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Abstract

Many researchers are pushing for long wavelength driver pulses for High
Harmonic Generation (HHG). The advantage of longer wavelengths is that the cut-off
of the harmonic spectrum can be increased without the need for large electric fields.
Large electric field is undesirable because it leads to large plasma generation which
reduces harmonic generation due to phase mismatch and ground state depletion.

Most of the current literature on HHG uses the Dipole Approximation for
calculation of harmonic spectrum. The physical ramification of the Dipole
Approximation is that it neglects the magnetic field component to the driver field. It is
well known that a charge moving in a magnetic field experiences a Lorentz force. In
HHG, harmonics are generated by recombination of an electron wave packet,
moving under the influence of the driver pulse, with its parent atom. The Lorentz
force can displace the electron wave packet perpendicular to the direction of
polarization and as a result reducing the recombination amplitude. This Lorentz
displacement increases as we move towards longer wavelengths and higher
intensities. In this thesis, intensity and wavelength limits at which the Lorentz
displacement becomes significant have been investigated.

By numerically solving the time-dependent Schr6dinger equation, we investigate
the optimum driver pulse duration for 400 nm, 800 nm and 2 micron driver pulses for
a given harmonic for hydrogen. It was found that longer wavelength have smaller
efficiencies (neglecting phase matching condition).

Finally, the harmonic spectrum of Hydrogen driven by 800 nm pulse predicted by
analytic Three Step Model (TSM) has been compared with the harmonic spectrum
generated by numerical solution of time-dependent Schr6dinger equation. It was
found, as the current theories predict, that TSM becomes less reliable as the
Keldysh Parameter increases. It was also observed that for low harmonic energies,
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the TSM spectrum deviates from the numerical spectrum by many orders of
magnitude.
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1. Introduction to High harmonic generation

1.1. Introduction:

Ever since the invention of lasers, scientists around the world have strived to produce

short pulses in order to attain high peak power and better time resolution. The development in

the field of ultra-fast optics can be observed in Figure 1. Initially, laser pulses were several

microseconds in duration. Invention of Q-switching (Hellwarth, 1961) brought the pulse

duration down to the nanosecond regime. The field of Ultra-fast optics was set into motion

with the invention of laser mode locking in 1964 by Hargrove et al. The first generation of

mode locked lasers, which produced pulses of durations less than 100 p.s., used solid-state

laser materials such as ruby, Nd:glass or Nd:YAG as gain media [1]. The second generation

of mode locked lasers, which used broad gain media and saturable absorbers (Ippen et al.

1972), lowered the pulse duration down to 1 p.s. Further development in ring cavities and

GVD compensation techniques brought the pulse duration down to 6 f.s [2]. These trends can

be seen in Figure 1. We see the flattening of the curve during the eighties when the pulse

duration did not reduce dramatically. It became apparent in early nineties that a

fundamentally different approach was required to produce sub femto-second pulses.

In the early nineties, the theory of High Harmonic generation was developed by atomic

physicists who realized that it was possible to produce a broad spectrum of odd harmonics, by

placing an atom in a strong laser field. This idea paved the way for the development of

attosecond pulses. It took laser physicists about 10 years to actually demonstrate an

attosecond pulse. Paul Corkum (who gave Hermann Anton Haus lecture in 2009) in a letter to

Nature in February, 2000 remarked; "For the past five years, scientists have stood on the

threshold of generating attosecond laser pulses but have been unable to cross it....This may

have changed with [measurement of] trains of attosecond pulses" Indeed, since then, pulses

of duration ~100 attoseconds have been regularly produced and measured. In this section we

will discuss the theory of High Harmonic generation, both semi-classically and quantum

mechanically.
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Figure 1. Above figures show the timeline of evolution of laser pulse duration.
The left one highlights the important milestones that led to the shortening of
pulse as discussed in the introduction. The Right one elucidates the sharp
decrease in pulse duration with the advent of HHG theory in 1990's. The left
and the right figures have been taken from [2] and [3] respectively

1.2. Semi-Classical description of high harmonic generation:

In spite of being a highly non-linear and a quantum mechanical process, much insight can

be gained into High Harmonic Generation by simply analyzing it as a semi-classical process.

When a sinusoidal field is shone on an atom, an electron from its outermost orbital is released

into the continuum. It is then accelerated by the laser field and when the direction of the

electric field reverses, it comes back and collides with the atom. This is called Single Atom

Response (SAE) and can be studied using the Three Step Model (TSM) which, as the name

suggests, comprises of three steps:

a) Ionization

b) Acceleration

c) Recombination

This can be better understood by looking at Figure 2. In step (a), the electric field (yellow

line) alters the shape of the coulomb potential, allowing the electron to tunnel through the

............... ................ ..............
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barrier and emerge in the continuum. In steps (b) and (c) the electron travels classically in the

continuum (neglecting the influence of the coulomb potential) and returns back to the atom

when the electric field reverses directions. In step (d) the returning electron collides with the

atom and may be classically scattered or absorbed inelastically. In case of the latter, its

kinetic energy is released as a burst of photon energy. This is the high harmonic pulse

(represented by the blue line in (d)). Step (e) is the quantum mechanical description of this

process. It should be noted that each of the classical steps can be described quantum

mechanically. We will return to the quantum mechanical idea in the next section.

We =a(k)em.-A-t

3o A

Figure 2: Three step process in HHG. (a),(b),(c),(d) show the classical
trajectory of the electron. (e) represents the quantum mechanical wave
function of the atom split into the ground state and traveling wave. This plot
is taken from [3]

Let us continue with semi-classical analysis: when an electron is placed in an

electromagnetic field, it begins to quiver with average Kinetic Energy called ponderomotive

energy. It is defined as:

Up ==j (1.1)
UPs 2mp) 40)2

As we will see later, the high harmonic spectrum is critically dependent on this factor. Lets us

look at each of the three processes in a little more detail:
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i) Ionization: For high harmonic generation we only use those driver pulses whose co< I,

co is the frequency of light and I, is the ionization potential of the atom. Note that h = 1 in

atomic units. Additionally, electronic charge and mass are also taken to be one. The electron

can be ionized for the parent atom by three distinct processes See Figure 3

Multiphoton ionization regime: This takes place when E << 1au (driving electric field is

much less than one atomic unit) and U<, <<I. This process is dominant when the driving

electric field is weak and the electron absorbs several photons to get ionized. The ionization

has a power law dependence on intensity.

Barrier Suppression Regime: In this regime the electric field is so strong that the coulomb

barrier is completely suppressed and the electron is free to move into the free space. In this

case ionization has linear dependence on incident electric field.

Tunneling regime: In this third and the most important regime for high harmonic

generation, the electric field is stronger than in the multi-photon ionization case but not

strong enough to completely suppress the barrier like the barrier suppression regime. It is

characterized by an exponential dependence of the ionization rate on field intensity [4].

