
 1 

The Structural Basis of RNA-Catalyzed RNA Polymerization 
 

by 
 

David M. Shechner 
 

B.S., M.S. Molecular Biophysics and Biochemistry 
Yale University, 2000 

 
SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL 
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

 
DOCTOR OF PHILOSOPHY 

AT THE  
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

 
JUNE 2010 

 
© 2010 David M. Shechner.  All Rights Reserved. 

 
The author hereby grants to MIT permission to reproduce and to distribute publicly  

paper and electronic copies of this thesis document in whole or in part 
in any medium now known or hereafter created. 

 
 
 
 
Signature of Author:  ____________________________________________________________ 

Department of Biology 
February 11, 2010 

 
 
 
 
Certified by: ___________________________________________________________________ 

David P. Bartel 
Professor of Biology 

Thesis Supervisor 
 
 
 

Accepted by: __________________________________________________________________ 
Stephen P. Bell 

Professor of Biology 
Chair, Biology Graduate Committee 



 2 

David
Rectangle



 3 

The Structural Basis of RNA-Catalyzed RNA Polymerization 
 

by 
 

David M. Shechner 
 

Submitted to the Department of Biology 
on February 11, 2010 in Partial Fulfillment of the 

Requirements for the Degree of Doctor of Philosophy 
in Biology 

 
 

ABSTRACT 
 
The Class I ligase is an artificial ribozyme that catalyzes a reaction chemically identical to a 
single turnover of RNA-dependent RNA polymerization.  Such an activity would have been 
requisite for the emergence of a self-replicase ribozyme, an enzyme that, according to the RNA 
World hypothesis, would be fundamental for the emergence of life.  Demonstrating the 
plausibility of RNA-catalyzed self-replication, the Class I ligase catalytic machinery was 
previously harnessed to produce general RNA polymerase ribozymes. Hence, this ligase 
represents a robust model system for studying both the potential role RNA may have played in 
the origins of life and RNA catalysis in general.  Through a combination of crystallographic and 
biochemical experiments, we have sought to elucidate the structure and mechanism of this 
ribozyme. 
 
As a starting point for our experiments, the crystal structure of the self-ligated product was 
solved to 3.0 Angstrom resolution, revealing a tripodal architecture in which three helical 
domains converge in the vicinity of the ligation junction.  A handful of tertiary interactions 
decorate this tripod scaffold; among them were two instances of a novel motif, the A-minor triad.  
The structure elucidated interactions that recognize and bind the primer-template duplex and 
those that position the reaction electrophile.  It furthermore revealed functional groups that 
compose the active site.  Biochemical evidence and the position of these groups lead us to 
propose a reaction mechanism similar to that used by proteinaceous polymerases. 
 
Using a slowly reacting mutant, 3.05–3.15 Angstrom crystal structures were solved of unreacted, 
kinetically trapped ligase-substrate complexes bound to different metal ions.  Comparison of the 
Ca2+- and Mg2+-bound structures explains the preference of the ligase for Mg2+.  Moreover, these 
structures revealed features missing in the product structure: interactions to the 5´-triphosphate 
and an active site catalytic metal ion. While this metal is positioned in a manner similar to the 
canonical “Metal A” of proteinaceous polymerases, the role of “Metal B” might have been 
supplanted by functional groups on the RNA.  Kinetic isotope experiments and atomic 
mutagenesis of two active site functional groups imply that they may act in concert to 
electrostatically aid transition-state stabilization. 
 
Thesis Supervisor: David P. Bartel 
Title: Professor of Biology 
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Introduction 

General Implications of RNA Catalysis 

 The discovery of catalytic RNA (1-4) represents a fundamental turning point in molecular 

biology.  The ability of a single biopolymer to function as both a storehouse for genetic 

information and a catalyst evokes a concise solution to an intrinsic paradox underlying the origin 

of life (5-10).  Since, in all extant organisms, DNA and proteins are almost exclusively assigned 

the roles of information storage and catalysis, respectively, it is hard to conceive of how either 

molecule might function in the absence of the other.  Indeed, even in its simplest forms, the 

process of creating new copies of a given polypeptide is remarkably complex, requiring RNA 

polymerase, tRNAs, aminoacyl-tRNA synthetases, the ribosome and so forth.  However, a 

system in which catalysts serve directly as the templates for their own replication would require 

only a single activity for both the transmission and the use of genetic information (11).  Such a 

system would hence be easier to develop from prebiotic materials (9, 10). 

 It has been proposed (5-7) that in primordial organisms RNA might have served as the 

sole biopolymer used for both information storage and catalysis, a theory later termed the “RNA 

World hypothesis (8).”  This theory is supported by the observation that RNA, its precursors or 

its derivatives are vital components in many of the most highly conserved–and hence ancient–

processes in biology (12, 13).  Remnants of ancient RNA-based chemistries can be found in so-

called molecular fossils (14): the universal energy source ATP is an activated nucleotide, as are 

the essential enzyme cofactors NAD, FAD and Coenzyme A.  Deoxyribonucleotides are not 

synthesized de novo, but rather from ribonucleotide precursors, as are the essential cofactor 

folate and the amino acid histidine.  Furthermore, in addition to their notoriously important roles 

in DNA replication and protein synthesis, longer RNA species are of paramount importance 
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myriad biological processes, including but not limited to mRNA splicing, the maturation and 

modification of tRNA and rRNA, and the translocation of transmembrane proteins (12).  Finally, 

the Ribosome, the enzyme responsible for all genetically-encoded polypeptide synthesis and 

perhaps the oldest surviving enzyme in all modern cells, is unequivocally a ribozyme (15, 16).  

Taken together, these data imply that biochemical reactions built from RNA likely predate those 

involving DNA or protein. 

 Although the existence of catalytic RNA thus provides an elegant solution to a 

longstanding evolutionary conundrum, it concomitantly raises basic biochemical questions.  

Compared to proteins, the RNA biopolymer has at its command a relative dearth of functional 

groups, accessible pKas and unique steric profiles for use in catalysis (17).  Given this, one might 

question both the range of chemical transformations that RNAs would be able to accelerate and 

the scope of catalytic strategies they could use in accelerating these transformations. This first 

issue is sparsely addressed by the known natural ribozymes, the chemical repertoire of which 

seems essentially limited to the transfer or hydrolysis of phosphodiester bonds and the formation 

of peptide bonds.  Hence, the full potential catalytic repertoire of RNA has largely been revealed 

through in vitro selection, which has yielded a multitude of artificial RNAs with novel functions 

(18-20).  Conversely, the myriad catalytic strategies now known to be the purview of RNA have 

largely been elucidated through intense biochemical scrutiny of the natural ribozymes (21).  

Importantly, much of this work has been aided by developments in RNA crystallography, a field 

that has dramatically flourished in recent years. 
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The Structural Enzymology of Natural Ribozymes 

 Currently, there are nine known classes of naturally occurring catalytic RNAs.  Five 

classes are small, self-cleaving ribozymes: the Hammerhead (22, 23), Hairpin (24), Hepatitis 

Delta Virus (HDV) (25), Varkud Satellite (VS) (26) and GlmS (27).  Two classes are self-

splicing introns: the Group I (1, 4) and Group II (28).  The remaining two classes are large 

ribozymes that process their substrates in trans and naturally function in obligate complexes with 

proteins: Ribonuclease P (2, 3), and the Ribosome (15).  In the last ten years, modest (3.5–5 Å) 

to high (<3.5 Å) resolution crystal structures have been solved for all of these enzymes (Figure 

1), except the VS ribozyme.  Moreover, excluding RNAse P, the structure for each of the 

remaining ribozymes has been solved in multiple states along its reaction trajectory, providing a 

yet more detailed view into the catalytic strategies each employs.  Progress is still being made in 

the two outlying cases: molecular modeling has allowed researchers to model RNase P in 

complex with its pre-tRNA substrate (29, 30), and a preliminary atomic model of the VS 

ribozyme has been derived from an elegant small-angle x-ray scattering experiment (31).  

However, thorough structure-function analyses of these enzymes await high-resolution crystal 

structures.  

For years it was assumed that ribozymes would employ divalent metal ion cofactors as 

their sole catalytic functional groups, in large part because divalent metals are frequently 

required for RNA folding, and in part by analogy to the mechanisms of proteinaceous 

phosphoryl-transfer enzymes (32).  Hence ribozymes were subordinated as being nothing more 

than a special class of metalloenzymes (33), mere scaffolds for positioning metal ion catalysts 

into proper alignment (34).  This assumption, however, is now known to be untrue.  
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A more expansive theoretical framework for understanding the catalytic strategies 

available to RNA can be drawn by analogy to those used by its protein counterparts.  Though 

protein enzymes accelerate a bewildering array of chemical transformations, decades of research 

have revealed that the catalytic strategies they use can be approximated by a small handful of 

general themes (35-37).  In recent years, crystallographic examination of the natural ribozymes 

has shown that, with the exceptions of free radical or quantum tunneling catalysis, these enzymes 

employ many–if not all–of the same catalytic strategies used by their proteinaceous brethren 

(Figure 2) (21, 38, 39).  For example, crystal structures have illustrated substrate approximation 

in the Ribosome (15, 40-42), and substrate reorientation in the Group I introns (43-46) and 

Hammerhead ribozyme (47-50).  Pauling’s conjecture–that an enzyme binds its reaction’s 

transition state structure more tightly than its binds those of the ground states (51)–is illustrated 

by crystal structures of the Hairpin ribozyme trapped at various states along its reaction 

trajectory (52-57).  Additional contributions from electrostatic and specific acid-base catalysis 

have also been ascribed to the Hairpin based on these results.  Crystal structures have confirmed 

that functional groups at the active sites of three ribozymes–the HDV (58, 59), Hammerhead (49, 

50) and GlmS (60-62)–are unequivocal general acid-base catalysts, a particularly controversial 

finding in that it implicitly requires dramatic perturbation of these functional groups’ pKas (63).  

Finally, catalysis by four ribozymes is known to require the assistance of at least one coenzyme.  

In the case of the GlmS ribozyme, the catalytic cofactor is the small molecule Glucosamine-6-

phosphate, which functions as a general acid and protonates the oxyanion leaving group (61, 62, 

64).  The HDV ribozyme is thought to use a hydrated divalent metal ion as a general base, 

deprotonating the 2´-hydroxyl nucleophile (59, 65, 66). 
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Figure 1. Crystal structures of the known natural ribozymes.  In reaction schemes, protonation 
and deprotonation events are not specified.  In structure panels, the reaction center (when 
present) is dark blue; divalent metal ions are shown as magenta spheres. (A) Reaction catalyzed 
by the self-cleaving ribozymes.  Phosphorus centers in the reactions depicted in subsequent 
panels pass through the same transition state trigonal bipyramidal geometry, though the attacking 
nucleophiles and leaving groups differ.  (B)–(E) Representative crystal structures of the self-
cleaving ribozymes.  Except for the “junctionless” Hairpin, each ribozyme has been chemically 
trapped prior to self-cleavage: (B) Hammerhead (49), (C) left, four-way junction (52) and right, 
“junctionless” Hairpin (56), (D) HDV (59), (E) GlmS (61).  The GlmS coenzyme, glucoseamine-
6-phosphate, is depicted as green sticks. (F) Two-step reaction catalyzed by the Group I self-
splicing intron.  αG refers to an exogenous guanosine, 5´-GMP, GDP or GDP. (Continued) 
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Figure 1. (Continued) ωG is the last nucleotide of the intron core.  (G) Crystal structure of the 
Azoarcus Group I intron prior to the second splicing step (46).  The two exons are colored light 
blue.  (H) Two-step reaction catalyzed by the Group II self-splicing intron.  The attacking 
residue in the first step is an internal adenosine on the intron itself.  (I) Crystal structure of the O. 
iheyensis Group II intron following the second splicing step, prior to product release.  Ligated 
exons are colored light blue.  (J) Reaction catalyzed by Ribonuclease P (RNase P).  (K) Crystal 
structure of an RNase P ribozyme; the view is peering in toward the active site, as presumed 
based on biochemical data.  The structure was solved in absence of its protein cofactor and 
substrate (29).  (L) Reaction catalyzed by the ribosome. (M) Crystal structure of the H. 
marismortui large ribosomal subunit, with chemically blocked acyl-tRNA substrate analogs 
(dark blue sticks) bound in the A- and P-sites (67).   Ribosomal proteins are colored light green.  
Structure panels in this and all following images were made in PyMol (68). 

 

Last, the Group I (46, 69) and Group II (70, 71) self-splicing introns are known to use a pair of 

divalent metal ions cofactors, and are hence the sole examples of ribozymes that conform to the 

two-metal-ion mechanism once proposed for them all (32).  Though a full discussion of the data 

underlying the above assertions is beyond the scope of this chapter, biochemical evidence has 

largely confirmed the crystallographic results and vice versa.   
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Figure 2.  Crystallographic evidence for some of the catalytic strategies used by natural 
phosphoryl-transfer ribozymes.  Magenta spheres mark nucelophiles, electrophiles and departing 
oxygens; magenta dotted lines indicate the direction of nucleophilic attack.  Black dotted lines 
denote hydrogen bonds; gold bars indicate inner-sphere coordination.  (A) Substrate 
approximation and orientation by the Group I intron (43, 46, 69).  Docking ωG into its binding 
pocket (light green, left) forces the backbone into a ~180° turn, positioning the ligation junction 
phosphate in ideal geometry for in-line attack.  (B) Substrate orientation in the Hammerhead 
ribozyme.  Peripheral tertiary contacts reorganize the active site (49), contorting the scissile 
phosphate from the catalytically untenable geometry observed in minimal Hammerhead 
constructs (left)(48) into the ideal geometry for in-line attack (right).  In the right-hand structure, 
the G8•C3 pair forces Stems I and II into closer proximity, swinging G5 and A6 outward.  These 
present a wedge that contorts C17 and C1.1 into the catalytically viable orientation.  (C) The 
Hairpin ribozyme binds more tightly to the geometry of its transition state than to those of the 
ground states.  Active site residues G8, A9 and A38 make only two hydrogen bonds to the 
attacking nucleophile and scissile phosphate in the ground-state structure (left), and three in the 
cleaved product structure (right), but are observed to make five in the structures of vanadate 
transition-state mimics (middle) (53, 56).  Additional work has implicated contributions from 
water-mediated specific base catalysis (55) or electrostatic catalysis by A38 and G8 (57), which 
are known to have neutral pKas (39).  (D) General acid-base catalysis in the Hammerhead 
ribozyme.  G12 acts as a general base, activating the 2´-hydroxyl nucleophile for attack.  The G8 
2´-hydroxyl serves as a general acid, protonating the 5´-hydroxyl leaving group (49, 50).  Active 
site water molecules (not shown) are thought to aid both functional groups (49, 72), though their 
roles remain unclear.  (Continued) 
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Figure 2. (Continued) (E) Coenzyme-assisted general acid-base catalysis in the GlmS ribozyme.  
G33 provides the general base, while the 3-amino group of the gluocosamine-6-phosphate 
(GlcN6P) coenzyme serves as general acid (61).  Functional groups on G32, G57 and the 
GlcN6P 2-hydroxyl group also serve as electrostatic catalysts, stabilizing the developing 
negative charge on the scissile phosphate.  (F)–(G) Two-metal-ion catalysis by the (F) Group I 
(43, 69) and (G) Group II (70, 73) self-splicing introns.  Magnesium ions are depicted as yellow 
spheres.  Note that the phosphate-dense binding site in the Group I intron involves residues from 
five discrete secondary structural features: the ligation junction residues of helix P1, A87–C88 of 
J5/4, A127 of P7, C171 of J8/7 and ωG.  In contrast, all Group II active site metal ion ligands are 
provided by an ~20-nt distorted helix in domain V. 

 
The combined powers of crystallography and biochemistry have thus facilitated an 

incredibly detailed view into the mechanisms of the natural ribozymes.  However, the catalytic 

RNAs born from in vitro selection experiments have not enjoyed the same depth of mechanistic 

and structural scrutiny. 

 

Enzymology of The Artificial Ribozymes 

The Scope of RNA Catalysis 

 Despite the limited scope of chemical transformations accelerated by natural ribozymes, 

in vitro selection has revealed the catalytic potential of nucleic acids to be quite broad (18, 74).  

In vitro selection follows a scheme evocative of Darwinian evolution.  A genetically diverse 

population is subjected to a selective constraint; the propagation of any individual member is 

determined by its genetic fitness with regard to this constraint, and so, over successive 

generations the most fit individuals will come to dominate the population.  Here, the genetically 

diverse starting population is a pool of 1014–1016 random sequences, and an individual’s 

propagation refers to its survival through a round of (RT)PCR.  The selective constraint is 

applied by challenging this pool to perform a desired task, such as binding a target molecule or 

chemical self-modification with a novel functional group.  The experiment is designed such that, 

by performing the desired task, successful individuals can be physically separated from their 
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unsuccessful cohort, amplified, and used as the starting point for subsequent rounds of the same 

procedure.  Through iterative cycles of selection and amplification, successive pools become 

enriched for individuals possessing the desired activity.  Variations of this method have been 

adapted for the isolation of novel RNA (75-77), DNA (78) and polypeptide (79-82) species. 

 The true power of in vitro selection lies in its flexibility, since in theory one could select 

for any activity that imbues an active species with biophysical properties facilitating its isolation 

from inactive species.  For example, in vitro selection experiments have been used to explore the 

mechanism of RNA recognition by natural RNA-binding proteins (76, 83) or to evolve RNA 

species that bind proteins lacking this activity (84).  Likewise, long before the discovery of 

riboswitches, artificial RNA aptamers had been isolated that bound small molecules (85); in 

some cases these exhibited extremely tight binding affinities (86) and acute selectivity between 

similar ligands (87).  In vitro selection has also been used to alter the folding and activity of 

naturally occurring ribozymes (77, 88-92), but its use has truly flourished in the generation of 

artificial ribozymes with novel activities (18, 74, 93). 

 Akin to their natural ribozyme counterparts, many of the novel in vitro selected 

ribozymes catalyze reactions involving a phosphate center.  As has been previously noted (18), 

the justification for this is largely technical, in that selection is often based on self-modification, 

and RNA molecules bristle with phosphate groups.  Myriad catalysts for all imaginable 

permutations of phosphate transfer have thus been selected.  Their reactions include: RNA 

cleavage (94-97), cyclic-phosphate hydrolysis (94), pyrophosphate hydrolysis (98), hydroxyl 

phosphorylation (99), aminoacyl-adenylation (100), adenylation of diverse cofactor precursors 

(101), synthesis of phosphamide bonds (81), synthesis or exchange of polyphosphates (102, 103) 

and the formation of 5´-5´ (102-104), 3´-5´ (105-110), and 2´-5´ phosphodiester bonds, both 
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linear (105) and branched (111, 112).  This last reaction is of particular biological interest, since 

it resembles the first step of pre-mRNA splicing as catalyzed by both the spliceosome and group-

II introns. 

 RNA has also proven to be a versatile catalyst for reactions not involving phosphorus 

centers.  Two such ribozymes, catalyzing the stereoisomerization of a bridged biphenol 

compound (113) and porphyrin metalation (114), were isolated as aptamers for transition state 

analog compounds, a technique similar to that which had previously been used to generate 

catalytic antibodies (115).  However, for the isolation of catalytic RNA, this has generally 

proven a less robust method than direct selection for catalytic activity.  Direct selections have 

produced ribozymes that catalyze: imino alkylation (116), hydroxyl alkylation (117-119), acyl 

transfer (118), the formation of amide (120), peptide (121-123), or thioester (124) bonds, the 

Michael addition (125), Diels-Alder cycloaddition (126, 127), the aldol reaction (128), the 

Claisen condensation (129), the Amadori rearrangement (130), formation of the glycosidic bond 

in a pyrimidine (131) or a purine (132) nucleotide, metal-metal bond formation (133) and alcohol 

dehydrogenation (134). 

Thus, with the exception of free-radical reactions, nearly every type of common chemical 

transformation accelerated by proteinaceous enzymes is now known to be within the catalytic 

scope of RNA.  However, compared to the natural ribozoymes, the structural and mechanistic 

understanding of how artificial ribozymes catalyze these diverse reactions is far less developed.  

In most cases, studies have focused more on the catalytic capacity of a given ribozyme, and less 

on the manner in which it performs catalysis.  Structural characterization of a novel ribozyme has 

often been limited to the determination of its secondary structure, the minimal catalytic motif and 

invariant nucleotides therein and–if the RNA was selected owing to its ability to self-modify–the 
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nucleotide thus modified.  Mechanistic characterization has often been limited to an exploration 

of the substrate modifications and buffer conditions tolerated by the ribozyme.  Some examples 

are of this are presented below.   

Substrate modification studies can sometimes yield broad insights into the ways a 

ribozyme binds and turns over its substrates.  For example, since an artificial peptidyl transferase 

ribozyme can catalyze the formation of over 30 different dipeptides from diverse AMP-activated 

substrates (122), this enzyme likely makes few contacts with the acyl groups on these substrates.  

A similar conclusion can be drawn from the promiscuity of a cofactor synthetase ribozyme 

(101).  Conversely, since an aminoacyl-tRNA synthetase “flexizyme” (see below) is highly 

specific for an activated phenylalanine substrate, but will tolerate activation by various leaving 

groups (135), this ribozyme likely makes few specific contacts to those groups.  Characterization 

of the diverse products formed by a purine synthase ribozyme (130) suggested that catalysis 

proceeds through the formation of a Schiff’s base with its incoming 6-thioguanosine substrate.  

In none of these cases, however, have attempts been made to elucidate the specific functional 

groups within the ribozyme that are responsible for these phenomena.  

The metal ion dependencies of many artificial ribozymes have been characterized, 

though, since most RNA species require divalent metal ions for folding, the mechanistic 

implications of these results can be difficult to interpret.  Of potential interest are the obligate 

Ca2+- and Zn2+-depdencies of a phosphatase (98) and an alcohol dehydrogenase (128) ribozyme, 

respectively.  Despite the ribozymes’ having been selected from a complex mixture of available 

metals, these dependencies mirror the metal ion requirements of their analogous proteinaceous 

enzymes.  Though little detailed mechanistic insight can be gleaned from these results (a similar 

phosphatase ribozyme prefers Mg2+ or Mn2+ over Ca2+, for example (103)), they may be 
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considered as examples of convergent evolution of catalytic strategies.  Very thorough 

investigations have explored metal ion binding by a diels-alderase ribozyme–which will be 

discussed in greater detail below–and self-acylating ribozymes (136-138).  In this latter case, 

studies of metal ion tolerance have been combined with lanthanide footprinting and nucleotide 

analog interference mapping (NAIM) and revealed that this ribozyme probably does not employ 

a metal ion cofactor directly in catalysis. 

Remarkably, although a study of pH-dependence would seem a requisite early 

experiment in the study of a ribozyme’s catalytic mechanism, relatively few artificial ribozymes 

have been characterized even in this manner (136, 139-142).  An outlying example is the 

artificial “X-motif” ribozyme, for which self-cleavage was shown to be log-linear with 

increasing pH (143).  This result implies a single rate-determining deprotonization event during 

catalysis, in stark contrast with the natural self-cleaving ribozymes. 

 Beyond these experiments, there are a handful of examples in which the mechanism of an 

artificial ribozyme has been elucidated in greater detail.  Ligase ribozymes in particular have 

proven popular subjects for detailed examination and will be discussed at greater length below.  

Another example is the pyrimidine synthetase ribozyme, which has been studied through a series 

of primary and secondary kinetic isotope effect (KIE) experiments, using a double-labeled 

substrate partitioning strategy (144).  The primary KIE demonstrated little to no bond order 

between the anomeric ribose carbon and the pyrophosphate leaving group, while the secondary 

KIE was consistent with sp2-hybridization at the anomeric carbon.  Together, these results imply 

a dissociative reaction scheme, more similar to that employed by natural degylcosylating 

enzymes than it is to natural nucleotide synthetases.  In a second example, elaborate kinetic 

schemes have been elucidated for two classes of self-capping ribozymes (141, 145), each of 
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which also catalyzes the competing reactions of cap exchange and hydrolysis.  Owing to a rate-

limiting pyrophosphate release step that precedes cap-formation, both enzymes had been 

predicted to form on-pathway covalent intermediates.  For one of these ribozymes, an inspection 

of the reaction stereochemistry supports this model (141).  In a third example, a peptidyl-

transferase ribozyme has recently been shown to be faster in monovalent ions alone than it is in 

divalents, implying that catalysis does not require the direct participation of metal ions (142).  

Furthermore, given its log-linear pH dependence and a deuterium kinetic solvent isotope effect 

(KSIE) of ~10, it is possible that, unlike the ribosome, peptide bond formation by this small 

riboyme involves rate-limiting proton transfer.  In a fourth example, a photolyase deoxyribozyme 

(DNAzyme) that repairs cis, syn-cyclobutane pyrimidine dimers has been characterized by 

mutagenesis, substrate cross linking and nucleotide analog studies (146).  These and previous 

spectroscopic analyses imply that this enzyme uses a G-quartet structure as a photoactive 

“antenna,” which is thought to harnesses the energy in a photon in order to promote electron 

transfer from an active site guanosine to its substrate.  

 In all, a deep mechanistic understanding has been developed for relatively few artificial 

catalytic RNAs.  Although a wide gamut of powerful biochemical tools is available for probing 

RNA structure and function (147-150), some of which can simultaneously interrogate all of the 

residues on an RNA species with single-atomic precision, their use with in vitro selected 

ribozymes has been rather limited.  Moreover, perhaps the most powerful structural analytic 

technique in molecular biology, x-ray crystallography, has previously been applied to only four 

in vitro selected catalytic RNAs, in most cases at only one point along each ribozyme’s reaction 

trajectory (Figure 3).  Each of these structures is presented in detail below.   
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The Diels-Alderase Ribozyme 

 In vitro selection has yielded two small catalytic RNAs that catalyze Diels-Alder [4+2] 

cycloaddition between an RNA-tethered diene and an exogenous maleimide dienophile (126, 

127).  The reaction these enzymes catalyze is invaluable for organic chemists, though its use by 

enzymes is still debatable (151).  Nonetheless, it had previously been a popular target for the 

selection of catalytic antibodies (152, 153), and its acceleration by multiple RNA species was the 

first demonstration of RNA-catalyzed carbon-carbon bond formation.  Since one of these 

ribozymes (126) is built using modified uridines, the other (127) has emerged as the more 

popular model system by far: in addition to crystallographic studies, the structure, folding and 

catalysis of this ribozyme have been examined by EPR (154), single-molecule FRET (155), 

AFM (156), active site photo-crosslinking (157) and NMR (158).  Satisfyingly, the results of all 

of these have largely corroborated the crystallographic work described below. 

Crystal structures have been solved of the free Diels-Alderase ribozyme at 3.5 Å, and of 

the ribozyme bound to its cycloaddition product at 3.0 Å resolution (159).  Its structure is 

remarkably compact for a 49-nt species, being comprised of three helices pulled into close 

proximity by a central pseudoknot, converging into the shape of the Greek letter λ (Figure 3A).  

This architecture is clasped together through an extensive network of noncanonical base pairs 

and triples involving residues initially thought to be unpaired.  Further stabilizing the overall 

structure are six Mg2+ ions in various states of hydration.  While these metals make 

biochemically confirmed contacts that buttress interactions at the point of helical convergence 

(154, 155, 158), none are observed near the active site. 

In fact, the active site of the Diels-Alderase is nearly devoid of polarizable or ionizable 

groups of any sort, being almost entirely lined by the aromatic rings of nucleobases in the central 
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Figure 3.  Crystal structures of artificial ribozymes.  Each panel shows (left) the reaction 
catalyzed by, (middle) the global architecture of, and (right) the active site of its respective 
enzyme. In all structure panels, substrates, products or ligation junctions are colored dark blue.  
Where present, magnesium ions and waters are depicted as magenta and aqua spheres, 
respectively.  In right-hand panels, bases involved in substrate binding or catalysis are colored; 
those abutting the active site are shown in gray.  (Continued) 
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Figure 3. (Continued)  Black dotted lines indicate hydrogen bonds; magenta bars indicate metal 
ion inner-sphere coordination  (A) The Diels-Alderase ribozyme. Structure is of the enzyme 
bound to its cycloaddition product (159).  (B) Flexizyme.  “X” can be a variety of leaving 
groups.  Structure is of the enzyme covalently linked to a tRNA mini-helix, bound to a substrate 
analog, PheEE.  Model based on (160), with the docked PheEE coordinates kindly provided by 
Adrian Ferré-D’Amaré.  The red dashed line in the right panel indicates the proposed line of 
nucleophilic attack.  (C) The L1 ligase ribozyme.  Structure is of a circularized self-ligation 
product (161).  Note the U38•A51•G1 base triple, the sole tertiary contact.  (D) The Class II 
ligase ribozyme.  Structure is of the minimal motif product (162). 

 

pseudoknot.  In the apoenzyme structure, the pseudoknot houses a wedge-shaped central cleft 

spanning a ~31º angle, encased by canonical A•U pair, a noncanonical A•U pair and an A•G•C 

triple on each of its three sides.  These are abutted by an unpaired guanosine that induces an 

asymmetric widening of the central cavity, creating a “hydrophobic canyon.”  In the product 

structure, the A•U pairs and A•G•C triple stack perfectly against each aromatic face of the 

cycloaddition product, while the canyon provides a binding pocket complementary to its 

aliphatic linker.  The asymmetry of this canyon limits the orientation in which the two substrates 

could approach one another, explaining why the Diels-Alderase exclusively catalyzes the 

enantiospecific formation of (S,S) products (163). 

Of particular note, the free and product-bound Diels-Alderase structures are almost 

perfectly superposable, which confirms the previous prediction of a rigid, pre-formed active site 

(164) and has been further corroborated by NMR (158).  Active sites consisting of little more 

than sterically complementary aromatic residues were also observed in the Diels-Alderase 

catalytic antibodies (152, 153).  These results can easily be justified mechanistically, since active 

sites of this sort would provide ideal binding spots for aromatic substrates and would present 

complementary binding sites for stabilizing the transition state geometry.  Catalysis by these 
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enzymes, then, is thought to be achieved entirely through substrate approximation and 

orientation, though contributions from quantum effects are hard to gauge. 

 

The Aminoacyl-tRNA Synthetase “Flexizyme” 

 Though several aminoacylating ribozymes have been selected in vitro (117, 135, 139, 

165), the so-called “flexizyme” is unique in multiple regards.  First, although its selection 

scheme was based on self-modification, it was designed to favor the isolation of species capable 

of acylating the 3´-terminus of a tRNA in trans (135).  Since the resulting ribozyme appeared to 

recognize its tRNA substrate exclusively by base pairing with its 3´-CCA sequence, flexizyme 

variants could be programmed to specifically acylate an individual tRNA species by engineering 

additional contacts between the ribozyme and the tRNA acceptor stem (166).  Second, while 

flexizyme achieves ~104–fold discrimination between its proper phenylalanyl substrate and 

noncognate amino acids, it tolerates a variety of modifications in the chemical groups used to 

activate this substrate, ranging from 5´-AMP to cyanomethyl ester (167).  Together, these 

properties have made flexizyme an invaluable resource for engineering in vitro translation 

systems that incorporate nonnatural amino acids, thus yielding programmable ribosomal 

synthesis of nonbiological polymers (168, 169). 

 The 2.8 Å crystal structure has been solved of the flexizyme covalently bound to a tRNA-

like minihelix substrate, a species evocative of a noncovalent flexizyme•tRNA complex (Figure 

3B) (160).  Compared to the compact, tightly knitted architecture of the Diels-Alderase 

ribozyme, the flexizme structure is relatively austere.  Its architecture consists of an irregular 

helix nestled between two A-form helices, assembled into a single pseudocontinuous duplex 

without the participation of any long-range tertiary interactions.  The sole inter-domain contact is 
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a three-nucleotide hairpin turn that joins the enzyme to the substrate tRNA, presenting the 

acceptor stem into the active site at an angle roughly perpendicular to the enzyme core.  As 

previously predicted (170), the tRNA is recognized exclusively by base pairing between its 3´-

CCA terminus and the 3´-end of the enzyme. 

The flexizyme active site is entirely comprised of a short irregular helix, consisting of 

two unpaired residues that are enclosed by noncanonical base pairs: on one end a G•U wobble, 

and on the other a G•A pair and a single hydrogen bond “stretched” G•U pair.  A partially 

hydrated Mg2+ may tether the structure together through major groove contacts to each of the 

two G•U pairs (138), but this is too far removed from the active site to be directly involved in 

catalysis.  However, the stretched G•U pair seems to be functionally quite important: the unusual 

geometry widens the active site duplex, allowing its guanosine to stack against the substrate 

phenylalanine ring.  This same guanosine forms a hydrogen bond with the tRNA 2´-hydroxyl 

through its N2 amine, an occlusive contact that may explain why flexizyme acylates the tRNA 

3´-hydroxyl regioselectively.  The importance of this stretched G•U pair was furthermore 

confirmed through a targeted in vitro selection in which only the catalytic core residues were 

mutagenized.  Only three residues were revealed to be invariantly required for activity: the two 

nucleotides in this pair and the uridine that caps the hairpin loop. 

Since neither the 3´-aminoacylated product nor any of the activated phenylalanyl 

substrates was sufficiently stable in water to survive crystallization, crystals were grown in the 

presence of a longer-lived substrate analog, PheEE.  Only one of the two crystallographically 

independent monomers was observed to bind this compound.  It was therefore argued that each 

of the monomer structures was analogous to a discreet step along the reaction trajectory, 

corresponding to the states immediately prior to and after substrate binding.  If this hypothesis is 
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correct, then considering the gross structural differences between these two monomers, binding 

activated phenylalanine reorients several active site residues by ~0.5–1.2 Å, and concomitantly 

induces a global reorientation of the tRNA substrate helix with respect to the enzyme core.  

Coupling of phenylalanine and tRNA binding had been previously predicted for this ribozyme 

(170) and is reminiscent of the induced-fit mechanism reported for some natural aminoacyl-

tRNA synthetases (171).  However, this enzyme exhibits a paucity of candidates for functional 

groups directly involved in catalysis.  Considering the sequence malleability of all other active 

site residues, and since the crystal structure revealed no specific contacts made to functional 

groups on either substrate, it is possible that flexizyme catalyzes its reaction purely through 

substrate approximation. 

 

The L1 Ligase Ribozyme 

 The L1 is one of several ligase ribozymes to have been isolated from similar in vitro 

selection schemes (see below).  This particular ribozyme catalyzes the formation of a 3´-

5´phosphodiester bond between an oligonucleotide substrate and the α-phosphate of its own 5´-

triphosphate (106),  a reaction chemically similar to that of proteinaceous nucleic acid 

polymerases.  Unlike these polymerases, however, catalysis by the L1 ligase is highly sequence 

dependent: mutagenesis studies have revealed that the ribozyme requires its nucleophile to be 

positioned by a noncanonical G•A pair, adjoined on either side by G•U wobble pairs (172).  

Initial characterization also revealed that the L1 is highly flexible; certain sequence variants are 

even able to stably populate two discrete secondary structures, of which only one is catalytically 

viable.  This trait has been exploited in the engineering of allosteric L1 variants that function as 

molecular sensors, wherein ligation is responsive to the presence of oligonucleotides (106), small 
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molecules (106, 173) and polypeptides (174, 175), in cases achieving activation ratios as high as 

50,000. 

 The crystal structure of a self-circularized L1 ligation product has been solved to 2.6 Å 

resolution (Figure 3C)(161), a technical achievement that required the development of a novel 

ab initio phasing method (176) that has proven useful in the solution of other RNA crystal 

structures (50, 160).  Two domains comprise the roughly γ-shaped L1 ligase architecture, one 

bearing the template•oligonucleotide substrate duplex, the other bearing the “enzyme core;” a 

short hinge region positions these domains nearly perpendicular to one another.  However, much 

like the flexizyme structure described above, the asymmetric unit of this L1 ligase crystal 

contained two crystallographically independent monomers in dramatically different 

conformations.  One molecule is thought to represent a catalytically valid “docked” 

conformation, in which the ligation junction is positioned within the enzyme’s active site in large 

part through the action of an inter-domain G•A•U base triple.  In the other molecule, an ~79° 

unwinding of the hinge region precludes the formation of this contact, and as a result the enzyme 

domain is pulled away from the ligation junction and rotated ~180° away from the viable 

conformation.  Proper folding of the hinge region thus appears vital for catalysis, a property 

further corroborated by its high degree of conservation among active L1 isolates (172).  

 As observed in the docked conformer, the L1 ligase active site appears to be built from 

two adjoining structural motifs.  The first is a duo of noncanonical U•A and G•A base pairs 

within the enzyme core; these enclose an unpaired uridine that is consequently splayed out of the 

helical stack.  Extrusion from the enzyme core enables this uridine to participate in the second 

active site structural motif: the aforementioned G•A•U base triple with the triphosphate-bearing 

G1 nucleotide, the lone contact between the enzyme and template•substrate domains.  The 
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combination of these features induces a profound kink in the backbone near the extruded uridine, 

contorting the phosphates of two nearby sequential residues into a binding site for a high-

occupancy Mg2+ ion.  This metal is placed ~2.2 Å from the ligation junction phosphate, 

positioned with nearly ideal coordination geometry to play a direct role during catalysis.  

Moreover, coordination of this metal pulls one of the active site phosphate oxygens ~2.9 Å away 

from the ligation junction 3´-bridging oxygen, the remnant of the reaction nucleophile.  It was 

therefore proposed that metal coordination might perturb the pKa of this phosphate, potentially 

allowing it to function as a general base during catalysis by abstracting a proton from the 

hydroxyl nucleophile.  While this contact is apparently the only direct interaction to the 

nucleophile, a high-occupancy water molecule was observed participating in a network of 

hydrogen bonds with the adjacent 2´-hydroxyl.  Based on this, the authors originally speculated 

that this water might underlie the L1 ligase’s observed 3´-hydroxyl regioselectivity, since it 

would immediately quench any specious deprotonation of the 2´-hydroxyl.  However, 

subsequent mutagenesis studies (see below) have implied that local sequence context, more than 

any potential solvent interactions, may have a greater role in determining regiospecificity. 

 Overall, then, the L1 ligase ribozyme might catalyze RNA assembly by positioning the 

reactive hydroxyl and triphosphate in close proximity to a metal ion cofactor (32).  The 

proposition that this metal cofactor, in addition to transition state charge stabilization, might also 

activate a phosphate general base is compelling, though untested. 

 

The Class II Ligase Ribozyme 

 The first in vitro selection experiment to isolate novel catalytic RNAs from random 

sequences ultimately produced three distinct structural classes of self-ligating ribozymes (93, 
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105).  Each of these enzymes promoted the nucleophilic attack by the terminal hydroxyl of an 

oligonucleotide substrate on their own 5´-triphosphate, generating a new phosphodiester bond 

and yielding a pyrophosphate.  While the so-called Class I ligase selectively employed the 3´-

hydroxyl on its substrate as the reaction nucleophile, generating a common 3´-5´ phosphodiester 

linkage as a result, the Class II and Class III ligases regioselectively accelerated the formation of 

2´-5´ linkages.  Members of the Class II family had the simplest secondary structures of all three 

classes, consisting of a single irregular duplex that situated the triphosphate-bearing nucleotide 

within an asymmetric bulge.  While other structural elements unquestionably aided catalysis–the 

best class II isolate accelerating its reaction some 1010-fold over the uncatalyzed rate–the central 

asymmetric bulge could be thought of as a seven-nucleotide minimal catalytic motif.  An 

otherwise unmodified helix positioning its oligonucleotide substrate and 5´-triphosphate within 

this motif accelerated phosphodiester bond formation ~104-fold over the background rate, and 

maintained its preference for using the 2´-hydroxyl nucleophile by a factor of 4.5:1 (105). 

 Efforts to crystallize the intact Class II ligase at any point along its reaction pathway have 

proven unsuccessful, as have attempts to crystallize the minimal motif prior to ligation.  

However, two crystal forms of oligonucleotide duplexes corresponding to the minimal motif 

ligation product have been solved to 2.7 and 2.3 Å resolution (Figure 3D) (162).  Each of these 

Class II minimal motifs is essentially a short, irregular helix, from which the authors distilled 

three distinct structural features that contribute to catalytic activity and regioselectivity.  First is 

the triphosphate-bearing G1 nucleotide itself, which participates in a trans sugar-edge•Hoogsteen 

G•A base pair (177) and is consequently pulled into the major groove.  The adenosine of this pair 

forms a cross-stand stack atop the second structural feature, a “steric wedge” formed by two 

consecutive unpaired purines.  This wedge is pushed into and concomitantly widens the minor 
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groove just below the ligation junction.  Opposite the wedge lies the third feature, an unpaired 

guanosine that alternately adopts syn and anti glycosidic bond conformations in the two crystal 

forms.  The changes induced by this variation are slight, inducing a minor alteration in the G1•A 

propeller twist and creating different binding sites for partially hydrated Mg2+ ions.  Critically, in 

neither of these structures is a metal ion observed within 8 Å of the ligation junction. 

