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Abstract

Several problems connected by the theme of thermal forcing are addressed herein. The
main topic is the stratification and flow field resulting from imposing a specified heat
flux on a fluid that is otherwise confined to a rigid insulating basin. In addition to
the traditional eddy viscosity and diffusivity, turbulent processes are also included by a
convective overturning adjustment at locations where the local density field is unstable.

Two classes of problems are treated. The first is the large scale meridional pattern
of a fluid in an annulus. The detailed treatment is carried out in two steps. In the
beginning (chapter 2) it is assumed that the fluid is very diffusive, hence, to first
approximation no flow field is present. It is found that the convective overturning
adjustment changes the character of the stratification in all the regions that are cooled
from the top, resulting in a temperature field that is nearly depth independent in
the northernmost latitudes. The response to a seasonal cycle in the forcing, and the
differences between averaging the results from the end of each season compared to
driving the fluid by a mean forcing are analyzed. In particular, the resulting sea surface
temperature is warmer in the former procedure. This observation is important in
models where the heat flux is sensitive to the gradient of air to sea surface temperatures.

The analysis of the problem continues in chapter 5 where the contribution of
the flow field is included in the same configuration. The dimensionless parameter
controlling the circulation is now the Rayleigh number, which is a measure of the
relative importance of gravitational and viscous forces. The effects of the convective
overturning adjustment is investigated at different Rayleigh numbers. It is shown that
not only is the stratification now always stable, but also that the vigorous vertical
mixing reduces the effective Rayleigh number; thereby the flow field is more moderate,
the thermocline deepens, and the horizontal surface temperature gradients are weaker.
The interior of the fluid is colder compared to cases without convective overturning,
and, because the amount of heat in the system is assumed to be fixed, the surface
temperature is warmer.

The fluid is not only forced by a mean heat flux, or a seasonally varying one, but
its behavior under permanent winter and summer conditions is also investigated. A
steady state for the experiments where the net heat flux does not vanish is defined as
that state where the flow field and temperature structure are not changing with time
except for an almost uniform temperature decrease or increase everywhere. It is found



that when winter conditions prevail the circulation is very strong, while it is rather
weak for continuous summer forcing. In contrast to those results, if a yearly cycle is
imposed, the circulation tends to reach a minimum in the winter time and a maximum
in the summer. This suggests that, depending on the Rayleigh number, there is a phase
leg of several months between the response of the ocean and the imposed forcing.

Differences between the two averaging procedures mentioned before are also ob-
served when the flow field is present, especially for large Rayleigh numbers. The circu-
lation is found to be weaker and the sea surface temperature colder in the mean of the
seasonal realizations compared to the steady state derived by the mean forcing.

As an extension to the numerical results, an analytic model is presented in chapter
4 for a similar annular configuration. The assumed dynamics is a bit different, with
a mixed layer on top of a potential vorticity conserving interior. It is demonstrated
that the addition of the thermal wind balance to the conservation of potential vorticity
in the axially symmetric problem leads to the result that typical fluid trajectories in
the interior are straight lines pointing downward going north to south. The passage of
information in the system is surprisingly in the opposite sense to the clockwise direction
of the flow.

A model for water mass formation by buoyancy loss in the absence of a flow
field is introduced in chapter 3. The idea behind it is to use the turbulent mixing
parameterization to generate chimney-like structures in open water, followed by along-
isopycnal advection and diffusion. This model can be applied to many observations of
mode water. In particular, in this work it is related to the chimneys observed by
the MEDOC Group (1970), and the Levantine Intermediate Water in the Eastern
Mediterranean Basin. An analytic prediction of the depth of the water mass is derived
and depends on the forcing and initial stratification. It suggests that the depth of
shallow mode water like the 18*C water or the Levantine Intermediate Water would not
be very sensitive to reasonable changes in atmospheric forcing. Similar conclusions were
also reached by Warren (1972) by assuming that the temperature in the thermocline
decreases linearly with depth, and by approximating the energy balance in a water
column by a Newtonian cooling law.
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Chapter 1

Preliminaries

Literature survey

It has been known for a long time that as one goes deeper and deeper in the ocean, the

temperature decreases. Records of this depth dependent temperature profile can be

traced at least to 1749 to measurements made off the north west coast of Africa by the

captain of the Earl of Halifax, Henry Ellis (1751). In this letter to the Reverend Dr.

Hale-who devised the special bucket used for bringing up cold water from the abyss-

the slave-trader captain describes, among other things, some of his thoughts and results

relating to his deep water temperature measurements. The deepest observation made

on that cruise was 5346 feet-which was probably the length of the cable available, and

not the true depth. The captain noted that the temperature decreased monotonically

to a depth of 3600 feet, and then kept constant up to the maximum depth. The captain

being the splendid fellow he was, used the cold water to chill wine, and to combat the

hot weather by cold showers.

This phenomena is not altogether self-evident, since if one thinks about a fluid

column in equatorial regions, where the air temperature never goes below, say 20*C it is

only a question of time until all the fluid will reach a temperature of at least 20*C, even

at great depth. Yet, measurements indicate that the waters below are much colder,

more like 4*C. The most common explanation is that these waters come from a colder

region, hypothesizing that they were in contact with the atmosphere in a region where



the air temperature was at least 4*C; there they sank and contributed to the deep

circulation. When measuring the temperature profile in any water column (or for that

matter, most other tracers), we actually measure the temperature of fluid particles

that came from other places, while only partially succeeding in keeping some of their

original properties. Using these properties, we can attempt to trace the particles back

to their origin.

Schematically, this circulation pattern is maintained as a balance between down-

ward heat flux (the sea surface is usually the warmest) and upwelling. But the net

upwelling should be zero, so presumably there is a narrow region of downward flow

where deep water are formed. Observations are not available to directly support the

uniform upwelling theory, and indeed Roemmich and Wunsch (1984) showed that over

two decades the deep North Atlantic has warmed. However, as the authors pointed out

it is hard to tell whether these changes represent long term climatic trends or random

fluctuations. Overall, one can probably assume that the ocean is in some equilibrium

where, to a good approximation, the excess of heat at equatorial regions is lost to the

atmosphere at the poles.

The description above is usually referred to as the thermohaline circulation and is

distinguished by a narrow northern branch of sinking cold water, and weak upwelling

in the rest of the domain. The word 'asymmetric' appearing in this work is used to

stress the difference between the two branches of the flow field, and when used with

conjunction with the temperature field, indicates that the temperature structure has a

boundary layer character with a thermocline on top of a more isothermal interior.

With the exception of the upper surface, [and the geothermal vents which are not

considered as a significant contribution to the global heat budget, but can affect the

abyssal flow, Joyce and Speer (1987)] all oceanic boundaries are rigid and insulating.

It is through the interaction along the upper interface between the ocean and the

atmosphere that the two systems interact, and the ocean is forced. Much of the study in



the past relied heavily on the mechanical connection between the two systems, where the

most notable phenomenon is the stress imparted by the wind to the fluid. After choosing

what is believed to be an appropriate small scale mixing and stress parameterization,

one can generate Ekman layers, and drive the large scale oceanic circulation.

It is the purpose of this work to touch upon some points relevant to the problem

of the thermal forcing, where the mechanical mixing will be included in some of the

problems and ignored in others. The circulation induced by the thermal forcing is not

only of interest to oceanographers, but to many other disciplines where one forces the

system by flux or impressed temperature boundary conditions. In particular, similar

problems occur in the atmosphere and the hot magma in the earth's core where the

horizontal scale of the forcing is also large as in the ocean.

In the above pictorial description there is a strong emphasis on air-sea interac-

tion as the main mechanism to heat the ocean. This is by and large supported by

experimental evidence, and is a consequence of the insulating property of all the other

boundaries. Other surface fluxes like evaporation and precipitation are ignored at this

stage. A simple procedure for representing the heat loss or gain is to specify the heat

flux as a function of position and time. A step further in making the problem more

realistic is to allow some degree of feedback by parameterizing the flux as proportional

to the difference in temperature between the two systems.

In the usual frame of reference, where x, y, and z are the east, north, and upward

directions, we will be looking at a problem that is independent of x (by requiring sym-

metry in that direction) but that still has a meridional velocity field. A configuration

like that is referred to in the literature as an axially symmetric system and benefits

from a simplified structure and mathematical description compared to the full problem.

Because it is common knowledge that meridional boundaries play an important role in

the oceanic circulation-for example, by supporting the western boundary layer-one

could think that our circulation pattern will have no analogue in the real ocean. But



this is not the case for the vertical circulation described in this work. The meridional

boundaries have less of an effect on the vertical gyre than on the wind driven gyre. We

will not be able to duplicate features like deep western boundary currents, but as our

results and those summarized here show, the meridional circulation is well defined. The

existence of some mean meridional cell is also supported by analysis of observations.

Wunsch and Grant (1981) showed that in the North Atlantic the zonally average flow

field on a meridional plane is a very stable feature, and even if one employs different

assumptions in the inverse method, leading to various circulation patterns, the struc-

ture of the vertical gyre is rather similar in all the pictures, with the northward flow

deepening towards the Northern North Atlantic, and a deep equatorward flow from

high-latitudes.

Some volume of work was devoted in past research to the problem of thermal

forcing; albeit much smaller than that directed at the wind forcing. Most researchers

simplify the problem by restricting it to the configuration above and investigating a two

dimensional annular type circulation. They conclude that even if the impressed temper-

ature field is simple, for example, linear or cosine dependence on latitude, the resultant

picture for the velocity and temperature fields can be asymmetric; the temperature

having a thermocline occupying a relatively thin layer next to the non-insulating wall,

and the velocity having a strong and narrow downward flow in the north, and weak

upward flow everywhere else. The asymmetry is a result of the nonlinear interaction

between the flow and density fields, and is attributed to the different efficiencies of

two important processes in the ocean: the advection of heat in the interior, and the

conduction of heat from the surface. These points will be fully treated further on in

this work.

In 1950 Stommel presented the first analytic solution for the problem. He carried

out to two terms a small parameter series expansion for the temperature and the stream

function fields for a non-rotating fluid. The small parameter used was the dimensional



thermal expansion coefficient (ai). Looking at the two zero order equations for the

temperature and the stream function, it is apparent that the solution is lacking in

many respects. For example, the zero order solution for the temperature indicates that

the interior structure is the same as the imposed surface temperature, irrespective of

depth. It is the responsibility of the higher order terms to generate the thermocline,

and to homogenize the temperature at depth. Clearly this incorrectly opposes the

notion that they are acting as a small correction, and indeed, Stommel notes that this

is not the case because the series is only slowly convergent. Nonetheless, Stommel's

solution is asymmetric for both fields, a non-intuitive result. The reader should note

that the symmetry of the stream function in figure (la) of Stommel's article is opposite

to that found in later works. There is broad downwelling in the colder regions, while

the upwelling is stronger and confined to the south. The discrepancy with future

investigations is real and is not due an error in the figure making, though latter works

referring to this paper ignore this difference. In work not included in this thesis it was

found that the problem arises because the solution presented by Stommel is outside

the range of his small parameter expansion. Namely, that the series solution is correct

and does converge, but the small parameter used in the figures is actually rather large

(a 204), and is outside the radius of convergence.

It is immediately apparent that the analytic solution of even the simplified system

used by Stommel (1950) is quite complicated. In an effort to understand the problem,

Stommel (1962) devised a system with vertical tubes connected at the top with capillary

horizontal tubes, and suspended in a fluid reservoir of constant temperature. The

prediction of motion was done by looking at the strongly diffusive and strongly advective

limits of the equations. Stommel found that even when one impresses uniform heating

and cooling at the top, the fluid goes up everywhere, except at the coldest tube, where

it flows down. However, one should note that the asymmetry is partially built into

the problem. The flow at the top must be strong and narrow because it is confined



to capillary tubes, the interior temperature is presumed uniform because the reservoir

temperature is fixed, while the flow there must be weak because of its large size. In

work not included here, we looked for solutions to the same problem beyond the very

diffusive or very advective limits Stommel investigated. For this extended parameter

range additional solutions were found-often more than one for the same parameters-

where downwelling was not confined to the coldest pipe, and where several vertical

cells could be observed. The mutiplicity of vertical cells might be a realistic feature

of the oceanic circulation, [Wunsch and Grant (1981)] but can also suggest that the

discretization of the equations to a set of vertical and horizontal pipes is not always

successful in describing the fluid behavior.

In the period between these two investigations, Stommel and Veronis (1957) looked

at a horizontal layer of fluid which they forced to be gravitationally stable by heating

it uniformly from above, and cooling it from below. The mean density structure was

approximated by a known constant potential temperature gradient, and, with the ex-

ception of vertical advection of this mean field, no advection was present to balance

diffusion. The momentum balance is hydrostatic in the vertical, with viscosity bal-

ancing horizontal pressure gradients. In the model, the temperature along the lower

boundary is slightly perturbed, and the resultant motion and density fields are exam-

ined using linear perturbation theory. Cellular asymmetric convective motion develops

whose character changes when there is no rotation, uniform rotation (f plane), or non-

uniform rotation (3 plane). For atmospheric parameters the developed cell is higher

when rotation is imposed, and has a westward tilt when the rotation is made to depend

on latitude. The crucial point in this approximation is the known vertical temperature

gradient. This leads to a completely linear set-even if rotation is present-which can

be solved analytically. The heating and cooling processes also differ conceptually from

the oceanic case study, because they both occur at different levels, whereas in the ocean

only the upper surface is non-insulating, so the thermal forcing varies on a horizontal



plane only. By heating at two levels, one can have better control of the stratification

and hence the stability of the flow.

The last two presentations gave rise to more experimental and theoretical works

which solved the non-rotating problem under different assumptions. In 1967 Som-

merville presented a spectral analysis of a nonlinear model where a two dimensional

circulation pattern was induced by a horizontal temperature gradient along the bottom

of a rectangular tank, with the top fixed at a given temperature. The last choice of a

fixed temperature is less suitable to the oceanic case than an insulating wall, and as

was mentioned for Stommel and Veronis (1957), this allows changing the lapse rate,

which is equivalent to altering the strength of the stratification. The nonlinear terms

in the momentum equations were retained, but only vertical viscosity (v,) was present.

The solution is derived by writing the temperature as a known solution to the diffusive

limit, plus an unknown correction due to advection, followed by expanding both fields

in a double Fourier series in both coordinates. Multiplying by the proper trigonomet-

ric functions and integrating over the domain leads to a set of prognostic equations for

the Fourier coefficients. Sommerville's solution exhibits only a slight asymmetry, due

mainly to severe truncation of the Fourier series used in the spectral analysis. As a re-

sult of small amount of computer time available, the author allowed only two and three

waves to be resolved in the expansion in each direction. Cases where the discrepancies

between these two possible truncations were large, were omitted due to insufficient

resolution. But even with this truncation the asymmetry in the flow pattern and the

thermocline are both clearly visible in the numerical experiments.

The circulation of an axially symmetric system with small aspect ratio (most

numerical experiments use an aspect ratio of one or close to it) was also considered by

Stone (1968) in a non-rotating and a rotating system. In particular, the scale analysis

for very large Rayleigh number was detailed, showing strong vertical and horizontal

boundary layers. The limit of a small Rayleigh number was solved analytically like



Stommel (1950), this time yielding narrow downwelling and broad upwelling. It is

important to note that Stone prescribes the heat flux like we will do, and not the

temperature. The physical differences between the two will follow shortly.

Other works followed, like that of Beardsley and Festa (1972), who applied a linear

temperature along the bottom of an otherwise rigid and insulating rectangular box filled

with fluid. The authors used the same dynamical system as Sommerville, with the

addition of horizontal diffusion for both the temperature and vorticity equations, and

investigated the various parameters associated with the solution of the coupled set. By

using a finite difference scheme Beardsley and Festa were able to extend the parameter

range of the Rayleigh number (which is a dimensionless measure of the buoyancy)

associated with the problem beyond that investigated by Sommerville. They showed

that the boundary layer character of the solution becomes more and more evident as

the Rayleigh number increases, and presented data supporting a power law relation

between the Rayleigh number and the maximum value of the stream function. Even

though the largest Rayleigh number they investigated was orders of magnitude smaller

than the oceanic values, (see chapter 5) their work is in many respects the last numerical

investigation of the general annular circulation problem described at the beginning, and

includes a summary of results from previous experimental and theoretical works.

In 1980 Killworth and Manins attempted an analytic solution for the same problem,

where quadratic temperature variation was imposed on the bottom, and effort was

made to understand the dynamics along the lower boundary. It turned out that the

interior temperature is constant, and from turbulence arguments, the interior stream

function is proportional to the distance from the intense upwelling northern region.

The authors distinguish between two cases: those with a large Rayleigh number where

the plume along the warm wall is turbulent; and those with smaller Rayleigh number,

where it is laminar and has a constant diffusivity. The linear dependence of the stream

function on distance holds for both cases, but in the first case-because there is also



a term depending on the horizontal distance times the vertical one-the flow has a

stagnation point. The solution is sought in terms of similarity solutions, where in

order to match to the interior, the stream function and buoyancy have a certain power

law dependence on position. The quadratic temperature profile along the bottom

wall is actually required by the similarity solution. The coefficients multiplying these

solutions are found numerically. The full analysis of the lower boundary layer indicates

that two layers are present because the stratification alone cannot satisfy the no slip

conditions assumed along the bottom; hence, a layer where nonlinear and viscous terms

are dominant must exist. The results are not different from those obtained numerically,

but has the obvious benefit of an analytical form, coupled with better understanding

of the dynamics, including the relationship between the interior temperature, Prandtl

number, and Rayleigh number. The central points in this approach are the utilization

of the proper interior forms for the stream function and buoyancy, and the recognition

that both the plume and the outflow provide a consistency check in the laminar case

and are less important in the turbulent one.

Unlike other works that were set to solve the problem analytically or numeri-

cally, Stern (1975, ch. 12.1) uses scaling arguments to derive an expression for the

thermocline depth. As was pointed out by Killworth and Manins (1980), the interior

temperature used by Stern is the temperature at the coldest spot on the surface. The

works cited before suggest that the proper magnitude should be warmer by about 30%

of the of the north south temperature difference, changing the coefficient in his final

solution. Simpler arguments leading to the same order of magnitude are also found in

Sommerville (1967) and Rossby (1965).