2(2IP )12

w(E) exp - 3E (1.2)

High harmonic generation utilizes tunneling for releasing an electron wavepacket which will

return back to the atom with energy proportional to the ponderomotive energy. Due to

tunneling the bounded electron wavefunction decays exponentially:

a (t)2 = ex - w(E(t')dt' (1.3)
x 0

Where a(t) is the probability amplitude of finding the electron in the ground state. A more in-

depth quantum mechanical calculation of tunneling can be done using Ammosov-Delone-

Krainov (ADK) formula[5].
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Figure 3: Different ionization regimes. This plot is taken from [1].

ii) Acceleration: It is assumed that when the electron tunnels out of the atom

instantaneously and has zero kinetic energy. (In reality this may not be the case and the

electron may have some transverse velocity after it tunnels out.) Once it has emerged, it is

accelerated by the sinusoidal electric field. Classically, we can write the equation of motion

for this electron (again in atomic units)

x(t)= Eo cos cot (1.4)

E E
x(t)= sin cot - sin to (1.5)

E £ E
x(t)= -- coswt -(t -tto) Esinwto +- cos coto (1.6)

CV 2O cCO2

to is the time of birth of the electron. Quantum mechanically there is no fixed time when the

electron tunnels out. Rather, there is a range of times when it can tunnel out with a certain

probability. The time of birth of the electron with respect to the electric field is critical in

determining whether the electron is going to return back to the nucleus or not. As we can see

from Figure 4 only those trajectories that touch the horizontal black dotted line hit the parent

ion.
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Figure 4: Classical electronic trajectories with respect to the driving pulse
(black dashed line). This plot was taken form [6].

We first need to solve for t such that x(t)= 0 (for a given to). Then plug it in the expression

for x. This gives the kinetic energy at that time instant. It is easy to solve it for a range of

birth time to using a computer program. It has been found that only those electrons return

back to the parent ions, which have been ionized when the electric field begins to decrease

after reaching its maxima. The most energetic trajectory (corresponding to the brown dashed-

dotted line in Figure 4) has kinetic energy equal to 3.17 U,. The ratio of kinetic energy to the

ponderomotive potential and their position in the electric field is shown in Figure 5.

...........................................................................
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Figure 5: Red line shows the ratio of the kinetic energy and the

ponderomotive energy upon the return of the electron to the atom as a

function of birth time. This plot was taken from [6][10].

iii*) Recombination: Once the electron returns back to the parent ion, it "falls" to the

ground state releasing energy in the form of a photon burst. The emitted radiation has a wide

spectrum reaching up to about 150 harmonics (150 times the frequency of the driver pulse.)

Putting this in perspective, we regularly encounter X o2 and X (3 processes in Non-Linear

Optics (which produce second and third harmonics respectively.) We clearly see the

advantage of high harmonic generation for producing extremely high frequencies. The

highest frequency produced is called the "cut-off". It is the energy corresponding to the most

energetic trajectory in Figure 4. It's given as:

colm = IP + 3.17 U, (1.7)

Recombination is a quantum mechanical event, and it has hard to describe it in detail

classically. We will come back to it in the next section.

The exact way of describing a quantum mechanical system is to write its Schr6dinger

equation which tells us how a quantum state propagates in time.

i = I ~,t) _V2 + V(x) - E cos(t)x] |T(x, t)) (1.8)
at 2

Unfortunately, it is not easy to solve the above equation analytically even for this simplified

case. To solve it people use Numerical Time Dependent Schr6dinger Equation (NTDSE). In
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spite of providing a solution of the above equation NTDSE does not help us in developing an

intuition about HHG process. To do so, we need to come up with an approximate quantum

model based on our intuition of the process.

We begin by defining a new term called the Keldysh Parameter

7 4 - E (1.9)

When y << 1 , we are in the tunneling regime or barrier suppression regime. Alternative

interpretation of Equation 6 is that when y << 1, the time it takes for the electron to tunnel is

much smaller than the time period of the driver pulse. For example, for a 800 nm driver pulse

(time period about 2.7 femto-seconds), the tunneling takes place in about 300 attoseconds

around the field crest of the pulse peak [3]. The electron leaves the atom when the driver

pulse is close to its peak. Once it emerges, it is accelerated by the electric field and attains

about 50-1000 eV [3] during its first femtosecond of freedom. Due to this large kinetic

energy, we can neglect the effect of the atomic potential (-VV(x)). Later we shall see that

this is called the Strong Field Approximation (SFA). The kinetic energy decreases when the

electron slows down after the field reverses direction. But at that moment the electron is far

away from the atom and once again the atomic potential can be neglected. This assumption is

particularly true for short range potentials. However, it also seems to work pretty well for

long range potential like Hydrogen atom. Due to the aforementioned assumptions, the path

of the electron can be treated classically. Hence we can say that for each birth time the

electron follow a classical trajectory (all governed by the classical equations presented in the

1.88
last section). The most energetic trajectories which are born at t~ , re-collide at

COO

t2 ~ 5.97 and are responsible for producing the most energetic photons. Another way to

think about the recombination event is as follows: a part of the ground state tunnels out of the

coulomb barrier, this wavepacket is accelerated by the electric field, and on returning back to

the atom it interferes with the ground state left behind. This interference produces a dipole

moment that emits light. Most importantly, the energy and the phase information of the

electron is coherently transferred to the burst of photons. Conservation of coherence is critical

to the HHG process.
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1.3. Mathematical Formulation of Electron-Field Interaction

It is worthwhile to review the intuition we have developed thus far and use it to re-

derive a mathematical formulation as shown in [7]. This will help us better understand the

approximations (like SFA, Dipole approximation) that are found in the current HHG

literature.

HHG is produced due to the interaction of bound electronic wave packet with an

external perturbation (in our case it is the laser field). The Schr6dinger equation for such an

interaction is:

i. T)= (H + VL(t)) I) (1.10)at
Here Ho is the unperturbed atomic potential and VL (t) is the external perturbation. The exact

solution of this equation is given by

IT(t)) = -iif dt e-i ] H((t")dt" - Ho(t")dt" I1 + -i H (t") dt"

#i) is the initial bound state. The first term is the particular solution and second is the

homogenous solution. The particular solution, although mathematically daunting, has a

physical meaning: the bound state evolves until t' under the influence of atomic potential (a

simple phase multiplication,) gets a "kick" from the laser field (VL(t')) and then evolves

under the influence of the total Hamiltonian (atomic potential + laser field.) Since, the

interaction happens at all times we need to integrate from zero tot. This idea is similar to

Feynman Path diagrams which state that a system can go from one state to another by

following infinitely many paths.

Now we employ the Strong Field Approximation which is valid for strong low frequency

field

i) The electron is instantaneously born into the continuum at time t'

ii) After birth, the electron travels like a plane wave under the influence of electric field

only- Volkov Propagator. Mathematically it means

H(t) -> H (t) = H(t) -VA (1.12)
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iii) Electron is born with zero velocity

For generalization assume that electron is born with velocity v' at time t' and is then

accelerated to velocity v at time t. These quantities are related by:

V = V'- A(t) + A(t') (1.13)

A(t) is the vector potential of the electric field. One may note that we have inconspicuously

introduced the Dipole Approximation here by making the vector potential only a function of

time and neglecting the spatial dependence. We will talk in detail about this approximation

and its implications in Chapter 4.

Projecting Equation 1.11 the velocity/ momentum state (v we get

P(v,t) = -i f dt'(vl le 'I()dj VL (t') f (1.14)

Replacing H(t) by H, (t),we can write

e (t' v')= ei E(t)dt v'- A(t') + A(t))= ei vE(t)dt V) (1.15)

where E(t")= I (v = v'- A(t") + A(t ))2 is the energy of the free electron at time t".
2

eifE(t)dt is the action term which is the phase accumulated during the time of travel.