 Systematic mutagenesis studies on the full-length Class II ligase confirmed that all three 

of these features contribute to the catalytic rate; alterations that reposition the G1 nucleotide or 

which alter the unpaired guanosine were most damaging (162).  Moreover, observing that the 

Class II and L1 ligases position their triphosphate-bearing nucleotides by the same noncanonical 

base pair, but selectively form 2´-5´ and 3´-5´ linkages, respectively, an attempt was made to 

alter the regioselectivity of each enzyme through structure-guided design.  Comparison of the 

two crystal structures implied that the geometries of substructures bracketing the triphosphate-

bearing G1 might have the most profound effect on regioselectivity: since the G1•A base pair is 

shifted into the major groove, compensatory alterations to the nucleophile-bearing nucleotide and 

downstream steric wedge might reorient the triphosphate with respect to the potential 2´- or 3´-

hydroxyl nucleophiles.  A hybrid Class II ligase in which each of these active site structures had 

been converted to the analogous L1 ligase sequences did indeed exhibit a complete conversion in 

regioselectivity, though this came at the expense of a 108-fold loss in rate enhancement.  The 

converse experiment–in which Class II ligase structures were transplanted into the L1–resulted in 

a more modest conversion of stereoselectivity.  At the expense of a ~100-fold drop in overall 

activity, this chimeric construct showed an ~35-fold increase in 2´-5´ bond formation relative to 

the wild type L1, though still favoring 3´-5´ linkages by a factor of 14:1.  Collectively, these 

experiments provide a structural glimpse into a potential mechanism by which ligase ribozymes 
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select the hydroxyl nucleophile they activate, but are relatively uninformative in explaining how 

this activation is achieved. 

 

Trends in Artificial Ribozyme Structure 

Progress in understanding artificial ribozymes now allows one to speculate in a more 

informed manner how the products of billions of years of natural selection might differ from 

those isolated after a few rounds of in vitro selection.  Though one should take caution in 

extrapolating from such a small sample set, the artificial ribozyme crystal structures may reveal 

some general themes regarding the structural and mechanistic differences between natural and 

artificial RNA catalysts.   

First, in vitro evolved ribozymes appear less compact than their natural counterparts.  

This can be attributed to their relative paucity of highly defined long-range tertiary contacts, 

which are often observed to buttress the architecture of natural structured RNAs (178), including 

ribozymes (179).  The Hammerhead ribozyme illustrates a beautiful example of how such 

buttressing might play a paramount role in stabilizing a catalytically viable active site 

conformation (49, 50), though equally impressive examples abound in the other natural catalytic 

RNAs (60, 61, 73, 180).  While, among the artificial ribozymes, the tightly bundled architecture 

of the Diels-Alderase ribozyme is an outlying example, other members of its cohort suffer from a 

near or total lack of long-range tertiary contacts. 

 A related theme concerns the complexity of artificial ribozyme active sites.  Complex 

architectures allow the natural ribozymes to place a multitude of functional groups in close 

proximity to one another without many constraints on their relative orientation a priori.  

Comparatively simple architectures would force ribozymes to build active sites from residues 
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that are close in primary structure, thus imposing tighter spatial restraints on the directions from 

which the enzyme can engage the reaction center.  As an illustration, the GlmS ribozyme forms 

discrete contacts with each oxygen on the scissile phosphate, makes base- and ribose-specific 

contacts to the departing nucleotide, and encapsulates its catalytic cofactor with an array of 

interactions that position it at the active site.  Altogether, it employs functional groups on 

nucleotides presented by four different secondary structural elements to achieve these aims (60, 

61).  A more dramatic example is found in the Group I intron, which positions its Mg2+ catalytic 

cofactors through the concerted action of six phosphates that converge at the active site from 

three distant strands (43-45, 69).  Binding sites for each of its substrates are built from relatively 

local structures–grasping each exon in a simple Watson-Crick duplex and guanosine through an 

irregular helix.  The converse strategy is adopted by the Group II intron: while the “catalytic 

triad” responsible for positioning Mg2+ cofactors at its active site resides entirely within the 

single bulged-helix of domain V (70), binding its exon substrates requires the direct participation 

of three disparate domains (71) and is buttressed by a staggering number of complex tertiary 

structures (73).  Even the substantially simpler Hairpin ribozyme, using a handful of tertiary 

contacts to dock its two domains, contorts its substrate into a catalytically competent 

conformation and positions functional groups from each domain on either side of the scissile 

phosphate (52, 54).  By comparison, the active sites of Flexizyme or the L1 ligase, for example, 

seem unadorned in features that might specifically modulate substrate binding and catalysis. 

 A final theme, predicated on the previous two, concerns the inferred catalytic strategies 

used by artificial ribozymes.  Given the comparatively simpler global architectures and active 

sites of these enzymes, it is perhaps not surprising that their assumed catalytic strategies are also 

less subtle than those of the natural ribozymes.  Considering the four artificial catalytic RNAs 
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whose crystal structures have been solved, the most convincing evidence indicates that they 

achieve catalysis purely through substrate approximation, aided in one case by a metal ion 

cofactor.  Of particular note are the diminutive contributions from nucleobases. Although in the 

natural ribozymes, these can function as electrostatic or acid-base catalysts, in the artificial 

ribozymes they are thus far known only to function as stacking surfaces.  That the subtler aspects 

of biological catalysis may be beyond the purview of artificial ribozymes might explain their 

diminished catalytic capacity.  A cursory glance at the pantheon of artificial ribozymes reveals 

average rate enhancements of ~102–106–fold over their corresponding uncatalyzed reactions 

(74), as compared to ~109–fold for natural self-cleaving RNAs (181) and the famously 

staggering rate enhancements of 1010–1017 (182) achieved by some natural protein enzymes. 

Therefore, despite their potential to accelerate a multitude of different chemistries, the 

artificial ribozymes seem in many regards far simpler catalysts than even the “simple” natural 

self-cleaving ribozymes.  Concerning the RNA World hypothesis, a pessimistic interpretation of 

these data might be that RNA catalysts are simply best suited for the two chemistries they are 

currently known to accelerate in nature.  Alternatively, a rosier interpretation might posit that 

these data are merely evidence that the selective pressure exerted by experimenters in vitro 

simply has not matched that imposed during genuine evolution in vivo.  

 

RNA Replication in the Absence of Protein 

The Hunt for a Replicase Ribozyme 

 As noted earlier, the RNA World hypothesis proposes a simple solution to the “chicken 

and egg” paradox underlying the mechanics of the Central Dogma.  Yet, an unresolved issue 

fundamental to this theory is its implicit requirement that RNA be capable of self-replication 
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(11).  After all, in the absence of robust, uncatalyzed polymerization, the putative “ribo-

organisms” of the RNA World would reap little benefit from having enzymes that serve as 

templates for their own replication unless one of these enzymes could catalyze this replication 

(13, 183-185).  However, if such a replicase ribozyme exists in nature, it has not yet been 

observed. 

 Multiple lines of investigation have therefore sought to demonstrate that RNA is capable 

of catalyzing its own replication.  Initial progress was made using derivatives of the Group I 

intron, which could be coaxed into disproportionation reactions that extended a primer with 

multiple templated pyrimidines (186) or both untemplated (187) and templated mononucleotides 

(188) with fewer sequence constraints.  However, the polymerization fidelity in these reactions is 

untenably low.  Selection of the cognate Watson-Crick base over competing mismatches was at 

best ~65% in single-nucleotide primer extension reactions (188) and showed a variable degree of 

improvement when activated trinucleotides were used as monomers (189).  Recognizing that 

primordial polymerization may have exploited longer activated RNAs as monomers, parallel 

efforts have employed Group I derivatives to assemble multiple oligonucleotides in a template-

directed fashion (190), even generating long RNAs complementary to part (191) or all (88) of the 

enzyme’s sequence.  In a similar vein, an Azoarcus Group I intron that had been split into four 

smaller, inert fragments was shown catalyze its own covalent assembly in trans (192), 

representing the first step in a kind of self-assembled self-replication.  Importantly, all of these 

Group I-derived experiments mimicked the second step of the intron’s natural splicing reaction 

and employed a mononucleotide (typically guanosine) rather than pyrophosphate as the leaving 

group.  Hence, given the energetics of the transformations they catalyzed, many of these 

reactions suffered not only from severe sequence limitations, but also from the competing back-
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reactions in which extended primers are lysed by exogenous guanosine.  An intriguing recent 

development has been the observation that a Group I isolate from Anabaena naturally catalyzes 

the formation of a 3´-5´ phosphodiester bond using a pyrophosphate leaving group (193), a 

reaction similar to that of natural proteinaceous polymerases.  The extent to which this reaction 

can be generalized with other natural isolates, and to which this sequence-dependent single-

turnover reaction can be broadened to general polymerization, remains to be seen.  

 Given the limitations in building a replicase from existing natural ribozymes, other 

efforts have employed in vitro selection to generate artificial enzymes that may serve as more 

productive starting points.  For example, an artificial ligase ribozyme termed “R3C” base pairs 

directly to two short oligonucleotides and catalyzes the formation of a 3´-5´ phosphodiester 

linkage between them, yielding a pyrophosphate leaving group (108).  Using a design philosophy 

similar to that of the Group I-catalyzed oligonucleotide-linking experiments mentioned above, 

this enzyme was engineered to ligate two substrates corresponding to truncations of the enzyme 

itself, hence catalyzing a kind of self-regeneration (194).  However, since the enzyme remains 

base-paired to the new copy, this reaction is strongly product-inhibited.  This hurdle was partially 

alleviated by moving to a cross-catalytic ping-pong format, in which one R3C variant ligated 

truncated fragments of another, which in turn ligated truncations of the original enzyme (195).  

Further in vitro selection was used to optimize this system for multiple-turnover, yielding a pair 

of R3C variants that would replicate one another with exponential growth kinetics.  Diluting 

aliquots of the reaction mixture intro fresh buffer and substrates, this reaction could be continued 

indefinitely (196).  While achieving this kind of self-sustained replication by RNA is 

unquestionably a great milestone, it is unlikely that a system of this sort represents an 

intermediate on the pathway to general replication.  A true general replicase ribozyme would be 
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a single macromolecular species capable of copying any RNA in a template-directed fashion, 

using activated mononucleotides.  As such, the R3C system falls short of this goal in several 

regards.  First, it is an obligate bipartite system, requiring the presence of both ribozyme variants 

for replication.  Second, replication of this sort is far from general: since each R3C variant 

positions its substrates by directly base pairing to them, the available sequence space this system 

could copy is extremely limited.  Third, catalysis by the R3C ligase requires that the 

triphosphate-bearing nucleotide be a guanosine, and that it be unpaired.  Finally, the substrates in 

the R3C reaction are oligonucleotides, not mononucleotides. 

 

The Class I ligase Ribozyme, its Cohort and its Derivatives  

 To date, the most successful attempts at isolating a general replicase ribozyme have 

started with an artificial catalytic RNA termed the Class I ligase (Figure 4A) which was one of 

the first novel ribozymes to be isolated by in vitro selection (93).  Selection in this case was 

designed to isolate species capable of catalyzing a reaction analogous to RNA polymerization in 

the manner performed by proteinaceous enzymes.  This ultimately yielded three distinct 

structural classes of self-ligase ribozymes (105), all of which could also ligate exogenous 

substrate complexes in trans (Figure 4B).  Two structural classes were also able to catalyze 

multiple-turnovers in this format, making them true enzymes.  However, the Class I ligase was 

unique in multiple regards.  Subsequent in vitro selection and optimization (197) revealed the 

Class I secondary structure to be markedly more complex than that of its brethren, consisting of 

seven paired regions converging in a central four-way junction bracketed by a double 

pseudoknot (Figure 4A).  Catalysis by the Class I ligase is by far the fastest of the three classes, 

its trans-ligation rate approaching 109–fold enhancement above the uncatalyzed reaction, its self-
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ligation rate being too fast to measure by manual pipetting at pH ≥7.5 (105, 198).  This was also 

the only structural class for which the nucleophile and electrophile were positioned by Watson-

Crick base pairing.  Finally, while the Class II and Class III ligases preferentially accelerated the 

formation of a 2´-5´ linkage, the Class I ligase was exclusively regioselective for a 3´-hydroxyl 

nucleophile (105).  Overall, Class I ligase reaction–the Watson-Crick context dependent, 

regiospecific attack by a 3´-hydroxyl on a 5´-triphosphate, yielding a pyrophosphate–is 

chemically equivalent to a turnover of templated RNA polymerization as it is currently 

performed by proteinaceous enzymes.   

This confluence of traits–structural complexity, catalytic efficiency in both cis and trans 

contexts, selection for Watson-Crick base pairing and 3´-regioselectivity–was unique for the 

Class I ligase at the time of its isolation, and remains nearly unmatched by the numerous ligase 

ribozymes that have been isolated since.  For example, five other ligases are now known to 

selectively promote the formation of 3´-5´ phosphodiester bonds (106-110).  Of these, only the 

Class hc (109) and the DSL (110) ligases can tolerate a nucleophile and electrophile that are 

positioned by Watson-Crick pairing; for the Class hc this orientation is inhibitory.  Moreover, 

both of these ribozymes are less efficient than the Class I at trans ligation by a factor of 

approximately 105.  While the Class hc ligase has been optimized through further in vitro 

selection for ligation in this format (199), the resulting enzyme showed strong sequence 

dependence at substrate sites distal to the ligation junction, making it an unlikely candidate for a 

general polymerase.  

In addition to its catalytic prowess, the Class I ligase has also served as a versatile and 

flexible system for studying the population dynamics that occur during the in vitro selection 

process and for altering the format in which selection is performed.  An early example is so- 
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Figure 4. Reactions catalyzed by the Class I ligase and its derivatives.  Red arrows indicate 
electron movement during catalysis.  N is any nucleotide; N´ is its Watson-Crick complement.  
Lowercase letters indicate 2´-deoxy nucleotides.  (A) Cis-ligation with an oligonucleotide 
substrate.  Shown is the secondary structure of the “clone 207” ligase (105, 197), modified as in 
(200).  (B) Trans-ligation of two oligonucleotide substrates, SOH and pppS, as in (198).  (C) 
Extension of “primer” oligonucleotide using exogenous NTPs and a template that is covalently 
linked to the ligase core, as in (201). (D) Primer-extension as in (C), whereas the template is 
bound to the enzyme core by base pairing, as in (202).  The enzyme tolerates templates of 1–3 
nucleotides in length.  (E) General RNA-templated RNA polymerization as in (D), using an 
exogenous Primer•Template (PT) duplex, catalyzed by the “Round-18” polymerase (203). 
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called “continuous in vitro evolution,” in which all steps of the in vitro selection process are 

simultaneously performed in a single reaction vessel (204).  By juxtaposing transcription, 

ribozyme-catalyzed ligation (which in this format appends the ribozyme with a T7 RNA 

polymerase promoter), and reverse-transcription, the survival of any given RNA sequence from 

one generation to the next requires that it catalyze its reaction before having its structure 

disrupted by reverse transcription.  This scheme allows hundreds of rounds of selection to be 

performed in relatively little time, providing a facile route to visualizing population dynamics in 

vitro.  Moreover, although kinetic competition with reverse polymerase serves as the sole 

selective pressure in its simplest context, continuous evolution has been used to subject the ligase 

to the additional constraints of limiting magnesium (205), altered divalent metal ion 

compositions (206), extremes of pH (207), and competition with a ribonucleolytic DNAzyme 

“predator” (208) or with a different ligase species also under continuous selection (209).  

Furthermore, the Class I ligase has been co-opted for direct selection of multiple-turnover in an 

in vitro compartmentalization experiment (210), for computer-controlled selection on a 

microfluidic chip (211) and for zeptomole detection of Hepatitis C genomic RNA in vivo (212). 

 

The Class I Ligase: An RNA Polymerase Ribozyme 

Given the impressive catalytic efficiency of the Class I ligase and the similarity between 

its reaction and that of proteinaceous polymerases, this ribozyme represented an ideal starting 

point from which to build a general RNA polymerase ribozyme.   To test whether the ligase is 

itself capable of templated primer extension, a construct was designed in which the features 

analogous to the template and NTP in the self-ligase were removed (Figure 4D) (202).  By 
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providing a template-primer pair and NTPs in trans, the sequence dependence with which the 

ligase recognized its template, primer and incoming NTP could be systematically interrogated.  

Paired with a template coding for a single addition and provided with the complementary NTP, 

the ligase was able to extend its primer by one nucleotide.  This could be generalized for 

templates of any sequence, although reaction rates differed according to the identity of the 

template nucleotide.  However, in each case primer extension was selective for Watson-Crick 

pairing between the template and incoming NTP, even when the enzyme was challenged with a 

mixture of all four NTPs.  Based on kcat/KM measurements for every possible template•NTP pair, 

the average fidelity of single nucleotide primer-extension was ~85%, a substantial improvement 

over the best selectivity gleaned from Group I intron-derived polymerase constructs (188).  

Moreover, by using a longer template, the Class I ribozyme was able to extend a primer by three 

additions during a 24-hour incubation, achieving an average Watson-Crick fidelity of 88% 

among the tested templates.  The total number of additions increases to six if the template-primer 

pair is designed to bind the ribozyme core in multiple sequence registers.  As these reactions 

showed little bias for the sequence of the primer used, the ligase hence embodied all of the 

requisite features of a general RNA polymerase ribozyme (202). 

 

In-Depth Characterization of the Ligase 

Several lines of experimentation sought to further characterize the ligase catalytic 

mechanism and compare it to that of natural polymerases.   Proteinaceous polymerases are 

thought to use a universally conserved catalytic mechanism employing a pair of divalent metal 

ions liganded by active site aspartic acids (213).  One of these metals, “Metal A,” activates the 

3´-hydroxyl nucleophile for attack and, in cohort with the second metal, “Metal B,” stabilizes the 
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geometry and charge distribution of the transition state.  Recent work has implicated that an 

active site general acid and general base may further contribute to this mechanism (214); the 

base receives a proton from the activated nucleophile, while the acid protonates the 

pyrophosphate leaving group.  Though sequence identity of residues responsible for these 

functions is poorly conserved, the acid has been identified and confirmed biochemically (215). 

A screen of various divalent metal ions revealed that Class I self-ligation was only 

supported in the presence of Mg2+ or, to a much lesser extent, Mn2+; all other metals were 

inhibitory (140).  These preferences parallel those of proteinaceous polymerases (216), though 

Mn2+ is typically more highly tolerated.  Based on the Hill coefficients of Mg2+ binding, two to 

five Mg2+ ions were estimated as being critically required for folding and catalysis.  In addition, 

hydroxyl-radical probing, which serves as readout of tertiary structure by assaying the solvent 

accessibilities of each residue, revealed that the ligase adopts a nearly identical structure if 

reconstituted in Mg2+ or Ca2+.  This observation provided the foundation of a method for 

measuring self-ligation rates under conditions where folding is rate limiting.  By pre-folding the 

ligase in Ca2+ and initiating the time course by simultaneous addition of EGTA (a Ca2+-specific 

chelator) and Mg2+, the catalytic rate could be measured irrespective of the rate of folding.  A 

key result from these studies is the observation that self-ligation rates follow a pH dependence 

that is log-linear (slope of 1.0) between 5.8 and 8.5 (140).  This is different from the bell-shaped 

pH dependencies exhibited by proteinaceous polymerases (215) but resembles that of the natural 

ribozyme RNase P (217), for which the nucleophile is a metal-activated hydroxide ion. 

An attempt was also made at modeling the three-dimensional architecture of the ligase.  

Using the hydroxyl-radical probing data mentioned above to identify residues occluded from 

solvent, and a chemical crosslink between helices P5 and P7 (Figure 4A) as a topological 
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constraint, the orientation and topology of the seven helical stems was modeled computationally 

(200).  In the resulting model, the ligase architecture is comprised of three domains built from 

helices P1-P2, P3-P6-P7 and P4-P5.  These domains are compactly bundled parallel to one 

another, with P2 abutting P3 and P4, and P1 abutting P5 and P6.  While a predicted Watson-

Crick base pair between G46 and C113 was experimentally confirmed, no other explicit 

geometric constraints could be applied to the long joining regions J1/3 and J3/4. 

Meanwhile, biochemical experiments continued to reveal similarities and differences 

between polymerases built from RNA and protein.  Using variants (Figure 4C) of the primer-

extending construct developed in (202), contacts made to the incoming NTP were probed using a 

series of chemically modified nucleotide derivatives (201).  Phosphorothiolate substitutions on 

the incoming NTP α-phosphate resulted in a loss of activity that is dependant on the 

stereochemistry of the sulfur substitution, suggesting that the NTP α-phosphate pro-Rp 

phosphate oxygen, but not the pro-Sp, is potentially a direct metal ion ligand.  Modifications to 

other positions on the incoming NTP revealed interactions responsible for its binding.  While 

Watson-Crick pairing provided the strongest energetic contribution to nucleotide recognition, 

minor contributions from contacts made to the 2´-hydroxyl, γ-phosphate and purine N7 groups 

were also observed.  That the 2´-hydroxyl provided such a modest contribution to substrate 

binding is in stark contrast with proteinaceous polymerases, but could be justified as a residual 

effect from the original in vitro selection process.  Unlike natural polymerases, the ligase had 

never been challenged with 2´-deoxy substrates during its selection, and hence there is no 

selective advantage in avoiding them.   

Such residual effects of the in vitro selection process were also observed in a study using 

longer substrates.  During the process of converting the self-ligase to the primer-extending 
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enzyme, four nucleotides had been trimmed from the 5´-end of the ligase core.  Restoring 

truncations of this sequence in the form of 5´-triphosphorylated oligonucleotide substrates 

improves the kcat/KM of primer extension reactions by up to ~1300-fold, as compared to reactions 

with GTP.  However, this added efficiency was strongly dependent on the new sequence added 

to the substrate, those deviating from the wild type being worse than GTP alone.  This implies 

that the wild type substrates are more efficient because they restore electrophile-positioning 

interactions selected for in the original self-ligation context, but which had been ablated in the 

primer-extending enzyme.  In contrast, proteinaceous polymerases efficiently bind and position 

an incoming NTP using only the interactions made to that NTP. 

 

Ligase-Derived Polymerase Ribozymes 

Though the Class I ligase and its primer-extending derivative resemble natural RNA 

polymerases in multiple regards, properties remnant from their original selection preclude them 

from functioning as general RNA replicases.  Most notable of these is the manner in which they 

bind their templates.  In its original self-ligation context, the ligase is covalently linked to its 

template through J1/3 (Figure 4A).  But, even when this linkage is severed, as in the primer-

extending enzyme shown in (Figure 4C), template binding is accomplished through Watson-

Crick pairing to helix P2, a structural feature required for folding.   The consequences of this are 

twofold.  First, since the ligase can only bind templates with a programmed sequence at their 3´-

ends, the available sequence space of viable templates is substantially limited.  Second, binding 

the template by pairing with P2 limits the length of extension products the ligase can polymerize.  

Since the template also provides one strand of the P2 duplex, a transcript could never be 

extended past the point where it intrudes into P2.  Indeed, the longest non-repetitive sequence the 
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ligase core could extend is three nucleotides (202).  Having reached the limit of what could be 

accomplished through design alone, further in vitro selection would be necessary to overcome 

these restrictions. 

Such efforts have proven extremely fruitful.  Seminal work by Johnston et al. (203) 

harnessed the Class I ligase catalytic machinery in an in vitro selection experiment aimed at 

isolating general polymerase ribozymes.  Since binding an exogenous primer-template (PT) 

duplex through means other than base pairing was assumed to be an activity far from the ligase’s 

grasp, this experiment sought to augment the ligase catalytic machinery by evolving a second 

PT-binding domain.  A starting pool of  >1015 sequence complexity was built by appending the 

3´-end of a partially randomized ligase core (severed from its PT duplex as in (202)) with a 

randomized tail of 76 nucleotides.  In addition, the  5´-end of the pool was appended by a long 

leader sequence terminating in a 5´-5´ linkage to a short primer.  Selection was based on the 

ability to extend this primer with several 4-thio-uridine or biotinylated adenosine residues in a 

template directed fashion, hence facilitating the enrichment of active sequences without requiring 

that they modify themselves directly.  While this method does not explicitly require that enzymes 

bind their PT duplexes exogenously per se, it was hoped that tethering these groups by a flexible 

linker would approximate bimolecular binding.  Further efforts were also taken to avoid selecting 

ribozymes that bound their PT duplexes in a sequence dependent manner. 

Ten rounds of selection produced a single isolate with observable polymerase activity, 

the so-called “round-10” ribozyme.  This isolate was used as the basis for a new pool of >1015 

partially randomized sequence variants, which was subjected to eight additional rounds of more 

stringent selection.  This gave rise to 22 sequences with measurable polymerase activity, of 
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which the most active was coined the “round-18” ribozyme (Figure 4E) and chosen for further 

analysis. 

While its predecessors could only be said to approximate such an activity, the round-18 

ribozyme is a bona fide general RNA-dependent RNA polymerase.  Provided with NTPs, the 

ribozyme catalyzed primer extension by at least a single nucleotide addition with any of the PT 

duplexes tested.  Much like its natural counterparts, the round-18 polymerase did prefer some 

templates to others, and with these most efficient templates it extended its primer by up to 

fourteen nucleotides in a 24-hour incubation.  Activity was only modestly affected when either 

the coding region or the primer-template helix was extended five- to ten-fold, implying that there 

are likely few steric constraints limiting the PT duplexes.  Moreover, cloning and sequencing of 

its products revealed that the average fidelity achieved by the round-18 ribozyme was 

substantially improved over its parental ligase.  Full primer extension to the end of a coding 

region proceeded with an average error frequency of 1.1% per residue.  A more systematic study 

of misincorporation rates measured the average fidelity at 96.7%, which could be improved to 

98.5% by slightly lowering the GTP concentration.  Taken together, these data demonstrated that 

the round-18 ribozyme could bind a primer-template duplex of any sequence in trans and extend 

the primer in a Watson-Crick dependent manner.  Its only apparent limitation is in the length of 

its products. 

 

Characterization and Improvement of the Polymerase Ribozyme 

The ability of the round-18 polymerase to bind and utilize PT-duplexes was further 

characterized structurally (218) and mechanistically (219). The former study surveyed individual 

binding contacts by observing polymerization kinetics using a systematic series of modified 
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substrates bearing a single 2´-deoxyribose on either the primer or the template.  Each substrate 

actually reported the effect incurred by modification in multiple contexts, since the position of a 

given modification changed relative to the end of the primer each time the primer was extended.  

Considering this, and repeating the experiments with PT pairs of different sequences, errors due 

to sequence-specific incorporation differences could be partially alleviated.  Overall, the round-

18 ribozyme makes only a few contacts to 2´-hydroxyls on its PT substrates, binding at just two 

positions on either strand of the primer-template duplex and at three downstream positions in the 

template coding region.  Moreover, the magnitude of interference due to each substitution could 

reasonably be attributed to the loss of a hydrogen bond.  While these experiments are by no 

means exhaustive, having probed only a single type of functional group, they imply that the 

round-18 ribozyme binds its substrate through a small cadre of relatively weak interactions. 

A more mechanistic approach sought to characterize interactions between the polymerase 

and its substrate by directly measuring binding affinities and processivity (219).  However, each 

of these measurements was hampered by the observation that the ribozyme is inhibited in the 

presence of excess RNA, limiting both the range over which reagents could be titrated and the 

available techniques used in measurement.  In the case of binding affinity, the PT-duplex KD 

could be estimated at ~3mM, based on the magnitude of a burst observed during a prebinding-

dilution experiment.  In the case of processivity, a clever kinetic modeling technique was 

developed that used a single template and a series of primers corresponding to polymerization 

intermediates along that template.  Comparing the rates of extension at a given template position 

when that position is the first or second to be read, processivity could be modeled by optimizing 

a dissociation probability for each template residue.  Although these probabilities were 

developed by modeling the extension of a primer by only two nucleotides, the resulting model 
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accurately described polymerization kinetics with longer templates, implying that it is a 

sufficient descriptor of the system overall.   

However, in considering the prospects for building an RNA replicase from the round-18 

ribozyme, the results of this study are mixed.  On the one hand, polymerization by the round-18 

ribozyme is certainly not distributive: the average probability that the enzyme would remain 

bound to its substrate following a round of addition was ~23%.  In the best sequence contexts, 

this probability approached 90%, conferring a “running start” advantage to subsequent additions 

over the first.  On the other hand, processivity was highly sequence dependent; in certain 

contexts it was below measurement.  Despite the polymerase’s many encouraging traits, its 

transformation into a true replicase ribozyme would require an approximate 100-fold 

improvement in substrate affinity. 

One line of experimentation tried to overcome the limiting KD by colocalizing the 

ribozyme and its substrate, thus reducing the number of dimensions in which they diffused (220).  

To accomplish this, the ribozyme and PT-duplex were tagged with hydrophobic (cholesteryl or 

stearyl) anchors and assembled into micelles.  Reconstitution into these assemblies improved 

neither the apparent rate of single-addition extension nor in the maximum product length.  

However, primer extension in this context was more processive, populating fewer intermediates 

and improving the fraction of fully extended primers tenfold.  Still, even this modest 

improvement was only observed with certain PT-duplexes, and would likely prove insufficient to 

alleviate the shortcomings of the polymerase. 

Two separate efforts turned to in vitro selection in hopes of isolating polymerases with 

properties superior to those of the round-18 ribozyme.  The first of these started with the 

observation that the round-18 polymerase is the product of a population bottleneck, having been 
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evolved from a partially randomized pool derived from a single active species (203).  By 

returning to a pool from an early stage of the original polymerase selection and applying more 

stringent selective pressures, the authors hoped to isolate more efficient catalysts that had been 

missed during the first pass (221).  This yielded a total of eight new polymerase ribozymes with 

accessory domains dramatically different from the round-18 ribozyme.  Six of these species were 

active with all of the PT-duplexes tested, but none of them were as efficient as the round-18 

polymerase.  In theory, each of these new ribozymes could provide a potentially productive 

starting point for further design and selection experiments. However, it is also possible that the 

known isolates embody the catalytic optimum that can be obtained from this pool using the 

available selection technology. 

Inspired by this possibility, further work has thus sought to improve the round-18 

ribozyme through selection using an in vitro compartmentalization (IVC) methodology.  As 

noted above, the original polymerase selection did not explicitly require that enzymes bind their 

PT-duplexes in trans; in the resulting polymerase ribozymes a PT-binding deficiency limits 

activity.  To address this issue, Zaher and Unrau (222) developed an in vitro selection scheme 

that requires active isolates to bind a PT-duplex in trans, similar to methods previously used to 

select ligase (210) and diels-alderase (223) variants.  Briefly, a DNA pool corresponding to >1014 

sequence variants of the round-18 polymerase was ligated to an RNA PT-duplex.  This pool was 

emulsified in oil droplets along with all the components necessary for T7 transcription and 

ribozyme activity.  Transcripts arising from this pool cannot diffuse between oil droplets, and so 

active polymerase ribozymes–while not physically coupled to their substrates per se–are kept in 

close proximity to them.  Selection is based on the isolation of DNA sequences that are 

covalently linked to extended RNA primers.  This selection yielded a polymerase variant, termed 
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B6.61, that was superior to its predecessor in every assay performed.  It was approximately 

fourfold faster, exhibited higher fidelity and incorporated fewer G•U wobble mismatches than 

the round-18 ribozyme. Most impressive, however, is that the B6.61 polymerase could extend its 

primer by up to 22 additions during a 24-hour incubation, nearly twice as far as the round-18 

polymerase.  This boost in activity was due to relatively minor sequence changes: a five-

nucleotide A-rich expansion near the 5´-terminus, and a point mutation in the accessory domain.  

Such minor changes might be predictable, as the starting pool was a relatively conservative 

departure from the parental sequence, incorporating only a 5-nt random domain and 

mutagenizing at 3-10% elsewhere.  It is therefore possible that a more aggressively redesigned 

pool, coupled with the IVC selection technique, may yield even more highly active polymerase 

ribozymes or even a genuine replicase. 

However, it is likely that designing the most productive route from polymerase to 

replicase will require a more explicit understanding of the ligase ribozyme that lies at the 

polymerase core. 

 

Summary of this Study 

Since a higher-resolution understanding of catalysis by the Class I ligase ribozyme would 

likely be of great interest in several fields of study, we have sought to elucidate its structure and 

mechanism through a combination of x-ray crystallographic and biochemical experiments.  

Moreover, since artificial catalytic RNAs have not typically been dissected at the level of 

enzymological scrutiny enjoyed by the natural ribozymes, subtler structure-function analysis of 

the ligase mechanism may serve as a starting point for exploring the reactions it and other 

synthetic ribozymes catalyze in greater detail. 
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We opted to begin our analysis by solving the crystal structure of the self-ligated product 

species. Focusing on the product ensured that all molecules in our experiments had successfully 

traversed a transition state, and were hence not covalently defective in some manner.  Previous 

attempts at crystallizing the ligase product had been unsuccessful (N. H. Bergman, unpublished 

data), but our approach differed in several key regards.  First, our efforts were focused on an 

improved ligase variant that had emerged from an in vitro selection experiment aimed at 

optimizing catalytic efficiency.  Compared to its predecessor, this species showed a dramatically 

reduced dependence on Mg2+ for folding and catalysis (224), implying that it might prove a more 

robust crystallization target.  Focusing on this improved ligase was inspired by attempts to use in 

vitro selection to circumvent folding heterogeneities in other RNAs (58); these studies had 

yielded species with improved thermal stability (91, 225) and crystal quality (45, 226).  Finally, 

we employed the U1A “crystallization module,” a technology that had previously been 

successful in facilitating the crystallization of two recalcitrant RNA species (52, 58). 

The crystal structure of the Class I ligase product revealed a wealth of information about 

its global fold and active site architecture.  This initial structure was not only consistent with the 

existing body of biochemical probing data but has also withstood the scrutiny of further 

biochemical experiments (224).  This structure was furthermore shown to be reproducible in 

different crystalline environments and has proven a predictive model for the experiments 

described in the present work.  Overall, the ribozyme takes the form of a tripod, its legs built 

from three coaxially stacked domains, P1-P2, P3-P6-P7 and P4-P5, which converge in the 

vicinity of the ligation junction.  While the topology and relative orientation of these domains 

were accurately predicted by previous molecular modeling experiments, (200), the novel tripodal 

form was unanticipated.  Surprisingly, three longest joining regions, J1/2, J1/3 and J3/4, do not 
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mediate long-range tertiary contacts, as is often observed in large RNA structures, but rather 

decorate the exterior of the tripod scaffold.  Although most of the interactions within these 

regions are new examples of previously characterized motifs, two incarnations of a novel four-

nucleotide motif were observed in J1/3.  This was termed the A-minor triad, but is likely to be 

quite rare in nature: in known RNA crystal structures, only one other example was observed. 

Beyond the novelty of its overall architecture and the new motif discovered therein, this 

first class I ligase structure identified the functional groups comprising the active site.  The 

ligation junction is placed at the point of convergence between the three helical domains, 

opposite the gap between the two A-minor triads.  It is in close proximity to functional groups on 

three universally conserved residues: the C47 N4 and the backbone phosphates of A29 and C30.  

Each of these groups was probed directly: mutation of C47 to uridine decreased the self-ligation 

rate by a factor of greater than 104, while oxygen-to-sulfur modifications on A29 or C30 showed 

interference values among the highest measured for any position in the ribozyme.  Given these 

and other biochemical data, it was proposed that during catalysis, the C47 N4 hydrogen bonds to 

the leaving group, thereby stabilizing its developing negative charge, while the A29 and C30 

phosphates directly ligand an active site Mg2+ ion.  This metal would activate the 3´ hydroxyl for 

nucleophilic attack, in a role analogous to “Metal A” in proteinaceous polymerases and “Metal 

1” in the group I intron.  However, this initial assignment was speculative.  Since no electron 

density was observed for a metal ion in the active site, it was argued that a high-affinity metal 

site might have been lost during the course of catalysis or crystallization.  Given this possibility, 

the model for transition state stabilization by the ligase implied by these data resembles that of 

natural proteinaceous polymerases.  This work represents a substantial advancement in our 

understanding of the structure and catalytic mechanism of this ribozyme. 
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Because the Class I ligase is an obligate single turnover catalyst in its self-ligation 

format, the RNA species in the initial product structure was inert, lacking some the 

functionalities in a complete active site.  To further explore the structural basis of ligase 

catalysis, crystal structures of chemically trapped, unreacted ligase•substrate complexes were 

solved.  Though several routes to trapping this complex were theoretically available, high quality 

crystals were only obtained from samples in which the C47U mutant ligase was reconstituted and 

crystallized in Ca2+.  In isolation, neither the active site mutation nor the change in divalent metal 

composition ablates folding, though each alteration diminishes self-ligation activity by a factor 

of 104-105.  Furthermore, since Ca2+-grown crystals of the C47U mutant could be rapidly re-

equilibrated in Mg2+ prior to freezing, this approach facilitated not only the visualization of 

several intact ligase active sites, but also a structural understanding of the Mg2+-dependence of 

the ligase.  Overall, the folds of Ca2+-reconstituted and Mg2+-soaked structures were extremely 

similar to the product structure, a result that corroborates previous chemical probing experiments 

performed under both conditions.  However, the P1-P2 domain, which bears structures analogous 

to the template, primer and incoming NTP used by the polymerase, is structurally perturbed in 

Ca2+-bound crystal.  Since these structural pathologies were relieved in Mg2+-soaked crystals, the 

metal ion preference of the ligase may be the explained by its inability to productively position 

the template and electrophile in the absence of magnesium ions. 

Structures of the unreacted ligase•substrate complexes revealed features of the active site 

that were absent in the original product structure: the proposed divalent metal ion bound by A29 

and C30, as well as the 5´-triphosphate.  An inner-sphere contact between the active site metal 

ion and the primer 3´-hydroxyl pulls the reaction nucleophile closer to C30 than in the product 

structure, positioning it with nearly ideal geometry for in-line attack on the G1 α-phosphate.  The 
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G1 β- and γ-phosphates deviate dramatically from the extended conformation seen in 

proteinaceous polymerase•substrate complexes, instead making an unusual hooked structure that 

docks into the minor groove of the P2 helix.  While numerous metal ion contacts made to these 

phosphates seem responsible for stabilizing this conformation, none of them occupy a position 

similar to the canonical “Metal B” in proteinaceous polymerases.  The only functional groups 

near that location are the C47 N4 and C30 2´-hydroxyl. 

A series of biochemical experiments were performed to test the functional significance of 

these structural observations.  C47 was altered to a series of natural and modified bases, 

facilitating assignment between functional groups in the cytidine (or, in the case of the mutant, 

uridine) ring and the presumed roles played during catalysis.  Parallel chemical alteration studies 

of the C30 2´-hydroxyl revealed that this group functions by donating either a proton or a 

hydrogen bond and that its ability to do so is thermodynamically coupled to the chemical state at 

residue 47.  Solvent kinetic isotope experiments revealed that the wild type and chemically 

altered ligase species most likely transfer a single proton during the transition state of its rate-

determining step.  Taken together, these experiments augment the previous mechanistic model 

predicted from the product structure, and demonstrate the first example of an artificial ribozyme 

that employs an active site nucleobase. 

Overall, the experiments described here provide a detailed structural and mechanistic 

model of catalysis by the Class I ligase ribozyme, and begin to establish a concrete 

understanding of the strategies that underlie its remarkable efficiency.  Results from these studies 

will be invaluable in future efforts to design or select RNA polymerase ribozymes.  Moreover, 

they demonstrate that artificial ribozymes can employ subtle catalytic strategies similar to their 
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natural counterparts.  Efforts to further explore the mechanistic basis of artificial ribozyme 

catalysis may facilitate the generation of ribozymes with more complex and robust activities. 
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Abstract 

Primordial organisms of the putative RNA world would have required polymerase 

ribozymes able to replicate RNA.  In known polymerase ribozymes with activity best 

approximating that needed for RNA replication, the catalytic machinery for templated 

phosphodiester bond formation is derived from an artificial ribozyme, the class I RNA ligase.  