The asymmetric form of the temperature and flow fields can be easily distinguished

in laboratory experiments. Among those that initiated interest in the problem is the one

done by Rossby (1965). In his experiments, one clearly sees that a linear temperature

distribution applied at the bottom of a tank can generate a single asymmetric cell. The



experimental results indicate that both the cold bottom layer and the upward jet above

the warmer side becomes thinner when the viscosity of the fluid is reduced (same as

increasing the Rayleigh number). The interior fluid is weakly stratified. The region

near the upward jet shows temperature inversion, which is surprising especially because

the local Rayleigh number in the experiments was very large; much larger than in any

of the numerical realizations. If we are to assume that the region is stable, there must

be other dominant effects, or maybe the fluid is not even hydrostatic.

In the works described above the interior circulation is downward, cooled by con-

vection from the upward jet along the warmest wall. The flow warms up by conduction

as it advances towards the lower surface, and then goes towards the warmest point

in order to rise again. In the case where the fluid is cooled from the top instead of

being warmed from below, the physics remains intact. There will be upwelling of cold

fluid in the interior, and sinking next to the coldest boundary. The asymmetry-as

suggested by Rossby (1965)-is explained as a result of a more efficient heating of fluid

by convection than by conduction. These questions, and others relating to the location

and extent of the boundary layers will be addressed in chapter 5.

This brief summary will not be complete without mentioning some of the axially

symmetric circulation models done in a meteorological context. These works usually

bear little resemblance to the archetypal problem of interest because they deal with

a rotational flow on a sphere, and thereby include a more complex dynamics. But

in general, much like in the ocean, one develops an asymmetric circulation cell, also

known as the Hadley cell, with localized upward motion in equatorial regions.

Schneider and Lindzen (1977) used a linearized numerical model to investigate such

flows. Their forcing included a Newtonian cooling law for radiative heating-where the

cooling is proportional to the temperature difference from radiative equilibrium-and

applied heat sources represent the zonal average large scale cumulus convection. The



last process is probably the most important driving mechanism in the model. Dissipa-

tion of momentum and temperature is done by a vertically varying vertical diffusion

coefficient, where no horizontal diffusion is present. In addition, the momentum flux

divergence due to cumulus friction is specified, where the mass flux in the hot cumu-

lus is derived from a known heating function. The numerical solutions indicate that

cumulus heating and friction drive a Hadley cell that is similar in many aspects to

the annual mean observed circulation. In addition, the importance of the sea surface

temperature gradient is evident in driving a meridional circulation below 800mb, and

in the generation of the ITCZ near the equator. The authors conclude that the model

can be successfully used to calculate basic states for stability analysis.

A further study of the same model with the inclusion of nonlinear terms was done

by Schneider (1977). In this improved model features like trade winds in the tropics,

and surface westerlies to their north are observed.

Another modeling effort was carried out by Held and Hou (1980). There, a non-

linear rotating flow on a sphere is differentially heated. Two crucial assumptions are

made: that the viscous forces are weak enough to allow a near conservation of angular

momentum; and that the air is statically stable, with a known mean buoyancy that

does not change appreciably due to circulation and diffusion. Again, a Hadley cell

evolves in the final solution. The nearly inviscid approximations cause some problems,

and as Held and Hou admit it is not always clear what form the circulation would

take if the viscosity used were smaller than values for which numerical stable solutions

were obtained. It seems that the conservation of angular momentum can be applied to

the strong boundary flows, and has less success with the interior circulation. We will

comment on the importance of friction in the interior in chapter 4.



Introduction

Our work here is different in many aspects from previous investigations, although we

still keep the same configuration of a fluid confined in a box with rigid and insulating

walls, except for the one through which the system is being heated and cooled . We

will also comment briefly on the different parameter regimes, the relations between the

stream function and the Rayleigh number, and the importance of the Prandtl num-

ber when the Rayleigh number varies. Clearly works of this type are far from being

exhausted, and deserve much more attention, especially because the oceanic study cor-

responds to a vary large Rayleigh number. For example, the numerical experiments did

not go much beyond a Rayleigh number of order 10', where laboratory measurements

are available with a parameter five orders of magnitude larger. This highly unstable

region is not well understood; hence often one employs other arguments like radiation

convection equilibrium used in the atmosphere.

The most notable aspects of this work are three-fold. First we present a mixing

parameterization to which we will refer as "convective overturning". A variation of this

parameterization is used in general circulation models like Bryan an Cox (1968), but was

not employed in the works summarized before for the meridional circulation. One of the

benefits of this approach is that the final density field is everywhere stable or marginally

stable. Previous works could only reach a stably stratified solution over the whole

domain by a priori imposing a mean temperature field, [Stommel and Veronis (1957),

Held and Hou (1980)]. Even Rossby's (1965) laboratory experiments with Rayleigh

numbers of order 10 7 to 1010 show temperature inversions along the bottom boundary.

In cases where the main stratification was not imposed a priori, large unstable or

weakly unstable regions exist as part of the steady state solution, whereas in our work,

an overturning process will lead to marginal stability in those regions.

Secondly, we investigate the effects of the time dependent forcing on the stratifica-

tion and flow fields. It will turn out that dramatic seasonal changes can be observed.



In particular, distinct differences are measured when driving the circulation by mean

forcing compared to averaging seasonal states. These will be analyzed in chapters 2

and 5. The effects of a seasonal cycle is investigated in other numerical models, in

particular, primitive equations general circulation models applied to tropical regions

like Philander and Pacanowski (1984). The question of variability was not addressed in

the past in the configuration presented in this work, and more importantly, the differ-

ence between the two averaging schemes presented above is seldom touched upon. The

work by Bryan and Lewis (1979) suggest that the two procedures will yield different

results as observed in chapter 2. Generally, because most fields like heating function,

wind, and sea surface elevation, show an annual variability, it is difficult to distinguish

between cause and effect. In the simplified context of this work, where all forcing but

the heating are neglected, it will be easier to note the effects of a seasonal cycle in the

thermal forcing.

Thirdly, with the exception of Stone (1968), our boundary conditions are different

from other works. The heating function along the upper boundary is specified in terms

of flux and not a given temperature, and thus is a direct statement of the forcing. When

the temperature is specified, the heat flux-which is the real forcing in the problem-is

determined as part of the solution, and might not be always realistic. For example,

Stone (1968) suggests that the strong asymmetry found by Stommel (1962) is attributed

to the fact that Stommel's applied thermal conditions presumably correspond to an

asymmetric flux with cooling above the coldest pipe only. By specifying the flux and not

the temperature we avoid such problems, and can investigate the asymmetric circulation

resulting from a specified symmetric forcing. Other differences between specifying the

flux and the temperature are discussed in chapter 5, where the relation between heat

flux and the oceanic horizontal surface temperature gradient is analyzed.

Unlike most other works, we neglect nonlinear terms a priori except in the heat

equation. The role played by the nonlinear terms is important in the boundary layer



analysis when one requires no slip conditions along the non-insulating boundary. Kill-

worth and Manins (1980) indicated that they are dominant in the upper boundary

layer of the highly asymmetric solutions, drawing energy from the mean flow. Still,

for free slip conditions, Stommel's (1962) treatment hints that maybe the nonlinearity

in the density equation is enough, since his pipe solution is highly asymmetric, but

his 'momentum' relation is linear. Also, Beardsley and Festa (1972) conclude that the

advection of vorticity by the flow field is only about 5% of the other terms for their

numerical experiments with a Rayleigh number of order 10'.

As a last point, in order to resemble the oceanic case, we heat and cool the annulus

from the top, and not from from below. The location of the non-insulating boundary

is more a question of convenience, because we can always interchange cooling at the

top with heating along the bottom.

In chapter 2 the density field of a fluid in an annular configuration that is heated

from the top is examined. The fluid is diffusive and viscous enough so that no flow

field is present (at least to the lowest order). The diffusion coefficient is a variable

that depends on the local stratification. A variety of heat fluxes are used as boundary

conditions, including one based on data collected by Oort and Vonder Haar (1976).

The results show that the fluid is forced to sink in all regions where the ocean is

being cooled by the atmosphere. The vertical extent of these sinking regions is a

strong function of horizontal position. Different temperature structures from various

averaging procedures are analyzed.

The third chapter uses the parameterization developed in the second in a situation

where a local buoyancy loss causes strong vertical mixing. A simple model, based on

mixing only without motion, is developed and used to show that the effects of vertical

mixing are important in the formation process of water masses like mode water found

in the world's oceans. Examples from the Mediterranean Sea are treated.



The fourth chapter presents an analytical model for the vertical circulation with

the dynamics described by a mixed layer lying on top of an interior water mass. The

model is fairly general and can be realized at locations like the subpolar gyre where two

conditions should be met; a wall at the poleward side, and a sense of the circulation

where waters are being pumped from the mixed layer into the interior. The model

helps in establishing several features that are unique to the axially symmetric problem:

in particular, the important role of the weak dissipation of angular momentum; and

the surprising fact that the passage of information in the system is against the flow

field.

The model provides a general dynamical framework for the circulation at northern

regions, and can be complemented by other local processes of deep water formation.

The formation events are believed to happen in a very limited number of small sinking

regions over the world oceans. It is thought that deep waters are formed in two dif-

ferent distinct processes: open water convection where the water is pumped down in

chimneys where properties are homogeneous in the vertical, and sinking along conti-

nental shelves. The first process is documented in the Mediterranean [MEDOC Group

(1970)], the Weddell polynya [Gordon (1978)], and to lesser extent in other regions like

the Norwegian Sea [Carmack and Aagaard (1973)] and the Labrador Sea [Clarke and

Gascard (1983), Lazier (1973)]. Suggested models can be found in Killworth (1976),

Killworth (1979), and Martinson et al. (1981). Note, that the last two models that deal

with the formation process in Antarctic regions have salt rejection due to a freezing ice

cap, a process that helps produce warm and salty 'heavy' water above cold but fresh

'light' ones. The formation near continental shelves is also well observed, especially

in the Weddell Sea [Gill (1973), Foster and Carmack (1976)] the Adelie coast [Gordon

and Tchernia (1972)], and the Ross Sea [Jacobs et al. (1970)]. A review of this process

is found in a paper by Killworth (1983), where most of the observations are recorded

and referenced. The general dynamics described in chapter 4 is not detailed enough to



describe formation processes where things like sea ice formation and salt rejection are

needed, but on the other hand is appropriate in much broader regions where there is

buoyancy loss at the surface.

Chapter 5 returns to the archetypal problem that was surveyed in the previous

section, namely, that of the axially symmetric fluid differentially heated from the top.

As mentioned before, we extend previous works in several directions, of which the two

most important ones are the introduction of strong vertical density mixing when the

stratification is unstable, and analysis of the time dependent problem.



Governing Equations

The task of setting up a mathematical formulation to describe a physical problem can

be quite complicated, where several issues need be addressed. Among those questions

are: the proper dynamics, in particular the momentum equations; the thermodynamics,

and its interaction with the dynamic variables; and formulation of boundary conditions.

The last can include topography, wind stress imparting momentum to the system, heat

fluxes, and evaporation and precipitation which not only act to change the salinity, but

are sometimes treated as a mass source-sink.

Numerical simulations, which are often required to solve the resultant set of equa-

tions, introduce other complications, in particular, the resolution problem. As a result,

we are often forced to make some type of a closure statement in order to be able to cut

off the high wave numbers, while still accounting in some fashion for scales not resolved

in the model.

The general dynamical framework which is often used to describe general circula-

tion problems is usually written as:

uu. + vu Y + wuz - fv = -px + vH (UX + uy)+vyuzz

uvX + vvY + wvz + fu = -py vH(vx + v)+y +

+ - +wZ +=) +wVW=

U:: + V!J + Wz = 0

UPf + VPY + WPZ = CH (PXX + pyy) + K y Pzz

p = po[I - a(T - To)]

where we used the conventional notations with x, y, and z as the east, north, and

upward directions, and u, v, and w for the velocity components in these directions. p

and T stand for the density and temperature, po and To denote the reference density

and temperature, a indicates the thermal expansion coefficient, p the pressure, g the



gravitational acceleration, and f the Coriolis parameter. v. and v, denote the hor-

izontal and vertical components of the kinematic viscosity, and KCH and ., represent

the horizontal and vertical components of the thermal diffusivity. The viscosity and

diffusivity in (1.1) are assumed to be constants. Later in this work we will relax this

assumption. The formal effect in the representation of the equations will be that terms

like vH u, will be replaced by (vHux)2.

For simplicity, our fluid is confined in an annulus with its north and south bound-

aries paralleling latitude lines. As was explained before, in this geometric representation

we restrict ourselves to problems that do not exhibit x dependence. This makes it easy

to use the continuity equation (1.1d), and define a stream function

Z = -v

(1.2)
Oy= W.

Our set of six equations for the unknowns u, v, w, p, T, and p, can now be reduced to

three: the x momentum equation, the vorticity equation, and the heat equation.

J(0,u) + fPZ = 1 H Y + VV UZZ

J(0, V2 ,O) , uZ = agTY + VH V 2 0YY + VV21pZZ (1.3)

J(,T) = CH Tyy + ry Tzz

where J(a, b) = - 9 is the Jacobian operator, and we have used the Boussinesq

approximation to neglect the variations in density except where coupled to gravity. The

boundary conditions required to solve this set involves knowing the temperature or heat

flux around the domain, as well as information on the velocities (b, u, and V 2
0).

Exploring the interaction between different scales in the above set is often more

transparent if we use the equivalent dimensionless equations. Using asterisks to denote



dimensionless quantities, we introduce the following scales

y = Ly*

z = Dz*

f = fo 1 + -- y* = fo(1 + #*y*) = fof (1.4)
fo

U = Uou*

T = ToT*

and redefine our Laplace operator to be V2 = 2 + . Note, that the last

two scales, Uo and To, are external parameters. The relation between Uo, and the

forcing parameter To will be established shortly. It is also helpful to introduce some

dimensionless parameters

F=f3L2
F = 2

gD'

Uo
foL'

rvV L 2

IC, D2'

v L 2  (1.5)
vl/ D 2 '

E = V
foD2'

= D

v L'

As we will show momentarily, not all of these seven parameters are independent, and it

will be convenient to relate e and 6 to the other quantities. Employing these definitions



gives the following dimensionless set

6 1 /182 82
6J(#,u)±+-ffb, = - -+ - u

E v By 2 +z 2 /
2j(Ve V2T 1 a2 a2 o

E 2 O TY + E + (1.6)
6 SF vBy2 8z2

1 82 82
6b J(O, T) = + 2T.

(Kay2  z2 )

Now @, u, T, f, y and z are 0(1), and we dropped the asterisks for neatness.

Further simplification of (1.6) is often possible by relating some of the scales used

in deriving the dimensionless set. One of the more popular assumptions leading to a

thermal wind balance in the vorticity equation (1.6b) while balancing the v velocity

component by uzz (remember that the system is axially symmetric) is derived by as-

suming that b = E, and that " =T. In this way, the external parameters are now

related Uo = LTo , as well as Uo = of , and = E = 'O. These assumptions

yield the familiar set written in terms of the Rossby (e), Ekman (E), and Prandtl (a)

numbers
1 82 a2

eJ (#, U) + f 0. = + W-
vBy

2  z2

(V1 82 )2
EJ(), V2 O) - fuz = Ty + E 2  + a 2 (1.7)

v By2 Bz 2 /
/182 82

EuJ(#, T) = 1 -+ T.
ic By2 +z2/

For some of the approaches in the chapters 4 and 5 it is convenient to have a dif-

ferent scale for the stream function than the one implied above. In those cases it is

more transparent to use the set (1.6) than the set (1.7). In any case, the appropriate

assumptions will be clearly stated at the beginning of each chapter.

When the Rossby (E) and Ekman (E) numbers are small, and we further justify

neglecting the nonlinear advection of vorticity by E < E2 , the u dependence can be

eliminated and (1.7a-b) can be reduced to one equation relating T and @: [The absence

of inertial terms is also of advantage numerically. Even though we are looking for a



steady state where no propagating waves exist, the solution is the end result of a time

dependent spin up problem. If there are inertial terms, the time step is short, and

is governed by the fast gravity waves (and also Rossby waves if there is no east-west

symmetry). When the fast waves are suppressed, time stepping is a faster process.]

04z + 0= E TY (1.8)

where we retained the vertical diffusion terms relative to the horizontal one. The high

order derivative with respect to z comes from the z momentum equation. This term

is usually small because to first order our flow is hydrostatic. Nonetheless, it should

be retained if we want to solve for the Ekman layers at the top and bottom. The heat

equation (1.7c) remains the same as before, and the leading order terms depend on the

relative size of the Prandtl (a) and Rossby (c) numbers. Equations (1.8) and (1.7c)

can be solved for proper formulation of boundary conditions. For instance, assume

a temperature structure, use it to compute the stream function from (1.8)-which

has an analytic solution-and apply the result for the stream function to improve the

temperature field, and so on.

The zonal velocity is determined by integrating the x momentum equation (1.7a),

which for our approximation is simply f Oz = u_.. The result is

z f dz + rwind Z.(19

The wind stress enters the result by our assumption that we can parameterize the

velocity shear at the top as a stress, thus, Uz(Y, Z = 0) = rwind(y). Note, that the

kinematic viscosity need not be constant here. This solution was made possible because

we kept the high order derivative term in (1.8). Without this term one cannot require

wind

Clearly, the last two equations are only an example from the wealth of possible

dynamics hidden in the set (1.6). In what follows we will focus on specific processes and



will justify picking up parts of these equations, employing different balance schemes.

The aim of these manipulations is to simplify the description of the complicated struc-

ture of the fluid behavior. It is important, even in cases where one can write the mathe-

matical formulation properly, to identify the terms dominating the fluid behavior from

those of minor contribution, or those that have an effect only in limited regions.



Chapter 2

The effects of heating in the absence of a flow field

Introduction

We start our examination of the thermal forcing by looking at a case with no flow field,

where only mixing is relevant. In relation to the governing equations (1.6), this approx-

imation is the same as assuming that b is small enough (or that E > E) so that for a

given Prandtl number -, 6a < 1. The small correction to the temperature field induced

by the weak velocity field can be computed by using the vorticity equation (which is

basically the thermal wind relation when E2 < 1) to get the meridional velocity com-

ponent, and the x momentum equation to get the stream function. Mathematically,

the zero order problem boils down to solving the diffusion equation in a rectangular

box for specified boundary conditions. The analytic solution to this textbook problem

is readily available. It is the physical interpretation of the results that complicates the

problem and makes it interesting for the oceanic case.

