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Doctor of Philosophy

Abstract

The primary focus of this thesis is the synthesis and applications of semiconductor
nanocrystals, or quantum dots (QDs). Novel synthetic routes to ternary 1-III-VI QDs are
presented, and we report the first highly luminescent Cu-In-Se QDs spanning the red to near-
infrared region. The synthetic method is modular and is extended to Ag-In-Se, Cu-In-Zn-S, and
Ag-In-Zn-S QDs, luminescent from the blue to near-infrared. The development of new core-
shell InAs(ZnCdS) QDs is discussed in the context of making highly fluorescent, stable
biological probes in the near-infrared region. Applications in biological systems from cellular
labeling to sentinel lymph node mapping are demonstrated. In addition, we present new methods
for doping InAs QDs in order to control carrier type through the introduction of acceptor defects
such as cadmium. The synthesis and characterization of n and p type InAs QDs is discussed.

In order to understand the differences in size distributions with current III-V QD
synthetic procedures and II-VI and IV-VI QD syntheses we have explored the molecular
mechanisms that lead to the formation of InP and InAs QDs. We find that current III-V QD
syntheses result in the depletion of molecular precursors immediately following nucleation,
preventing growth from molecular precursors, thus failing to meet the a key criterion for a
monodisperse colloidal synthesis in the Dinegar and LaMer model. In the conclusion of this
thesis, we explore the electrically controlled solution-liquid-solid (EC-SLS) synthesis of InP
nanowires. Using the EC-SLS method, we are able to controllably place n type InP nanowires
into field effect transistor geometries.

Thesis Supervisor: Moungi G. Bawendi
Title: Lester Wolfe Professor of Chemistry
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Chapter 1. Introduction to Semiconductor Nanocrystals

The synthesis of colloidal quantum dots (QDs) is an elegant interplay between molecular

inorganic chemistry and solid state semiconductor materials chemistry. The use of solution

based synthetic chemistry to manipulate small inorganic crystals is a powerful approach in the

control of size, shape, and composition of nano-structures in a 'bottom up' fashion. Colloidal

growth of nano-structures has produced nanocrystals, nanorods, cubes, prisms, and composed of

metals, oxides, and semiconductors. 1 3  As a result, colloidal semiconductor nanocrystals have

grown into a scientific field of study spanning chemistry, physics, biology, and engineering, with

applications ranging from light emitting diodes, biological imaging agents, photovoltaics, and

photo detectors.E4~61 However, significant challenges remain in the synthesis of colloidal QDs

composed of group III-V and 1-III-VI semiconductors. In this thesis, we will explore the

molecular mechanisms of current III-V QD syntheses, and explore new synthetic routes to highly

functional III-V and 1-III-VI QD materials.[7-9]

Traditionally, the fabrication of semiconductor materials utilizes single crystal growth

substrates and ultra high vacuum (UHV) conditions. These methods can be used for the growth

of epitaxial quantum dots, through the Stranski-Krastanov method, but the resulting material is

trapped within a solid state matrix.[10- 3- Our ability to move from UHV conditions to solution in

the synthesis of high quality semiconductor nanocrystals is due to the small crystalline size and

high surface area inherent to nanocrystals. As a result, impurities migrate to the QD surface

producing nearly defect free semiconductor crystals, grown in relatively impure conditions when

compared to traditional semiconductor processing methods.[ 14-161 Thus, we are able to operate in

a unique crystalline size range well suited for the solution based synthesis of nanocrystals.17



(a)

X = NH2 or CO2

Figure 1-1. Schematic of a colloidal quantum dot. (a) Capping ligands can be varied, in this schematic the use of

carboxylate and primary amines are depicted. (b) Transmission electron microscopy of CdSe(ZnCdS) QDs.

1.1 Colloidal Semiconductor Nanocrystals, or Quantum Dots

Colloidal QDs are composed of a small inorganic semiconductor core (1-10 nm) and are

coated with a layer of organic passivating ligands (Figure 1-1). As grown, the QDs are typically

soluble in non-polar organic solvents, and post-synthetic surface modifications can allow for the

transfer of QDs into the water phase or onto solid state substrates. The science and engineering

of colloidal QDs is driven by advances in the synthesis of QDs, as an increasing degree of

control over shape, size, and composition has enabled a wide range of fundamental studies and

applications of QD materials. Currently, the material of choice for visible applications are II-VI

CdSe QDs and for infrared applications the IV-VI lead chalcogenide QDs dominate. The

exploration of synthetic routes to colloidal QDs composed of different semiconductor materials

offers the potential for the discovery of new properties and applications of QD materials.



1.2 Historical Perspectives on Quantum Dot Synthesis

The inclusion of nano to micron sized semiconductor materials into glasses has been

explored since the 1930s, when Rocksby observed that the inclusion of CdSe in glass matrices

changes the hue of glasses and these materials have been used as color filters for several

decades. 18 1 However, it was not until the 1980s that the size dependent behavior of

semiconductors was observed in semiconductor embedded glasses. Ekimov and coworkers first

observed the size dependent properties of ionic nanocrystals, in a glass matrix, at the Loffe

Institute in St. Petersburg, Russia.[19-21J

In 1939, at the University of Sofia, Stranski and Krastanov (SK) developed crystal

growth models for the formation of 3-D islands when epitaxial crystals are grown on lattice

strained heterogeneous substrates. [10, "1 The work by Stranski and Krastanov formed the basis

for SK grown quantum dots, however exploiting SK growth for uniform quantum dot materials

remained a significant challenge for decades following their crystal growth observations. Success

has been primarily found in SK grown InAs, GaAs, and AlGaAs.[22-24 SK grown quantum dots

are fundamentally limited by the selection of appropriately lattice mismatched semiconductor

materials and the resulting material is trapped within a solid matrix.25 J

The discovery of size dependent behavior in colloidal CdS nanocrystals was first

observed by Louis Brus in 1983, through the measurement of size dependent redox potentials.[26]

This discovery was termed 'accidental' by Brus, as his motivation for using colloidal particles

was to simply enhance the surface area of semiconductors in order to observe redox reactions of

organic molecules at photoexcited semiconductor surfaces.[27J The use of wet chemical routes to

fabricate semiconductors, in this case colloidal quantum dots, was met with skepticism by some

condensed matter physicists. Indeed, at Bell Labs in the 1980s some physicists claimed that



"colloidal particle research was a waste of time, the quality of semiconductor material that could

be produced in a flask could never rival what was produced in a vacuum chamber"[ 28]

Synthetic routes to CdSe QDs using organometallic reagents were pioneered by Michael

Steigerwald at Bell labs later in the 1980s. The CdSe QDs were initially grown in inverse

micelles at low temperatures with moderate size distributions.[293 The introduction of high

boiling point coordinating solvents occurred in 1989 utilizing a mixture of tributyl phosphine

(TBP) and tributyl phosphine oxide (TBPO).3 01 Initially, pure TBP was found to produce

relatively monodisperse CdSe nanocrystals upon annealing of CdSe clusters, however these

results could not be reproduced with different TBP batches. Upon analysis by "P NMR, the

batch of 'pure' TBP had significantly oxidized to TBPO. As a result, mixtures of TBP and

TBPO became the surfactant of choice for QD growth in the late 1980s and early 1990s.

From 1990 onwards, Chris Murray, David Norris, and Moungi Bawendi pursued the

synthesis of CdSe QDs with narrow size distributions at MIT. A decision to move from a TBP

and TBPO mixture to trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) was made

out of budgetary considerations, as TOP and TOPO were cheaper reagents. Fortunately, the

higher boiling points of TOP and TOPO proved to be extremely advantageous in the synthesis of

highly crystalline QDs. Inspired by the use of Me 3P chalcogenide sources in bulk semiconductor

growth, TOPSe was utilized as the selenium source for colloidal CdSe synthesis. The

organometallic reagent dimethyl cadmium was introduced as a reactive cadmium source, as

earlier synthetic routes were limited by the formation of small semiconductor clusters. This

research effort culminated in 1993 with the publication of a synthetic method for CdSe

nanocrystals ranging from 2-10 nm in diameter with narrow size distributions (Figure 1-2).1'1

This synthetic achievement has enabled the widespread study and application of colloidal QDs.



Nitrogen/
Vacuum

UT

Molecular
Precursors

Surfactants

Figure 1-2. Typical reaction setup for the synthesis of colloidal quantum dots.



1.3 Monodisperse Quantum Dots

1.3.1 Synthesis of Colloidal Quantum Dots

The development of solution based syntheses for colloidal quantum dots has been largely

inspired by work done on sulfur colloids by Dinegar and Lamer. 311 In a simplified view of the

synthesis of monodisperse colloids, two general events should occur: (1) the nucleation of

colloids followed by (2) growth of these nuclei from molecular precursors (Figure 1-3). The

controllable nucleation and growth of narrow size distribution QDs was first demonstrated

1993. J17 However, the synthesis was largely treated as a 'black box' and an understanding of the

molecular mechanisms involved in the formation of monodisperse CdSe QDs was not thoroughly

probed for over well over a decade following the 1993 CdSe synthetic breakthrough.

Mechanistic investigations in 2006 and 2007 by 31P NMR confirmed that the reaction coordinate

depicted in Figure 1-3 was in fact fulfilled for the synthesis of CdSe and PbSe QDs.[32, 331

A considerable amount of progress in the controllable synthesis and mechanistic

understanding of II-VI and IV-VI QDs has driven the field of colloidal semiconductor

nanocrystals for the past two decades. However, serious challenges remain in extending the

synthesis of monodisperse QDs to III-V semiconductors, or to more complex ternary

formulations such as 1-III-VI semiconductors.[34' 35] A molecular understanding of Ill-V QD

synthesis had remained unexplored in the colloidal QD community, and Chapter 5 seeks to

understand the current challenges in the synthesis of Ill-V QDs. We have found that the reaction

coordinate depicted in Figure 1-3 is not currently met for Ill-V syntheses, due to depletion of

molecular precursors following nucleation, indicating that new synthetic routes to III-V QDs

must be developed in order to produce narrow size distributions of III-V QDs.
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Figure 1-3. Reaction coordinate of a monodisperse colloidal quantum dot synthesis.



1.3.2 Physics of Finite Semiconductors

Quantum dots are particularly interesting as they enable the study of semiconductors on

small length scales. In a direct-gap bulk semiconductor, a photon of energy greater than the

bandgap promotes an electron to the conduction band, creating an electron hole pair (Figure 1-

4.a).136J However, if the semiconductor becomes finite in size, approaching the natural length

scale of its electron hole pair, the quantization of energy states is observed (Figure 1-4.b). The

transition from a continuum of states in a bulk semiconductor, to discrete states in a finite

semiconductor, can be understood as the result of a decrease in the density of states due to the

finite number of repeating unit cells in three dimensions. As a result, the optical properties of a

finite semiconductor material differ significantly from a bulk semiconductor material. The

observed size dependent properties arise from confinement of the carriers in a 3-D potential well.

The natural length of an electron hole pair in a semiconductor is often referred to as the

Bohr exciton radius, which is inversely related to the effective mass of the carriers. As a result,

nanocrystals composed of different semiconductors exhibit different degrees of quantum

confinement. Narrow bandgap semiconductors have light carriers, such as InAs which has a

large Bohr radius of 36 nm and the optical properties of InAs can be tuned from the visible to

mid-infrared. Wider bandgap semiconductors have heavier carriers, such as CdSe which has a

Bohr exciton radius of 6 nm and can be tuned in the visible region. The above discussion of how

to predict the degree of quantum confinement in a semiconductor nanocrystal is based on the

effective masses of the carriers in the bulk material and is the effective mass approximation. [37]

Extensive experimental and theoretical work has been completed to understand the underlying

physics of confinement in CdSe QDs, however a similarly detailed analysis of the electronic

structure of other QDs, such as InP, have been limited by sample quality.[38, 391



(a) Bulk (b) Finite

E(k)4P

hv hv

k

Figure 1-4. Band structures of bulk and finite semiconductors. (a) Continuum of states in a bulk direct-gap band

structure and (b) discrete states appear in crystals of a finite size due to the quantization of states.



1.3.3 Optical Properties of Quantum Dots

Quantum dots are characterized by a continuous absorption to the blue of the band edge,

and narrow tunable emission at the band edge. The ability to observe discrete 'molecular-like'

transitions and narrow band edge emission in an ensemble of QDs is the result of extremely

narrow size distributions attained in the synthesis of chalcogenide based QDs. The synthesis of

QDs with narrow size distributions is essential for the exploitation of QD optical properties, from

basic spectroscopy to applications in LEDs and biology. [' 401

. g (nm)

Figure 1-5. Ensemble absorption spectra of CdSe QDs (Chris Murray, MIT Thesis, 1995).