Here we present the 3.0-angstrom crystal structure of this ligase.  The architecture comprises 

three coaxially stacked domains that converge near the ligation junction.  These domains are 

brought together by the constraints of the enzyme’s secondary structure and a small cadre of 

additional interactions, such that the ribozyme resembles a tripod.  Interacting with this tripod 

scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the 

unpaired segment that recognizes Watson-Crick base pairs in the primer-template duplex and 

contributes to the active site.  Absolutely conserved residues form a pair of structural motifs that 

enclose the active site, positioning two phosphates and the exocyclic amine of a cytidine base 

within close proximity of the ligation junction.  Biochemical and structural data imply a model 

for transition state stabilization similar to that used by natural protein enzymes, possibly 

augmented by the additional participation of a catalytic nucleobase.  This structure provides 

insight into the potential mechanisms by which an RNA molecule might decode genetic 

information and catalyze its own replication in a simple primordial organism. 
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Introduction 

The RNA world hypothesis proposes that early life forms lacked both protein enzymes 

and DNA genes, and depended instead on RNA for both chemical catalysis and information 

storage (1).  Supporting this hypothesis is the observation that many fundamental, conserved 

biological processes depend upon RNA, or its metabolic precursors or derivatives (1-4).  Perhaps 

its most compelling aspect, however, is that enzymes made of RNA would have been much 

easier to replicate than those made of protein.  In contemporary organisms, replication of a single 

protein enzyme is a complex process requiring dozens of macromolecular components (including 

mRNA, tRNA, aminoacyl-tRNA sythetases, and the ribosome).  As this schema of gene 

expression employs information storing and catalytic biopolymers that are each rendered useless 

without contributions from the other, it is difficult to conceive of a way in which such a system 

could have spontaneously emerged from prebiotic materials.  However, replication of an RNA 

enzyme requires only a single macromolecular entity:  an RNA-directed RNA polymerase 

(RdRP) that synthesizes first a reverse complement, and then a copy, of the ribozyme (5).   

Because RNA enzymes (ribozymes) with RNA replicase activity have not been found in 

extant biology, efforts to explore the ability of RNA to catalyze this central activity of the RNA 

world have focused on engineered derivatives of natural (6-9) and on entirely artificial 

ribozymes (5).  A simple system based on such artificial ribozymes has been engineered to 

perform a kind of sustainable self-replication (10).  However, given both its use of 

oligonucleotides rather than mononucleoside triphosphates (NTPs) as substrates, and the 

substantial limitations in the sequence space of these substrates, this system doesn’t achieve the 

kind of general RNA replicase activity that would have been vital in the RNA world.   
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To date the RNA species that best approximate this general self-replicase activity contain 

at their core an artificial ribozyme known as the class I RNA ligase (11-14), which was selected 

in vitro from a large pool of random sequences (15).  It catalyzes regiospecific attack by the 3´-

hydroxyl of an oligonucleotide substrate on the triphosphate at its own 5´ terminus, yielding a 3´-

5´ phosphodiester linkage with concomitant release of pyrophosphate, while requiring both the 

nucleophile and the electrophile to be positioned by Watson-Crick pairing (Figure 1A).  Because 

this reaction chemistry is identical to that catalyzed by proteinaceous enzymes that replicate 

RNA, the ligase has provided a productive starting point for developing more sophisticated RNA 

enzymes that use NTPs and the information from an external RNA template to synthesize short 

strands of RNA (12-14, 16).  Although more efficient with some templates than with others, this 

primer-extension reaction is general in that all templates tested support detectable extension (12-

14), in some cases with modest processivity (17).  The ligase has also served as a flexible system 

for studying the evolutionary process itself in vitro, having been subsequently selected under 

numerous diverse constraints, including continuous selection (18, 19).  To understand the 

structural basis behind RNA-catalyzed RNA polymerization, we have solved the crystal structure 

of the class I ligase ribozyme. 
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Results and Discussion 

A ligase variant suitable for crystallization   

The ligase variant we crystallized was the product of three successive in vitro selection 

experiments.  After initial isolation of the class I ligase from random sequences (11, 15), more 

active variants were isolated from a large pool of mutant ligases (20).  A composite ligase that 

combined features of the more active variants from this second selection produced only low-

resolution crystals.  Therefore, we performed a third selection experiment, targeting for 

mutagenesis those segments not participating in known base pairs (termed “joining regions” 

because they link together paired regions) and selecting variants that folded and reacted within 

milliseconds (21).  A particularly active ligase from this third experiment crystallized in three 

forms, one of which diffracted to 3.0Å resolution.  This variant is more tolerant of low Mg2+ 

concentrations; it reacts 15 times faster than the predecessor in 1 mM Mg2+ (21) but only slightly 

faster than the predecessor in high Mg2+ [predecessor reaction rate, 800/min in 60 mM Mg2+, pH 

9 (22)].  As with the predecessor, its reaction is pH-dependent, slowing to 2.2/min in our 

crystallization conditions (10 mM Mg2+, pH 6.0).  In addition to producing a ligase suitable for 

crystallization, the last two selection experiments generated diverse but active sequence variants 

suitable for analyses of nucleotide conservation and covariation, which revealed residues and 

pairing interactions presumed critical for efficient ligase activity.  Seven paired regions, 

designated P1 through P7, comprise most of the ligase secondary structure (Figure 1A), with 

additional conserved residues falling in the joining regions.   
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Structure determination and overview  

Crystallization focused on the self-ligation product, obtained by purifying those 

molecules that ligated the substrate oligonucleotide to their 5´ terminus.  To facilitate lattice 

formation, a dispensable loop (20) was replaced with the U1A-binding module, and the ligase 

was co-crystallized with the U1A protein (Figure 1B) (23).  Crystals of this ligase-U1A complex 

formed in space-group P1, which contained two nearly identical copies in the asymmetric unit 

(all-atom ‡RMSD = 0.92Å, excluding the U1A protein and loop).  The structure was solved by 

single isomorphous replacement with anomalous scattering (SIRAS), using iridium- and 

cobalthexamine to obtain heavy-atom and pseudo-native datasets, respectively (24), and refined 

to Rwork and Rfree values of 20.2 and 23.4%, respectively (Table 1).  The final model included all 

nucleotides in each monomer, although some of the first nine residues in J1/3 (the joining region 

linking P1 to P3) were poorly ordered (Figures 2, 3). 

A parallel effort used a phage-display system to generate antibodies for cocrystallization 

(25), which yielded crystals with data to 3.1 Å.  The ligase structure in this second crystal form, 

solved independently, confirmed the structure presented here (all-atom RMSD = 1.48 Å) (Figure 

4).  Details of this structure will be published elsewhere. 

 The class I ligase structure consists of three coaxially stacked domains: P1-P2, P3-P6-P7 

and P4-P5 (Fig. 1B, C), the overall topology and relative orientation of w’hich are consistent 

with a model previously derived from chemical-probing data (26).  That model bundles the three 

domains nearly parallel to one another, but the crystal structure revealed them to be placed at 

relative angles of 58–71º, converging near the ligation junction so as to resemble a tripod (Fig. 

1D).  The domains appear to be positioned by the constraints of the secondary structure, aided by 

contacts to extruded nucleotides and residues joining the paired regions.  Residues abutting the 
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active site are occluded from solvent, in good correspondence with positions predicted by free-

radical mapping to lie in the ribozyme interior (26) (Figure 5).  Overall, however, because the 

legs of the tripod each protrude into solvent, the amount of surface area the ligase occludes from 

solvent is toward the low end of the distribution observed in other structured RNAs, more closely 

resembling that of tRNA and other smaller (60-100 nt) natural species, rather than that of RNAs 

in this size range (~115-175 nt) (Figure 6).  

 

J3/4 bridges all three domains 

Positioning the three helical domains are tertiary interactions at the top of the tripod 

(Figures 7A, 8A).  G45, the final residue of J3/4, contacts each of the helical domains, perhaps 

helping to orient them.  This residue abuts P4 and stacks with U76, the residue at the heart of the 

P3-P6 pseudoknot (Figures 7A, 8A).  This interaction pulls the 5′ strands of P4 and P6 close to—

and nearly parallel with—the J1/2 joining region, facilitating a contact between a C5 nonbridging 

oxygen and the 2´-hydroxyl of G45, a group with confirmed function (21).  This appears to be 

the sole direct contact between the P3-P6-P7 and P1-P2 domains.  U76, the residue upon which 

G45 stacks, spans the short gap between the 5´ strand of P6 and the 3´strand of P3, pulling the 

termini of these strands into close proximity, with the dual effects of enforcing coaxial stacking 

between P3 and P6 and inducing a profound kink in the U76 backbone.  Residues 75 and 77 

could further buttress this kink through the joint backbone coordination of a partially hydrated 

magnesium ion, aided by a hydrogen bond between the 2´-hydroxyls of U76 and G44 (21).  

Preceding the G47:U76 interaction is a Watson-Crick base pair between C40 and G44–

the first and fifth nucleotides of J3/4–both of which were previously considered unpaired 

(Figures 7A, 8A).  This unanticipated pair continues the helical axis of P3 and encloses a three-
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nucleotide loop (Fig 8A).  Disruption and restoration of Watson-Crick pairing demonstrated the 

importance of the C40:G44 pair for ligase activity (Figure 8B,C).  Moreover, the enclosed loop is 

superimposable with a GNRA tetraloop (Figure 9A), implying that the purpose of these residues 

is to provide a thermodynamically stable cap for the P3-P6-P7 domain.  Indeed, replacement of 

this sequence with a GAAA or UUUU tetraloop, and expansion of the helix by an additional two 

base pairs, had negligible effect on the ligation rate (Figure 8C). 

The GNRA-tetraloop-like triloop enclosed between C40 and G44 is one of two familiar 

structural motifs that cap opposite ends of the P3-P6-P7 domain.  L7 (U93-A98) forms a 

canonical “uridine-turn (U-turn)” motif, observed first in the anticodon loop of yeast 

phenylalanyl tRNA (27) and subsequently in the active site of the hammerhead ribozyme (Figure 

9B, (28, 29)).  The ubiquity of this motif in diverse RNA species might imply that its role in the 

ligase is analogous to that of the J3/4 GAA triloop, namely, to provide a short, 

thermodynamically stable cap at the end of a helical region.  This being said, this motif is not 

required for ligase activity, as the L7 sequence is variable in active ligase and polymerase 

isolates (11, 12, 20, 21). 

  

Recognition of the primer-template helix 

The A-rich J1/3 makes a series of tertiary contacts decorating the minor grooves of 

helices P1 (corresponding to the primer-template duplex used by the polymerase) and P6, 

crossing between them in the vicinity of the ligation junction (Figures 1B–C and 7B).  Of the 10 

minor-groove interactions, eight involve adenosines of J1/3.  Adenosines are particularly well 

suited to make interactions to the minor grove (30), and despite relatively high noise in the 

electron density map at residues U20–G28, interactions with the P1 minor groove could be 



 
 

 87 

assigned for three well-conserved adenosines in this region.  A22 makes a type I A-minor 

interaction (21, 30) with the second base pair of P1, while A25, A26 and A27 dock into the 

fourth and fifth base pairs of P1, which corresponds to the primer-template duplex used by the 

polymerase (Figures 7C and 10).  Each of these interactions is essentially blind to the identities 

of the base pairs in P1:  modeling any of the four Watson-Crick pairs at these positions retains at 

least two hydrogen bonds with the corresponding adenosine in J1/3, and allowing modest 

flexibility in the J1/3 strand (Figure 3A, C), no Watson-Crick substitution would introduce a 

steric clash.  Of particular note are the hydrogen bonds involving the 2´-hydroxyls of U16 and 

G–3.  In the polymerase, 2´-deoxy substitution is more detrimental at the position analogous to 

U16 than at any other template residue, and 2´-deoxy substitution at the position analogous to G–

3 is among the most detrimental primer substitutions (31).  Of particular note is the interaction 

between the N1 of A25 and the 2´-hydroxyl of U16, which corresponds to the template residue 

four nucleotides upstream of the polymerization site.  Hence A25–A27 make defined, yet 

sequence-independent, contacts that help explain the ability of the polymerase to utilize primer-

template helices of any sequence (12-14). 

Of potential interest is the structural homology between interactions made by A22–A25 

(near the 5´ end of J1/3) as they dock into P1 and that of the beet western yellow virus (BWYV) 

ribosomal frameshifting pseudoknot (Figure 11, (32)).  U23 is of particular interest, as the 

analogous residue in the viral pseudoknot is an adenosine, yet both are able to share a network of 

hydrogen bonds with the following cytidine residue and the 2´-hydroxyl of the docking 

nucleotide (Figure 11B).  Supporting the isosteric nature of these interactions, an adenosine at 

position 23 is frequently observed among highly active isolates from our most recent ligase 
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selection (21), and improved polymerase variants (14) show a sequence bias for adenosines in 

the region analogous to the 5´ end of J1/3. 

 

A novel structural motif in J1/3 

At the other end of J1/3, A31, A32 and A33 form a kinked structure in which their 

backbone sweeps out a ~90° angle as they dock into the P6 minor groove, passing from one 

helical strand to the other through a succession of hydrogen bonds identical to that of A25–A27 

(Figures 7B and C).  Both sets of adenosines are followed by a base that bears a major-groove 

carbonyl: G28 at the 3´ end of the P1 triad, U34 at the 3´ end of the P6 triad.   In both cases this 

fourth base is rotated away from the docking helix, directing its carbonyl downward toward the 

base triples which preceded it, such that the backbone strand of the motif assumes an ~90° angle.  

Hence we propose that this recurring four-nucleotide AAA(U/G) structure represents a novel 

motif, which we term the “A-minor triad” (Figure 12).  The two incarnations of this motif found 

in the ligase are superposable (Figure 12B, all-atom RMSD = 1.29Å, without the 5´-phosphate 

and 3´-(U/G), RMSD = 0.14Å). 

With the exception of a single hydrogen bond (between A26 N1 and G-3 N3, and 

between A32 N1 and G74 N3), the contacts made by an A-minor triad could form irrespective of 

the sequence into which it docks.  Hence, it is possible that this motif represents a simple 

structural module in which single-stranded RNA docks into the minor groove of a regular A-

form duplex.  If so, however, the motif is exceedingly rare.   A search through known RNA 

crystal structures revealed only a single additional instance–nucleotides 607-610 of the 16S 

rRNA (T. thermophilus numbering, Figure 12C).  Perfect A-minor triads are observed at this 

position both in T. thermophilus (33) and in E. coli (34).  Note that in the T. thermophilus A-
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minor triad, the three adenosines are followed by a guanosine, whereas in E. coli this last residue 

is a uridine.  These observations, in addition to the repeated selection of a uridine or guanosine at 

the end of each motif in active ligase or polymerase ribozyme variants (12, 14, 20, 21), further 

support the notion that the A-minor triad motif preferentially terminates in a residue bearing a 

major-groove carbonyl.   

The P6 A-minor triad helps form a Mg2+-binding site, which is modeled as making a 

combination of inner- and outer-sphere contacts with each of the last five nucleotides of J1/3 

(Figures 7B, 13A and 13C).  Placement of a metal ion at this position was supported by strong 

(~5.5σ) positive peaks in |Fobs|-|Fcalc| difference Fourier maps during the initial stages of 

refinement.  Direct metal coordination by the A31 and A32 nonbridging (pro-RP) phosphate 

oxygens brings these oxygens ~3.1 Å from one another, inducing a 90° kink that positions C30 

out of the helical docking register of A31–A33.  Outer-sphere contacts involving N7 of A32, N7 

and N2 of A33, and O4 of U34 further stabilize this interaction—roles that, in concert with their 

packing into P6, explain both the absolute conservation of these nucleotides in active ribozyme 

isolates (12, 14, 20, 21, 35) and the deleterious effects of chemically modifying them (21).  The 

T. thermophilus 16S rRNA A-minor triad potentially parallels this metal-binding ability: an 

A608 nonbridging oxygen binds to a solvent atom of unassigned identity (33), around which the 

rest of the motif hooks.  Hence, the propensity to form a metal-binding site may be a general trait 

of A-minor triad motifs, though, given the ligase P1 triad, not a universal one. 

 

Tertiary interactions bracketing the active site 

Between the two A-minor triads lies the active site (Figures 7B and 13A–C).  Forming 

the “floor” of the active site is A71, an absolutely conserved residue at the center of the four-way 
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junction linking the P4-P5 and P3-P6-P7 domains (Figure 1A–B).  A71 forms an imperfect type 

I A-minor interaction (30) with C86:G105, the first base pair of P7 (Figures 10 and 13C).  

Chemical modification of A71, or the 2´-OH of C86, severely affects catalysis (21).  The A71 A-

minor interaction also influences the structure of J1/3.  A29 stacks on top of A71, itself forming 

a type I A-minor motif with the G72:C85 pair at the base of P6 (Figures 10 and 13A).  Tracing 

the chain backward from its 3´ end, until this point J1/3 packs into the minor groove of the P6, 

and would be capable of continuing in a similar fashion along P7 were it not for the barrier 

presented by A71.  Stacking between A29 and A71 displaces the J1/3 strand, facilitating its 

transit from P6 to P1.  In so doing, the A71 barrier, in concert with the metal-stabilized backbone 

kink, encloses and buttresses the presumed active site centered on residues A29, C30, and C47 

(Figure 13C). 

The consequences of bracketing A29 and C30 between these motifs are twofold.  First, 

C30 is extruded from the minor groove of P6, the rotation of its base constrained by A73 so as to 

form a cross-strand stack with C47 (Figure 13A–C).  C47 is likewise extruded from helix P4, the 

plane of its base roughly perpendicular to the adjoining base pairs, with its N4 exocyclic is 

positioned 3.1Å away from the ligation junction.  Second, the A71 interaction prevents G28 from 

stacking below A29.  The consequent rotation of G28 places the phosphates of A29 and C30 in 

close proximity to one another (~5 Å between phosphorus centers) and facing P1.  The 

nonbridging oxygens at these residues are 4.5 to 5.3 Å from the 3′-hydroxyl and phosphate 

oxygens of the ligation junction. 

 We therefore propose that C47, as positioned by C30, and the backbone phosphates of 

A29 and C30 compose the ligase active site.  Both cytidines are conserved among active isolates 

(12, 14, 20, 21, 35), although their contributions to activity differ (Figure 14).  The C30U 
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substitution decreases activity by a factor of five, perhaps from disrupting the hydrogen bond 

between the C30 N4 and the C47 O4′ (Figure 13B), whereas the C47U substitution diminishes 

activity by a factor of  >104, consistent with a more direct role in catalysis. 

With only minor perturbation, the A29 and C30 backbone phosphates could provide a 

binding site for at least one catalytic magnesium ion as observed at active sites for some natural 

ribozymes (36, 37) and the L1 ligase, an artificial ribozyme that promotes a reaction resembling 

that of our ligase (38).  Although we observe no electron density corresponding to such a metal 

in the crystal structure of the ligated product, a high-affinity metal-binding site in the active 

ribozyme might nonetheless be lost during catalysis.  To test for a functional role for these and 

other backbone phosphate oxygens, we performed a nucleotide-analog interference mapping 

experiment (NAIM, (21, 39)), randomly incorporating Rp-phosphorothioate (oxygen-to-sulfur) 

substitutions and mapping those that interfered with activity (Figure 13D).  As expected, the sites 

of interference generally corresponded to the observed inner-sphere magnesium-binding sites in 

the crystal structure (21).  For example, substitution of sulfur for non-bridging oxygens at A31 or 

A32 had among the most dramatic interference effects observed, supporting the idea that inner-

sphere contacts at these phosphates create a metal-stabilized kink needed to form the cross-strand 

C30:C47 stack at the active site.  That substitution at A29 or C30 similarly abrogated function 

supports the hypothesis that other phosphates coordinate at least one magnesium ion that is 

catalytically critical in the transition state but not bound tightly in the crystallized product, 

although steric effects due to the larger sulfur atom cannot be excluded. 
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Interactions with the triphosphate-bearing nucleotide 

The electrophile for the self-ligation reaction is the triphosphoguanosine (G1) at the 5´ 

terminus of the ribozyme.  In polymerase ribozymes that perform primer extension reactions, G1 

is missing, its role performed instead by free nucleoside triphosphates (NTPs).  Also missing are 

the J1/2 residues tethering G1 to the ribozyme core.  The crystal structure revealed highly 

specific contacts to J1/2, which could help orient G1 in the active site and explain not only the 

extremely fast rate of self-ligation but also why primer extension with 5´-triphosphorylated 

oligonucleotides corresponding to truncations of G1–A3 are up to 103 fold more efficient than 

with GTP alone (Figure 15) (21, 40).  G2 forms a trans sugar edge/Hoogsteen base pair (41) with 

A11 (Figure 15B, left), a nearly universally conserved residue in all active isolates (12-14, 18-21, 

35).  A3 in turn makes a perfect A-minor motif (30), with G48:C113 (Figure 15B, middle).  

Finally, A4 stacks above another nearly universally conserved residue, A114, which in turn 

stacks on the G48:C113 pair (Figure 15B, right). 

Each of the interactions involving residues in J1/2 is supported by biochemical evidence.  

For the G2 interaction, methylation of A11 N1, which would induce a tautomeric shift in A11 

and ablate one of the hydrogen bonds in the G2:A11 pair, results in a loss of self-ligation activity 

(21).  Conversely, in primer extension reactions, restoration of the G2:A11 pair by using a 

pppGG substrate results in a >30-fold increase in kcat/KM relative to GTP.  Moreover, ablation of 

this pair with a pppGAAA substrate results in a two-fold loss of kcat/KM relative to GTP, and a 

>80-fold loss relative to pppGGAA (40).  For the A3:G48:C113 triple, chemical alteration of 

C113, ether by methylation of N3 or 2´-deoxy substitution, results in a substantial loss of self-

ligation activity (21).  Conversely, primer extension with pppGGA, which restores the potential 

for forming the A3:G48:C113 triple in trans, is 103 more efficient than with GTP alone (40).  For 
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the A4/A114 stack, methylation of A114 N1, which increases the van der Waals profile and 

hence stacking potential of that base, increases self-ligation activity (21).  Primer extension 

reaction with pppGGAA, which would restore this interaction in trans, is >40-fold more efficient 

than with GTP alone, but is likewise only 3% as efficient as with the pppGGA substrate (40).  

This might be explained by the fact that A4 does not dock into its position via formation of a 

base pair or triple, as do G2 and A3, but instead must thread itself through the intersection of the 

P1-P2 and P4-P5 domains (Figure 15A and 15B, right), which may be entropically unfavorable. 

 

RNA polymerases built from protein and RNA 

The crystal structure of another ligase ribozyme, the L1, has been solved (38), allowing 

us to compare multiple active sites–built from both RNA and protein–that accelerate similar 

reactions.  Proteinaceous nucleic acid polymerases employ a universally conserved catalytic 

mechanism requiring a pair of aspartic acid-liganded divalent metal ions (42, 43), and have been 

proposed to employ general acid to stabilize the pyrophosphate leaving group (44) (Figure 16A).  

We aligned the L1 and class I ligase structures to that of a Pol-α family DNA polymerase (45), 

anchoring this alignment on the last base pair in the primer-template duplex.  This juxtaposed the 

conserved active-site aspartic acids in the protein enzyme with proposed active site phosphates in 

both ligases (Figure 13E), further supporting the notion that in the ribozymes these moieties may 

serve to position one or two catalytically critical metal ions.  However, while catalytically critical 

residues in the class I ligase (C47) and DNA polymerase (Lys560, (44)) occupy similar positions 

in their respective active sites, no analogous functionality is seen in the L1 ligase.  This may 

explain, in part, why the class I is several orders of magnitude more efficient than the L1. 
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 We therefore propose a preliminary model for catalysis by the class I ligase and its 

polymerase derivatives that resembles the mechanism of proteinaceous enzymes.  In our model, 

the substrate α-phosphate and backbone phosphates of A29 and C30 jointly ligand a catalytic 

magnesium ion (Figure 16B).  This metal activates the primer 3´-hydroxyl for nucleophilic attack 

and stabilizes the trigonal bipyrimidal transition-state geometry, directly analogous to the 

canonical “Metal A” in known polymerases (43).  In addition, because free nucleotide 

triphosphates bind divalent cations, we suggest that the G1 triphosphate (or the incoming NTP) 

enters the active site complexed with a second metal, which, after binding, would remain 

coordinated by oxygens on the β- and γ-phosphates.  At the transition state, this second metal 

helps stabilize the developing negative charge on the pyrophosphate leaving group.  Although we 

cannot discretely assign moieties on the ribozyme that would aid in its binding, this second metal 

would stabilize the developing negative charge on the pyrophosphate leaving group, aided by the 

exocyclic amine of C47, which hydrogen bonds to the (α,β) bridging oxygen.   

Our model, which postulates a hydrogen bond to the leaving oxygen in the transition 

state, differs from that of proteinaceous polymerases, which involves proton transfer to this 

oxygen in the transition state (44).  Although nucleobases can act as general acids at ribozyme 

active sites (46), we disfavor ascribing such a function to C47.  Formally, the C47 N4 exocyclic 

amine could serve as a general acid catalyst according to two models: (1) C47 acts from the 

neutral form, generating the nucleobase anion following proton transfer from N4, or (2) the 

catalytically active form of C47 is a cation that is protonated at N3.  N3 would hence serve as an 

electron sink, favoring a tautomeric shift to the N4-imino form as a proton is transferred from N4 

during catalysis.  We consider both of these models unlikely.  For Model 1, the neutral form of C 

(pKa >12) is not sufficiently acidic to serve as an effective general acid.  Moreover, with 
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increasing pH, the ribozyme ligation rate increases log-linearly with a slope of 1.0 (pH 5.7 to 

8.5), consistent with the net loss of one proton, presumably that of the nucleophile, when 

proceeding from the ground state to the transition state (22).  If general-acid catalysis by C47 

were dominant at the transition state, the pH–rate profile would likely deviate from linearity over 

this pH range.  Otherwise, for Model 2, in order to provide general acid catalysis without 

influencing the pH-rate profile over the range 5.7-8.5, the ribozyme would have to shift the pKa 

of the C47 cation by at least four pKa units (from 4  to > 8.5).  Finally, if C47 were a general 

acid, the functional group donating the proton would differ from that of the active-site cytidine of 

the hepatitis delta virus (HDV) ribozyme, wherein the N3 imine is thought to act as the proton 

donor (46).  For the ligase, methylating N3–which would perturb the pKa for both N3 and N4, 

has a negligable effect on catalysis, which rules out Model 2, and direct participation of N3 but 

not N4 (21). 

 

Regioselectivity by the Class I ligase ribozyme 

Although many RNA ligase ribozymes have been selected in vitro, the class I ligase is in 

the minority of species that employ the substrate 3´-hydroxyl as a nucleophile.  The L1 ligase 

also falls into this class.  Given the crystallographic evidence (38), it was hypothesized that this 

ribozyme achieves regioselectivity via an inhibitory water-mediated contact to the substrate 2´-

hydroxyl, which is proposed to quench any alkoxide species that might develop on the 2´-

position.  Binding this quenching water was proposed to require that the nucleophile be situated 

within a G•U wobble pair.  We observe no analogous interactions in the class I ligase structure; 

in fact, there is a remarkable dearth of interactions made to the A–1 nucleophile in general.  

Although we cannot preclude the possibility that the interactions responsible for regioselectivity 
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have been lost during the course of catalysis due to a local conformation change, our favored 

model is that selection arises purely as a consequence of Watson-Crick pairing.  A–1 and G1 are 

positioned in canonical base pairs within a continuously stacked A-form duplex, which naturally 

places the A–1 3´-hydroxyl optimally for in-line attack on the G1 5´-α-phosphate.  Reorienting 

A–1 so as to place its 2´-hydroxyl at the active site, however, would require gross deviation from 

A-form geometry, which would be energetically disfavored and could perturb the active site.  

 Recent crystallographic and biochemical work on the class II ligase–which almost 

exclusively catalyzes the formation of a 2´-5´ phosphodiester linkage (11)–seems to further 

support the notion that regioselectivity is largely determined by the local sequence context 

situating the nucelophile and electrophile (47).  By examining the L1 and class II crystal 

structures, the authors were able to alter the regioselectivity of each ribozyme simply by 

changing the sequence of the base pairs abutting the ligation junction.  Interestingly, in the L1 

ligase, conversion of the G•U wobble pair orienting the nucleophile to a Watson-Crick pair has 

little perceptible effect on the regioselectivity, calling into question the proposed wobble-specific 

water-quenching mechanism.  For both ribozymes, the most efficient conversion to the opposite 

selectivity was observed when mutations at the ligation junction were augmented by mutation of 

the base pair downstream of the ligation junction, implying that the positioning of the 

electrophile by adjoining bases plays a role in determining regiospecificity.  In the class I ligase, 

however, sequences downstream of the ligation junction do not play an essential role for 

regiospecificity.  Primer extension with exogenous GTP, which occurs without downstream 

sequences with which to position the electrophile, maintains selection for the 3´ -hydroxyl 

nucleophile (16). 
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Also of note is that the L1 and class II ligases both position their electrophiles via a trans 

sugar edge/Hoogsteen A•G base pair, not via Watson-Crick pairing.  This is identical to the 

G2•A11 pair observed in the class I ligase (Figure 15B, left).  It is interesting to consider that, 

had the register by which J1/2 docks into P2 been offset by one base–aligning A11 with G1 

rather than with G2–the class I ligase might have emerged as a 2´-5´ selective enzyme as well.  

 

Conclusion 

By identifying the residues at the active site, the ligase crystal structure we report here 

will facilitate directed examination of the catalytic mechanism of RNA-catalyzed RNA 

polymerization.  Our model also provides insights into how known polymerase ribozymes 

recognize primer-template duplexes, the feature most in need of improvement for developing a 

self-replicating polymerase ribozyme (14, 17).  This binding activity can now be targeted more 

explicitly in future design and selection experiments. 
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Materials and Methods 

U1A Expression and Purification 

The U1A A1-98 Y31H/Q36R double mutant (23, 48) was expressed from the plasmid 

p11U1ADb.  To construct this plasmid, the protein-coding sequence from a vector provided by 

Adrian Ferré-D’Amaré and Jennifer Doudna was inserted into the pET11a (Invitrogen) plasmid, 

thereby generating a vector that expressed more efficiently than its predecessor.  For protein 

expression, a saturated culture of E. coli BL21(DE3) cells transformed with p11U1ADb was 

diluted 1:1000 into LB supplemented with 100 µg/mL ampicillin and grown in baffled flasks at 

37º C with vigorous shaking.  Protein overexpression was induced by the addition of 0.5 mM 

IPTG when cultures reached an OD600 of 0.7.  Growth was continued at 37º C in the same 

fashion for another 2.5 hours, and cells were harvested by centrifugation and stored at –80º C 

before use.  Pellets from a two-liter culture were resuspended in 40 mL of the lysis buffer 

described in (49) and lysed by two passages through a French press at 4º C.  Thereafter, 

purification was performed essentially as in (23), following a detailed protocol provided by 

Kaihong Zhou of Jennifer Doudna’s laboratory.  Column fractions from the final purification 

step were assayed individually for the presence of contaminating ribonuclease by overnight 

incubation with 32P body-labeled RNA and visualized by gel electrophoresis and 

phosphorimaging.  Fractions lacking nuclease were pooled, dialyzed into storage buffer (23), 

concentrated to 15 g/L and stored at –80º C before use. 

 

Crystallization Constructs 

The crystals producing the native dataset were of an improved class I ligase (21) (Figure 

1A), modified at the end of P5 with four additional base pairs terminating in the U1A-binding 
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loop (Figure 1B).  DNA representing the unligated form of this ribozyme was subcloned into 

pUC19 (New England Biolabs) under a T7 transcription promoter, followed by a genomic 

hepatitis delta virus (HDV) self-cleaving ribozyme (50) and an EarI restriction site, yielding the 

plasmid p307HU.  The HDV sequence cleaves itself from the ribozyme 3´ terminus, thereby 

producing a homogenous ribozyme 3´ end.  The relevant DNA sequence of the insert was 

GCGTAATACGACTCACTATAGGAACACTATACTACTGGATAATCAAAGACAAATCTGCCCG
AAGGGCTTGAGAACATACCCATTGCACTCCGGGTATGCAGAGGTGGCAGCCTCCGGTGGGTTAA
AACCCAACGTTCTCAACAATAGTGAGGCCGGCATGGTCCCAGCCTCCTCGCTGGCGCCGGCTGG
GCAACATTCCGAGGGGACCGTCCCCTCGGTAATGGCGAATGGGACCCAC 
 

in which taller characters indicate the T7 promoter, bold nucleotides denote the 5´ and 3´ ends of 

the ligase, underlined nucleotides are those that have been engineered to facilitate crystallization, 

and the italicized residues are the U1A-binding loop.   

A second construct, pH307HP, was used to transcribe RNA representing the post-ligation 

product of the ribozyme.  To ensure a homogenous 5´ terminus with the 5´-hydroxyl resembling 

that of the synthetic substrate, the transcript began with a hammerhead (HH) self-cleaving 

ribozyme (50), which excises itself from the ribozyme.  The relevant DNA sequence of the insert 

was 

 
GCGTAATACGACTCACTATAGGGAGATTCCTACTGGACTGATGAGTCCGTGAGGACGAAAC
GGTACCCGGTACCGTCTCCAGTAGGAACACTATACTACTGGATAATCAAAGACAAATCTGCCCG
AAGGGCTTGAGAACATACCCATTGCACTCCGGGTATGCAGAGGTGGCAGCCTCCGGTGGGTTAA
AACCCAACGTTCTCAACAATAGTGAGGCCGGCATGGTCCCAGCCTCCTCGCTGGCGCCGGCTGG
GCAACATTCCGAGGGGACCGTCCCCTCGGTAATGGCGAATGGGACCCAC 
 

annotated as above.  Prior to use as templates for in vitro transcription, plasmids were digested 

with EarI nuclease. 
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RNA Synthesis and Purification. 

T7 in vitro transcription reactions were as described (20), in volumes of 3–10 mL, with 

20 µg/mL EarI-linearized template plasmid.  After 2.5 hours, reactions were quenched by the 

addition of EDTA, extracted with phenol and chloroform, then ethanol precipitated.  Pellets were 

resuspended in water and desalted with RNase-free P30 gel-filtration spin-columns (BioRad).  

To ensure complete processing of the self-cleaving ribozyme(s), the effluent was heated and 

cooled (85º C and 37º C, 5 minutes each), brought to one-fifth the original transcription volume 

in HDV Buffer (30 mM Tris, pH 7.4, 10 mM MgCl2, 200 mM KCl), and incubated for 45 

minutes at 37º C.  These reactions were quenched with EDTA, ethanol precipitated, and 

resuspended in a minimal volume of water.  

 RNA that had been transcribed as the unreacted ligase species (from the p307HU 

template) was diluted with urea (~6 M final urea concentration), and loaded onto preparative-

scale denaturing 6% polyacrylamide TBE/Urea gels (33 cm width, 42 cm height, 4.76 mm 

spacers).  Following electrophoresis, bands were visualized by UV-shadowing and excised, and 

RNA was isolated either by electro-elution into 0.5X TBE (Elutrap System, Schleicher and 

Schuell), or by passive elution into 300 mM NaCl at 4º C for two days, harvesting material after 

each day.  RNA was ethanol precipitated and resuspended in water to a final concentration of 5 

µM.  To form the product species, this material was preincubated (80º C for 5 minutes, 22º C for 

10 minutes) then reacted with the substrate oligonucleotide 5´-UCCAGUA- 3´ (Dharmacon), 

initiating the reaction with simultaneous addition of buffer, salts and substrate (final 

concentrations, 1 µM ligase, 2 µM substrate, 50 mM MES, pH 6.0, 10 mM MgCl2, 50 mM KCl, 

1 µM EDTA).  After 30 minutes at 22º C, the reaction was quenched with EDTA, ethanol 

precipitated and resuspended in ~6 M urea.  To enable separation of the ligated product (137 nt) 
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from unreacted ribozyme (130 nt), material was loaded onto multiple preparative 6% 

polyacrylamide TBE/urea gels (same dimensions as above, 0.5 mg RNA/gel), and subjected to 

12-15 hours of electrophoresis.  Product was visualized and purified as for the unligated RNA.  

Following the final precipitation, pellets were air-dried to remove residual ethanol, resuspended 

in minimal water, filtered to remove any particulate matter (0.22µm Centrex filters, Schleicher 

and Schuell), and stored at –20º C. 

 RNA used to prepare derivative crystals was transcribed as the ligated product species 

from the pH307HP plasmid and treated to remove the 2´-3´ cyclic phosphate left by cleavage of 

the HDV ribozyme.  (This material was prepared in the course of exploring an alternate crystal 

form for which crystallization was sensitive to the state at the 3´ terminus.)  Following HDV 

processing, RNA was desalted, diluted to 10 µM in water and heat/cooled (85º C and 37º C, 5 

minutes each).  The cyclic phosphate was removed by T4 polynucleotide kinase (PNK) 

treatment, using “method iii” described in (51), except that RNA was diluted to a final 

concentration of 5 µM, and PNK (New England Biolabs) was at 0.5 U/µL.  After six hours at 37º 

C, the reaction was quenched with EDTA, extracted with phenol and chloroform, and ethanol 

precipitated.  The pellet was resuspended in water, and material from up to 5mL of initial 

transcription was separated on a single preparative-scale denaturing 6% polyacrylamide 

TBE/urea gel.  After electrophoresis, purification was identical to that described above for 

ligated p307HU-transcribed material. 

 To inspect for full removal of the 2´-3´ cyclic phosphate, we developed an assay 

appropriate for larger RNAs, which cannot be evaluated using the gel-mobility-shift assays 

useful for shorter RNA species.  Following T4 PNK treatment, 25 pmol of RNA was desalted 

and incubated at 2.5 µM final concentration with 750 U of Yeast Poly(A) Polymerase (USB), in 
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the manufacturer’s supplied buffer, supplemented with 1 mM ATP.  After 30 minutes at 37º C, 

reactions were quenched with EDTA, extracted with phenol, diluted with urea, boiled and 

separated on a diagnostic-scale 6% polyacrylamide TBE/urea gel.  RNA molecules terminating 

in a cis-diol were extended by poly(A) addition to produce longer species, whereas RNA not 

treated with PNK did not shift (Figure 17A).  As expected, this assay was sensitive to the 

covalent state of both the 2´ and 3´ hydroxyls: opening the cyclic phosphate by acid-catalyzed 

hydrolysis (resulting in a mixture of 2´- and 3´ linear mono-phosphates (52)) produced RNAs 

that were unsuitable substrates for poly(A) extension, whereas further alkaline-phosphatase 

treatment (Roche) to remove the linear phosphate (52) allowed poly(A) extension of nearly all 

material (Figure 17B). 

 

Crystallization 

Approximately 200 µM RNA was heated (80º C, 5 minutes) and cooled (22º C, 10 

minutes) in water, and then mixed with annealing buffer (final composition, 5 mM MES, pH 6.0, 

10 mM MgCl2, 1 mM DTT), and incubated at 22º C for an additional 15 minutes.  U1A was 

added at a 1:1 molar ratio of RNA:protein to bring the final complex concentration to 5.2 g/L.  

This mixture was incubated at 22º C for 45–60 minutes, mixing periodically, then centrifuged at 

13,000×g for 1 minute prior to setting up crystallization experiments. 

 Initial crystals were obtained by hanging drop vapor diffusion, mixing 1 µL of the 

ligase:U1A complex sample with 0.5 µL mother liquor consisting of 20–30% (v/v) 2-Methyl-

2,4-pentane-diol (MPD), 50 mM sodium cacodylate (pH 6.0–7.0), 30-40 mM magnesium acetate 

and 1 mM spermine, and equilibrating over 0.6 mL of this same precipitation mixture at 20º C.  

Crystals appeared over 2–3 days, and grew to full size (~70 µm per side) within a week, most 
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often with an intractable habit (inseparable clusters or stacks of plates).  Only ~1% experiments 

performed in this fashion yielded usable crystals. 

A systematic screen of additive compounds (Hampton Research) revealed that addition of 

50 mM KCl to the crystallization mixture slightly diminished the degree of crystal clustering, 

whereas 100 mM KCl ablated nucleation altogether.  We therefore exploited these properties, 

using microseeding to obtain morphologically tractable, diffraction-quality crystals more 

reproducibly.  Seed-producing crystal clusters were grown by mixing 0.5 µL Ligase:U1A 

complex with an equal volume of 22–26% (v/v) MPD, 50 mM sodium cacodylate (pH 6.0), 40 

mM magnesium acetate, 50 mM KCl and 1 mM spermine, and equilibrating over 0.6 mL of this 

precipitation mixture.  Drops containing viable crystals were stabilized by bringing them to 36% 

MPD, keeping all other buffer components (including those derived from the RNA-annealing 

and U1A-storage buffers) isotonic.  Crystal clusters were crushed using a Seed-Bead kit 

(Hampton Research), and the resultant seed suspensions were serially diluted in the same 

stabilization buffer.  Diffraction-quality crystals were obtained by using these serially diluted 

seed stocks directly as precipitant under conditions that would otherwise prohibit crystal 

nucleation: 0.7 µL of Ligase:U1A complex was prepared in annealing buffer supplemented with 

100 mM KCl, mixed with 0.5 µL of the seed-stock dilution, and the drops were equilibrated over 

0.6 mL wells of 22–26% MPD.  Using this method, roughly one out of every three drops 

produced at least one high-quality crystal (50–100 µm in all dimensions) within a week.  For 

cryoprotection, drops bearing suitable crystals were brought to 30% (v/v) MPD, again keeping 

all other buffer compositions isotonic, and incubated against a well of 30% MPD for 2–24 hours 

before mounting in a nylon loop and plunging directly into liquid nitrogen. 
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 Early crystallization efforts started with RNA that had been transcribed from p307HU 

and had undergone the self-ligation reaction.  It was this RNA that produced the crystal used in 

our native data set.  We subsequently found that RNA transcribed from pH307HP produced 

crystals under identical conditions, and that crystal-to-crystal isomorphism was observed 

independent of the RNA-production strategy.  We therefore used the RNA transcribed from 

pH307HP, as this strategy involved only one gel purification step and gave higher yields.  

