance values also occur when a fully
informative for one parent locus appears immediately after a partly informative locus
with a heterozygous child.

3.4 Complications From Partly Informative Loci

Besides the issues that arise from fully informative for one parent loci, an unam-
biguous non-recombinant inheritance vector assignment for a heterozygous child at a
partly informative locus may not always yield maximum likelihood. Figure 3-2 shows
an example in which the default non-recombinant inheritance value is assigned at
a locus [ and some further downstream locus [ + z recombines on both homologs.
Because recombination frequencies differ across loci, if the child is heterozygous at all
intervening partly informative loci, it may be more likely place the recombinations
on both homologs upstream at locus [.
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PI : :
FI l+z |(1,1)

Figure 3-2: Example in which moving the recombinations on both homologs upstream
to an earlier partly informative locus may increase the overall likelihood.

3.5 Tracking Alternate Inheritance Assignment Like-
lihoods

In order to correctly model the maximum likelihood inheritance assignments, Hapi
tracks the likelihood of switching to the alternate inheritance assignment for each child
at each state. The alternate inheritance assignment for a child at a fully informative
for one parent locus switches the inheritance value for the homozygous parent. The
maximum likelihood alternate inheritance at a given locus may include alternate
inheritance assignments at further upstream loci, and the system must track the
likelihoods for the most likely assignment. Let p; = ¢/, the relative likelihood of
recombining at locus I. This value divides out ; since the likelihood of the state
includes this value of not recombining; later modifications to the likelihood of a path
must divide out this value and substitute the probability of recombination.

The following equation governs the probability of switching to an alternate inher-
itance at a locus that is fully fully informative for parent p and homozygous for the
other parent g:

(1 if locus | — 1 is fully informative for parent ¢
max{p;; Alt;_1} if locus | — 1 is fully informative for parent p
o) if locus [ — 1 is partly informative and does
not recombine to locus [
Alty = (3.8)

max{p;; Alt;_1/p} if locus | — 1 is partly informative and
recombines relative to locus [

| Al if child is missing data at [

Note that loci that we consider loci that are partly informative but where the child
is homozygous as fully informative for both parents.

The probability of switching to alternate inheritance for a child that is heterozy-
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gous or missing data at a partly informative locus is given as follows:

(1 if the previous locus is not fully informative
for one parent and the child recombines:
ambiguous inheritance

2-py if the previous locus is fully informative for
both parents and does not recombine

max{2 - p;; Alt;—1} if the previous locus is partly informative
with the child heterozygous and does not
recombine

max{2- p;; ;i/Alt;_1} if the previous locus is fully informative for
one parent, exhibits recombination, and

Alt; = | (Alti1/pr) > 1

2-p if the prevoius locus is fully informatie for
one parent, exhibits recombination, and

(Altl_l/pl < 1)

1 if the previous locus is fully informatie for
one parent, does not recombine, and
(Altl_l - P> 1)
introduces ambiguous inheritance

max{2 - p;; Alt;_1 - pi} if the prevoius locus is fully informatie for
one parent, does not recombine, and
(Altl_l o < 1)

(3.9)

These equations give likelihoods for a single state’s alternate inheritance probabil-

ities relative to the previous state. Because multiple states may map to the same state

at the next locus, and because the alternate inheritance values may vary across these

states, the system must track both a minimum and a maximum alternate probability

at each state, corresponding to the minimum and maximum alternate probabilities
for the previous states.

When the system determines that it is more likely to use the alternate inheritance
at some previous locus in order to reach a given state, it incorporates the alternate
inheritance probability into the state’s overall probability. Since there is both a
minimum and maximum alternate inheritance probability that differ in general, the
overall state probability is ambiguous and is given as a minimum and maximum value.
Tracking the probability range allows Hapi to remove edges to previous states who
maximum probability is less than the minumum probability of some other previous
state. Figure 3-3 shows example states with minimum and maximum probabilities
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Locus States
I min: 0.3 min: 0.6
max: 0.45 max: 0.8
X .
—
I+ 1 min: ?
max: 1

Figure 3-3: Two example states with minimum and maximum probabilities at a locus
[ that transition to a particular state at locus [+ 1. Because the maximum probability
for the state on the left is less than the minimum probability for the state on the right,
the system does not keep a pointer to that state from the state at [ + 1.

at a locus . The left side state has a lower maximum probability than the minimum
probability of the right side state. In a case such as this, Hapi will not keep a pointer
to the less likely previous state in the state at the next locus that each maps to.
Hapi’s minimum and maximum probabilities give an approximation of a state’s or
path’s actual probability. Eventually the system performs back tracing to resolve the
ambiguous children’s probability values.

Sometimes the maximum alternate inheritance probability yields greater likeli-
hood while the minimum alternate inheritance probability does not. In this case, the
system stores the fact that alternate inheritance upstream is ambiguous and back
tracing later determines the overall probabilities per path.

Back tracing yields fixed probabilities for states at some upstream locus. To assign
the maximum likelihood path of states, Hapi locates the state at the upstream locus
that has maximum probability. It then performs forward tracing to assign the path of
states that yields this probability. Forward tracing requires that Hapi store pointers
to the state at the next locus that has the highest likelihood. These pointers are
analogous to the pointers to states at the previous locus. While performing back
tracing, Hapi stores the state (or states) at the next locus the yields the highest
probability at the current state. Because of alternate inheritance, this will often
include several states at the next locus with differing alternate probabilities to be
applied at the previous locus. The algorithm can only compare next states whose
alternate inheritance to be used at upstream loci are identical.

3.6 Forward Tracing

Back tracing finishes at the most upstream locus that has only one state, which will
have had its haplotype values assigned. At this point, Hapi will have computed full
probabilities—including any alternate inheritance assignments—for states at down-
stream loci. The probabilities stored in states at the next locus include the prob-
abilities of states at all downstream loci. Hapi locates the state at the next locus
with maximum likelihood and performs forward tracing from this point. As noted,
states contain pointers to the next downstream locus that has maximum likelihood
to enable this forward tracing process. Hapi applies the haplotype values stored in
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each state—including applying any alternate inheritance assignemnts—as it processes
each.
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Chapter 4

Results

Hapi is a novel algorithm and program for haplotyping nuclear families that performs
orders of magnitude faster than related programs. In this chapter we present ex-
perimental results comparing Hapi to existing state-of-the-art algorithms. We also
describe Hapi’s output formats and give a formal complexity analysis of the algorithm.

4.1 Runtime Comparison to Other Family-Based
Haplotyping Algorithms

We have evaluated Hapi’s runtime performance compared to three state-of-the-art
algorithms: Merlin [1], Allegro [9], and Superlink [4], programs in current use for
family-based haplotype assignment. Like most algorithms for computing maximum
likelihood haplotypes, these programs have exponential complexity in general. How-
ever, each contains several optimizations, and these are the most suitable programs
for comparison to Hapi. We omitted GENEHUNTER from our comparison because
Merlin outperforms it [1].

We ran each program on a dataset of nuclear families derived from a pedigree
from the Huntington’s Disease Venezuela Collaborative Study [7]. This Venezuelan
pedigree has 757 individuals and 458 families. None of Merlin, Allegro, or Superlink
can successfully haplotype such a large pedigree. Hapi can currently only analyze
nuclear families where both parents have genotype data, so the pedigree was broken
up into such families. The choice to break up such a large pedigree into smaller sets
of related individuals is necessary regardless of which haplotyping tool is used. In
support of this, we found that even though these other algorithms are for general
pedigrees, Superlink failed to haplotype a nuclear family with 11 children. Superlink
only succeeded when we reduced this family to eight children (see below). Thus this
program has hard limits on the number of individuals it can haplotype.

The derived nuclear family dataset contains 103 nuclear families where both par-
ents have data. These families have a total of 438 individuals. Note that because we
analyzed the families separately, we double counted individuals that appear in more
than one family (e.g., as a parent in one and a child in another, or as a parent in
more than one family).
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2.30 GHz AMD Opteron

Program All Families < 3 Children
i Runtime | Speedup || Runtime | Speedup
Hapi 3.112s 2 9555 —

Merlin 1005s 323x 8.662s | 3.84x
Allegro v2| 7661s | 2462x | 14.50s | 6.43x
Superlink | 1393s" | 448x || 38.75s | 17.2x

Figure 4-1: Runtimes for maximum likelihood haplotyping in Hapi, Merlin, Allegro,
and Superlink of nuclear families from the Huntington’s Disease Venezuela Collabora-
tive Study [7]. We list times for haplotyping all nuclear families and for haplotyping
those with three or fewer children. 'Superlink failed to haplotype the family with 11
children; we therefore used only 8 of the children from the 11 child family to time it.
Times are averages from running Hapi eight times and Merlin, Allegro, and Superlink
three times each.