Inserting Equation 1.15 in Equation 1.14 we get

fdt"[ v-A(t")+ A( t )|2It
P(v,t)= -ifdt'e 2 ' (v - A(t') + A(t)VL (1.16)

Physically this means that if we want to calculate the amplitude of being in state Iv) at time t,

we need to find the transition amplitude to the state v') at birth time t',multiply it by the

action term and then integrate over all the birth times.

Continuing with our analysis lets us assume the vector potential to be of the sinusoidal

form

£
A(t)=-sinL=vsinoy (1.17)

CL

Then we can write at action term as
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2

S"[t,t)=-d [v, +vo sintWL -vsnLt p 2 1 8)

v = (1.19)
V0L

The electric field is polarized along the x direction and v, vP are the components of v along

and perpendicular to the polarization direction. Since v, is not affected by the field, we can

pull it out of the integral. Now using the Saddle Point approximation we can write

1=0 (1.20)
at'

1 2 V2P
-(v, +vo sin Lt - vsL,)+ -p +_ =0
2 2

r sinotsinc)2i+ 2 =0 (1.22)

72 = 2 I + v (1.23)
vo 2

To our surprise, imposing the Saddle Point Approximation coupled with the SFA leads to

Keldysh Parameter. If we set this parameter to zero we get

+ sin L cog (1.24)
V0

This means that vx is the velocity of the electron at time t, if it is born with zero velocity and

is driven by the vector potential of Equation 1.17. Therefore, Saddle Point Approximation is

a mathematical way of ensuring that the electron is born with zero velocity. If we were to

include the Kelydysh parameter, it would make the birth time t' complex without changing

the above analysis. This complex part of the birth time is attributed to the tunneling time.

1.4. Quantum Mechanical Three Step Model

Now that we have developed a mathematical foundation of Electron-Field interaction we

can proceed to understand the Three Step Model. We begin with the ansatz

Chapter 1.4
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'F)= a(t) 0) + I(t)) (1.25)

0) is the bound ground state which decays exponentially as a function (see Equation ((1.3))

of time and p(t)) represents the continuum part [8]. The Hamiltonian of our system in

Single Active Electron Approximation is

H(t) = 1 V 2 + V(r) - E(t)x + I, (1.26)
2

Due to Dipole approximation the Electron-Field interaction is represented by

VL (t) = -xE(t) (1.27)

Time Dependent Schrddinger Equation continuum part of the ansatz is given by (using the

orthogonality of the bound and continuum state)

i dt= H, I p) - E(t)xa(t) 10) (1.28)
dit

H,(t) = 1 V 2 + V(r) - E(t)x + I, (1.29)
2

Solving for the continuum state |p(t)) and then projecting it on the momentum state gives

(p - A(t) Ip(t))= -i fdt'a(t')E(t') (p - A(t') x 0) e-isPt'> (1.30)

2

S(p 9t, t'1)=E:t dt "1(p - A(t "1))2 + I,(t-t') (1.31)

Now, the next step is to calculate the dipole moment and then take its double derivative in

time to calculate the dipole acceleration. Fourier transform of dipole acceleration gives the

High Harmonic Spectrum. The dipole acceleration term is given by [8]

x(t)= (t)+( (t) (1.32)

where ((t) = a*(t)(0|x p(t)) (1.33)

Improving the TSM from Zeroth Order to First Order:

TSM model discussed in the last section is successful in predicting the qualitative

nature of the HHG spectrum. However, it overestimates the photon yield by almost two
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orders of magnitude [8]. Hence we need to improve TSM to get a better quantitative

understanding and prediction capability of high harmonic generation. This can be done by

making corrections to the Strong Field Approximations (SFA) made in last section. This is

also referred as improving SFA from Zeroth Order to First Order [8] This involves using the

Ehrenfest theorem

23= 2r(2 )1/4 e 3,r/4 a(t,(t))a(t) w(E(t,(t))) (0IaV(r)I v)e-is()
n E(t, (t))(t - t"(t))3/

(1.34)

This method for calculating the dipole acceleration improves TSM's accuracy to first

order. Once again let's try to develop an intuitive understanding of this improvement. Firstly,

in new ansatz of the wavefunction, we have taken into account the ground state depletion.

Secondly, earlier we had assumed that when the electron is traveling outside the atom, it does

not "see" the atomic potential. But by using Ehrenfest theorem, we account for the atomic

potential. These differences change the recombination amplitude, hence changing the dipole

acceleration. Detailed derivation of this idea can be found in [8] and [9].

1.5. Analyzing the HHG spectrum

Now that we have developed some understanding of the semi-classical and quantum

nature of HHG, we are in a position to analyze HHG spectrum. Before we do that, we need to

keep in mind that in reality the driver pulse is typically many wavelengths long. The electron

that gets ionized after the peak of the electric field comes back to the atom half-time period

later. In Figure 6, the top pulse is color coded to show the time of birth and the lower pulse

shows the respective time of arrival (for instance all the electrons born in the red strip of the

top pulse come back to the atom in the red strip of the lower pulse).

Chapter 1.5
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Figure 6: This Figure shows the range of recombination time and the
corresponding birth time (mapped by color). This Figure was produced by
V.M. Gkortsas.

So we have a burst of photons every half cycle. Fourier properties dictate that

spectrum of such a signal consists of only odd harmonics. Mathematically, if a periodic

function is of the form in Equation 1.35, then it will have only odd Fourier components.

However, it should be noted that condition in Equation 1.35 is not true when we have a

strong driving field because of ground state depletion breaks the symmetry.

x(t) = -x(t + T (1.35)
2

Also, since the highest harmonic is determined by the most energetic returning electron (with

cut-off energy), we expect a sharp cut-off in the spectrum. These features can be observed in

Figure 7. The middle section of the spectrum, where the harmonics are more or less of the

same intensity is called the plateau. There are two classical trajectories: long and short, that

come back to the atom with the same ponderomotive energy. The long trajectory has an

earlier birth time than the short trajectory and a later arrival time (See Figure 9). As we saw

in the quantum treatment of this problem, the information of the distance traveled by the
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electron is stored in the action term (see Equation (1.31)). Hence, every harmonic that is

generated (except the one corresponding to the longest path: brown line of Figure 4) has two

different recombination events at different times. This creates a chirp in the high harmonic

pulse. The long trajectories have a negative chirp and the short trajectories have a positive

chirp (See Figure 8). It should also be noted, that if we use a single cycle pulse, we will not

get harmonics and the spectrum is smooth with undulated cut-off. This radiation spectrum is

also referred to as Bremsstrahlung term [10].

10

- 10

E

0

S1-12

7 10

10 -

0 20 40 60 80 100 120
Harmonic energy (eV)

Figure 7: Simulated HHG spectra for hydrogen excited by Ti:sapphire
(800nm) secant hyperbolic pulse, 5fs FWHM duration, and maximal field
amplitude of 0.12au. This Figure was taken from [6].

ANALYZING THE HHG SPECTRUM Chapter 1.5
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1.51

0.8 0.9 1 1.1
arrival times (multiples of period)

Figure 8: Energy as a function of the arrival time. Slope of the energy gives
the chirp. The break in the centre represents the unique most energetic
trajectory. This Figure was generated by V.M. Gkortsas

long
000

most energetic
short

0.5 1 1.5
time (multiples of period)

Figure 9: This Figure shows that for any given harmonic energy (except the
most energetic one), we have two classical trajectories. This Figure was
produced by V.M. Gkortsas.