Derivative crystals were prepared by first cryo-stabilizing native crystals at 30% (v/v) MPD for 2 

hours as above, and then soaking them for 16–24 hours in otherwise isotonic solutions 

containing 5mM cobalt hexammine (Sigma), or iridium hexammine (gift of Robert Batey).  In an 

effort to maximize isomorphism, crystals soaked in each of these compounds were derived from 

the same parental seed stock.  Crystals were harvested directly from the soaking solution with a 

nylon loop and plunged directly into liquid nitrogen. 

 

Data Collection and Processing 

Native and derivative data sets were collected at NE-CAT beamlines 8-BM and 24-ID at 

the Advanced Photon Source (APS), respectively, the latter aided by the technical advice of K.R. 

Rajashankar.  All data were integrated and scaled using the HKL2000 software suite (53).  Initial 

phases were obtained from a single isomorphous crystal as a “pseudo-native,” and an iridium 

hexamine-soaked crystal as a derivative, similar to the method described in (24) (Table 1).  

Nineteen initial iridium sites were found using SHELXD, and a preliminary round of solvent 

flattening was performed in SHELXE (54); both processes were aided by the hkl2map graphical 

interface (55).  The resultant initial electron density map (Figure 2B) contained clear RNA A-

form density, as well as conspicuous proteinaceous features from U1A.   
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Model Building and Refinement 

Two monomers corresponding to the U1A protein bound to its cognate loop and a seven 

base-pair stem (analogous to P5 in the crystallization construct) were located the original 

experimental density using the program MOLREP (56) in the CCP4 program suite (57), using a 

search model derived from the hairpin ribozyme-inhibitor crystal structure (58) (PDB ID: 1HP6). 

Further rounds of solvent flattening were performed in the program SHARP (59), using σA-

weighted, combined phases from the initial heavy atom sites and this partial molecular 

replacement solution, iteratively adjusting the solvent content by hand and inspecting the quality 

of the resultant electron density map.  This yielded modestly improved maps, restoring some 

phosphate and base-density which had been truncated by the initial SHELXE output. 

An initial model was built into this experimental 3.36Å density by real-space refinement 

in the program COOT (60), starting with 3–4-nucleotide stretches of A-form polycytidine and 

building into areas with clear RNA-backbone density (38).  Each round of poly(C) model 

building was followed by a round of restrained, individual-site, isotropic Atomic Displacement 

Parameter (ADP) refinement with automated bulk-solvent correction (termed the “individual 

ADP” strategy in PHENIX (61)).  Refinement was against experimental structure factor 

amplitudes and phases, using a maximum likelihood target.  Given the limited resolution of the 

data, target geometric weights (“wxc_scale” in PHENIX) were set to a relatively restrictive 

setting of 0.05 and B-factors were initially refined per-residue.  The “wxu_scale” was kept 

constant at 1.0 during all refinement rounds (61).  In early stages, ADP refinement was followed 

by simulated annealing (5000K to 300K in 100K steps), also implemented in PHENIX.  The two 

monomers were built individually and refined without the use of noncrystallographic symmetry 

(NCS) averaging.  Once ~60% of the RNA sequence had been placed in this fashion, 
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experimental phases were discarded and ADP refinement with automated bulk solvent correction 

continued using model-based phases and native amplitudes at 2.99Å, now allowing refinement of 

individual atomic B-factors.  Inspection of the |Fobs| - |Fcalc| difference maps from early rounds of 

refinement at higher resolution resulted in the unambiguous assignment of individual bases as 

purine or pyrimidine, and in many cases guanosines could be distinguished from adenosines.  

This, along with the position of the U1A protein and P5 stem, allowed establishment of the RNA 

sequence register. In later stages of refinement, NCS averaging was used for residues 20–28, 

where the electron density map was noisiest, and the resulting B-factors the highest (Figure 3).   

Parallel experiments using a TLS refinement in addition to ADP refinement failed to 

improve Rfree values and the quality of 2|Fobs|-|Fcalc| maps, and revealed no additional features in 

|Fobs| - |Fcalc| difference maps.  Hence, the final structure factors and model were calculated 

entirely without the use of TLS refinement. 

After placement of all 137 RNA nucleotides for each ligase monomer and all but the first 

6-7 protein residues in each U1A protomer, solvent atoms were placed into peaks of 4σ or 

greater in the resultant |Fobs| - |Fcalc| difference map and further refined; this process of refinement 

and solvent placement was reiterated until the Rfree value reached a local minimum.  Owing to 

the resolution limit, magnesium and water atoms could not be individually refined in a 

chemically sensible manner, so partially- or fully hydrated magnesium clusters were treated as 

individual monomers during refinement, having defined model residues with ideal bond lengths 

and geometry.  In the final rounds of refinement, the bond distances (2.07Å) and angle (90°) 

between backbone phosphate nonbridging oxygens at positions A31 and A32 were fixed with 

respect to the magnesium ion they coordinate (Figures 7B, 13A and 13C); all other clusters were 

unrestrained relative to RNA or protein.  Side-chain atoms for a number of the U1A residues 
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have been removed in cases for which density in our final 2|Fobs| - |Fcalc| maps was apparent for 

the backbone only.  Despite having not enforced global NCS averaging, the two copies of the 

RNA are nearly identical: excluding residues in the U1A loop, their all-atom RMSD is 0.92Å.  

Coordinates for the final model have been made available (PDB ID: 3HHN). 

Simulated annealing OMIT maps (Figure 13B, D) were calculated in PHENIX, without 

additional ADP refinement.  Simulated annealing composite OMIT maps (Figure 2C) were 

calculated in CNS (62), with blocks of 5% unit cell volume omitted from each calculation.  

Though not quoted in table S1, the Rwork and Rfree values calculated in CNS are in good 

agreement with those calculated in PHENIX (23.0 and 25.7%, respectively).   

Real space R-values, σA and Luzzati estimated coordinate errors (Table 1) were 

calculated in CNS.  The lengths of potential hydrogen bonds (Table 2) and metal ion contacts 

(Table 3) were measured without modification of our model.  However, in order to measure 

hydrogen bond angles (Table 2), hydrogens were added automatically using MolProbity (63); 

where necessary, 2´-hydroxyls were rotated by hand into the optimal hydrogen-bonding 

orientation.  Structural alignments (Figures 4, 9, 11–13) were made using the least-squares all-

atom alignment function in COOT (60).  All structure figures were made with the program 

PyMOL (64). 

 

Biochemical Experiments 

Mutant ribozymes were generated from the U1A-modified construct, p307HU 

(QuickChange mutagenesis kit, Stratagene).  For kinetic assays, body-labeled RNA was heated 

and cooled (80° C, 22° C, 5 minutes each) in water, and the reaction was initiated by the 

simultaneous addition of buffer, salts and an excess of oligonucleotide substrate (final 
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concentrations, 1 µM ligase, 2 µM substrate, 50 mM Tris, pH 7.0, 10 mM MgCl2, 50 mM KCl, 

1.0 µM EDTA).  Reactions were incubated at 22°C, and aliquots were removed at time points 

and quenched by mixing into a two-fold excess of gel loading buffer (8 M urea, 120 mM EDTA, 

trace xylene cyanol and bromphenol blue).  Samples were boiled and separated on 6% or 20% 

polyacrylamide TBE/urea sequencing gels, imaged and quantified by phosphorimaging (Fujifilm 

BAS-2500).  For each time point, the fraction product was measured as FP = Product/(Product + 

Reactant), and fitted to the curve: 

 

FP(t) = FM(1 – e–kOBSt), t = time 

 

with FM (the maximum fraction reacted), and kOBS (the observed rate constant) treated as 

unknowns.  Fits were performed using the least squares method, implemented in KaleidaGraph 

(Synergy Software).   

Nucleotide analog interference mapping (NAIM) was performed as described (21, 39), 

starting with a pool of randomly phosphorothioate-modified RNAs and allowing them to label 

themselves with 32P-labeled substrate RNA, under solvent and time constraints that selected for 

only the most active molecules. 

 

Fab-Ligase Crystal Structure 

Selection and analysis of the ligase Fab, as well as crystallization and structure solution 

of it complexed with the ligase shall be presented elsewhere. The coordinates of the ligase 

complexed with the antibody fragment have been made available (PDB ID: 3IVK). 
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Figure Legends 
 

Figure 1. Global architecture of the ligase ribozyme.  (A) Secondary structure and reaction 

scheme of a ligase variant with decreased Mg2+ dependence (21).  It is depicted undergoing 

ligation, by using the classical secondary-structure representation (26).  Red arrows indicate 

attack by the substrate 3'-hydroxyl on the ribozyme α-phosphate with concomitant loss of 

pyrophosphate.  (B) Revised secondary structure of the crystallization construct, reflecting the 

coaxial stacking and relative domain orientation.  Indicated is the ligation junction (thick red 

dash), backbone phosphates at the active site (yellow dashes), base triples (boxed residues 

connected with gray lines), and stacking interactions (residues vertically aligned or connected 

with gray lines terminating in gray bars).  Nucleotides numbered as in (A); those in gray were 

added to facilitate crystallization.  Base-pair geometries indicated using nomenclature of (41).  

(C) Ribbon representation of ligase structure, as if peering into the active site (yellow) and 

ligation junction (red).  (D) Top-down view, relative to (C). 

 

Figure 2.  The model and accompanying electron density maps.  (A) View of the complete 

contents of the asymmetric unit, highlighting a crystallographic dimer between copies of U1A.  

This is juxtaposed with the final 2|Fobs| - |Fcalc| electron density map, drawn in blue surrounding 

the RNA and in gray surrounding U1A.  The two ligase monomers are rendered in sticks; the 

protein is shown as a cartoon backbone trace; colors are as in Figure 1.  The electron density map 

is contoured at 1.2σ.  (B-D) Wall-eyed stereo depictions of the 3´-end of J1/3 docking into the 

P3-P6-P7 domain, juxtaposed with (B) the initial 3.36Å solvent-flattened experimental electron 
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density map, contoured at 1σ; (C) a simulated-annealing composite-OMIT map, contoured at 1σ; 

(D) the final refined 3.0Å 2|Fobs| - |Fcalc| map, contoured at 1.4σ. 

 

Figure 3. Disorder in the 5´-half of J1/3, and distribution of B-factors in the refined ligase 

model.  (A) Views of the first nine residues of J1/3 (U20-G28) for each of the copies in the 

asymmetric unit.  Green mesh corresponds to the final 2|Fobs| - |Fcalc| electron density map, 

contoured at 1σ.  Density in this region was the weakest observed in any part of the asymmetric 

unit. (B) Global view of the complete contents of the asymmetric unit, as in Figure 2A, colored 

by final B-factor.  (C) Two views of a single Ligase-U1A complex, separated by ~180° rotation.  

The left-hand view corresponds to that of Figure 1C.  

 

Figure 4.  Superposition of class I ligase structures independently solved from different 

crystalline environments.  (A) Two views of an all-atom alignment between the U1A-bound 

structure (colored and oriented as in Figure 1C,D) and the 3.15Å structure obtained in complex 

with a ligase-specific antibody selected through phage-display (gold).  Both protein modules 

bind to L5, which was omitted during the alignment and has been removed from view. Each 

crystal form contains two copies in its asymmetric unit.  Because the four possible pair-wise 

alignments between each monomer of each crystal form were nearly indistinguishable, an 

alignment is shown for only one copy from each crystal.  Note that the greatest points of 

divergence between the two models are found in regions involved in crystal-contact formation: 

P5 (which binds to the protein crystallization modules) and L7 (which is involved in an RNA-

protein crystal contact in the U1A-bound structure).  (B) The relative orientation of the three 

domains varies slightly between the two crystal forms.  The two structures were aligned by the 
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P1-P2 domain alone, so as to highlight differences in the relative fine positioning of the three 

helical domains.  Each domain is show in isolation: P1–P2 (left), P3–P6–P7 (middle) and P4–P5 

(right). 

 

Figure 5.  Correlation between calculated and observed solvent accessibilities.  (A) The 

calculated solvent-accessible surface area for C4´ carbons (spheres), generated with the program 

AREAIMOL (57) using a water probe of 1.4Å.  These data are projected onto two views of the 

ligase corresponding approximately to those in Figure 1C and Figure 1D.  Positions protected 

from solvent are in blue; those accessible to solvent are in yellow.  (B) Plot of the AREAIMOL 

calculated output (red) compared with the observed solvent protection factors derived from 

Fe•EDTA hydroxyl radical probing (blue) (26).  Both data sets have been plotted as deviations 

from the mean, in standard deviation units: (value – mean)/σ, as in (65).  Fe•EDTA protection 

factors were multiplied by –1, as positive protection factors imply occlusion from solvent.  For 

the AREAIMOL data, mean = 7.19 Å2, σ = 3.4Å2 ; for the Fe•EDTA probe data, mean = 1.13, σ 

= 0.58. Segments spanning residues –7 to 6 and 118 to 121 were not probed by Fe•EDTA.  The 

residues in J1/3 (which interact with the P1 helix in the crystal structure) differ in the construct 

subjected to Fe•EDTA probing.  A lack of correlation in this region may be attributed to this 

change in sequence, less precise modelling (as suggested by the high temperature factors, Figure 

3), or both. 

 

Figure 6. Occlusion of surface area from solvent in known RNA structures.  The total solvent-

accessible surface area for the present structure (class I ligase, PDB ID: 3HHN) and 23 known 

RNA structures in the range of 61–174 nt was computed using the program AREAIMOL (57).  
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The percent surface area buried from solvent exposure (ΘOCC) was calculated by comparing this 

total surface area (AOBS) by that of a theoretical freely joined RNA chain of equivalent length 

(AFREE) using the following equation: ΘOCC = 100 × (AFREE – AOBS)/AFREE.  For each structure, 

calculations were performed on a monomer derived from the available PDB file, without bound 

solvent atoms; for all RNA species using the U1A binding module to facilitate crystallization 

(including the class I ligase), the protein and its cognate loop were replaced in silico with a 

GNRA tetraloop.  A water probe radius of 1.4 Å was used.  For comparison, the same calculation 

was performed on perfect A-form RNAs of the same total length (black diamonds).  The data 

have been subdivided into four classes, as follows.  In teal are small, natural self-cleaving 

ribozymes: hepatitis delta (PDB ID: 1DRZ, (66)), hammerhead (2GOZ, (28)) and hairpin (1HP6, 

(58)).  In gold are the GlmS ribozyme (2NZ4, (24)) and riboswitches: S-adenosylmethionine 

(SAM) type II (2QWY, (67)), SAM type III (3E5C, (68)), guanosine (1U8D, (69)), thiamine 

pyrophosphate (2GDI, (70)), SAM type I (2GIS, (71)), flavin mononucleotide (3F4H, (72)), 

metal ions (2QBZ, (73)) and lysine (3DIL, (74)).  In red are other natural structured RNAs or 

domains: the SARS stem-loop II motif (1XJR, (75)), yeast tRNAPhe (IEHZ, (76)), the SRP S-

domain (1Z43, (77)), the Plautia stali intestinal virus IRES ribosome-binding domain (2IL9, 

(78)), B-type (1NBS, (65)) and A-type (1U9S, (79)) RNase P substrate domains and the T. 

thermophila group I intron P4-P6 domain (1GID, (80)).  In dark blue are in vitro-selected RNAs: 

the Diels-Alderase ribozyme (1YLS, (81)), the tetracycline aptamer (3EGZ, (82)), the “docked” 

form of the L1 ligase ribozyme (2O1U, (38)), the aminoacyl synthetase ribozyme (“Flexizyme”), 

in complex with its substrate (3CUL, (83)), and the class I ligase ribozyme (3HHN).  The IRES 

domain (marked with an asterisk) crystallized as a domain-swapped pseudo dimer with long, 

flexible, disordered regions between monomers; hence, a portion of surface area that may be 
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occluded from solvent may have been artificially exposed when we generated a monomer model 

for solvent accessibility calculations.   

 

Figure 7. Tertiary contacts involving the three longest joining regions. (A) Interactions bridging 

the three domains. (B) The path of J1/3. (C) Hydrogen bonds of the two A-minor triads (See 

Figure 12). 

 

Figure 8.  Inter-domain contacts involving J3/4.  (A) Two views of J3/4, showing the triloop 

enclosed by C40:G44 and highlighting interactions involving G45.  For clarity, P2 has been 

removed from the left view and P4 has been removed from the right view.  Dotted black lines 

denote hydrogen bonds.  (B) Biochemical support for the role of the C40:G44 Watson-Crick 

pair.  Relative self-ligation rates of ribozymes with the indicated substitutions (yellow) are on the 

left.  (C) Expansion and replacement of the J3/4 triloop.  Relative self-ligation rates of ribozymes 

with the indicated substitutions (yellow) are on the right. 

 

Figure 9. The P3-P6-P7 domain is capped by two familiar RNA structural motifs.  (A) J3/4 

forms a GNRA tetraloop-like triloop.  C38 and C39 were used to align the last base pairs of P3 

with analogous residues in the solution structure of a GAAA tetraloop (PDB ID 1F9L, (84)), 

shown in gold.  Note that, in addition to superposing the C40•G44 base pair, G41 aligns with the 

analogous residue in the GNRA tetraloop. (B) L7 forms a classic uridine-turn (U-turn).  U93 and 

U94 were used to align L7 with 2´-O-Methyl C32 and U33 of the anticodon loop of yeast 

tRNAPhe(PDB ID 1EHZ, (76)), shown in gold.  For clarity, the aliphatic group of wybutosine 37 

(“YG”) has been removed from view. 
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Figure 10. Base triples observed in the class I ligase structure, each mediated through an 

adenosine residue.  Note that the packing of residues A31 through A33 into adjacent A-U and G-

C base pairs is accomplished using the same series of interactions as those employed by A25 

through A27 packing into the same sequence.  The remaining triples are type I A-minor 

interactions, although the angle at which A71 packs into C86•G105 precludes it from forming a 

canonical hydrogen bond with its 2´-hydroxyl (30). 

 

Figure 11.  The 5´ end of J1/3 mimics a viral ribosomal frame-shifting pseudoknot.  (A) All-

atom alignment between ligase residues A22–A26 in the 5´ half of J1/3 (colored as in Figure 1C) 

and the beet western yellow virus (BWYV) ribosomal frame-shifting pseudoknot residues A20-

A24 (gold, (32)).   P1 of the ligase and the remainder of the pseudoknot structure are shown as 

ghosted cartoons.  Note the divergence of residues immediately abutting the alignment (ligase 

A21 and pseudoknot G19; ligase A27 and pseudoknot A25).  (B) Side-by-side comparison 

between the two motifs (colored as in (A)); the BWYV pseudoknot is on the left, the class I 

ligase on the right.   The first residue of this motif makes a type I A-minor interaction with a 

base-pair in the receptor helix (Figure 10).  The phosphate of the following residue (ligase U23; 

pseudoknot A21) makes a charge-dipole interaction with the guanosine N2 in the receptor 

duplex.  Ligase residues U23–C24 (pseudoknot residues A21–C22) make joint hydrogen bonds 

to the 2'-hydroxyl in the docking strand helix, for which U23 uses its exocyclic carbonyl and the 

pseudoknot A21 uses its N7 and N2.  Ligase A25–A26 (pseudoknot residues A23–A24) form the 

first two base-triples of the A-minor triad motif (Figures 7C, 10 and 12).  For clarity, in this 
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second base-triple only the nucleobase for the receptor guanosine (ligase G–3; pseudoknot G4) is 

shown. 

 

Figure 12. The “A-minor triad” motif. (A) Overview of the path of J1/3, which binds in the 

minor grooves of P1 and P6.  The view is rotated ~60° relative to that in Figure 7B.  Residues 

comprising each of the two iterations of the A-minor triad are highlighted and numbered.  (B) 

Wall-eyed stereogram of an all-atom alignment between the two motifs in J1/3.  The helices 

bound by each are ghosted.  The 5´-motif (bound to P1) is in gold; the 3´-motif (bound to P6) is 

in navy.  The inner-sphere-coordinated magnesium ion bound by the 3´-motif is in orange.  

Orange dashes denote inner sphere contacts to this metal; black dashes denote the closest 

approach between moieties that are proposed to make outer-sphere metal contacts and the metal 

center (Figures 7B, 13A).  For clarity, waters have been removed.  Note both the divergence in 

the positions of the preceding cytidine residue (C24 and C30), and the proximity of the G28 and 

U34 major-groove carbonyls to one another.  (C) An A-minor triad in the T. thermophilus 16S 

ribosomal RNA (33).  A solvent atom (of unassigned chemistry in the PDB) is shown as an 

orange sphere; dashes to it are drawn in analogy to those in (B).  Note that the first base pair into 

which this motif docks is a C:G pair (C291:G309), whereas both those observed in the ligase are 

A:U pairs (A–4:U16 and A73:U84), demonstrating that recognition of this position is 

independent of the identity of the Watson-Crick base pair. 

 

Figure 13. Architecture of the active site.  (A) The active site, as viewed from the ligation 

junction, with P1-P2 removed for clarity.  (B) Interactions near G1:C12, which is analogous to 

the NTP-template pair during polymerization (12-14, 16).  Meshes are simulated-annealing omit 
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maps in which active-site nucleotides (gray, contoured at 2σ) or the hydrated metal cluster (aqua, 

4σ) were excluded from map calculations.  (C) Stereograph of the active site.  Black dashes 

indicate hydrogen bonds; magenta dashes indicate proximity between A29 and C30 phosphate 

oxygens and the ligation junction (red).  Mesh represents a simulated-annealing omit map (4.5σ) 

in which the hydrated metal was excluded from map calculations.  (D) Mean interference values 

(±SD) from three α-phosphorothiolate NAIM experiments.  The secondary structure is aligned 

above.  Interference values were truncated at the detection limit, 6.0 (21, 39).  Missing positions 

are those modified to facilitate crystallization (hashes) or too close to the termini to measure.  (E) 

Models corresponding to pre-ligation complexes for the L1 ligase ribozyme (left, (38)) and class 

I ligase ribozyme (right), or prior to primer extension for the RB69 DNA-polymerase (middle, 

(45)), in absence of the reaction electrophile. Coloring is in analogy to (B).  Where present, the 

primer nucleophile is colored red; divalent metal ions are shown as orange spheres.  For 

alignment, the ligase A7:U13 was changed to C:G pair. 

 

Figure 14.  Kinetics of C47U and C30U ligase active-site mutants.  (A) Typical self-ligation 

time courses of 32P body-labeled wild type, C30U and C47U mutant ligase ribozymes.  (B) Plots 

for reaction time courses.  Error bars indicate the standard deviation for three replicate 

experiments. 

 

Figure 15.  Interactions with J1/2.  (A) Two views of J1/2 and its environs, rotated ~180° 

relative to one another.  Nucleotides in the P1-P2 and P4-P5 domains are shown as ghosted 

cartoons.  (B) Detail of interactions made with bases in J1/2.  Black dashes denote hydrogen 

bonds.  (Left) G2 makes a trans sugar edge/Hoogsteen base pair with A11 (41).  (Middle) A3 
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makes a type I A-minor interaction (30) with G46:C113, the first base pair in P4.  (Right) A4 

stacks on A114, which in turn stacks on the G46:C114 base pair. 

 

Figure 16. Transition-state stabilization by polymerases built from either protein or RNA.  (A) 

Catalysis by proteinaceous polymerases (43, 44).  Indicated are bonds formed or broken during 

the transition state (red arrows), coordination of catalytic metal ions, MA and MB (blue solid 

lines), and an active-site acid (A•••H).  (B) Model for catalysis by the ligase ribozyme.  Notation 

as in (A), with the addition of a hydrogen bond between C47 N4 and the leaving group (dashed 

gray line).  Some magnesium ligands are not specified; for those that are, relative orientations are 

unknown.  A proposed contact to the reactive phosphate pro-RP oxygen (40) and two speculative 

contacts implied by NAIM are in blue.  Metal ion and coordinations not supported (or refuted) 

by structural or biochemical evidence are in gray. 

 

Figure 17.  The covalent state of the ribozyme 3´ terminus, probed using poly(A) polymerase 

(PAP).  (A) Removal of the terminal 2´-3´ cyclic phosphate by T4 polynucleotide kinase (PNK 

(51)) generates a substrate suitable for extension by PAP.  Shown is a denaturing polyacrylamide 

gel stained with ethidium bromide.  Ligase-An denotes the 3´-polyadenylated ligase.  (B) PAP 

extension requires full removal of the terminal phosphate.  Neither untreated RNA bearing a 2´-

3´cyclic phosphate (left lanes), nor acid-decyclized RNA bearing a mixture of 2´- and 3´-linear 

monophosphates (center lanes, (52)) were extended by PAP, whereas subsequent removal of the 

terminal phosphates by alkaline phosphatase treatment (right lanes) generated a substrate for 

PAP extension.  RNA tested here was 32P body labeled but was otherwise identical to that used 

in A. 
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Crystallographic statistics for the class I ligase product

Native Ir-Hex Co-HexCrystal

Data Collection

Space group

Cell dimensions
a,b,c (Å),
α,β,γ (°)

Wavelength (Å)

Rmerge (%)a

Mean I/σ(I)a

Resolution (Å)a

Unique Observationsa

Completeness (%)a

Redundancya

SIRAS Phasing

Number of heavy-atom sites

Phasing power
Isomorphous (acentrics)a

Anomalous(acentrics)a

RCullis (%)
Isomorphous (acentrics)a

Anomalous(acentrics)a

Mean Figure of Merita

Refinement

RWork (%)b

RFree (%)b

Number of atoms
RNA
Protein

R.m.s. deviations
Bond distances (Å)
Angles (°)

Estimated coordinate error (Å)c:

Mg2+

Water

Mean B-factors(Å2)
RNA
Protein
Mg2+

Water

aValues in parenthesis refer to the highest resolution shell. b5% of all data were excluded from refinement for RFree 
calculations.  cLuzzati and σA as calculated in CNS (62); Maximum likelihood as calculated in PHENIX (61).
dNumbers in parenthesis refer to the cross-validation test set.

P1 P1 P1

59.56, 70.91, 70.41
100.30, 103.89, 99.61

59.52, 71.65, 71.30
101.14, 104.16, 99.72

59.59, 71.10, 70.94
100.58, 104.13, 99.71

0.9795 1.1053 1.1053

50-2.99 (3.11-2.99) 50-3.60 (3.73-3.60) 50-3.50 (3.63-3.50)

7.3 (22.5) 12.1 (18.1) 8.4 (20.6)

20.2 (5.3) 11.8 (6.4) 16.7 (5.3)

21,093 (2,306) 12,353 (1,183) 13,188 (1116)

98.7 (87.6) 97.3 (91.0) 96.0 (79.2)

3.6 (3.0) 3.7 (3.1) 6.8 (4.5)

19

1.506 (0.474)
0.754 (0.295)

68.6 (97.2)
82.2 (99.6)

0.339 (0.125)

20.18

23.35

1475
5844

34
192

0.002
0.795

79.3
70.2
88.8
77.0

0.33

Mean Real-Space R-factors (%)
RNA
Protein
Mg2+ + Water

15.4
16.9
  8.6

Luzzatid

σAd

Maximum Likelihood

0.41 (0.42)
0.44 (0.50)

Table 1



Guanosine 2
(N2) A11 (N7) 3.28 ± 0.17 163.70 ± 9.90
(N3) A11 (N6) 3.07 ± 0.26 143.30 ± 9.20
(O2') A11 (N6) 2.98 ± 0.25 166.55 ± 6.25

Adenosine 3
(N1) C113 (O2') 2.78 ± 0.13 161.90 ± 4.50
(N3) G46 (N2) 3.34 ± 0.15 130.80 ± 1.50
(O2') G36 (N3) 2.74 ± 0.02* 155.75 ±12.35

Adenosine 4
(Pro-Rp O) A114 (O2') 2.91 ± 0.00 157.50 ± 5.80

Adenosine 22
(N1) C-6 (O2') 3.27 ± 0.01 162.70 ± 0.10
(N3) G18 (N2) 3.20 ± 0.00 133.70 ± 0.10
(O2') G18 (N3) 3.00 ± 0.00 144.10 ± 0.00
(O2') G18 (O2') 1.67 ± 0.00 146.10 ± 0.08

Uridine 23
(Pro-Rp O) G17 (N2) 3.19 ± 0.00 157.85 ± 0.15

(O4) G17 (O2') 3.70 ± 0.00 149.50 ± 0.30
Cytidine 24

(N4) G17 (O2') 2.66 ± 0.00 112.70 ± 0.10
Adenosine 25

(N1) U16 (O2') 3.65 ± 0.00 166.05 ± 9.55
(N6) U16 (O2) 3.70 ± 0.00 152.80 ± 0.00

Adenosine 26
(N1) G-3 (N2) 3.15 ± 0.00 154.15 ± 0.15
(N6) G-3 (N3) 3.17 ± 0.00 157.45 ± 0.15
(N6) G-3 (O2') 3.66 ± 0.00 133.10 ± 0.10

Adenosine 27
(N1) G-3 (O2') 3.88 ± 0.00 127.65 ± 0.95

Adenosine 29
(N1) G72 (O2') 2.66 ± 0.01 147.80 ± 3.60
(N3) G72 (N2) 3.43 ± 0.04 168.75 ± 1.15
(N6) A71 (O4') 3.15 ± 0.00 135.20 ± 0.50
(O2') C85 (O2') 3.77 ± 0.01 137.80 ±15.30

Cytidine 30
(N4) C47 (O4') 2.97 ± 0.03 105.00 ± 0.00
(O2') C47 (N4) 3.60 ± 0.12 134.00 ± 0.60
(O4') A73 (O2') 3.49 ± 0.01 111.35 ± 1.95

Adenosine 31
(N1) U84 (O2') 2.74 ± 0.00 146.60 ± 1.00
(N6) U84 (O2) 3.02 ± 0.01 160.00 ± 1.20

Adenosine 32
(N1) G74 (N2) 3.35 ± 0.05 159.10 ± 0.60
(N6) G74 (N3) 3.35 ± 0.06 159.00 ± 3.20
(N6) G74 (O2') 3.46 ± 0.07 112.80 ± 1.40

Adenosine 33
(N1) G74 (O2') 2.80 ± 0.09 157.55 ±13.05

(O2') U76 (O2') 2.80 ± 0.23 158.25 ±15.05
Guanosine 45

(O2') C5 (pro-Rp O) 3.09 ± 0.48 136.55 ±10.35
Cytidine 47

(N4) G1 (pro-Sp O) 3.06 ± 0.01 126.85 ± 0.65
(O2') G1 (O2') 2.85 ± 0.02 148.15 ± 0.55
(O2') G1 (O3') 3.11 ± 0.04 127.35 ± 5.65

Adenosine 71
(N1) C86 (O2') 2.67 ± 0.02 155.60 ±12.70
(N3) G105 (N2) 3.65 ± 0.01 110.12 ± 4.12
(O4') G72 (O2') 3.27 ± 0.00 119.45 ± 0.15

Uridine 93
(O2) A98 (N6) 3.82 ± 0.90 165.90 ± 0.40

Uridine 94
(N3) A97 (pro-Rp O) 3.28 ± 0.45 157.85 ± 7.65
(O2') A96 (N7) 2.88 ± 0.09 168.61 ± 6.49

Guanosine 41
(N2) G44 (pro-Sp O) 2.76 ± 0.06 120.60 ±14.40
(O2') A43 (N7) 3.04 ± 0.21 159.40 ±11.70

Guanosine 44

Residues (Atoms) Distance (Å) Angle (°) Residues (Atoms) Distance (Å) Angle (°)

J1/2:

J1/3:

J3/4:

J5/6:

L7:

Lengths and estimated angles for non-solvent-mediated, non-Watson-Crick hydrogen bonds, grouped by secondary 
structure.  All quoted values are the average of observations for each of the two RNA copies in the asymmetric unit; errors 
report the difference between individual monomer values and the average.  Distances are those between hydrogen bond 
donor and acceptor nuclei.  Angles are those centered on the hydrogen atom participating in each bond (i.e. the angle: 
Donor   H    Acceptor), as modeled in MolProbity (63). •••

Table 2



Distance (Å)

"P6 A-Minor Triad" Mg2+  4H2Oa

Inner Sphere Ligands
C30 (pro-Rp O) 2.10 ± 0.01

A31 (pro-Rp O) 2.09 ± 0.00

Outer Sphere Ligands
A32 (N7) 2.83 ± 0.07

A33 (N7) 3.17 ± 0.31

N33 (N6) 3.34 ± 0.26

U34 (O4) 3.31 ± 0.31

Outer Sphere Ligands
G1 (N2) 2.83 ± 0.04

G2 (O2´) 3.24 ± 0.12

C12 (O2) 2.58 ± 0.00

C12 (O2´) 2.79 ± 0.02

U13 (O4´) 3.10 ± 0.34

U48 (O2´) 3.04 ± 0.28

•

Potential Ligands

aSee Figs. 7B, 13A, 13C.  bSee Fig. 13B.

"Template" Mg2+  6H2Ob•

Potential ligands and bond distances for partially hydrated magnesium ions 
described in the text.  Listed values are the average of observations for each of 
the two RNA copies in the asymmetric unit; errors report the difference between 
individual monomer values and the average.

Table 3
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Abstract 

According to the RNA world hypothesis, the emergence of early life would have required 

polymerase ribozymes capable of replicating RNA.  Known catalytic RNAs best approximating 

these primordial replicases use an artificial ribozyme, the Class I ligase, as their catalytic core.  

We recently solved the crystal structure of the Class I self-ligated product, and here present 3.15-

Å structures of ligase complexes trapped prior to catalysis.  Two active-site phosphates and the 

3´-hydroxyl nucleophile jointly coordinate an essential metal ion.  The nucleophile is perfectly 

positioned for in-line attack on the 5´-triphosphate, which, mediated through an array of solvent 

interactions, hooks into the major groove of the adjoining RNA duplex.  Atomic mutagenesis 

experiments demonstrate that active site nucleobase and ribose hydroxyl groups directly 

participate in catalysis.  Kinetic isotope experiments imply that these groups function 

electostatically, perhaps playing a role that in proteinaceous polymerases is performed by a metal 

ion.  These data provide the most detailed structural and mechanistic understanding of an 

artificial ribozyme to date, and demonstrate that ribozymes and proteins may adopt divergent 

strategies when catalyzing the same reaction. 
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Introduction 

The transmission and use of genetic information fundamentally depend on the action of 

template-directed nucleic acid polymerases, enzymes that in modern organisms are built 

exclusively from protein.  Although these polymerases act as the central guardians of genetic 

information, like all proteins they contain little information themselves: no known biochemical 

system can polymerize amino acids using a polypeptide template.  The act of copying proteins is 

consequently a complex process involving the participation of many distinct components, 

including DNA genes, tRNAs, synthetases, ribosomes and so forth.  That neither DNA nor 

protein, the principal biopolymers of information-storage and catalysis, respectively, can be 

replicated without the action of the other, represents a fundamental paradox underlying the 

emergence of modern life. 

The RNA World hypothesis1, offers an elegant solution to this paradox, proposing that 

primordial organisms lacked both DNA genes and protein enzymes, and instead used RNA as the 

sole biopolymer of information-storage and catalysis.  Support for this theory comes from the 

observation that many of life’s most fundamental processes inextricably depend on the action of 

RNA, its precursors or its derivatives1-3.  Furthermore, the existence of natural RNA enzymes 

(ribozymes)4-6, including the ribosome7, not only illustrates that the RNA polymer can function 

as both genome and catalyst, but also implies that some of the oldest extant biological processes 

were originally built from RNA.   

Natural ribozymes are only known to catalyze the cleavage or rearrangement of 

phosphodiester bonds8 and the formation of peptide bonds9.  Hence, if the catalytic scope of 

RNA is broad enough to support a full metabolism, it is not demonstrated by the capabilities of 

natural isolates.  In contrast, the menagerie of artificial ribozymes produced from in vitro 
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selection experiments has revealed the catalytic purview of RNA to be quite broad: with the 

exception of free-radical chemistries, almost every common chemical transformation in modern 

biology is now known to be within the grasp of RNA10,11.  However, a ribozyme possessing 

arguably the most fundamental activity required for RNA-based life has yet to be isolated.  In the 

putative organisms of the RNA World, just as in modern life, the processes of copying and 

utilizing genetic information would have required a nucleic acid polymerase12. 

 Several lines of experimentation have sought to demonstrate the ability of RNA to 

replicate RNA.  Natural ribozymes have been contorted into performing very limited template-

directed polymerization (reviewed in ref. 12), though the fidelity and processivity of these 

derivatives precludes their functioning as general replicases.  An alternative route has explored 

the use of short oligonucleotides–rather than mononucleotide triphosphates (NTPs)–as the 

individual monomers being polymerized13-16.  In this way, a kind of self-replicating system could 

be built using a pair of complementary artificial ligase ribozymes17.  However, since this system 

is obligatorily bipartite, and lacks sequence universality, it too is unlikely to produce a general 

replicase ribozyme. 

To date, known catalytic RNAs with activities best approximating that required for 

general RNA replication have been derived from an artificial ribozyme termed the Class I ligase 

(Fig. 1A).  This ribozyme was among the first to be isolated by in vitro selection18 and 

accelerates a reaction functionally identical to a single turnover of template-directed primer-

extension as it is performed in modern biology.  Namely, it catalyzes the nucleophilic attack by a 

3´-hydroxyl on a 5´-triphosphate, requiring that both groups be positioned by Watson-Crick base 

pairing, and yields a 3´-5´ phosphodiester linakge and pyrophosphate18-20.  Ligase variants have 

been engineered to catalyze limited, though highly accurate, template-directed primer-extension 
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using exogenous NTPs, meaning that the ligase core alone can act as a genuine RNA polymerase 

ribozyme21.  Moreover, through further in vitro selection the ligase has been co-opted to provide 

the catalytic engine for several RNA polymerase ribozymes that use NTPs and the information 

on exogenous templates to extend primers in trans22-24.  Some of these ribozymes can use 

primer-template (PT) substrates of any sequence22,24, and although they exhibit varying degrees 

of processivity25, with the best templates one isolate can accurately extend primers by up to 22-nt 

in a 24-hour incubation24. 

  Furthermore, the ligase is remarkably fast, accelerating its chemistry nearly 109-fold over 

the uncatalyzed reaction, achieving rates that exceed those of most natural ribozymes and rival 

those of some proteins19,20,26.  Its robustness has made the ligase a versatile tool in experiments 

that model evolution in vitro27-30, and a potential biosensor for medical diagnostics31.  Given this 

catalytic prowess, its role in origins-of-life research and the extensive scrutiny with which it has 

been characterized26,32-34, the Class I ligase represents a fascinating target for in-depth structural 

analysis. 

We recently reported the crystal structure of the Class I ligase ribozyme in a state 

corresponding to its self-ligation product35.  This structure revealed a wealth of knowledge about 

the overall ribozyme architecture, and identified putative components of the active site.  

However, the active site visualized in this first structure was incomplete, since the ligase is by 

necessity a single-turnover catalyst and in its postcatalytic state had already rendered itself inert.  

Therefore, to develop a deeper understanding of the structural basis for RNA-catalyzed RNA 

polymerization, we here present crystal structures of the ligase trapped in a catalytically viable 

preligation state.  We have also employed a variety of biochemical techniques to interrogate the 

catalytic function of groups at the active site.  These results have revealed that the ligase employs 
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a catalytic strategy more complex than those of other artificial ribozymes36-39, and distinct from 

that of the proteinaceous polymerases. 

 



 159 

Results 

Crystallization of Class I ligase preligation complexes 

Our efforts to crystallize the preligation complex focused on derivatives of the U1A-binding 

construct and crystallization conditions previously described for the product species35.  Since the 

ligase normally undergoes rapid self-ligation under these crysallization conditions34,35, several 

methods were explored that might trap the ribozyme in a precatalytic state without globally 

perturbing its architecture.  While other enzymes have been similarly trapped and crystallized by 

modifying their respective nucleophiles8, or leaving groups40, neither of these methods produced 

useful crystals of the ligase.  Instead, we employed two modifications that each reduce, but do 

not completely ablate, catalysis.  First, we mutated the active site nucleotide C47 to uridine, 

which reduces the catalytic rate by a factor of >104 (ref. 35, Fig. 1A).  Second, we exploited the 

metal ion dependencies of the ligase: although its rate is >105 slower in Ca2+ than it is in Mg2+, 

the ribozyme adopts conformations indistinguishable by chemical probing when folded in either 

metal33. 