These families range in size from 1 to 11 children, with an average of 2.23 children
per family. There are 86 families with 3 or fewer children (308 total individuals), with
an average of 1.56 children for that subset of families. Using the Illumina linkage
IV_v3 SNP panel, genotypes at 5,456 SNPs covering the whole genome were obtained
for each individual in the dataset [7]. The numbers of SNPs per chromosome are
roughly proportional to the chromosome’s size and range from 102 on chromosome
21 to 468 on chromosome 2. Prior to analysis, the PEDSTATS [26] and PedCheck
[23] programs were used to remove genotypes exhibiting non-Mendelian errors.

Figure 4-1 shows timing results from our experiments. The times are for perform-
ing maximum likelihood haplotyping in Hapi, Merlin, Allegro v2, and Superlink on
a 2.30GHz AMD Opteron machine with 32GB of RAM. Although this is a multi-
processor machine, none of the algorithms are parallelized. We used Hapi to infer
maximum likelihood rather than minimum-recombinant haplotypes in this set of ex-
periments because the other programs address that problem, and because that form of
haplotyping is slower in Hapi. Neither Hapi or Merlin exceeded the available memory
in these experiments.

Superlink ran for over 6 hours without finishing when we used it haplotype chro-
mosome 1 for all families in the dataset. At that time, the program reported that
0% of the haplotyping was complete. We found that Superlink uses an excessive
amount of memory (;24GB) to haplotype a family with 10 or 9 children. The times
for Superlink therefore reflect its haplotyping a modified set of families, with three
of the children removed from the original 11 child family. Superlink did not exceed
available memory when analyzing this modified dataset.

We include times for haplotyping all families in the dataset (modified for Super-
link), as well as the subset of families with three or fewer children in Figure 4-1.
Because of the fixed overhead involved in printing the haplotypes in Hapi and Merlin
(> 2 seconds in each program), we report the times only for reading in the dataset and
performing the haplotyping, but not printing the results. Source code is not publicly
available for Superlink, so we could not modify it to avoid printing haplotypes, but
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1.40 GHz Pentium M

Program All Families < 3 Children
Runtime Speedup Runtime Speedup
Hapi 4.732s - 3.451s —
PedPhase 2.0|> 21600s (6h)*|> 4500x || > 21600s (6h)*| > 6000x

Figure 4-2: Runtimes for minimum-recombinant haplotyping of the nuclear family
dataset derived from the Huntington’s Disease Venezuela Collaborative Study [7].
PedPhase 2.0 runs in Windows and we consequently used a different machine to
obtain these times than the one used for the times listed in Figure 4-1. ¥ PedPhase
failed to haplotype chromosome 1 in over 6 hours. Times for Hapi are averages from
eight runs.

such a change is unlikely to dramatically affect its runtime. We also did not modify
Allegro to prevent it from printing haplotypes, but its runtime also would not change
significantly compared to the current results.

As Figure 4-1 shows, Hapi is substantially faster than Merlin, running 323 times
faster for the entire dataset and 3.84 times faster for the subset of families with three
or fewer children. Hapi compares even more favorably against Allegro and Super-
link, even as Superlink can only haplotype a reduced-sized dataset. Hapi runs 2462
times faster than the times for Allegro and 448 times than the times for Superlink’s
analysis of the modified dataset. For haplotyping the subset of families with three or
fewer children, Hapi runs 6.43 times faster than Allegro and 17.2 times faster than
Superlink.

Hapi’s speedup for the entire dataset demonstrates experimentally the vast dif-
ference between the theoretical complexity of these algorithms. Whereas Merlin,
Allegro, and Superlink have exponential runtime complexity, Hapi runs in polyno-
mial time in practice (see Section 4.3). At the same time, the more modest gains for
the families with three or fewer children is unsurprising. The other algorithms scale
exponentially in the number of non-founders or, in the case of nuclear families, in the
number of children in the family being analyzed. When that number is very small,
an exponential algorithm will not differ as significantly from one that has polynomial
runtime in practice. Our algorithm is still significantly faster than these programs
even in this case that is less taxing to an exponential algorithm.

4.1.1 Minimum-Recombinant Haplotyping Comparison

Besides these maximum likelihood systems, we compared Hapi’s minimum-recombinant
haplotyping to PedPhase 2.0, which uses an Integer Linear Programming algorithm
to calculate minimum-recombinant haplotypes for pedigrees [16]. PedPhase 2.0 runs
only in Windows, and we used a 1.40GHz Pentium M laptop with 1.24 GB of RAM
to compare the runtimes of these two systems. Figure 4-2 gives timing results on
this machine for Hapi and PedPhase. We ran PedPhase on the entire dataset and
on the families with three or fewer children. In both cases, PedPhase did not exceed
available memory, and ran for over 6 hours without haplotyping even chromosome 1.
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Figure 4-3: Output from Hapi showing the inherited homologs on chromosome 1
for a family with 11 children from the Huntington’s Disease Venezuela Collaborative
Study [7]. Hapi produces CSV format output, which we imported into a spread-
sheet. To color the cells, we used conditional formatting based on the homolog value
transmitted. The output of inheritance vector values uses letters A and B. Lower-case
letters indicate the transmitting parent is homozygous and the presence of recombi-
nation unknown. Each column is labeled with the child’s numerical id with either a
‘P’ or an ‘M’ preceding it to indicate either paternal or maternal-derived homologs.
The left most column gives the SNP rs numbers, and the right most column lists the
number of recombinations across all children at the given locus.

Because 464 of the 5,456 total SNPs reside on chromosome 1, we estimate that the
total runtime for PedPhase on this dataset would be at least 70 hours. In contrast,
Hapi completes haplotyping the entire dataset in 4.732 seconds (in Linux) on this
machine.

4.2 Hapi’s Output

Hapi produces output in text or CSV format, suitable for import into a spreadsheet.
It can output either the actual haplotypes with allele values or the children’s in-
heritance vector values. The latter is useful for inspecting the results of meioses,
including recombination patterns. Figure 4-3 shows the inheritance vector output
from Hapi for a family with 11 children, imported into a spreadsheet. This output
uses letter symbols rather than bit values with lower case letters indicating that the
corresponding meiosis is uninformative. To help identify recombinations sites, we use
the spreadsheet program’s conditional formatting feature to color the cells based on
which homolog the child received. The output from Merlin, Allegro, and Superlink
provide the same information as Hapi, but each of these programs uses its own text-
based format. We expect that many geneticists will find the ability to import Hapi’s
output into a spreadsheet to be more intuitive and more convenient than the output
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from other programs.

4.3 Complexity Analysis of Hapi

The experimental results in Section 4.1 demonstrate that Hapi is extremely efficient
in practice: it runs orders of magnitude faster than existing algorithms. If L is the
number of marker loci, s is the maximum number of states produced at any locus,
and c is the number of children, Hapi’s complexity is O(L-s-¢). This is so because the
algorithm visits each of the L loci at most two or, for maximum likelihood haplotyping,
three times (additional visits occur during back tracing/forward tracing). At each
locus, Hapi builds O(s) states, and each state has size O(c). While Hapi is efficient
in practice, there are two rare corner cases where s = O(2°). That is, the number of
states can be exponential in the number of children in the family being analyzed.

Because of the nature of the requirements for these corner cases to occur, they are
extremely unlikely to happen in practice. As well, if a series of loci do exhibit one
of these cases, the number of states becomes exponential only transiently, because a
later locus that is fully informative for both parents and with data for all the children
(or two successive loci fully informative for opposite parents) will produce a single
state. One necessary condition for this state blowup is therefore that the series of loci
not contain such a locus (or loci) that produces a single state.

4.3.1 Missing Data

The first exponential case arises because of missing data. Consider a fully informative
for one parent locus where the previous locus has n states. If one or more children
have missing data at this locus, the number of states for this locus, which would
otherwise be n (absent ambiguous inheritance values), can instead become 2n. In
order for this increase in states to occur, a large proportion of the children must
have missing data, or a large proportion must recombine. Without these conditions,
the optimization described in Section 2.8 would apply. Such a scenario is unlikely in
practice since recombination is rare, but one can construct such a pathological input.
Note that if a child that was missing data at some previous locus has data at the
current locus, states that were added at the previous locus effectively merge.