.. .............. ..
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1.6. Solving Time Dependent Schr6dinger Equation numerically

The Three Step Model, is a great tool to understand HHG. However, it does not always

predict the high harmonic spectrum accurately. For example, it is based on Strong Field

Ionization which assumes that electron is born with zero velocity via tunneling. But as

mentioned earlier, there can be other channels of ionization like Multi-Photon ionization

which are not accounted for by TSM. As mentioned before, Multi-photon ionization can

become important when we are pushing for driver pulses of low intensity or short wavelength.

Secondly, even the improved TSM Equation assumes that the electrons wave packet

returns back only once to the atom. However, this is not the case, and electrons that have not

recombined can either get re-scattered or comeback at a later time to recombine.

Thirdly, numerical simulation is a good way to check the robustness of theories like TSM.

Sometimes, it may also lead to the discovery of some phenomena that might have been

overlooked in earlier theories. For instance, we found that in addition to the harmonics that

are separated by twice the driving frequency, there was an additional longer modulation on

the HHG spectra. We believe that this is due to quantum interference between the returning

electronic wave packet and the one that is emerging from the atom.



2. Numerical Time Dependent Schroedinger Equation

2.1. Introduction

In this chapter the numerical technique used to solve the Time Dependent Schroedinger

Equation for hydrogen atom will be discussed. This scheme can be divided into two broad

parts, namely

a) Discretization of Hamiltonian and

b) Propagating the wavefunction in time.

The program uses Asyptotic Behavior Correspondence (ABC) discretization in space and

Leap frog method for time propagation [11]. This is a second order finite difference scheme

for solvng the Time-dependent Schroedinger Equation of the ground state of the Hydrogen

atom:

a8I) V2  ii =LzE(t) T) (2.1)at 2 r I

The first two terms of the Hamiltonian represent the kinetic energy and potential of the

hydrogen atom, while the last term is the interaction of the system with the electric field. This

interaction is obtained by using dipole approximation in length gauge. This approximation

assumes that the distance that the electron travels from the atom is much smaller than the

driver's wavelength. More on this approximation will be discussed in Chapter 4.

2.2. Discretization in Space

The presence of coulomb singularity can make the discretization of space for our problem

a tricky affair. Smoothing the singularity is commonly used to circumvent this problem. This

Z z z
involves replacing - by either [12] or 2 [13]. However, smoothing the

r r+a Vr2+a2
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singularity can alter the results of HHG by orders of magnitude to give the correct photon

yield. This is because of the different analytic behavior of the potential close to the origin is

critical to the calculation of recombination amplitude [14] By TSM, the amplitude of the

emitted radiation is proportional to the double derivative in time of the recombination

amplitude [15] It has been shown that calculating the recombination amplitude from a plane

wave to the ground state is equivalent to finding the Fourier transform of the first excited

state [14].

a,,(k) =(O x k)= 13/2 y*(r)xeikrd3r (2.2)

Fourier Transform of a function is sensitive to the discontinuities in the derivative of the

function. In the absence of any derivative discontinuity, the transform decays exponentially

for large k . If a discontinuity is present, the transform decays like a power law whose

exponent is determined by the order of the derivative in which the discontinuity is present

[14]. Since the coulomb singularity is responsible for the discontinuity in the first derivative

of the wave function, it is important that we treat it carefully.

The method used in our code is called Asymptotic Behavior Correspondence (ABC) in

cylindrical co-ordinate system [11]. Cylindrical co-ordinate system is used because it helps us

reduce a 3D problem to a 2D problem due to symmetry around the azimuthal angle. The main

idea of ABC is that we know the analytic behavior of the wave function close to the

singularity. Lets us see how this idea works. In cylindrical co-ordinate laplacian is given by

82f I 82f 1 af 2f(
Afr = 2 + P2a0+ P p+ aZ(2.3)

Let f= g and dropping the azimuthal dependence we can write

af 1 g 1-=---p 2~ g (2.4)
,3p p- Op 2 p3/2

82f 1 a2g 1 Og 3
- =2p - -p 3 2  g (2.5)

Inserting the above two equations into the laplacian of f we get

A g + g (2.6)
ap2 4p2
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Now lets look for eigenfunction of f such that

-Af = Af -> - Af = Spf - Ag = Ag (2.7)

Bessel function of the first kind J satisfies the eigenvalue equation off . Expanding JO

around the origin we get

g(p) 7+ O(p 12) (2.8)

Modified laplacian of g can be written in second order finite difference scheme as

Ag = 1 +g _ -2g g (2.9)
32 4 j2g2

Now according to ABC, insert the asymptotic form of g into the above equation and use the

eigenvalue Equation (2.7), to get

Ag =+ 1* + g -2gj + cSg (2.10)

1 1
c 8-4 -- 4 1±- (2.11)

I I

1
Note that as j -> oo, c1 ->-.2 . So far away from the origin, ABC discretization is the same as

normal discretization. Now lets return to our Hamiltonian which in cylindrical co-ordinate

system, along with the transformation #(p, z) = fPSV(p, z), can be written as

1 a2  1 a2  1 1
H =- - (2.12)

2 82z 2 8 2 p 8p 2  
,92+Z2

In finite difference scheme we can write the Hamiltonian as[ 11]

[H#] -152 -- c, - # (2.13)

We have found ci before.qj can be found by asymptotic expansion of #,k near the origin:

#k= 1-Z j2 +3 k2 5k+bk (2.14)

Details of this expansion can be found in [11]



CALCULATION OF GROUND STATE

2.3. Calculation of Ground State

Once we have set up the discreet Hamiltonian, next step is to find the ground state.

Ground state is found using the Imaginary Time Propagation (ITP) method [16]. This means

we map time t -> -ir and propagate a random guess for ground state using the Schr6dinger

equation in imaginary time

(r, -H (r,) (2.15)
dr

We can start with a random guess for the initial state P(r, 0) which can be written as the

superposition of the eigenstates of the Hamiltonian

P(r,0)= Icy, (2.16)

Plugging the above equation in Equation (2.15) we get the time evolution of each eigenstate:

V ()= e-"i VjO() (2.17)

Ground state has the smallest energy and hence the higher eigenstates decay exponentially

faster by:

y er)- (2.18)

P(r,) - cie-rE, V (0) (2.19)

2.4. Propagation in Time

Once we have found the discreet ground state, the next step is to propagate this state in

time in the presence of the perturbative electromagnetic field. The Schr6dinger equation is a

Parabolic Partial differential equation. There are several techniques to march the solution of a

Parabolic PDE in time. They can be divided into two broad categories:

a) Implicit Schemes: These schemes are unconditionally stable but can be numerically

expensive because they involve matrix inversion. Examples of Implicit schemes are

Crank Nicolson and Backward Euler.

Chapter 2.3
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b) Explicit Schemes: These schemes have conditionally stable and relatively

inexpensive numerically. However, due to conditionally stability one needs to

carefully choose time and space discretization so that the simulation does not blow up

with the number of time iterations. Examples of Explicit schemes are Forward Euler

and Leapfrog method. For our numerical simulation we use the latter.