While solving the diffusion equation for the temperature, several different surface

boundary conditions will be analyzed; including those where the flux is specified, when

it is time dependent, and when the air temperature is given. We find that in regions

where the fluid is cooled from above, the vertical stratification becomes unstable. This

leads us to introduce the concept of convective overturning. The idea behind it is very

simple. In places where heat is taken away from the upper portion of the fluid, there

may exist a layer of heavy fluid on top of lighter one. In these locations we make the



vertical mixing more vigorous than in other places, thereby letting the vertical diffusion

rapidly smooth the undesired density gradients. This concept will be related to the

parameterization of turbulent and mesoscale mixing and will be widely used throughout

chapters 3 and 5.

Heat equation

The heat equation (1.6c) relates the stream function to the temperature. In order

to examine of the importance of thermal forcing, we eliminate the stream function

dependence by looking at the diffusive limit of this equation. Apart from simplifying the

problem, elliptic equations illuminate the importance of boundary conditions because

the solution in any interior point is some average of its surrounding. Our equation is

written as

Tyy + (r-TZ), = 0 (2.1)

,cL 2
where as before r, = D2, and is treated as a constant, and we assumed that

the horizontal diffusion coefficient is independent of position. Note, however, that by

grouping the KTz inside the brackets, we leave open the possibility that in the future

r. will depend on position. For no fluxes through the walls, Ty = 0 at y = 0 and y = 1,

T, = 0 at z = 0, and specified surface heat flux KTz = Q at z = 1, the solution to this

diffusive limit is

T = Ao cos(iry) cosh (2.2)

with

Q = AoV'ir sinh cos(ry),

where A0 is constant. For cases where the heat flux Q does not exhibit a cosine behavior

in y, we can simply write it-and the solution-as a Fourier sum.

Our simple diffusion equation actually contains some interesting information. Take

typical scales of L = 4000km, D = 4km, , = 1cm 2 /sec and c, = 106 cm 2 /sec, and

33



get K = 1. Now the temperature structure exhibits a strong vertical dependence, where

the difference between the top and bottom temperatures can be large [cosh(7r) - 1] 

10.6 0 C (Ao = 1). This result is not an obvious one, because the fluid is confined to

a very thin slab (aspect ratio of 1000), and one would not immediately expect that

applying an order one temperature difference along the top of this slab, will translate

to order one changes in the vertical. The reason behind the phenomena is of course

the large difference between the horizontal and vertical mixing coefficients, preferring

horizontal processes over vertical ones. Observations also suggest that in the ocean,

vertical temperature changes are large. For example, Wist (1935, pp. 3), and Iselin

(1939) noticed that a T-S diagram of surface water would correspond closely to a

T-S relation from a hydrographic station, implying that the surface structure closely

resembles the vertical one. These observations are usually considered as evidence that

advection and diffusion processes are more vigorous along density surfaces than across

them.

It is interesting to see what happens if we follow this idea, and replace the hori-

zontal and vertical diffusivities by along and across-isopycnal mixing coefficients. This

amounts to relating the mixing coefficient n's in the cartesian system to the along and

across-isopycnal coefficients by a second order tensor whose arguments are the pro-

jections of the vertical and horizontal diffusion coefficients along and across isopycnal

surfaces [Redi (1982)]. The components of the new isopycnal mixing coefficients are

now K' = (Aai , Aai , Aac) as opposed to the rectangular coordinate representation

K, = (, K /H , ,). The across and along-isopycnal diffusion coefficients are denoted

by Aa and Aa. The tensor can be written as

[ ( Aac asPo3 p 1
= Aai [Si + Aa- 1) + 2 2](2.3)Aa p2 +p2 + p2

where i and j vary over the three coordinates, and Sij is the unit tensor whose elements

are one when i = j, and zero otherwise.



Assuming that the equation of state (1.1f) has linear dependence on temperature

only, there are no gradients along density surfaces because there are no contributions

to the density field from either salinity or pressure. For this case, the dimensional

heat equation Bi(x;pBdT) collapses immediately to V(AacVT) = 0. If Aac is constant,

the equation is completely equivalent to x, Tyy + , T-. = 0 where we require x, =

Aac = r,. This is of course the isotropic limit, which corresponds to a very large value

of x = L 2 /D 2 in our scaled equation (2.1). Because the vertical mixing coefficient is

large enough, the horizontal mixing coefficient small enough, and the slab of fluid so

thin, the temperature structure in this case is depth independent, so that the latitudinal

variations of the temperature impressed at the top of the basin persist all the way to the

bottom. This result shows that in our problem the treatment in density coordinates

is equivalent to isotropic mixing coefficients in regular space. It is independent of

possible technical difficulties of implementing surface boundary conditions in density

coordinates, and holds true for a three dimensional system as well. It suggests that in

our problem it is not proper to use along and across-isopycnal mixing, and points out

the importance of a realistic equation of state when dealing with isopycnal mixing, (in

particular, the nonlinearities in the density field) and the role played by the circulation

that advects this temperature field.

Another possible model for the role of mixing was postulated by Armi (1978). The

author hypothesized that it is possible to explain the stratification in the deep water as

a combined effect of vertical mixing at boundaries and topographic features, followed

by lateral advection and diffusion along isopycnal surfaces. According to this argument,

the stratification is determined by mixing along side walls and to a much lesser extent

by the anisotropic nature of the fluid. In any case, we would continue to employ the

anisotropic model because it gives a crude parameterization of the circulation.

The effects of the circulation is examined in chapter 5 where a similar problem

is treated while including the flow field. One of the limits investigated (although not



presented in this report) is the absence of horizontal diffusion in the axially symmet-

ric configuration. This is an extreme case where x is infinitely large, whereas in the

isotropic example before, it was the square of the inverse aspect ratio-about 106.

We find that even under these extreme conditions, there is a clear thermocline struc-

ture, indicating that the flow field is important in determining the final shape of the

isopycnals.

Convective overturning

The solution for T in (2.2) has unstable stratification over half the domain; namely,

Tz < 0 for y E (-, 1). This of course is not physically plausible, and one would tend

to assume that wherever a situation is reached where heavy water lies on top of lighter

ones, the fluid will rapidly mix to form a marginally stable water column. In order to

overcome the possible physical instability of the solution (2.2), the diffusive limit was

solved numerically with a vertical diffusion coefficient that depends on T,

TYY + (cTz), = 0 with r,= O(1), TZ ;> 0 (2.4)
- 00, T, < 0.

The transition from (2.1) to (2.4) introduces a new nonlinear problem associated with

our previous linear description. In northern regions, the above parameterization of

fast vertical mixing causes the water column to have an almost constant temperature

profile. This parameterization is similar to the one used by Bryan and Cox (1968)

[equation (3.20a) in their article], but its execution is different. Bryan and Cox takes

care of the infinite mixing by a procedure that is equivalent to replacing the unstable

stratification in a density column by some arithmetic mean of the density in that

column. As opposed to that, our mixing process involves increasing the coefficient to

a large but finite value. Following Bryan and Cox, the stratification should always be

relaxed at locations where the fluid is cooled (because there the surface stratification

is not stable, thus, at every time step a new mean density profile is calculated), hence



a real steady state is not achieved. In our scheme a true steady state can be reached,

and the numerical implementation is rather easy. In particular, it is easier to use our

approach in cases where the Prandtl number is fixed, where we also mix momentum as

well as density. Overall, the differences between the two schemes are small in both the

technical and physical aspects, and numerical simulations should lead to similar results

using either way.

For an imposed surface heat flux of cos(7ry), the schematic result is represented

in figure (2.2)b, and is analyzed later on. It is clear that the temperature structure is

now different from the solution (2.2) which is represented in figure (2.2)a. The heavy

line in figure (2.2)b marks the interface r7(z) between the regions where T, ; 0 (south)

and T, < 0 (north).

Equation (2.4) is not only different mathematically from the linear problem (2.1),

but has different underlying physics. The diffusion coefficients K H and , are repre-

sentative of mesoscale mixing parameterization, indicating that mesoscale features, like

eddies, act to mix the ocean horizontally much more than vertically. But this is not the

only scale on which mixing acts. There is also small scale turbulent mixing, which is a

process found in the ocean but not resolved in our parameterization. In equation (2.4)

we deliberately let the mixing coefficient depend on the stratification in order to include

this turbulent process. Overall, in the stably stratified regions the mesoscale mixing

controls the fluid behavior, whereas in unstable regions, it is the turbulent processes

that determine the temperature structure.

The numerical simulations presented later on in this chapter show that there are

two regions corresponding to the different values of x in equation (2.4). In the southern

region the diffusivity is ri = 0(1), whereas in the northern region it is much larger,

K 2 > 1. Technically, if the interface between the two regions is specified, one can

solve (2.1) in each region, and determine the temperature everywhere. Because of

the new shape of each domain, the solution will be more complicated than (2.2). But



determining the shape of the interface is part of our solution. In the following paragraph

we present a simple approach to investigate the temperature structure in the large K

region. Although we will not be able to determine the shape of the interface, this

solution shows the approximate temperature structure in the unstable region, and

will also suggest that possibly the shape of the interface is independent of the ratio

K = K2 /r1. This result was also verified by numerical simulations, that in addition

demonstrated the dependence of the shape on ru1.

In the north, -2 > 1 and can be used in a small parameter expansion (iC2 1). The

equation can be written as T_ + i2'Tyy = 0, where the flux at the top (z = 1) is

specified K2T|I,= = Q. Expanding the temperature in a power series of the small

parameter r.2

T = T(±) + K2 TM + - + K 2" T(") +

shows that the zero order equation is T = 0, so that T(") = f(y). In addition, the

expansion of T for the top boundary condition gives

K2T(O) + T + + ... - Q = O(i).

Because the surface heat flux is order one, we must also assume that Tl") = 0, so

T(0) - g(y).

The function g(y) is determined from the first order set

TM0 + T() = 0.

The matching condition at the top leads to T ( - Q + gy,(1 - z), and that at the

bottom (which can be the interface) to gyY = -f- with 0 < d(y) < 1 as the depth on

the interface. Thus, we know that

T(0) = dy dy _ Q

T (1 Q = z2 + a(y).2(1 -d)
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As before, we have to go an order further to determine a(y). The most important

result of this expansion is that the zero order solution is independent of depth and is

controlled by the forcing only. One should note, that when d = 0, summing the terms

in the series expansion results in a cos(ry) cosh(7rz/ /R) where Q = cos(7ry). This

result is of course due to the fact that the analytic solution (2.2) is valid for any K2-

For large diffusivities, cosh(7rz/ V/) is approximately one and so K2 does not enter

the zero order solution. This important observation lies behind our success in solving

for the temperature in the northern region without knowing the shape of the domain

itself (remember that the form of the interface is yet not determined). So we have

shown that to a good approximation, neither the temperature, nor the shape of the

interface depends on K2. We will see shortly that it does depend on the diffusivity in

the southern region K1 .

The solution above is not sufficient to determine the curve representing the inter-

face in figure (2.1), but matching the solutions on its two sides require continuity of

temperature and flux across the interface.

T = T()

cos 0(T 0) - T 0)) - sin 0(,. 2 T(i) - ,1T(i)) (2.5)

where the interface is inclined at an angle 0(z) with respect to a vertical line, and

r7(z) is the displacement of the interface from a reference vertical line-say the line

intersecting the surface where the specified heat flux ,cT, = 0, so r7(1) = 0. Results

like those presented in figures (2.2) indicate that rj(z) is very large and a perturbation

expansion around the reference line is not always a good idea.

The continuity of flux (2.5b) can be simplified further by noting that T, = 0 on

the interface. The fact that the vertical temperature gradients are positive to the

south of it and negative north of it is not a rigorous justification, but the figures in

chapter 5, where T, contours are presented, lend additional support to the idea. (2.5b)



Figure (2.1). A sketch of the interface between the convective overturning region and
the stable one.



would now suggest that Ty is also continuous across the interface. In addition to the

continuity of temperature, one should also remember that the temperature in the north

can be determined everywhere to within a constant from the specified forcing Q, thus,

in particular, we know the temperature on the interface.

The problem now remains to solve (2.1) in the southern region under the specified

boundary conditions of a given heat flux at the top (it is actually heating only because

we already solved for the region that is cooled) and no flux through the southern and

bottom walls. The shape of the northern extent of the domain is still unknown, but

is replaced by two boundary conditions: the specified temperature, and T. = 0. The

fact that the net flux through the interface to the northern region equals the input of

heat at the top is automatically satisfied by any steady state solution of the diffusion

equation. Solving the elliptic problem in this domain is not always straightforward,

even if the shape of the interface is given. Theoretically, one can assume a shape for

the interface, solve by using one boundary condition and then check that the other is

satisfied. It seems reasonable to assume that there will be one solution where the two

boundary condition will be met, thus, the interface will be determined.



Numerical implementation

The numerical scheme for solving the diffusion equation involves adding a time deriva-

tive term, Tt, in equation (2.1), and time stepping the resultant equation. A steady

state solution is reached when the derivative with respect to time, T, vanishes. For our

boundary value problem, the signature of the initial conditions does not show up in the

final solution, which should depend on the boundary conditions only. The insensitivity

of the problem to initial conditions, and the important influence of different boundary

conditions are verified by an array of numerical simulations.

Two dimensionless parameters are relevant in the analysis; the first, which was

introduced already, is ij. This coefficient determines the vertical temperature profile

that has a cosh(rz/Vfi) dependence. In the south the vertical structure will be surface

intensified, whereas in the north it will be approximately depth independent. The other

parameter T<(g /D 2 , with T as a time scale (say the number of seconds in a year)

enters when the time derivative term is added, and is a measure of the rate of downward

diffusion in the two regions. We would like it to be smaller than unity in the south,

and bigger in the north. This would imply that diffusive effects penetrate deep and

fast in the convective overturning regions, while they are more surface trapped in the

stable regions. This last parameter is only important in time dependent cases; when the

forcing varies with time or when the time dependent problem is investigated. When

a steady state solution is reached, Tt = 0, and no time scale is associated with the

problem.

The numerical approach used is simple. All second derivatives are evaluated by

a second order finite difference, while the grid configuration is such that the diffusion

coefficient r. is calculated in between points where the scalars T (or p) are known. For

example, if we let the index i vary in the vertical direction, and let C be any tracer

quantity; then

= tC+1 (C;+1 - Ci) - i; -.1 (Ci - Ci _.1 ) (2.6)



where we took Az = 1. The same relation holds replacing z by y and letting iAy

denote the distance in the north south direction. The diffusion coefficient above Ki±1

is determined by looking at the sign of Ci+ 1 - C; or Ci - C;_1 correspondingly. If it

is negative, the stratification is unstable and the coefficient is large.

Along the side and bottom boundaries no flux conditions are specified; thus, we

create a grid point outside the boundary and equate the tracer value there to that

at the point just inside the wall. This is equivalent to making the second order first

derivative vanish there. It also enables us to easily evaluate the second derivative on

all boundaries.

Practically, it is best to think of the grid configuration as a rectangular box with

sides Ay in the horizontal, Az in the vertical, and an average tracer concentration C.

The change in concentration AC at each time step At is due to the flux in and out of

the box. Explicitly,

ACAyAz = At {AZ [(r, Cz)|top - (X, Cz)|bottom- + AY [(C, CY)|right - (-, C1 )|Ieft]}.

For our configuration, some simplifications apply. The horizontal diffusion coefficient

1C, is a fixed constant everywhere, while K, is determined from C, and thus is known

at the top and bottom walls of each interior grid box. This means that the evaluation of

AC is easily done at all points not bordering any of the walls. Grid boxes that share a

wall with the boundary of our domain are treated in an almost identical manner. Along

the Northern wall (, CC,) ,ight = 0, Ay should be replaced by Ay/2, because the grid

boxes are only half as wide, while all other terms are known. Along the southern

boundary, (tc, C,)|tg, vanishes, and again Ay should be replaced by Ay/2. At the

bottom boundary, (IC1, C) |bottom = 0, and because the grid boxes adjacent to this wall

are half the height, Az is replaced by Az/2. For the upper boundary, (ic, C2)|tG, is

specified, and again Az/2 replaces Az. Along the four corner boxes, the same technique

applies, taking note that their sides are Ay/2 and Az/2.



Writing the finite difference analogue to the diffusion equation, summing it up over

all the domain-taking note that proper bookkeeping requires that an interior point

represent twice as much area as a grid point along the wall and four times that of the

corner point-shows that the net tracer input in each time step is the flux through the

upper boundary. If this net flux sums to zero, say a cosine pattern, we neither gain nor

lose tracer while running the model.

The stability criteria for determining the size of the time step is computed by the

Von Neumann analysis, where a wave like solution T!. = A,,e (u3Ay+pkAz) is plugged

into the finite difference form of the equation. In our notation, n stands for a time step

corresponding to an elapsed time nAt from the initial condition, jAy and kAz are the

distances from the origin along the y and z directions, and I and p are the wave numbers

in those directions. The numerical scheme is usually stable for all wave numbers when

the amplitude of the wave A does not increase with time, so A,+ 1 /A, < 1. This leads

to an upper bound on the time step

At 1 (2.7)

For most practical implementations, the limit is usually smaller.

The physical basis behind the size of the time step is that the information will

not travel more than one grid point away at each step. This way there is enough time

for each point to adjust itself to changes in the fields. In our diffusive problem, this

translates to a scale determined by dividing the diffusion coefficient by the squared grid

spacing.



Results

Vertical mixing with specified fixed flux

Numerical simulations were used to check a wide range of initial conditions, surface

heat fluxes, and parameter ranges. For the linear problem (2.1) one should not expect

difficulties, especially because a simple analytic solution exists (2.2). This solution is

reproduced numerically in figure (2.2)a; where Q = cos(7ry), y E [0,1], and ic1 =

K2 = 1, which according to our previous analysis is a reasonable value for oceanic

scales. Further numerical experiments show that the nonlinear problem (2.4) behaves

in the same desirable fashion and seems insensitive to different initial conditions, always

resulting in the same final temperature structure, regardless of the initial temperature

distribution pattern.