Crystals of the C47U mutant preligation complex were obtained under conditions similar 

to those reported for the product species35, replacing Mg2+ with an inhibitory mixture of Ca2+ and 

Sr2+ ions (hereafter, “Ca2+/Sr2+-complex” crystals).  Mg2+-bound crystals were obtained by 

soaking Ca2+/Sr2+-complex crystals in solutions of Mg2+ and Sr2+ before freezing (hereafter, the 

“Mg2+/Sr2+-complex” crystals).  The structure of each of these crystals was independently solved 

to 3.15-Å (Fig. 1B–C) and refined to Rwork and Rfree values of 21.2 and 25.5%, respectively, for 

the Ca2+/Sr2+-complex, and 19.7 and 24.0%, respectively, for the Mg2+/Sr2+-complex (Table 1).  

Although parallel soaking experiments were performed in the absence of Sr2+, the resulting 

crystals suffered from prohibitively high static disorder.  Regardless, we do not anticipate that 
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the presence of Sr2+ in the Mg2+/Sr2+-complex dramatically perturbed the ribozyme structure: 

Sr2+ is only a mild ligase inhibitor33, having a <5-fold effect on catalysis under the crystallization 

conditions.  Furthermore, we observe no peaks corresponding to Sr2+ density in the resulting 

electron density maps.  

  

Comparison of the preligation and product structures 

The overall conformation of the ligase is remarkably similar in the pre- and post-catalytic states, 

being more dramatically altered by binding different metals than it is during the course of 

catalysis (Fig. 2A–B, left).  Excluding nucleotides in the U1A-binding loop, the Mg2+/Sr2+-

complex and product structures superpose with an all-atom root mean square deviation (r.m.s.d.) 

of 0.31-Å, less than the mean precision of either structure (ref. 35, Table 1).  The r.m.s.d. 

between the Ca2+/Sr2+-complex and product structures is more than twice as high, 0.76-Å, with 

the majority of perturbations lying in the P1–P2 domain or near the active site (Fig. 2A).  

Residues 12–25, comprising the 3´-end of helix P1 and the 5´-end of J1/3 (Fig. 1A), were 

particularly affected, suffering from a high degree of crystallographic disorder in the Ca2+/Sr2+-

complex structure.  Replacement of Ca2+ with Mg2+ appears to relieve this disorder, reducing the 

average temperature factors in the region from 164.6 Å2 in the Ca2+/Sr2+-complex to 117.1 Å2 in 

the Mg2+/Sr2+-complex (Fig. 2C). 

 Reconstitution in Ca2+ also has a dramatic effect on the active site architecture (Fig. 2A, 

right).  Although nucleotides immediately abutting the ligation junction occupy similar 

conformations in the Ca2+/Sr2+ and product structures, the residues to which they pair and those 

comprising the active site are more substantially altered.  Widening of the P2 helix appears to 

weaken the base pair between G1 and the template residue C12, increasing the distance between 
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their C1´-carbons by 0.3-Å and rotating the C12 base 24º away from ideal pairing geometry.  

The G1 ribose is concomitantly shifted ~1-Å away from its position in the product structure, 

which, owing to the steric effects of the 5´-triphosphate, pushes the U47 base out of the active 

site by the same distance.  Other structural perturbations abut sites of inner-sphere metal ion 

coordination.  Hence, widening of metal binding sites in the P6 A-minor triad35 and near the 

four-way junction centered at A71, can be justified as steric effects incurred by Ca2+, which is 

~0.3-Å larger than Mg2+ (ref 41).  None of the above structural changes are observed in the 

active site of the Mg2+/Sr2+-complex (Fig. 2B, right). 

 

Metal ions in the active site 

Although biochemical data34,35 support a model in which the active site A29 and C30 backbone 

phosphates coordinate a catalytic metal ion, electron density for this metal was not observed in 

the original product structure35.  This is not the case for the preligation complexes.  During 

refinement of each structure, |Fo| – |Fc| difference fourier maps prominently featured spherical or 

oblate positive peaks centered within the active site (Fig. 3A–B).  The 7.8σ difference peak in 

the Ca2+/Sr2+-complex is perfectly suited to accommodate a partially hydrated Ca2+ ion (Fig. 

3A).  Docking a Ca2+•3H2O complex into this peak positions the Ca2+ center 2.4-Å from the A29 

pro-Sp and C30 pro-Rp oxygens, and from the A–1 3´-hydroxyl nucleophile.  A29 is 

concomitantly shifted 1.6-Å away from its position in the product structure (Fig. 2A), its 

phosphate rotated so as to stabilize the pro-Sp oxygen coordination contact.  The corresponding 

4.8σ difference peak in the Mg2+/Sr2+-maps would represent a less ideal Mg2+ binding site, 

positioning the metal center 2.5-Å from the A–1 3´-OH and C30 pro-Rp oxygens and ~2.7-Å 

from each of the A29 nonbridging phosphate oxygens (Fig. 3B).  Considering the mean precision 



 162 

of our data (Table 1), and the maximum and mean inner-sphere bonding distances for Mg2+ 

(2.45- and 2.07-Å, respectively42), it is possible that the active site conformation observed in the 

Mg2+/Sr2+-complex represents a strong Mg2+-binding site.  However, it is also possible that the 

C47U mutation, the Ca2+-dependent crystallization process, or the constraints of the crystalline 

environment in general have weakened a more ideal active site Mg2+-binding pocket.  Moreover, 

that the A29 pro-Sp oxygen would play such a prominent role in both preligation structures–

directly coordinating Ca2+ and being as close to Mg2+ as is the pro-Rp–is something of a 

curiosity, since phosphorothioate nucleotide analog inteference mapping (NAIM) implicated the 

A29 pro-Rp oxygen as being functionally significant34.  However, as NAIM cannot interrogate 

pro-Sp oxygens43,44, we have no direct data about the role it plays in catalysis.  Likewise, the 

A29 pro-Rp interference may be caused by steric effects, or the conformations observed in our 

structures may be crystallographic artifacts. 

Of note, in neither preligation structure is the central active site metal ion close enough to 

the 5´-α-phosphate nonbridging oxygens to form an inner-sphere coordination contact.  

Likewise, based on these structures it seems unlikely that would such a contact be formed at the 

transition-state. Hence this metal differs from the canonical Metal A of proteinaceous 

polymerases, which, in addition to activating the reaction nucleophile, is thought to stabilize the 

developing negative charge at the α-phosphate during the transition state45,46.  It has been 

proposed that a similar contact is being made in the active site of the ligase, since the ribozyme is 

significantly inhibited by phosphorothioate (oxygen-to-sulfur) substitution at the 5´-pro-Rp 

position32.  Formation of such a contact would require only minor adjustments to the 

conformation of the 5´-nucleotide, and may still be possible.  It is also possible that the observed 
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phosphorothioate inhibition is caused by ablation of an outer-sphere contact47, which could be 

easily accommodated in either structure. 

  In neither structure do we observe a metal ion analogous to the canonical Metal B.  In 

proteaceous polymerases this metal is positioned ~4-Å from metal A and ligands the nonbridging 

oxygens on the α- and β-phosphates45,46.  While metal ions are bound the β-phosphate oxygens 

in both preligation structures (Fig. 3A–B), they are at distances of 6.5–7.0-Å from the Metal A 

analog, and bind with geometries drastically different from Metal B.  In the Mg2+/Sr2+-complex, 

the metal ion bound to the β-phosphate coordinates a well-ordered water molecule (Fig. 3B).  

This water may be of functional importance, since is within hydrogen bonding distance of the 

triphosphate [α,β]-bridging oxygen, the reaction leaving group. 

Additional metal ions and water molecules decorate the 5´-triphosphate (summarized for 

the Mg2+/Sr2+-complex in Fig. 3C), and may function structurally to stabilize its conformation.  

Of these, the most prominent is a partially hydrated metal ion bound to the Hoogsteen face of G1 

and G2.  Metal hydrate clusters are observed near this position in each of the preligation 

structures, and are reminiscent of a similar fully hydrated Mg2+ observed in the product35.   Each 

of these metal hydrate complex binds with a different geometry, and in the preligation complexes 

this geometric variation appears to have an intimate effect on the conformation of the adjacent 

5´-triphosphate, as described below. 

 

Conformation of the 5´-triphosphate 

In each of the preligation structures, the 5´-triphosphate forms a “hooked” conformation, curling 

at nearly a right angle as it docks the β- and γ-phosphates just above the G1 base (Fig. 3A–B).  

This conformation is dramatically different from that adopted by (d)NTPs in the active sites of 
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proteinaceous polymerases, wherein the triphosphate is pulled away from the plane of the 

adjoining base48.  Moreover, the (d)NTPs in these structures stereotypically present polydentate 

Mg2+ binding sites, jointly coordinating metal ions with two or more of their phosphate groups49.  

In contrast, the 5´-triphosphate in the Class I ligase forms no such polydentate binding sites, 

though two metals are bound via bridged interactions with other functional groups in the 

ribozyme core.  The only bidentate interaction is to a water jointly coordinated by the 5´- and 

[β,γ]-bridging oxygens in the Mg2+/Sr2+-complex structure (Fig. 3C). 

In the Mg2+/Sr2+-complex structure, docking of the 5´-triphosphate places its α-phosphate 

3-Å from the substrate 3´-hydroxyl.  The angle formed by the 3´-hydroxyl nucleophile, α-

phosphorus electrophile and [α,β]-bridging oxygen leaving group is 176º, extremely close to the 

ideal value of 180º adopted during in-line nucleophilic attack.  Moreover, pulling the β- and γ-

phosphates proximal to the G1 base exposes the [α,β]-bridging oxygen, presenting it towards 

potentially stabilizing functional groups in the active site.  In the Ca2+/Sr2+-structure, however, 

the α-phosphate is positioned 3.8-Å from the 3´-hydoxyl nucleophile.  Concomitant rotation of 

the β- and γ-phosphates towards the major groove contorts the angle between nucleophile, 

electrophile and leaving group to 154º, and skews the leaving group oxygen away from the 

active site (Fig. 3D).  

The relative positioning of the 5´-triphosphate may be explained in part as a consequence 

of interactions made with the metal hydrate cluster near G2.  In the Mg2+/Sr2+-complex, the 

bound Mg2+•4H2O cluster is shifted away from the plane of the G2 base, pushed downward 

towards G1.   This orientation facilitates close approach by the 5´-γ-phosphate, which joins G1 

and G2 in liganding the metal cluster (Fig. 3B–C).  If protonated, the γ-phosphate would also be 

able to hydrogen bond with the G2 N7.  In the Ca2+/Sr2+-complex, the G2 O6 provides a direct 
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inner-sphere ligand for bound the Ca2+-hydrate cluster (modeled as Ca2+•5H2O, Methods).  

Pulling this bulky complex close to the plane of the G2 base occludes the G2 Hoogsteen face, 

and as a consequence, the γ-phosphate cannot form the metal ion contact observed in the 

Mg2+/Sr2+-complex. 

 It hence seemed plausible that contacts to the G2 base may aid in positioning the leaving 

group and might therefore contribute to catalytic efficiency.  To test this hypothesis, we 

compared the efficiency of a primer-extending (PE) ligase variant in which nucleotides G1–A4 

have been removed (construct “t307”), to one that lacks G1 but retains G2–A4 (“GAA-t307, Fig. 

1A, inset).  Neither construct can self-ligate, and both can catalyze single-nucleotide extension of 

primers in trans, using exogenous GTP as a substrate21,32.  At pH 7.0, the t307 construct 

exhibited a kcat
GTP of 0.10min-1, a KM

GTP of 3.5 mM and a kcat/KM
GTP of 30 M-1min-1, consistent 

with previous observations32.  Restoring residue G2–and hence the potential to form the solvent-

mediated G2-triphosphate interaction–resulted in modest improvements in Michaelis-Menten 

parameters (Fig. 3E).  The GAA-t307 construct exhibited a kcat
GTP of 0.11min-1, a KM

GTP of 2.8 

mM and a kcat/KM
GTP of 40.8 M-1min-1, an overall improvement in catalytic efficiency of ~36%.  

It should be noted that restoring the G2 base to the GTP substrate, rather than to the enzyme, 

results in a more substantial (36-fold) improvement in kcat/KM
GTP (ref. 32).  Moreover, since G2 

caps the P2 helix by base pairing with A11, it is possible that restoration of G2 benefits the 

enzyme by decreasing its conformational flexibility, rather than by improving GTP-binding. 

 

The C47 nucleobase participates in catalysis 

In the ligase product structure, the C47 N4 exocyclic amine is positioned 3.1-Å from the ligation 

junction pro-Sp oxygen35.  It was therefore speculated that during catalysis C47 might stabilize 
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the leaving group oxygen through hydrogen bonding, a role similar to that played by the active 

site general acid of proteinaceous polymerases35,50.  Observing the structure of the Mg2+/Sr2+ 

preligation complex, this model now seems unlikely: while the U47 O4 is positioned 3.7-Å from 

the 5´-α-phosphate pro-Rp oxygen, it is 4.6-Å away from the leaving group oxygen.  In the 

absence of a substantial conformation change during catalysis, the relative orientation of these 

groups is not expected to change.  Rather, as the ligation reaction follows its trajectory, the C47 

amine and α-phosphate oxygen will be brought in closer proximity, strengthening the hydrogen 

bond between them.  Hence, C47 might function not by stabilizing the developing negative 

charge on the leaving group, but by stabilizing the transition state geometry, a role similar to that 

of the canonical Metal B in proteinaceous polymerases45,46.  If, however, the ribozyme undergoes 

a conformation change during ligation, C47 might still be brought into close proximity with the 

leaving group oxygen.  In this context, it could function as an electrostatic or a general acid 

catalyst. 

 To distinguish between these possible functions, we sought to biochemically dissect the 

role C47 plays during catalysis.  Insight into the mechanism of natural self-cleaving ribozymes 

has been gleaned from exogenous base rescue experiments, wherein the nucleobases at critical 

active-site positions are removed, and the ability of exogenous compounds to rescue these abasic 

variants is examined51-53.  To test if such a strategy would work for the ligase, we  

used chemically modified oligonucleotides and DNA-splinted ligation to assemble a ligase 

construct bearing an abasic residue at position 47 (“C47Abasic,”).  Self-ligation activity of this 

construct is reduced by >105-fold relative to the unmodified ribozyme.  However, in the presence 

of exogenous cytosine, activity of the C47Abasic construct was restored 33-fold, while a parallel 

experiment rescued the C47U mutant only by ~2.2 fold (Fig. 4A).  Therefore, of the rescue 
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observed with the C47Abasic construct, ~15-fold can be attributed to the exogenous base 

functionally mimicking C4751.  Ideally, this result could be followed by a systematic screen of 

additional exogenous compounds, from which the specific cytosine functional groups could be 

interrogated, or analyzed by Brønsted analysis54.  However, none of the cytosine analogs we 

tested, nor the general acid-base catalyst imidazole, could specifically rescue the C47Abasic 

ligase (Fig. 4A). 

 Given the intractability of further exogenous rescue experiments, we instead turned to 

traditional and so-called atomic mutagenesis strategies to assess the catalytic contribution of 

functional groups on the C47 base.  Replacing C47 with a series of natural or modified bases 

generated ligase variants with activities spanning six orders of magnitude (Fig. 4B).  The activity 

of some variants was surprising.  For example, in the C47A mutant, activity was reduced a 

modest 30-fold relative to the wild type, a far weaker effect than that observed when a critical 

active site cytosine in the HDV ribozyme is mutated to adenosine52,55.  Adenosine retains amine 

and imine groups in a configuration similar to that of cytosine, and hence the activity of this 

variant implies that the C47 O2 carbonyl does not contribute to catalysis.  Moreover, unlike the 

HDV ribozyme, the ligase active site is malleable enough to accommodate a purine at this 

critical position.  Another curious observation came from a variant in which C47 is replaced with 

4-thiouridine (4SU).  This construct exhibited biphasic kinetics with rates diminished 4.4-fold and 

104-fold, relative to the wild type.  While the slow phase might be expected, given the similar 

characters of uridine and 4SU, we offer no explanation of the remarkably fast burst phase.  Most 

other variants exhibited activities that were less controversial.  Relative to the wild type, the 

C47U and C47G mutants were diminished by >104 and >105, respectively, while deleting residue 

47 altogether (“C47Δ”) reduced activity to nearly background levels.   
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While these constructs illustrate the importance of the C47 nucleobase, they alone do not 

report the catalytic contributions of individual functional groups on this base.  In particular, 

many of these alterations simultaneously changes the protonation and tautomeric states of groups 

analogous to cytosine N3 and N4, and hence do not discriminate the effect of individually 

altering either group.  To more precisely investigate the contribution each functional group 

makes to catalysis, we incorporated the cytosine analogs zebularine (which lacks the N4 amino 

group but is otherwise identical to cytosine) and pyridin-2-one (which lacks both the cytosine N4 

and N3 groups) at position 47.  Activities of these zebularine (“C47Zeb”) and pyridin-2-one 

(“C47P2o”) variants were 635-fold and 175-fold diminished, respectively, relative to that of the 

unmodified ribozyme.  These data are revealing in several regards.  First, they demonstrate that 

the C47 N4 amine, and not its N3 imine, participates in catalysis, since ablation of the former 

group is strongly inhibitory, but further ablation of the latter group is, if anything, beneficial.  

Second, the data quantitatively assess the catalytic contribution of the C47 N4 amine: an ~200-

fold drop in rate is more than might be anticipated from the loss of a single hydrogen bond, but 

less than that expected from the loss of a general acid catalyst.  Finally, since the C47U variant is 

>500-fold slower than C47P2o, loss of activity in the C47U mutant must in part be due to the 

addition of an inhibitory group, and not merely the ablation of an enhancing group.  It seems 

probable that the electronegative U47 O4 carbonyl inhibits a role normally played by the 

electropositive C47 N4 amine; in the C47P2o construct, this role could be performed in trans by 

an exogenous water molecule. 

 



 169 

A single proton transfer during the ligase transition state 

We next sought to determine the specific catalytic function of the C47 N4 amine.  This group 

might act electrostatically, through the donation of hydrogen bonds, or as a general acid catalyst, 

through the donation of protons.  To distinguish between these models, we first examined the pH 

dependence of self-ligation activity by the C47P2o construct.  Were the C47 N4 amine a proton 

shuttle, then its removal would ablate a titratable functional group and hence alter the 

dependence of ligase catalysis on pH.  Between pH 6.0 and 8.5, self-ligation activity of the 

C47P2o mutant exhibited log-linear pH dependence with a slope of one (Fig. 4C), identical to 

the behavior observed for the wild type ligase33.  For both ribozymes, the deviation from log-

linearity at high pH is attributed to deprotonation of the nucleobases, which would presumably 

destabilize structure.  Since data at lower pH values were collected under conditions in which 

chemistry is rate limiting26,33, a log-linear pH dependence implies that a single deprotonation 

event ultimately determines the rate of ligase catalysis.  This deprotonation has been previously 

attributed to the activation of the 3´-hydroxyl nucleophile, and the C47P2o data further support 

this claim.  Removal of the N4 group, a different potential proton shuttle, does not affect the pH 

dependence. 

 To more directly measure the number of protons in transit during the transition state, we 

performed proton inventory experiments50,56 on the wild type ligase and some of its derivatives 

(Methods).  The proton inventory technique is a solvent isotope effect–experiment in which the 

dependence of the ligation rate constant on the mole fraction of D2O is measured.  The order of a 

polynomial that best describes this dependence corresponds to the number of protons transferred 

during the transition state: a linear fit implies one-proton-transfer, while a second-order 

polynomial implies two-proton-transfer, and so forth.  Data for the wild type ligase fit well to a 
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line with a slope (Φ) of 0.19±0.01 (Fig. 4D, left; solid line).  Though a linear proton inventory 

could be interpreted as resulting from a complex agglomeration of many microscopic steps56, or 

from a rate-limiting folding step57, the most parsimonious interpretation of the present data is 

that the ligase transfers a single proton during catalysis.  Moreover, since the fit is linear, the 

inverse of this slope (1/Φ) corresponds to the solvent deuterium kinetic isotope effect (SDKIE)56.  

The unmodified ligase therefore exhibits a SDKIE of 5.2±0.3, comparable to those observed for 

some natural proteinaceous polymerases50,58 and consistent with a transition state that strongly 

depends on proton transfer56.  The best-fit two-proton-transfer model for these data is not 

substantially different, yielding SDKIE values of 4.1±0.4 and 1.15±0.1 for the individual protons 

transferred (Fig. 4D, left; dotted line).  An SDKIE of 1.0 signifies a complete lack of rate-

determining proton transfer56.  Therefore, were the ligase to shuttle two protons during its 

transition state, the second of these would be a weak determinant of the overall rate, and hence a 

minor component of its catalytic mechanism.  

 In a similar manner, proton inventories for the C47P2o and C47U variants could only be 

convincingly fit to single-proton transfer models, yielding SDKIE values of 2.3±0.1 and 2.9±0.1, 

respectively (Fig. 4D, middle and right).  Hence, neither the removal of the C47 N4 amino 

group, nor its replacement with an inhibitory carbonyl group changes the number of protons in 

transit during ligation.  It is notable that each of these variants exhibits an SDKIE lower than that 

of the wild type, and might imply that the transition states they stabilize depend less strongly on 

proton transfer.  The data might therefore support the model in which C47 functions 

electrostatically, stabilizing the 5´-α-phosphate transition state geometry by donation of a 

hydrogen-bond. 
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The C30 2´-hydroxyl participates in catalysis 

In addition to its proximity to the ligation junction, in our product structure the C47 N4 amine 

was located within hydrogen-bonding distance of the C30 2´-hydroxyl35.  This interaction is in 

part a consequence of the metal bound by the P6 A-minor triad, which juxtaposes the two groups 

by pulling the C30 ribose into an unusual 3´-exo conformation59.  During crystallographic 

refinement, attempts to fix C30 in the more standard 3´-endo conformation resulted in higher 

Rfree values and characteristic difference peaks in |Fo| – |Fc| maps (data not shown).  In the 

Mg2+/Sr2+-complex preligation structure, we observed that the C30 2´-hydroxyl is also 3.5-Å 

from a well-ordered water molecule positioned 2.7-Å from the leaving group oxygen (Fig. 5A).  

Given these observations, we sought to explore whether or not the C30 2´-hydroxyl plays a direct 

role in catalysis. 

 Using DNA-splinted ligation, we assembled a ligase variant bearing a 2´-Deoxyribose at 

residue 30 (“2´-Deoxy C30”).  This alteration is not expected to be structurally disruptive, since 

the 2´-endo conformation typically adopted by 2´-deoxyribonucleosides is quite similar to the 3´-

exo conformation C30 adopts in our crystal structures59.  Self-ligation activity by the 2´-Deoxy 

C30 variant was reduced ~18-fold relative to the wild type.  This construct exhibited a linear 

proton inventory with a measured SDKIE of 3.1±0.2, a value intermediate between those 

measured for the wild type and C47 variants (Fig. 5B).  These data imply that the C30 2´-

hydroxyl contributes to catalysis, but that it is not involved in proton-transfer.   

Therefore, during catalysis the C30 2´-hydroxyl–much like the C47 N4 amine–may 

function electrostatically, acting as a hydrogen-bond acceptor, a donor, or both.   To discriminate 

between these possible roles, we generated ligase variants in which the C30 2´-hydroxyl was 

replaced with isosteric 2´-fluoro or 2´-amino groups.  A 2´-fluoro group could function as a 
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hydrogen bond acceptor but not a donor; the inverse is true of a 2´-amino substitution.  We first 

examined the effects of these alterations within the context of the primer-extending (PE)-ligase 

construct, t307 (Fig. 1A, 5C).  The 2´-deoxy C30 alteration reduced PE-activity ~113-fold, a 

more dramatic effect than that observed in the self-ligase, perhaps implying that the C30 2´-

hydroxyl plays an additional role when binding exogenous NTPs in trans.  The 2´-fluoro 

substitution diminished activity even further, ~2200-fold relative to the wild type.  This effect 

parallels that observed in the C47U and C47P2o variants: removal of a functional group allows 

its replacement by water, but an isosteric, electronegative substitution is severely inhibitory.  In 

contrast, the 2´-amino substitution restored primer extension activity to a level exceeding that of 

the 2´-deoxy variant, being only ~30-fold below that of the wild type (Fig. 5C).  

We next repeated these experiments in the context of the self-ligase.  While the absolute 

influence on activity was less dramatic than that observed in the PE-ligase, in the self-ligase this 

series of 2´-modifications exhibited the same relative behavior: the 2´-deoxy variant was slow, 

the 2´-fluoro variant slower still, and the 2´-amino group restored activity (Fig. 5D, left).  

Together, these data imply that, in the context of either self-ligation or primer-extension, the C30 

2´-hydroxyl functions as a catalytically important hydrogen bond donor. 

 

Interactions between active-site functional groups 

Given their proximity, we reasoned that the C47 N4 and C30 2´-hydroxyl groups might 

functionally interact during catalysis.  For example, were the C47 N4 to donate a critical 

hydrogen bond to the C30 2´-hydroxyl, then ablation of the C30 2´-hydroxyl should produce a 

different effect in the presence and absence of the C47 N4 amine, and vice versa.  To explore this 

possibility, we generated C47P2o and C47U self-ligase variants bearing the same series of C30 
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2´-modifications described above.  Each series of variants exhibited the same overall trend in 

behavior exhibited in the wild type ligase.  Namely, ablating the C30 hydroxyl was detrimental, 

and this loss of activity could be exacerbated by its replacement with a 2´-fluoro group, or 

rescued by its replacement with a 2´-amino group (Fig. 5D, middle and right).  However, the 

magnitude of these effects depended on the identity of the C47 base.  In the C47P2o variants, 

which lack the C47 N4 amine, C30 2´-deoxy and 2´-fluoro substitutions resulted in a loss of 

activity ~10–20-fold more severe than in the wild type C47 background. Likewise, rescue by the 

C30 2´-amino group was ~10-fold less effective in the C47P2o background than it is in the 

context of wild type C47 (Fig. 5D, middle).  The opposite effect is observed in the C47U 

variants, which replace the N4 amine with an inhibitory carbonyl group.  Here, activity of the 

C47U C30 2´-fluoro variant was only 5.9-fold reduced below that of the unmodified C47U 

ligase, while the C30 2´-amino modification restored activity to ~82% that of C47U (Fig. 5D, 

right). 

 Were the C47 and C30 functional groups acting independently, then the effect of altering 

one would be independent of the status of the other.  The data indicate that this is not the case, as 

evidenced by the schema in Fig. 5E.  The left scheme summarizes the reduction in self-ligation 

rates incurred through the sequential removal of activating groups: the C47 N4 amine and the 

C30 2´-hydroxyl.  The right scheme summarizes the reduction in self-ligation rates incurred by 

the sequential replacement of active site functionalities with inhibitory groups: the U47 O4 

carbonyl and the C30 2´-fluoro.  

Comparing the relative effects of single and double deletions (i.e., by comparing 

horizontal or vertical arrows to one another) in the inactivation scheme, we observed that 

ablation of one functional group becomes six-fold more detrimental when the other functional 
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group has already been removed (Fig. 5E, left).  In contrast, in the deactivation scheme, we 

observed that the addition of one inhibitory group becomes 50-fold less detrimental when the 

other group has already been replaced (Fig. 5E, right).  Thus, in the absence of the C30 2´-

hydroxyl, catalysis becomes six-fold more dependent on the presence of the C47 N4 amine, and 

vice versa.  Conversely, when catalysis is quelled by the addition of an inhibitory group at either 

position, it becomes 50-fold less dependent on the function of the other.  Taken together, these 

data imply that the C47 N4 exocyclic amine donates a hydrogen-bond to the C30 2´-hydroxyl, 

which itself must furthermore donate a hydrogen-bond during catalysis. 
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Discussion 

Based on past34,35 and present results, we here propose a model for transition state stabilization 

by the Class I ligase (Fig. 6).  In this model, the A29 and C30 nonbridging phosphate oxygens 

coordinate a catalytic Mg2+ cofactor that activates the 3´-hydroxyl for nucleophilic attack.  A 

binding site for this metal was implied by the previous biochemical data34,35 and the metal itself 

is observed in the preligation crystal structures (Fig. 3A–B).  Furthermore, two RNA functional 

groups–the C47 N4 exocylic amine and the C30 2´-hydroxyl–participate in networks of 

hydrogen bonds that stabilize both the transition state geometry and the leaving group.  The C47 

amine contributes directly to geometric stabilization, forming a hydrogen bond with the 5´-α-

phosphate pro-Rp nonbridging oxygen that grows stronger as the reaction proceeds from the 

ground state to the transition state.  This proposition is supported by atomic mutagenesis 

experiments, which clearly demonstrate that catalysis depends on the partial positive charge 

presented by the C47 N4 group (Fig. 4B).  In addition, these data suggest that C47 participates in 

a second critical hydrogen bond with the C30 2´-hydroxyl (Fig. 5D–E), a group that itself 

contributes a critical partial positive charge during catalysis (Fig. 5C).  We propose that these 

interactions aid in leaving-group stabilization, positioning a water molecule near the [α,β]-

bridging oxygen.  This water can be modeled in the Mg2+/Sr2+-complex structure (Fig. 3B–C), 

although direct interpretation of this model should be limited, given the resolution limit of our 

data. 

The C47 and C30 functional groups are proposed to act through hydrogen bonding, and 

not through proton transfer, because the proton inventory is unchanged by the removal of either 

group, and because ablation of the C47 N4 amine has no effect on pH-dependence (Fig. 4C–D, 

5B).  In contrast, removal of a general acid catalyst from the active sites of proteinaceous 
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polymerases changes both of these properties50.  In our model, then, we propose that a network 

of hydrogen bonds confers a partial positive charge on the bound water molecule, allowing it to 

stabilize the developing negative charge on the leaving group.  In theory, it is also possible that 

interactions between C47 and C30 might allow this water to function as a specific acid that 

directly protonates the leaving group.  Considering the kinetic isotope data, specific acid 

catalysis of this sort could not happen in concert with nucleophilic attack, nor could it be rate 

limiting. 

It has previously been hypothesized that the ligase employs a two metal-ion mechanism 

similar to those of proteinaceous polymerases and the self-splicing introns33,35.  We now know 

that the ligase mechanism bears some resemblance to its natural counterparts, since it uses an 

acid-bound Mg2+ cofactor to activate the 3´-hydroxyl for nucleophilic attack.  This metal is 

similar to the canonical Metal A of proteinaceous polymerases.  However, the two are not 

directly equivalent, since, in addition to activating the nucleophile, Metal A is known to interact 

with the α-phosphate nonbridging oxygen45,46,60.  An analogous contact is not observed in the 

ligase structures, though it is supported by phosphorothioate interference data32.  It is therefore 

possible that a small conformation change facilitates this contact during catalysis, or that the 

interference data are caused by an outer-sphere coordination effect. 

 In almost all other regards, the Class I ligase seems to have found a catalytic strategy 

dramatically different from its natural counterparts.  Notably, the ribozyme appears to lack Metal 

B45,46, a universal feature of the active sites of natural polymerases that is not paralleled by any 

of the numerous solvent atoms decorating the ligase 5´-triphosphate (Fig. 3A–C).  In 

proteinaceous polymerases, Metal B is thought to enter the active site in complex with incoming 

NTPs and exit in complex with the pyrophosphate product; during catalysis it helps stabilize the 
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transition state geometry and charge distribution at the α-phosphate45,46.   Its absence in the 

ligase may be linked to the unusual conformation adopted by the G1 5´-triphosphate, which 

would provide a poor binding site for this metal.  Since RNA is more adept at forming metal ion 

binding sites than is protein, it should be substantially easier for an evolving ribozyme to explore 

different potential ways of using metal ion interactions to stabilize an NTP substrate.  As such, 

the Class I ligase has apparently been evolved to strip the 5´-triphosphate of Metal B, contorting 

it into the hooked geometry and stabilizing it through metal-mediated interactions with other 

groups on the enzyme.  This triphosphate conformation concomitantly pulls the negatively 

charged β- and γ-phosphates away from the reaction center, exposing the leaving group oxygen 

toward catalytic moieties at the active site. 

That the ligase might accelerate phosphoryl-transfer via a one-metal-ion mechanism, and 

that functional groups on the enzyme perform roles typically played by a second metal ion, is not 

without precedent.  A similar proposition has been made in the case of ββα-me and HUH 

nucleases, which use an active site metal cofactor near the 3´-hydroxyl leaving group, but which 

lack one near the 5´-phosphate61.  A comparison of these enzymes to those that use a two-metal-

ion strategy led to the conclusion that active-site amino acids have supplanted the role normally 

ascribed to the absent metal.  Similarly, the ligase appears to have been replaced this metal with 

the C47 base.  While the use of catalytic nucleobases is now known to occur in the active sites of 

natural catalytic RNAs, the ligase C47 is the first example of this phenomenon in an artificial 

ribozyme. 

Although crystal structures have been solved of other artificial ribozymes in their 

postcatalytic states37,39, as apoenzymes36,38, or bound to their substrates38 or products36, the Class 

I ligase is the first artificial ribozyme for which two steps of a catalytic cycle have been 
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visualized crystallographically.  This allows us to compare the proposed ligase mechanism to 

those of its natural counterparts, which have been similarly analyzed (reviewed in ref. 62).  In 

many regards, the most direct comparison is with the HDV ribozyme, which also uses a metal 

ion cofactor to deprotonate its nucleophile and an active site cytosine to stabilize the leaving 

group63.  In HDV, however, this cytosine almost certainly functions as an active site acid62,64, 

having an N3 group with a pKa near neutrality65,66.  In contrast, the ligase uses a cytosine N4 

amine, and does not perform general acid-base catalysis.  Like the ligase, the GlmS ribozyme is 

thought to make catalytically critical hydrogen bonds with a nucleobase exocyclic amine (the 

G57 N2 amine), and a hydroxyl group (the Glucosamine-6-Phosphate C1-hydroxyl)67.  However, 

both of these groups are thought to stabilize the scissile phosphate transition state geometry, and 

not the leaving group.  Finally, the ligase’s extensive use of electrostatics is reminiscent of the 

Hairpin ribozyme, which accelerates self-cleavage by forming more hydrogen bonds with the 

scissile phosphate at the transition state than it does at either ground state68.  A water molecule 

might also play a catalytic role for the Hairpin69, though it is proposed to function as a specific 

base, activating the reaction nucleophile.  Moreover, unlike the ligase, the Hairpin ribozyme 

catalysis does not depend on a metal ion catalytic cofactor70. 

 Compared to the Class I ligase, most artificial ribozymes achieve far lower rate 

enhancements, and are likewise thought to achieve catalysis by substantially simpler means36-39.  

Hence, it is tempting to propose that the relatively complicated catalytic strategy of the Class I 

ligase (Fig. 6) might be tied to its remarkable catalytic power.  Further exploration of the ligase 

mechanism may facilitate a greater understanding not only of the differences between natural 

and artificial ribozymes, but of RNA catalysis in general.  Likewise, the extension of these 
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findings to the ligase-derived polymerase ribozymes22-24 may help in future efforts to isolate an 

RNA replicase ribozyme. 
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Materials and Methods 

Sample synthesis for crystallography.  Except for the C47U active site mutation, the 

crystallization construct used in these experiments was identical to the improved Class I ligase 

U1A-binding variant described previously35. The transcription template for this mutant 

ribozyme, p307HU_C47U, was generated from the wild type template p307HU35 using the 

QuickChange mutagenesis kit (Stratagene), and linearized by EarI digestion before use.  RNA 

was synthesized in 1–3 mL T7 in vitro transcription reactions, processed and purified essentially 

as described previously35, but without removal of the terminal 2´-3´ cyclic phosphate.  Purified, 

desalted RNA was concentrated to ~200 µM in deionized water and stored at –20ºC before use.   

 The ligase substrate oligonucleotide was purchased from Dharmacon and deprotected 

according to the manufacturer’s specifications.  To eliminate contaminants remaining from solid 

phase synthesis, the sample was further purified on a preparative denaturing 0.5x TBE 20% 

polyacrylamide gel.   The corresponding band was visualized by UV-shadowing and excised.  

RNA was passively eluted into 300 mM NaCl overnight at 4ºC, precipitated with five volumes of 

ethanol, dried, resuspended into deionized water and stored at –20ºC before use.   

The U1A A1-98 Y31H/Q36R double mutant71,72 was expressed and purified as described 

previously35.  

 

Crystallization and data collection.  The annealing protocol used to prepare RNA samples for 

crystallization was designed to parallel that used during the original ligase selection18 and in 

subsequent biochemical experiments21,26,32-34.  Approximately 200 µM unreacted C47U ligase 

RNA was heated (80ºC, 5 minutes) and cooled (22ºC, 10 minutes) in water, and then mixed with 

a 1.1-fold excess of substrate oligonucleotide in calcium annealing buffer (final composition, 5 
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mM MES, pH 6.0, 10 mM CaCl2, 1 mM DTT), and incubated at 22ºC for an additional 15 

minutes.  U1A was added at a 1:1 molar ratio of ligase:protein, bringing the final complex 

concentration to 5.0 g/L.  This mixture was incubated at 22ºC for 45–60 minutes, mixing 

periodically, and then centrifuged at 13,000xg for 1 minute prior to setting up crystallization 

experiments. 

Experiments using the C47U construct and Mg2+-containing annealing and precipitation 

buffers, similar to those reported for ligase product crystals35, failed to yield crystalline matter.  

Moreover, wild type ligase•substrate complexes in which the nucleophile was blocked with a 3´-

O-methyl group, or in which the 5´-triphosphate was replaced with a nonhydrolyzable α,β-

methylene triphosphate, failed to produce crystals under any condition tested (data not shown).  

Crystals could only be obtained from the unreacted C47U mutant in Ca2+-containing buffers.  

Initial crystals were grown by hanging drop vapor diffusion, mixing equal volumes of the C47U 

ligase•substrate•U1A complex sample with mother liquor consisting of 14% Methyl-2,4-

pentane-diol (MPD), 50 mM sodium cacodylate (pH 6.0), 20 mM calcium acetate, 10 mM 

strontium acetate and 1mM spermine, and equilibrating over 0.6 mL of this same precipitation 

mixture at 20ºC.  Crystal clusters with an interdigitated cubic morphology appeared within a 

week, and reached maximum size (~100 µm per side) within two weeks.  

 Diffraction quality crystals were grown using a previously developed microseeding 

technique35 that exploits the ability of KCl to ablate de novo crystal nucleation.  Crystalline 

clusters were stabilized by progressively increasing the drop concentration of MPD to 30%, 

holding all other buffer components isotonic.  To generate seed stocks, stabilized clusters were 

crushed with a Seed-Bead (Hampton Research), serially diluted in the same stabilization buffer, 

and used directly as precipitant in subsequent experiments.  To avoid spontaneous nucleation in 
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these experiments, RNA samples were prepared in calcium annealing buffer supplemented with 

100 mM KCl.  This ligase•substrate•U1A sample was mixed in equal volumes with the 

microseed stock, and equilibrated in hanging drops over 0.6 mL of 20–24% MPD.  

Morphologically homogeneous crystals grown by this method appeared overnight, and were 

harvested within four days. 

 For cryoprotection, crystallization drops were brought to 30% MPD under otherwise 

isotonic conditions, as described for the generation of seed stocks.  Calcium-bound crystals were 

allowed to equilibrate in stabilization buffer for two hours, mounted in nylon loops and plunged 

directly into liquid nitrogen.  To obtain magnesium-bound crystals, drops containing 

cryostabilized calcium-bound crystals were serially diluted with an isotonic 30% MPD solution 

in which Mg2+ replaced Ca2+.  After eight twofold dilutions into this magnesium stabilization 

buffer (final Mg2+:Ca2+, 256:1) the crystals were equilibrated for two hours more, mounted in 

nylon loops and plunged into liquid nitrogen.  Since the estimated ligation rate of the C47U 

mutant is ~1.1×10-5 min-1 at pH 6.0, we anticipate ~0.1–0.3% should have ligated during 

equilibration with Mg2+. 

 

Data collection, structure determination and refinement.  Data were collected at NE-CAT 

beamlines 24-ID-C and 24-ID-E at the Advanced Photon Source (APS), aided by the expert 

technical advice of K.R. Rajashankar.  All data were indexed, scaled and integrated using the 

HKL2000 software suite73, removing 5% of all reflections for Rfree calculations.  The Ca2+/Sr2+- 

and Mg2+/Sr2+-complex structures were solved, built and refined independently of one another.  

The two monomers in each asymmetric unit were built separately. 
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Initial phases were obtained by molecular replacement in PHASER 74, using the U1A-

bound Class I ligase product structure (PDB ID: 3HHN) as a search model.  The optimal 

solutions for each search (Z-scores of 26–30) were used as the starting points for further 

refinement, carried out in PHENIX75.  Model building was performed in COOT76.  All 

refinement steps followed the “individual ADP” strategy in PHENIX75, alternating rounds of 

automated bulk-solvent correction, positional and individual atomic B-factor refinement.  Target 

geometric weights (the “wxc_scale” in PHENIX75) were held at relatively restrictive values of 

0.05–0.01; the “wxu_scale” was held at 1.0 throughout all refinement steps. To remove model 

bias from the molecular replacement solutions, the first three rounds of refinement also 

employed rounds of simulated annealing (5000K to 300K, in 100K steps) and rigid body 

refinement, defining the individual ligase helices (P1, P2, etc…), the U1A protein, its cognate 

loop, and 3–6-nt subdivisions of the unpaired joining regions (J1/2, J1/3 and J3/4) as independent 

rigid bodies.  Neither NCS-averaging nor TLS was used during either refinement. 