To better understand the Leapfrog method lets re-write the Schr6dinger equation

A

8,T = -iHT (2.20)

Expanding the wave function in the eigenstates: F(t)= c1 (t)uj , we can write the

Schr6dinger equation for each eigenstate as:

ac,(t)= -iEjcj(t) (2.21)

cj(t) = cj (0)e-iEjt (2.22)

In discreet form Schr6dinger equation of each eigenstate can be written as:

n+1 n-1

c -__ c = -iEc" (2.23)
2At

This is a second order accurate scheme. Superscript n is the represented the time step. To

calculate the time step n +1, we apply the Hamiltonian on the time step n. That is why this

scheme is called the Leapfrog method. Let us now look at the stability condition of Leap frog

method. We begin by defining the time propagation operator S:

Sc" = c n+1 (2.24)

The characteristic of the discreet time evolution can be written as:

{S2 +2iAtES -l}c" = 0 (2.25)

The roots of this characteristic equation are:

12 = -iEAt ±1 -(EAt) 2 (2.26)

The two roots of the characteristic equation are:
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(EAt) 2  (EAt)4
oi =-iEAt +1 - .. (2.27)

2 8

(EAt)2 (EAt)4

o2 =-iEAt -1+ + ... (2.28)

Of the two solutions only u 2 (Equation (2.28)) is stable. For the time evolution to be

stable, laI| <1 . In other words EAt < 1 . Hence, largest eigenenergy in the simulation

determines the optimum time step. For example, in our simulation, the largest energy is the

cut-off and therefore the time step should be smaller than inverse of cut-off.

In Equation (2.23), we learnt how to handle the time discretization. Numerically, one

can calculate the eigenenergy, by matrix vector multiplication: the Hamiltonian is represented

by a matrix and the eigenstate by a vector. Let us see how this works for the simple case

when there is no potential and the Hamiltonian consists of only kinetic energy term. Its well

known that kinetic energy or double derivative is represented by a tri-diagonal matrix:

-2 1
1 -2 1l.. O

1 -2

Equation (2.23) can be re-written as:

_n+1 _,n-1 _A n

T -TV =-i A (2.29)

Eigenvalues of tri-diagonal matrix with diagonal b and off-diagonal a is given by

E = b + 2a cos(l ) (2.30)
N

The above equation along with EAt < 1 gives the stability condition:

4At 
(2.31)

Ax2
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2.5. Conclusion

To summarize, we choose cylindrical co-ordinate system due to symmetry and simplify

the laplacian by the transformationf = . To handle the singularity we employ the ABC

discretization. Then the ground state is found by propagating in imaginary time. Once we

have the ground state, we use the leap frog method along with stability condition to propagate

the solution in time. We need to normalize the wavefunction after every few time steps. In

order to prevent any reflection form the boundaries, absorbing boundary conditions have

been employed.



COMPARISON BETWEEN TSM SPECTRA AND NTDSE SPECTRA

3. Results from NTDSE Simulations

3.1. Comparison between TSM spectra and NTDSE spectra

In this section, harmonic spectra produced by NTDSE and TSM are compared for

different electric fields. Ionization potential of Hydrogen is about 13e.v. The harmonics that

appear below this energy are caused by traditional non-linear processes. In fact, the first

harmonic peak of the NTDSE simulation is at the frequency of the driving field. This

harmonic is not present in TSM spectra. In Figure 10 (y =0.475), TSM and NTDSE differ

by about 1-2 orders of magnitudes deep in the plateau region. In Figure 11 (y = 0.57), TSM

and NTDSE differ by about 2-3 orders of magnitudes deep in the plateau region. In Figure 12

(y = 0.95), TSM and NTDSE differ by about 3-4 orders of magnitudes. These results agree

with the theory discussed in Chapter 1: as the value of Keldysh Parameter decreases, TSM

becomes more valid. However, close to the cut-off, TSM and NTDSE differ by only an order

of magnitude in all the cases.

Chapter 3.1
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Figure 10: Comparison between TSM (blue) and NTDSE spectra for 800 nm,
10 cycle pulse with peak electric field E= 0.12 atomic units
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Figure 11: Comparison between TSM (blue) and NTDSE spectra for 800 nm,
10 cycle pulse with peak electric field E= 0.10 atomic units
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Figure 12: Comparison between TSM (blue) and NTDSE spectra for 800 nm,
10 cycle pulse with peak electric field E= 0.06 atomic units
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3.2. Interaction of Hydrogen with 800 nm pulse

Here we look at the interaction of Hydrogen with 800 nm pulses which are of varying

cycles and electric fields. Our aim here is to find, the optimum electric field and the number

of cycles that maximizes the efficiency of single atom response of energy radiated in any

given harmonic frequency. Efficiency of single atom response is defined as the ratio of

energy radiated in a given harmonic and the total energy in the driver pulse. It should be

noted that the frequency of the harmonics does not change when the electric field is changed.

Energy radiated in a given frequency is calculated by integrating from -coo to C0, around that

frequency. For our purposes, three trial electric fields have been chosen:

Electric Field (a.u.) 0.06 0.08 0.12

Ct20 f(, 37.49;'1Q.57

Keldysh Parameter 0.95 0.7125 0.475

Figure 13 is the spectrum for E =0.08a.u., 10 cycles. As expected, we can observe odd

harmonics separated by 2ao = 3.102e.v.. The first peak is at the driving field frequency. The

ionization potential is 13.5ev and the harmonics with frequency below the ionization

potential are produced by the traditional non-linear processes explained by Drude Model.

INTERACTION OF HYDROGEN WITH 800 NM PULSE Chapter 3.2
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Figure 13: Energy spectrum of 800nm driver pulse. As expected, we observe

odd harmonics separated by twice the driving frequency
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Figure 14 to Figure 24 are the plots of efficiencies for different harmonics for three

electric fields: E = 0.06, E = 0.08 and E = 0.12 (all the electric fields are in atomic units )

Harmonics in the plateau region, have the highest efficiencies when the driver field is a few

cycles long (4-10 cycles) and withE = 0.08. As we move closer to the cut-off, driver pulses

of smaller electric field (E = 0.06) and large number of cycles produce the best efficiencies

Note that strong electric field driver pulses (E = 0.12) have low efficiency for all harmonics.

This is because the driver depletes the ground state very quickly and the recombination

amplitude is very small. Depletion of ground state for E = 0.06, E = 0.08 and E = 0.12 is

shown in Figure 25, Figure 26 and Figure 27 respectively.
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- ----------------------------------- -------------- - - ------
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Figure 14:First Harmonic of 800nm driver pulse: 1.55 e.v.
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Harmonic energy=4.674000e+000
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Figure 15: Third Harmonic of 800nm driver pulse: 4.67 e.v.
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Figure 16: Fifth Harmonic of 800nm driver pulse: 7.71 e.v.
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Harmonic energy=1.094000e+001
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Figure 17: Seventh Harmonic of 800nm driver pulse: 10.94 e.v.
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Figure 18: Ninth Harmonic of 800nm driver pulse: 13.96 e.v.
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Figure 19: Eleventh Harmonic of 800nm driver pulse: 16.98 e.v.
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Figure 20: Thirteenth Harmonic of 800nm driver pulse: 20.19 e.v.
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Figure 21: Fifteenth Harmonic of 800nm driver pulse: 23.25 e.v.
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Figure 22: Seventeenth Harmonic of 800nm driver pulse: 26.31 e.v.
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Figure 23: Nineteenth Harmonic of 800nm driver pulse: 29.47 e.v.
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Figure 24: Twenty first Harmonic of 800nm driver pulse: 32.17 e.v.
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Decay of ground state of Hydrogen by 15cycles, 800nm pulse, E=0.06 a.u.