The above properties indicate the possibility, however remote, for Hapi to produce
an exponential number of states from loci with missing data. Consider a series of loci
where each successive locus has missing data for the same set of children at the
previous locus as well as missing data for one more child. (That is, the first locus has
data for all children, the second missing data for child ¢g, the third missing data for
child ¢q and ¢y, etc.) This scenario could lead to an exponential number of states, but
only if the previously mentioned optimization does not apply. A more complicated
scenario in which at least half of the children have missing data at the starting locus
would defeat the optimization since the value of x mentioned in Section 2.8 would be
large. However, such a scenario is extremely unlikely to occur in practice.
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4.3.2 Ambiguous Inheritance Values

The second way an exponential number of states may occur comes through ambigu-
ous inheritance values, which Hapi introduces at partly informative loci. Ignoring
additional states that may arise because of missing data, the first encountered partly
informative locus will have 4 states. Without any recombination, the maximum num-
ber of states that may arise across any number of partly informative loci is 12. This
maximum of 12 states occurs because lack of recombination constrains children’s in-
heritance values to be fixed relative to each other. With these constraints, for a
particular assignment of parent’s alleles to homologs, there are three possible in-
heritance values for heterozygous children (two non-ambiguous and one ambiguous).
Since there are four phase assignments of the parents at these loci, there can be at
most 4 - 3 = 12 states.

When recombination occurs in a child or children between two partly informative
loci, the number of states at the second locus increases additively, with two additional
states for each assignment of parent’s alleles, (for a total of eight added states). The
recombination changes the constraints on the possible children’s inheritance values
and effectively breaks the children into two classes. The children in one class exhibits
recombination relative to the other, but until the remainder of the algorithm com-
pletes, which of these two classes has fewer recombinations is unknown, so the system
must track additional states (i.e., both classes). In general, since all ¢ children can
recombine, this can lead to at most 4(2c + 1) states, a polynomial number, so the
number of states cannot become exponential across a series of partly informative type
loci only.

The number of states can grow to be exponential through interactions between
partly informative and fully informative for one parent loci. Whenever a locus has
states with ambiguous inheritance values and occurs immediately before a fully in-
formative for one parent locus, the number of states may double, as described in
Section 2.5.2. The scenario in which an exponential number of states can occur is
when there are a series of alternating partly informative and fully informative for one
parent loci. At each partly informative locus, one of the children must recombine
and become heterozygous, yielding an ambiguous inheritance value, and that child
must remain heterozygous at all successive partly informative loci. The recombina-
tion results in an addition 4 - 2 states at each partly informative locus, followed by a
doubling in the number of states at the fully informative for one parent locus. The
number of states doubles ¢ times for an exponential blowup.

The above scenario is extremely unlikely. It requires recombinations to occur in
all the children, all at partly informative loci, and without encountering a locus or
loci that produce a single output state. Moreover, after recombining, the children
must be heterozygous across all partly informative loci. This is unlikely because
homozygous and heterozygous genotypes are equally probable for children at such
loci. Although this scenario could occur for a small number of children (say two or
three), the likelihood decreases as the number of children increases. Thus, when an

exponential blowup would be most problematic (for large ¢), it becomes even less
likely.
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To estimate the probability of this scenario occurring, let § < 0.5 be the recombi-
nation probability between each locus within some series of loci. Let L be the number
of loci in this series, and assume that each partly informative locus is followed by a
fully informative for one parent locus and vice versa. Then the probability of all ¢

children recombining across these loci is 6¢ - (1 — #)L=¢. The likelihood of child being

. . . .. P .
heterozygous across a series of p partly informative loci is (%) . Non-recombinant

children will display the same genotype relative to each other across partly informa-
tive loci, so it suffices to require only one child to have the heterozygous genotype, in
addition to the recombination requirements. The following is an upper bound on the
probability for this scenario, since it doesn’t account for the likelihoods of the locus
types appearing in the required order:

Pt (1—g)Fc.3 (%) (4.1)

i=c

The summation allows for the children to recombine anywhere within the series of loci.
This is an extremely low probability, even if § is near 0.5. This is also a conservative
estimate, because the children must have the proper inheritance vector values at
the locus preceding the locus at which it recombines in order for a recombination
to actually take place. One way to ensure that this is so is for the children to be
homozygous at all partly informative loci upstream of the first recombination point,
but the equation does not include the likelihood for this scenario. Another possibility
is for the children to exhibit additional recombinations so that the have the proper
inheritance value before before the recombination point.
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Chapter 5

Application to Linkage Analysis

As we noted in the introduction, haplotypes have many important applications. Hap-
lotypes inferred for family-based datasets are often used to perform linkage analysis
for disease gene mapping. Here, we describe how to extend Hapi to perform linkage
analysis. We also outline how to impute genotype or sequence data for individuals in
a family based on data acquired for one or more of the family members.

5.1 Linkage Analysis

The goal of linkage analysis is to find a genetic locus that co-segregates with a disease
trait. Given a particular inheritance vector (i.e., haplotype assignment) for each locus,
it is relatively straight forward to calculate the per-locus likelihood of linkage, either
using a parametric or non-parametric scoring function [12]. The maximum likelihood
inheritance vectors Hapi produces can be used for this purpose. However, linkage
analysis is usually performed not for a particular inheritance vector at each locus,
but using the probability distribution of all possible inheritance vectors at each locus.

Although Hapi does not currently perform linkage analysis, it can be adapted to
do so. To accomplish this, the system need not perform back tracing, and cannot
reclaim memory associated with any less-likely states, but must retain all states for
the linkage analysis calculations. The algorithm must also explicitly calculate the
probability of each inheritance vector/state it considers—the maximum likelihood
haplotyping algorithm finds the maximum likelihood state for each locus, but does
not calculate the exact probability of each state. More specifically, Hapi does not
include in each state the probability of the downstream state path, but includes
the probability of the upstream state path and the transition probability from the
optimal state at the previous locus. To properly calculate a state’s probability, system
must also include the probability of the optimal next state, as well as the transition
probability to that state. Once the algorithm finishes building states for all loci on a
chromosome, it can follow pointers to previous states and incorporate the transition
probability to the next state as well as that state’s probability. Note that the first
and last loci have no upstream or downstream loci to consider and the states at these
loci therefore do not include the corresponding probability components.
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With the probability distribution of locus states calculated in this way, one can
calculate LOD scores or non-parametric Z scores by weighting the score of each in-
heritance vector by its probability at the locus in question [12]. Note that the scoring
function for each inheritance vector is independent of any locus: a given score ap-
plies to any locus with the corresponding inheritance vector but must be weighted by
the inheritance vector’s probability at each locus. Performing linkage analysis there-
fore consists of calculating scores for each inheritance vector, visiting each locus and
weighting the score of a particular inheritance vector/state by its multipoint proba-
bility at that locus. The sum of the weighted scores of each inheritance vector at a
locus constitutes the LOD or Z score for that locus [12].

A trade off of Hapi’s efficiency is that it does not consider all possible states at
each locus. Specifically, it omits any states that exhibit double recombinations within
a series of uninformative loci and may avoid considering some possible haplotype as-
signments at partly informative loci depending on the recombinations at surrounding
loci. States that exhibit such short double recombinations are extremely unlikely ac-
cording to the user-specified recombination frequencies, and are even less likely than
these probabilities suggest because of recombination interference in meiosis. The low
probability of such states substantially limits their potential impact on the overall
linkage likelihood score at a locus. As well, if such a state did have a high link-
age score, the physical limitations of double recombinations within a short span of
uninformative loci would make it highly suspect. Note that Hapi does model and
identify double recombinations that are supported by transmissions at informative
loci. It could identify cases in which a disease locus segregates with such a dou-
ble recombination. We believe that Hapi’s lack of modeling double recombinations
within (typically very short) spans of uninformative loci will not miss any meaningful
information in standard genotype datasets. For a family with a very long span of in-
formative loci for one or both parents, it may be fruitful to consider other algorithms.
However, the results for such data will be inconclusive since the outcomes of meiosis
are effectively guessed at and are unsupported by the data in this case.