The |FO| – |FC| difference fourier maps resulting from initial refinement rounds exhibited 

prominent (7–10σ) peaks in the vicinity of nucleotide G1 (Fig. 1B–C, 3A–B), corresponding to 

the 5´-triphosphate.  This 5´-GTP was built by hand in COOT76, and the resulting model was 

subjected to another round of simulated annealing in addition to the ADP regimen outlined 

above.  Fully- or partially-hydrated metal ions outside the active site were built next, their degree 

of hydration assigned by first placing dehydrated metals into strong (>3.5σ) |FO| – |FC| difference 

peaks, and inspecting the resultant temperature factors and difference peaks after a subsequent 

round of refinement77,78.  This process was repeated iteratively, until no strong peaks remained.  

Active site metal ions were placed last, using this same strategy.  
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Owing to the resolution limits, metal ions and their bound waters could not be 

individually refined in a chemically sensible manner.  So, partially- or fully-hydrated metal 

clusters were treated as monomers during refinement, having defined model residues with idealized 

bond lengths and geometries using the SKETCHER program the CCP4 program suite 79.  

Magnesium–water bond distances were defined as 2.07 Å; hexacoordinate geometry was used in 

for all magnesium monomers 41,42.  Calcium–water bond distances were similarly fixed at 2.43 Å.  

However, owing to the variable coordination geometries of calcium hydrate clusters41,42, bound 

waters were not built unless their geometry with respect to the calcium ion was clearly indicated in 

difference Fourier maps. For the metal-hydrate clusters bound to the P6 A-minor triad (residues 

A31 and A32 35) bond distances were restrained to their ideal values, and the angle was fixed at 90º; 

none of the other metal hydrates were fixed with regard to the neighboring macromolecule. 

 Each monomer in the final Mg2+-bound structure contains all 130 nucleotides of the 

ligase core, all seven nucleotides of the substrate, and all but the first 6–7 amino acids of the 

U1A protein.  The occupancies have been set to zero for protein side chains lacking electron 

density.  Despite high temperature factors in the Ca2+/Sr2+-complex structure (Fig. 2C), refining 

the occupancies of, or altogether removing problematic nucleotides resulted in an increase in the 

Rfree value.  Hence final structure consists of all nucleotides of the ligase core and substrate. 

All structural figures were made in PyMol80. 

 

Synthetic RNA and DNA oligonucleotides.  Most of the RNA oligonucleotides used for the 

splinted assembly of modified ligases  (see below) were purchased from Dharmacon.  

Oligonucleotides bearing the pyridin-2-one and abasic modifications were purchased from 

Trilink Biotechnologies.  Those bearing zebularine, 2´-deoxy isoguanosine and 2´-deoxy 5-

methyl isocytosine modifications were purchased from the W.M. Keck Foundation 

Biotechnology Resource Laboratory at Yale University (hereafter “Yale Keck”), using 
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phosphoramidites from Glen Research.  DNA transcription template oligonucleotides bearing 5´-

terminal 2´-O-methyl modifications (see below) were also synthesized by the Yale Keck facility.  

All other DNA oligonucleotides were purchased from Integrated DNA Technologies (IDT). 

The reagents from Trilink and IDT did not require deprotection or further purification 

before use.  DNA oligonucleotides from Yale Keck were purified from denaturing 10% 

polyacrylamide gels as described for the RNA substrate oligonucleotide.  RNA oligonucleotides 

from Yale Keck were deprotected with 55.6% (v/v) triethylamine trihydrofluoride (TEA.3HF) in 

anhydrous DMSO for 2.5 hr at 65ºC.  Reaction mixtures were then briefly chilled, brought to 300 

mM sodium acetate and precipitated by addition of five volumes of isopropanol and overnight 

incubation at –20ºC.  Following centrifugation, pellets were washed with absolute ethanol and 

pelleted twice, then dried and resuspended into deionized water.  Oligonucleotides from 

Dharmacon were deprotected according to that manufacturer’s instructions, and in biochemistry 

assays were used without further purification.  The purity and mass of all modified RNA 

oligonucleotides was confirmed by MALDI mass spectrometry.  All reagents were stored at –

20ºC until use. 

  

Transcription templates for RNAs used in biochemical assays.  Templates for primer-

extending variants t307 and GAA-t307 were plasmids generated by QuickChange mutagenesis 

from pH307HP35, which brackets the ligase core with 5´-hammerhead (HH) and 3´-hepatitus 

dela virus (HDV) self-cleaving ribozymes.  Excision of these ribozymes ensures that the final 

ligase species has homogeneous termini81.  For t307, the relevant sequence of the insert was 

GCGTAATACGACTCACTATAGGGAGAGTAGTATAGTGCTGATGAGTCCGTGAGGACGAAAC
GGTACCCGGTACCGTCCACTATACTACTGGATAATCAAAGACAAATCTGCCCGAAGGGCTTGAG
AACATACCCATTGCACTCCGGGTATGCAGAGGTGGCAGCCTCCGGTGGGTTAAAACCCAACGTT
CTCAACAATAGTGAGGCCGGCATGGTCCCAGCCTCCTCGCTGGCGCCGGCTGGGCAACATTCCG
AGGGGACCGTCCCCTCGGTAATGGCGAATGGGACCCAC 
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where larger letters indicate the T7 promoter, bold nucleotides denote the 5´ and 3´ ends of the 

mature ligase species, italicized nucleotides denote the 5´-HH and 3´-HDV ribozymes and 

underlined nucleotides denote the U1A modification in stem P5.  For GAA-t307, the relevant 

sequence of the insert was 

 
GCGTAATACGACTCACTATAGGGAGAGTATAGTGTTCCTGATGAGTCCGTGAGGACGAAAC
GGTACCCGGTACCGTCGAACACTATACTACTGGATAATCAAAGACAAATCTGCCCGAAGGGCTT
GAGAACATACCCATTGCACTCCGGGTATGCAGAGGTGGCAGCCTCCGGTGGGTTAAAACCCAAC
GTTCTCAACAATAGTGAGGCCGGCATGGTCCCAGCCTCCTCGCTGGCGCCGGCTGGGCAACATT
CCGAGGGGACCGTCCCCTCGGTAATGGCGAATGGGACCCAC 
 

annotated as above.  Plasmids were linearized by digestion with EarI endonuclease before use.  

 Templates for the C47A, C47G and C47Δ mutants, and the “3´-Arm” species used in 

assembling modified ligases by splinted ligation (see below) were PCR products generated from 

overlapping DNA oligonucleotides19.  Templates for the active site mutants did not include self-

cleaving ribozymes; that for the “3´-Arm” construct consisted of a 5´-HH ribozyme followed by 

nucleotides 52–121 of the ligase core, appended with the P5 U1A-loop extension.  The full 

sequence of this construct was 

 
GCGTAATACGACTCACTATAGGGAGATGGGTATGTTCCTGATGAGTCCGTGAGGACGAAAC
GGTACCCGGTACCGTCGAACATACCCATTGCACTCCGGGTATGCAGAGGTGGCAGCCTCCGGTG
GGTTAAAACCCAACGTTCTCAACAATAGTGA 
 

annotated as above. 

 The template for the “5´-Arm” species used in assembling modified cis-ligases by 

splinted ligation (see below) was a DNA oligonucleotide modified with two 2´-O-methyl 

nucleotides at its 5´-terminus.  These modifications have been shown to limit the 3´-
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heterogeneity of transcription products82.  The template oligonucleotide was annealed to a 21-nt 

T7 promoter top strand DNA oligonucleotide and used as previously described32,82. 

 

Transcription and purification of RNAs used in biochemical assays.  T7 in vitro transcription 

reactions were performed as described19, in volumes of 50 µL–1 mL, depending on the construct.  

Templates were included at concentrations of 20 µg/mL in reactions using linearized plasmids, 6 

µg/mL for those using PCR products, and 6 µg/mL for those using DNA oligonucleotides.  

Transcription reactions were quenched with the addition of EDTA, extracted with phenol and 

chloroform, ethanol precipitated and resuspended into deionized water.  Constructs employing 

self-cleaving ribozymes were subsequently desalted and refolded to allow full processing of the 

HH or HDV ribozymes, as previously described35,81.  The terminal 2´-3´ cyclic phosphate was 

not removed from these species.  All RNAs were purified from denaturing 6% 0.5X TBE 

polyacrylamide gels, passively eluted into 300 mM NaCl at 4ºC overnight, ethanol precipitated, 

resuspended in deionized water and stored at –20ºC before use. 

 

Assembly of modified ligases.  Ligase constructs bearing modified nucleotides were assembled 

by DNA-splinted ligation83,84.  To allow modular manipulation of functional groups at all 

positions near the active site, the ligase was schematically split into five oligonucleotides 

spanning different regions under interrogation.  For the construction of self-ligases (Fig. 1A), an 

in vitro transcribed “5´-Arm” oligonucleotide (see above) spanning nucleotides 1–23 was used.  

For the construction of primer-extending ligases (Fig. 1A, inset) this oligonucleotide was 

replaced with a chemically synthesized species spanning positions 4–23.  Modifications at C30 

were introduced on synthetic 10mer oligonucleotides spanning residues 24-33; those at C47 were 
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introduced on 9mer oligonucleotides spanning residues 43–51.  An unmodified intermediary 

bridging oligonucleotide spanned positions 34–42.  The remainder of the ligase (corresponding 

to residues 52–121, appended with the P5 U1A-loop) was provided by a “3´-Arm” RNA (see 

above).  The DNA splint was complementary to residues 13–61, hence extending ten residues 

upstream of junction between the 5´-Arm and 10mer oligonucleotide, and ten residues 

downstream of the junction between the 9mer oligonucleotide and the 3´-Arm.  As required for 

splinted ligation, the 9mer, 10mer and bridging oligonucleotides were synthesized bearing 5´-

monophosphates. The 3´-Arm was phosphorylated with T4 polynucleotide kinase (PNK, New 

England Biolabs) prior to gel purification, according to the manufacturer’s instructions. 

DNA-splinted assembly reactions were performed in a single pot, one-step synthesis 

using T4 RNA ligase 284 (RNAl2, New England Biolabs).  Equimolar concentrations of all five 

RNA oligonucleotides and the DNA splint were combined in deionized water to give a final 

concentration of 12 µM.  The reaction mixture was annealed by heating and cooling (85ºC and 

37ºC, for five minutes each), supplemented with the manufacturer’s reaction buffer  (1X, final 

concentration) and incubated at 37ºC for 15 minutes more.  RNAl2 was then added to a final 

concentration of 1 U/µL.  After four hours at 37ºC, the reaction was quenched by the addition of 

EDTA to 60 mM and NaCl to 300 mM, extracted with phenol and ethanol precipitated.  Pellets 

were resuspended in deionized water, brought to 5 M urea and purified from denaturing 6% 0.5X 

TBE polyacrylamide gels.  Bands corresponding to reaction products were visualized by UV-

shadowing and excised.  RNA was passively eluted into 300 mM NaCl overnight at 4ºC, ethanol 

precipitated, resuspended into deionized water and stored at –20ºC before use. 

Under these reaction conditions, the assembly reaction appears nearly quantitative, as 

monitored by ethidium bromide-stained gels (Fig. 7A).  However, due to the inefficiency of 
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passive gel elution, reactions starting with 2 nmol of oligonucleotide substrates typically yielded 

0.5–0.8 nmol of fully assembled product.  Unmodified ligase species assembled in this fashion 

exhibited activities identical to those that had been transcribed whole in vitro (Fig. 7B), within 

the experimental error. 

  

Kinetic Assays.  Unless otherwise noted, all biochemical assays were performed in triplicate; 

reported errors are standard deviations. All data were fit using the program KaleidaGraph 

(Synergy Software).  In experiments calculating relative rates, uncertainties were propagated 

using the equation 
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where A and B are individual rate constants, R is their ratio, and σA, σB and σR are their 

associated uncertainties. 

Kinetic assays used substrate oligonucleotides that had been 5´-radiolabeled using PNK 

and [32P]γ-ATP, or ribozymes that had been body labeled by addition of [32P]α-UTP in the 

transcription reaction.  Unless otherwise noted, all kinetic assays were performed in 50 mM 

buffer (sodium cacodylate for pH 6.0–6.5; Tris for pH 7.0–9.0), 10 mM MgCl2, 200 mM KCl 

and 600 µM EDTA.  Compounds used in exogenous rescue experiments were prepared in 50 

mM Tris•HCl buffer, pH 8.0, and their pH was confirmed at the reaction concentrations before 

use.   

Self-ligation assays were performed as described previously33: the ribozyme was heated 

(5 minutes, 80ºC) and cooled (5 minutes, 22ºC) in water, and reactions were initiated at 22ºC by 

the simultaneous addition of buffer, salts and substrate oligonucleotide.  The final ligase 
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concentration was 1 µM; substrate was added to a final concentration of 0.5 µM.  In exogenous 

rescue experiments, the rescuing compound was added concomitantly with the substrate. 

 Primer extension assays were performed under single-turnover conditions in a manner 

similar to that described previously32, with the order of component addition changed slightly.  

Ribozyme was first heated (5 minutes, 80ºC) and cooled (5 minutes, 22ºC) in water, and then 

supplemented with buffer, salts and the substrate oligonucleotide.   This mixture was incubated 

at 22ºC for 15 minutes, and reactions were initiated by the addition of NTP.  Since NTPs chelate 

Mg2+, the NTP was added in an equimolar mixture with MgCl2
32.  Final concentrations were 1 

µM ligase, 0.5 µM substrate and, unless otherwise noted, 4 mM NTP. 

For all reactions, aliquots were taken at the specified time points and rapidly quenched by 

mixing with an equal volume of gel-loading buffer (8 M urea, 120 mM EDTA, trace bromphenol 

blue and xylene cyanol).  Samples from primer-extension assays, or from self-ligation assays 

with radiolabeled substrates were separated on denaturing 0.5X TBE 20% polyacylamide gels; 

those from body-labeled self-ligation assays were separated on denaturing 6% gels.  Gels were 

visualized by phosphorimaging (Fujifilm BAS-2500).  For each time point the fraction product 

was measured as  
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where P(t) and R(t) are the product and reactant at a given time, respectively, and fit to the 

equation 
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were t equals time, treating FM (the maximum fraction reacted) and kOBS (the observed rate 

constant) as unknowns.  Michaelis-Menten parameters were measured from single-turnover 
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primer-extension reactions in which the concentration of NTP was varied.  Observed single-

turnover rate constants at each NTP concentration (kOBS([NTP])) were measured and fit to the 

equation 
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with kCAT and KM treated as unknowns.  Experiments were performed at pH 7.0. 

 

Kinetic Isotope Experiments.  For solvent isotope effect experiments, all reaction components 

(ribozymes, substrates, buffers, MgCl2, KCl, EDTA) were reformulated in parallel in H2O and 

D2O.  Aliquots of ribozyme and radiolabeled substrate in H2O were dried overnight in a speed-

vac, resuspended in D2O, quantified by UV-vis spectroscopy and stored at –80ºC until use.  

Buffers were brought to pL (pH or pD) by titration with the conjugate acid and base of the buffer 

system.  MES (free acid, sodium salt) was used for experiments at pL 6.0 and Tris 

(hydrochloride, free base) for experiments at pL 8.0.  In all cases, the pL was measured using a 

glass electrode; for buffers in D2O, the apparent pD was corrected by adding a value of 0.4 to the 

instrument readings85.   

 Other than the experimental variation of H2O and D2O, proton inventory experiments 

were performed under standard self-ligation conditions: 50 mM Buffer (pL 6.0 or 8.0), 10 mM 

MgCl2, 200 mM KCl, 600 µM EDTA, 1 µM ribozyme and 0.5 µM substrate.  Ribozyme samples 

in D2O and H2O were combined in appropriate ratios to produce mixtures in 100%, 80%, 60%, 

40%, 20% and 0% D2O.  Substrate oligonucleotides, buffers and salts were similarly combined 

to obtain a parallel series of reaction start mixes at the same fractions of D2O.  Self-ligation 

reactions were then performed as described above, heat/cooling the ligase in isolation before the 

simultaneous addition of all other reaction components.  Time points were measured as described 
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above, and at each molar fraction of D2O (termed “n”) the apparent rate constant, kn, was 

calculated. Proton inventories were calculated by plotting the ratio of kn to the apparent rate 

constant in pure water, kH2O, as a function of n, and fitting the data to the modified Gross-Butler 

equation56 for either a two-proton-transfer model, 

! 

kn

kH2O

= (1" n + n #$1)(1" n + n #$2 ) 

or for a one-proton-transfer model, 
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where each Φ is the inverse of the of the SKIE for an individual ionizable group.  Uncertainties 

were propagated as described above. 
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Figure Legends 

Figure 1.  Architecture of the Class I ligase ribozyme preligation complex.  (A) Secondary 

structure of the crystallization construct, drawn reflecting the coaxial stacking and relative 

domain orientation observed in crystal structures35. The ribozyme is depicted undergoing 

ligation: the nucleophile, electrophile and leaving groups are drawn in red.  Curved arrows 

indicate attack by the substrate 3´-hydroxyl on the ribozyme α-phosphate, with concomitant loss 

of pyrophosphate.  Active site backbone phosphates at positions 29 and 30 are shown as yellow 

boxes, as is residue 47, which has been mutated from cytosine to uridine to trap the ligase prior 

to catalysis.  Nucleotides in gray were added to facilitate crystallization.  Residue numbering is 

as in (ref. 19); base pair geometries are indicated using the nomenclature of Leontis and 

Westhof86.  Base triples are boxed in gray and connected with gray lines; stacked residues are 

vertically aligned or connected with thin gray lines terminating in gray bars.  Inset, primer-

extending (PE) ligase constructs t307 (left) and GAA-t307 (right), depicted extending their 

primers by exogenous GTP.  Residue 47 in these constructs has been restored to cytosine.  (B) 

Overview of the Ca2+/Sr2+-preligation structure, peering into the active site.  The U1A protein 

and its cognate loop have been removed from view.  The 5´-GTP is shown as sticks.  Proposed 

catalytic metal ions, or solvent atoms that appear important for GTP docking, are shown as 

spheres (orange, metal ions; chartreuse, water).  Meshes are simulated-annealing |Fo| – |Fc| OMIT 

maps in which G1 (magenta, contoured at 5σ) or active site solvent atoms (dark blue, contoured 

at 4.5σ) were excluded from map calculations.  (C) Overview of the Mg2+/Sr2+-preligation 

structure, depicted as in B. 
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Figure 2.  Comparison of the preligation and product structures.  (A) Superposition of the 

Ca2+/Sr2+-preligation complex and the product structure (PDB ID: 3HHN)35. Left, global view of 

the alignment, depicted as a backbone trace.  The U1A protein and its cognate loop have been 

removed from view.  Residues in lavender were poorly ordered.  Right, active site view of the 

same alignment.  The product structure is depicted as black lines.  The preligation structure is 

depicted as sticks, colored as in Fig. 1; the 2´-hydroxyl nucleophile and G1 phosphorus atoms 

are in red, G1 phosphate oxygens are in purple.  A structural Ca2+ ion and water molecules are 

shown as orange and chartreuse spheres, respectively; other active site solvent atoms have been 

removed from view. (B) Superposition of the Mg2+/Sr2+-preligation complex and the product 

structure, depicted as in A.  Alignments were performed using the program LSQKAB87 in the 

CCP4 program suite79, anchored on all RNA atoms outside of the U1A loop.  (C) 

Crystallographic disorder in the Ca2+/Sr2+ structure.  The 5´-end of P1-P2 domain, comprising 

helix P1 and the first nine residues of J1/3, is shown for each preligation structure.  Meshes are 

simulated-annealing |Fo| – |Fc| OMIT maps, contoured at 3.5σ, in which the residues depicted as 

sticks were excluded from the map calculations.  These residues were colored in lavender in part 

A. 

 

Figure 3. Active site interactions with the 5´-GTP and solvent.  (A) Stereograph of the active site 

observed in the Ca2+/Sr2+-preligation structure.  Coloring and rendering is as in Fig. 2.  Inner-

sphere coordination interactions with metal ions are depicted as thin sticks; hydrogen bonds are 

shown as black dashes.  Meshes are simulated-annealing |Fo| – |Fc| OMIT maps in which the GTP 

(magenta, contoured at 5σ) or active site solvent atoms (navy, contoured at 4.5σ) were excluded 

from map calculations.  (B) Stereograph of the active site observed in the Mg2+/Sr2+-preligation 
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structure, depicted as in A.  (C) Schematic summary of solvent interactions with the 5´-GTP 

observed in the Mg2+/Sr2+-preligation complex.  Blue numbers indicate the distance, in 

angstroms, between atomic centers.  Waters hydrating the Mg2+ bound by G1 and G2 are 

represented by black lines.  The inner sphere Mg2+–H2O bond near the β-phosphate was 

restricted to 2.07Å during refinement (Methods).  (D) Reorientation of the 5´-GTP during metal 

ion exchange.  Solvent atoms have been removed from view.  The two preligation structures 

were superposed by alignment with G2.  Indicated distances are between the 3´-hydroxyl 

nucleophile and α-phosphate of each structure; the indicated angular shift is between the γ-

phosphates in each structure and the α-phosphate in the Mg2+/Sr2+-complex.  (E) Michaelis-

Menten kinetics for single-turnover, single-nucleotide primer extension by the t307 (black) and 

GAA-t307 (gray) constructs. 

 

Figure 4.  The C47 nucleobase participates directly in catalysis.  (A) Self-ligation kinetics for 

the C47U (left) and C47Abasic (right) variants, supplemented with exogenous small molecules. 

The y-axis is the same for both plots.  Rescuing compounds were added at 35 mM – near the 

solubility limit for cytosine.  Reaction kinetics at the solubility limits of the other rescuing 

compounds, or at 400 mM Imidazole, were indistinguishable from those shown here (data not 

shown).  (B) Self-ligation rates of C47 variants, relative to the wild type.  Results are shown on a 

logarithmic scale. The 4SU (4-thiouridine) variant shows biphasic kinetics; each of the two rates 

is shown individually.  The uridine, abasic, guanosine and delta mutants were measured at pH 

8.0 and scaled relative to the wild type rate at that pH; all other variants were measured at pH 

6.0.  The uncatalyzed rate was measured previously88.  (C) pH dependence of the self-ligation 

rate of the pyridin-2-one variant.  The fit between pH 6.0 and 8.0 is linear.  (D) Proton 
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inventories for self-ligation by the wild type (left), C47P2o (middle) and C47U variants.  The y-

axis is the same for each plot.  n is the molar fraction of D2O; kn is the apparent first-order rate 

contant at a given n, ko is this rate constant in 100% H2O.  The solid black line indicates the best 

fit for a single-proton-transfer model; the dashed gray line indicates the best fit for a two-proton-

transfer model56.   

 

Figure 5.  The C30 2´-hydroxyl participates directly in catalysis.  (A) Orthogonal views of the 

active site observed in the Mg2+/Sr2+-complex, highlighting interactions between C47, C30, a 

partially hydrated Mg2+ ion and the 5´-triphosphate.  Coloring and rendering are as in Fig. 3A.  

Red dotted line indicates the assumed line of nucleophilic attack.  (B) Proton inventory of the 2´-

deoxy C30 construct, plotted as in Fig. 4D.  (C) Relative first-order rate constants for single-

addition primer-extension by t307 constructs bearing modifications at the C30 2´-hydroxyl.  

Results are scaled relative to the unmodified construct (C30 2´-OH), and shown on a logarithmic 

scale.  (D) Relative self-ligation rate constants for C30 2´-modifications in the context of base 

variants at position 47.  Results are scaled relative to the C30 2´-OH construct for each C47 base, 

and are shown on a logarithmic scale.  (E) Two schemes summarizing functional interaction 

between the C30 2´-hydroxyl and the C47 N4 during self-ligation.  In each, numbers above the 

arrows indicate the fold reduction in first-order rate constants incurred by introducing the given 

modification.  The left scheme summarizes the effects of removing activating groups, the C47 

N4 amine and C30 2´-hydroxyl.  The right scheme summarizes the effects of adding inhibitory 

groups, the U47 O4 and C30 2´-fluoro.  At pH 6.0, the observed rate of the unmodified ligase 

(upper left corner of each scheme) was 0.93±0.009 min-1. 
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Figure 6.  A model for transition-state stabilization by the Class I ligase ribozyme.  Black dotted 

lines indicate bonds formed or broken during the transition state; red arrows indicate the reaction 

direction.  Gray dashed lines denote hydrogen bonds.  The A29 pro-Sp and C30 pro-Rp non-

bridging phosphate oxygens form inner-sphere contacts with the catalytic metal ion (thick blue 

lines).  The remaining Mg2+ ligands (thick gray lines) are presumed to be water (not shown). 

 

Figure 7.  Assembly of active ligases by DNA-splinted ligation.  (A) Efficient DNA-splinted 

assembly of modified t307 species.  Leftmost lane: the 3´-Arm oligonucleotide, the longest of the 

RNAs used in assembly.  Middle three lanes: end points (four hr, Methods) of DNA-splinted 

assembly reactions; products are t307 derivatives bearing phosphorothioate modifications at the 

indicated positions.  Rightmost lane: in vitro-transcribed, unmodified t307.  This material runs 

slightly faster than the assembled t307 products because it terminates with a 2´-3´ cyclic 

phosphate and lacks 3´- transcription heterogeneities.  Shown is a denaturing polyacrylamide gel 

stained with ethidium bromide. (B) DNA-splinted assembly of active self-ligases.  Shown are 

typical self-ligation timecourses using a 5´-32P-labeled oligonucleotide substrate.  Left lanes: T7 

in vitro-transcribed wild type 307.  Right lanes: the equivalent species generated by DNA-

splinted assembly.  The observed rates of these samples differ by approximately two-fold (not 

shown). 
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Future Directions 

 Even prior to the work presented here, the Class I ligase was among the most extensively 

studied and best characterized artificial ribozymes.  Building on this robust enzymological 

background, crystallographic analyses have now elucidated in atomic detail the global and active 

site architectures of this remarkable enzyme.  These results provided an invaluable starting point 

for studies that interrogated the functional groups on the ligase that directly participate in 

catalysis, and have yielded a catalytic model with a level of detail nearly rivaling those of the 

natural ribozymes.  This model is still lacking in some regards, and could be strengthened 

through further crystallographic and biochemical analyses, as described below.  Moreover, a 

more expansive line of inquiry would harness this mature understanding of the ligase core, using 

it as the groundwork for dissecting the ligase-derived polymerase ribozymes.  The stage is now 

set for detailed structural and mechanistic analysis of these polymerases, and for more informed 

efforts at isolating a true replicase ribozyme. 

 

Biochemical and crystallographic approaches to the ligase mechanism  

 Our current model of the ligase catalytic mechanism is lacking in two regards: an explicit 

understanding of the catalytic roles played by metal ion cofactors, and the mechanism by which 

incoming NTP substrates are recognized.  Each of these shortcomings could potentially be 

addressed through a combination of crystallographic and biophysical techniques.  

Overall, the crystallographic results presented here support those of previous biochemical 

experiments (1-3), suggesting that the ligase employs a catalytic Mg2+ cofactor.  However, these 

analyses have directly demonstrated neither the presence of this cofactor, nor its role during 

catalysis.  Metal-rescue experiments (4, 5), may be used to address this latter issue.  It is known, 
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for example, that phosphorothioate (oxygen-to-sulfur) substitutions at A29, C30 and the 

incoming NTP dramatically interfere with ligase catalysis; this might be attributed to the ablation 

of a catalytic Mg2+-binding site, because sulfur, unlike oxygen, is a poor inner-sphere ligand for 

“hard” metals like Mg2+.  Supplementing these modified ligase constructs with more thiophilic 

metals, such as Mn2+ or Cd2+, may restore the phosphate-metal interaction, and hence rescue 

activity.  The beauty of this technique is that it directly assays for catalytic activity, and not 

simply the presence or absence of a metal ion.  However, its application to the ligase may prove 

problematic, since this particular ribozyme is strongly inhibited by thiophilic divalent metals (2).  

Indeed, preliminary metal-rescue attempts have proven unsuccessful (D.M.S., Sarah C. Bagby 

and D.P.B., unpublished results), though a more extensive search of rescue conditions will be 

necessary in order to prove this line of inquiry untenable.   

While crystallographic assays cannot directly assay the functionality of metal ligands, 

facile techniques are available that provide a direct visualization of their binding sites.  These 

could be used to probe the A29-C30 site, and furthermore identify other structural or catalytic 

Mg2+ ions that have remained opaque to our analyses due to the resolution of our current 

structures, the potential for intrinsic disorder therein, and the limitations of biochemical probing 

by NAIM (3, 6, 7).  Since the ligase P1 crystal form is clearly tolerant to buffer exchanges, 

unreacted ligase crystals could be soaked with lanthanide ions, such as Yb3+ or Sm3+.  These 

trivalent metals are close Mg2+ isosteres, and have been shown to replace inner-sphere 

magnesium binding sites in RNA (8, 9).  However, unlike magnesium, lanthanide elements 

exhibit conspicuous anomalous signals at experimentally tractable x-ray wavelengths, a property 

that has made them powerful tools for the direct visualization of metals in cases where resolution 

is limiting (10-12).  This similarity between lanthanide (III) ions and Mg2+ is also exploited in 
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the terbium footprinting technique (13), wherein substitution of Tb3+ for Mg2+ induces slow, 

local cleavage of the RNA backbone near its binding site.  A combination of solution-state and 

crystallographic probes might produce an exhaustive, if not functionally elucidative, map of 

specific metal binding sites in the ligase core. 

 The second unresolved mechanistic issue involves the recognition of NTP substrates, 

since in its trans primer-extension context the ligase discriminates cognate from noncognate 

substrates with fidelities superior to that predicted from the energetics of base pairing alone (14).  

Proteinaceous polymerases are known to achieve such sequence-independent specificity through 

a combination of steric complementarity and direct minor-groove contacts with the 

template•NTP base pair (15, 16).  However, no such interactions are observed in the ligase: the 

sole interactions that bracket the substrate base pair, and which might serve to measure its 

geometry, involve functional groups on nucleotides 30, 47 and 48 (see chapter 1, figure 13B, for 

example).  Since individual ablation of any of these groups resulted in an overall loss of activity, 

but not of fidelity (D.M.S. and D.P.B., unpublished results), cognate discrimination might 

require the combined efforts of multiple interactions, or contacts peripheral to the active site 

(17). 

A crystallographic approach to this problem would involve solving structures for a 

systematic set of all possible template•NTP base pairs, which one might attempt either within the 

current cis-ligation context, or by moving to the trans primer-extending ligase (1).  Each 

approach has its strengths and weaknesses.  Since the work presented here demonstrates that the 

cis-ligase P1 crystal form can tolerate structural perturbations in the active site, this fidelity study 

could be undertaken without the need to seek out new crystallization hits.  However, this 

approach is limited in its scope: although the template nucleotide could be varied systematically, 
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T7 transcription requires the 5´-triphosphate-bearing nucleotide to be either a guanosine or an 

adenosine (18, 19).  Hence, half of all possible sequence contexts aren’t tractable in this format.  

Crystallography of the trans primer-extending ligase is not limited in this regard, but would 

suffer from two principal drawbacks.  First, crystals of the known P1 form could not be obtained 

for the trans- version of the 307-ligase (20), bound to its oligonucleotide substrate or product 

(D.M.S. and D.P.B., unpublished results). This might be justified in light of a crystal lattice 

contact between helix P2 and the J3/4 GAA triloop of a symmetry-related molecule; removing 

J1/2 might render the P2 helix more flexible with regard to the ligase core, and preclude the 

formation of this contact.  Since the identical crystal contact is also observed in the Fab-ligase 

crystal form (Y. Koldobskaya et al., in preparation), moving to that crystal system seems an 

unlikely solution, and hence a search for new crystal forms would be required.  Second, 

assuming that novel high-resolution crystals of a trans- construct could be found, the 

experiment’s success would require that exogenous NTPs soaked into the crystal be specifically 

bound and well-ordered.  Though one can never predict a priori if such will be the case, this 

approach has proven quite fruitful in analogous studies of yeast RNA polymerase II (21). 

 Another outstanding issue pertains to the catalytic roles played by the C47 N4 and the 

C30 2´-OH.  While the biochemical data presented here provide strong evidence that they 

participate directly in catalysis, more corroborative evidence may come by explicitly probing 

their chemical properties biophysically.  Though neither group is likely to act as a proton shuttle 

during catalysis, perturbation of either group’s pKa may enhance its ability to function 

electrostatically. NMR has been used to directly measure the pKa of the HDV ribozyme C75 N3 

(22), a group thought to function as a general acid catalyst. However, the technique proved 

inconsistent, yielding interpretable data only for RNA in its post-cleavage state, and may not be 
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applicable to the ligase.  Moreover, for the ligase, the most powerful application of NMR would 

require site-specific labeling with 15N at C47, and 13C or 18O at C30, a difficult and time-

consuming process.  An alternative technique that has recently proven quite powerful is Raman 

crystallography. This technique requires no specific labeling of the RNA, is blind to background 

signal from water and buffer components, and can be performed in situ within the crystallization 

experiment (23).  Its shortcomings stem from the relatively weak signal it measures, and its 

requirement that the functional groups of interest exhibit spectroscopic signals different from 

those on all other residues.  Still, the technique has been fruitfully applied in directly measuring 

the pKa’s of active site residues in the Hairpin (24) and HDV (25) ribozymes, as well as metal 

binding sites in the latter RNA (26-28).  The ligase might serve as another excellent model 

system for Raman analysis.  Since large (~100 µm), lower-resolution (~5Å) crystals with high 

symmetry seem best suited for the technique (23), an easily-obtained, 4.5Å P212121 ligase crystal 

form discovered during the present experiments would appear to be an ideal candidate for further 

study. 

Since some regions of interest are poorly ordered in the P1 crystal form, and as structure-

function studies almost always benefit from higher resolution data, a final crystallographic 

experiment would seek to improve the diffraction quality of ligase crystals.  This might be 

accomplished be redesigning crystal contacts a posteriori, using RNA constructs designed to 

bolster weak crystal contacts observed in the original structure (29, 30). The ligase P1 crystal 

form is an attractive target for this technique, since the sole contact near the 5´-end of the P1-P2 

domain is a poorly-ordered stacking interaction between J1/3 nucleotide A21 and its symmetry 

mate.  As a consequence, density is weakest, and the temperature factors highest at the 5´-ends of 

J1/3 the P1 duplex.  Since adenosines are frequently observed to mediate higher-order RNA 
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contacts (31) and since this region of J1/3 easily accommodates poly-adenosine expansion (3) a 

systematic screen of adenosine inserts might bolster the symmetry-mate contact, further ordering 

helix P1, and yielding higher diffraction.  In a similar vein, since 5´-end of the ligase is only ~4Å 

from the P6 minor groove of a symmetry mate, appending the 5´-terminus with one of more 

unpaired residues might foster a tertiary contact between these two regions. 

 

Structure-function analyses of the polymerase ribozyme 

An exciting route for further exploration lies in dissecting the general polymerase 

ribozymes that employ the Class I ligase as their catalytic engine (17, 32, 33).  Crystallography 

might seem an ideal experimental approach towards this end, but in their current state the 

polymerase ribozymes are poor crystallization targets.  Since these enzymes are expected to 

properly fold only when bound to their primer-template (PT) duplexes, and as they exhibit 

immeasurably high KDs for these duplexes (34), it is anticipated that a vanishingly small fraction 

of molecules in a crystallization experiment would be properly folded.  One might circumvent 

this problem by covalently attaching the PT duplex to the ribozyme core, thus eliminating the 

bottleneck of bimolecular binding.  Indeed, restoration of the polymerase-primer 5´-5´ linkage 

that was used in the original selection (Figure 1A)(32) results in a ~300-fold boost in activity 

(34), though a less exotic means toward the same end might involve coupling the 5´-end of the 

polymerase to its template (Figure 1B).  This would restore the enzyme•PT linkage back to its 

context within the ligase ribozyme, an interaction now well understood given the ligase crystal 

structure.  Due to steric constraints, it is unlikely that such a construct would be able to extend its 

primer by more than a few additions, but for the purposes of crystallography robust folding is 
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Figure 1.  Round-18 Polymerase constructs for biochemical assays and crystallography.  N 
indicates any nucleotide; N’ is its Watson-Crick complement.  (A) Proposed constructs for 
structural probing assays.  The primer and enzyme core are joined by a 5´-5´ linkage, as in (32).  
The accessory domain (gray) can be provided in cis or in trans (inset).  (B) Proposed construct 
for crystallography.  The ligase core is linked to its template as in the primer-extending ligase 
variant in (1). 

 

more important than processive activity.  Moreover, this construct could serve as a model system 

for studying short polymerization reactions without the confounding effects of limiting PT–

binding.  In particular, the dependencies on Mg2+ concentration and pH might prove key in 

determining whether or not the polymerase could be crystallized in its current state, since these 

parameters were critical in the crystallization of the Class I ligase core.  In theory, one might 

seek to improve suboptimal dependencies through further in vitro selection, explicitly targeting 

metal dependence with limiting Mg2+, or targeting folding by isolating compact species from 

temperature gradient gels (35).  While similar selections have previously proved successful, in 

the current case in vitro selection might be better applied toward the general aim of isolating 

more efficient ribozymes (see below), rather than toward the specific aim of improving 

crystallographic targets. 



 226 

 Even if the current generation polymerases cannot be crystallized, they can still be 

extensively characterized using the wide range of available RNA biochemical probes.  In 

essence, there are two basic questions one might hope to address in this manner.  First, how does 

the polymerase bind its PT duplex?  Second, in those contexts where it catalyzes multiple 

turnovers (34), how does the polymerase translocate its PT duplex?  These might be addressed 

using variants of the construct depicted in Figure 1A, wherein the ligase core is covalently 

tethered to its primer, facilitating the isolation of active species from inactive.  Conversely, the 

accessory domain can also be severed from the ligase core and bound in trans via base pairing.  

Parallel experiments in the presence or absence of the accessory domain could be used to 

discriminate the influence each domain has on the system. 

 The issue of how the polymerase binds its PT duplex could be addressed by any number 

of means.  Protection studies can provide particularly powerful structural insight: Fe•EDTA 

mapping would allow broad-scale interrogation of regions that are protected from solvent (36); 

chemical protection from myriad alkylating agents can assay base- and functional group-specific 

interactions (37); SHAPE analysis surveys nucleotide flexibility (38).  Parallel application of 

these techniques in the presence or absence of the PT duplex or accessory domain will reveal the 

structural changes that occur concomitant with substrate binding and enzyme folding.   

A number of powerful techniques employ the use of modified nucleotides to acquire 

detailed structural information, and could easily be applied to the polymerase ribozyme.  Since 

the oligonucleotides of the PT duplex are small enough to be generated by solid phase synthesis, 

the substrate could be easily modified with unnatural nucleotides at any position.  In particular, 

specific enzyme•PT contacts could be probed via 5-bromo- or 5-iodo-uridine incorporation and 

photochemical crosslinking, or by using thiolated nucleotides to attach free radical-generating 
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Iron(II) complexes at specific locations (39).  Fluorescent analogs could be used to assay 

substrate binding, enzyme folding, or conformational dynamics in the steady-state (40, 41).  

Nucleotide analog interference mapping (NAIM) (6) could be used to obtain broad-scale, 

detailed structural information, potentially identifying the specific nucleotides and functional 

groups therein that participate in PT-binding and catalysis.  To date, more than 30 modified 

nucleotides have been synthesized for use in NAIM studies, affording experimenters a truly 

diverse catalog of structural probes (7).  Though many of these compounds are not commercially 

available, hence making NAIM initially somewhat more technically challenging than 

crosslinking or protection studies, the technique has the advantage of directly probing for 

functionally relevant interactions, since it explicitly compares the modification profiles of active 

species versus inactive.   

 By exploiting a technology used in the original polymerase selection, many of the above 

techniques can also be co-opted to study substrate translocation.  On mercury-containing 

poylacrylamide gels, the mobilities of unmodified, singly- and doubly-thiolated RNA species are 

known to differ dramtically (32).  Hence, if the polymerase is provided with a template coding 

for the addition of two thiolated nucleotides (4-thiouridine, 6-thioguanosine, phosphorothioates, 

etc…), species that processively extend a primer by two nucleotides can easily be purified from 

those that add none, or only one.  For example, the points of photochemical crosslinking between 

a 5-iodouridine residue on the primer and the polymerase could be mapped prior to primer 

extension, and as the PT duplex is translocated through one or two rounds of addition.  NAIM 

could be used to systematically map functional groups that are required for a single addition, but 

not multiple turnovers, or vice-versa.  Since the polymerase in general exhibits variable 

processivity, these initial experiments would have to exploit those sequence contexts that are 
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known to be most efficient for multiple turnovers (34).  However, the residues identified as 

having the most profound effect on processivity in this context could be directly targeted through 

mutagenesis, modification or in vitro selection.  Monitoring and optimizing the effects of these 

modifications in the context of less efficient PT duplexes might prove a productive route in 

enhancing polymerase processivity overall. 