As discussed in previous sections, quantum confinement of nanocrystals creates discrete

electronic transitions. The positions of these transitions depend strongly on particle size, and as

a result the ensemble absorption features depend strongly on particle size distributions. In Figure

1-5 the discrete transitions can be easily observed in an ensemble of CdSe QDs with narrow size

distributions.[42 In the case of InP nanocrystals, only broad absorption features near the band

edge can be resolved due to relatively broad size distributions in the ensemble measurements.[43



1.3.4 Quantum Dot Core-Shell Structures

In order to increase the photo-stability and quantum yields of QDs, a wider bandgap

material is typically grown over the core material.J44-1' The shell material serves to isolate the

exciton from non-radiative relaxation via surface states. The development of core-shell QDs has

enabled the applications of QDs in light emitting applications, with particular success in

biological imaging and LEDs. '52 53]

Synthetic considerations in the design of core-shell materials include lattice parameters

and band gap offsets to create Type I or Type II materials (Figure 1-6.a) Reduction of lattice

mismatch between core and shell materials provides robust QDs amenable to surface

modifications. 5 4] In order to enable stability under ambient conditions, shell materials are

primarily composed of sulfide based materials. In addition, band gap offsets can be used to

control the degree of confinement in order to tune radiative wavelengths and lifetimes.55 -57

The growth of a semiconductor shell material over a QD core (Figure 1-6.b) is commonly

achieved by two synthetic routes. The simultaneous addition of highly reactive precursors, such

as diethyl zinc, dimethyl cadmium, and bis(trimethylsilyl) sulfide to a solution containing CdSe

cores was developed in the mid 1990s.[44' 46, 51] These syntheses are conducted at lower

temperatures than QD core growth, in order to prevent the nucleation of CdS or ZnS QDs. An

alternative method is inspired by atomic layer deposition, and utilizes less reactive reagents such

as cadmium or zinc carboxylates and elemental sulfur. This method was termed 'successive ion

layer adsorption and reaction' (SILAR).[ 45' 47] The SILAR method utilizes the alternating

injection of precursors followed by a high temperature annealing step. This synthetic route has

been used to produce thick shell CdSe(CdS) QDs, which exhibit suppressed blinking

characteristics.[
5 8' 59]



Type 11(a)
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Figure 1-6. Schematic of core-shell quantum dots. (a) Band offsets for Type I and Type II core-shell materials. (b)

schematic of core-shell growth.
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1.4 Applications of Quantum Dots

1.4.1 Quantum Dots in Biology

The optical properties of QDs make them particularly well suited for use as luminescent

biological probes. The large two-photon absorption cross section of QDs make them attractive

for multi-photon microscopy.141' 60] In addition, the ability to develop bright probes emissive in

the near-infrared (NIR) region is exceedingly interesting for in vivo biological imaging, such as

sentinel lymph node mapping or tumor targeting.[61, 62]

Ligand

Exchange

X= NH2 or CO2~ *lmidazole * Amine -- PEG 1112

Figure 1-7. Ligand exchange of QDs with a poly(amino-PEG)-PIL polymer.

As synthesized, QDs are typically soluble in non-polar organic solvents such as hexanes

or toluene. There are several routes to transferring the QDs to the water phase. An amphiphilic

polymer or phospholipids can be used to encapsulate the QDs while retaining the native capping

ligands, however these methods significantly increase the hydrodynamic diameter (HD).[63-66 In

order to produce more compact water soluble QDs, a ligand exchange procedure can be utilized

(Figure 1-7). A 'ligand exchange' displaces the native hydrophobic capping ligands with

hydrophilic capping ligands to impart water solubility. Previous ligands have included a

28



phosphine oxide polymer, monothiol, and dihydrolipoic acid derivatives which produced QDs

with HDs from 5-15 nm, however these systems were plagued with colloidal instability.[54' 67-701

Recently, there have been major developments in the synthesis of imidazole based polymeric

ligands, coined poly-imidazole ligands (PIL). The PIL based ligand architecture produces highly

stable and compact (hydrodynamic diameter -10 nm), non-sticky QDs that are amenable to

functionalization via terminal amine groups for specific labeling.7 1 ]

The ligand exchange process is harsh on the QD surface and as a result, only high quality

lattice matched core-shell materials can withstand the process. The growth of high quality shells

on NIR InAs QDs is presented in Chapter 3 to enable ligand exchange on III-V QDs, while

retaining reasonably high quantum yields.

1.5 Thesis Overview

The theme of this thesis is the pursuit of new synthetic methods, and the understanding of

the molecular mechanisms, involved in the synthesis of binary III-V and ternary I-III-VI QD

materials. The ultimate goal of the exploration of new materials is to discover new material

properties and enable the application of QDs across a wide range of technologies. The ability to

controllably synthesize any semiconductor material, from II-VI, III-V, IV-VI, IV, to I-III-VI

semiconductors would greatly expand the materials toolbox available to scientists and engineers

in the QD field, and enable the tailoring of material compositions and properties to specific

application needs.

The experimental work of this thesis begins in Chapter 2 with an exploration of the

synthesis of group I-III-VI QDs. These materials range from Cu-In-S, Ag-In-S, Cu-Zn-In-S, Ag-

In-Se, to Cu-In-Se QDs emitting from the blue to near-infrared regions. However, precise



control over size distributions and shell growth has yet to be obtained. In my early stages as a

graduate student I was eager to take on the most complex of QD formulations from ternary to

quaternary materials - however, it became clear that significant synthetic challenges remained

even for simple binary systems such as III-V QDs. My desire to develop III-V materials and see

them applied to relevant real world systems led to the work in Chapter 3.

The primary contribution of Chapter 3 is the design of robust shell materials for InAs

QDs emitting in the NIR region. Although there has been previous work on core-shell InAs QDs,

each synthetic method suffered from a lack of long term stability, or poor stability during ligand

exchange. Drawing from the extensive experience the Bawendi lab has with core-shell CdSe

QDs, we were able to develop compact and bright InAs(ZnCdS) QDs that have performed well

in biological systems. Seeing the synthesis of a material go from a round bottom flask to in vivo

work with Massachusetts General Hospital has been one of the highlights of my thesis work.

During my work on InAs QDs, a conversation with Scott Geyer led to the work in

Chapter 4. I had noticed at high temperatures, in the presence of cadmium carboxylates, that

InAs QDs would begin to lose their first absorption feature. With Scott's insight into the ability

for Cd to act as an acceptor in bulk and nanowire InAs, we set to exploring the possibility that

we were doping InAs QDs with cadmium. Indeed, we were able to controllably synthesize 'p'

and 'n' type InAs QDs. The ultimate dream of this work is the fabrication of a true p-n

nanocrystal homo-junction device.

Chapter 5 is an exploration of the molecular mechanisms in current III-V QD syntheses,

and outlines the current shortcomings in the synthetic approaches to InP and InAs QDs. When

comparing single dot measurements on III-V QDs to II-VI CdSe QDs, it became clear that the

broad features observed in ensemble optical properties for InP and InAs is the result of a



moderately broad size distribution, and not a fundamental limitation. Our work found that a

critical criteria for monodisperse colloid formation, growth from molecular precursors, is not met

due to the extreme reactivity of the tris(trimethylsilyl) phosphine and arsine precursors.

The mechanistic work on InP and InAs QDs led to the clear conclusion that new, less

reactive, pnictide sources must be found. Chapter 6 outlines a detour taken into the nanowire

world during the exploration of new phosphorus precursors. Frustrated by a lack of progress on

developing new InP QD synthetic methods, the development of the electrically controlled

solution-liquid-solid (EC-SLS) synthesis of nanowires by August Dorn and Cliff Wong caught

my eye. We were able to use some of my precursor explorations to develop a new synthesis for

InP nanowires in solution that was compatible with the electrically controlled process.

In summary, this thesis explores the synthesis of novel QD core materials, QD core-shell

materials, doped QD materials, EC-SLS InP nanowires, and investigations into the molecular

mechanisms involved in the formation of III-V QDs.
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Chapter 2. Ternary 1-III-VI Quantum Dots

2.1 Introduction

In this chapter we explore the synthesis of various ternary and quaternary quantum dots

(QDs). By expanding from binary semiconductors such as II-VI (CdSe), IV-VI (PbSe), or III-V

(InAs), to ternary I-III-VI semiconductors it is possible to significantly expand our choice of QD

material composition (Figure 2-1).1~-3 We will focus on the synthesis and characterization of a

series of copper indium selenide (CIS) QDs of various stoichiometries exhibiting

photoluminescence (PL) from the red to near infrared (NIR). In addition, we have demonstrated

the modularity of our synthetic method by extending it to the synthesis of AgInSe 2, Ag-In-Zn-S,

and Cu-In-Zn-S QDs which are luminescent from the blue to NIR. Ternary I-III-VI QDs could

find widespread technological applications in areas ranging from photovoltaic cells to biological

imaging agents. 4' 5

In bulk CIS semiconductors, band edge PL is rarely observed at room temperature due to

fast non-radiative relaxation promoted by defect sites. 6] In addition, previous work on CIS QDs

has not reported PL.17-9] In the area of sulfide based I-III-VI QD systems, the incorporation of

zinc has been necessary in order to enhance quantum yields (QYs) and tune emission

properties.0' "I Here, we present selenium based 1-III-VI ternary semiconductor systems and

also explore sulfide based I-III-VI semiconductors with the incorporation of zinc.

Previous CIS QD synthetic work has utilized single source precursors.?1 However, this

methodology was not amenable to the facile introduction of capping ligands, preventing

adequate size control and surface passivation. Other reports have utilized CuCl, InCl 3, and tri-n-
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octylphosphine selenide (TOPSe) to synthesize CIS QDs, but did not produce QDs with distinct

absorption features.7'9 In our synthetic approach, we have selected bis(trimethylsilyl) selenide

[(Me3Si)2Se] and bis(trimethylsilyl) sulfide [(Me 3Si)2 S], as the chalcogenide precursors. The

choice of copper precursors was limited by the tendency of Cu(I) to disproportionate in

solution.E12 Previous reports have demonstrated the copper and indium halides to be stable

sources of Cu(I) and In(III). A combination of metal halides and a chalcogenide silane precursor

was selected in order to exploit a metathetical dehalosilylation reaction scheme, obviating the

need to generate elemental copper and indium in solution.E1 3] Using this synthetic approach we

demonstrate the synthesis of Cu-In-Se, AgInSe2, Ag-In-Zn-S, and Cu-In-Zn-S QDs.

2.2 Cu-In-Se Quantum Dots

2.2.1 Synthesis

The solvent system is based on a combination of tri-n-octylphosphine (TOP) and oleyl

amine (OA), which are used as a coordinating solvent. The metal halides can be readily

dispersed in TOP or OA to form homogeneous solutions. In a typical synthesis, a solution of

metal halides in TOP and OA was heated to 280-360 *C followed by the swift injection of a

solution of (Me3Si) 2Se in TOP and subsequent growth at temperatures ranging from 200-280 "C.

The Cul and InI3 precursors produced QDs of composition CuIn5 Se8 , with PL in the red and

NIR (Figure 2-2.a). In the case of the CuCl and InCl 3 precursors it was possible to tune the

composition of the prepared QDs from CuIn 1.5Se 3 to CuIn2.3Se4 (Figure 2-2.b) by varying the

reaction temperature. This synthetic method produced a size series of CIS QDs of various

stoichiometries luminescent from the red to NIR (Figure 2-3).
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Figure 2-2. Absorbance and PL of Cu-In-Se QDs. Absorbance and corresponding PL of QD growth: (a) CuIn5Se8

QDs grown from 650-700nm with injection at 280 *C and growth at 210 *C from CuI and Inl precursors and (b)

growth of CuIn 2.3Se 4 QDs from 900-975 mn with identical conditions as in (a) from CuCl and InCl3 precursors.
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Figure 2-3. PL series and TEM of Cu-In-Se QDs. (a) PL spanning from the red to the NIR (650-975 rn) composed

of CuInsSe8 QDs ranging from -2.0-3.5 un mean diameter (black) and CuIn2.3Se 4 QDs from -3.0-3.5 un mean

diameter (blue).
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The homogeneous and controllable growth of Cu-In-Se QDs was found to be strongly

dependent on the ratio of Cu:In introduced in the reaction mixture. When using the iodide

precursors, a Cu:In ratios of 1:1 produced bimodal distributions of Cu-In-Se. However, by

adjusting the Cu:In ratios to 1:5 the growth of the homogeneous sample in Figure 2-2.a was

obtained. When using the chloride based precursors, a 1:1 ratio of Cu:In was found to produce

homogeneous size distributions of Culn2.3Se 4 QDs.

2.2.2 Elemental Composition and TEM

The elemental compositions of the QDs resulting from the reaction of the iodide and

chloride precursors with (Me3Si)2 Se were found to be independent of the reaction conditions

(Figure 2-4). At constant growth temperatures, the final QD elemental composition was dictated

by the choice of halide starting materials.

Iodides Precursor Ratio
dd dlllllRatio in QDs

0 6- Chlorides

Figure 2-4. Graph showing the ratio of In/Cu precursors in growth solution and the resulting ratio of In/Cu in the

produced QDs. The iodide and chloride precursors were examined at different ratios in growth solution. The final

QD elemental compositions were found to be independent of the ratios of In/Cu precursors in growth solution.

.. .......
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Figure 2-5. TEM and corresponding histograms of Cu-In-Se QDs: (a) TEM of-2.2 nm mean diameter CuIn5Se8

QDs collected on a JEOL 2011 microscope, (b) TEM of -2.7 nm mean diameter CuIn5Se8 QDs, (c) TEM of-3.0

nm mean diameter CuIn2.3Se4 QDs, and (d) TEM of-3.5 nm mean diameter CuIn2.3Se4 QDs collected on a JEOL

200CX microscope. Arrows indicate QDs with diameters equal to the mean diameter of the population of QDs,

reference bars placed below the QDs are to scale with the labeled value.