Hapi does not model recombinant states at uninformative loci, but determines
the maximum likelihood location of recombination between every pair of informative
loci (see Section 3.2). This approach suffices in order to place an apparent recom-
bination between the most likely pair of markers for maximum likelihood haplotype
calculations. For linkage analysis, because a recombination could occur anywhere
between two informative markers, we calculate the recombination frequency over the
entire distance between these markers. This more accurately reflects the transition
probability between informative loci. The recombination frequency is therefore

¢lp = Zelia (51)
i=1

and the algorithm can use this probability to calculate transitions between states and
to compute weighted likelihood scores at informative loci.
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5.2 Imputation

Researchers have recently been interested in genotype and sequence tmputation, in
which a set of individuals, assayed at a subset of genotypes of some other set of indi-
viduals, have their missing genotypes or sequence data inferred from the individuals
with more data [10]. This approach relies on haplotypes being available or inferred
for all the individuals.

For family-based studies, imputation using an individual that is haplotyped at a
larger set of genetic data than related individuals is relatively simple. Hapi calculates
inheritance vectors that designate which homolog a parent transmitted to a child.
If additional haplotyped genomic data—either genotypes or sequence data—is avail-
able for a parent, we can infer that the children received the alleles for larger set of
markers that reside on the homolog the child received from this parent. If additional
haplotype data is available for a child or children, we can infer those portions of the
parents’ homologs that the child/children received. We can also deduce the larger
haplotype segments that siblings received if they inherited the same homolog as the
child/children with the larger marker set. At recombination sites, which occur infre-
quently across the length of the chromosome, the transmitted homolog is ambiguous
and we cannot infer which genotypes or sequence data was transmitted.

As noted, this imputation requires that the individual(s) with the larger set of ge-
nomic data be haplotyped. If they are not, the algorithm can still infer transmissions
to or from parents at locations where the sampled individual is homozygous. If both
a parent and a child or multiple children have a larger set of data, we may be able
to deduce their haplotypes at these additional loci using the techniques described in
Chapter 6.
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Chapter 6

Haplotyping Loci and Nuclear
Families with Missing Parent Data

Not all nuclear family datasets contain genotype information for all family members,
and parents are no exception to this. The description of our algorithm to this point
has required that genotype data be available for both parents in order to haplotype a
family. This requirement prevents Hapi from addressing nuclear families with geno-
type data for only one parent as well as families with data for siblings only and no
parent data. The requirement also makes it impossible to haplotype loci that are
missing data for one or both parents because of genotyping errors.

We have devised an extension to the basic Hapi algorithm that can perform haplo-
type inference at loci or for entire families for which genotypes for one or both parents
are unavailable. Qur approach to this problem is similar in nature to the approach we
use in Hapi. Specifically, the algorithm determines which parent genotypes are con-
sistent with the children’s genotypes at a locus. It then builds states corresponding to
the possible phase assignments for these genotypes. At the same time, the algorithm
uses all applicable optimizations (Section 2.4) to reduce the number of states it must
track and thereby improve efficiency.

Note that besides simply haplotyping the individuals whose genotypes are avail-
able, this algorithm also infers the most likely haplotypes of the missing parent or
parents.

Note that in the discussion below, each state must be weighted by the allele
frequencies of the inferred parent genotype(s).

6.1 Building Haplotype States Based on Children’s
Genotypes

The extension to Hapi uses the observed children’s genotypes at a locus to infer all
possible genotypes for the parent or parents with missing data at that locus. When
both parents are missing data, there are more possible scenarios and therefore more
states are necessary to perform haplotyping. Because it is more complicated, we
discuss the case when we have genotypes for siblings only and no parent. Figure 6-1
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gives a listing of all possible children’s genotypes and the genotypes for both parents
that may give rise to the children’s genotypes. Additionally, the figure lists the
number of states necessary to model each of these possible parent genotypes, and an
overall total number of states across all possible parent genotypes that are necessary
to haplotype a locus with the corresponding children’s genotypes. To model an allele
that a parent did not transmit to any child, the figure uses the 7 symbol, signifying
that the value of this allele is unknown.

This section talks about how the haplotyping algorithm works, and specifically
about how this extended algorithm builds states for various scenarios of children’s
genotypes. Section 6.2 discusses the runtime complexity of this algorithm.

We structure the discussion below according to the number of observed alleles in
the children’s genotypes. The text explains Figure 6-1, outlining all possible children’s
genotypes and the possible parent genotypes that can produce each. The extended
algorithm differs from the basic algorithm only in that the parents’ genotypes are
unknown, so it must build states corresponding to all possible parent genotypes that
are consistent with the children’s. The algorithm produces states corresponding to
all possible phase assignments for each possibility of parents’ genotypes, just as the
basic Hapi algorithm does. This suffices in order to explore all possible haplotype
assignments.

The details in Sections 6.1.1 through 6.1.4 explain why Figure 6-1 properly identify
the possible parents’ genotypes and tells which states the system must be built in
every situation. As we explain below, the algorithm need not initially consider any
states with 7 alleles, but can instead consider the parent as homozygous and later
determine whether the parent is likely to have transmitted only one allele.

6.1.1 Children’s Genotypes with One Allele

When all the children at a locus exhibit the same homozygous genotype (e.g., a/a),
the parents have four possible genotypes. Both parents may be homozygous with
genotype a/a, both parents may be heterozygous with genotype a/?, or one or the
other of the two parents may be heterozygous with genotype a/? and the other ho-
mozygous as a/a.

It suffices to ignore the states with a/? heterozygous genotypes. If both parents
are homozygous, the algorithm cannot observe recombination. A state that does
not exhibit recombination will always have higher likelihood than one that does,
and consequently, the states in which both parents are homozygous will always have
higher or the same likelihood as those in which one or both parents are heterozygous
with genotypes a/?7. The maximum likelihood state at this locus may include a
heterozygous parent, but for this to be the case, the inheritance vector either will not
exhibit recombination, or will include a recombination that the algorithm observes at
an adjacent locus.

In an analogous fashion to the handling of uninformative loci in Hapi, this ex-
tended algorithm initially skips loci in which children exhibit only one allele. Sub-
sequently, when the maximum likelihood inheritance vectors at upstream and down-
stream loci are known, the algorithm can determine the most likely location of re-
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combinations between those two loci. A recombination can occur at a locus of the
type we are discussing (in which the children’s genotypes contain only one allele), but
this will only occur if the event is supported by surrounding loci.

With the inheritance vector at this type of locus known, the algorithm determines
whether either parent did not transmit one of its homologs. If so, the allele value of
the untransmitted homolog is unknown and the algorithm assigns a ? allele to that
homolog,.

Note that because the children are homozygous, it is not necessary to phase them.
The algorithm therefore deduces as much as possible about the parent’s genotypes at
this locus based on the children’s genotypes and the maximum likelihood inheritance
vectors at surrounding loci. Because the parents only transmit an a allele, the only
information this process can deduce is whether the parent is likely to be homozygous
or not.

6.1.2 Children’s Genotypes with Two Alleles

We can glean more information from loci at which the children exhibit two or more
alleles. Note that most SNPs are bi-allelic and consequently we will typically only
encounter loci with one or two alleles in datasets containing SNP genotypes.

If the children’s genotypes consist only of a/a and b/b, then both parents must
have the genotype a/b. In this case, though the parents share the same heterozygous
genotype, all the children are homozygous and therefore there are only four possible
inheritance vectors, analogous to a fully informative for both parents locus. Because of
equivalent inheritance vectors, such a locus produces only one state and back tracing
can resolve the haplotypes at any upstream loci.

For a locus with children’s genotypes a/a and a/b, there are effectively three
possible sets of parents’ genotypes. One set includes one heterozygous parent with
genotype a/b while the other parent is homozygous with genotype a/a. The second set
assigns these heterozygous and homozygous genotypes to opposite parents. The last
possible set of genotypes assigns both parents the heterozygous genotype a/b. Note
that the parent that is assigned a homozygous genotype may not have transmitted one
of its homologs, and in such a case, the genotype for that parent is a/?. The algorithm
handles the two cases where each parent is homozygous similarly to the case where
all children display only one allele. It leaves the parent’s genotype as homozygous
initially and later, after determining the maximum likelihood inheritance vector at
the locus, it assigns a ? allele to the homozygous parent if it transmitted only one
allele.

As in the original algorithm, this extension to Hapi maps all the states at the
previous locus to the states at the current locus. If the same inheritance vector
value results from different parent genotypes, it suffices, as an application of dynamic
programming, to only retain the parent genotype assignments that yield maximum
likelihood (or minimum recombinations). All downstream loci will exhibit the same
recombinations for a given inheritance value regardless of which parent genotypes
appear at the current locus.