 

In vitro selection of superior polymerase ribozymes 

 While extensive characterization of the Round-18 polymerase would invariably provide a 

fascinating glimpse into the catalytic capabilities of RNA, it might prove an unproductive route 

for generating a replicase ribozyme.  Indeed, other polymerase in vitro selection experiments–

starting from the original polymerase selection pool (33), or using one derived from the Round-

18 polymerase (17)–have produced only modest results.  Thus, it is possible that the current 

isolates represent the optimal catalysts that can be obtained given the stringency of our methods 

and the design of our pools.  Isolating a true replicase ribozyme might require a redesign of the 

original polymerase selection, improving on both of these factors.  Since, for the current isolates, 

the limiting activity appears to be PT-binding, explicitly targeting this activity would likely be 

the most fruitful approach in future attempts. 

The series of selections that ultimately produced the Round-18 polymerase followed an 

incremental design philosophy.  A relatively simple activity was initially targeted for selection, 

yielding a ligase ribozyme that could perform a single round of the desired chemistry.  This was 

subsequently optimized for catalytic efficiency, and then used as the starting point for selecting a 

more complicated activity, general RNA polymerization.  While this incremental approach was 

only applied in regard to catalysis, and did not explicitly select for substrate binding activity in 
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isolation, a similar design philosophy could be used for generating novel, more highly processive 

accessory domains.  First, an aptamer would be selected that generally binds A-form RNA 

duplexes; selection of this aptamer would need to stringently avoid species that recognized their 

ligands in a sequence-dependent fashion.  Design of a new in vitro selection pool would exploit 

known structure of the ligase catalytic core (see below), but would begin by appending this 

aptamer onto the ligase core in a strategically advantageous point.  As has proven useful in the 

selection of allosteric ribozymes (42, 43), short regions of random sequence could bracket the 

aptamer insertion point, allowing the selection of an efficient “communication module” between 

the catalytic and accessory domains.  Rounds of selection and optimization would ensue. 

 Given a different pool design (see below) either the incremental strategy outlined above, 

or a revised version of the original strategy could prove successful.  In either case, however, the 

selection itself would need to apply more stringent pressure for trans activity and processivity.  

The in vitro compartmentalization (IVC) method developed by Zaher and Unrau (17) seems 

extremely promising in this regard.  Briefly, the RNA PT-duplex substrate is ligated to the end of 

the pool DNA, and this pool is emulsified in oil droplets along with the components needed for 

T7 RNA polymerization and ribozyme activity.  Active polymerases are selected owing to their 

ability to modify their templates in trans, not themselves. While the resulting B6.61 polymerase 

borne from this proof-of-principle experiment was only moderately improved compared to its 

parent, future selections might couple this compartmentalization technique with more explicit 

demands on processivity.  For example, templates could be designed that require polymerases to 

extend their primers through longer sequences before incorporating the selective 4-thiouridine 

residues (32, 33), though this presents the possible disadvantage of selecting sequences that 

nonspecifically decorate themselves with 4-thiouridine.  To circumvent this, the traditional 
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method of selection from a mercury gel could be supplemented by an oligo-capture step, in 

which extended primers are targeted with tagged DNA oligonucleotides complementary to 

progressively longer and longer extension products. 

The pools used in this selection should be radically redesigned as well, which can be 

aided by knowledge of the ligase crystal structure.  Given that we now know the interactions 

through which the P1-P2 domain–analgous to the polymerase PT duplex–is presented into the 

ligase core, future pools should be designed to place PT-binding modules or random sequences 

in positions where they would mimic these interactions.  A few such pool designs are presented 

in Figure 2.   

A binding module for the double-stranded region of PT duplex could optimally be 

inserted into or evolved from the 5´-end of J1/3 (Figure 2A).  This region decorates the P1 

duplex in the ligase, though the observed interactions appear relatively weak.  Moreover, the 

identity of these residues has already been shown to be relatively malleable in previous 

selections (3, 17, 32, 44), making it an ideal spot for the insertion of a selected A-form RNA 

aptamer, or stretches of random sequence.  A replicase ribozyme would also need to bind the 

single-stranded template and incoming NTPs, though selection for sequence-independent 

apatmers for either of these activities would be difficult.  Hence, the best route in this case would 

be to evolve a functional domain within the context of the ligase, as was previously done for the 

Round-18 polymerase accessory domain.  For this purpose, the most obvious insertion point 

would be P2 (Figure 2A), which, in cohort with J1/2, essentially serves the same purposes in the 

ligase core. 
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Figure 2. Pool designs for future polymerase selections.  (A) Appending J1/3 (bottom) and P2 
(top) with random sequences, or pre-selected modules (not shown).  N40-60 refers to random 
sequences 40–60 nt in length.  (B) Structure-aided pool design.  (Left) Secondary structure of the 
P3-P6-P7 domain, redrawn reflecting its conformation in the crystal structure (20).  Coloring is 
as in (A).  The remainder of the ligase core is not shown. (Right) The same domain appended 
with kink-turn motifs (blue, (45)), capped with GNRA tetraloops (red).  For in vitro selection 
pools, these tetraloops would be replaced with stretches of random sequence, as in (A).  (C) 
Rationale for the design in (B).  Two views of a model of the double kink-turn ligase construct, 
modeled using (45).  Coloring is the same as in (B); the ligation junction is highlighted in red.  
Note that the J3/4 kink-turn projects its tetraloop near the P2 helix, which would be the template 
in polymerase selections; the L7 kink turn is proximal to P1, analogous to the PT duplex.  
Figures made with PyMol (46).  (D) Activity of 32P body-labeled kink-turn ligases.  In each 
experiment, the lower band corresponds to the unreacted ligase; the upper band corresponds to 
the ligated product.  At pH 7.0, the observed rates for the J3/4, L7 and double kink-turn 
constructs are 1.9, 0.9 and 0.7 min-1, respectively.  

 

 Since self-replication by a long polymerase species would require it to synthesize long 

products, an advantage to pool described above is that it is relatively short.  A potential downside 

to this design, however, is that the random sequence insertions may disrupt the folding of the  
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ligase core domain.  At the expense of sequence length, then, one might hope to leave the ligase 

core intact–or even buttress it with stably folding elements–and use structure aided design to 

position potential PT-binding domains near their desired points of action.  One such design is 

shown in Figure 2B–C, wherein L7 and the J3/4 triloop are replaced with kink-turn motifs (45) 

that might be used to place random sequences near the PT-duplex and template reading frame, 

respectively.  Appending the cis-ligase with either or both of these kink-turns decreases activity 

by only ~3-fold (Figure 2D), hence demonstrating that neither domain dramatically disrupts 

folding of the enzyme core.  New polymerase pools based on this design, or the one outlined 

above, selected under stringent conditions that explicitly require trans-substrate binding, might 

ultimately produce a true self-replicase ribozyme. 
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ABSTRACT

The class I ligase was among the first ribozymes to have been isolated from random sequences and represents the catalytic core
of several RNA-directed RNA polymerase ribozymes. The ligase is also notable for its catalytic efficiency and structural com-
plexity. Here, we report an improved version of this ribozyme, arising from selection that targeted the kinetics of the chemical
step. Compared with the parent ribozyme, the improved ligase achieves a modest increase in rate enhancement under the sel-
ective conditions and shows a sharp reduction in [Mg2+] dependence. Analysis of the sequences and kinetics of successful clones
suggests which mutations play the greatest part in these improvements. Moreover, backbone and nucleobase interference maps
of the parent and improved ligase ribozymes complement the newly solved crystal structure of the improved ligase to identify
the functionally significant interactions underlying the catalytic ability and structural complexity of the ligase ribozyme.

Keywords: in vitro selection; class I ligase; ribozyme; RNA structure; NAIM; interference mapping

INTRODUCTION

The first successful use of in vitro evolution to produce
a ribozyme from completely random sequence yielded the
class I ligase, a 119-nucleotide (nt) sequence that promotes
formation of a phosphodiester bond between the 39-hydroxyl
group of an oligonucleotide substrate and its own 59

a-phosphate (Bartel and Szostak 1993; Ekland et al.
1995). Since its isolation, the class I ligase ribozyme
sequence has been the springboard for a number of other
studies of non-natural ribozymes and evolution, being
subjected to continuous evolution under approximately
constant conditions (Wright and Joyce 1997), at changing
pH (Kühne and Joyce 2003), at decreasing Mg2+ concen-
tration (Schmitt and Lehman 1999), and in the presence

of a ‘‘predator’’ DNA enzyme (Ordoukhanian and Joyce
1999), among other conditions. It was the class I ligase, too,
that formed the basis of the in vitro compartmentalization
work of Levy et al. (2005) that yielded the first ribozyme
variants directly selected for multiple-turnover activity.

Another reason for continued interest in the class I ligase
is its connection to the RNA world hypothesis, the simpli-
fying idea that life in its earliest stages relied not on a DNA
genome and protein enzymes, but on an RNA genome with
self-replicating ribozyme activity (Joyce and Orgel 1999). An
RNA replicase ribozyme is thus the sine qua non of the
RNA world, but this complex activity has proved elusive.
The ligase catalyzes a simpler reaction that models this
activity. Relying on Watson–Crick base-pairing, as an RNA
replicase would, to orient its substrate, the ligase catalyzes
the attack of a ribonucleotide 39-OH on a 59-triphosphate,
with expulsion of a pyrophosphate leaving group—precisely
the chemistry an RNA replicase needs for each NTP
addition. These features have made the ligase a useful
scaffold on which to build template-directed RNA poly-
merase ribozymes that represent progress toward generating
true replicase activity (Ekland and Bartel 1996; Johnston
et al. 2001; McGinness et al. 2002; Lawrence and Bartel 2005;
Zaher and Unrau 2007).
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Replicative potential aside, the class I ligase ribozyme is
studied because it is fast. At 60 mM Mg2+ and pH 8.0, the
cis-acting construct b1-207 reacts with kc = 300 min�1

(Glasner et al. 2002), while the trans-acting construct
b1-207t reaches kc = 375 min�1 for the multiple turnover
reaction (Bergman et al. 2000). For the latter construct,
kcat/KM is 7 3 107 M�1 min�1, just over an order of
magnitude shy of the diffusion-controlled limit. As fast as
class I ligase catalysis is, however, the chemical step remains
slower than the folding reaction at pH #7 (Glasner et al.
2002). Thus, we decided to target the chemical step for
improvement by using a rapid-quench flow apparatus to
isolate variants that react rapidly at moderate-to-low pH.
This targeted selection yielded a family of successful clones,
from which we chose one, termed the improved ligase, for
further investigation.

Under optimal conditions (60 mM Mg2+ at pH 9), the
improved ligase ribozyme had a kc exceeding 1300 min�1,
among the fastest ribozyme rate constants yet observed.
The most successful isolates also showed a shallower de-
pendence on [Mg2+] than did the parent ligase, suggesting
that the mutations acquired either improve the affinity
of one or more specific Mg2+-binding sites or buttress
ribozyme structure by some metal-independent means.
Statistical analysis of the population of successful isolates
allowed us to identify mutations that are likely to have
contributed to this improved activity and reduced metal
dependence. To probe the tertiary interactions that con-
tribute to ribozyme activity across the generations, we per-
formed nucleotide analog interference mapping (NAIM)
(Conrad et al. 1995; Strobel and Shetty 1997; Ryder and
Strobel 1999) and dimethyl sulfate (DMS) interference
mapping (Peattie and Gilbert 1980; Peattie and Herr
1981; Moazed et al. 1986; Stern et al. 1988) on both the
parent ligase and the improved ligase. Our results comple-
ment the recently solved crystal structure of the improved
ligase (Shechner et al. 2009) to reveal key functional groups
in the network of interactions that promote activity in the
class I ligase ribozyme.

RESULTS AND DISCUSSION

Selection of improved class I ligase variants

Selection experiments face a trade-off between the number
of positions varied and the completeness with which se-
quence space can be covered at those positions. Previous
selection experiments indicated that many of the unpaired
residues within the ligase were important for activity, and
suggested that single-stranded regions may play a role in
defining the tertiary structure and active site of the
ribozyme (Ekland et al. 1995). Thus, we sought to explore
more fully the possible sequences and lengths of those
regions, while holding the known stem regions largely
constant (Fig. 1A). Where conservation in previous selec-

tions suggested that the optimal residue in a joining or loop
region was already in place, we biased the pool toward that
residue but mutagenized at the level of 10% (i.e., 90% of
the pool had the parental base, while 3.3% had each of the
nonparental bases). At the remaining positions in these
regions, we randomized the pool completely in both length
and sequence. Only one base pair in the seven stems was
allowed to vary: both bases in the noncanonical G88:A103
pair in stem P7 were mutagenized at the 10% level. Finally,
four engineered changes were made in stem regions of all
pool molecules. Two of these changes sought to improve
ribozyme function: first, G73:C84 was converted to an A:U
pair, a change that improves class I ligase-catalyzed primer
extension (EH Ekland and DP Bartel, unpubl.); second,
helix P5 was extended by one base pair to improve its
stability, so that L5 optimization could take place in a more
constant environment. The remaining two changes facili-
tated the selection itself by making the substrate approx-
imate the sequence of the T7 RNA polymerase promoter:
the 39 end of the substrate, forming the 59 strand of P1, was
changed from 59-CCAGUC-39 to 59-CCAGUA-39, and
G13, in the 39 strand of P1, was changed to U in order to
maintain Watson–Crick pairing with this new substrate.

The engineered and mutagenized pool was subjected to
successive rounds of selection in a scheme that differed
from previous ligase selections in two key respects (Sup-
plemental Fig. S1). First, the substrate used resembled the
T7 RNA polymerase promoter, allowing amplification to
proceed from reverse transcription (RT) and selective PCR
directly to forward transcription without the intervening
steps previously required to append the T7 promoter
(Bartel and Szostak 1993; Ekland et al. 1995). Second, we
sought to select specifically for rapid catalysis, by perform-
ing the selective step of later rounds in a rapid-quench flow
apparatus. This apparatus enabled us to select for ribo-
zymes capable of performing ligation in as little as 0.2 sec.

The sequences isolated after seven rounds of selection
(Fig. 1B) included 35 unique clones, which were then used
as templates for transcription of ribozyme RNAs. These
ribozymes remained active in the absence of the reverse-
transcription primer and its binding site; indeed, removal
of the binding site typically improved activity slightly (data
not shown). Similarly, activity was unaffected by 59-terminal
truncation of the 16-nt RNA–DNA chimeric substrate. All
further characterization of the successful clones was per-
formed using a 7-nt RNA substrate and ribozymes trimmed
at the 39 end to remove the RT primer-binding site, matching
the length of the parent ligase.

We first measured the ligation activity of the 35 isolates
under the conditions of the final round of selection (pH
6.0, 10 mM Mg2+, 200 mM KCl). Ligation rate constants
ranged from 0.15 min�1 to >2 min�1, with a cluster of
seven isolates (Table 1, clones 22, 23, 80, 91, 96, 101, 141)
ligating roughly twice as fast as the parent ligase. We next
asked whether having performed the selection at Mg2+
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levels known to be below saturation for the parent ligase
had produced any change in Mg2+ dependence among the
successful isolates. The parent ligase has a steep dependence
on [Mg2+] in this range, its rate constant dropping 40-fold
when the Mg2+ concentration is reduced from 10 mM to
1 mM. Among the selected clones, five showed as steep
a dependence as that of the parent; the remainder showed
a shallower dependence, with three clones (Table 1, clones
187, 66, 23) dropping as little as 3.5- to 5.5-fold. Of these
three, clones 187 and 66 were no faster than was the parent
ligase at 10 mM Mg2+, whereas clone 23 was twofold faster

than the parent at 10 mM Mg2+, and 15-fold faster at
1 mM. We chose clone 23 (Fig. 1C), hereafter referred to as
the improved ligase, for further biochemical and structural
characterization (and number all nucleotide positions,
including those of the parent, with respect to this clone).

Sequence analysis of improved class I ligase variants

Before undertaking further biochemical experiments, we
subjected the set of 35 isolates to statistical analysis to see
whether we could identify candidate mutations underlying

FIGURE 1. (A) Secondary structures of the parent ligase, the pool of sequences used for selection, and the improved ligase (clone 23). Secondary
structural elements (common to all three) are labeled on the pool. Joining regions (J) are named for the two paired regions (P) they connect.
Residue numbering is with respect to the ligation junction, with the 59-terminal residue of ribozyme assigned +1, and the 39-terminal residue of
the substrate assigned –1. All numbering is with reference to the improved ligase; insertions are marked with asterisks. Positions that were
randomized in the pool are labeled N on the pool secondary structure; positions mutagenized at the 10% level are shown in lowercase. Sequences
in gray on the pool secondary structure are, at left, the DNA portion of the substrate used for selection and, at top, the RT primer-binding site. (B)
Improvement of pool activity over the course of the seven rounds of selection. Rates were measured at pH 6.0 in 10 mM Mg2+. (C) Crystal
structure of the product of the improved ligase (Shechner et al. 2009). Elements of secondary structure are colored as in A.
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the observed improvements in catalysis. We aligned the
sequences of all isolates (Fig. 2) and compared the nucleo-
tide distribution at each mutagenized position to that of
the starting pool (Fig. 3). The first fully randomized region
of the ribozyme, positions 19–28, lies in a long joining
region, J1/3. Although this segment was varied randomly in
the pool from 2 to 10 nt in length, the successful isolates
were tightly clustered at 10 nt (Fig. 3C), with five clones
even acquiring additional nucleotides during the course of
evolution. Notably, this is one nucleotide shorter than the
parent J1/3; it is not clear whether this change is connected
to the 1-nt extension of P1 made possible by the modified
ligase substrate. A strong nucleotide composition bias was
also evident in this region of the isolates, with adenosine
constituting 74% of the nucleotides in this region, compared
with 50% in this region of the parent ligase. Remarkably, the
least significant nucleotide enrichment in this region was the
preference for G at position 19 with P = 0.011 (Fisher’s exact

test); positions 20–27 were all preferentially an A with P
values ranging from 4 3 10�5 to 4 3 10�12, and position 28
was preferentially a G with P = 9 3 10�11.

The 59 end of the joining segment J3/4 showed somewhat
less sequence bias, but a clear length preference. The starting
pool varied from 1 to 4 nt here, but 30 out of 35 successful
clones maintained the parental length, 4 nt; and in the
remaining five clones J3/4 was shortened only to 3 nt.
Nucleotides 42 and 43 showed no significant trends, but
nucleotide 41 was largely conserved as the parental U (P =
0.004), and the 59 nucleotide of J3/4, position 40, was
strongly conserved as the parental C (P = 3 3 10�9). Ex-
plaining this conservation, C40 pairs with G44, as shown
by the crystal structure and accompanying experiments
(Shechner et al. 2009). Indeed, both isolates that deviated
from the parental C40 had a U at this position, which
retained the potential to form either a U:G wobble or U:A
base pair with nucleotide 44 (a position not intentionally
mutagenized in our pool). The final joining segment to be
randomized, J5/6, hewed to the parent ribozyme in both
sequence and length. J5/6 is 2-nt long in the parent ligase
and in 34 of 35 successful isolates, and 1 nt in the other.
Even the sole shortened isolate maintains A71, which was
absolutely conserved among successful isolates (P = 4 3

10�12). The 59 position of J5/6, though not absolutely
conserved, showed significant bias toward the parental C
(P = 0.003).

In contrast with the joining regions, the two terminal
loops, L5 and L7, showed little conservation in either size
or sequence, consistent with previous observations that
perturbing these loops has little impact on ligase activity
(Ekland and Bartel 1995; Ordoukhanian and Joyce 1999;
Schmitt and Lehman 1999). Only three positions in these
two loops showed evidence of selection: nucleotides 62 and
64 in L5, and nucleotide 92 in L7. (Note that the improved
ligase, clone 23, has a 5-nt L5, whereas 20 other clones have
6 nt here, with the inserted nucleotide falling between
improved ligase nucleotides 62 and 63.) Adenosine was
favored at both L5 sites, and guanosine at the L7 site; in
none of these cases was the favored nucleotide selected to
the exclusion of any other. In loops L5 and L7 alike, the
first and last nucleotides of loops of the largest allowable
size were often (in 12 of the 20 6-nt L5 sequences and 14
of the 18 8-nt L7 sequences) Watson–Crick or wobble
complements, such that the paired stem could be extended
by one base pair and the loop decreased by 2 nt.

Among the 19 positions mutagenized at the 10% level,
two showed significant movement away from the parental
identity. The first of these, nucleotide 76, is the sole
nucleotide of J6/3; an A in the parent ligase and in 90%
of the pool, it remained an A in just 17 isolates, becoming
a C in one and a U in the other 17 (P = 2 3 10�6). The
second such position, nucleotide 103, is part of the non-
canonical G88:A103 base pair in helix P7. Remaining a G:A
pair in nine isolates, mutation of nucleotide 103 gave a G:U

TABLE 1. Rate constants for the 35 isolated ligase variants,
measured at pH 6.0 in 10 mM and 1 mM Mg2+

Clone
k10 mM

(min�1)
k1 mM

(min�1)

23 2.15 0.40
101 2.50 0.28
96 2.40 0.25
22 2.25 0.26
91 2.20 0.13
80 2.15 0.21
141 2.05 0.11
159 1.70 0.057
84 1.65 0.13
173 1.55 0.13
178 1.50 0.06
50 1.50 0.11
162 1.45 0.074
69 1.45 0.096
55 1.40 0.069
89 1.40 0.108
70 1.35 0.12
71 1.30 0.13
175 1.20 0.029
68 1.20 0.067
66 1.10 0.32
2 1.10 0.034
106 1.05 0.032
18 1.00 0.023
172 0.80 0.031
77 0.80 0.020
180 0.65 0.029
1 0.60 0.016
186 0.55 0.036
124 0.55 0.036
153 0.50 0.058
35 0.40 0.010
61 0.40 0.013
187 0.35 0.10
158 0.15 0.005
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wobble in two isolates and a canonical G:C pair in 21 (P =
1 3 10�8). One clone lost the G:A pair only to gain an A:A
mismatch by mutation of G88. Although G88, like A103,
was also mutagenized at the 10% level, conversion of the
G88:A103 mismatch to a U:A pair was observed only twice.
This asymmetry suggests that if canonical pairing at this

site confers a selective advantage, the benefit may be tied to
the stability of the base pair, or may be secondary to
a stronger bias for a purine at position 88.

Although Fisher’s exact test can readily detect bias
toward nonparental nucleotides at lightly mutagenized
positions, the test lacks the statistical power to detect

FIGURE 2. Alignment of the 35 isolated variants. Helix P1 is formed when the substrate oligonucleotide hybridizes to nucleotides 13–18. Red
blocks highlight nonparental nucleotides in regions that were not fully randomized in the starting pool. Colors are as in Figure 1.
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FIGURE 3. (A) Outline of Monte Carlo analysis of the kinetic effects of different nucleotides at each position in the ribozyme. At each position
subjected to analysis, the pairings of nucleotide identity and rate constant were shuffled randomly 10,000 times, and the mean rate constants
newly associated with each nucleotide were calculated. The t-statistic describing the difference in mean rate constants of ribozymes bearing, e.g., A
and G residues was calculated for each permutation, revealing the underlying t-distribution and the critical values to which the true t-statistic was
compared. Note that, whereas the canonical t-distribution (blue curve) has symmetric tails and thus symmetric critical values (blue vertical lines),
the Monte Carlo simulation (gray bars) can reveal a t-distribution with markedly asymmetric tails and critical values (red lines). (B) Observed
(top) and expected (bottom) nucleotide frequencies in the ligase selection. Red, G; blue, A; green, U; orange, C; white, gap. Less-saturated colors
mark positions that were not deliberately varied in the pool. Above the colored bars are the results of Monte Carlo analyses of nucleotide identity
effects on ribozyme kinetics at the indicated Mg2+ concentrations and of Fisher’s exact test to detect significant deviation of observed from
expected nucleotide frequencies. Open ovals indicate that a test was performed but revealed no significant effect; filled ovals indicate significant
effects. The secondary-structure schematic below is colored as in Figure 1. (C) Histogram of the observed lengths of J1/3 sequences among
successful ligase variants. J1/3 was varied from 2 to 10 nt in the starting pool; how some variants acquired longer J1/3 sequences is unknown.

Bagby et al.

2134 RNA, Vol. 15, No. 12

 Cold Spring Harbor Laboratory Press on January 28, 2010 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com
David
Rectangle



significant conservation of the parental nucleotides at such
sites; given expected frequencies of 32 parental and one
each nonparental nucleotide at a given position, the prob-
ability of observing the parental nucleotide in all 35 isolates
is 0.239. The two positions discussed above, nucleotides 76
and 103, account for nearly all of the substitutions and gaps
observed among the 19 lightly mutagenized sites; setting
these two positions aside and considering the other 17
positions in the aggregate, we observed only 10 nonparental
features in all 35 isolates. We performed one million
simulated selections at 19 lightly mutagenized sites, dis-
carding from each simulation the two positions with the
most nonparental features. On average, the 17 sites remain-
ing in our simulations contained 53 6 7 nonparental
features, significantly more than the 10 observed in our in
vitro isolates (P < 10�6). Thus, the parental sequence
appears to have been optimal at most of these 17 positions.

Connecting kinetic measurements to sequence variation

We next examined whether any mutations were specifically
associated with rapid catalysis at 1 mM or 10 mM Mg2+: at
a given position, despite the changing background of
variation at different positions, do ribozymes bearing an
A (for example) have, on average, a higher mean rate
constant than those bearing a G? Although a t-statistic
could be calculated for any two such means, the group sizes
and variances in our data set are frequently unequal; we
could not safely assume that the underlying distribution of
t-statistics would closely resemble the canonical t-distribu-
tion, and thus did not a priori know the critical values for
our test statistic. We therefore took a Monte Carlo
approach to determine the true distribution of t-statistics
for our data (Fig. 3A; Materials and Methods). Starting
with the measured rate constants and known group sizes
(e.g., at position 64, 12 isolates carried a G, 12 carried an A,
six carried a U, and five carried a C), we randomly
reassigned rate constants to different groups. We could
then calculate the mean rate constant in the ‘‘G’’ group and
the mean in the ‘‘A’’ group, and from these mean values the
t-statistic describing the difference between them. By re-
peating this process 10,000 times, we generated t-statistics
with a distribution approaching that characteristic of our
data. This distribution allowed us to determine the prob-
ability that the means of two random subsets of ligase rate
constants would give a t-statistic as extreme as that
obtained from the true groupings.

With this approach, we found several positions in the
ligase at which nucleotide identity had a significant effect
on rate. Two of these positions, 41 and 43, were in J3/4.
Isolates bearing a G at position 41 had significantly faster
rate constants at 1 mM Mg2+ than did isolates bearing an A
(Bonferroni-adjusted P < 0.018), and at 10 mM Mg2+ than
isolates bearing either an A or a U (Bonferroni-adjusted P <
0.0066 and 0.041, respectively). Surprisingly, although we

did observe significant selection at nucleotide 41, the
favored residue was U (8.75 U41 clones and 8.75 G41
clones expected; 18 U41 and 11 G41 clones observed).
Because the pool was not prefolded during selection, but
was for rapid kinetic assays, one possible interpretation is
that G41 might promote catalysis, but U41 might promote
more optimal folding. At nucleotide 43, isolates bearing an
A had significantly higher rate constants at 10 mM Mg2+

than did isolates with either a C (Bonferroni-adjusted P <
0.002) or a G (Bonferroni-adjusted P < 0.05), but the
effects were not significant at 1 mM Mg2+. The crystal
structure reveals that P3 is capped by a base pair between
positions 40 and 44, with nucleotides 41–43 adopting
a GNRA tetraloop-like configuration (Shechner et al.
2009); the base-specific effects at positions 41 and 43 likely
reflect the energetics of this very short loop.

At two positions, 76 and 94, the Monte Carlo analysis
detected a significant effect at 10 mM Mg2+ that grew
stronger at 1 mM Mg2+. At position 76, we had already seen
that the parental identity was selected against strongly.
Isolates bearing the parental adenosine had a mean ligation
rate constant of 1.04 6 0.55 min�1 at 10 mM Mg2+,
compared with 1.54 6 0.64 min�1 among U76 clones (P <
0.019); at 1 mM Mg2+, the relative gap widened to 0.06 6

0.04 min�1 versus 0.14 6 0.12 min�1, respectively (P <
0.013). A kinetic difference that widens with decreasing
metal concentrations in this way could reflect either of two
situations: a pre-existing, but weak, metal-binding site
might have its affinity improved by the favored substitu-
tion, allowing it to remain saturated at Mg2+ concentra-
tions that would strip the site in the parent ligase; or the
favored substitution might promote a non-metal-mediated
interaction that compensates at low [Mg2+] for a missing
metal elsewhere in the ribozyme. Examination of the crystal
structure of the improved ligase (Shechner et al. 2009)
suggests that U76 may fall into the former class.

Several structural elements come together in the neigh-
borhood of nucleotide 76. Moving up helix P6 from the 39

end, the transition to the pseudoknot helix P3 is seamless;
P3 simply continues the P7–P6 coaxial stack. But base
pairing to form P3 occupies five of the six residues in what
would otherwise be L6; the lone unpaired residue must
negotiate the strand’s return to P6 in register. That un-
paired residue is nucleotide 76. In the improved ligase
crystal structure, the U76 sugar and base are flipped out,
allowing the base to stack favorably against G45. With the
sugar flipped, the phosphate groups flanking U76 are
brought closer together; the pro-Rp nonbridging phosphate
oxygens at nucleotides 75 and 77 are separated by just
6.22 6 0.19 Å (averaged across the two ribozyme chains in
the crystallographic asymmetric unit), significantly smaller
than the mean distance at other positions in the P3/P6
junction (9.84 6 1.54 Å; P < 5 3 10�5, unpaired t-test
assuming unequal variances). As discussed below, biochem-
ical evidence suggests that the pro-Rp oxygens of positions
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75 and 77, together with that of nucleotide 46, jointly ligand
a structural Mg2+ ion. Notably, the U76/G45 stacking inter-
action and this proposed metal-binding site are the sole
points of structural communication between the P7–P6–P3
domain of the ribozyme and the P4–P5 domain (Shechner
et al. 2009). The flipped-out U76 base nearly fills the small
cavity created by nucleotides 45–46; a larger sidechain at
nucleotide 76 would likely force small realignments of the
backbone, movement on a scale that could affect the affinity
of the metal-binding site formed by nucleotides 75, 77, and
46. Thus, the parental adenosine could constrain the back-
bone at positions 75 and 77 to a conformation that more
easily loses a bound Mg2+ ion, while mutation to U76 could
improve the affinity of the backbone metal-binding site,
such that low metal concentrations magnify the kinetic
benefit of this mutation. Additional insights from our com-
parative sequence analysis are discussed in the supplemental
materials.

Interference mapping

Functional contacts in the class I ligase might have changed
in either of two ways over the course of selection of the
improved ligase. The change of a base might directly alter
key contacts between that base and other base or backbone
atoms; it might also have indirect effects if the altered base
causes a shift in the positions of its backbone atoms and
thus in their hydrogen-bonding or metal-binding potential.
Two mapping techniques gave us access to the large
majority of positions at which changes of either type might
have occurred. First, nucleotide analog interference map-
ping (NAIM) (Conrad et al. 1995; Strobel and Shetty 1997;
Ryder and Strobel 1999) of the parent and improved ligases
allowed us to identify functionally significant nonbridging
pro-Rp oxygens and 29-hydroxyl groups (Fig. 4). Following
this analysis of backbone contacts, interactions made by the
bases themselves were investigated by interference mapping

with dimethyl sulfate (DMS) (Fig. 5;
Peattie and Gilbert 1980; Peattie and
Herr 1981; Moazed et al. 1986; Stern et al.
1988). DMS methylates the Watson–
Crick face of adenosine residues (at N1)
and cytosine residues (at N3), the fa-
vored nucleotides at 15 of the 18 sites
that showed significant bias in the ligase
selection (Fig. 3), allowing us to investi-
gate regions of the ribozyme where se-
lective pressure for a given nucleotide
may signal a tertiary interaction of note.

Independent interpretation of these
results and of the crystal structure of
the improved ligase reaction product
(Shechner et al. 2009) led to a number
of concordant conclusions; in other cases,
patterns hidden in the interference data
and the crystal structure considered sep-
arately came into focus when the obser-
vations were combined. (In some of these
latter cases, the maps and the structure
together predict interactions that will re-
quire additional mapping to confirm;
these positions are discussed in the sup-
plemental material.) Finally, at some
positions the interference maps cannot
be explained by the crystal structure,
perhaps indicating contacts involved in
ribozyme folding. We discuss the in-
terference maps and their relation to the
crystal structure below, as well as several
telltale signs that some contacts partic-
ularly important to the polymerase are
also central to ligase activity, supporting
the notion that the ligase remains a good
model for the polymerase core.

FIGURE 4. (A) Representative NAIM gels for quantification of phosphorothioate and
29-deoxy effects in the improved ligase. Secondary-structure cartoons, colored as in Figure 1,
provide landmarks. 6% gels were used to resolve the 39 half of the ligase (left), and 15% gels
were used to resolve the 59 half of the ligase (right). White arrowheads mark positions of
particularly strong phosphorothioate interference; red arrowheads mark positions of partic-
ularly strong 29-deoxy interference. (B) [a-Phosphorothioate]-29-deoxyadenosine triphos-
phate (dATPaS), one of the eight nucleotide analogs used for NAIM. Use of the
a-phosphorothioate-bearing ribonucleotides ATPaS, CTPaS, GTPaS, and UTPaS permits
quantification of phosphorothioate interference effects and establishes a baseline for compar-
ison with the a-phosphorothioate-bearing deoxyribonucleotides dATPaS, dCTPaS, dGTPaS,
and dUTPaS to determine 29-deoxy interference effects (Conrad et al. 1995; Strobel and Shetty
1997; Ryder and Strobel 1999). The stereoisomer shown bears a pro-Sp sulfur substitution; this
isomer is the only isomer recognized by T7 RNA polymerase, but because polymerization
proceeds with inversion of stereochemistry, all sulfur substitutions in the resulting RNA are in
the pro-Rp position (Verma and Eckstein 1998).
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Pro-Rp phosphorothioate interference

On the whole, the phosphorothioate profiles of the parent
and improved ligases were similar, although the magnitude
of interference effects was typically greater in the parent
ligase than in the improved ligase (Figs. 4, 6, 7). Each of the
20 sites of significant interference we detected has the
potential to be an inner-sphere ligand of a functionally
important Mg2+ ion. In principle, a metal rescue experi-
ment could lend support to the role of some of these
oxygens as inner-sphere ligands (Piccirilli et al. 1993).
However, the ligase is strongly inhibited by the transition
metals that are the best candidates for metal rescue
(Glasner et al. 2002); pilot experiments confirmed that this
line of inquiry was unlikely to be productive (data not
shown). Instead, the improved ligase crystal structure
(Shechner et al. 2009) provided a framework for interpret-
ing the interference maps. Although some phosphoro-

thioate interference effects (and most enhancement effects)
remain unexplained, the crystal structure clearly suggests
that nearly half of the phosphorothioate-interference effects
we observed were related to metal-binding activity.

Candidate metal-binding site in the ribozyme core

The phosphorothioate interference effects for which the
crystal structure offers a clear interpretation largely cluster
in and around the ligase active site, proposed by Shechner
et al. (2009) to center on phosphates from nucleotides 29 to
30 and the C47 nucleobase (Fig. 8A). As reported in that
work, the strongest set of phosphorothioate interference
effects lie at the 39 end of J1/3, at positions 29–32. At each
of these positions, the phosphorothioate substitution re-
duced ligase activity by a factor of $6, the limit of the
assay’s reliable range. Independent of the crystal structure,
we hypothesized that this series of contiguous interference
sites might indicate a bend in the backbone sharp enough
that pro-Rp oxygens at adjacent residues would be posi-
tioned to ligate the same metal ion. This prediction was
borne out by the backbone geometry at positions 30–32,
where J1/3 abruptly makes a right-angled turn, positioning
the pro-Rp oxygens of positions 31–32 to coordinate
a magnesium ion (Shechner et al. 2009). That the refined
|Fobs|-|Fcalc| difference map of the ligated product does not
give evidence of a second metal bound at positions 29–30,
despite the extremely strong interference effects observed, is
consistent with a metal ion bound by these two phosphates
that is important early in catalysis, but released later in the
reaction trajectory (Shechner et al. 2009).

On the other side of the proposed active site, the J3/4
backbone closely abuts the backbone of the 59 strand of
helix P6, with phosphate–phosphate distances between
adjacent strands of just z7 Å. A chain of well-ordered
metal ions is strung between the J3/4 and P6 backbones,
providing the electrostatic screening necessary to permit
such close strand–strand packing (Fig. 8A; Shechner et al.
2009). Loss of any of these metal-binding sites by phos-
phorothioate substitution should lead to repulsion between
J3/4 and P6, presumably disrupting the positioning of the
proposed catalytic nucleobase C47 in the active site. Indeed,
as at nucleotides 29–32, we observed a $6-fold phospho-
rothioate interference effect at nucleotide 47; in the crystal
structure, the pro-Rp oxygen of nucleotide 47 is well-
positioned to be an inner-sphere ligand of one Mg2+ in
the backbone-screening chain of ions. One position up-
stream, nucleotide 46 directs its pro-Rp oxygen toward the
pro-Rp oxygens of P6 residues G75 and G77 (Fig. 8A); as
discussed above, the extrusion of U76 and the close
approach of J3/4 to P6 produce a spacing of z6 Å between
each pair of oxygens. This favorable geometry, observed in
an early model of the crystal structure, was the first
indication of a connection between the strong and, strik-
ingly, nearly equal phosphorothioate interference effects at

FIGURE 5. A representative primer-extension gel for quantification
of DMS interference in the improved ligase, with sites of strong
interference in single-stranded regions marked by green arrowheads.
The secondary structure cartoon is colored as in Figure 1. Band
identities were assigned using dideoxy sequencing ladders; due to
extension pausing before modified nucleotides in experimental lanes,
there is a one-base offset between experimental lanes and sequencing
ladders. The gel compression that prevented analysis of nucleotides
34–41 is indicated by an X on the secondary-structure cartoon.
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positions 46, 75, and 77. Subsequent refinement of the
crystal structure confirmed the presence of a strong (4–5s)
peak in the |Fobs| – |Fcalc| difference map in between the
pro-Rp oxygens of positions 46, 75, and 77, the third
apparent metal ion in the chain that links J3/4 with P6.

Hints of evolving interactions in J1/3

As discussed below, several lines of evidence indicate that
some key structural difference in the 59 end of J1/3
separates the improved ligase from the parent. A clear
instance of evolving interference effects arose at position
20. Here, the parent ligase showed 3.5-fold phospho-
rothioate interference, twice as strong as the significant
but mild 1.8-fold effect in the improved ligase. But
the crystal structure gives no indication of a metal ion; in-
stead, the pro-Rp oxygen is positioned well to serve as a
hydrogen-bond acceptor for the 29-hydroxyl group of po-
sition 19. Such an interaction could be disrupted by the
electrostatic perturbation of phosphorothioate substitu-
tion. Looking to the 29-deoxy interference map, we find

that removing the 29-hydroxyl group of
position 19 produced twice as strong an
interference in the parent (2.1-fold) as
in the improved ligase (1.1-fold, not
significant). The concordant relative
impacts of the phosphorothioate effect
at position 20 and the 29-deoxy sub-
stitution at position 19 in the two
ligases strongly suggest that both effects
arose from disrupting the hydrogen
bond observed in the crystal structure,
and further, that the improved ligase
tolerates the loss of this bond more
readily than does the parent. The ob-
servation in both ribozymes that dis-
rupting the pro-Rp oxygen partner of
this hydrogen bond appears to come at
a greater cost than disrupting the 29-
hydroxyl partner might be due to addi-
tional steric penalties incurred by the
phosphorothioate substitution.

Lingering questions
in the phosophorothioate map

At most of the remaining sites of sig-
nificant phosphorothioate effects, the
crystal structure offers no suggestion
of the source of the effect. At two posi-
tions, moreover, the structure suggests
an interpretation that is belied by other
aspects of the interference maps. First,
one might connect the parental phos-
phorothioate interference at position 71
to an interaction with the 29-hydroxyl at

position 70, but the geometry is suboptimal, and a 29-deoxy
substitution at the latter gives significant enhancement of
ligase activity. Second, the structure suggests that the ap-
proximate twofold phosphorothioate interference at posi-
tion 73 could reflect an interaction with the pro-Rp oxygen
of nucleotide 107, when, in fact, the latter shows mild but
significant phosphorothioate enhancement in both ligases.
Such instances of seeming contradiction between crystal-
lographic and biochemical data might mark steric or elec-
trostatic side effects of the phosphorothioate substitution.
Alternatively, they could indicate changes that take place
along the reaction coordinate, with the interference maps
reflecting the early part of the reaction, from folding through
the transition state, and the crystal structure reflecting the
product.