Transmission electron microscopy (TEM) indicates the QDs are spherical in nature with an

approximately 15-20% rms deviation in size from the mean QD diameter (Figure 2-5). The sizes

determined by TEM measurements are in agreement with those obtained by Scherer analysis,

suggesting the crystalline coherence length extends over the entire QD. It should be noted that at

small QD sizes <2.5 nm, accurate sizing is complicated by poor TEM contrast.

2.2.3 Wide Angle X-Ray Scattering

Bulk and thin film CIS exist primarily in either a tetragonal chalcopyrite phase or a high

temperature cubic sphalerite phase. ' 41 The observed wide angle X-ray scattering (WAXS) and

elemental compositions of the CIS QDs were found to be well described by an ordered vacancy

chalcopyrite (OVC) structure. Analysis of 6 nm CuIn. 5 Se 3 QDs WAXS data began by creating a

chalcopyrite model unit cell using experimentally determined copper, indium, and selenium site

occupancies. Copper vacancies (Vcu) were initially placed exclusively on the copper site,

resulting in the calculated pattern in Figure 2-6.a. However, the calculated intensities for the

(211) and (101) reflections in this model structure exceed the observed WAXS intensities. The

indium atoms were then allowed to migrate onto the copper site (Incu) until the calculated pattern

was in agreement with the observed pattern (Figure 2-6.b). A structural model containing Incu

and 2Vcu defect pairs is in agreement with an ordered vacancy chalcopyrite (OVC) phase. The

elemental compositions of all the CIS QDs are consistent with the predicted stoichiometries for

ordered vacancy CIS compounds (Figure 2-7).["] An alternative cubic sphalerite model unit cell

does not adequately describe the observed WAXS pattern (Figure 2-6.c). Similar WAXS analysis

for smaller CIS QDs was complicated by the inability to adequately resolve the (211) reflection

due to increased peak broadening.
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Figure 2-6. WAXS of Cu-In-Se QDs. Comparison of experimental WAXS to calculated patterns for model unit cells

of CuInj.5Se3 QDs (6 nm diameter). (a) The calculated pattern for a chalcopyrite phase where the calculated intensity

of the (211) and (101) reflections exceed the observed intensity, (b) is the calculated pattern for an ordered vacancy

chalcopyrite phase in agreement with the observed WAXS pattern, and (c) is a calculated cubic sphalerite phase that

lacks the (211) reflection.
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Figure 2-7. Predicted stoichiometries of "ordered defect compounds" (ODC) compared with the experimentally

determined stoichiometries in CIS QDs.2 Predicted compound stoichiometries were determined by repeating one

defect unit consisting of an Incu atom and two Vc, atoms for every (n) units of CuInSe 2.
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The assignment of CuIn1 .5Se3 and CuIn2.3Se4 QDs as chalcopyrite compounds is in

agreement with the previously reported chalcopyrite phases of bulk CuInSe2 and CuIn3Se5 .[16] As

for CuIn5 Se8, only a metastable chalcopyrite phase has been reported in the bulk. Over the

crystalline coherence lengths in this work (2-6 nm) chalcopyrite CIS QDs were observed over a

large range of stoichiometries.

2.2.4 Temperature Dependent Photoluminescence

The observation of PL from CIS QDs (QYs up to 25% and decreasing significantly with

increasing size) may arise due to the strong confinement of the exciton within the QD. Radiative

pathways in the CIS QDs appear to remain competitive even in the presence of structural defects,

which are known to promote the non-radiative relaxation in bulk CIS. 6 In addition, QYs of the

AgInSe2 QDs reached 15%.

The broad PL (~100 nm fwhm) observed in the CIS QDs arises at least in part, if not fully,

from a distribution of QD sizes. It is also possible that a distribution of near band edge trap

states, known to arise from shallow donor acceptor pairs created by defects and vacancies,

contributes to the broad PL.' 7 In order to distinguish between defect based emission, and band

edge emission, temperature dependent PL measurements were carried out. The Cu-In-Se were

embedded into a glassy polymer matrix and pressed between sapphire substrates. This

homogeneous film was then placed into a cryostat for temperature dependent measurements.

The PL was found to blue shift with decreasing temperature (Figure 2-8). A blue shifting in

PL has been observed for band edge emission in bulk Cu-In-Se semiconductors. 61  The

temperature dependent PL measurements strongly indicate the PL is band edge in nature, and not

the result of emission from donor or acceptor defects.
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Figure 2-8. Temperature dependent PL of CulnsSe8 QDs.



2.3 AgInSe 2 Quantum Dots

2.3.1 Synthesis

The generality of this synthetic approach was demonstrated by replacing the former metal

halide precursors with AgI and InI3, which successfully synthesized AgInSe 2 QDs with

luminescence from orange to red (Figure 2-9). The QDs were observed to have PL efficiencies of

15-20%. Larger AgInSe2 QDs could be grown with the use of AgCl and InCl3, however, optical

measurements were complicated by the formation of Ag colloids due to decomposition of AgCl

at high temperature to Ag metal. The observation of Ag metal is confirmed by WAXS

measurements in Figure 2-10.

2.3.2 Characterization

In the case of the AgInSe2 QDs WAXS patterns it was not possible to distinguish between

orthorhombic and hexagonal phases due to the small (3-6 nm) crystalline coherence lengths

(Figure 2-10). It should be noted that the assignment of the 3 nm QDs cannot be distinguished

between a tetragonal, hexagonal, or orthorhombic phase due to the broadened reflections due to

the 3 nm crystalline coherence lengths. In the bulk, AgInSe 2 occurs primarily in the tetragonal

phase, and the orthorhombic or hexagonal phases observed in this work are consistent with

previously synthesized AgInSe 2 nanorods which have been reported to occur in an orthorhombic

phase unique to nanocrystalline AgInSe2.E'71 The 6 nm AgInSe2 QDs are slightly ellipsoidal along

the (002) axis, as evidenced by the increased intensity of the (002) peak observed in the WAXS

patterns.
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Figure 2-9. Absorbance and PL of AgInSe2 QDs. Growth of AgInSe2 QDs. Injection of precursors took place at

280 *C with subsequent growth at 210 *C. The AgInSe2 QDs exhibit orange to red PL with -15% QYs.
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Figure 2-10. WAXS of 3 nm and 6 nm AgInSe2 QDs. Orthorhombic and hexagonal bulk AgInS2 reflections are

overlaid. The observed reflections occur at a smaller 20 than the bulk lines, as the AgInSe2 unit cell is larger than

the AgInS2 unit cell. The observed reflections are labeled with orthorhombic reflections. Asterisks indicate Ag

metal.
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2.4 Cu-In-Zn-S and Ag-In-Zn-S Quantum Dots

The synthetic method for Cu-In-Se and Ag-In-Se QDs is modular, and can be extended to

the Cu-In-Zn-S and Ag-In-Zn-S QD materials systems. By replacing bis(trimethylsilyl) selenide

with bis(trimethylsilyl) sulfide, the complementary sulfide particles can be easily synthesized.

However, in the case of the sulfide systems, zinc was incorporated into the core materials to

enhance quantum yields. Sulfide QDs grown without the incorporation of zinc showed little to

no photoluminescence.

The peak photoluminescence can be tuned by zinc content. Increasing zinc content results

in the blue shifting of the photoluminescence peak. Green to NIR can be achieved with Cu-In-

Zn-S QDs. Blue to red photoluminescence can be achieved with Ag-In-Zn-S QDs (Figure 2-11).

The fwhm of the quaternary QD samples is quite broad (> 100 nm) this is likely the result of a

combination of heterogeneous distributions in both of Zn incorporation and QD size

distributions.

The bulk bandgap of CuInS2 (Eg = 1.5 eV) and AgInS2 (Eg = 1.8 eV), while ZnS has a

bandgap of (Eg = 3.54 eV).[18' 191 Therefore, it is likely that as Zn is incorporated into the core

lattice, a blue shifting of the bandgap occurs. This is observed in our work, as well as previous

work on Cu-In-Zn-S and Ag-In-Zn-S materials. 10 1 The incorporation of Zn was also observed

to increase the quantum yields of the QD samples. The brightest Cu-In-Zn-S QDs reached

quantum yields of 30%, while the Ag-In-Zn-S quantum yields reached 15%. The growth of core-

shell materials was complicated by the tendency of Zn to alloy into the QD core, instead of

forming an epitaxial ZnS shell.
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Figure 2-11. Emission spectra of Cu-In-Zn-S QDs and Ag-In-Zn-S QDs.



2.5 Conclusions

In the bulk, CuInSe 2, CuIn 3Se 5, and CuIn5Se8 have been reported with Eg values of 1.04

eV, 1.21 eV, and 1.15 eV, respectively.' 8 The Eg of CIS QDs has been tuned from 1.3-1.9 eV

(corresponding to 975-650 nm), which is to the blue of the bulk Eg values. We conclude that

quantum confinement plays a significant role in determining the Eg of CIS QDs,[20 while

differing elemental compositions may contribute additional but small Eg energy variations

similar to those seen in bulk CIS.

The range of Eg values demonstrated by the CIS QDs in this work is comparable to the range

attainable by thin film copper indium gallium selenide semiconductors (1.0-1.7 eV), which are

used in photovoltaic devices.[21 ] In addition, the small size and NIR emission of CIS QDs make

them desirable for biological imaging applications. The growth of a ZnS shell around the CIS

QDs could enable surface ligand modifications.

We have developed a modular hot injection synthetic method for ternary and quaternary

QDs, composed of commercially available precursors. This synthetic method has the potential to

be extended to other QDs composed of 1-111-VI semiconductors, allowing for further exploration

of the elemental compositions and electronic properties in QD materials.



2.6 Procedures

Materials: Stock solutions of metal halides were produced by combining two of the following

complementary metal halides: CuCl, InCl3, ZnI2, Cul, AgI, or InI3 (99.999%, Alfa Aesar) in tri-

n-octylphosphine (97%, Strem) or oleyl amine (97%, Acros Organics) and heating to 90 "C

under magnetic stirring for several hours in an inert glove box. All metal halide solutions were

stored in the dark under an inert atmosphere. Tri-n-butylphosphine 99% was obtained from

Strem. Bis(trimethylsilyl) selenide was obtained from Gelest. Methanol, Butanol, Hexanes,

Toluene, and Pyridine (Anhydrous, Sigma) were used in the isolation of QD samples. All

chemicals were used without further purification. All manipulations were carried out in an inert

glove box or on a N2 schlenk line using standard air free procedures.

CuIn5Se8 QDs: The CuIn5Se8 QDs were synthesized by injecting a solution of (Me 3Si)2Se (0.15

mmol) in 2 ml of TOP into a round bottom flask containing OA (1.5 ml), TOP (3 ml), CuI (0.012

mmol), and InI3 (0.060 mmol) stirring rapidly at 280 "C. The temperature was allowed to drop to

210 "C, when heating was restored for QD growth. Prolonged growth times can result in etching

of the QDs.

CuIn 2.3Se 4 QDs: The CuIn 2.3Se4 QDs were synthesized by injecting a solution of (Me3Si)2Se

(0.25 mmol) in 2.5 ml of TOP into a round bottom flask containing OA (3 ml), TOP (2.5 ml),

CuCl (0.25 mmol), and InCl3 (0.25 mmol) stirring rapidly at 280 "C. The temperature was

allowed to drop to 210 "C, when heating was restored for QD growth.

CuInI.sSe3 QDs: The CuIni. 5Se3 QDs were synthesized identically to CuIn 2.3Se 4 QDs, with the

exception of an injection temperature of 350 "C and a growth temperature of 280 "C.



AgInSe2 QDs: The AgInSe2 QDs were synthesized by injecting a solution of (Me3Si)2Se (0.15

mmol) in 2 ml of TOP into a round bottom flask containing OA (1.5 ml), TOP (3 ml), AgI (0.05

mmol), and InI3 (0.05 mmol) stirring rapidly at 280 C. The temperature was allowed to drop to

210 C, when heating was restored for QD growth.

Cu-In-Zn-S QDs: The Cu-In-Zn-S QDs were synthesized by injecting a solution of (Me3Si) 2S

(0.10-0.20 mmol) in 2 ml of TOP into a round bottom flask containing OA (1.5 ml), TOP (3 ml),

Cul (0.05 mmol), ZnI2 (0.0-0.20 mmol), and InI 3 (0.05 mmol) stirring rapidly at 280 "C. The

temperature was allowed to drop to 210 *C, when heating was restored for QD growth.

Ag-In-Zn-S QDs: The Ag-In-Zn-S QDs were synthesized by injecting a solution of (Me 3Si)2S

(0.10-0.20 mmol) in 2 ml of TOP into a round bottom flask containing OA (1.5 ml), TOP (3 ml),

AgI (0.05 mmol), ZnI2 (0.0-0.20 mmol), and In13 (0.05 mmol) stirring rapidly at 280 "C. The

temperature was allowed to drop to 210 "C, when heating was restored for QD growth.

Isolation of QDs: QDs were isolated by several cycles of precipitation through the addition of

butanol and methanol followed by centrifugation for five minutes at 3900 rpm. This procedure is

first performed on the growth solution and then performed subsequently upon QDs dispersed in

hexane.

Transmission Electron Microscopy (TEM): TEM samples were prepared by placing one drop

of a dilute dispersion of QDs in pyridine onto an ultrathin carbon film 400 mesh copper grid



(Ted Pella). After one minute the excess solvent was wicked away. TEM measurements were

collected on a JEOL 200CX operated at 200 kV.