If the children at a locus exhibit genotypes a/a, b/b, and a/b, the only consistent
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genotype assignment for the parents is for both to be a/b. This is the same as partly
informative locus in the original algorithm.

The last possible way children can exhibit two alleles at a locus is for all to have
genotypes a/b. Here, there are three possible sets of parent genotypes. One set has
one parent homozygous with genotype a/a and the other homozygous as b/b. Another
set uses the same genotypes assigned to opposite parents. The last set assigns both
parents the heterozygous genotype a/b. The first two cases yield no information about
meiosis and it is impossible to determine which parent transmitted each of the two
alleles. Therefore, even if we knew that both parents are homozygous, the algorithm
cannot determine the parents genotype values nor the phase of the children. If the
parents both have genotypes a/b and all children are heterozygous with this same
genotype, the case is again ambiguous. Even if a particular inheritance vector value
is known to apply in this case, there are two phase assignments for the parents that
will be consistent with this inheritance vector.

The case where all children have genotypes a/b is almost entirely ambiguous and
the extended algorithm therefore omits analyzing these loci for the purpose of hap-
lotyping. Once the algorithm determines the inheritance vectors of the surrounding
loci, it can evaluate whether both parents being heterozygous would fit the data
well. If any assignment of parent alleles to homologs for these heterozygous geno-
types produces an inheritance vector that is the same as the upstream or downstream
inheritance vector (or an intermediate value between the two), then it is possible that
the parents are indeed heterozygous. Usually, when the children all have the same a/b
genotype, the parents genotypes will be homozygous, particularly if the number of
children in the family is large. (For a large family, if the parents both have genotypes
a/b, we would expect at least one child to receive a homozygous genotype.) This eval-
uation can assure us that the parents are not heterozygous, but still cannot resolve
which parent is homozygous for each of the alleles and therefore cannot determine
the children’s phase. It is therefore sensible to mark these loci as ambiguous.

6.1.3 Children’s Genotypes with Three Alleles

When children exhibit three or four alleles, the analysis is much simpler. We let
the reader refer to the figure for the possible children’s genotypes and the parents’
genotypes that are consistent with these.

There are two classes of possible children’s genotypes with three alleles. The first
class yields only one consistent set of genotypes for the parents. Since the parents’
genotypes are heterozygous but with differing alleles in this case, the locus is fully
informative for both parents and the algorithm retains only one state.

For the second class listed in the figure where the children exhibit genotypes a/b
and a/c, there are two consistent sets of genotypes for the parents. Both parents
may contain an a allele, and in this case, both parents are heterozygous with differing
genotypes. Thus, for one set of parents’ genotypes, the algorithm retains only one
state. Alternatively, only one parent may contain an a allele while the other parent has
genotype b/c. For this case, the parent with the a allele could be either homozygous
or heterozygous but only transmit the a allele. As with previous genotype values
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# of Unique Genotypes For n Previous States
Children’s Alleles Children’s Parent p|Parent q|# of States|Total States
a/a a/a
a/? a/a B B
1 Allele a/a a/a a)?
a/? a/?
a/a, b/b a/b a/b 1 1
a/a
a/b o) <n
2 Alleles afa, afb afa a/b <n < 6n
a/? -
a/b a/b <4n
a/a, b/b, a/b a/b a/b <4n <dn
a/b Ambiguous
a/a, a/b, afc
a/a, a/b, bjc a/b afc 1 1
3 Alleles a/a, a/b, a/c, b/c
a/b, a/e, bjc
a/c a/b 1
a/b, ajc a/a <n+1
a)? b/c <n
a/c b/d 1
a/b, c¢/d a/d bjc 1 2
a/b, ¢/d, a/d
a/b, ¢/d, b/c a/c b/d 1 1
4 Alleles a/b, ¢/d, a)d, bje
a/b, ¢/d, a/c
a/b, c/d, b/d a/d b/c 1 1
a/b, c/d, a/c, b/d

Figure 6-1: Possible parent genotypes that may give rise to the given children’s
genotypes. The listing is organized by the number of alleles the children exhibit. Our
extended algorithm for haplotyping families with no genotype data for the parents
uses this information to determine which parent genotypes it must build states for.
For each set of parent genotypes, the table shows the number of states needed to
represent the possible parent phase assignments and corresponding inheritance vector
values. The figure also gives the total number of states for each of the possible
children’s genotypes.
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of this form, the algorithm initially assigns the genotype as homozygous and later
evaluates whether the children received alleles from both homologs of the parent.

6.1.4 Children’s Genotypes with Four Alleles

Whenever the children exhibit four alleles, the parents must have heterozygous geno-
types with differing alleles. In only one case does the algorithm retain more than
one state. If the children exhibit genotypes a/b and c/d, the data do not indicate
which parent has each of the alleles. The parents cannot have the same genotypes
as the children since the same parent cannot transmit the a allele and the b allele
(and likewise for the ¢ and d alleles). Therefore, two sets of parents’ genotypes are
possible, as the figure shows, and the algorithm builds states corresponding to each.
Ultimately only two states result at this type of locus, and a downstream locus can
resolve which of these is more likely.

Whenever children exhibit at least three different genotypes with four alleles, the
data are sufficient to deduce what the parent genotypes must be. The figure shows
the possible cases, and for the two sets of parents’ genotypes, the algorithm retains
only one state.

6.1.5 Initial State

In a similar fashion to the way Hapi builds initial states for full-data families, this
new algorithm processes loci and builds an initial state as it encounters them. When
the children’s genotypes contain three or more alleles, a locus that results in only one
state will occur early in the analysis of a chromosome and haplotyping can proceed
from that point.

For datasets containing only bi-allelic genotypes, including most SNP datasets, the
first states the algorithm builds may have undefined inheritance values for the meioses
from parents that are homozygous. For example, if the children’s genotypes at the first
locus are a/a and a/b, one of the parents may be homozygous. The system assigns the
inheritance vector values corresponding to transmissions from a homozygous parent
as undefined when there is no previous locus state. It then propagates these undefined
inheritance values forward until it eventually encounters a locus for which the only
compatible parent genotypes are both heterozygous.

When no genotype data exist across all loci for both parents, if the first locus
the system encounters has children with genotypes a/a and a/b, the algorithm will
arbitrarily choose one parent to assign as heterozygous and the other as homozygous.
(Note that the system also builds states at this locus in which both parents are het-
erozygous.) In this case of neither parent having genotype data, the algorithm cannot
distinguish between the two parents. If it were to build states with homozygous geno-
types for each of the parents, they would result in identical likelihoods for the same
haplotypes assigned to opposite parents. It suffices to arbitrarily choose one parent
as possibly being homozygous at this locus. Later, at downstream loci, regardless of
the kinds of states built at earlier loci, the algorithm must build states corresponding
to each of the parents being homozygous. The first locus to have a state built will
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have defined differences between the two parents so the algorithm must now search
both possibilities of homozygous parents.

To build initial states corresponding to partly informative parent genotypes (i.e.,
both parents having a/b genotype), the system marks any heterozygous children’s
inheritance vector values as ambiguous. This is necessary since it is impossible to
determine, until some later locus, which parent transmitted each of the alleles. We
therefore represent the possibility of either value in the form of an ambiguous in-
heritance value. The system finds the actual state of the inheritance downstream
at another locus, and in particular, at a locus that is partly informative but where
the child is homozygous. Note that if the parents are heterozygous with the same
genotype, a child has a % chance of being heterozygous and a % chance of being ho-
mozygous. Thus we are very likely to encounter a downstream locus that resolves
ambiguous inheritance vector values.

6.2 Runtime Complexity

The runtime complexity for haplotyping loci and families with missing parent data
is likely to be slower than that for haplotyping families with data for both parents.
However, we expect that the runtime should be reasonable, especially for families
that have data for one parent.

A bi-allelic SNP genotype dataset for a family with no genotype data for either
parent will pose the biggest computational burden to our algorithm. Since the algo-
rithm initially omits processing loci for which the children are all homozygous with the
same genotype, we consider here the cases in which the children’s genotypes exhibit
two alleles.