As we start increasing the ratio r = K2/Ki [Q = cos(iry) as before], the temper-

ature contours in the northern region tend to become vertical while cooling persists all

the way from top to bottom. The transition from the pattern suggested in figure (2.2)

is smooth. The solution for K = 2/Ki= 100 is represented in figure (2.2)b. The heavy

marked line is the border between the convective overturning region and that with a

thermal diffusivity r 1. The turbulent region where mixing is controlled by convective

overturning is always present in places where heat is taken out of the ocean into the

air, so that in all regions where Q < 0 at the surface, vertical mixing is dominant,

and the well mixed region might reach all the way to the bottom. The boundary lines

surrounding the strong vertical diffusion region always emanate from the Q = 0 points

at the surface.

In the two other figures, the ratio K was still kept 100 but , is no longer a

unity as it is in (2.2)a-b. For (2.2)c Ki = 10, while for (2.2)d ri = 0.1. Increasing ri.

corresponds to stronger vertical diffusivity in the south, while decreasing it is equivalent

to a more pronounced horizontal diffusivity. This is born out clearly in the pictures.

The temperature structure in the south is more surface trapped when the horizontal



Figure (2.2). Temperature structure from solving equation (2.4) for a specified cos(7ry)
heat flux. The ratio r. between the diffusivities in the northern (r- 2 ) and southern (xi)
regions is 1 in figure (a) and 100 elsewhere. (a) x = r1 = 1, as in the analytic solution
(2.2) with no overturning. (b) i = 1, regions to the right of the heavy line are weakly
unstable. (c) ,si = 10. (d) , = 0.1.
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diffusivity is strong (2.2)d, and less so [compared to (2.2)b] when the vertical diffusivity

is dominant (2.2)c. In the north, the temperature is always nearly depth independent.

As the pictures indicate, the shape of the interface is sensitive to the value of X1.

Similar numerical experiments that are not presented here, were carried out with the

same values of i., but with larger values of K = 1000 and 10000. These experiments

verified our previous statement that for fixed r.1, the shape of the interface does not

depend on the ratio x. The choice of r. = 100 is based on practical considerations.

Because the time step is inversely proportional to x (2.7), a steady state solution for

large . will take considerable computer resources. Since we already argued that to first

order neither the interface nor the temperature in the south depends on it, one can

safely choose values which are not very large. On the other hand, the figures clearly

show that the location of the interface depends on the relative strength of horizontal

and vertical diffusivities in the south. The stronger the horizontal diffusivity, the more

the interface is pushed at the bottom toward the northern wall.

After exploring the sensitivity of the model to different diffusivities we look at the

effects of the boundary conditions. Two types of surface heat fluxes are treated.

1) A specified value corresponding to KT. This value might be time dependent.

2) A flux that is proportional to the difference in temperatures between the sea surface

and that of the air. This flux can vary with time even if the air temperature is

fixed because the sea surface temperature can be time dependent.

In order to reach a steady state, the total amount of heat exchanged between the

ocean and atmosphere should be zero. For the first case this translates to the integral

constraint f KT_ dy = 0. (To avoid possible problems in northern regions where the

diffusivity can change in time due to local instability, the local surface heat flux ,cT, is

always specified instead of specifying T, and multiplying it by the appropriate ic.) If

the flux is time dependent, a periodic steady state can be reached, namely, a situation

where there are periods of time over which the cumulative flux vanishes. We can write



this constraint as f dt f T, dy = 0, since, although in the winter the oceans get colder

and in the summer warmer, on a yearly (or multi yearly) average, their heat content is

fixed in this approximation.

Whichever forcing is chosen, the convective overturning is limited to regions of

negative heat flux. In addition, the shape of the solution in the southern region always

approximates that suggested in the analytic solution (2.2). If the cooling period is

short compared to the speed of the downward vertical mixing, the marginally stable

region can be bounded vertically, and will not reach the bottom.

Forcing with a yearly cycle

Results from a periodic steady state based on monthly average data are represented

in figures (2.3)a-e (the results repeat in a yearly cycle). The data, taken from Oort

and Vonder Haar (1976), was stretched from their 10* latitude belt to fit our grid

resolution. As the authors point out, there are several problems associated with this

data, including the less than reliable information in the northernmost latitude belt,

and the fact that the data really relates to fluxes in and out of a latitude belt which

covers both land and ocean, while the rate of heat storage is smaller for land than for

water. We will not go into these difficulties, nor do we claim that our results are an

exact representation of the oceanic heat balance.

One should view our specified monthly heat balance in more general terms, and

consider only the broad similarities between our results and ideas about the general

circulation. In particular, one should note, that in the data collected by Oort and

Vonder Haar the annual average rate of energy flow from the atmosphere to the ocean

in the latitude band 60*-90* is positive. In our results this reflects itself as warming so

the temperature structure in the north is somewhat like the south. It is probably best

to limit our observations to latitudes below 60* where the data is more reliable. The

other parameters used in the numerical simulations were i, = 100 and T-MID = 0.02



Figure (2.3). Temperature structure in a periodic steady
ing heat flux taken from Oort and Vonder Haar (1976).
(c) May. (d) August. (e) October.

AUGUST

state based on monthly vary-
(a) December. (b) February.



The first figure, (2.3)a, corresponds to December, when the unstable region is quite

deep but does not reach all the way to the bottom. The large surface extent of the

unstable region is a result of cooling over a large latitude band. This is due to warm

surface waters and cool air, typical of late summer/early winter situation. As winter

progresses, the region deepens, reaches the bottom and becomes wider. Figure (2.3)b

shows the maximum extent of the convective overturning region occurring at the end of

February, when the unstable region covers most of the subpolar gyre. As summer starts,

the unstable region is isolated from the top, because Q suddenly becomes positive. The

blob of fluid with K 2 > K 1 shrinks and erodes very rapidly due to horizontal diffusion.

In the ocean, the decay rate is sometimes slower. For example, the signature of the

Weddell polynya can be detected many months after its creation. But much like in other

eddy features, this is probably due to mechanisms not treated here, most notably, the

flow field and the relative stability caused by possible rotation of the chimney. Other

structures like the MEDOC chimney (see chapter 3) erodes faster, on order of a few

months. May is the first month in which the stratification is stable everywhere [figure

(2.3)c]. Note, that the temperature structure in southern regions does not change.

As summer progresses, the temperature structure becomes more surface intensified.

Compare, for instance, the zero contour for May and August [figure (2.3)d]; the latter

is much deeper as a result of three months of intense heating. In October the heat flux

changes sign, and much of the north is cooled. Unstable regions evolve, and a chimney-

like structure can be seen between the 0.0 and the 0.1 contours of figure (2.3)e in the

region of the lowest point of the interface. The model developed in the next chapter

will deal with this feature more extensively. Note also, that the deep fluid is relatively

unaffected by the seasonal cycle, and does not show any strong horizontal or vertical

gradients. In addition, in all realizations the isotherms bend upward from the equator

and the northern boundary into the subpolar gyre. In spite of the simplicity of the



description, we are able to capture some of the general features of a yearly climatological

cycle in the world ocean by employing the simple idea of convective overturning.

Flux depending on air to sea surface temperature gradient

When the surface heat flux is proportional to the difference between the air-sea tem-

perature, our results are qualitatively the same, but require some elaboration. For

simplicity, assume that the air temperature has a cos(iry) (constant in time) profile,

and let Q = Tair - Tsu' (up to some proportionality constant which does not depend

on the value of ic next to the surface). In a steady state, the temperature of the fluid

does not change, so f Q dy = 0, or f T'" dy = 0, but as the solution evolves towards

this condition, there are changes in the temperature structure. Let us use the analytic

solution (2.2) as an initial condition, so that the surface temperature is symmetric in

y and averages to zero. As time progresses, the changes in southern regions are small

compared to those in the north, (this is of practical importance, since the time step is

governed by the largest of the it's, although changes in the south happen on scale of

the smaller one) where the surface temperature tends to be more homogeneous because

the whole water column is being cooled, as opposed to a surface intensification in the

south. This leads to the relation f T'" dy > 0, which is observed in figures (2.2)b and

(2.6)a. As a result, Q is negative, and the fluid is cooled more and more as time goes

by. As already noted, we must end up with f Ta" dy = 0, and since we started with a

value of zero and progressed to a positive one, we must pass some maximum along the

way, after which the value of the integral decreases to zero ever so slowly. It is around

this maximum that the solution has actually gained its final shape, which is basically

kept intact (apart from a decrease of temperature everywhere) as f Tsur dy -+ 0. Fig-

ure (2.4) shows the relationship between the air and sea surface temperatures in the



process, with figure (2.4)b as an enlargement of (2.4)a around the intersections of the

four lines.

Line (A) is the air temperature which is fixed in time and has a cosine profile.

(B) is the initial surface temperature-also with a cosine profile so Q(t = 0) = 0.

(C) is the surface temperature after some time-note that it has a positive integral so

Q(t > 0) < 0. Line (C) is different than (B) in the northern region only, indicating

that the convective overturning process is faster than the regular mesoscale mixing in

influencing the stratification. Over this short time span, the surface temperature in the

north decreased by a couple of degrees Celsius, while that in the south remained fairly

constant. (D) is the final surface temperature profile. It is almost like (C), but is shifted

down along the ordinate over the whole domain. This results in a more horizontally

uniform temperature structure, where now the integral of the surface temperature

vanishes. The surface location of the Q = 0 point drifts slightly to the north. Initially

it is at the y coordinate of 8.45 (intersection of lines A and C), while in the final stages

the intersection of lines A and D is at y = 8.65. Figures (2.5)a-b show the isotherms

for Ic2 /ici = 100 at two different times. Figure (2.5)b is the result of running 50 times

longer than was necessary for (2.5)a, and both after a long enough time so that the

integrated surface temperature converges to zero. Note, that not only do they share the

same general structure (apart from the fact that the average temperature decreased),

but also that both look remarkably like figure (2.2)b for which we used the same c but

a cosine heat flux.

Differences between the case with specified air temperature and that with specified

flux can be identified by looking at the horizontal temperature structure at three differ-

ent depths presented in figures (2.6)a-b. The first corresponds to three cross sections

in figure (2.2)b, and the second to the same sections in figure (2.5)b. Section (A) is the

surface temperature, (B) the temperature two grid points away from the surface (13%
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Figure (2.5). Temperature structure when the flux depends on the specified air tem-
perature. (b) is the same as (a) but after running the model 50 times longer.
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of the total depth), and (C) is the temperature one grid point from the bottom (7% of

the total depth from the bottom).

It is evident that the temperatures in figure (2.6)b are everywhere colder than

in (2.6)a. This is due to the fact that for a specified air temperature a steady state

is reached only after intensive cooling, whereas for a specified flux, the net cooling is

always zero. But the temperature gradients are also different in the two cases. The

horizontal temperature differences in (2.6)b are 3.5, 9.75, and 12.75 corresponding to

lines (C), (B), and (A), while they are about 1.2 times larger in figure (2.6)a. The ver-

tical temperature differences also exhibit the same tendency. The surface temperature

is about 11.5*C warmer than the near bottom temperature in (2.6)a, while it is only

9*C warmer in (2.6)b. This indicates that not only is the fluid everywhere colder when

the flux depends on the air to sea-surface temperature, but also that the stratification

as well as the horizontal gradients are weaker. The figures also help corroborate some

of the observations we have already made. In northern regions all three plots merge to

almost a single line, indicating that the temperature is vertically uniform. The horizon-

tal thermal structure is more pronounced near the surface, confirming our observation

that the deep fluid is cold and nearly homogeneous, while the temperature structure is

surface intensified.
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Different averaging schemes

The last set of figures for the convective overturning model (2.7)a-c shows the difference

between a steady state resulting from forcing the fluid with a yearly average of a

monthly varying heat flux, and that resulting from taking a yearly average of monthly

results. In figure (2.7)a we have taken a simple average of the temperature structure

on the last day of each month, where the monthly states were computed using the Oort

and Vonder Haar (1976) data mentioned before. Out of these twelve monthly states,

five were already introduced in figures (2.6)a-e. Figure (2.7)b is a result of taking the

average of the monthly varying heat flux and generating the appropriate steady state.

For both these figures r. = 100 in the unstable regions, but is taken to be one in figure

(2.7)c, which in all other respects is the same as (2.7)b. Therefore, the relation between

(2.7)c and (2.7)b is the same as between (2.2)a and (2.2)b, with the sole exception that

the heat flux used is different. The region between the heavy lines in (2.7)c is the

unstable region.

As expected, all three figures have the familiar cosh(z) cos(y) temperature struc-

ture in the south where the isotherms are surface intensified. But even there it is clear

that the surface temperature in (2.7)a is higher than in the other two figures. This

phenomena is a result of convective overturning. In the winter-for instance the month

of December in figure (2.3)a-the convective overturning region reaches well into the

southern portion of the basin, thereby mixing the upper cold fluid with warmer wa-

ter from below, and on the average cooling the surface water less. Thus, the average

temperature is warmer than that corresponding to the average heat flux. On the other

hand, in figure (2.7)b the overturning region is fixed, and never gets close to the equa-

tor. This warming effect of turbulent mixing can be found in other locations, as can be

seen by comparing the northern regions in (2.7)b to (2.7)c, and (2.2)a to (2.2)b. One

can also explain the surface warming by looking at the differences between the yearly

cycles with and without overturning. If there is no intensive mixing the temperature
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Figure (2.7). Temperature structure for different averages with the monthly data taken
from Oort and Vonder Haar (1976). (a) Average of twelve monthly realizations, each
with r. = 100. (b) A steady state from average heat flux of the above data with K = 100.
(c) The same as (b) but r. = 1.
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only changes seasonally next to the surface, and is approximately fixed at great depth.

It there is mixing, the situation is different in the cooling periods. At that time the

mixing penetrates deeper than before, while the temperature of the water column next

to the surface is almost depth independent. Its value is some mean of the cold surface

water and the warmer water from below, thus necessarily warmer than without mixing.

The other major difference between the figures is of course the colder regions where

we see that although the average heat flux results in a convective overturning region,

the monthly average does not. Note also, that the overturning region does not have

large horizontal gradients, especially compared with the unstable region in the linear

problem whose solution is presented in (2.7)c. As with most of our results so far, the

deep fluid is nearly homogeneous regardless of method of averaging.

Discussion

After having established the insensitivity of the numerics to initial conditions, the

influence of different heat fluxes on the final temperature structure is explored. Several

features are observed in all the results.

The structure in southern regions, where the fluid is heated, exhibits a strong

resemblance to the surface intensification property of the analytic solution (2.2). In

northern regions, where the heat flux cools the ocean, the convective overturning pro-

cess dominates, and the isotherms are nearly vertical. The deviation from vertical is

due to the finite vertical diffusion coefficient. The larger it is, the more vertical the

lines become, but practical considerations of decreasing time step with X, and a lack of

new insight for very large x's, dictates choosing a moderate diffusion coefficient. The

interface between the two regions emanates from points at the surface where the flux

vanishes. Its shape is controlled by the strength of the horizontal diffusion in the south.



The periodic simulations clearly show that a yearly cycle can be reproduced with

convective overturning. Again, the features in northern and southern regions are prac-

tically unchanged year-round, but those in mid-latitudes show a pronounced response

to the thermal forcing. The yearly variability of the density field is largest at places

where the turbulent processes are strong, in particular, if the changes of the forcing

with time are large. The cooling in the winter time produces a region with weak verti-

cal gradients. This region is isolated from the top at the beginning of the summer, and

erodes by horizontal diffusion. The picture described above gives a rough sketch of the

oceanic temperature structure. There is a thermocline in southern regions, cold deep

fluid everywhere, and weak vertical gradients in northern regions. These gross features

are apparent in the time dependent and steady state realizations.

Flux versus air to surface temperature gradient

For the linear problem (2.1), specifying the flux as proportional to the temperature

difference between the air and the surface fluid is equivalent to a mixed Neumann and

Dirichlet boundary conditions, resulting in a well posed problem. The nonlinear prob-

lem is probably still well posed, but the already noted remarkable similarity between

figures (2.2)b and (2.5)b, opens some new questions about the difference between cases

where the heat flux is given and those with known air temperature. The exact details

of the time development of the two until a steady state is reached was summarized in

the previous section.

It is easy to see that if T1 (y, z) is a solution for a given Tir (y), then T2 (y, z) =

T1(y, z)+ To is a solution when the boundary condition specified is Tair(y) = Tpir(y) +

To. This statement is an indication that changing the air temperature by a constant

will change the solution by the same constant everywhere. In this respect the air

temperature boundary condition differs drastically from the specified flux boundary

condition. For the latter, if its integral over space and time is not zero, there is a net



cooling or heating, and no steady state is possible. For the former, the steady state is

possible because the surface temperature can always adapt itself so that the integrated

gradient of air-water temperature vanishes.

For example, line A in figures (2.6)a and (2.6)b corresponds to the surface tem-

perature structure in figures (2.2)b and figure (2.5)b, both with a cosine-like shape (at

least in the south). But there is a notable difference between the two: when we specify

a cosine flux structure, T"r = 0 at mid-latitudes [8.45 on the figure (2.6)a]; when the

air temperature is given, the surface temperature at the same location is about -1

units in figure (2.6)b. In this case, there is a net heating at that point, and the line

separating the convective overturning region emanates from a point more to the north

than before. The same difference is observed in figure (2.4) lines (A) and (D) as ex-

plained in the previous section. An even simpler example is given by the case in which

the air temperature is, say, 2*C everywhere, the steady state is an ocean with a uniform

temperature of 2*C, and hence no flux anywhere. The corresponding flux boundary

condition is zero flux everywhere, so diffusion can smear all temperature gradients. For

a flux condition, only if the average temperature of the fluid is initially 2*C, will the

final temperature be 2*C; for different initial temperatures, the final temperature will

be a different constant.

This last observation has a numerical application: for a given air temperature, one

can compute f4' Tair dy = M, (with L as the south-north extent of the domain) and

then subtract M/L everywhere from Tair. In this way we can conveniently work with

numbers with a zero average.