8
Number of Cycles

Figure 25: Ground state decay calculated by ADK formula for 800 nm,10
cycle pulse with E=0.06

Decay of ground state of Hydrogen by 15 cycles, 800nm, E=0.08
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E
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0.
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Figure 26: Ground state decay calculated by ADK formula for 800 nm,15
cycle pulse with E=0.08

..................... .........
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Decay of ground state of Hydrogen by 15 cycles, 800 nm pulse, E=0.12

8
Number of Cycles

Figure 27: Ground state decay calculated by ADK formula for 800 nm,15
cycle pulse with E=0.12
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3.3. Interaction of Hydrogen with 400 nm pulse

Now, like for the 800nm case in previous section, interaction of Hydrogen with 400 nm

driver fields of varying cycles and electric fields is investigated. The three different cases

have been summarized in the following table:

Coe 1- 1Ca02 4

Electric Field (a.u.) 0.06 0.08 0.14

1.9r"r. 24.2 46-11

Keldysh Parameter 1.425 1.425 0.814

High Harmonic Spectrum of 10 cycles driver pulse with E = 0.08 a.u., 10 is shown in

Figure 28 As expected, odd harmonics separated by 20 0 = 6.203 e.v. are observed. Due to

smaller wavelength, the cut-off of 400 nm driver pulse is smaller than its 800nm counterpart.

Also, the harmonics are further spaced for shorter wavelength. As a result, as we move

towards shorter driver pulses, we observe fewer harmonics.

INTERACTION OF HYDROGEN WITH 400 NM PULSE Chapter 3.3
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A6jeue wniioeds

Figure 28 Energy spectrum of 400nm driver pulse. As expected, we observe
odd harmonics separated by twice the driving frequency
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Figure 29 to Figure 33 are plots of harmonic efficiencies of the harmonics. Figure 34 ,

Figure 35 and Figure 36 show the ground state decay by E = 0.06 , E = 0.08 and

E = 0.14 respectively.

Harmonic energy=3.103000e+000
1.6

*~I 01.4 -- -- --- -- - ...-- --- - ---------- ------ ----- --- ---- -------- --- -- E = 6---_ 

0. - -- - --- - - - -
-,- 
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0 . 4 -- ------ - - --- - - - - - - - - - - - --- - - - - --- - - --- - - - - --- -- - - - -

0.2--- ------ - -

0
1 2 3 4 5 6 7 8 9 10 11

Number of cycles

Figure 29: Harmonic efficiencies at First Harmonic of 400nm driver pulse:
31.03 e.v.
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Figure 30: Harmonic efficiencies at Third Harmonic of 400nm driver
pulse:9.35 e.v.
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Figure 31: Harmonic efficiencies at Fifth Harmonic of 400nm driver pulse:
15.52 e.v.
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Harmonic energy=2.168000e+001
0.016

+E=0.06
0.014 ---------- ---- -- --------- ----------- ---------- ---------- -- ----------- -0-E=0.08 --- - ------

-*E=0.14

0.012 --------- --------- - -- -- r - -- - -- 1- - -------- ---------- --------- r -- --- - ---- ----

0.0 1 -1- ------ - ----- ----- --------- - ----- ---- ------ - ------- -

- 0.0086 - - -- ------ ----- ----- -- - ------- --- -- ----- - - -- t-----

1.0 2 0 1

Number of cycles

Figure 32: Harmonic efficiencies at Seventh Harmonic of 400nm driver pulse:
21.68ev.
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Figure 33: Harmonic efficiencies at Ninth Harmonic of 400nm driver pulse:
27.85 ev.
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Decay of ground state of Hydrogen by 10 cycles. 400 nm pulse, E=0.06 a.u

6
Number of Cycles

Figure 34: Ground state decay calculated by ADK formula for 400 nm,10
cycle pulse with E=0.06

=0.9

.8

Decay of ground state of Hydrogen by 10 cycle 400nm pulse, E=0.08

Number of cycles

Figure 35: Ground state decay calculated by ADK formula for 400 nm,10
cycle pulse with E=0.08
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Decay of ground state of Hydrogen by 10 cycle 400nm pulse, E=0. 14

number of cycles

Figure 36: Ground state decay
cycle pulse with E=0.14

calculated by ADK formula for 400 nm,10

. ... .. ..... ...
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3.4. Interaction of Hydrogen with 2000 nm pulse

Finally we look at 2000nm driver pulses for three different value of electric field. Due to

longer wavelength, 2000 nm driver pulses have considerably larger cutoff than 400nm and

800nm pulses. Harmonic spectrum for three different cases of electric fields have been

simulated as shown in the following table:

Electric Field (a.u.) 0.05 0.08 0.1

Keldysh Parameter 0.456 0.285 0.228

High Harmonic Spectrum of 10 cycles driver pulse with E =0.05 a.u., is shown in Figure

37. The odd harmonics are separated by 2o = 1.24e.v. Figure 43, Figure 44 and Figure 45

show the ground state decay for E = 0.05, E = 0.08 and E = 0.1 respectively. For the same

electric field strength and number of cycles, a driver pulse with longer wavelength causes

more ground state depletion. For instance, for E = 0.08 and 10 cycles, a 400 nm pulse ionizes

about 20% of the ground state while a 2000 nm pulse ionizes about 70% of the ground state.
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Figure 37: Energy spectrum of 2000nm driver pulse.
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Figure 38 Harmonic efficiencies at 13.96 e.v. generated by 2000nm driver
pulse.
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Figure 39 Harmonic efficiencies at 23.25 e.v. generated by 2000nm driver
pulse.
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Harmonic energy=3.217000e+o1
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Figure 40: Harmonic efficiencies at 32.17 e.v. generated by 2000nm driver
pulse.
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Figure 41 Harmonic efficiencies at 40 e.v. generated by 2000nm driver pulse.
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Figure 42: Harmonic efficiencies at 50 e.v. generated by 2000nm driver
pulse.
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Figure 43: Ground state decay calculated by ADK formula for 400 nm,10
cycle pulse with E=0.14
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Decay of ground state of Hydrogen by 10 cycles, 2000 nm pulse, E=0.08

Figure 44: Ground state decay calculated by ADK formula for 400 nm,10
cycle pulse with E=0.14

Decay of ground state of Hydrogen by 10 cycles, 2000 nm pulse, E=0. 1
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Figure 45: Ground state
cycle pulse with E=0.14

decay calculated by ADK formula for 400 nm,10
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3.5. Analysis

In the last three sections we saw the atomic efficiencies of different harmonic energies as

a function of driver pulse duration and electric field. With this information, we will try to

answer the question: in order to maximize the efficiency of a given harmonic energy, what is

the ideal wavelength, pulse duration and electric field of the driver pulse?