Wide Angle X-ray Scattering (WAXS): WAXS samples were prepared by dropping

concentrated QD solutions out of pyridine or hexane onto a zero background substrate, leaving a

film of QDs. WAXS data was collected on a Rigaku 185mm operating at 50 kV with a 300

milliamp flux.

X-Ray Photoelectron Spectroscopy (XPS): Several monolayers of QDs were spin cast from

chloroform onto a silicon substrate for XPS analysis. A Kratos AXIS Ultra Imaging X-ray Photoelectron

Spectrometer with an Al Ka source was used for XPS measurements. Binding energies determined by XPS

were consistent with literature values for Cu(I) in a chalcogenide matrix (Figure S5).

Elemental Analysis: Wavelength Dispersive Spectroscopy (WDS) was used to determine the

elemental composition of the QD inorganic core. Dried QD samples were placed onto a silicon

wafer and coated with amorphous carbon to prevent charging during measurements. Samples

were then analyzed by WDS on a JEOL 733 scanning electron microscope (SEM). All

measurements were taken in triplicate (Table Sl). Due to the high percentage of surface atoms

on the QDs, the selective termination of the surface by either copper or indium could potentially

bias the elemental analysis. Elemental analysis for nitrogen and phosphorous was performed by

Desert Analytics. As each capping ligand contains either one nitrogen atom (OA) or one

phosphorous atom (TOP), the ratio of OA to TOP on the surface of the QDs can be quantitatively

determined. The ratio of OA to TOP was found to be 20 to 1.
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Chapter 3. InAs(ZnCdS) Quantum Dots for Biological Imaging in the

Near-Infrared

3.1 Introduction

The near-infrared (NIR) region is of particular interest for in vivo biological imaging

applications. An optical window exists from roughly 700-900 nm where the major components

of tissue and serum absorb minimally (Figure 3-1). In addition, the NIR is a region of low auto-

fluorescence which results in increased contrast for biological imaging agents. In this Chapter,

we present the synthesis of core-shell InAs(ZnCdS) quantum dots (QDs) with bright and stable

emission in the NIR region for biological imaging applications. We demonstrate how NIR QDs

can image tumor vasculature, in vivo, with superior depth and contrast when compared to visible

QDs. Targeted in vitro cellular labeling is also presented and may be useful for multiplexed and

low auto-fluorescence biological imaging.E1'21

The push for smaller and smaller QDs has motivated the selection of InAs as the core

material for NIR emitting QDs. Exceedingly small InAs cores (1.4 nm diameter) emit light at

1.78 eV (700 nm) in the heart of the NIR window.E3 J This is the result of a narrow bulk band gap

of Eg = 0.37 eV and an extremely light electron effective mass, resulting in strong confinement

of the carriers.E4 ' 5 This fortunate combination of physical properties allows for the synthesis of

semiconductor nanocrystals composed of approximately eight unit cells!

Previous work on InAs core-shell QDs has primarily focused on shell materials based on the

selenides, specifically ZnSe and CdSe.[3, 6, 7] Selenium is prone to surface oxidation in QDs,E81

which may hinder stability and surface modifications. InAs core-shell materials based on the air-

stable sulfides have been limited to the highly lattice mismatched (10.71%) ZnS shell. 9' 10]
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Figure 3-1. Near-infrared window for biological imaging.



3.2 InAs(ZnCdS) Quantum Dots

3.2.1 Synthesis

Previous literature claims have propagated a belief that III-V QDs suffer from low quantum

yields (QYs), however a physical reason that III-V QDs should be 'darker' than their II-VI

counterparts is not discussed.17' 11] The previously observed low QYs in III-V QDs likely arises

from surface oxidation of the QDs or poor core-shell interfaces opening up non-radiative

pathways. If a high quality core-shell material can be synthesized, there is no fundamental

reason that III-V QDs cannot rival their II-VI counterparts.

In order to improve photoluminescence quantum yields (QYs) and the long term stability of

InAs QDs we have looked to the well-studied CdSe QD system for inspiration on robust shell

materials. As the CdSe (a = 6.05 A, zinc blende) lattice parameters are nearly identical to those

of InAs (a = 6.058 A),E121 we hypothesized similar shell materials would be transferable between

the two systems. CdSe(CdS) and CdSe(ZnCdS) core-shell QDs have been shown to provide a

robust QD surface that can withstand the conditions of ligand exchange, a necessary criterion for

compact water soluble QDs.J1 ' 141 A shell of CdS or the alloy ZnCdS has not been previously

reported on InAs QDs. The reduction of lattice mismatch (CdS, 3.73%)121 between the core and

shell semiconductors and the use of an air-stable sulfide based shell is necessary for QD stability

during ligand exchange. 131 The growth of a pure CdS shell onto InAs QDs results in red shifting

of emission past the 800 nm window before even one monolayer (ML) is grown. While a pure

ZnS shell confines the electron and hole to the InAs core (minimal red shifting)E91 the high lattice

mismatch of ZnS is not ideal for ligand exchange. We have found a ZnCdS alloy provides a

shell with reduced lattice mismatch and moderate confinement of the hole and electron to the

InAs core for wavelength targeting (Figure 3-2).
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The synthesis of small InAs cores (1.4 nm inorganic diameter) was carried out in a mixture

of octadecene, tri-n-octyl phosphine (TOP), tris(trimethylsilyl) arsine, and indium myristate

using a slightly modified version of the synthesis reported by Xie and Peng. 3 J The addition of

oleyl amine prior to shell growth was found to significantly improve quantum yields during the

over-coating process (Figure 3-3). Also, the addition of oleyl amine serves to dilute the reaction

solution, which was found to promote homogeneous shell growth. The ZnCdS QD shell was

grown over several hours by the drop-wise addition of dimethyl cadmium, diethyl zinc, and

bis(trimethylsilyl) sulfide in TOP. The shell thickness and ZnCdS composition can be precisely

tuned by reaction time and reagent concentrations. We found 2.5 MLs of Zno.7Cdo.3S to provide

small QDs (2.9 nm inorganic diameter) with emission at 800 nm (QYs 35-50%, Figure 3-2) that

retain high QYs when ligand exchanged.

3.2.2 Ligand Exchange

Figure 3-4 demonstrates water solubilization of InAs(ZnCdS) QDs through ligand exchange

with a polymeric imidazole ligand (PIL). The native organic capping ligands, in this case a

mixture of myristate and oleyl amine, are displaced by the imidazole groups of the PIL polymer.

Poly(amino-PEG1 )25%-PIL is a random co-polymer built on an acrylic acid backbone

incorporating poly(ethylene) glycol (PEG12) groups for water solubility (25 mol %), amino-

PEG,1 groups for conjugation chemistry (25 mol %), and imidazole groups for QD binding (50

mol %), the detailed synthesis and characterization of these polymers can be found elsewhere. 14 J

The resulting aqueous QDs have a hydrodynamic diameter (HD) of <10 nm. The QYs of ligand

exchanged QDs were typically 25% and are stable under ambient conditions on the order of

months. This high degree of stability is essential for biological collaborations, as synchronizing
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ligand exchanges with animal preparation is exceedingly difficult. Figure 3-5 demonstrates that

the absorption spectrum remains identical before and after ligand exchange, and the small

decrease in PL is consistent with the formation of a high quality shell. The percentage decrease

in quantum yield is consistent with the quantum yield decreases observed in high quality

CdSe(ZnCdS) QDs. 1 3]

3.2.3 Characterization

The growth of a ZnCdS shell on the InAs core can be thoroughly characterized by a

combination of TEM and elemental analysis. The TEM image serves a tool for determining the

size and shape of the inorganic particle. TEM sizing is slightly complicated by the small <3 nm

QDs characterized in this work (Figure 3-6.a). In order to aid analysis, a complementary

measure of the elemental composition is essential in determining the number of monolayers of

shell material grown over the core material.

The initial inorganic diameter is determined by its first absorption feature, and compared to

previous reports in the literature. 3] We begin with a 1.4 nm inorganic diameter InAs core and

then grow a ZnCdS shell. The elemental composition of the InAs(ZnCdS) QDs is depicted in

Figure 3-7. By comparing the experimentally determined values for elemental composition with

the predicted values for various numbers of ZnCdS MLs the shell thickness can be quantified,

and the InAs(ZnCdS) QDs in this work were found to have -2.5 MLs of ZnCdS.

In order to determine the hydrodynamic diameter of the poly(PEGn2)-PIL QDs, gel filtration

chromatography (GFC) was performed. The GFC column was calibrated using protein standards

of known molecular weights and hydrodynamic diameters. The poly(PEG]2)-PIL InAs(ZnCdS)

QDs were found to elute at 4.1 minutes, corresponding to a hydrodynamic diameter of <10 nm
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Figure 3-6. TEM and GFC of poly(PEG12)-PIL InAs(ZnCdS) QDs. (a) TEM of InAs(ZnCdS) QDs with inorganic

size -2.9 nm drop-cast from water. (b) GFC of InAs(ZnCdS) poly(PEG, 2)-PIL (red) QDs with a retention time of

4.17 minutes corresponding to a HD of<I0 nm (the peak at 7.5 minutes corresponds to fee poly(PEG)-PIL ligand)

and CdSe(CdS) poly(PEG12)-PIL (black) QDs with a retention time of 4.10 minutes or a HD of<10 nm.

(a) InAs(ZnCdS) Experimental Shell Growth

QD Size (Diameter) SIAs Ratio
InAs(ZnCdS) 2.9 +/- 0.3 nm (TEM) 7.1 +/-0.1 (WDS)

(b) inAs(ZnCdS) WDS Atomic %

in As Cd Zn S
6.4+/-0.2% 5.6 +/- 0.2% 15.0 +/-0.3 % 32.8 +/- 0.7 % 39.8 +/- 0.8 %

Figure 3-7. WDS and TEM of InAs(ZnCdS) QDs. (a) The experimental values (with rms standard deviations) for

the inorganic diameter of InAs(ZnCdS) by TEM and the S/As ratio as determined by wavelength dispersive

spectroscopy (WDS). (b) Average of five WDS measurements (with rms standard deviations) for the elemental

composition of the as synthesized InAs(ZnCdS) QDs.



(Figure 3-6.b). This indicates that the PEGylated shell contributes significantly to the overall

diameter of the QDs. In order to further decrease the size, small molecule ligands such as D-

penicillamine were used to achieve hydrodynamic diameters down to <5 nm. These ultra small

InAs(ZnCdS) QDs were utilized for the imaging a multiple lymph nodes in pig animal models.

3.3 Biological Imaging

3.3.1 Cellular Labeling

In order to illustrate the utility of InAs(ZnCdS) QDs as targeted in vitro biological labels we

ligand exchanged the QDs with the amine functionalized poly(amino-PEGII) 25%-PIL polymer.

The primary amines allow for streptavidin to be coupled to the QDs by a 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) coupling scheme to create a streptavidin-QD

construct. We then transfected HeLa cells with a plasmid for yellow fluorescent protein (YFP),

bound to an extracellular acceptor peptide (AP) tag [ 5 ) and a transmembrane domain (TM) for

cell surface targeting (AP-YFP-TM), as well as with a plasmid for endoplasmic reticulum-

localized biotin ligase (BirA).[14'16, 17 The AP tag is specifically biotinylated by the co-expressed

BirA and displayed on the cell surface as a fusion to YFP and the TM domain. Figure 3-8.a

demonstrates that no non-specific cell interactions occur when biotin blocked streptavidin-QD

conjugates are incubated with HeLa cells. In Figure 3-8.b co-localization of the YFP and NIR

streptavidin-QD signal was observed, indicating targeting of streptavidin-QDs to the biotin

presented at the cell membrane.
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Figure 3-8. Cellular labeling. HeLa cells expressing yellow fluorescent protein (YFP) fused to a biotinylated peptide

presented on the extracellular membrane. (a) Streptavidin-QDs pre-blocked with biotin did not bind to the cell

surface whereas (b) non-blocked streptavidin-QDs are bound to the surface of YFP-expressing cells. (Figure

courtesy J. M. Lee and W. Liu)



3.3.2 Multi-photon Biological Imaging

For in vivo applications, the minimal absorption and auto-fluorescence in tissue in the NIR

region suggest utility for NIR QDs in intra-vital microscopy as high-contrast probes. We

compared the effectiveness of green visible CdSe(CdS) and NIR InAs(ZnCdS) QDs as contrast

agents for fluorescent angiography, in vivo, in a mouse model. We implanted mammary fat pad

window chambers in female SCID mice to facilitate fluorescence microscopy in living mammary

tissue using multi-photon microscopy (MPM).["I We implanted E0771 mammary tumor cells

and allowed the tumors to grow to a diameter of 3 mm prior to imaging. Each QD sample was

ligand exchanged with poly(PEG12)-PIL, a polymer composed of PEG 12 (50 mol %) and

imidazole (50 mol %), to achieve a HD <10 nm and a PEGylated surface to prevent non-specific

binding (Figure 3-5).114] Using MPM, we adjusted the green and NIR QDs to concentrations of

equal PL intensities in vitro and injected 200 gL of this solution intravenously into the mouse via

a bolus retro-orbital injection.