If the children have genotypes a/a, b/b, and a/b at a locus, the locus must be
what we have termed partly informative. In general, for n states at the previous
locus, the algorithm may produce 4n states at a partly informative locus. It would
be unacceptable for the number of states to quadruple at each new locus, but this
is merely an upper bound. If all children were homozygous, only four states would
result, so the state expansion comes as a result of heterozygous children. Constraints
imposed on the inheritance values at previous loci make it likely that the number of
states will stay to a reasonable number. As we explained in Section 4.3.2, any series
of partly informative loci has a polynomial bound on the number of states that can
result.

A more complex situation can result because of the interplay between the loci that
have a possible fully informative for one parent type locus and the partly informative
type of loci. As we have explained elsewhere (Section 4.3.2), these two locus types
can produce an exponential blowup when intermixed. The requirements for this to
occur are extremely strict. The most unlikely of the requirements for an exponential
blowup is that children must stay heterozygous at so-called partly informative loci.
As previously mentioned, a child has a % chance of being heterozygous and a % chance
of being homozygous. Consequently, the number of states cannot grow large over a
extended number of loci.
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The fact that homozygous children have a limited set of possible inheritance vector
values, regardless of the parents genotypes, makes the approach we have outlined
feasible. Although the algorithm’s runtime for families without genotype data for
either parent may be markedly less than that for families with data for both parents,
the optimizations we employ will improve efficiency compared with other algorithms.
Specifically, the ability to collapse multiple states into one state through the use of
ambiguous genotypes is unique to our approach and results in improved efficiency
over existing work.

This algorithm should handle families with data for one parent relatively effi-
ciently, as the known genotype data for that one parent reduces the number of partly
informative loci the algorithm must check.

6.3 Memory Usage

The overall memory usage for our approach to haplotyping families and loci with
missing parent data is higher than for the algorithm that applies to parents with full
data. Even so, the memory requirements for the full-data algorithm is extremely low
and the overhead for extending the algorithm to this case of missing parent data is not
excessive. Hapi’s optimizations guarantee that its asymptotic memory requirements
are less than or equal to those for other algorithms.

At any point the haplotyping process, the algorithm can remove any states that
are unreachable from the states at the current locus. The inheritance vector values
for homozygous children at a partly informative locus have only four possible values.
A child has a % chance of being homozygous at such a locus, and the genotypes for
children with identical or opposite inheritance values follow a pattern: all be either ho-
mozygous or heterozygous at a given locus. Often two loci that the algorithm detects
as partly informative will appear in succession with all children being homozygous at
one of the two loci. The two successive partly informative loci that do not exhibit
recombination have a % chance of this occurring. The homozygous genotypes of the
children that occur at these loci will limit the number of states that can occur at the
second locus to only twelve. This situation is a reasonable time for the algorithm to
perform back tracing to free the memory associated with any unreachable states.

Note that loci that are fully informative for one or both parents are harder to de-
tect when we do not have access to genotype data for both parents. If genotype data
is available for one parent and that parent is homozygous at a locus, any heterozy-
gous children indicate that the parent with missing data is heterozygous and that
the locus is therefore fully informative for that parent. When such a locus occurs
subsequent to a one that is fully informative for the parent for which we have geno-
types, the algorithm can eliminate all but the most likely (or minimum recombinant)
haplotype state and perform back and forward tracing to assign the haplotype values
at preceding loci.
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Chapter 7

Haplotyping Multi-Generational
Pedigrees

The ability to haplotype moderate to large sized multi-generational pedigrees is a
significant outstanding problem that no program yet addresses. Existing techniques,
limited by both time and space requirements, cannot handle pedigrees of more than
roughly 20 non-founders. Non-founders are individuals with at least one parent in
the pedigree. For non-founders, we can observe the results of meiosis and thus they
have two bits in the inheritance vectors at each locus.

Current algorithms for haplotyping pedigree datasets have exponential complexity
in general. GENEHUNTER ([12] first introduced the optimization that avoids rep-
resenting equivalent inheritance vectors for non-founders. Using this optimization,
a pedigree with n non-founders and f founders has 22"~/ possible inheritance vec-
tors at each locus rather than 2". (Hapi applies this optimization to nuclear families
where f = 2 for the two parents and thereby reduces the state space by a factor of
22 = 4.) Other optimizations exist, such as avoiding states that are inconsistent with
the genotypes at a locus and identifying state space redundancies [20, 1], but even
with these optimizations, existing algorithms do not scale.

At present, researchers that work on large pedigrees can only haplotype such data
by breaking them apart into small portions for analysis. Breaking up the pedigree
produces non-optimal results since the information from one part of the pedigree
influences the relative likelihoods of different haplotype assignments. The probability
of these assignments may be nearly identical when considered separate from the larger
pedigree. The pedigree may also rule out a haplotype assignment that otherwise
appears to have high likelihood.

We present here an algorithm that applies and adapts the techniques implemented
in Hapi to haplotype multi-generational pedigrees. This algorithm can haplotype
much larger pedigrees than current techniques can address. We first describe why one
approach—to build states completely separately for each nuclear family and, when
back tracing, to choose the maximum likelihood states from each family—fails. We
then present how to apply and expand on Hapi’s optimizations to handle pedigrees.

Throughout this chapter we will refer to shared individuals as pedigree members
who appear as a child in one nuclear family and a parent in another.
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This chapter refers only to the maximum likelihood problem for pedigrees, but
the minimum recombinant problem works analogously. Instead of maximizing prob-
abilities, the minimum recombinant algorithm uses integer counts and attempts to
minimize these across all loci.

7.1 Pitfalls of Building Separate Haplotype States
for Each Nuclear Family

A natural way to think about extending Hapi to multi-generational pedigrees is to
analyze each nuclear family separately and consider a pedigree state as the composi-
tion of states sampled from each family. In fact, it is the case that we can decouple
the probabilities of the inheritance values across nuclear families, but only at a single
locus. This approach ignores states at surrounding loci.

It is straight forward to find, at a given locus, the composition of states across
families that has consistent phase assignments for shared individuals and produces
maximum likelihood. However, each of these states contains pointers to states at pre-
vious loci that affect this maximum likelihood probability. The maximum likelihood
phase assignment for a shared individual at some previous state in one family may
differ from the phase assignment for that individual in another family. As such, the
composition of states may yield infeasible assignments. The algorithm cannot arbi-
trarily change to another state during back tracing since the original state probability
accounts only for one path of states. Changing paths at some upstream locus may
yield a path of states with lower probability than some other path that starts at the
first (downstream-most) locus.

A similarly unworkable approach to this problem is to calculate for each fam-
ily and locus the maximum probabilities for the two possible phases of each shared
individual. The algorithm would store both the maximum probabilities and the cor-
responding inheritance vectors for each family at each locus. The false intuition in
this dynamic programming algorithm is that the system could choose between the
two phase assignments at each locus in order to resolve differences between the fam-
ilies of the shared individual. This approach suffers from the same problem as the
first. The probabilities of the inheritance vector values at a particular locus depend
on the assignments at other loci, so arbitrarily choosing at each locus creates a series
of inheritance vectors whose probability is unknown.

In general, dynamic programming works by representing only the optimal path
to a given state, evaluated according to some objective function such as maximum
likelihood. The results do not include any non-optimal path, and the algorithm
can only evaluate the probabilities of non-optimal paths by explicitly considering
them. Dynamic programming algorithms are unaffected by which path yields the
optimal result. To obtain the results of the objective function for all paths requires
computing the probability across each such path, and there are an exponential number
of such paths. For haplotyping, a slightly suboptimal path of states for one nuclear
family may actually have maximum likelihood in the context of the entire pedigree.
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The algorithm must therefore account for the probabilities of haplotype assignments
evaluated over the entire pedigree and not individual nuclear families.

7.2 Using Hapi’s Optimizations to Build Pedigree
States

In light of the need to evaluate the haplotype dependence between pedigree families
not just at a single locus, but across all loci, it is necessary to build states that
represent the entire inheritance vector for all pedigree members. Each such state
stores the maximum probability of that inheritance vector, directly incorporating the
probabilities of states at the previous locus that reach it. As with the normal Hapi
algorithm, states keep pointers to the previous locus state or states that yield the
overall maximum likelihood. This formulation implicitly encodes the dependence of
the probability of a haplotype assignment on the need for a consistent phase for shared
individuals across loci. The algorithm does not build any states that have inconsistent
haplotype assignments for any shared individuals since these have 0 probability.

Existing algorithms consider entire pedigree inheritance vectors and perform cal-
culations relative to them. Our algorithm necessarily builds states that are full inher-
itance vectors, but we perform calculations and optimizations in the context of each
nuclear family in the pedigree. Throughout this chapter, we use the term inheritance
segment to refer to the partial inheritance vectors that apply to each nuclear family.