A mixture of mutability and evolutionary stability
in the 29-deoxy interference map

Although the 29-deoxy interference maps of the parent and
improved ligases generally resembled each other, at a few

FIGURE 6. Log-scale maps of mean phosphorothioate (thio), 29-deoxy, and DMS in-
terference and enhancement effects in the parent and improved ligases. Positions of significant
(95% confidence interval excludes 1.0) and strong (mean greater than or equal to twofold)
effects are shown in red. Yellow bars highlight positions at which the mean fold effect differs
both significantly (P < 0.05, t-test) and substantially (by a factor of $2) between the two
ribozymes. Phosphorothioate interferences obscure possible 29-deoxy effects at several
positions in both ligases. DMS mapping by primer extension yields data only for A and C
residues. Ribozyme positions are numbered below, with the secondary structure cartoon
colored as in Figure 1.
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positions the mean interference effects in the parent and
improved ligases were not only significantly different
according to a t-test, but also differed by at least a factor
of two (Figs. 6, 9), sometimes with stronger interference in
the parent (e.g., positions 12, 15, and 17) and other times
in the improved ligase (e.g., positions 29 and 84). Such
changes are not surprising at positions with weak or
moderate interference effects; if a mildly favorable 29-OH
interaction is disrupted during selection, a return to the
energetic starting point could be as easy as acquisition of
a single hydrogen bond elsewhere in the ribozyme. However,
the pattern at positions 29 and 114 reveals that even some of
the backbone interactions on which ligase activity relies most
heavily were in flux during selection. Even more strikingly,
the 29-deoxy interference maps at position 116 showed
a more than sixfold change, from more than threefold
interference in the parent to more than twofold enhance-
ment in the improved ligase; it is as though in our seven
rounds of selection we had taken the ligase apart, put it
back together, and then discovered that, for once, leaving out
the proverbial spare parts made the system run more
smoothly.

Among the 29-hydroxyl-interference effects consistent
across the parent ligase and improved ligase, the strongest
effect was at position 16 (Figs. 4, 6), in the 59 strand of helix
P1. This strand is the counterpart to the template oligo-
nucleotide added in trans to the polymerase reaction; in
both the ligase and the polymerase, this strand pairs both
with the oligonucleotide bearing the nucleophilic 39-OH
and with the 59-triphosphorylated nucleotide or residue,
thereby aligning the reactive groups. In the polymerase
ribozyme, a 29-deoxynucleotide at template position –3, the
polymerase analog of ligase position 16, is more detrimen-
tal than is 29-deoxy substitution at any other template
nucleotide (Müller and Bartel 2003). The robustness of this
effect across the ligase family of ribozymes strongly suggests
that the phosphoryl transfer reactions performed by all of
these ribozymes require this hydroxyl group to form
a specific contact with the ribozyme core, a contact likely
to contribute substantially to proper alignment of the
substrate helix in the active site. The crystal structure
suggests that the nucleotide 16 29-hydroxyl group may be
involved in two hydrogen bonds, one to the 49-oxygen of
position 17 and one to the imine nitrogen (N1) of A25. The
strong selection for an adenosine at position 25 suggested
that the latter base-specific contact could make an impor-
tant contact, but the DMS interference map does not
strongly support this proposition, showing moderate and
nonsignificant interference effects at A25 in both the parent
and the improved ligase. This potential disparity between
the interference maps is unusual; when considered side by
side with the crystal structure and the DMS interference
map, the 29-deoxy interference map fully supported the
identification and functional significance of a suite of other
tertiary interactions that join and brace key elements of
secondary structure and explain the longstanding observa-
tion of a strong preference for adenosine residues in the 39

region of J1/3. We discuss these interactions in the context
of the DMS map in the sections that follow.

Base-pairing interactions in the dimethyl sulfate
interference map

The primer extension assay (Fig. 5) gave rise to a somewhat
noisier map than did the NAIM assay, including a number
of positions, noted with an asterisk (*) below, at which the
two ribozymes had comparably high mean interference
factors, but only one achieved significance (Fig. 6). Se-
quence differences and gel artifacts also precluded com-
parison between the ribozymes at several positions (see
Materials and Methods).

A number of strong interference effects in the DMS
map are readily explained as the result of disrupting
Watson–Crick base pairing within helices; similarly, DMS
interference at C113 supports the predicted participation
of this nucleotide in a base pair flanking the catalytic
nucleotide C47 (Bergman et al. 2004). However, not all

FIGURE 7. Secondary-structure projections of the (A) parent and
(B) improved class I ligase ribozymes, superimposed with the results
of structural and sequence mapping. Dotted lines in A indicate the
parent residues at which the C49 atom was protected from Fe-EDTA-
generated hydroxyl radicals (Bergman et al. 2004). Dotted lines in B
indicate sites at which the C49 atom was calculated to be solvent
inaccessible in the crystal structure (Shechner et al. 2009). Phospho-
rothioate interference is shown in gray; 29-deoxy interference is shown
in orange; DMS interference is shown by downward-pointing red
triangles, and DMS enhancement by upward triangles. In B, positions
at which the Monte Carlo analysis revealed a significant association
between nucleotide identity and activity are highlighted by blue circles
if the effect appeared at 10 mM Mg2+ and by green and blue rings if
the effect appeared at both 10 mM and 1 mM Mg2+.
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helical regions are equally important for ligase activity; it is
known, for instance, that L5 and parts of P5 can be manip-
ulated with little effect on activity, so it is reasonable that
the DMS interference effect at A56 in this stem should be
relatively weak (just 2.2-fold interference in the parent
ligase, and no significant effect in the improved ligase). At
the other end of the spectrum, the DMS interference map
independently predicted that the crystal structure would
reveal an error in our previous secondary-structure model
of the ligase. That model (Ekland and Bartel 1995) pre-
dicted a noncanonical base pair between A11 and A114. A
trans Watson–Crick/Watson–Crick base pair (Leontis and
Westhof 2001) would almost certainly give rise to strong
DMS interference at both positions, and a trans Hoogsteen/
Hoogsteen or trans Watson–Crick/Hoogsteen base pair
might do so as well, depending on the modulation of N6
hydrogen bonding by the N1 modification. We observe
very strong interference at A11 in both ribozymes, and
equally strong enhancement at A114, inconsistent with the
formation of this base pair. The crystal structure bears this
argument out: A11 forms a cis Hoogsteen/Sugar Edge pair
with G2, while A114 is splayed out to stack between A4 and
G46. Methylation of A11 N1 would certainly interfere with
the A11:G2 pair, and the A114 enhancement effect may
indicate that, in the context of the A114 stacking in-
teraction, the additional surface area for van der Waals
interactions that is introduced by N1 methylation is
beneficial.

Extensive concordance between dimethyl sulfate
and 29-deoxy interference mapping

The DMS interference effects that arose in single-stranded

regions were of particular interest, especially those in J1/3,

where the DMS interference pattern echoed both the strong

29-deoxy interference effects at positions 26–29 and the

strong phosphorothioate interference effects at positions

29–32 (Figs. 6, 7, 9). The crystal structure suggests that the

DMS interference effects at positions *26–*27 arose from

interactions with the substrate oligo in helix P1. The N1

groups of these two nucleotides converge on substrate

residue –3, with hydrogen bonds between A26 N1 and G–3

N2 and between A27 N1 and G–3 29-OH. Although our

29-deoxy interference maps do not encompass the ligase sub-

strate, the proposal that a 29-OH in this position contrib-

utes to ribozyme function draws support from the strong

29-deoxy interference at the analogous position of the poly-

merase ribozyme primer strand (Müller and Bartel 2003).
Very strong interference was also observed at nucleotides

*29 and 31–33 (Figs. 6, 8B,C). The crystal structure suggests
a stack of A-minor interactions (Nissen et al. 2001), with
each of these J1/3 adenosine residues packing into the
minor groove of P6 in a slightly different geometry
(Shechner et al. 2009). A29 docks into the G72:C85 pair
at the base of P6, with a hydrogen bond forming between
the A29 N1 and the G72 29-OH, on the 59 strand of P6; as
expected, we see very strong DMS interference at A29 and

FIGURE 8. Structural interactions suggested by the crystal structure (Shechner et al. 2009) and confirmed as functionally significant by NAIM
and DMS interference experiments. (A) Contacts with structural metals near (left) A31–A32, (middle) G45–C47, and (right) G75–G77. Pro-Rp

phosphate oxygens for which phosphorothioate NAIM interference was significant are shown as larger gray spheres; pro-Sp oxygens are not
accessible to NAIM (Verma and Eckstein 1998). Meshes represent simulated-annealing |Fobs|-|Fcalc| OMIT maps in which the hydrated metal
clusters were excluded from map calculations, contoured at (left) 4s, and (middle, right) 2.5s. Black dashed lines indicate hydrogen bonds. Solid
lines bound to Mg2+ ions indicate proposed inner-sphere contacts. (B) Wall-eyed stereograph highlighting interactions between J1/3 and the P3–
P6–P7 domain. Functional groups showing significant interference in biochemical experiments are shown as larger spheres, colored white for
29-deoxy interference, gray for phosphorothioate interference, and black for DMS interference. (C) Individual base triples or quadruples involved
in this interaction, rendered as in B.
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equally strong 29-deoxy interference at G72. C30 is flipped
out of the stack of J1/3–P6 interactions to form its own
stacking interaction with the proposed catalytic nucleobase
C47, and J1/3-P6 docking resumes with A31, the first
position of the 39 ‘‘A-minor triad’’ motif (Shechner et al.
2009). This residue docks into the A73:U84 pair, this time
with a hydrogen bond forming between the A31 N1 and the
position 84 29-OH, on the 39 strand of P6; again we observe
very strong DMS interference and, in the improved ligase,
equally strong 29-deoxy interference. A32 forms an N3-
amino, amino-N1 A:G pair with G74 (which also forms
a Watson–Crick pair in P6 with C83), forming hydrogen
bonds between A32 N1 and G74 N2 and between A32 N6
and G74 N2, N3, and possibly 29-OH. And A33 caps this
stack of J1/3–P6 interactions with a hydrogen bond from its
N1 to the 29-OH of G74; disrupting either end of this bond
produces very strong interference in both ribozymes. A33
may further contribute to ligase activity by forming
hydrogen bonds between its N6 and as many as three of
the ordered water molecules that coordinate the metal ion
bound by the pro-Rp oxygens of nucleotides 31–32. The
near-perfect agreement of the interference maps with each
other and the crystal structure in this crucial region of the
ligase serves to confirm that, whatever structural changes
the ligase may undergo in the wake of reaction, the state of
P6 and J1/3 captured by the crystal still bears a strong
resemblance to the active conformation.

These J1/3 and P6 results also agreed
well with the hydroxyl radical footprint-
ing data previously reported for the
parent ligase (Bergman et al. 2004).
Those experiments revealed robust sol-
vent protection of the ligase backbone
on both strands of P6, as expected if the
59 strand is buried against other helices
in the catalytic core and the 39 strand
is protected by J1/3. Notably, the sol-
vent protection calculated from the
improved ligase crystal structure cor-
responds with that measured in the
parent ligase at nearly all positions
(Shechner et al. 2009), with a handful
of intriguing differences (Fig. 7). One of
these exceptions is nucleotide 84. In the
parent, measured C49 solvent accessibil-
ity at this position was well below
average (Bergman et al. 2004); in the
improved ligase, calculated C49 solvent
accessibility is above average (Shechner
et al. 2009). In the parent, 29-deoxy
interference here was a meager twofold
effect; in the improved ligase, it was
greater than or equal to sixfold (Fig. 6).
As noted above, this base pair was
changed from the parental G:C to an

A:U during pool construction because an A:U pair slightly
improved function (EH Ekland and DP Bartel, unpubl.);
perhaps that improvement is tied to a slight realignment of
the helix backbone, permitting the improved ligase to
further stabilize contact(s) that already play a significant
role in the parent.

The idea that a slight but important realignment has
taken place here was echoed in the differences in the
relative importance of the other 29-OH groups in the P6
helices of the two ribozymes. For instance, the improved
ligase showed nearly twofold higher 29-deoxy interference
than did the parent ligase at A73, the complement to U84,
whereas contacts made by the 29-hydroxyl groups of G74
and G75 appeared less important in the improved ligase
than in the parent. Continuing this trend, DMS-based
disruptions of helix P6 and the proximal base pair of P7 did
not affect the two ribozymes in quite the same way. At
*C85, DMS modification gave only a threefold interference
effect in the improved ligase, despite presumably disrupting
the Watson–Crick base pair that caps P6. At C82, DMS
modification had the expected very strong (5.5-fold) effect
in the parent ligase, while tending, if anything, toward
enhancement in the improved ligase. The tables were
turned at C86, the proximal base pair of P7, where the
5.8-fold effect in the improved ligase was just over twice the
interference seen in the parent. If indeed both ribozymes do
make dense but distinct networks of tertiary contacts in this

FIGURE 9. Results of interference mapping projected onto the improved class I ligase crystal
structure (Shechner et al. 2009). (A) Projections of (left) phosphorothioate, (middle)
29-deoxyribonucleotide, and (right) dimethyl sulfate interference mapping results in the im-
proved ligase onto the view of the ligase shown in Figure 1A. The ligation junction is
highlighted in red. Residue colors are scaled from green (strong enhancement) to magenta
(strong interference). Positions at which interference could not be quantified are colored white.
For clarity, positions at which DMS interference arises from Watson–Crick pairing in known
helices are not colored. (B) Projections of the extent of evolutionary change seen in the (left)
phosphorothioate, (middle) 29-deoxyribonucleotide, and (right) dimethyl sulfate interference
maps of the parent and improved ligase ribozymes. The mean effect in the improved ligase was
divided by the mean effect in the parent ribozyme and the results scaled from green (stronger
enhancement or weaker interference—i.e., less reliance on the unperturbed residue—in the
improved ligase) to magenta (weaker enhancement or stronger interference in the improved
ligase). The cluster of changes in the boxed region at the 59 end of J1/3 is discussed in the text.

An improved class I ligase: Selection and analysis

www.rnajournal.org 2141

 Cold Spring Harbor Laboratory Press on January 28, 2010 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com
David
Rectangle



region of the ribozyme, it is possible that these networks
provide an energetic buffer against disruption of the
helices, but that the different networks can best accommo-
date disruption at different positions.

A hotspot of ribozyme evolution?

Selection favored nonparental residues at positions 19 and
21–23, and that change in sequence entailed a change in
backbone conformation: C49 atoms at positions 19–20 and
22–23 are slightly more exposed than average in the parent
and far more protected than average in the improved ligase
(Shechner et al. 2009). Moreover, the differences between
the NAIM and DMS maps of the two constructs cluster in
this region (Figs. 6, 7, 9). In particular, positions 21–22, at
which our selection favored substitution of adenosines for
the parental cytosines, show DMS enhancement in the
parent, but interference in the improved ligase (Figs. 6, 7, 9).
Whatever the contacts made possible by acquisition of
adenosines in this region, the benefits are not confined to
the ligase ribozyme. A recent continuation of polymerase
ribozyme evolution produced a variant with improved
primer extension, as well as improved fidelity (Zaher and
Unrau 2007). The key difference—indeed, almost the only
difference—between this variant and the original poly-
merase (Johnston et al. 2001) is the acquisition of three
additional adenosine residues at positions analogous to
ligase nucleotides 20, 21, and 23. Thus, multiple lines of
evidence indicate that the contacts made by these few
residues, continuing to improve through evolution, have
a substantial impact on ribozyme function despite their
distance from the active site.

Conclusions

Continued selection on the class I ligase ribozyme demon-
strated that even this efficient catalytic machine had room
for optimization, particularly with regard to metal de-
pendence. Statistical analysis of the population of ribo-
zymes that survived selection allowed us to identify residues
under selection and candidate residues at which nucleotide
identity may buffer the ribozyme against changing Mg2+

concentrations. Targeted structural probing allowed us to
interrogate defined subsets of these possible interactions,
often revealing congruent results when we separately
modified each partner of a proposed interaction. In gen-
eral, the probe results we report here are in good agreement
not only with each other but also with the recently solved
crystal structure of the improved class I ligase ribozyme.
Together, these methods offered evidence for catalytic
metals bound at the ligase active site (Shechner et al.
2009) and revealed a diversity of adenosine-mediated
interactions that belies the sequence-level homogeneity of
the long single-stranded region J1/3. Our improved un-
derstanding of ligase structure and function, and our

insights into the regions of the ligase ribozyme that have
responded to selective pressure, will inform future efforts to
convert the RNA polymerase ribozyme into a general RNA
replicase, the proof of principle the RNA world hypothesis
requires.

MATERIALS AND METHODS

Pool construction and selection

The DNA encoding a partially randomized Class I ligase pool was
synthesized as a single, variable length oligonucleotide [59-acgact
cactataggAAcactatactactgg(N2–10)-ACAAATctgcc(N1–4)gagcttgag
aacatcg(N4–6)cgatg(N1–2)gaggAggcagcctccgGtgg(N6–8)-ccaAcgtt
ctcaaCaatagtgATTaatattcctgttgc-39]. Positions in lowercase were
constant, and positions in uppercase were mutagenized at 10%
(Fig. 1). Thus, at these positions 90% of the molecules had the
parental sequence, and the remaining 10% had one of the other
three nucleotides. Positions noted as (Nx–y) were completely ran-
domized, and varied in length within the range noted. Random-
ized residues were synthesized using phosphoramidite mixtures
that compensated for the different efficiencies with which each
monomer adds to a growing DNA chain (relative efficiency
0.70:0.73:0.85:1.0, dA:dC:dG:dT). Length variation was intro-
duced at the points indicated using a split-and-pool protocol
(Giver et al. 1993). This procedure resulted in a template pool,
varying from 134 to 150 nt, made up of a randomized ligase
domain ranging from 107 to 123 nt that was flanked by constant
primer-binding sites on the 59- and 39-ends. The synthetic DNA
was purified by denaturing gel electrophoresis and used as a
template in a large-scale PCR reaction (150 mL). Six cycles of PCR
were done, wherein each cycle was 4 min at 96°C, 5 min at 42°C,
and 7 min at 72°C. Primers for PCR were 59-AAAGCAACAG
GAATATT-39 and 59-TTCTAATACGACTCACTATAGG-39. Se-
quencing of clones from this PCR confirmed that randomization
and length variation in the pool were as designed. Amplified DNA
was phenol extracted, precipitated, and used as a template for an
in vitro transcription reaction that generated pool RNAs.

The first round of selection was performed as diagrammed
in Supplemental Figure S1. Pool RNA (580 mg, 1 mM final
concentration) was heated in H2O (80°C, 10 min) with an RT
primer (59-AAAGCAACAGGAATATT-39) that hybridized to the
39 terminus of the pool. After the RNA was cooled slowly to
room temperature, biotinylated substrate (Dharmacon Research,
59-biotin-taatacgactCCAGUA-39, DNA bases lowercase) was
added to a final concentration of 1.2 mM along with buffer and
salts (final concentrations, 10 mM MgCl2, 200 mM KCl, 50 mM
EPPS at pH 8.0). The pool and substrate were incubated at 22°C
for 5 min, and the reaction was stopped by addition of EDTA to
15 mM. The RNA was then precipitated and purified in a 10%
polyacrylamide gel using radiolabeled RNA markers that were
138- and 160-nt long (ligated pool ranged from 141 to 157 nt).
After elution and precipitation, ligated product was heated (65°C,
10 min) and cooled (22°C, 10 min), then incubated with
streptavidin paramagnetic beads (Promega) for 10 min according
to the manufacturer’s recommendations. After washes with 0.1X
SSC (three times), water (once), and RT buffer (once), additional
RT primer was added, and the remaining RNA was reverse
transcribed using an RNase H-deficient reverse transcriptase
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(Superscript II, Gibco-BRL) while rotating in an incubator kept at
48°C. A control reaction was run in parallel without reverse
transcriptase to detect any contaminating DNA in subsequent
PCR steps. After 1 h, EDTA was added to the RT mixture (final
concentration, 3 mM), and the beads were washed three times
with 0.1X SSC. Following the final wash, both the RT primer and
a 59-PCR primer (59-TTCTAATACGACTCCAGTAGG-39) were
added to 10 mM final concentration, and cDNA was removed
from beads by alkaline denaturation (100 mM KOH, 20 mM Tris-
Base). After removal from the beads, the cDNA solution was
heated at 90°C for 10 min to hydrolyze any remaining RNA. It was
then adjusted to pH 8.5 with HCl and used as a template for PCR.

Amplification of cDNA was performed using the RT primer
and 59-PCR primer described above, using a standard hot start
protocol. After amplification, pool DNA was purified by Qiaquick
column (Qiagen) and used as a template in a second PCR in
which the 59 primer was changed to 59-TTCTAATACGACT
CACTGTAGG-39. The resulting DNA was again purified by
Qiaquick column and used as a template in a final PCR reaction
using a 59 primer containing the T7 RNA polymerase promoter
sequence (59-TTCTAATACGACTCACTATAGG-39). Amplified
DNA was extracted with phenol and chloroform, then precipi-
tated and used as template for an in vitro transcription, thereby
generating the pool RNA for the next round.

Further rounds of selection were performed as in round 1, with
the following changes: Beginning in round 2, RNA was treated
with DNase (DNase RQ1, Promega) to eliminate template DNA
prior to the selective ligation step. Also, in rounds 2–4 the gel
purification following the ligation step was omitted in favor of
a simple precipitation. In rounds 5–7, gel purification was again
used to eliminate molecules that might have remained on the
streptavidin beads because they were able to bind tightly to sub-
strate. Furthermore, in rounds 5–7 RT preceded streptavidin-
biotin affinity purification so that the RNAs were hybridized with
their cDNAs and thus unable to form structures that might have
high affinity for the beads. The stringency of the ligation step was
increased in each successive round by decreasing pH or reaction
time (round 1, 5 min at pH 8.0; round 2, 20 sec at pH 7.0; round
3, 1 sec at pH 7.0; round 4, 2 sec at pH 6.0; rounds 5–7, 0.2 sec
at pH 6.0). Buffers were at a final concentration of 50 mM, and
were EPPS (pH 8.0), BES (pH 7.0), or MES (pH 6.0). For ligation
steps requiring incubations of #2 sec, a KinTek RQF-3 rapid-
quench flow apparatus (KinTek Corp.) was used. Finally, we
observed that after round 6 the pool activity was identical with
and without added RT primer, and thereafter it was omitted from
the ligation step. After seven rounds the pool cDNA was cloned
(TOPO-XL kit, Novagen), and individual isolates were sequenced.

Ribozyme and substrate RNAs

The parent Class I ligase ribozyme (GenBank no. U26413) was
transcribed in vitro from a plasmid template linearized with EarI
(Bergman et al. 2000). Transcripts were purified on 6% poly-
acrylamide/8 M urea gels and stored in water at –20°C. Individual
clone RNAs were transcribed from PCR templates and purified in
the same way. PCR templates were generated by amplifying
specific clone cDNAs using a 59-primer containing a T7 RNA
polymerase promoter and either the RT primer used throughout
selection or a primer (59-AAAGCAACAGGAAATATT-39) that
truncated ribozymes to the same length as that of the parent

ligase. Ribozyme constructs in which individual changes were
made to a specific clone were prepared in the same way using PCR
primers to generate transcription templates with the desired
changes. All substrates used in this study (59-aaaCCAGUC-39,
parent ligase; 59-taatacgactCCAGUA-39, selection; and 59-UCCA
GUA-39, ribozyme clones; DNA bases lowercase) were purchased
(Dharmacon Research) and purified by anion-exchange chroma-
tography (Nucleopac 9 3 250 column, Dionex). Substrates were
radiolabeled using T4 polynucleotide kinase and [g32P]-ATP.

Kinetic analyses

In manual ribozyme assays, the ribozyme (1 mM final concentra-
tion) was heated (80°C, 2 min, in H2O) and then cooled (22°C,
2 min), and the reaction was initiated by simultaneous addition of
50 mM buffer, the indicated concentration of Mg2+, and trace
32P-labeled substrate. Buffers were the same as described for
selection. KCl (200 mM) was included in initial experiments, but
omitted in experiments measuring the Mg2+-dependence of
ligation, and in all reactions in which the concentration of Mg2+

was <10 mM, because at low Mg2+ concentration it inhibits the
parent ligase (Glasner et al. 2002). Omitting KCl did not affect
rates of either parent or clones at $10 mM Mg2+. Aliquots were
taken at appropriate time points and were added to 2 vol of stop
solution containing 120 mM EDTA and 8 M urea. Product and
substrate were separated in 20% polyacrylamide gels and quanti-
fied by phosphorimaging. Ligation rates were calculated as de-
scribed previously (Bergman et al. 2000).

Statistical analysis of selection results

Fisher’s exact test was used to detect positions at which the
nucleotide composition of the selected pool deviated significantly
from that expected by chance. Analysis was performed in R version
2.7.1 using a 2 3 4 contingency table in the function fisher.test in
the package stats (R Development Core Team 2008). For pooled
analysis of lightly mutagenized sites, 19 sets of 35 random numbers
uniformly distributed between 0 and 1 were generated using the
Mersenne-Twister random-number generator as implemented in
R; those numbers <0.1 were considered ‘‘nonparental.’’ Simulated
nonparental features were counted in each of the 19 sets, and the
two sets with the most nonparental features were discarded. The
remaining 17 sets’ nonparental features were summed to give an
aggregate count of in silico ‘‘observed’’ nonparental features. This
simulation was repeated 106 times, generating a normally distrib-
uted set of in silico observations. The in vitro observation
(10 nonparental features) was far smaller than the smallest of
our 106 in silico observations (24 nonparental features, from
a distribution with mean 53 6 7), allowing us to conclude that the
in vitro observation would arise by chance with P <10�6.

For Monte Carlo analysis, each ligase position x under scrutiny
gave rise to a vector of length 35, whose ith element was the
nucleotide identity of successful clone i at position x. Some ordered
subset {A} of these elements will be adenosines, some subset {G}
will be guanosines, some subset {C} cytosines, some subset {U}
uracils, and some subset {E} gaps. The rate constants measured for
the successful clones at each Mg2+ concentration were treated as
another vector of length 35. R was used to re-order the compo-
nents of the rate constant vector randomly 10,000 times, producing
a matrix of 35 rows by 10,000 columns. Simulated mean rate
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constants for ribozymes bearing A, G, C, U, or a gap at nucleotide
x were computed for each iteration of the Monte Carlo by
averaging the elements in, respectively, the set of positions {A},
{G}, {C}, {U}, or {E} of column j of the matrix. Simulated standard
deviations were computed in similar fashion. The t-statistic for
each accessible pairwise comparison of means was then calculated
in each column, where ‘‘accessible’’ comparisons were those for
which both nucleotide identities had at least three representatives.
Thus, if all five nucleotide identities were represented in at least
three clones each at position x, all 10 pairwise combinations—A/C,
A/G, A/U, A/gap, C/G, C/U, C/gap, G/U, G/gap, and U/gap—were
performed; if four identities were represented, six pairwise com-
parisons were performed; if three, three; if two, one; and if only
one, the position was entirely inaccessible to this analysis.

At each accessible position x in the ribozyme, this procedure
yielded a histogram of 10,000 t-statistics for each accessible
pairwise nucleotide comparison. The true t-statistic was then
calculated from the original vector of rate constants for each
accessible comparison and compared with the appropriate histo-
gram. Simulated t-statistics more extreme than the true t-statistic
were counted, and the reported P value was determined as

P #
m

10; 000

� �
2B;

where m is the count of more extreme simulated t-statistics, the
factor of 2 is a correction to give the two-tailed probability, and B
is the appropriate Bonferroni penalty factor (10, 6, 3, or 1) for the
number of comparisons performed.

Nucleotide analog interference mapping

To incorporate nucleotide analogs into the ligase RNAs used for
NAIM, linearized DNA encoding ribozyme RNAs at a final
concentration of 0.5 mg/mL was mixed with 1 mM ATP, 1 mM
GTP, 1 mM CTP, 1 mM UTP; the a-phosphorothioate nucleotide
analog of interest (Glen Research) at the concentration recom-
mended by the supplier; and 1X T7 Y639F buffer (40 mM Tris-
HCl at pH 8, 4 mM spermidine, 10 mM DTT, 15 mM MgCl2,
0.05% Triton X-100). Transcriptions of the parent ligase also
included 2.5 mM T7 promoter oligonucleotide. The reaction was
mixed by vortexing prior to addition of the Y639F mutant of T7
RNA polymerase (Sousa and Padilla 1995; Ortoleva-Donnelly
et al. 1998) and incubated for 60–75 min at 37°C, when a cloudy
precipitate had appeared in all reactions, then gel purified.

Levels of nucleotide analog incorporation at each position were
measured by nonselectively labeling the transcribed RNAs and
subjecting them to I2 cleavage. Briefly, 20 pmol of each transcript
was treated with alkaline phosphatase (Roche) according to the
manufacturer’s instructions, purified by phenol-chloroform ex-
traction and ethanol precipitation, labeled with [g32P]-ATP and
polynucleotide kinase, and then gel purified. Following ethanol
precipitation, pellets were resuspended in a 1:2 mixture of water
and 2X denaturing gel loading buffer (8 M urea, 25 mM EDTA).
Solutions were split into two aliquots; to the first was added
0.1 vol of freshly prepared 100 mM I2 in EtOH, and to the second,
0.1 vol EtOH. These solutions were heated to 50°C for 10 min and
loaded onto two sequencing gels, a 15% and a 6% polyacrylamide
TBE-urea gel, to permit resolution of the ribozyme 59 and 39

regions, respectively. Banding patterns were visualized by phos-

phorimaging (Fujifilm BAS-2500) and quantified with the Fuji-
film program ImageGauge. Two calibration replicates were per-
formed for each nucleotide-analog transcription.

For interference reactions, nucleotide analog-bearing ribozyme
transcripts were mixed in a 2:1 molar ratio with [g32P]-labeled
substrate (59-dAdAdACCAGUC-39, parent-ligase substrate; 59-UCC
AGUA-39, improved-ligase substrate), heated to 80°C for 2 min and
then cooled to 22°C for 5 min. Reactions were initiated by addition
of stringent ligase buffer (final concentration 50 mM MES at pH 6,
1 mM MgCl2). Parent ligase reactions were incubated at 22°C for
100 min; improved ligase reactions, for 1 min. Reactions were
stopped by the addition of 2 vol of 2X denaturing gel-loading buffer.
Reactions were then split into two aliquots for treatment with
freshly prepared dilute I2 or mock-treatment with EtOH and
subjected to gel electrophoresis and quantification as described
above. The results reported are the average of three replicates of this
interference experiment for each nucleotide analog.

29-deoxy interference effects were calculated from background-
subtracted peak intensities as follows. First, for each experimental
replicate, the raw interference effect at each modified residue was
calculated as

Iraw =

N
dN

� �
selective

+N

+dN

� �
selective

;

where N is the background-subtracted peak intensity for the
a-phosphorothioate ribonucleotide analog, dN is the background-
subtracted peak intensity for the a-phosphorothioate deoxyribo-
nucleotide analog, and the denominator is a gel loading and
exposure normalization factor (total background-subtracted in-
tensity of the a-phosphorothioate ribonucleotide analog lane
divided by total background-subtracted intensity of the a-phos-
phorothioate deoxyribonucleotide analog lane) to permit com-
parison of replicates run on different gels. Similarly, the relative
levels of nucleotide-analog incorporation for each ribo- and
deoxyribonucleotide pair were calculated at each position as

R =

N
dN

� �
nonselective

+N

+dN

� �
nonselective

;

from background-subtracted band intensities on the nonselec-
tively labeled calibration gels. The raw interference values from
each replicate were then corrected for any differences in a-phos-
phorothioate ribonucleotide and deoxyribonucleotide analog in-
corporation at each position:

Ical =
Iraw

ÆRæ
;

where ÆRæ is the average value obtained from two calibration
replicates. Calculation of phosphorothioate effects was similar but
used only the a-phosphorothioate ribonucleotide analogs:

Qcal =

ÆNnonselectiveæ
Nselective

� �

Æ+Nnonselectiveæ
+Nselective

� � :
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Because quantification of band intensities becomes less accurate as
bands approach background levels, measured interference values
become unreliable at very strong effect levels. We applied a cutoff
at the sixfold effect level, truncating Ical values at 6 and 0.167. After
application of this cutoff, the Ical values measured at each position
were averaged across the three interference replicates run for each
nucleotide analog pair. At a given position, interference effects in
the two ligase ribozymes were compared using the two-tailed
t-test for two populations of equal sizes assuming equal variance.
Positions at which average interference effects differed at the
P <0.05 level and at which the average parent and improved ligase
interference effects were separated by at least a factor of 2 are
highlighted in Figure 7.

Dimethyl sulfate interference mapping

For DMS-interference mapping experiments, we used ligase
constructs bearing the 18-nt 39 tail that had been used during
selection, which served as a primer-binding site for primer-
extension readout. For DMS modification, 44 pmol body-labeled
transcript together with 44 mg carrier tRNA in magnesium-free
methylation buffer (50 mM Tris-HCl at pH 7.5, 1 mM EDTA) was
mixed with 0.05 vol of freshly prepared 5% DMS (in 95% EtOH).
After 4 min at 37°C, modification was stopped with 1 vol of
freshly prepared DMS-stop solution (1.5 M NaOAc at pH 8.5, 7%
b-mercaptoethanol, 0.1 mM EDTA), ethanol precipitated twice,
and resuspended in water. This stock of modified RNA was split
into two, with one aliquot to serve as the unselected control and
the other to be put through the ligase reaction and APM gel-
purification. In parallel, mock modifications were performed,
using 95% EtOH alone in place of the 5% DMS in 95% EtOH.
Because the tRNA required in the DMS reaction inhibited the
ligase reaction, the aliquot of modified RNA that was to undergo
selection was gel purified. The RNA was then mixed in a 2:1 molar
ratio with substrate bearing a 59-thiophosphate and a 1:1 molar
ratio with unlabeled primer (59-GCGCTGGCGTCTGGCCGG-39,
added to limit misfolding in the presence of the 39 primer binding
site), and incubated at 80°C for 2 min and then at 22°C for 5 min.
Ligation was initiated by addition of stringent ligase buffer.
Because ligation with the modified substrate and the 39 extension
was slow, reaction times were extended to 11 h and 22 min for the
parent and improved ligases, respectively. Reactions were stopped
with denaturing gel-loading buffer and resolved on a urea de-
naturing gel prepared with 6% polyacrylamide and 40 mM APM
in the bottom portion of the gel and no APM in the top portion
of the gel. Reacted ribozyme, which did not migrate into the
bottom portion of the gel, was excised, eluted, and ethanol
precipitated.

This reacted RNA was compared with the initial DMS-modified
RNA and to mock-DMS-modified RNA using primer extension
largely as described in Moazed et al. (1986). Briefly, each sample
was mixed with labeled primer and hybridization buffer (final
concentrations, 50 mM K-HEPES at pH 7.0, 100 mM KCl) and
subjected to denaturation and slow cooling (85°C for 48 sec,
followed by a decrease to 40°C at –2.5°C/min) in an MJ Research
PTC-100 thermocycler. Primer-extension master mix (final con-
centrations, 125 mM Tris-HCl at pH 8.4, 200 mM dATP, 200 mM
dTTP, 200 mM dGTP, 300 mM dCTP, 6.4 mM MgCl2, 9 mM
DTT, 5% glycerol, and 0.027 U/mL AMV-RT [Seikagaku]) was
added and extension run at 42°C for 30 min. Extension was

stopped with addition of 16 vol of a 1:3 mixture of salt (a solution
of one part 300 mM NaOAc pH 8.5 and 1 mM EDTA) and 95%
EtOH. After ethanol precipitation, pellets were resuspended in
denaturing gel-loading buffer and treated with 0.33 M NaOH for
5 min at 90°C to degrade the RNA from the RT product. Primer
extension products were then separated on a sequencing-thickness
8% polyacrylamide TBE-urea gel with a buffer gradient running
from 0.5X TBE in the upper buffer chamber to 1X TBE with 0.75 M
NaOAc in the lower chamber. To permit identification of bands, RT
products were run in parallel with dideoxy sequencing ladders.

We quantified interference with respect to the extent of
methylation at a given position as

IMe =

NMe;nonselective

NMe;selective

� �

+NMe;nonselective

+NMe;selective

� � :

Reported interference effects are the average of three replicates,
each with its own nonselective control. Significance was de-
termined as for the phosphorothioate and 29-deoxy interference
maps. Not all positions in the ligase ribozymes could be resolved.
The cDNAs of the improved ligase consistently showed a gel com-
pression spanning nucleotides 34–41, preventing measurement of
interference effects at C35 and C38–C40; all primer-extension
reactions performed on the parent ligase, regardless of the pres-
ence or absence of DMS modification, showed intense bands at the
base of P6, where the reverse transcriptase encounters four stacked
G:C pairs; and position 117 could not be resolved on parent ligase
gels. Sequence differences also prevented some comparisons be-
tween the ribozymes: at positions 19, 20, 45, 73, 76, 84, 95, and 99,
only one construct bears a C or A residue; the other is inaccessible
to the DMS interference mapping by primer extension.

Figures 1C, 8, and 9 were prepared using the software package
PyMOL (Delano 2002).

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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SUPPLEMENTARY TEXT 

An additional base-specific effect revealed by Monte Carlo analysis 

In addition to position 76, nucleotide 94 shows a nucleotide-specific rate effect at 10 mM Mg2+ 

that widens at 1 mM Mg2+.  Nucleotide 94 seems to be not so much a case where one nucleotide 

succeeded as a case where another failed; notably, though, the disfavored nucleotide was not the 

parental one.  G94 was slightly but not significantly under-represented among successful 

isolates; its disadvantage only became clear in kinetic assays, where in which G94 isolates 

performed somewhat more poorly than did U94 isolates at 10 mM Mg2+ (0.49 ± 0.36 min-1 vs. 

1.52 ± 0.55 min-1; Bonferroni-adjusted p < 0.031) and much more poorly than did either U94 or 

A94 isolates at 1 mM Mg2+ (0.01 ± 0.01 min-1, 0.13 ± 0.11 min-1, 0.11 ± 0.09 min-1, respectively; 

Bonferroni-adjusted p < 0.028 for the G–U comparison and 0.035 for the G–A comparison).  

Thus, U94 isolates slowed by just 12-fold on average, and A94 isolates by 14-fold, at 1 mM vs. 

10 mM Mg2+; by contrast, the nearly 40-fold drop in rate constant for G94 isolates is exactly on 

par with the drop seen in the parent ligase.  Given that the parent ligase itself bears a uracil at this 

position, its steep metal dependence must be due to some other cause; indeed, for the G94 

isolates to slow at low Mg2+ by only as much as the parent, they must have acquired some other 

mutation(s) that can compensate for the cost of G94.  With only a subset of the 35 clones to 

examine, however, we lacked the statistical power to identify that beneficial change.  

 

Interactions predicted by interference mapping and structural analysis 

At a number of positions showing significant interference effects in both ligases, the crystal 

structure predicts interactions with other atoms that are not probed by the interference maps 

presented.  High backgrounds prevented the quantification of interference effects at the very 5' 
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and 3' ends of either ligase; within those bounds, we have probed only the pro-Rp oxygens, the 

2'-hydroxyl groups, and the N1 atoms of adenosines and N3 atoms of cytosines.  Thus, we 

predict but cannot confirm that the 2'-deoxy interference at position 12 reflects disruption of a 

hydrogen bond to an ordered water molecule that coordinates a bound metal; the 2'-deoxy 

interference at position 75, disruption of a hydrogen bond to the 3' oxygen of position 34; the 2'-

deoxy interference at position 113, disruption of hydrogen bonds to the imine (N1) and exocyclic 

amine (N6) groups of A3; and the 2'-deoxy interference at position 114, disruption of hydrogen 

bonds to the pro-Rp oxygen of A4 and to another metal-bound water. 

 

Supplementary Figure S1.  In vitro selection scheme.  Ligase variants were incubated with a 

biotinylated substrate (B), and those ribozymes that ligated themselves to substrate were 

separated using streptavidin-coated paramagnetic beads.  Reverse transcription and PCR 

regenerated dsDNA, and further PCR steps (corrective PCR) changed the substrate sequence into 

a functional T7 RNA polymerase promoter.  The resulting DNA was transcribed to generate the 

RNA pool for the next round of selection.  The first round was performed as shown, and furhter 

rounds were modified slightly as detailed in Materials and Methods.  The stringency of the 

ligation step was increased with each successive round by decreasing pH and/or reaction time. 
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