For comparative study, we collected grayscale images of a mammary tumor in vivo thirty

minutes after intravenous injection of the green and NIR QDs (Figure 3-9). The NIR QDs

clearly image deep vasculature up to 200 pm, while the visible emitting QDs produce an image

with poor vascular contrast and low PL intensity. Figure 3-9.a portrays a region of the tumor

with low levels of auto-fluorescence and demonstrates rapidly decreasing vascular intensity with

imaging depth for visible QDs, while the NIR QDs are intense even at 200 gm as the emitted

NIR light is absorbed less by the tissue than visible light. Figure 3-9.b is a region of the tumor

where high levels of auto-fluorescence resulted in poor contrast even at superficial depths for the

visible QDs while the NIR QDs show excellent contrast at all depths.
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3.4 Conclusions

In conclusion, we have prepared water soluble InAs(ZnCdS) QDs with bright and stable

emission in the NIR. The NIR QDs can be functionalized to enable imaging of specific cellular

proteins. In addition, the utility of the NIR region for in vivo biological imaging is clearly

demonstrated by the superior ability of InAs(ZnCdS) QDs to image tumor vasculature. In this

chapter, we have presented a compact, stable NIR QD fluorophore of potential utility in both in

vivo and in vitro biological imaging applications.



3.5 Procedures

Materials: Indium acetate (99.99, Alfa Aesar), octadecene (90%, Sigma), myristic acid (Sigma),

diethyl zinc (Strem), dimethyl cadmium (Strem), bis(trimethylsilyl)sulfide (Fluka),

tris(trimethylsilyl)arsine (Nanomeps, France), tri-n-octylphosphine (97%, Strem), oleyl amine

(Acros Organics), and all other reagents were obtained from Sigma. All solvents were

spectrophotometric grade and purchased from EMD Biosciences. Oleyl amine was degassed

under vacuum at 120 'C for two hours prior to use and stored over molecular sieves. Dimethyl

cadmium and diethyl zinc were passed through a 20 nm filter prior to use. QD synthesis was

performed using standard air free techniques on a nitrogen filled schlenk line. All glove-box

manipulations were performed in an mBraun box (<0. lppm oxygen).

InAs Core Synthesis: Prepared similarly as previously reported by Xie and Peng. 1 0.15 mmol

of indium acetate, 0.45 mmol of myristic acid, and 3 ml of octadecene were added to a four neck

25 ml round bottom flask. The solution was heated to 100 "C under vacuum for one hour. The

reaction mixture was then placed under nitrogen and heated to 150 *C. A solution of 0.125

mmol of tris(trimethylsilyl)arsine and 0.75 ml of tri-n-octylphoshine was prepared (under

minimal lighting) in a nitrogen filled glovebox. This solution was then swiftly injected into the

reaction flask and the temperature was increased to 230 "C for twenty minutes.

InAs(ZnCdS) Synthesis: After the synthesis of the InAs cores, the reaction flask was cooled to

170 *C and 3 ml of dry oleyl amine was injected (addition of over-coating precursors began

immediately after the injection of amines. Caution must be exercised in the addition of primary



amines in III-V QD syntheses as primary amines have been shown to promote In 20 3 formation at

elevated temperatures when combined with Indium carboxylates).E1 91. For shell growth, solution

A was prepared by adding 1 mmol of bis(trimethylsilyl)sulfide to 10 ml of tri-n-octyl phosphine.

Solution B was prepared by adding 0.34 mmol of dimethyl cadmium and 0.66 mmol of diethyl

zinc to 10 ml of tri-n-octyl phosphine. Solution A and B were added simultaneously via syringe

pump to the reaction flask at the rate of 1.5 ml/hour. The reaction was stopped when the peak

photoluminescence reached -800 nm.

CdSe(CdS) Synthesis: CdSe cores were synthesized according to previously reported

procedures[20-22] and were overcoated with a CdS shell. For pure CdS shells, we developed a

successive ion layer adsorption and reaction (SILAR) procedure that is modified from those

reported by Peng et al and Mews et al. 23, 24] Briefly, CdSe cores with a first exciton feature at

491 nm were synthesized by heating a mixture of trioctylphosphine (TOP), trioctylphosphine

oxide (TOPO), CdO (0.9 mmol), and tetradecylphosphonic acid (TDPA, 2.0 mmol) to 340 C

under nitrogen, removing evolved water in vacuo at 160 *C, re-heating to 360 'C under nitrogen,

and rapidly introducing trioctylphosphine selenide (TOPSe, 3.4 mmol) in trioctylphosphine

(TOP), followed by cooling to room temperature. Cores isolated by repeated precipitations from

hexane with acetone were brought to 180 *C in a solvent mixture of oleylamine (3 mL) and

octadecene (6 mL). Aliquots of Cd and S precursor solutions were then introduced alternately

starting with the metal (Cd), waiting 15 min between the start of each addition. The Cd precursor

consisted of 0.6 mmol Cd-oleate and 1.2 mmol decylamine in a solvent mixture of octadecene (3

mL) and TOP (3 mL). The S precursor consisted of 0.6 mmol hexamethyldisilathiane [(TMS) 2S]

in 6 mL TOP. The dose of each over-coating precursor aliquot was calculated to provide a single



monolayer of ions to the QD surface. Addition of a total of 4 aliquots each of Cd and S yielded

QDs with emission at 562 nm and a QY close to unity when diluted in hexane. 1 4]

Synthesis of polymer ligands: The synthesis of the poly(PEGn2)-PIL and poly(aminoPEGi 1)25%-

PIL ligands are reported in detail elsewhere. [ 41

Ligand exchange with poly(PEG12)-PIL: QDs (2 nmol) were precipitated lx using a mixture

of acetone and butanol and brought into 50uL of CHCl3. The QD stock solution was added to a

solution of poly(PEG)-PIL (5 mg) in CHCl3 (30uL), and stirred for 10 min at RT, after which 30

uL of MeOH was added followed by stirring for an additional 40 min. QD samples were

precipitated by the addition of EtOH (30 pL), CHCl3 (30 pL), and excess hexanes. The sample

was centrifuged at 4000 g for 2 min, the supernatant discarded, and the pellet precipitated once

more by the addition of EtOH, CHCl3, and excess hexanes. After centrifugation and removal of

the supernantant, the pellet was dried in vacuo, and PBS (500 pL, pH 7.4) was added, followed

by filtration through a 0.2 pm filter.[1 4]

Covalent conjugation of streptavidin to poly(aminoPEG) 25%. Commercial SA (50 uL, 10

mg/mL) was activated in MES buffer (pH 6.5) using Sulfo-NHS and EDC (20 eq.) for 20 min at

RT. The activated SA was mixed with poly(aminoPEGi 1)25% QDs in sodium bicarbonate buffer

at pH 8.4 at a SA:QD ratio of 5:1 and allowed to react for 1 hr. The samples were dialyzed 2x

though a 50kDa MW cut-off spin concentrator and then used for labeling experiments. [ 4]



Quantum Yields: QY of 800 nm emitting InAs(ZnCdS) QDs was measured relative to

1,1',3,3,3',3'-hexamethylindotrycarbocyanine iodide (HITC, QY = 26%) ( = 680 nm).

Solutions of QDs in PBS and dye in methanol were optically matched at the excitation

wavelength. QYs were calculated from the following expression: QYQD = QYDye X

(Absorbanceye / AbsorbanceQD) x (Peak AreaQD / Peak AreaDye) X (nQD solvent) 2 /(nDye solvent) 2 .

Transmission Electron Microscopy (TEM): TEM measurements were performed on a

JEOL200CX microscope. The InAs(ZnCdS) QDs in water were dropped onto a Ted Pella ultra-

thin carbon type A grid.

Wavelength Dispersive Spectroscopy (WDS): Samples were prepared by precipitating the QDs

from solution three times with a mixture of hexanes, butanol, and acetone. The QDs were drop-

cast onto doped silicon substrates and analyzed on a JEOL 8200 scanning electron microscope.

Gel Filtration Chromatography (GFC): GFC was performed using an AKTAprime Plus

chromatography system from Amersham Biosciences equipped with a self-packed Superdex 200

10/100 column. PBS (pH 7.4) was used as the mobile phase with a flow rate of 1.0 mL/min.

Detection was achieved by measuring the absorption at 280 nm.

Cell Labeling: HeLa cells were grown in DMEM (Mediatech) with 10% Fetal Bovine Serum

(Invitrogen), 50 U/mL penicillin and 50 pg /mL streptomycin (Invitrogen). Transfection

plasmids were a kind gift from A.Ting (MIT, US). The cells were transfected using 1 pl

Lipofectamine 2000 (Invitrogen), 0.2 pg of BirA-ER and 0.2 ptg of AP-YFP-TM per well of an



8-well chamber slide (LabTek). 1 mM biotin was added to the media during plasmid expression.

Cells were imaged under 4*C PBS the day after transfection. 1% Bovine Serum Albumin

(Sigma) was added to block non-specific binding during specific binding studies of ligand-coated

quantum dots. Commercial BSA is known to contain biotin, and the stock BSA solution was

dialyzed with a 3 kDa cutoff dialysis tube three times for 8 h in PBS pH 7.4, in 40C. [14-171

Intravital Microscopy: In vivo imaging was carried out using a custom-built multiphoton

microscope (Olympus) with a Ti:Sapphire excitation laser (Mai-Tai HP, Spectra-Physics) and a

20x 0.95 NA water-immersion lens (Olympus). Mammary fat pad window chambers were

implanted in female SCID mice as described previously E0771 mammary tumors were implanted

in the mammary fat pad in these chambers, and were allowed to grow for two weeks until the

tumors were roughly 3 mm in diameter and well-vascularized. E25] To determine appropriate

concentrations for equal photoluminescence intensity for green visible CdSe(CdS) and NIR

InAs(ZnCdS) QDs in solution, multiphoton imaging of mixed solutions of these QDs in glass

microslides (VitroCom) was conducted. A mixture at these concentrations was then prepared,

and 200uL of this solution was injected intravenously into the mouse via a bolus retro-orbital

injection. An image mosaic was then collected for the entire tumor, at depths from 0-200 um

into the tissue.
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Chapter 4. Control of Carrier Type in InAs Quantum Dots

4.1 Introduction

The doping of quantum dots has been an ongoing challenge in the field of colloidal QDs.

A principle barrier is the so called 'self-purifying' mechanisms that occur during quantum dot

growth.J1 -1 The difficulty of incorporating impurities into small crystals was theoretically

explored by Turnbull as early as 1950. 4 The difficulty of incorporating defects into QDs is due

to the migration of impurities to grain boundaries, which in this case is the nanocrystal surface.

As many quantum dots have diameters on the order of 2-10 nm, the diffusion of impurities along

this length scale creates the 'self-purification' process. In addition, the introduction of a single

impurity into a nanocrystal corresponds to a doping density of ~ 1^9 atoms/cm 3, which

corresponds to a very heavily doped bulk semiconductor.['1

Several synthetic approaches have been used to incorporate dopants in QDs. The

precursors can be introduced during the core growth event in order to incorporate dopant atoms,

and one of the earliest examples of this was Mn:ZnS nanocrystals.E5 1 The dopant can also be

introduced in the process of core-shell growth, and this has been demonstrated for Co:CdS

diluted magnetic nanocrystals.E6 Another approach is the post synthetic addition of fatty acid

salts containing the dopant, the dopant atom is then incorporated into the nanocrystal core crystal

lattice during a subsequent annealing step.17' 81 The presence of dopants in the QD crystal lattice

has been confirmed by x-ray absorption fine structure measurements, magnetic circular

dichroism, and electron paramagnetic resonance measurements. 9-111

The ability to control the carrier type and concentration in bulk semiconductors with high

spatial resolution is necessary for creating functional semiconductor junctions, such as a p-n

junction. The approach to doping bulk semiconductors is the introduction of impurities into the
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crystal lattice that act as either shallow acceptors (p type) or shallow donors (n type), as depicted

in Figure 4-1. However, most QD devices are determined by the intrinsic carrier type and

concentration in the as synthesized QDs. The most prominent junction used in QD photovoltaic

devices is a simple Schottky junction between lead chalcogenide QDs and a metal contact.[2-14 ]

The control of carrier type and density in colloidal QDs remains a longstanding challenge, and a

significant bottleneck in the development of QD devices.11

Charge carriers to have been added to nanocrystal films by several previously reported

methods.l-'1 9 Cyclic voltammetry has been used to directly inject charges into films of

nanocrystals.E8 ' 19] Molecular sources of reactive sodium atoms have been added in the source

of sodium biphenyl to CdSe nanocrystals, however the charge is reversible upon exposure to

air.[1, 20] Nanocrystal films of PbSe have been treated with hydrazine to switch the QDs from p

to n type conductivity, however this carrier control is reversible upon evaporation of hydrazine

from the particle surface.[161 Remote doping of nanocrystal films has been achieved through

binary superlattices of Ag2Te and PbTe. 171 However, none of these methods have produced a

stable (pre-deposition) method to control carrier type and concentration in QDs.

In this Chapter, we seek to incorporate cadmium as an acceptor dopant into InAs

nanocrystals. Through a solution based synthetic method we are able to add Cd, utilizing

cadmium oleate [Cd(OA) 2], to the InAs QD surface. A high temperature annealing step (270 C)

is used to promote diffusion of the cadmium atoms into the crystal lattice. After annealing with

Cd, the QDs were cast onto field effect transistor devices. We have observed the ability to

switch InAs NC films from n-type to p-type conduction through the incorporation of Cd. The

addition of Cd acceptor states may lead to a partially compensated semiconductor where the

number of acceptors is greater than the number of donors, creating p type conductivity.