In order to correctly build full inheritance vectors and states based on per-family
inheritance segments, three invariants must hold. First, each shared individual must
have the same phase for each family it is a member of. Second, we must build inher-
itance vectors corresponding to all possible combinations of each family’s inheritance
segments. Finally, we must consider all states at the previous locus that can transition
to the newly built state at the current locus. We explain below how our algorithm
meets each of these conditions.

At each locus, the algorithm first computes the possible inheritance segments for
each nuclear family in the pedigree. It does this the same way Hapi does, considering
all possible phase assignments for the parents and using the inheritance segments
that occur for that family at the previous. As it builds these inheritance segments,
the algorithm calculates and stores the local probability of transitioning from the
inheritance segments that occur for this family at the previous locus to the current
one. This saves the work in calculating transition probabilities for all inheritance
vectors since each inheritance segment for a family will appear in multiple inheritance
vectors.

Figure 7-1 shows example inheritance segments for two families and associated
probability values for transitioning from a given inheritance segment at the previous
locus to one at the current locus. We use « values to designate transition probabilities
for family 1, 3 values for transition probabilities for family 2. «;; is the probability
of transitioning from the previous inheritance segment designated as 1, i.e., 0101,
to the current inheritance segment designated as 1, i.e., 0110. The value a9, is the
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Figure 7-1: The pedigree haplotyping algorithm computes inheritance segments for
each nuclear family. A pedigree inheritance vector is formed by concatenating an
inheritance segment from each nuclear family. The algorithm calculates and stores
the local transition probabilities from the inheritance segments for a family that occur
at the previous locus to the those at the current locus. We use different symbols
to encode the probabilities for inheritance vectors for each family, with subscripts
to indicate which previous and which current inheritance segments the probability
corresponds to.

probability of transitioning from the previous inheritance segment labeled 2, which is
1101, to the current inheritance segment labeled 1.

In order to build full pedigree states/inheritance vectors, the system concatenates
inheritance segments from each family. To keep inheritance vectors consistent across
states, the algorithm concatenates the inheritance segments from the nuclear families
in the same order at each locus. The order of concatenation has no effect on the
algorithm’s performance.

Figure 7-2 shows concatenated inheritance vectors and their probabilities using
the example inheritance segments and transition probabilities from Figure 7-1. The
probability of an inheritance vector is the maximum probability across all previous
states that may map to this vector value. A probability for one such mapping is the
product of the transition probabilities for the nuclear families’ inheritance segments
multiplied by the overall probability of the previous state. In Figure 7-2, we use P,
to denote the probability of some previous state x.

The algorithm does not form any inheritance values with inconsistent phase assign-
ments for shared individuals. Rather than explicitly checking each possible pairing
of inheritance segments involving shared individuals, the algorithm classifies each in-
heritance segment according to its phase for any shared individual(s). For families in
which a parent is a shared individual, the algorithm keeps two lists identifying the
inheritance segments that correspond to both phases. For every inheritance segment
in which the shared individual is a child, the algorithm forms inheritance vectors by
pairing that segment with each segment from the list that has the same phase.
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Figure 7-2: The algorithm forms inheritance vectors by concatenating an inheritance
segment from each nuclear family, with segments from each family appearing in the
same position across vectors. The probability for a particular inheritance vector is
the maximum across all previous states that may reach it multiplied by the product
of the transition probabilities for transitioning across inheritance segments.

At many loci, we can unambiguously determine a shared individual’s phase based
on its genotype and the genotypes of its parents. Before even forming any inheritance
segments for the nuclear families, the algorithm inspects the genotypes of the shared
individuals and their parents. Wherever possible, it deduces and assigns each shared
individual’s phase. Subsequently, when forming the inheritance segments for the
nuclear family in which the shared individual is a parent, the algorithm only builds
inheritance segments corresponding to the individual’s phase, if it was assigned. This
enables the system to avoid ever building any 0 probability inheritance segments for
the shared individuals’ children.

To build an inheritance vector/state at the current locus, the algorithm considers
each state at the current locus. It then uses the possible transitions to inheritance
segments for each nuclear family to build all possible combinations of inheritance
vectors it may map to. This process utilizes the phase constraints for shared individ-
uals mentioned above to avoid considering any combinations of inheritance segments
that are impossible. The probability of transitioning from the previous state under
consideration to each state the algorithm builds is the product of the individual in-
heritance segment probabilities multiplied by the previous state’s probability. This
process ensures that we consider all states at the previous locus and the states that
they can possible map to at the current locus.

We now describe how the optimizations present in Hapi significantly reduce the
number of states that the algorithm must consider in order to haplotype pedigrees.
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7.2.1 Ambiguous Inheritance Values

The use of ambiguous inheritance values dramatically reduces the number of states
that Hapi represents (see Section 2.4.2). This same optimization can apply to pedi-
grees, and specifically to all non-shared individuals. For non-shared individuals, am-
biguous inheritance values work the same as in haplotyping nuclear families. Note
that all pedigrees include some non-shared individuals: any individual without chil-
dren in the pedigree are necessarily a member of only one nuclear family. Thus, the
last generation in a pedigree contains all non-shared individuals. Note that most
pedigrees contain a large proportion of non-shared individuals.

For shared individuals, the system must use unambiguous inheritance values since
ambiguous inheritance values simultaneously represent two phase assignments. All
shared individuals must have consistent, known phase in each nuclear family they
reside in, and therefore they cannot have an ambiguous inheritance value.

If a nuclear family has only one child that is a shared individual, the number of
inheritance segments for that family only doubles compared to the number needed to
haplotype the nuclear family alone. However, the system must represent all combina-
tions of unambiguous values for all shared individual children in each family. Thus,
if a family has ¢ shared individuals, the number of states for that family can increase
by a factor of up to 2. Note however that only heterozygous individuals at a partly
informative locus can take on the two inheritance values corresponding to ambigu-
ous inheritance. Thus, even if a nuclear family contains multiple shared individual
children, the number of states actually increases exponentially in the number of het-
erozygous shared individuals. As well, as we earlier mentioned, this is an increase
in the number of inheritance segments relative to the application of Hapi’s optimiza-
tions in the context of a nuclear family. The algorithm’s use of ambiguous inheritance
values for non-shared individuals will always reduce the number of necessary states
relative to other algorithms.

7.2.2 Uninformative Loci

Hapi skips processing uninformative loci for nuclear families since they provide no in-
formation about meiosis. In our extended algorithm for multi-generational pedigrees,
we cannot skip these loci entirely because usually one of the nuclear families will be
informative at the locus. If all the nuclear families in the pedigree are uninformative
at a locus, then the algorithm can skip that locus, but we don’t expect that this will
occur often.

The algorithm accounts for recombination probabilities in a family only at infor-
mative loci and does not consider recombinant inheritance segments for any nuclear
families that are uninformative. Consequently, when building the pedigree inheri-
tance vectors, the algorithm copies exactly each inheritance segment that occurs at
the previous locus for all uninformative families. It does not need to calculate any
recombination probability for transitioning from the previous locus for these families,
so less work is required for them.

It may seem possible to omit the inheritance segments corresponding to unin-
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Figure 7-3: Collapsing inheritance vectors at loci where a family has an uninformative
locus is equivalent to building full inheritance vectors. The algorithm must store
the probabilities associated with each inheritance segment in each collapsed state,
and subsequent loci cannot keep pointers to a previous state’s values since different
previous collapsed states will yield different likelihoods for each inheritance segment.

formative nuclear families and temporarily “collapse” the inheritance vector values.
Figure 7-3 illustrates this idea. The algorithm would store a list of possible inher-
itance segments for the uninformative family and later form complete inheritance
vectors at a locus where that family is informative based on this list. Unfortunately,
this fails since the previous locus states that map to the collapsed state will have
different probabilities depending on the inheritance segment for the uninformative
nuclear family. Each state must therefore keep track of the probability associated
with each inheritance segment and could do so in a table, as Figure 7-3 shows. This
is equivalent to (and requires more bookkeeping than) building the full inheritance
vectors.