First let us look at wavelength. From our data, shorter wavelengths have higher

efficiencies. For example, at harmonic energy of 21 e.v. , 400 nm , 800 nm and 2000 nm

driver pulses have efficiencies of 10-2, 10- and 10~6 respectively. The time of return of

electron of wave packet is linearly proportional to the driver wavelength (we will see more in

this in Chapter 4.) Hence the electron wave packet undergoes larger quantum dispersion

which reduces the recombination amplitude. As a result, the radiated harmonic energy

decreases. Moreover, for a given electric field and number of cycles, a driver pulse with

longer wavelength has more energy. Together, these two factors bring down the efficiency.

Next, we look at the role of electric field. If the electric field is too large, the atom will be

completely ionized and harmonic radiation will be very small (see Figure 27.) If the electric

field is too small then very little ionization will take place and HHG radiation will be small. It

should be noted that ionization is exponentially dependent on electric field (see ADK formula.

[5]) Only a small variation in the electric can lead large ionization difference. For instance, in

Figure 25 we see thatE = 0.06 (800 nm, 15 cycles) produce a small ionization of 4% If the

electric field is doubled to E = 0.12, (800 nm, 15 cycles) as shown in Figure 27, almost the

entire ground state is ionized. The optimum electric field depends on the position of the

harmonic frequency in the spectrum (plateau or cut-off) and the number of cycles of the

driver pulse. This is best illustrated in Figure 46 and Figure 47 which plot the efficiencies by

an 800 nm driver pulse of duration of 4 cycles and 20 cycles respectively.
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Figure 46: Efficiencies by a 4 cycle 800 nm driver pulse for different
harmonic energies
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Each harmonic has an optimum electric field which maximizes its efficiency. As we

increase the number of cycles, the optimum electric field decreases. Moreover, this shift

towards lower electric field is most dramatic for cut-off harmonic at 32.17 e.v. : from

E =.11 a.u for 4 cycles to E = 0.06 for 20 cycles. Additionally, the efficiency slightly

increases from 3 x 10-4 to 4 x 10-4 . This shift in electric field is huge as dramatically changes

the plasma density and is much better for phase matching. On the other hand, for plateau

harmonic at 20.19e.v., the shift is from E =.07 a.u to E =.06 and the efficiency decreases

from 14 x 10- 4 to 12 x 10-4.

Since we are using a Gaussian pulse, contribution to the plateau harmonics comes from

every cycle .But increasing the number of cycles also increases the total driver pulse energy

and depletes the ground state. Together these factors bring down the efficiency of plateau-

harmonics. On the other hand, harmonics in the cut-off region are produces only by the peak

cycles. As the number of cycles increases, there are more cycles that contribute to cut-off

harmonic. Therefore, as long as we use a small electric field, driver pulses with large number

of cycles (20 -25 cycles for E = 0.06) produce higher efficiencies.



4. Gauge Transformation and the Role of Magnetic
field

4.1. Gauge Transformation and High Harmonic Generation

In quantum mechanics, Schr6dinger equation can be written in different equivalent

gauges, because physical observables are gauge invariant. In HHG, Electron-Field interaction

is mainly represented in two types of gauges, namely Goppert-Mayer gauge also known as

the Length Gauge (-eE -r) and Minimal coupling Hamiltonian also known as the Velocity

2

gauge - -A + e A . Since any physical problem is gauge invariant, we should be able
m 2m,

to use either gauge to solve our Time Dependent Schr6dinger Equation. Choice of gauge is

not a new problem. Back in 1951, Lamb, in his seminal paper on Fine Structure of Hydrogen

argued that theoretical calculation in Length Gauge was more convenient [17, 18]. Moreover,

Strong field Approximation, which is often used in HHG theory, is not gauge invariant and is

better suited for Length Gauge [19]. In this Chapter we will explore how the gauge

transformations are done mathematically and what is the physical effect of such a

transformation when coupled with dipole approximation.

4.2. Derivation of Gauge transformation.

According to the minimal coupling theory, Schr6dinger of electron-electromagnetic

field interaction is described as:

ih a (t)) = (p qA(r,t))2 + qU(r,t)+ V(r) JT(t)) (4.1)

In dipole approximation, A(r,t) A(t). The physical meaning of the approximation is that

the wavelength of the EM field is longer than the length of interaction between electron and

the field. Under this approximation (and using the atomic units m = h = e =1), the Schr6dinger

equation becomes:
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iaI (t)),at

(p - A(t)) 2

= + U(r, t) +V(r)) IT(t)), (4.2)

The v subscript denotes that this equation is written in Velocity Gauge. We can write this

equation in Length Gauge through the following unitary transformation:

JT)L "I)v
A

T =e-iA(t).r

(4.3)

(4.4)

Under such a gauge transformation, the Schr6dinger equation changes in the following

manner:

i a (t)), = H
a

T(t)), -->i-aI a (t))L = HL L

A

A A t A aTt
HL =TH, T -iT-

at

H 2 A(t)2 p.A(t) A(t).p
2 2 2 2

P2 A(t) 2 - A(t).p + V(r)
2 2

(4.5)

(4.6)

(4.7)

(4.8)

In the above equation the following should be noted:

(i) A(t) and p commute because we are working in dipole approximation.

(ii) U(r, t)= 0 , since we are working in coulomb gauge and charge distribution p(r, t)= 0 .

Now using the transformation from (4.4) and projecting the Schr6dinger equation in x-

space

iA(t)r - + ) + iA(t).V + V(r) eiA(t).r

-2 2

aA(t)
+ .r TL (r,t)

at j

This transforms the Schr6dinger equation to Length Gauge. Now, assume A(r)= A(r)z and

substitute it in (4.9).

direction.

This implies that electric field is polarized in the z-

AaA(t) A
-z = zE(t)at

a (r, t)

at
(4.9)
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-iA( t).r V___ . V a A(t) 2 1
-e 2 L (r,t) (t) 2 jT (r,t) (4.10)

2 1-t2 Bz 2 1

e-A'(''A(t).Ve'('P'r(rt)= -A(t)2 +iA(t) a T(rt) (4.11)BzI
Substituting equation (4.10) and (4.11) in (4.9) finally gives us the Schroedinger Equation in

dipole approximation.

aTP (r, t) V2

L - +V(r)-E(t)z jL(r,t) (4.12)at 2

The physical meaning of dipole approximation is that the trajectory of the ionized

electron is much smaller than the wavelength of the driver field. Therefore, we can neglect

the spatial dependence of the vector potential. A direct repercussion of this approximation is

that we neglect the effect of magnetic field (which is present in a laser pulse.) The next step is

to classically calculate the limits in which such an approximation is valid.

4.3. Role of Magnetic Field in HHG

The three step model assumes that after being born in the continuum, the electron only

moves under the influence of the electric field. But in reality, Lorentz force due to the

magnetic field also acts on it causing lateral displacement in the direction of propagation of

the electric field. As a result, the electron may not "return back" to the atom. In quantum

mechanical treatment we treat electron as a wavepacket. So the electron does not have to

return exactly back to the electron for the recombination to occur. If quantum mechanical

diffusion of the electron is less than the lateral displacement of the electron, recombination

amplitude will drop.

Let us look at classical trajectory of the electron in a sinusoidal field assuming that it is

born with zero velocity at the origin (x(t =0)=0 ). Like before, we are working in atomic

units.

x(t)= F(t) = E. cos(cot + B)

Chapter 4.3
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x t= ,ox sin(wt +'B) (4.14)

(4.15)x(t) = -Eox cos(cwt +#B +)

Where C, = Eox sin#B andC 2 - E0x cos(#B)

x(t): Position of electron trajectory.

o : Angular frequency of driving field.