Figure 4-2. Transmission electron microscopy of 4 nm InAs QDs.



4.2 Cd Doped InAs Quantum Dots

4.2.1 Synthesis of InAs QDs

In Chapter 3, small InAs QDs were synthesized using indium myristate and

tris(trimethylsilyl) arsine in a non-coordinating solvent of octadecene. In order to grow larger

InAs cores, we adapted a synthetic method from work by the Alivisatos group utilizing indium

chloride and tris(trimethylsilyl) arsine [(Me3Si)3As] in tri-n-octylphosphine (TOP). 2 1 The initial

core size is similar between the indium myristate [In(MA)3] and the indium chloride (InCl 3)

syntheses, however the indium chloride synthetic route has been previously shown to

accommodate multiple injections of (Me 3Si)3As.

The synthesis of InAs QDs is dominated by the ripening of InAs clusters and

nanocrystals, as the molecular (Me3Si) 3As precursor quantitatively reacts at room temperature

with InCl 3 to form InAs clusters and trimethylsilyl chloride. At elevated temperatures these InAs

clusters ripen into a moderately narrow size distribution of InAs QDs, as shown by TEM in

Figure 4-2, and a well defined first absorption feature in Figure 4-3. It should be noted that the

In(MA) 3 synthetic route can also be modified to accommodate multiple injections to grow larger

InAs QDs (Figure 4-4). In order to prevent inhomogeneous growth of the QDs, the reaction

must be thermally cycled. The reaction flask was cooled to room temperature for each

subsequent (Me 3Si)3As injections, and this was done drop-wise with rigorous stirring. The

reaction flask was then heated to 300 "C for ripening of the InAs nanocrystals.

Larger InAs cores were targeted to facilitate the transport of charge in nanocrystal films.

In addition, narrower bandgap InAs QDs that absorb light in the infrared region are of potential

utility as photodectors or photovolataics.
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4.2.2 Synthesis of Cd:InAs QDs

The introduction of Cd onto the InAs QD surface is performed as a two step process. The

InAs cores are first purified by precipitation in an inert glovebox with anhydrous solvents. The

InAs cores are then dispersed into a mixture of oleyl amine and octadecene. Cadmium oleate

[Cd(OA) 2] is then introduced to the reaction mixture at a concentration corresponding to one

monolayer of cadmium atoms on the nanocrystal surface. After adding the Cd(OA) 2 an increase

in photoluminescence is observed, likely due to the passivation of surface traps. The QDs are

then thermally annealed by gradually heating to 270 *C. At elevated temperature the Cd atoms

likely begin to diffuse into the InAs lattice, as depicted in Figure 4-5. The synthetic approach of

adding dopant atoms in the form of carboxylates, to the QD surface, has been successfully used

to synthesize Cu:InP and Mn:ZnSe QDs previously.[8, 22]

4.2.3 Optical Properties

Figure 4-6 is the absorption spectra of Cd:InAs QDs as a function of annealing

temperature. At temperatures below 200 'C, the absorption features are identical to those of the

InAs core QDs. As the temperature is raised above 250 "C, the first absorption feature begins to

broaden. A bleach of the first absorption feature has been previously observed in heavily doped

CdSe QDs. 15 ] We do not observe a dramatic bleaching event, however the broadening of the

electronic transitions may correlate with the introduction of acceptor dopants into the crystal

lattice, as is observed in the p type behavior in the following field effect transistors (FETs). The

red shift with addition of Cd at high temperature has been previously observed by the Banin

group, and they have shown this red shift is not due to a ripening of the size distribution.[23]
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4.2.4 Field Effect Transistors

In the bulk, InAs is typically n type due to surface state pinning of the Fermi level above

the conduction band.1 4 In addition, the surface states also lead to a Fermi level pinning at the

metal contact, resulting in the formation of ohmic contacts between InAs many different

electrode metals. Passivation of the surface by sulfur containing molecules has been previously

shown to reduce contact resistance and improve mobility in InAs nanowires. 125  For these

reasons, ethanedithiol was used as a post deposition ligand treatment.[26-28]

While operating in a FET geometry, the as grown InAs QDs exhibit n type conductivity,

as indicated in Figure 4-7.a-b. The switch to p type conductivity is observed in the Cd:InAs QDs

as shown in Figure 4-7.c-d. This behavior is attributed to the generation of excess acceptor states

through the incorporation of Cd. The explanation most consistent with bulk semiconductor

physics is that the Cd is occupying an In lattice position (Cdn) and acting as an acceptor defect,

causing the material to have p-type carriers. An alternate explanation is that the Cd atoms act to

alter the surface states of the InAs QDs, such that the surface states begin to act as acceptors

rather than donors. As QDs have exceedingly large surface areas, the contribution of surface

states in the observed conductivity behavior cannot be overlooked, and the modulation of surface

states may also provide effective routes to controlling carrier type and concentration.

EDS and ICP-AES were used to determine the amount of Cd present in the purified

InAs:Cd QDs. These measurements gave relative concentrations of In:As:Cd of 2.0:2.2:1.0 and

1.9:2.4:1 respectively. From the lattice constant of InAs and the 4 nm diameter of the QDs, we

estimate that there are -600 In and -600 As atoms per NC, and that a monolayer of Cd atoms on

the surface of the NC would add -320 Cd atoms. This gives a relative concentration of

1.9:1.9:1, in good agreement with the observed ratios if an As rich surface is assumed.[231
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4.3 p-n Hetero-junction Quantum Dot Device

As discussed in the introduction, the most prominent junction used in QD photovoltaic

devices is a simple Schottky junction between lead chalcogenide QDs and a metal contact.112-14]

However, a Schottky device geometry is typically not utilized for functional photovoltaic or LED

devices.[29-31 ) Of the most widely utilized QDs in devices, CdSe is typically intrinsic (no free

carriers), and the lead chalcogenides are typically p type.1 '"1 The n type behavior of InAs QDs

opens up the possibility for forming p-n junctions in combination with p type QD materials.

The use of p type Cd:InAs QDs to form a p-n homo-junction would be the ideal device

geometry. However, as can be observed in Figure 4-7.d, the Cd:InAs QD films do not exhibit

substantial conductivity at Vg = 0 V. The low conductivity of the Cd:InAs QD films complicates

the fabrication of p-n homo-junction device.

For the reasons discussed above, we have pursued the fabrication of p-n hetero-junction

device between p type PbS and n type InAs QDs. The electrode contact for PbS QDs was

selected as indium tin oxide (ITO) as this has been previously shown to form ohmic contacts

with PbS QDs. 112 The electrode contact for InAs QDs was selected as aluminum, as InAs

typically forms ohmic contacts with metal electrodes as previously discussed. The p-n junction

lies at the interface of the p type PbS QDs and the n type InAs QDs (Figure 4-8).

The current-voltage (I-V) characteristics in Figure 4-9 indicate diode behavior in the dark

I-V sweeps. When run under illumination, the device exhibits a turn on voltage of 0.33 V and

short circuit current density of 0.0273 mA/cm 2. The current levels are likely limited by the InAs

QD layer, as the conductivity in the InAs QD films is far less than in PbS films.
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4.4 Implications for Quantum Dot Devices

The current limitations in bilayer (analogous to a thin film device) QD photovoltaics can

be discussed in the context of two challenges (1) is the formation of large built in electric field

gradients for the separation of charge and (2) is the subsequent transport of charge across the QD

film. The first challenge will likely not be solved through a continuation of fabricating Schottky

based devices. The cutting edge Schottky devices have utilized impractical metal contacts (such

as calcium) in an effort to create large built in potentials, however even these electrodes produce

depletion widths of less than a few hundred microns.121 In order to create larger depletion

widths for efficient charge separation, more traditional junctions (such as a p-n junction) may

provide a solution. The second challenge in QD device operation is the transport of free carriers,

which is a very significant issue as QD films are currently have exceedingly low carrier

mobilities. Recent developments, such as the use of compact inorganic zintl ions as surface

ligands have produced QD films with increased mobilities.[331 However, the chalcogenide zintl

surface ligands leave behind a thin inorganic film, such as SnS2, and the effects of such an

inorganic impurity on device operation has yet to be explored.

In order to address the current challenges in fabricating QD thin film devices, aggressive

efforts in the synthetic development of new QD materials, new QD surface ligands, and

alternative device geometries must be explored in order to potentially provide device solutions.



4.5 Methods

Chemicals: tri-n-octylphosphine (97%, Strem), tris(trimethylsilyl)arsine (Nanomeps, France),

Indium chloride (99.999%, alfa aesar), oleic acid (alfa aesar), octadecene (90%, Sigma), diethyl

zinc (Strem), cadmium oxide (alfa aesar), oleyl amine (Acros Organics). All manipulations were

performed in a nitrogen filled glovebox or schlenk line using standard air-free procedures.

InAs Core Synthesis: A stock solution of InCl 3 in tri-n-octylphosphine (TOP) was prepared by

adding 3 grams of InCl 3 to 10 ml of TOP and heating to 270 "C for one hour. To 1 ml of the

InCl 3 stock solution was added 100 mg of tris(trimethylsilyl)arsine [(TMS) 3As], the resulting

solution was injected into a rapidly stirring solution of 3.5 ml TOP at 300 *C. The temperature

was lowered to 270 "C for growth of the InAs cores and subsequent injections. Secondary

injections took place at 25 minutes, 50 minutes, and 75 minutes. Each secondary injection

consisted of 100 mg of (TMS)3As in 1 ml of TOP.

Cd:InAs Synthesis: 2 ml of growth solution from the InAs core synthesis was purified by

addition of anhydrous butanol and ethanol and subsequent centrifugation in an inert glove box.

The InAs cores were redispersed in 2 ml of anhydrous hexanes. The solution of InAs cores was

injected into a dry solution of 4 ml octadecene and 1.5 oleyl amine. This solution was degassed

at 60 *C for 30 minutes and then degassed at 100 *C for one hour. A stock solution of 0.04M

cadmium oleate in octadecene was injected into the reaction mixture and the solution was

subsequently heated to 270 *C for one hour.
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Chapter 5. Mechanistic Insights into the Formation of InP Quantum Dots

5.1 Introduction

In this chapter, we present a mechanistic exploration of colloidal III-V InP quantum dot

(QD) syntheses. 1 -3 InP QDs are of increasing technological interest as a replacement for CdSe

QDs in visible light applications. However, the synthetic methodology for InP QDs has not

produced QDs with narrow size distributions relative to CdSe and PbSe QDs.[1 -6] Studies of the

molecular mechanisms involved in the formation of QDs have only recently been reported for II-

VI CdSe and IV-VI PbSe QDs.E7'8  As for InP QDs, the molecular mechanisms underlying QD

formation are essentially unknown. We investigated the reactions involved in InP QD formation

in order to understand the broad size distributions in current InP QD syntheses.

In a simplified view of the formation of monodisperse colloids two general events should

occur; (i) an initial nucleation of colloids followed by (ii) subsequent growth of these nuclei from

molecular precursors.E9' 10 Studies on the growth of CdSe and PbSe QDs have shown these

systems fulfill (i) and (ii).E7'8] For InP QDs, we have found that molecular phosphorus precursors

are completely depleted following InP nucleation, indicating that subsequent QD growth is due

exclusively to ripening from non-molecular InP species. The inability of InP QD syntheses to

satisfy (ii), due to depletion of molecular precursors, may explain the broad size distributions of

InP QDs relative to CdSe or PbSe QDs.

Colloidal InP QDs are synthesized by the injection of precursors into a hot solution of

surfactants, or by mixing precursors at room temperature (RT) followed by heating."1 31 In these

reactions, indium myristate [In(MA) 3] reacts with tris(trimethylsilyl) phosphine [(TMS) 3P] to

produce TMS-myristate (TMS-MA) and InP QDs (Figure 5-1, overall). By operating at
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Figure 5-1. Proposed mechanistic pathway for amine-inhibited InP synthesis.
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reduced temperatures, with amines, it is possible to monitor the evolution of molecular species

during InP formation. We have found that primary amines inhibit the rate of (TMS)3P depletion,

contrary to previous claims.2 ' 11-14]

5.2 Mechanistic Studies

5.2.1 Proposed Mechanism

Figure 5-1 presents the proposed reaction mechanism for an amine-inhibited InP QD

synthesis. Initially, In(MA)3 is coordinated to the Lewis base octylamine (OA). The approach of

(TMS) 3P is depicted in the first step equilibrium of the octylamine coordinated indium species

and the (TMS) 3P coordinated indium species, labeled complex 1. 1 goes on to lose a myristate

ligand and subsequently forms an In-P bond while losing a TMS group, potentially forming the

proposed molecular intermediate labeled complex 2. The molecular In and P species react further

to form [InP] nanocrystals, and there may be other reaction pathways to [InP] not depicted in this

scheme. Experimental evidence supporting this proposed mechanism is presented in the

following sections.