One possible extension of this idea that would seem to improve efficiency is to
share tables across loci for collapsed states. In this approach, a collapsed state keeps
a pointer to the table for the previous state that yields maximum likelihood at the
current locus. The problem with this is that the probabilities of inheritance segments
will differ between collapsed states. One state may yield higher likelihood for a
particular inheritance segment while another state produces higher likelihood for a
different segment. The algorithm would therefore have to build a new table at each
new collapsed state at a locus which, as we earlier mentioned, is equivalent to keeping
full pedigree states. Our extended algorithm therefore builds full inheritance vectors,
including the possible inheritance segments for any uninformative families.

7.2.3 Fully Informative for One Parent Loci

Nuclear families with loci where one parent is homozygous and the other is heterozy-
gous are similar to families with uninformative loci. The algorithm need not consider
any inheritance segments in these families that exhibit recombination from the ho-
mozygous parent. Just as Hapi does, this extended algorithm includes the probability
of recombination at the next locus in which the now homozygous individual is het-
€rozygous.

Note that when a shared individual is homozygous, the inheritance segments in
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each of that shared individual’s families do not affect each other. Similar to the
uninformative loci, it is tempting to separate the inheritance vectors into two parts:
one corresponding to the sub-pedigree that includes the shared individual as a child,
and another for the sub-pedigree in which the shared individual is a parent. This
again fails; the probabilities of states at the previous locus vary and these inheritance
vector parts have different probabilities depending on which previous state maps to
them.

It is worth discussing one way of attempting to use sub-pedigree inheritance vec-
tors and why it does not work. If there are a series of loci in which a shared individual
is homozygous, the algorithm can compute the maximum likelihood path across these
loci for the states of each sub-pedigree. To do this, it sets the probability of all sub-
pedigree states to 1 at the first locus that is homozygous. The intuition is that the
algorithm can calculate the maximum likelihood path across this series of loci relative
to the unknown probability of this initial states.

Unfortunately, it is incorrect to assign the same probability to all sub-pedigree
states at the first homozygous locus. The previous locus will not map to all states
with the same probability. For example, the path from the previous locus to one
of these first locus states may have very high probability, and the path to another
state, very low probability. Yet, the algorithm, ignoring variation in the probability
of reaching these states, may produce a “maximum likelihood” path that includes the
low probability state. Across this short series of loci, the low probability state may not
exhibit any recombination in the members of the sub-pedigree, or it may recombine
less than the other, higher-probability state. The result is that the algorithm locates
a path that is less likely across the entire chromosome length, even though it has
higher likelihood within this short span of loci.

In light of these issues, our algorithm includes full inheritance vector values in
states that have families with fully informative for one parent loci. Note that our
approach of never introducing recombinations for transmissions from a homozygous
parent represents a significant efficiency gain over existing algorithms. These other
algorithms must explore most or all possible homolog transmissions from homozygous
parents, including very unlikely scenarios that include many recombinations.

7.2.4 Equivalent States

What we have termed the equivalent states optimization was original discovered by
Kruglyak et al. and applies to all founders in a pedigree [12]. Our extended algorithm
leverages this optimization in addition to those discussed above. This optimization
reduces the necessary states by a factor of 2 for each founder. Thus, the number of
states is reduced by a factor of 2f, where f is the number of non-founders.

7.3 Missing Data

If a shared individual is missing data, the algorithm uses the techniques discussed
in Chapter 6 to determine the possible genotypes for the individual according to
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the genotypes of that person’s children. As well, it utilizes the genotypes of the
shared individual’s parents, where available, to rule out any impossible genotypes.
For example, if one of the shared individual’s parents has genotype b/b, the shared
individual cannot have genotype a/a.

Otherwise, for any non-shared parents or children, the algorithm relies, respec-
tively, on the techniques described in Chapter 6 and Section 2.8 to perform haplo-

typing.

7.4 Complexity Analysis

Suppose a pedigree has r nuclear families and that there are si,...,s, inheritance
segments for each of these families at some locus. Then this locus has S < [Ti_; s;
states; the total number of states will be less than the product on the right-hand-side
because some state combinations have inconsistent phase for shared individuals and
because of the use of optimizations. Typically half of the state combinations for each
heterozygous shared individual will be inconsistent across families.

Let L be the number of marker loci and o be the maximum number of states that
the basic Hapi algorithm would produce at any locus to haplotype all of the pedigree’s
nuclear families. Note that in general o may be exponential in the number of children
in the largest nuclear family, but our experimental results in Chapter 4 show that
o remains small in practice. On average, Hapi produces fewer than 7 states at the
most complex locus type in order to haplotype a nuclear family (see Figure 2-3).
Let i* be the maximum number of shared individuals that occur as children in any
one nuclear family. Shared individuals may increase the number of states that the
extended algorithm must produce compared to the basic algorithm by a factor of 2.
Our algorithm for pedigrees therefore scales as O(L - ¢™"). This exponential factor,
r3* or the number of nuclear families times the maximum number of shared individual
children in any family compares favorably to the bound for other algorithms of 22*~7.
Note that this is a conservative estimate and we expect that Hapi will scale well to
pedigrees that contain large numbers of nuclear families and moderate numbers of
shared individuals.

7.5 Memory Usage

The algorithm outlined above does not produce a single state at any locus. This
means that the algorithm cannot reclaim memory the way that Hapi does. One way
the algorithm can reduce memory is to utilize a modified form of the back tracing
optimization implemented in Hapi in order to reclaim memory. Whenever a family
encounters a fully informative for both parent locus or two successive loci that are
fully informative for alternate parents, the algorithm can eliminate any previous states
that are unreachable from these states. Any haplotype assignment must pass through
these states and therefore unreachable assignments cannot have maximum likelihood.
In general, the algorithm can always remove states that are unreachable, but after
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reducing the number of states that a given family produces to a small number (in this
case to four or fewer if one of the parents is a founder) is a logical time to perform
back tracing and eliminate states. This will keep memory usage to a tractable size
throughout computation and prevent memory usage from increasing without ever
being reclaimed as the algorithm processes loci.

Back tracing to reclaim memory need only proceed to the last locus for the given
nuclear family at which back tracing was last completed. This is analogous to the
process in Hapi and requires very little computational effort to complete.

To avoid double freeing states that were already reclaimed by back tracing for
another nuclear family, the algorithm keeps a per-locus bit field that indicates when
a state has been freed.
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Chapter 8

Conclusions

Assignment of haplotypes is an important element in a number of significant areas
of genetic analysis, including locating genes involved in human disease, analyzing
the products of meiosis to locate recombination hotspots and gene conversions, and
studying population dynamics and history for humans and other species. Because of
their importance, researchers have developed computational algorithms for inferring
haplotypes from genotypes. The most effective approach to this problem is to use data
for individuals whose family relationships are known. Inferring minimum-recombinant
haplotypes for the individuals in a pedigree is known to be NP-hard in general.
[3, 15] Problems classified as NP-hard are not known to have a polynomial time
(i.e., efficient) solution, and are therefore thought to be computationally intractable.
Existing algorithms computing either maximum likelihood (based on recombination
rates) or minimum-recombinant solutions for pedigrees consequently have exponential
complexity.

Hapi is an efficient algorithm for inferring both minimum-recombinant and max-
imum likelihood haplotypes for nuclear families. Hapi runs in polynomial time in
practice (see Appendix for algorithm complexity details), and our experimental data
demonstrate the effectiveness of our approach. When haplotyping a large dataset of
nuclear families, Hapi outperforms the state-of-the-art system Merlin with a speedup
of between 3.8-320 times and is between 17-448 times faster than Superlink.

Four key insights (implemented as optimizations) underly Hapi’s efficiency. The
first is that it is only necessary to build states that are consistent with the Mendelian
laws of inheritance applied to the individuals’ observed genotypes. Second, when a
parent is homozygous, it is unnecessary to build states that represent recombinations,
and our maximum likelihood approach uses a novel calculation of recombination rates
to make this possible. Third, many of the possible states at a locus have equivalent
inheritance vectors, and among these, only the state with the fewest recombinations
or the maximum likelihood needs to be retained while the others can be eliminated.
Fourth, we have formulated a novel representation of inheritance vectors that includes
ambiguous inheritance values. This representation reduces the need to represent an
exponential number of states at loci of the type we call partly informative.

As time passes and technology improves, genotype datasets will continue to grow
in size, both numbers of individuals and numbers of loci assayed. As such, faster
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tools for haplotype analysis will be essential. Existing algorithms for haplotyping
related individuals have hard limits on the size of families they can analyze because
of their exponential complexity. These algorithms are consequently ineffective for
datasets with thousands of families or for families with large numbers of children.
Hapi provides a solution that is able to meet many of these future challenges.
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