Since the flux and air temperature boundary conditions react differently to a con-

stant shift in forcing, the striking resemblance of figures (2.2)b and (2.5)b may not be

a general rule. Thus, if there is a solution to the problem where the flux depends on

the difference between the specified air temperature and the sea surface temperature



that is determined by the model, it is not always possible to specify a simple heat flux

that will give the exact same temperature everywhere.

Consider the two solutions to the linear diffusion equation (2.1) with the same

x and with z = 0 at the bottom and D at the top. Let the first, T('), be reached

when the specified heat flux at the surface is .T(' (y, D) = -Q(y), and the sec-

ond, T(2), corresponds to the case with the flux depending on the difference be-

tween the surface temperature and the specified temperature outside this boundary,

,cT(2)(y, D) = T(2 )(y, D)-Q(y), where in both cases Q = (Qo/ V ) cos(miry). The ana-

lytic solution (2.2) to the linear Poisson problem is T = A(m) cos(miry) cosh(mwz/vqr),

so for the two different boundary conditions we get

miricA(' (m) sinh(m7rD/V4) = -Qo

mx7r.A( 2 ) (M) sinh(mirD/if_) - A (2) (M) cosh(mirD/x/4) = -Qo. (2.8)

From these expressions we can find the coefficients A( (m) and A( 2 ) (m), and use them

in the expression for T above. For large enough m or K, we can neglect the second

term in the last equation compared to the first, and thus we have A(M = A( 2). The

introduction of convective overturning in (2.4) turns the problem into a nonlinear one.

However, if we use the same argument-which should strictly apply only to the linear

system-and apply it in our example for which ic = 100 and m = 1, we find that

the two solutions should be quite similar. The constant difference in the temperature

between the two figures is of no concern, because we can always add free solutions to

the homogeneous problem-like a constant.

For smaller values of r. the second term in (2.8) cannot be neglected, and the

differences between the results are more pronounced than those between figures (2.2)b

and (2.5)b.



Steady state versus average of periodic states

In the oceanographic literature many studies are based on the usage of climatological

forcing, in particular, the use of climatological winds to force the oceanic circulation.

Obviously, climatological quantities are nothing but a mean over instantaneous mea-

surements, and the larger the time span of the measurements, the more indicative of

climatology they are. Other climate models use seasonally varying forcing as boundary

conditions; for example, Busalacchi and O'Brian (1980) and Philander and Pacanowski

(1984). Most of the recent studies are done using primitive equation general circula-

tion models applied in tropical regions. This is due to the fact that people believe that

the response of the equatorial circulation to variability is much stronger than that of

mid-latitudes. But in general, those models say very little on the difference between

the mean of the variable forcing and the climatological one.

The purpose of figures (2.7)a-c is to show the difference between forcing the ocean

by a time dependent force and looking at the mean temperature structure, and forcing

the ocean with a time average forcing. A major difference between these two approaches

is that the last is a true steady state, while the first is a composite of time dependent

situations. A priori, this is sufficient for the two techniques to yield different results,

in particular because our problem is inherently nonlinear.

Based on changes occurring in both the cold and warm regions, several important

features can be established from the three figures. When averaging periodic states,

the surface temperature is warmer in the south and the surface intensification is more

pronounced. This change is mainly due to the fact that in taking the average of

monthly realizations, because the surface heat flux is time dependent, the influence of

the turbulent mixing can be traced in regions where in the second average we have

only heating. This is particularly true for the southern regions, where the mixing is

vigorous in the winter time due to cooling, but the net yearly effect is heating. As

was explained before, convective overturning in the south in the cold winter months



will cool the surface water less due to heat exchange by vertical mixing with deeper

fluid. This would change the stratification up to the penetration depth of the winter

processes, and make the surface temperature intensification more pronounced in figure

(2.7)a than (2.7)b.

Similar observations where also made by Bryan and Lewis (1979) when running a

primitive equation general circulation model . The strategy for their numerical experi-

ments had three parts. An initial spin-up period of about 521.6 real years-where the

fluid was forced with an annual mean forcing-was followed by about 604.5 real years

with a seasonal forcing. The final conditions at the second stage were used as a basis

for a variety of relatively short experiments for tuning of parameters. The authors note

(see also figure 4 in their article) that when the ocean is forced by seasonal boundary

conditions the interior temperature decreases and the thermocline becomes shallower.

This is in qualitative agreement with the results presented in this section and those of

chapter 5.

This observation is particularly important in ocean-atmosphere models where it is

common to force the fluid with climatological forcing as in figure (2.7)b, in particular

those models that use convective overturning adjustment. If the first averaging proce-

dure is used, the surface temperature in equatorial regions is warmer by about 4*C,

thus, having a drastic effect on the heat flux and the related results.

Another striking feature is the lack of a convective overturning region in figure

(2.7)a. The reason behind this is very simple. If there is one month in which the

stratification is stable everywhere, then adding this stratification to the yearly average

marginally unstable stratification will result in a stable structure. This is true because

the turbulent mixing process weakens the vertical temperature gradients, thereby mak-

ing what was initially unstable become only marginally unstable. If we add these very

small negative gradients to any positive gradient representing a stable stratification we

will most often end up with a positive quantity. Indeed in the summer time figures



(2.3)c-d indicate that the oceans extracts heat from the air at all latitudes from equa-

tor to pole, thus, positive vertical temperature gradients can easily overcome any weak

winter time negative gradients.

This would not be true in the absence of convective overturning. In this case, the

strength of the instability would be comparable to the stabilizing effects, and the net

effect at each location would depend on whether cooling or heating was more persistent

there. Because of the lack of overturning region in (2.7)a, the isotherms in the north

are not vertical next to the surface as in (2.7)b, and the temperature is warmer in

the north. This means that although the surface temperature in equatorial regions is

higher, Ty (which is needed when computing the meridional heat flux in the ocean) can

be the same or even smaller.

The last figure (2.7)c is again a result of heating by average forcing, but this

time with no turbulent mixing (ic = 1 everywhere). It shows clearly two of the main

characteristics of the mixing process that are also be observed in chapter 5 where

circulation is included in a similar model. The unstable region is smaller when mixing

is introduced, indicating that the process is successful in bringing most of the fluid

to a stably stratified state. The temperature is also different. The mixing process

homogenizes the temperature in the vertical, and at the same time it makes the interior

colder by bringing cold surface water in the north downward. Compare for instance

the 0.0 contour and see that a larger portion of the fluid is colder in (2.7)a-b than

in (2.7)c. As a side effect, because the net amount of heat in the system is fixed,

the temperature contours next to the surface are a bit more crowded with mixing than

without. In chapter 5 the distinction between this crowding of isotherms and the depth

of the thermocline will become clearer.



Conclusions

We have used a mixing parameterization that assumes that turbulent mixing is domi-

nant over mesoscale mixing in unstable regions. This parameterization was combined

with the assumption that the flow field is very weak, (diffusive fluid), and proves suc-

cessful in capturing some features observed in the general circulation pattern. We

generate a thermocline in southern regions, deep cold fluid everywhere, and vertical

homogeneity in the north. These features are robust, and appear in all results even

though a variety of surface heating functions were used, and no flow field was present.

If instead of this cartesian coordinate system, along and across-isopycnal mixing is

employed, the temperature structure turns out to be depth independent and resembles

the isotropic limit (large x) of the cartesian model. The addition of the flow field to the

isotropic limit will lead back to the features described above, and will be further in-

vestigated in chapter 5. The contrast between the two results suggest that the missing

physics in the isopycnal model (like a flow field) is rather important in oceanic studies.

Two other comparisons were made between different heat fluxes. In the first we

concluded that the differences between specifying the heat flux and specifying the

air temperature, are small for large r.'s. These small changes include colder fluid

when the air temperature was specified, and a slight northward shift of the convective

overturning region. In the second comparison, the differences between a steady state

and average of periodic states was investigated. Our results carry an important message

to atmosphere-ocean models using climatological forcing. In averaging periodic states,

the winter events of strong vertical mixing in southern latitudes caused the surface

water to warm up by about 4*C, thus, the resulting air-sea temperature gradient will

be different. Also, in this procedure one warm summer month is enough to overcome

the signature at all marginally stable locations at other months, resulting in stable

stratification everywhere. Based on these differences between averaging instantaneous

realizations and averaging the forcing, one should always be clear about the type of



averaging procedure used. Regardless of the averaging taken, by bringing down cold

water in the north, the mixing causes the deep fluid to become colder and so the

isotherms are more surface intensified in the south.



Chapter 3

Water mass formation by buoyancy loss
without advection

Introduction

In the previous chapter the concept of convective overturning was introduced and ap-

plied in regions where the vertical temperature profile was unstable. Here, the same idea

is used to formulate a simple model that describes the formation process of chimney-

like structures in open water. This model is fairly general and is not an attempt to

explain the details of any particular deep water mass formation. It should only be

understood as highlighting the possible importance of vertical mixing in the process.

The concept of water masses in oceanography can be exemplified by Wfist's Core

Layer Method. In his arguments Wist shows that if we look at tracer maps in the

ocean, we find tongue-like shapes of tracer properties. It then seems reasonable to

assume that the direction of the flow in that region follows the shape of the tongue.

It is true that the rotation of the earth and diffusion can cause tracer distribution

patterns unlike the flow pattern, [Neumann and Pierson (1966), pp. 407] but still

Wist's Core Layer Method, was and still is justifiably popular as giving an indication

of the flow pattern, and pointing to possible tracer source locations. An important

question in physical oceanography is to investigate the origins of these water masses,

and the processes under which they were formed.



In our simplified model we add salinity to our temperature field and let the den-

sity depend linearly on both salinity and temperature. By introducing different heat

and salt fluxes at the surface, we create chimney-like structures in our fluid; in those

chimneys the density and salinity are homogenous. From these chimneys (which were

created by mixing only), tongues of water masses can spread horizontally by diffusion

and advection.

Most of the work relating to water formation has to do with regions like the

Mediterranean, Weddell, Greenland and Labrador Seas. The few observations available

support the idea that the waters are formed in chimney-like structures, for instance

MEDOC Group (1970), Gordon (1978) and (1982), Carmack and Aagaard (1973),

Lazier (1973) and Clarke and Gascard (1983). At those locations, water masses are

formed by open water convection or along continental shelves, and can afterward be

traced as deep boundary currents. Although our ideas can be applied to these regions,

they can also be utilized in explaining the formation of known shallow water masses.

Evidence of "near surface" water masses are often encountered in the data. For

example, the high salinity Levantine Intermediate Water in the Mediterranean Sea

appears clearly in data plotted by Wist (1961). These waters are found at a depth

range of 200-600m. Another example is the upper portion of the high salinity water

in the Eastern North Atlantic. Based on a new analysis by Pollard and Pu (1985) this

water mass is not related to the Gibraltar Straits outflow, but is actually separated from

the outflow region by a layer of minimum salinity, a layer that is ventilated north of

the outcropping of the anticyclonic wind driven circulation. The last notable example

is mode water like the 18*C water in the Sargasso Sea. This water mass is formed in

the winter time by atmospheric cooling, and is easily identified year-round by looking

at isotherms in the Eastern North Atlantic.

In his overview of mode waters at different locations throughout the world, Mc-

Cartney (1982) explains that they are characterized by their homogeneity, in particular,



a minimum vertical gradient anomaly with respect to their surroundings. In a regional

volumetric census, this result will show up as a distinct T-S class. Locating the tongue-

shaped paths of the mode water away from their convective source is done by following

their minimum of potential vorticity, which is a result of their minimum stability.

Obviously, there were other modeling efforts relating to water mass formation.

Notably, Killworth (1976) modeled the violent mixing stage observed in MEDOC, an

experiment with which we will also compare results. Killworth model is more involved

than ours, and couples the convection to geostrophic adjustment by using the full set

of the equations of motions. He obviously has the advantage of getting a more detailed

evolution picture of the process, and after carefully choosing the thermal diffusivity

coefficients and a very special initial density profile, he is successful in duplicating and

various aspects of the MEDOC observations. In contrast to Killworth, our model is

simpler and emphasizes the general features of the formation process, in particular, by

stressing the importance of mixing in the procedure.



The model

The chimney structure is characterized by vertical homogeneity of density and other

tracer quantities, such as salt. But although the fluid inside the chimney has the same

density as the fluid right at the base of the structure, (otherwise the chimney would

penetrate to deeper or shallower depth) the tracer concentration inside it is different.

This new tracer value results from vertical mixing of a quantity whose concentration

is often depth dependent.

The generation of a chimney adds a certain volume to a certain density layer,

and takes mass from the density layers above this particular density. Because this

added mass has different properties than those found in the density layer, the tracer

properties of the density layer change when the chimney erodes by preferred along-

isopycnal advection and diffusion. This will be observed as tongue-like shapes with

different tracer concentration. If the chimney is an isolated feature, the new added

mass and tracers are miniscule, and the effect will quickly disperse. On the other

hand, if we envision a situation with many chimneys whose formation process, albeit

irregular, repeats itself in time, we can easily create a local mode water.

The formation process we propose is simple yet effective. Wherever there is buoy-

ancy loss at the surface, say due to heat loss or loss of fresh water, vigorous vertical

mixing is initiated to erode the new unstable stratification. The longer in time and the

broader in space the buoyancy loss is, the deeper and larger the chimney will be. Of

course other processes could enhance the structure, in particular, local precondition-

ing can help a short event of buoyancy loss to contribute in converting shallow and

intermediate water into a deep water mass.

Because of the simplicity of the model one can look at the buoyancy loss events as

a perturbation, and impose them on some general heat flux pattern, like the Oort and

Vonder Haar data used in the previous chapter. But imposing small random variations

on the forcing does not lead to the water mass production described here. Not only is



the ocean stably stratified in the upper part of the water column, but also the time scale

for non-turbulent diffusive processes is large. In order to have water mass production,

the perturbations-depending on preconditioning-should be strong and steady, for

periods usually longer than a week. Obviously, in a long enough series of random

perturbations one cannot exclude the possibility of events of water mass production,

but by and large the effects of the perturbations will only graze the surface. Similar

results were also derived analytically by Bryden and Stommel (1984). The authors

showed that there is a critical value of buoyancy loss that must be associated with the

Mistral winds in the western Mediterranean if they are to be successful in producing

deep water. On the other hand, based on observation, one can justifiably argue that in

reality the perturbations are very large, much larger than the mean. For example, the

daily heat loss in the period of the Mistral was several times larger than before it. So

if we want to call the Mistral a perturbation to the local weather pattern, we probably

have to restrict it to occur not more than a few times a year. In that respect we cannot

treat it as a perturbation in the regular sense of a small amplitude random event.

One of the important features of the model is the lack of circulation. This is not

to argue that the velocity field is not important, but rather to show how far one can

advance with diffusive processes alone.

Because the formation depends on buoyancy loss, one can generate chimneys even

in simple cases where the density depends linearly on temperature alone. For instance,

a regions of vertical homogeneity is observed in figure (2.3)e. But in order to observe

tongue-like shapes spreading from a formation region, one needs an additional tracer,

chosen here as salt. Inside the chimney the temperature and salinity are homogeneous

in the vertical, but are not necessarily the same as those at the base of the chimney [see

for example figures (3.2)a,c and (3.4)a,c which will be analyzed shortly]. In the erosion

process, this water with different salinity will be observed as the tongues mentioned



before. The diffusion equation for temperature and salinity, and the new relationship

for the density are written as

Tt = TYY + (x, Tz)z

St = SYY + (r SZ) (3.1)

P = PO [1 - a(T - To) + #(S - So)]

where K. and , are the dimensionless diffusion coefficients for temperature and salin-

ity. They are not necessarily the same, and their relative size is less important in

the generation process as long as they become large enough when the stratification is

unstable.

_ O(1), p1 ;> 0;
1sx, - 00, pZ < 0.

Numerical implementation

The numerical scheme for solving this set is identical to the previous implementation in

chapter 2, and involves adding time derivative terms Tt and St. The notable difference

between the two is that in solving (2.1) we look for steady state solutions, where T = 0.

Here, a water mass formation process is described, so the problem is inherently time

dependent, and a steady state is not reached. In all cases, the final states describe

the fluid after running the model for the same amount of real time. Both the initial

condition (stratification) and boundary condition (imposed buoyancy loss) have a pro-

nounced signature on the generated structure. The grid resolution in the horizontal

and vertical is 16 x 64, and r. = 1000.



Results

The results of the water mass formation process model are exhibited in figures (3.1)-

(3.4). These were obtained using the set (3.1), by time stepping the diffusion equations

for temperature and salinity, and increasing the vertical mixing coefficient when the

density was unstable. In order to isolate the effects of winter cooling, we specified zero

salt flux through all boundaries at all times, and zero heat flux except for a short step

function along the upper boundary. This is equivalent to confining the fluid into an

insulated box, with a small hole in its upper wall through which we cool the system,

and sits well with the idea of looking at the process as a strong event superimposed on

some annual cycle. The localized nature of the event will be further commented on later

in this chapter. Because of the linearity of the equation of state, similar results can be

obtained by replacing the heat flux with loss of fresh water, or some combination of the

two. Thus, one can apply the same process to describe phenomena in regions where

intense cooling is more dominant, (18*C mode water) or where loss of fresh water is

caused by warm summers (Eastern Mediterranean regions).

We examine the effects of two parameters on the process: the initial stratification

(which is always stable), and the strength of the heat flux. Figures (3.1)-(3.2) represent

the cases with an initial linear temperature profile in the vertical (T c z) and a

exponential salinity layering (S c eZ). The other figures (3.3)-(3.4), correspond to

a surface intensified exponential temperature and salinity profiles (T, S c e4 z). It

is not of paramount importance that the salinity decrease with depth as rapidly as

the temperature. As mentioned before, it has no effect on the possibility of chimney

creation. In our example, it is simply more instructive. We start with a strong surface

signature of salinity, and show that after generating the well mixed region in the vertical,

a new salinity maximum corresponding to a density different than that in the top layer

can be found. The effect is more pronounced if the initial salinity variations are strongly

surface intensified, as in the case of the exponential profiles chosen here.
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Two heat fluxes are examined. The units are irrelevant as long as we note that

one is four times as large as the other. Thus, figures (3.1)a-c, (3.2)a-b, (3.3)a-c, and

(3.4)a-b are with a heat flux of 1, while (3.1)d-f, (3.2)c-d, (3.3)d-f, and (3.4)c-d are

with a heat flux of 4. Overall, there are two different initial stratifications and two

distinct heat fluxes, leading to the four possible combinations summarized in table

(3.1).