5.2.2 'H NMR Studies for Literature Reports

In order to probe the evolution of molecular species during InP QD synthesis, we utilized

H NMR spectroscopy to investigate species containing trimethylsilyl (TMS) groups. Under the

reported reaction conditions, the TMS group is the most probable ligand for molecular

phosphines. Therefore, the high 1H NMR sensitivity of the TMS groups permits the facile

observation of any P-containing molecules or decomposition products present at relatively

significant concentrations. Reactions were performed in J-young NMR tubes containing

In(MA) 3, (TMS) 3P, octylamine, and diphenylmethane as an internal standard, in dry toluene-d8 .
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Figure 5-2. 'H NMR spectra of (a) (TMS)3P at 20 *C before injection, (b) reaction mixture of In(MA) 3 and (TMS)3P

in toluene-d8 three minutes after mixing at 25 *C, and (c) reaction mixture of (TMS)3P and 6:1 octylamine:In(MA) 3

in 1,2-dichlorobenzene-d4 after heating at 178 *C for one minute. Both (b) and (c) demonstrate quantitative

conversion of (TMS) 3P to TMS-MA shortly after the reactions are initiated.



In the absence of octylamine, a 1H NMR spectrum taken within three minutes of mixing

In(MA)3 and (TMS) 3P at 25 'C showed quantitative conversion of (TMS) 3P to TMS-MA (Figure

5-2.a-b). The rapid decomposition of (TMS) 3P is likely due to the direct approach of (TMS) 3P to

the In center, circumventing the octylamine-indium equilibrium en route to the production of a

stable Si-O bond (TMS-MA). The fast conversion of (TMS) 3P to TMS-MA at 25 'C occurs on a

time-scale that is not practical for monodisperse QD synthesis or kinetic analysis by NMR.[7 -10 3

For literature procedures at elevated temperatures containing octylamine, we find no

molecular precursors remain shortly after reaction initiation at high temperature. A sealed NMR

tube with a composition similar to those previously reported was heated at the published reaction

temperature (178 'C)[2I and showed no (TMS)3P after 1 minute (Figure 5-2.c). Our findings, with

and without octylamine, demonstrate that previously reported reaction conditions for InP QDs

are based on ripening of non-molecular InP species, similar to those used for InAs, 15 ] and do not

fulfill the requirements for the formation of monodisperse colloids.

5.2.3 'H NMR Molecular Precursor Evolution

When octylamine containing InP reaction mixtures were run at reduced temperatures

(<75 'C), the reaction proceeded sufficiently slow to allow kinetic analysis. From the time-

resolved 'H NMR spectra in Figure 5-3.a, four species account for 100% of all TMS groups.

(TMS) 3P and TMS-MA together account for over 90% of all TMS groups; the remaining TMS

groups are either associated with the intermediate 2 (Figure 5-3.a, inset) or the silated octylamine

(TMS-OA) that occurs with < 5% yield. The relative rates of (TMS) 3P depletion and of TMS-

MA growth are consistent with the near quantitative conversion of (TMS) 3P to TMS-MA (Figure

5-3.b), indicating this is the dominant reaction pathway to the formation of InP QDs.
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Figure 5-3. (a) Time-resolved 'H NMR spectra at 40 'C, showing evolution of (TMS)3P and TMS-myristate (TMS-

MA) resonances during standard conditions for InP QD synthesis with amines. Inset: Detail of 15-minute 'H NMR

spectrum. We propose the doublet at 0.26 ppm corresponds to 2. (b) Concentration profiles of (TMS)3P and TMS-

MA protons, determined with one minute resolution via the integration of spectra represented in (a). (c)

Concentration profiles of (TMS)3P for InP QD syntheses with varying amine concentrations at 40 'C, normalized at

initial time. The reaction rate decreases with increasing amine concentration. The reactions without amines reached

completion too rapidly to be resolved by 'H NMR.
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We propose that the doublet at 6 = 0.26 ppm in the 'H NMR corresponds to 2 as noted

above. The doublet is split by 4.4 Hz (consistent with 3 1P-1H 3-bond coupling),'16] which

suggests a P-containing species that retains at least one TMS group. The 1H NMR resonance of

2 has a line-width comparable to that of molecular (TMS)3P and TMS-MA, indicating that the

species has a distinct molecular structure. In addition, the time evolution of 2 shows the

characteristic growth and depletion of an intermediate (Figure 5-5).

Upon increasing the octylamine concentration from 6:1 to 18:1 the rate of (TMS)3P

depletion continued to decrease (Figure 5-3.c); thus amines inhibit, rather than activate,9' "-14]

InP synthesis. As a change in amine ratio influences the rate even at high concentrations, and as

the rates do not have a clear power dependence on octylamine concentration in either this or

prior studies, 1 4] the amine likely does not have a well-defined stoichiometry during the rate-

determining step. At octylamine:In ratios greater than 18:1 we observed a diminishing change in

the rate with added amine. The high octylamine content reactions also yielded an increase in the

TMS-OA product, complicating kinetic analysis.

No evidence was found for the formation of significant quantities of other molecular

phosphorus species, such as P-H containing species. Only two resonances were detected by 31P

NMR, and these resonances correspond to (TMS) 3P and 2 (Figure 5-4). When monitoring the

depletion of (TMS)3P at various octylamine concentrations, we observe no doublets in the 'H

NMR that would indicate the formation of P-H species, indicating the formation of P-H species

is not a significant pathway in the decomposition of (TMS) 3P. The formation of P-H species, and

accelerated decomposition of [InP] clusters was previously observed with the addition of

methanol and this finding has been assumed to also occur with the addition of primary amines in

the literature; however, we do not observe this to be a significant pathway. [2, 11-14]
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Figure 5-4. 'H-decoupled 31P spectrum for the InP reaction mixture after 30 min at 25 *C. Only resonances for

(TMS)3P (241.3 ppm) and 2 (256.8 ppm) are visible. Chemical shifts are referenced to 85% H3PO4 (0 ppm).
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Figure 5-5. 'H NMR concentration of complex 2 during synthesis at 40 'C. The rise and fall of Complex 2 over time

is consistent with the assignment of complex 2 as an intermediate in the formation of InP QDs.
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5.2.4 Eyring Analysis

In order to probe the reaction mechanisms of amine inhibition we measured the initial

reaction rate at various temperatures, and these data are summarized on an Eyring plot (Figure 5-

6). The large negative activation entropy indicates that the reaction proceeds via a highly

ordered transition state. The activation enthalpy (AHi = 51.9 ± 1.3 kJ mol-) is about 10 kJ mol-1

less than that measured by Liu et al. for CdSe nanocrystal formation,E28 which is consistent with

the enhanced rate of precursor depletion in InP QD synthesis.

The amine inhibition of InP synthesis likely results from the solvation of In species

during the steps that lead to the formation of TMS-MA. With an increase in the concentration of

octylamine, the probability of forming complex 1 is decreased (as can be seen in the equilibrium

step in Figure 5-1) and as a result the rate of (TMS) 3P depletion decreases.

The large negative ASI = -126 ± 4 J mol-' K-1 and the large decrease in rate upon addition

of amines is also consistent with solvation changes during nucleophilic substitution.J17 The large

negative entropy of activation indicates a highly ordered transition state, likely involving the

arrangement of two or more species. We have proposed a potential transition state in Figure 5-1.

It should be noted that a similar transition state is proposed in the synthesis of CdSe QDs, as a

similarly large negative entropy of activation was reported.[8 ] In addition to octylamine

decreasing the probability of forming 1, the presence of octylamine may also a result an increase

in the activation energy of the transition state, by stabilizing the enthalpy of precursors

(increasing AHi), in addition, primary amines may also influence the activation entropy by

hindering the formation of the highly ordered transition state, this would result in the observed

decrease in the rate of (TMS)3P depletion with increasing amine concentrations.

104



65 55 45 35 25 TIdeg C)1-9-

-10-

-11 -

-12-_

0.0029 0.0030 0.0031 0.0032 0.0033 0.0034

1/T (K1)

Figure 5-6. Eyring plot for amine-based synthesis of colloidal InP QDs, with AHI= 51.9 ± 1.3 kJ mol-1 and ASI= -

126 ± 4 J mol-' K-'. Each point was taken in triplicate.
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5.2.5 Kinetic Analysis

All kinetic data was obtained via integrals of the 'H NMR spectra of the samples

described above. Each spectrum in the series retained the same integration interval throughout

for all times, and all integrals were referenced to an internal diphenylmethane standard.

The only identifiable TMS-containing species are (TMS) 3P, TMS-MA, complex 2, and

TMS-OA. The sum of these four species is constant throughout (Figure 5-7), indicating that our

analysis accounts for all TMS groups introduced during the reaction.

We used the method of initial rates, using early time reaction data at < 15% conversion to

fit a linear regression (Figure 5-8). The slope of the fit line gave the rate of the reaction. This

rate was then used to determine an experimental rate constant.

5.3 Implications for III-V synthetic developments

In conclusion, we find that currently-reported InP QD syntheses are based on non-

molecular ripening processes. We have found that amines inhibit precursor decomposition. It is

apparent that the challenges in the synthesis narrow size distributions of III-V QDs result from

the depletion of molecular precursors following QD nucleation in current III-V QD syntheses. In

order to produce InP or InAs QDs with narrow size distributions, less reactive precursors must be

explored. The introduction of pnictide precursors that gradually decompose at elevated

temperatures (150-300 'C) to controllably generate monomers would fulfill the criteria for a

monodisperse QD synthesis (as defined in this chapter), and could potentially form InP and InAs

QDs with size distributions that rival their CdSe and PbSe counterparts.
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Figure 5-7. 'H NMR integration of all identifiable TMS-containing species throughout the reaction. The overall

concentration of TMS protons does not change during the course of the reaction.
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Figure 5-8. Evolution of TMS-MA concentration vs. time measured for <15% conversion as described above. This

is an example of a 40 'C data set used for the Eyring analysis. At early times, the slope is the rate of reaction.
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5.4 Procedures

Reagents: Octylamine (Fluka, 99%, dried over calcium hydride), Toluene d-8 (Cambridge

Isotope Labs), 1,2-dichloromethane (Cambridge Isotope Labs), and diphenylmethane (Sigma,

>99%, degassed) were placed into a nitrogen filled glovebox and stored over 4 A molecular

sieves prior to use. Myristic acid (Sigma, >99%), 1-octadecene (Tech grade, Sigma), hexanes

(anhydrous, Acros) and Indium acetate (99.99%, Alfa Aesar) were used to synthesize Indium(III)

myristate [In(MA)3]. Trimethylsilyl chloride (Fluka, 99%, re-distilled) was used to synthesize

TMS-OA and TMS-MA NMR reference compounds. Tris(trimethylsilyl) phosphine [(TMS) 3P,

caution pyrophoric] was obtained from Strem and used as received. J-young NMR tubes

(Chemglass, 600 mhz) were dried at 120 'C prior to use. All other glassware was dried at 180 'C.

All samples were prepared under minimal lighting in a nitrogen filled glovebox (mBraun, <0.1

ppm oxygen).

Synthesis of In(MA) 3: The synthesis of In(MA) 3 was performed as previously reported. 18 J All

solutions containing In(MA) 3 were additionally dried for two days over 4 A molecular sieves to

remove residual water.

NMR Solutions: Example of a typical solution preparation for OA:In (6 :1): Solution (A) 0.24

mmol of In(MA) 3, 1.44 mmol of OA, and 0.36 mmol of diphenylmethane were mixed to a

volume of 6 ml in toluene-d8 . In(MA)3 dissolves readily in the presence of amines. Without

amines, the solution was heated to 60 'C to produce a homogeneous solution. The solutions were

stored over 4 A molecular sieves for two days prior to use. Solution (B) 0.12 mmol of (TMS) 3P

and 6 ml toluene-d8 were combined and stored in the dark at -35 'C prior to use.
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NMR Reaction Tubes: In a typical reaction 0.35 ml of solution (A) and 0.35 ml of solution (B)

were injected into a J-young NMR tube in the glovebox. The NMR tube was then immediately

transferred for NMR measurements. All samples were handled under minimal lighting to prevent

decomposition of (TMS) 3P.

NMR Spectroscopy: All spectra were taken on 300 MHz or 500 MHz Varian INOVA NMR

spectrometers using either a variable temperature broadband switchable probe or a variable

temperature indirect detection probe.

Synthesis of TMS-MA: 10 mg of trimethylsilyl chloride was added to a stirred solution of 60

mg of myristic acid and 50 mg of tri-n-octylphosphine in 1 ml of toluene-d8 and heated to 60 *C.

'H NMR (500 mhz, toluene-d8), 6 (ppm) 0.303 (s, 9H).

Synthesis of TMS-OA: 10 mg of trimethylsilyl chloride was added to a stirred solution of 75 mg

of octylamine (OA) in 1 ml of toluene-d8 . The solution was filtered to remove the OA-HCl salt

prior to 1H NMR analysis. 1H NMR (500 mhz, toluene-d8), 6 (ppm) 0.132 (s, 9H).
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Chapter 6. Electrically Controlling and Monitoring InP Nanowire Growth

6.1 Introduction

Indium phosphide nanowires are of significant technological interest for applications

ranging from single junction solar cells to high speed electronics. However, the efficient

placement and integration of nanowires into devices remains a significant challenge. Here we

extend the technique of electrically controlled solution-liquid-solid (EC-SLS) catalytic nanowire

growth to indium phosphide. We are able to control the amount of nanowire growth by varying

the bias voltage between the electrodes in solution, and to monitor nanowire bridging across the

electrodes, by recording the conductivity as a function of growth time. The as-grown indium

phosphide nanowires exhibit n-type conductivity as was determined by the in-situ integration of

nanowires into a field effect transistor geometry. The ability to monitor nanowire growth and

electrically control nanowire placement are valuable tools for fabricating nanowire devices. The

EC-SLS process has the potential to aid in the fabrication of nanowire devices that could find

applications in nanoelectronics, and as electrodes in solar cells and batteries.