#B :Phase of birth of the electron.

E : Electric field polarized along the x direction.

Lorentz Deviation

It is well known, form freshman physics, that when a charge moves in a magnetic field, a

force acts on it, which is given by

F = q(v x B) (4.16)

We can use this idea to calculate the deviation of the electronic wave packet

z(t)= F,(t)

x(t)B,(t)

Eox sin(ot +#B) _Eo sin#B B
co c )c

_ Eox sin(2cot +2#B) E2 cos(cot+#BB)sin0B

2cm co

(4.17)

(4.18)

(4.19)

(4.20)

Integrating the above equation and using the boundary condition that the velocity in y-

direction at time of birth is zero gives

z(t)= E cos(2cot +2#B) Eox sin(cot +#BB)sinBE~t 4co2Co 2 + '(4.21)
4cco2  cc2

E cos(2#B) E si2 Ox coB E22B
4cco2  cL2 4cw 2  (4.22)

Once again integrating equation and using the boundary condition that the position in y-

direction at time of birth is zero gives
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z(t) - E , sin(2cot +2#B) E , cos(cot +# B 3sin, +C 3t±C 4  (4.23)8cm cw

8Cn(q03 CW 3E

C EE ,, sin(2#B _ E,, sin2B _ _3 sin(2#B
C 8cC3 2cC 3  8cc 3

Quantum Diffusion

Now let us look at the quantum diffusion term. It is assumed that the when the electron is

born, it is a Gaussian wavepacket (probability distribution perpendicular to the polarization)

with FWHM of the dimensions of the Bohr radius (a() .The following derivation is taken

from [20]

ao = 2,21n 2co (4.25)

Momentum distribution is given by

<D(k)= 0 exp(-u (k -ko)) (4.26)

Corresponding wave function at zero time is

2

Y(x,0)= A exp 2 + jkox (4.27)

Taking the Fourier Transform of the wavefunction after the including the dispersion relation

k 2CO=- gives:
2

Au2 ( . k 2t.'
'Y(x, t) - f dk exp Lqu(k -ko j 2 ±+jkxJ (4.28)

A x 2 -4ja2k ox+ j2uo-kit (4.29)T(x,t)= exp -N4.9

And the corresponding probability distribution is:

Chapter 4.3
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'F(x,At)| = exp - (___ _0 (4.30)

1+ 22 1+

x0(t)= kot (4.31)

Now we have to incorporate the role of Lorentz force on the time evolution of the

aforementioned probability distribution function. Firstly, note that ko corresponds to the mean

of the momentum distribution. As a result, it should follow the classical trajectory under the

influence of external force. Therefore, k = ko(t) and by classical relations F(t)= dk(t) . As
dt .A

a result, the mean of the probability distribution moves classically (by Ehrnfest theorem)

t

x(t) = ko(t')dt' . This is the same as the lateral displacement by Lorentz displacement
0

(given by z(t)). The new FWHM is given by:

25a(t)=a l+rtj (4.32)

In the following figures (Figure 48 to Figure 50) we plot the HWHM a(t) at the
2

probability distribution of the wave packet at the time of return. The phase of birth is

assumed to be - (which corresponds to the most energetic trajectory).
8
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HWHM of wavepacket and Lateral Displacement (due to lorentz force)
at the time of returm (phase of birth is pi/8),Intensity =el 5 W/cm2

1400

-Lorentz lateral displacement
A 1000 --------- HWHM of wavepaket - ---- -- - --

9

E 6 0 0 --------- --- - ----- -- ---- --- ---- - ----------- ---- ----

600 --

. 400 ------ -- - --- --- ------

200 ------ - ------ --- ------ - -

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

wavelength in nanometers

Figure 48 Comparison of Lorentz displacement and quantum diffusion

HWHM of wavepacket and Lateral Displacement (due to lorentz force)
at the time of return (phase of birth is pi/8),Intensity =e16 W/cm2
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Figure 49 Comparison of Lorentz displacement and quantum diffusion
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HWHM of wavepacket and Lateral Displacement (due to lorentz force)
at the time of returm (phase of birth is pi/8),Intensity =el 5 W/cm2
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Figure 50 Comparison of Lorentz displacement and quantum diffusion

Few things to note in the above plots are:

(i) If the electron was classical point particle, there would be no recombination event due

to Lorentz displacement. Treating it as a wavepacket, gives a non-zero recombination

probability even when it is displaced from the axis of polarization: provided the broadening

of the wavepacket, due to quantum dispersion, is more than the lateral displacement.

(ii) Quantum dispersion (hence the time of return) scales linearly with wavelength while

the Lorentz displacement term scales as cube of wavelength.

(iii) Quantum dispersion (hence the time of return) does not depend on intensity where as

the Lorentz displacement term scales linearly with intensity.

Since people are pushing for longer wavelength driving fields [21], it becomes all the

more important that we consider the role of magnetic field. One of the ideas, which we tested

to reduce the Lorentz displacement was to use an elliptically polarized light. The two

polarizations of the elliptically polarized light can be phase shifted to cancel out the Lorentz

displacement. However, in this case it is the electric field that becomes the problem. Not only

does it displace the wavepacket from the atom, fewer trajectories return back as the phase

difference between the two polarization increases.

.. .............. .. ........ ........... .
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In the following figures we look at the dependence of electron trajectory on the ellipticity

of polarization Electrons which are born in red portion of the electric field, return back to the

atom. Here "eturning back" is loosely defined: it refers to those electrons whose distance

from the atom increases up to a time instant, and after which it begins to decrease.

Figure 51 Trajectories that are born in the highlighted part of the electric field
return back to the atom. Polarization rotates clockwise (temporally.) Phase
difference between x and y polarization is pi/8

Chapter 4.3
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-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 52 Trajectories that are born in the highlighted part of the electric field
return back to the atom. Polarization rotates clockwise (temporally.) Phase
difference between x and y polarization is pi/1 6.

4.4. Conclusion

In this chapter the mathematical foundation of gauge transformation was re-derived.

Hamiltonian of atom-field interaction was transformed from velocity gauge to length gauge

(provided we work in Coulomb Gauge (V.A =0) and assume Dipole

Approximation(A(r,t) = A(t)) ). Due to Dipole Approximation magnetic field is forced to be

zero. Magnetic field, which leads to lateral Lorentz displacement, was incorporated

classically. It was then quantitatively argued that if the Lorentz displacement is more than the

Half Width Half Maximum (HWHM) of the returning wave packet probability distribution,

the recombination amplitude should drop considerably. The HWHM is independent of the

driving field intensity and increases linearly with wavelength. Lorentz displacement, on the

other hand, varies linearly with driving intensity and cubic with driving wavelength.

Therefore, for long wavelengths and large intensities, Lorentz displacement becomes large

and recombination amplitude decreases

Lorentz displacement can be reduced using circularly polarized light because the

magnetic fields of the two polarizations cancel each other out. But the electric field prevents

. . . ..... ...... ......... ................. ..... ................
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the electronic wave packet from returning. Another way of reducing the Lorentz

displacement is to use counter propagating wave such that the electric field points in the same

direction but magnetic fields cancel each other out.
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