Figure Surface Heat initial temperature initial salt
Flux structure structure

(3.1)a-c, (3.2)a-b 1 z e _-1
e3_

(3.1)d-f, (3.2)c-d 4 z e''1

(3.3)a-c, (3.4)a-b 1 4- e'-

(3.3)d-f, (3.4)c-d 4 e *-i e''-1
e4 -1 ed -1

Table (3.1)

For each of these four cases we present five figures: temperature, salinity, density,

variations of salinity with depth before and after the generation of the chimney, and

salinity histograms (amount of salt in each density layer weighted by the volume of that

layer) before and after the process. The temperature, salinity, and density [figures (3.1)

and (3.3)] show that changes from the initial stratification outside the chimney region

are very small. This is a result of our choice of weak horizontal diffusion and intense

enough cooling so as to create the chimney in a short time span. In addition, the figures

clearly show that the fluid inside the chimney is very well mixed, with almost constant

salinity, temperature, and density.

These results are further confirmed by looking at the variations of salinity with

depth before and after the chimney's creation [figures (3.2)a,c and (3.4)a,c]. The solid

line in each figure represents the situation before the generation, and the dashed line

that after the generation. The two lines overlap at all depths larger than the chimney

depth, where they separate with an abrupt jump. From there to the surface, the dashed



line is nearly vertical, representing the well-mixed salinity in the chimney. The size

of the salinity jump at the base of the chimney indicates how much larger the salinity

in the chimney is compared to that in the density layer below it. Once the chimney

erodes, its fluid with relative high salinity will mix with that in the appropriate density

layer, thereby generating the high salinity maximum.

The histograms in figures (3.2)b,d and (3.4)b,d represent the total amount of salt

in each density layer divided by the volume of that particular density layer

S ,) f S(p')dxdy
f 6(p,p')dxdy

where the integration is taken over the whole basin, p' is a particular density, and 6

denotes the Dirac delta function. The solid line in each of the figures stands for the salt

content before the generation of the chimney, while the dashed line is the salt content

afterwards. To a good approximation, the two lines overlap with the exception of the

dashed peak. Consider, for example, a density layer that lies above the base of the

chimney. Before the generation of the chimney, it had a certain salinity (defined as the

total amount of salt it that density layer divided by the volume of the layer). After

the formation event, both the volume and the total salt content of the layer decreased

(because a certain amount of fluid was removed form that layer), but the salinity of the

layer is not changed. The only layer whose volume and total amount of salt changed in

a way as to affect the salinity, is the layer at the base of the chimney. The amount of

water type of that density increased by the volume of the chimney, but the salinity of

the chimney is not the same as that in the density layer under it. Thus, we get a new

peak below the surface showing that the salt content of this density layer increased.

The size of the peak depends on the relative size of the chimney with respect to the

basin and the initial amount of fluid in the density layer corresponding to the chimney's

density. All other things being equal, if we were to make the chimney wider, the peak

would be bigger.



Because the salinity in the chimney is higher than at the corresponding density

layer [note the jump in figures (3.2)a,c, and (3.4)a,c], once the chimney collapses by

along-isopycnal processes, it will be possible to observe a tongue shape of salinity

maximum spreading from the formation region.

The relative contribution of salt and temperature to the density field can easily be

assessed from the graphs. In figures (3.1)-(3.2) the temperature is linear with depth

while the salinity is exponential, and the resulting density field is somewhat bottom

intensified. In general, as the equation of state (3.1c) shows, the two fields tend to

counteract each others contributions to the density. Higher temperature causes the

fluid to become less dense, while higher salinity causes density to increase. The net

contribution of these two opposing effects usually favors the temperature because even

though as a rough order of magnitude #l 4a, the temperature variations can easily be

20 times those of salinity, so the net effect is that the temperature variations dominate.

Moreover, even though for small scale processes like salt fingers, the differences between

the molecular diffusivities of salt and heat are important, It is not clear that the eddy

diffusivities are not approximately equal. In that case, one only needs one parameter

in the equation of state, which is why one often uses equation (1.1f) instead of (3.1c).

Comparing figures (3.1)a-c to (3.1)d-f, (3.2)a-b to (3.2)c-d, (3.3)a-c to (3.3)d-f,

and (3.4)a-b to (3.4)c-d, we note that when the cooling is increased by a factor of four,

the chimney does not penetrate to a depth four times greater, but only to about twice

the depth when the temperature layering is linear, and less than three times the depth

when it is exponential. The proper analytic expression will be derived shortly.



Discussion

One of the purposes of the process model is to show that one can generate a source for

a water mass by a mixing process. This idea is especially important if we remember

that in all other processes where a flow field is present, some sort of vertical circulation

is implied. This vertical circulation is not observed in many locations where shallow

water masses are found. In addition, conservation of mass requires that if there is

downwelling in the water formation region, there would be upwelling somewhere else.

This upwelling next to mode water locations is not reported.

In our pictures, the water mass is distinguished by its salinity maximum; this of

course is only an example, and many other tracers would be good candidates, including

those that do not contribute directly to the equation of state.

In all our examples the salinity in the well-mixed chimney corresponds to the

salinity in a density layer that lies at about half the chimney's depth. The exact

location is the intersection between the dashed and the solid lines in figures (3.2)a,c

and (3.4)a,c, each for a different initial layering and heat flux. When the formation

process stops, this pool of saline water will advect and diffuse along the density surface

corresponding to the density inside the chimney. This density surface obviously lies

at the base of the chimney. This mixing process increases the amount of salt in that

particular density layer. The salinity histograms (3.2)b,d and (3.4)b,d show the new

maximum clearly. It is this salinity (or other tracer) maximum that is found in available

data at different locations throughout the world oceans.

The above argument relies heavily on the idea that once a chimney is created,

diffusion and advection tend to occur along isopycnal surfaces rather than across them,

because these surfaces represent geopotential surfaces. If this is indeed the case, the

new pool of water created will join the appropriate density layer at the bottom of the

chimney, thereby changing its average tracer properties.



The erosion of the chimney can be examined in several ways. For instance, one

can rewrite the equations in density coordinates by replacing the vertical coordinate

z with p. Alternatively, we could keep the present coordinate system, but replace the

diffusion coefficient in the heat equation and salt equations (3.1)a-b by the second

degree tensor introduced in (2.3). Any one of these schemes can be used to further

describe the salinity propagation after we established its source as the chimney.

Depending on the initial stratification and the strength and duration of the fluxes

imposed at the top, the chimneys can reach different depths. This depth is important

because it represents the depth of the density layer along which fluid created in the

well-mixed chimney moves. To compute the depth -h of the chimney given a total

amount of heat MT, we introduce to the following notations. Let p(S, T) be the density

in the chimney, p (S(-h), T(-h)) the density at the base of the chimney, and S =

Sf0 S(z) dz the salinity in the chimney. Because p(S, T) = p (S(-h), T(-h)) we

must have

T=T(-h) - . S(-h) - -J S(z)dz].
a _h _h

The total amount of heat is thus

XTJ[ T(z) -T - (S - ) dz

[T (z) - T(-h)] dz - - [S - S(-h)] dz. (3.2)
-h a -h

Because T(z), and S(z) are known, h can be computed given MjT, as presented in

figure (3.5). When starting with a linear temperature stratification, T = z, (3.2) gives

zm oc I if 3 = 0 (no salt), which is the reason our computations are done for two

heat fluxes differing by a factor of four. For this linear case, increasing the total amount

of cooling by four causes the chimney to penetrate to twice the depth. The result is

confirmed by comparing figures (3.1)a-c to (3.1)d-f. The second, with four times the

heat flux, shows a chimney about twice as deep. The exact numbers from figures



(3.2)a,c show a depth gain of 30/18 ; 1.7. The value is smaller than 2, because as the

second term in (3.2) indicate, and as we know from the equation of state (3.1c), the

salinity has a destabilizing effect on the density. As we penetrate deeper, the salinity

decreases, thereby making the fluid lighter, hence part of the cooling is compensating

for that effect and not acting to make the chimney deeper. As seen by comparing

figures (3.3)a-c to (3.3)d-f, for an initial exponential layering the increase in depth is

more dramatic. The exact depth gain in this case is 35/13 e 2.7, and is based on figures

(3.4)a,c. Nonetheless, small changes in the heat flux will not cause significant changes

in the depth of the salinity maximum. Even if we look at a very cold winter with 50%

more cooling, the penetration depth will increase only to 360m from an initial 300m,

assuming linear temperature profile and no salt. This relative insensitivity of depth to

climatic variations is encouraging, and means that the vertical location of the center

of the water mass formed will be fairly stable.

Similar conclusions were also obtained by Warren (1972) by considering that the

energy budget in a water column consists of a balance between the absorbed short wave

solar radiation, the net long wave radiation emitted from the sea, and the sensible and

evaporative heat fluxes. The empirical forms for these constituents were approximated

by Newtonian cooling law. It is important to note that Warren assumes that the

temperature structure in the thermocline is linear with depth, which leads him to the

same power law we obtained here for the similar case.

Solutions to (3.2) for the cases investigated are presented in figure (3.5) as a

z versus total heat graphs. The value of 3/a is taken from data from the Eastern

Mediterranean presented in figure (3.6), where AT = 220 - 14* = 8*C, AS = 39.10o -

38.6/ = 0.5/, and # is four times larger than a. For these values the dimensionless

(= s = 0.25, with asterisks denoting dimensional quantities. The dashed line

in the figure corresponds to the exponential temperature and salinity [figures (3.3)-

(3.4)], and the solid one to the linear temperature and exponential salinity [figures
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(3.1)-(3.2)]. One can clearly see that a much smaller amount of heat is to be removed

if we want to reach the bottom in the doubly exponential case. Also, when the depth is

large enough-say, below the intersection of the two lines-a small amount of cooling

would cause a pronounced depth change when both fields are exponential in z. Similar

graphs for the same T and S profiles but for different dimensionless #/a will have the

same shape but slightly removed to the left or right of the current lines. Because the

salinity is destabilizing the stratification, curves with smaller #/a will be to the right,

while the others will move to the left. When both T and S are exponential in z, the

intersections of the dashed curve with the z = 0 line are at a total heat values of (0.197,

0.174, 0.150), when #/a = (0.15, 0.25, 0.35) correspondingly (the middle value is the

one used in this section). This indicates that even large salinity fluctuations have small

effects on the profile, and although it is true that smaller amount of heat is needed

to reach the same depth when there is more salt, the similarity between the different

curves suggest that one cannot altogether neglect the local variation of the profiles with

depth if one wants to account for small changes.

Not much is known today about the dynamics of water mass formation, and it

is not the purpose of this work to elaborate on these issues. For example, in the

model proposed here, the formation event is realized by localized buoyancy loss, and

questions like why one location is preferred over another, how many chimneys are there,

etc. are not treated. But it is important to note that in the ocean, one would tend to

assume that forcing is not localized, hence the buoyancy loss is much broader than the

region of the chimney. As reported by Stommel (1972), the buoyancy loss in the upper

1000 meters due to the Mistral in the MEDOC experiment was uniform over a region

spanning 200 kilometers, which is much larger than the reported 50km width of the

chimney. Stommel noted that before the Mistral, the buoyancy in that region had a

bowl shape (concave) so when the additional uniform buoyancy loss due to the Mistral

is superimposed on that shape, the result is a narrow region whose buoyancy is reduced



to zero, corresponding to the diameter of the observed chimney. Stommel concludes

that the stratification before the event is very important in determining the site of the

chimney. One can also hypothesis that once a chimney is generated, there is a 'drain'

in the region, so if the buoyancy loss is increased, the chimney does not necessarily gets

wider, but perhaps there is some surface flow into the chimney's region.

Relation to observations

Unfortunately, the available data to date on water formation processes is very limited,

due mainly to the irregularity of the process in both time and space, the narrowness

of the formation region, and the less than ideal data gathering conditions. On the

other hand, water masses of distinct properties are commonly observed even if their

formation process can only be speculated upon. In the examples below we relate our

model to some of the available measurements.

Observations in the Eastern Levantine basin in the Mediterranean Sea, for ex-

ample, Wiist(1961), show a persistent salinity maximum at depth of about 300m. A

typical salinity profile [Hecht (private communication)] taken at 33.00*N, 33.50*E is

represented in figure (3.6)b.

The available data indicate that this feature is present all year round, and does

not vary considerably in depth. This water is usually referred to as Levantine Inter-

mediate Water (LIW). It is believed to form over portions of the Levantine basin, in

particular off the island of Rhodes. Lacombe and Tchernia (1960), and Wist (1961)

reported conditions appropriate for the LIW formation north and south of Rhodes.

Morcos (1972) had observations in the southern Levantine basin, whereas Moskalenko

and Ovchinnikov (1965), Ozturgut (1976), and Ozsoy et al. (1981) consider the north-

eastern Levantine basin as a region of LIW formation. Preconditioning states like the

one observed by the MEDOC Group (1970) group were also reported by Said (1986).
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However, one should note that direct measurements of the formation process itself,

similar to the one reported by the MEDOC Group, is not available.

Although our suggested process cannot yet be confirmed by data, it is actually

supported by the lack of it. At no place in the Levantine basin does one find evidence

of upwelling that is necessary to compensate for sinking of LIW-if this were the main

formation mechanism. Now we can explain the existence of the LIW by irregular

formation of chimneys over a large portion of the Eastern Levantine basin, followed by

along-isopycnal convection and advection. A similar process can account for the high

salinity water in the Eastern Atlantic right on top of the high salinity outflow from the

Gibraltar Straits.

The most successful observational effort to date relating to water formation was

done in the winter of 1969 in the Gulf of Lyon in the Western Mediterranean Sea. These

efforts were published by the MEDOC Group (1970), Anati and Stommel (1970), and

Stommel (1972). The formation process was detected, and a dense observation scheme

was set. The charts are published in the second article mentioned above, and show

a clear chimney structure in salinity, temperature, and density-much like our results

in figures (3.1) and (3.3). For instance, section 10 of their observations [reproduced

here as figure (3.7)] shows a clear salinity value of 38.45/oat about 900m, the same

salinity value is observed at 400m. The potential temperature has the same structure

as salinity, while the density contours indicate marginal stability over the full 1000m

of the chimney's depth.

Anati and Stommel also pointed out to the importance of vertical mixing in the

process. They looked at the time variations of the vertical integral of salt and heat

in the chimney. If only vertical mixing was involved, both integrals would be fixed in

time, except for the heat loss by surface cooling [like figures (3.2) and (3.4)]. They

found out that the integral of salt was fixed, but that of heat decreased with time. To

settle the discrepancy, the authors showed that a combination of very weak surface flow
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of fresh water from the north, and evaporation, would account for the changes in heat

content, leaving the salinity practically untouched. The importance of vertical mixing

in the water mass formation is one of the conclusions from that result.

The linear equation of state used in the discussion is a very good approximation in

the Eastern Mediterranean, where typical values for salinity are between 38.6 and 39.1

parts per thousand, and temperature varies from 14*C to 22*C. For these units, the

salinity expansion coefficient # is about four times larger than the thermal expansion

coefficient a. Because the overall temperature variations are about 16 times larger

than those of salinity, it is the overall temperature structure and heat flux that largely

determine the stratification. This is seen in the density profile in figure (3.6)c [taken

at the same location as the salinity profile in figure (3.6)b], which barely shows the

signature of the robust salinity maximum. The temperature profile in (3.6)a looks

much more like the density structure than the salinity does, and is another indicator

that temperature variation are important in affecting the local density.



Conclusions

The convective overturning process was utilized to generate a chimney-like structure

in the open water at locations where there is a net buoyancy loss at the surface. This

pool of homogenous fluid eventually mixes into a certain density layer while modifying

its tracer properties. The salinity maximum observed in the LIW, as well as other

mode water found around the world's ocean, can be explained as a result of strong ver-

tical mixing (with no vertical circulation), followed by diffusion and propagation along

isopycnals. The air-sea interactions which were neglected here in order to investigate

the thermal forcing alone might also tend to enhance our result by strong mechanical

mixing due to momentum fluxes, and by contributing to preconditioning the region.

We also showed that knowledge of climatological forcing in the mode water area can

lead to a good estimate of their depth. This can be used to help determining whether

mixing was dominant in their formation process.

The remarkable similarity between the MEDOC Group figures and our model

clearly indicate that strong vertical mixing plays an important role in the process, and

represents an alternative to the traditional viewpoint which emphasizes sinking per se.



Chapter 4

Two region vertical circulation
driven by cooling

Introduction

One of most striking features of the vertical gyre is the strong asymmetric circulation

forced by simple differential heating, with broad upwelling region and narrow down-

welling. Because of its smallness, the northern sinking region can be looked upon as

some sort of a bottle neck, which makes it important to understand the dynamics there.

In the following pages, we propose a simple model where cooling from the top and the

existence of a northern boundary help in maintaining a vertical gyre in a rotating fluid.

Our results concerning the contributions of different dynamical processes to the circu-

lation serves as a framework and increases our knowledge of the physics in the northern

part of the ocean.

As is done in many circulation models, we simplify the problem by envisioning

that the northern sinking region is composed in the vertical of a mixed layer-where

the cold water temperature is approximately independent of depth-laying on top of

an interior fluid. Although a model like that can be extended from equator to pole to

include the broad region where the fluid returns to the mixed layer from the interior, we

found it beneficial to concentrate on the particular region where fluid is being pumped

from the mixed layer and not into it. This is why we often refer to it as the northern

or sinking region. The restriction to northern latitudes has the obvious disadvantage



that one might need to specify the boundary conditions along the latitude where the

sinking region is connected to the rest of the vertical gyre, even though there is no rigid

wall at that location. In particular, difficulties can arise from the feedback between

the different boundary conditions. When the air turns colder the surface fluid will be

heavier and will sink faster, thus, affecting the interior circulation by bringing colder

deep water next to the surface. This will affect the conditions along the previously

mentioned southern latitude, as well as the heat flux that it is proportional to the air

to sea surface temperature difference.

The problem is also very interesting from a fluid dynamics point of view. The

analysis of the system will lead to some remarkable results relating the conservation of

angular momentum to potential vorticity, the effects of weak friction on the circulation,

and the distinction between the direction of the flow field and that of the information

passed in the fluid. In this chapter we will describe this two region rotating fluid model,

and present some analytic solutions for the flow and temperature fields.