Indium phosphide nanowires have been grown from catalyst particles using laser

ablationll, metal organic chemical vapor deposition (MOCVD)[2A1, and the solution-liquid-solid

(SLS) process.EP-"' In the SLS process['], precursors in solution are delivered to heated catalyst

particles, which serve as seeds for nanowire growth (Figure 6-1). Solution phase synthesis is

potentially more cost-effective than vapor phase techniques, because no expensive vacuum

equipment is needed. In addition, the lower growth temperatures, typically below 300 oC,[12]

make solution phase synthesis attractive for semiconductor processes not compatible with higher

temperatures.
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Figure 6-1. Solution-liquid-solid synthesis of InP nanowires.
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Figure 6-2. Experimental Setup. (a) Schematic of the setup used to grow InP nanowires off Bi catalyst particles on

Pt electrodes in solution. The temperature of the solution was monitored with a thermocouple inserted through a

fourth neck (not shown). (b) Optical image of the sample holder, scale bar: 5mm. Three interdigitated electrodes

labeled 1", 2"', and 3' can be biased in parallel, allowing for three separate devices to be fabricated simultaneously.
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A recent report has demonstrated that CdSe nanowires can be controllably grown

between two electrodes via the electrically controlled solution-liquid-solid (EC-SLS) method by

varying the electrochemical potential of the catalyst seed particles.[ 3 The EC-SLS method

enables the simultaneous synthesis and integration of nanowires into device geometries. In this

article, we extend the EC-SLS technique to the growth of InP nanowires. An important new

aspect is our ability to observe nanowire bridging, in situ, by measuring the conductivity across

the biased electrodes during nanowire growth. In addition, we demonstrate the ability to directly

integrate InP nanowires into devices by growing InP nanowires in a field effect transistor

geometry. Structures fabricated using the EC-SLS scheme could be applied to nanoelectronicsD1 '

14, 15], light emitting diodes,ti6 -18] solar cells,[19-24] and batteries.25]

6.2 InP Nanowires

6.2.1 Experimental Setup

A schematic of the experimental setup used to grow InP nanowires using the EC-SLS

method is shown in Figure 6-2.a. In order to make the substrate and mount resistant to the

reaction conditions, only chemically inert and heat resistant materials such as glass, stainless

steel, and teflon were used. An optical image of a sample can be seen in Figure 6-2.b. The

samples consisted of fused silica substrates with three pairs of interdigitated electrodes composed

of a 5 nm titanium adhesion layer, a 75 num platinum layer and a 20 nm bismuth layer. The

bismuth layer de-wets and forms islands with diameters of roughly 50-100 nm, that serve as

catalyst particles [13, 261. The channel length of each electrode pair was -55mm and the gap width

was ~0pIm (Figure 6-3.a). The sample was immersed in a tri-n-octylphoshine (TOP) solvent at a

temperature of 285 *C . Next, a bias voltage was applied and a precursor solution
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a

Figure 6-3. InP nanowire growth as a function of bias voltage. (a) Optical image of a pair of interdigitated electrodes

without nanowires. (b) same geometry as in a) after InP nanowire growth at a bias of 0.5V, and (c) after growth at a

bias of 2.OV. The scale bars in a) to (c) are 0.3mm. (d) highlighted region in (b) at higher magnification, scale bar:

10 m. (e) Schematic of the cross-section of two adjacent electrode edges (to scale), including a simulation of the

absolute magnitude of the electric field at a bias of 2V, scale bar: 2pm.
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containing indium(III)-iodide and tris(diethylamino) phosphine in oleyl amine was injected drop-

wise over the course of 3 minutes. After precursor injection, the samples were left in solution

under constant temperature and bias voltage for another 2 minutes, before being withdrawn from

the growth-solution.

Optical images of the interdigitated electrode geometry before and after growth at 0.5V

and 2V can be seen in Figure 6-3.a-c respectively. The nanowires are almost completely

confined to the gaps between the electrodes, indicating that growth emanates from the electrode

edges and is guided across the gap by the electric field. The correlation between electric field

strength and, hence, surface charge density on the electrode and the focusing of nanowire growth

along the electrode edges is supported by the simulation of the electric field strength in Figure 6-

3.e.[271 In particular, the well known effect of electric field bunching at the edges of thin metal

sheets is easily seen.[281 As in the case of CdSe,E13J InP nanowire growth is promoted on the low

potential electrode.

6.2.2 Characterization of InP Nanowires

Characterization of the InP nanowires was carried out by scanning electron microscopy

(SEM), high resolution transmission electron microscopy (HRTEM) and scanning transmission

electron microscopy (STEM). An SEM image of a sample grown at a bias of 2V is shown in

Figure 6-4.a. Nanowire growth is almost exclusively limited to a narrow region within 200 nm of

the electrode edge, and bismuth islands showing no nanowire growth are clearly visible farther

away from the electrode edge. The focusing of nanowire growth along the electrode edges

correlates well with the magnitude of the electric field in the simulation (Figure 6-3.e). As can be

seen in the HRTEM image in Figure 6-4.b, the nanowires tend to be polycrystalline, as could be
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Figure 6-4. InP nanowire characterization. (a) Scanning electron microscope image of InP nanowires grown of the

edge of a platinum electrode with bismuth beads on the surface, scale bar: 1 pm. (b) High resolution transmission

electron microscope image of an InP nanowire, scale bar: 5 rm. (c) Scanning transmission electron microscope

image of an InP nanowire used for elemental analysis, scale bar: 100 rm. d) Relative atomic weight of indium and

phosphorous as a function of position along the line highlighted in (c), obtained from energy dispersive x-ray

spectroscopy.
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expected from the frequent changes in wire-shape and direction seen in Figure 6-4.a. This

behavior could be related to the zinc-blende crystal structure of InP and the twinning behavior

observed in MOCVD grown InP nanowires by Woo et al.[291 In contrast, CdSe nanowires grown

by the EC-SLS technique show a high degree of crystallinity owing to their preferred growth

direction along the (001) axis of the wurtzite crystal lattice.[1 31 We attribute the approximately

5nm thick amorphous outer layer to the formation of a native oxide layer. Figure 6-4.c highlights

the line-scan along the wire used for elemental analysis by STEM shown in Figure 6-4.d. The

higher average atomic percentage of indium, 56%, relative to phosphorous, 44%, can be

attributed to the indium rich native oxide layer typically observed on InP [0].

6.2.3 Monitoring of InP Nanowire Growth

The current across three electrode pairs, connected in parallel, during the growth of InP

nanowires at a constant bias of IV is plotted in Figure 6-5. The pure TOP solution is relatively

insulating with a conductivity below 3pS. Drop-wise injection of the indium and phosphorus

precursors begins at 100s and the growth-solution maintains its low initial conductivity until the

current begins to rapidly increase at -200s. The rapid increase in current slows down at -260s

and precursor injection is completed at 280s. The current then shows a slow linear increase over

the period from 280s to 400s, while the sample remains in solution under constant bias. When

the sample is withdrawn from the solution around 400s the current shows a sharp decrease.

We interpret the rapid increase in current at -200s as the onset of InP nanowires bridging

the electrode gap. If the increase in current were solely due to an increase in conductivity of the

growth solution as the indium and phosphorous precursors are added, the current increase could

be expected to set in immediately after precursor injection begins around 1 00s. We also
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Figure 6-5. Current sensing across the electrode gap during the InP nanowire growth process as a function of time

and at a constant bias of IV.
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measured the conductivity of the indium and phosphorous precursors by only injecting one of the

two precursors under otherwise identical synthesis conditions. In both cases the conductivity

remained below 3pS during the entire run, more than a factor of 1,000 below the peak

conductivity value in Figure 6-5. This indicates that the observed increase in current at -200s

results from InP nanowires bridging the electrode gap. We interpret the nearly 100s delay

between the beginning of precursor injection and the rapid increase in current as the time it takes

the InP nanowires to grow across the 10 pm wide electrode gap. The slow increase in current

after precursor injection ends at 280s could be due to additional bridging events resulting from

wire growth from residual precursors in solution. However, chemical effects related to doping or

better contact formation at the nanowire/electrode interface could also be responsible for the

increase in current. The sharp decrease in current when the sample is withdrawn from the growth

solution at 400s can be attributed to a decrease in the number of thermally activated charge

carriers as the sample cools. This suggests that monitoring the conductivity during the EC-SLS

growth process may serve as a useful tool for assessing in situ device formation.

The conductivity at 5V of a series of devices grown at different bias voltages is plotted in

Figure 6-6. The measurements were taken in a probe station under ambient conditions after

removing the samples from solution and rinsing them with hexanes. When both electrodes were

grounded during growth, only a small amount of wire growth resulting in a relatively low

conductivity was observed. As in the case of CdSe, InP wire growth is inhibited at zero bias

when the bismuth catalyst particles are in contact with the platinum electrodes. This is probably

due to electron depletion of the bismuth particles by the platinum substrate resulting from the

difference in work function between the two metals. 31 Applying a voltage reverses this effect on
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Figure 6-6. Conductivity as a function of bias voltage during growth. The conductivity, measured at a bias of 5V, for

three devices fabricated in parallel under the same conditions is plotted as a function of growth voltage. The inset

shows the I/V-curves of three devices grown in parallel at a bias of 2V.
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the low potential electrode by inducing a negative surface charge and hence compensating for

electron depletion by the platinum substrate. However, chemical effects on the platinum surface

or at the solution-catalyst interface could also play an important role. The small amount of InP

nanowire growth, even at zero bias, could be related to the titanium adhesion layer that is

exposed at the electrode edges. When a growth bias of 0.5V is applied, the average device

conductivity increases by over an order of magnitude to about 2- 10- S and a similar conductivity

is observed for devices grown at lV and 2V. The saturation in conductivity as a function of

growth voltages is surprising since there is a clear increase in wire material as a function of

growth voltage as can be seen in Figure 6-3.a-c. An explanation could be that the number of

active catalyst seed particles at the electrode edges is similar for different growth voltages. The

difference in overall wire material would then arise from an increase in wire length as a function

of growth voltage, with a similar number of bridging nanowires largely independent of growth

voltage. However, processes at the nanowire-electrode contacts and more complex

electrochemical effects may also be involved. The inset in Figure 6-6 shows the IV-curves of

three devices grown in parallel at 2V. The conductivity suppression around zero bias is typical

for Schottky barrier formation in metal-semiconductor-metal contacts.

6.2.4 Field Effect Transistors

In order to determine the majority charge carrier type, we grew InP nanowire mats in a

field effect transistor using the EC-SLS technique (Figure 6-7.a). Nanowire growth was carried

out with one electrode grounded and the counter electrode and doped silicon back gate held at

+0.5V in order to promote nanowire growth along the substrate surface. An SEM image of InP

nanowires grown in transistor geometry is shown in Figure 6-7.b. Current traces as a function of
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Figure 6-7. InP nanowire mats grown in a field effect transistor geometry. (a) Optical image of the InP nanowire

field effect transistor device. (b) Scanning electron microscope image of a region of the device shown in (a). (c-d)

Current as a function of back gate voltage at a constant electrode bias of IV for two devices.
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back gate voltage, at a constant bias of lV, are shown for two devices in Figure 6-7.c-d. The

observed hysteretic behavior may be related to trapping of charge carriers by the native oxide

layer. The gating characteristics of both devices indicate that the majority charge carriers in our

EC-SLS grown InP nanowire mats are n-type.

6.3 Conclusions

In conclusion, we have demonstrated the electrically controlled solution-liquid-solid (EC-

SLS) process for InP nanowires. A particularly attractive feature is our ability to monitor the

bridging of nanowires across the electrode gap during the growth process, by simultaneously

measuring the conductivity. Nanowire growth by the EC-SLS process has been shown to be a

versatile and general process and could facilitate the direct integration of a wide variety of

solution processed nanowires32 ] and oriented nanowire heterostructures[261 into functional device

geometries.
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6.4 Procedures

The experimental setup is shown in Figure 6-2, additional details can be found in Ref. 13.

Sample preparation: Interdigitated electrodes (5 nm titanium adhesion layer, 75 nm platinum

layer, 20 nm bismuth catalyst layer, thermally evaporated) with a channel length of about 55 mm

and a width of about 10pm were defined on fused silica substrates (12.5mmx12.5mmx0.5mm,

MTI Corp.) by optical lithography. Samples used for the field effect transistor geometry

consisted of interdigitated electrodes with a channel width of 50 pm on degenerately doped

silicon substrates with a 300 nm layer of insulating thermal oxide. As before, the electrodes

consisted of a 5 nm Ti layer, a 75 nm Pt layer and a 20 nm Bi layer.

Synthesis: A four neck reaction flask was filled with 45ml of tri-n-octylphosphine (Strem, 97%)

under air-free conditions and heated to 285 *C. A stock solution of 0.25M InI3 (Alfa Aesar,

99.999%) in oleyl amine (Acros Organics, previously degassed under vacuum at 120 *C for 2h)

was prepared under nitrogen atmosphere. 2ml of the 0.25M InI3 stock solution were then added

to 500mg of tris(diethylamino)phosphine (Alfa Aesar). The resulting precursor solution was

injected dropwise over the course of three minutes into the reaction flask containing the biased

electrodes immersed in TOP at 285 *C.
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