The model

We envision the fluid to be confined to the geometric configuration represented in

figure (4.1). Schematically, there are two regions in the vertical [denoted by (i) and

(ii)], differing in their dynamics. The sense of the circulation is clockwise, so that fluid

enters the upper region (i) along y,. Due to air-sea interaction it becomes colder while

moving northward, so it sinks and enters region (ii) where it completes its turn and

joins the interior circulation. The geometry is constrained by a wall at the northern

boundary (y.), and a flat bottom at z = -D. The interface between the two regions

h(y) would usually deepen as we advance northward, (possibly reaching the bottom) to

account for the fact that both the downward flow field and the cooling tends to push it

toward the bottom. This is also suggested by the shape of the interface in the figures

presents in chapters 2 and 5.

The interface is located at depth z = -h(y) and its shape can either be specified

or left as a parameter. In all but one of the analytic solutions we present, we let it be a

function of latitude; in the one where we do not, we assume it is flat in order to solve an

elliptic equation in a convenient rectangular domain. Later it will become evident that

the character of the solution is independent of the shape of the interface. Moreover, the

formalism employed here can be easily extended to include the warming regions where

fluid enters the mixed layer from below. This enhancement will be presented shortly.

The proper physical boundary conditions required in completing the description

should include information on the temperature (T,) and velocity (0,) of the incoming

flow, as well as the air temperature (Ta'). Information on the outgoing flow (#

and T(")) should probably be determined as part of the solution. The other conditions

satisfied by the proposed configuration are:

(1) The temperature along the northern wall must equal that of the air. As we get

very close to the wall v -+ 0; therefore, it takes a parcel of fluid an infinite amount
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Figure (4.1). The schematic geometric configuration. The interface between the two

layers is at depth h(y) and reaches the bottom before the northern wall. Possible
characteristics are presented in the lower domain.



of time to reach it, so it has enough time to equilibrate its temperature with the

air temperature.

(2) The surface heat flux is proportional to Tair - Tsurface. The air temperature will

be specified but the surface temperature is part of our solution; hence the flux is

actually determined by the model.

(3) No flux through the bottom and northern walls.

(4) The integral constraint odz=0 = _ v dz+f ~_") v dz is easily obeyed-UD f-dzy Z+-D

because we use the continuity equation (1.3) to define a stream function @, = -v,

and require V) = 0 along the top and bottom.

Two steps will be taken towards solving the problem. In the first, which we will

refer to as the uncoupled problem, we postulate the momentum and heat budgets in

each layer and solve for each region as a separate entity. For this part the stream

function value along the interface (tb) is a free parameter and should be specified.

It will turn out that in the upper layer we will have two coupled equations for the

temperature and stream function and also one unknown boundary condition. Specifying

0,B is nothing but determining this condition, which in turn, enables us to solve the

two equations. In order to solve for the lower layer one would need to know k,, TB,

and u, (the last is the meridional velocity component). They can either be arbitrarily

specified, or alternatively VB can be specified and the other two determined from the

mixed layer solution.

In the last section of this chapter we deal with what we call the coupled problem.

There, a scheme will be proposed where the upper and lower regions are coupled.

The values of the temperature and velocity fields along the interface will no longer be

arbitrarily specified but are computed as part of the solution. Mathematically, this

problem is more difficult because the solutions in both regions are not independent.

Moreover, additional information is needed (like 0@( )) for the problem to be well posed.



The heat and momentum budgets in each layer reflects our assumptions about the

governing physical processes in each region. These mechanisms are of course indepen-

dent of whether we choose to solve the coupled or uncoupled system. Thus, the same

equations will be used in the two problems.

Upper layer balances

For the model to duplicate features of the circulations, it is convenient to treat the upper

layer as a mixed layer where the temperature is approximately depth independent. The

following sections illustrate the governing equations in that region.

Heat equation

The heat equation in the mixed layer is derived from the advection diffusion equation

(vT)y + (wT)z = Tzz

where the horizontal diffusivity was neglected with respect to the vertical one, and the

continuity equation was used. The equation is integrated once in the vertical to give

dz (vT)y + wTibot = (4Ttp .1)

where we let the interface be a function of latitude, assume that w = 0 at the top, and

that there is no diffusive flux through the interface. At this stage three steps are taken

to simplify the equation.

(1) The velocity and temperature fields are split into mean (-) and perturbation (');

V = v+ v', and T = T + T'. The primed fields are characterized by a zero vertical

integral. The first term on the l.h.s. is now written as

- (VTh), + a Iy dz(v'T') +vBThy

where Leibnitz rule for differentiation was used, and, as always, the subscript B

denotes evaluation along the interface.



(2) w, is evaluated from the vertically integrated continuity equation. The second

term on the l.h.s. of (4.1) is now expressed as

-- (Fh)TB - vB T hy.

(3) The r.h.s. is approximated by a Newtonian relaxation as X'(Tair - T), with X' -

X'(h) having the order of magnitude of ic/h.

Summing the three contributions, equation (4.1) takes the form

-(UTh)y + TB(Vh), + h(v'T')y = X'(Tair - T)

where h(v'T')y = - f@ dz(v'T'). If we now assume that the temperature is approx-

imately depth independent and replace TB with T, the equation simplifies further to

-hUTy + h(v'T') y = X'(Tair _ T)

Vertically integrating the stream function defined by -Oz = v, and letting @ = 0 at

the top leads to B = -:Uh. If we also assume that the (v'T')y term is small compared

to FTY, we end up with

kB (y)TY = X'(Tair _ T) (4.2)

Note, that this equation is general and holds for a non-constant layer depth. The

main assumptions used to derive it were the smallness of the (v'T'), term, and the fact

that the temperature is approximately depth independent. It can also be derived in an

analogous fashion by writing the finite difference heat and mass conservation equations

for a fluid column.

For scaling purposes we make use of two known values: Taa which is the air

temperature at the northern wall, and T, the temperature of the incoming flow through

y,. The scaled equation is

Tair - air
(y)TY)=YX T T - T). (4.3)T - T



Here, T is 0(1), X = X, and V is a scale for the northward velocity. The coefficient

X can be interpreted as

r.L L/V Time scale for horizontal motions
X = -==

H 2 V H 2 /K Time scale for vertical diffusion

This usually gives a small number in the interior, and a larger one in the mixed layer.

Momentum Balance

Dissipation of momentum in the mixed layer is postulated in the simplest way by

introducing linear drag in the momentum equations, viz:

-fv = -ru

pofu = -p, - porv

(4.4)
0 = -pz + pogaT - porw

vY + wz = 0

leading to

r2 by + (r2 + f 2)pzz = ragTy. (4.5)

Our system is now composed of two equations (4.3) and (4.5) relating the temperature

and stream function in the upper layer. The boundary condition ?PB is also unknown,

but the incoming flow field, its temperature, and its depth are specified. The u velocity

is determined from (4.4a) once the stream function is found.

At instances where we do not want to have dissipation where there is no shear in

the flow, it is appropriate to replace the linear drag with a V2 operator. The linear

drag was chosen here mainly to simplify the equations. In addition, because of the

geometry of the system, there is always shear in the upper layer stream function. If we

decide to make the substitution, (4.5) will be of higher order (V 44 instead of V2 b),

the equation will remain elliptic and the solutions would probably not change much.

100



Lower layer balances

The lower region represents the interior fluid (region ii) that lies under the mixed layer.

In general, the viscous forces there are small and often are completely ignored.

Heat budget

Assuming we have no dissipation of heat, the equation takes the simple form of vTy +

wT_ = 0, which can be concisely written as

J(i, T) = 0. (4.6)

Momentum balance

The momentum budgets of the upper layer are general enough and can be successfully

applied in the lower layer. Because we want to look at the limit where r -+ 0 we keep

the same y and z equations (4.4b) and (4.4c) but add the nonlinear terms to the x

momentum balance. This way the meridional velocity would not vanish when friction

does. (In the upper layer, dissipation is important and balances the fv term, in the

interior, frictional forces are much weaker and inertial terms are more important.) If

we define the quantity m = u - fy, we can write the new x momentum balance that

replaces (4.4a) as

J(k, m) = -ru (4.7)

where the rest of (4.4) is still applicable. The quantity m is important because it

represents the angular momentum of the system. The equivalent of (4.5) will now be

rV24 = f m. + agTy. (4.8)

Note, that unlike the mixed layer, the lower region is described by three statements

(and not two) (4.6), (4.7) and (4.8) relating m, # and T.
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The pure thermal wind case is a result of taking the limit of r -+ 0, thus reducing

the set to geostrophy in y and hydrostatic balance in z. The deviation from hydrostatic

balance is usually negligible because it enters the scaled equation via the ?,, term. This

contribution is smaller than the 0,_. one by order aspect ratio squared. The limit of

r = 0 turns out to be of particular interest in light of the fact that the interior fluid

will conserve both temperature and angular momentum. The results will be rather

surprising.

A more general model for the mixed layer

Before we start analyzing the proposed model for the northern part of the circulation

we would like to present a more complete picture of the full scale gyre. Consider

the configuration of figure (4.1) in a global circulation problem with a large distance

between the two side walls. As before, the ocean is divided in the vertical into two

domains, with a mixed layer on top of the interior fluid. The shape of the mixed layer

is a function of latitude-either known or determined as part of the solution. For this

geometry, the formal presentation of the dynamics in the mixed layer is now a little bit

different than before, but that in the lower layer is unchanged.

The heat balance will be the same as in (4.1) with an additional term representing

the fact that in the region of incoming flow into the mixed layer there is a contribution

to the global heat balance from advection of heat into the layer. This effect is enhanced

as the temperature discontinuity at the base of the mixed layer becomes larger. The

heat flux into the mixed layer through the lower boundary is wT,, with w denoting the

vertical velocity at the base of the mixed layer, and T. the local vertical temperature

gradient. We can approximate these terms as wT, = (T - Tint) with T as the

mixed layer temperature (which is approximately depth independent) and Ti" the

102



interior temperature below the mixed layer. If we parameterize the Reynolds fluxes as

was done for (4.1), we get the following relation to replace (4.2)

S(y)TY = h(y) (Ta - T) + @,y (T - Ti"t ) X(sign(-w)) (4.9)

with M(sign(-w)) as the Heaviside step function emphasizing the fact that the advective

contribution is available only where there is incoming flow at the base of the mixed

layer. The complexity of the problem increases not only because the depth is now

latitude dependent, but also because the coupling between the solution in the two

layers is much stronger due to the Ti"t term.

The momentum balances are similar to (4.4), but now we have to include stress

in the equations. If we choose to ignore all stress variations except in the vertical, the

only contribution will be to the y momentum equation (4.4b), that will now be

fu = -py - rv + dr(y) (4.10)
9z

where TW (y) is the y component of the stress. The superscript w indicates that for

most cases, the stress is simply the wind stress. As was done with the vertical fluxes,

we assume that the stress vanishes at the bottom of the mixed layer. The stress, or

more generally, even a fluctuating forcing that has zero mean stress, is essential in

the formation of the mixed layer in southern regions because without it the balance

between the upward flow (wT) and the downward diffusion (icT22) leads to an expo-

nential temperature profile. It is the addition of downward mixing of momentum that

contributes to the depth independent temperature profile in the mixed layer. From

(4.4)c-d and (4.10) we generate the vorticity equation, which looks like (4.5) with one

added term

r2 9,y + (r 2 + f 2 )obz = ragTy - r (Y) (4.11)
h(y)

where as before we approximated the z derivatives by 1/h(y). Ideally, one would like

to find a third equation for the depth, thus, having a set of three equations for @, T,
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and h(y). After doing so, the system is coupled to the heat and momentum budgets

of the lower layer, and is sufficient in determining the temperature, velocity and mixed

layer depth everywhere in both layers. Technically, instead of solving a set like that, it

is often simpler to proceed in an iterative fashion by assuming an interface profile and

solving for the temperature and stream function fields in both layers. The matching

across the interface will often not be possible unless the right shape was assumed. It has

been our experience with similar problems that this procedure does not often converge,

and when it does, the convergence is very slow. Be that as it may, it is not very clear

how to write an equation for the mixed layer depth. Even for the simple case where

only diffusion was present [equation (2.4)] we did not have an analytic expression for

the interface, but its shape was computed numerically by many iterations. In this

formalism the problem is harder. A possible approach is to write the equations with

the use of convective overturning, thus, keeping the T, term, but making it vanishingly

small if the stratification is unstable. This way we might be able to compute the shape

of the interface numerically is a fashion similar to that used in the previous chapter.

Due to the complexity of the problem and our main interest in the northern region,

we decided to limit our attention to the sinking region and replace the southern extent

of the domain by some proper matching boundary conditions imposing incoming flow

into the mixed layer and outgoing flow from the lower region.
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The uncoupled problem

Analysis of heat budget in the mixed layer

The temperature structure in the upper layer can be found from (4.3) in two ways.

The simplest is to specify it along the interface; then, because the temperature is

depth independent, this actually determines it everywhere. , is found immediately

to be

x Tair - air
(y) = -nB Ty Ts - T T)

Thus, we establish all the necessary boundary conditions needed to solve (4.5) for /.

The last is an elliptic equation, so specifying the stream function around our domain,

and knowing the forcing (oc Ty) is sufficient to determine the velocity structure ev-

erywhere in the upper layer (albeit not too easy if the geometry is not rectangular).

Although by far the simplest way, one would not be automatically able to satisfy the

condition 0,,(y = y,) = V)(z = -h(y,)). For example, take a linear relation for both

T(y) and Tair. Let y = 0 be the latitude of the incoming flow, and y = 1 that of

the northern boundary. Assume a simple linear relation T = 1 - y, so T(0) = 1 and

T(1) = 0, and also that Tair = b(1 - y). Specify Vp()(z = -h(y,)) = 1 = @,(0) and

0 along the northern wall. The equation above yields 1 = X(1 - y) (1 -0-

(T, will usually be larger than b.) The condition @B (1) = 0 is satisfied, but in order to

have @, (0) = 1, we should have x (1 - ) - 1, relating the parameters x, T, and b.

Physically, these parameters correspond to the diffusivity, incoming temperature, and

air temperature, and thus are independent.

This example can be viewed as a statement that not all initial guesses of T (or

V)B), are physically meaningful for the upper layer. Only those that will yield the

'proper' values for @B (or T) near the northern and southern boundaries are plausible.

The problem obviously gets more complicated when we take into account the coupling

between the lower and upper layers.
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The second and more physically intuitive way involves solving for T when 0" is

specified. For that problem we can look at (4.3) as a first order linear equation in the

temperature, but with two boundary conditions that should be met; T = T, for the

incoming flow, and T = T," at the northern boundary. How can this be done for a first

order problem? By the special nature of the equation we are assured that since 0k, -+ 0

approaching y = y,, the temperature will converge to the air temperature. Thus, only

one boundary condition is left free, namely, T = T, at the southern boundary. The

solution to the non-homogeneous linear equation can be written as

- 1 [T "Ify x Tair(t) -Tair dt

IM) @B (t) T - Ti I

with I(y) = e * ( For simple linear relation Tair = b(1 - y) and @B = 1 -Y

(leading to a constant w, but not necessarily constant flux through the interface) the

solution for the temperature is

xb
T(y) = (1 - y) T'9 + yS ,1

which is a quadratic polynomial in y.
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Momentum budget and solutions for the upper layer

The momentum balance (4.5) enables us to determine the stream function everywhere

once the temperature is known. But in order to calculate the last, the stream function

along the interface had to be given, so now we know the boundary condition all around

the upper layer and the solution to the elliptic problem can be determined. Equation

(4.5) can be scaled and simplified by noting that based on the boundary conditions

there are two possible scales for v. The first is derived from the magnitude of the

specified incoming flow, V, = Vb.'I/H, while the second results from the thermal forcing

VT = agH(Tg -T )/rL. [The proper scale for u from (4.4a) is U = Vf/r and depends

on our choice of the scale for the northward velocity component.]

Because L/H is greater than unity, we can neglect the ,b, term in (4.5), and with

the use of the last two scales its dimensionless form becomes

1 2 +9 T (4.12)

which simplifies to y = -Ty with

=(T - Tir) r
n V L (r 2 +f 2 )

Looking at -1 as a function of r we find that the maximum of the quadratic function

is reached when r = f. This means that if we fix the forcing (VT and V,), and choose

to look at the friction as a variable, there is a region where two frictional parameters

gives the same ratio -y. One value of r is larger than the Coriolis parameter, and one

smaller.

The ratio -y gives rise to two possible balances. The strong thermal forcing balance

yields @,z = Ty, giving 0 = (Ty)z 2 /2+a(y)z+b(y). Matching the boundary conditions

at the top @(z = 0) = 0 yields b(y) = 0, while the bottom one $/(z = -h(y)) = VB (y)

gives a(y) = (Y' - hY(Ty); thus, we end up with

1
2(y Z) = -(Ty)z(z - h) + zk. (y) (4.13a)
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and we still have two more boundary condition to meet. Along the northern wall we

should have 'ip(y,, z) = b(1, z) = 0, and at the southern boundary we want @(y,, z) =

0 (0, z) = @, (z). These conditions require boundary layers along the two walls, as is

expected when we neglect the highest order derivative with respect to y in equation

(4.5).

The weak thermal forcing case is written as = 0, which after matching the

boundary conditions at the top and bottom yields

(y,= Z ?0B(Y) (4.13b)

This solution is actually the last term of the previous expression and differs from it

among other reasons because it satisfies the condition on the northern wall, thereby

requiring a boundary layer at y = 0 only. [The previous solution had 0,B (1, z) = 0, but

T,(y = 1) does not necessarily vanish.]

If we take as typical values, r = 10-5, f = 10- 4, a = 10-4, g = 103 , and

(T, - Tai) = 1, we get that for -y = 1 we need V ; 2cm/sec, and L/H ~ 50. So for

this range, the first balance explored is the key, because both 0,, and the Ty terms

are larger than unity. Alternatively, if V is larger, L/H is bigger, or the dissipation

is weaker, -y decreases, and the second balance is applicable. A first order balance

that includes the @,, term is only possible for order one aspect ratio, and appropriate

values for V and r-depending if we want to include the 0,, term, the Ty term, or

both. In the last possible balance where -y >> 1 we have to have a different scale for @

because otherwise we get Ty = 0 leading to T = T(z) which is not likely for a mixed

layer. Either (4.13a) or (4.13b) can now be coupled to the heat equation (4.3) to form

a complete set for # and T.

Despite the previous computations, the momentum equation is not very exciting

and only enables us to find the velocity field in the mixed layer after 0, is specified.

With the possible exception of the boundary layers next to the northern and southern
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walls, typical fluid trajectories resemble the first quarter of an arc. The contribution

of this equation to the global flow field will be more important in the coupled problem

because there we will not have the freedom to choose 0p, as we please.

Lower layer conservation constraints

The formulation used in the previous section contrasts the balances in the two layers,

in particular the differences in the heat budgets. The upper layer acts as a mixed layer

where the temperature is homogeneous in the vertical, while dissipation of momentum

was postulated via linear friction. In the lower layer, frictional and dissipative processes

are minute. We start by ignoring them altogether, and find out that the velocity field

has a very surprising shape. The importance of the weak dissipative processes in

altering this shape is investigated.
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The potential vorticity

For a nonlinear system that is symmetric in x and has no frictional forces we can write

the x momentum, heat, and continuity equations as

mt + vmy + wm' = 0

Tt +vTy + wTz = 0 (4.14)

VY +WZ = 0

where m = u - fy is the angular momentum of a fluid particle. We define q =

mZT, - mTz and after a short manipulation get

+t + - ) q = 0. (4.15)

This is exactly the conservation of potential vorticity (q = uzT, - uJT + f Tz) with

temperature as a conservative tracer. The major difference between this derivation

and the conventional one is the lack of y momentum equation. Thus, we conclude

that the set J(#, T) = 0 and J(#, m) = 0 is equivalent to conserving the potential

vorticity. One should also note that the small Rossby number approximation (E < 1)

of J(#,q) = 0 does not lead to J(#,Tz) = 0, because in our case a. = 0, so the x

momentum balance E(Vuy + wu.) - fv = 0 yields v = 0 to lowest order, and we have

to assume that at least one of the nonlinear terms is big enough so that our zonal flow

Rossby number is of order one. Therefore, we cannot neglect all the advective terms

relative to the Coriolis one.
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Non-dissipative fluid

The addition of the thermal wind equation to the conservation statements of heat and

angular momentum closes the set (4.14) completely

= (4.16)

Fortunately, this system of equations can be easily analyzed despite its nonlinearity.

Our conservation statements implies that m and T are functions of ?k only. Let us

write these functions as T = T() and m = M(0). Substituting in the thermal wind

relation gives

fW
ly + ,0Z = 0 (4.17)

ag T

where primes denote differentiation with respect to 2k. This hyperbolic equation is

solved by characteristics. It is more transparent to write the last equation as the set

dz f '
dy ag T'

d@ (4.18)
-= 0.
dy

From the first of these equations we know that the slope of the characteristics depends

on the stream function alone because both M' and T' are functions of V) only. The

second is simply stating that the stream function is constant along the characteristics.

Thus, even without the full solution we know that the characteristics-which are also

the fluid parcel trajectories-are straight lines. Physically what we have is a situation

where a fluid parcel must follow a straight line path if it is to conserve its temperature

and angular momentum (or equivalently, its vorticity). Along this path 4, T, and m

are fixed, and the slope of the line is determined once these three quantities are given

along the interface. The fact that the fluid trajectories are straight was derived here

with no reference to the shape of the interface, and is a direct result of the dynamics

applied. It is quite unexpected because the conservation of potential vorticity is favored
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for general circulation problems, where the fluid path is far removed from a straight

line.

Some simple consequences can be drawn before attempting to solve for any par-

ticular problem. Let us examine the characteristics in figure (4.1). If we do not want

the northernmost one to intersect the bottom (in cases where the bottom layer has a

finite depth), we must have both a sufficiently deep lower layer, and a moderate slope.

To the north and below of this characteristic the fluid is practically stagnant, and does

not participate in the circulation scheme. As we move southward, the slope of the

characteristics must decrease monotonically, otherwise they will intersect, which would

imply that there are regions in the fluid where two stream function values are possible.

The region where the fluid trajectories are pointing straight down must be lim-

ited in its extent because we do need to close the vertical circulation cell and bring

the fluid back into the mixed layer where it will advance northward into the sinking

region. At first glance one could think that a possible exception where no bending

of fluid trajectories is needed is the situation where the mixed layer deepens to the

north with a monotonically increasing slope as in figure (4.1). Thus, it is possible to

have straight characteristics all of which have trajectories pointing upward. In this

description we can theoretically get all the fluid back into the mixed layer, but still

have a large portion of the fluid-that that lies between the characteristic emanating

from the northernmost deepest point and the lower boundary-where again the fluid

is motionless. However, it is not clear that those upward trajectories can even exist.

The slope of the characteristics depends on the ratio between M' and T' on the in-

terface. In order to have upward trajectories for some cases and downward for others,

we must change the sign of this ratio. As one progresses northward along the interface

the stream function and temperature decreases, and probably the angular momentum

has the same tendency. But even if does not, it is hard to envision it being positive for

certain interfaces and 0, values, and negative for others. In addition, our experience
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from numerical simulations indicate that the characteristics point downward for a wide

range of imposed initial conditions.

As with other problems that are solved using characteristics, if one knows the

values of the variables ip, m, and T along a particular line from which the characteristics

emanate, it is possible to find them at other locations. But one should be aware of the

difference between the direction of the characteristics, the passage of information flow

in the system, and the sense of the flow field. For example, consider free geostrophic

flow, the characteristics of which are lines of constant potential vorticity, or latitude

lines if the depth is constant. These trajectories originate at the eastern boundary and

travel westward. Sverdrup flow (which is really not a case of free flow because the curl of

the wind stress is a source of vorticity) does not follow these characteristics. Moreover,

in the southern part of the subpolar gyre and the northern region of the subtropical

gyre, the sense of the circulation opposes the direction of the characteristics.

We will show later, that although in our lower layer the streamlines follow the

characteristics, the information flow in the system is carried in the opposite way. This

means that even although the characteristics go from the interface to the southern wall,

and the sense of the circulation is clockwise, the information travels from the southern

wall towards the interface. Graphically, one can interpret the statement as saying

that the outgoing flow affects the circulation next to the interface. This phenomena is

exemplified when boundary layers are generated, and indeed we will see later on that

their location is always next to the interface rather than next to the southern boundary.
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The beta effect

As was done before when the generalized mixed layer model was introduced, we extend

the problem to a global circulation scale (although we only only look at characteristics

emanating from the sinking region) and examine the behavior of the potential vorticity

conserving fluid. Equations (4.16)-(4.18) are still valid, but now we use the # plane

approximation so f = f(y). The slope dz/dy is not constant along the characteristics

any longer, but varies with y. Because the Coriolis parameter is a monotonically

decreasing function of y as we go southward, the new slope of the characteristics will

have the same feature, as shown in figure (4.1).

The exact solution is derived in the standard fashion. Use f = fo + fly and

integrate (4.18a) to get the shape of a typical characteristics that intersect the interface

at location (yo, zo)

z = ZO + fo (y - Yo) + 1 # (y2 _ Y)j (4.19)ag 1 2

where we used the fact that because @ is fixed along the characteristics, X'/T' = 7(@)

can be evaluated anywhere along the trajectory, in particular at (yo, zo) where 7(@o) is

known. A typical characteristic is presented in figure (4.1). Note, that we were indeed

able to bend the trajectory, but not enough. Its slope will never be less than zero, so

that a fluid parcel along it will never move upward unless it had an upward motion to

begin with, (a result we already rejected) in which case, the slope of its trajectory will

decrease.

The derivation above is yet another support of the observation that even on a large

scale, the absence of friction and diffusion leads to a flow that only goes down towards

the bottom and never rejoins the mixed layer. We must therefore conclude that there

are regions where the dynamics are different from those of equations (4.14)-(4.16).
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Additional results for angular momentum conserving flow

The conservation of potential vorticity in a system symmetric in its third dimension

has additional implications. Envision a rotating stratified fluid with a thin mixed layer

on its top. Assume the value of the meridional velocity is known somewhere. The

conservation of angular momentum m = u - }#py 2 states that at a location 5000km

away, this velocity should change by more than a hundred meters per second. This in

itself really prohibit the circulation from extending over such distances. But even if it

does not, and the gyre is not confined to a narrow latitude bend, a fluid parcel that

re-enters the mixed layer with this high velocity has to dissipate its excess momentum

along its route north before it rejoins the interior circulation. This would usually lead

to very high mixing coefficients in the upper layer. Again this justifies our conclusion

that there are regions in our flow where the angular momentum is not conserved.
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Effects of dissipation on the fluid trajectories

Let us look closely at the addition of friction to the straight characteristics case. Re-

member though, that a fluid particle still conserves its potential vorticity because both

angular momentum and temperature (4.14) can still be a function of 0 only, while the

dissipation is included in the y momentum equation (4.4b). The boundary conditions

are still o = 0 along the northern and bottom walls. Using the conservation of heat

and angular momentum (4.8) is rewritten as

rV 24 = f MePo + agTey. (4.20)

In the following analysis it is assumed that M and T are linear function of @, and thus

the above equation is written schematically as

rV 2+= #'O + a@,

where a is a constant. For the purpose of examining the importance of the elliptic term

to the otherwise hyperbolic equation, the conditions on the remaining two boundaries

should be specified . This is done by assuming that the stream function along the top

of the lower domain (which is the interface) and southern walls is linear in y and z,

respectively (4 at the top left corner is 1). For simplicity, we also let the interface be

flat (the only case in the chapter) so that the lower layer has a rectangular shape. The

results are drawn in figures (4.2)a-k, where the relevant parameters are summarized in
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table (4.1).

Figure a r
a 10,000 100
b 100 100
c 100 1
d 2 1
e 1 1
f 0.1 1
g 2 0.01
h 1 0.01
i 0.1 0.01
j 0.01 0.01
k 0.1 0.005

Table(4.1)

As mentioned before, it is interesting to note that for the cases that exhibit a

boundary layer character, the layer is never at the southern boundary, but rather

along the interface. This indicates that the information along the characteristics passes

from the outflow boundary to the interface, opposite to the regular notion that the

information advances with the flow field. It is easier to understand the phenomena

by treating (4.20) as an advection diffusion equation. Note, however, that b is now

the tracer field while the velocity is given by v = ag T and w = f M. Along the

interface (and everywhere else in the fluid) 0, T, and m decrease as we go northward,

thus, T > 0 and .M > 0, and hence v and w are positive. This shows that for the

velocity associated with our tracer field, upstream means northward and up, and the

information goes from the southern wall to the interface. The location of the boundary

layer is governed by the difference between the intersections of the fluid trajectories

leaving the southern wall, and the boundary conditions imposed on the interface.

Looking at the pictures, the following observations can be made:

1) Case ('h') is basically the straight characteristics case with a slope of unity.

2) The cases with the very large slopes ('a','c','g') are those with large a, and can be

approximated to first order by @y = 0. A strong boundary layer in z near the top
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Figure (4.2). Numerical solutions for the stream function in the lower layer as a function
of a and r in equation (4.20). (a) r = 100, a = 10,000. (b) r = 100, a = 100. (c) r = 1,
a = 100. (d) r = 1, a = 2. (e) r = 1, a = 1. (f) r = 1, a = 0.1. (g) r = 0.01, a = 2. (h)
r = 0.01, a = 1. (i) r = 0.01, a = 0.1. (j) r = 0.01, a = 0.01. (k) r = 0.005, a = 0.1.
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boundary is apparent in those cases. The flow in the interior is weak. Note, that

in cases 'b' and 'd', although a is big as in 'c' and 'g', respectively, the friction

enters the zero order balance.

3) Strong friction as in cases ('b','d','e','f') bends the streamlines. This results from

the fact that the solution to byy + = 0 is proportional to yz. The streamlines

close to the upper left corner are almost straight.

4) In the last three cases ('i','j','k') the @, term dominates the balance, thus, there is

a y boundary layer near the northern wall, and the streamlines cross the interior

almost horizontally, since a < 1.

The figures indicate that the two parameters a (which relates to the values of @,

T, and m along the interface) and r (the interior friction) are important in determining

the shape of the streamlines. When a/r < 1 the dissipation is important and the

streamlines are curved. At instances where the elliptic term is small, (a/r >> 1) the

trajectories are straight ('a','c','g','h','i','j','k'). The slope of the characteristics is a, so

that when a > 1 ('a','c','g') there must be a boundary layer next to the interface. In

this layer fluid moves southward until it reaches the proper point where it can leave

the boundary and go to the southern wall in a trajectory with a sharp inclination. If a

is large enough fluid parcels will leave this boundary layer only near the southern wall;

thereby, the vast majority of the fluid volume remains motionless. For weak slopes

('i','j','k') there is a top boundary layer in which the fluid moves northward, and a

northern boundary layer where it goes down. The trajectories are almost horizontal

between that wall and the southern extent of the domain.

It is important to remember that the inclusion of friction changes the problem com-

pletely, and requires specifying boundary conditions on all surrounding walls, whereas

the hyperbolic problem alone requires only one boundary condition, on the bound-

ary from which the characteristics emanate. The requirement on the additional three

boundaries are as follows. Along the northern wall the value for the stream function
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is fixed, and is taken to be the same as at the point of intersection between it and

the interface. This choice bears no effect on the solution, since no characteristics em-

anate from this wall. The conditions on the southern wall are kept free, and when

there is no friction, are determined by the characteristics intersecting it. A potential

problem lies with the bottom boundary. On one hand we want to keep the stream

function value there the same as along the northern wall-say zero-but on the other

hand we might have characteristics which are steep enough to intersect it. One way

to overcome the problem is simply to move the bottom downward; alternatively, for a

given bottom depth there is a maximum slope value (4.18a) for which a characteristic

goes from the top right corner to the bottom left one. For all cases where this slope is

reached somewhere along the interface, but not at the northernmost point, there will

be an intersection with the bottom, requiring changes in the dynamics to construct a

boundary layer there.
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Discussion of the coupled problem

The coupled problem is just a combination of the upper and lower region solutions to

form a part of the vertical circulation cell. The fluid enters the mixed layer and goes

down into the interior where it flows southward. Somewhere in a region not treated in

the model the water re-enters the mixed layer again and moves northward to complete

the cell.

Assuming there is no friction in the interior it is easy to combine the previous

solutions. The temperature T(') and velocity 0$') of the incoming flow are specified,

as well as the air temperature. For any guess of 0,, (say linear in y to get constant

downwelling) we solve for the upper layer completely. (4.3) is used to determine T and

(4.4a) to get m. Once these are determined, we know the slope of the characteristics,

and so #i, m, and T are known everywhere in both layers. Solutions where the charac-

teristics are very steep and intersect the bottom can be rejected and a different guess

for V), can be made, leading to more moderate slopes.

When there is friction in the lower layer, the complexity of the system increases.

It was shown that the information in the system is moving opposite to the circulation,

and that a boundary layer may be formed next to the interface. We now can say that

the conditions for the outgoing flow V)(") are controlling those of the incoming one,

and vice-versa. The solution to the problem can be carried out in an iterative way.

As before, V),B is assumed and the upper layer is solved. Conditions at the outgoing

boundary are also assumed and (4.20) is solved for the interior region. A solution where

the characteristics do not match smoothly to the interface is rejected and another guess

for #01() is made. We continue to improve the guess until a solution without a boundary

layer is reached. Alternatively, we can fix #i) and change 0,, until we find a solution

where no boundary layer exists in the interior.

In the two problems described above there still is a lot of freedom even though

the solutions in the upper layer determine the shape of the characteristics in the lower
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one. We are still free to choose PB as we please, and presumably there will be a

family of values that will lead to reasonable solutions. A system where the values along

the interface are part of the solution is probably more realistic but harder to realize

analytically and numerically.

Interior constraints

In order to limit our freedom in choosing V)B but still drive the coupled system by

conditions at the incoming end we use simple conservation statements at the outgoing

end, thereby arriving at conditions relating V) and T there. Imposing those additional

constraints is in many ways equivalent to an additional boundary condition, so now not

all guesses of V),, are valid, but only those that lead to solutions with specific relations

between V) and T at certain locations. The reasons we chose the southern boundary

as the position to impose these additional conditions are two-fold. Not only do the

conditions at that latitude have to match to the rest of the vertical gyre, but because of

the direction of information flow in the system, this boundary affects the circulation to

the north of it as well. Once we come up with an additional constraint, we proceed in

the way described above until we find a solution without boundary layers for a specified

B Our constraint is checked against this solution. For example, if our constraint is in

form of a relation between and T(), we see whether our result fulfills the special

relation along the southern boundary. If, as is most likely, it does not, we change our

guess for 4
PB and start all over again. Using constraints of this type we narrow down

the family of possible solutions to a single one.

The same constraint can be worked out in the examples given before, with or

without friction in the lower layer. When r = 0, we guess @B, solve for the mixed layer,

and get the straight characteristics in the interior. These lines intersect the southern

boundary where the relation between the temperature and stream function is known.

If this relation is not fulfilled, we change V)B and solve the mixed layer again.
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The procedure is obviously tedious, but enables us to drive a system by conditions

on the incoming flow, and replace the arbitrary choice of , (or 1 ")) with a more

sound physical constraint. In general-as is often the case even without constraints-

we have to guess at least one boundary condition, and only after a partial solution for

the problem for this particular guess, can we get some feedback in order to improve the

initial guesses. As an example, we develop such a constraint in form of a relationship

between #ii) and T(").

Let us assume that the large part of the circulation that lies outside our model is

connected to our sinking region at y., and to some southern boundary at a distance L

away. In this broad interior we integrate the continuity equation over y while assuming

w = w(z), and v = 0 at the southern boundary, and get w = @i)(z)/L. This gives us

a relation between the upward velocity in the layered system and the stream function

at y = y,. If it is further anticipated that the balance in the interior is between vertical

diffusion and advection (wT, = nT_,), we can make use of the result we got for w and

solve #1")T, = s.IT,,. In particular, this relation holds at y = y,, so it is possible to

determine either T"i) or #i), assuming that one of them is known. The solution for

the last is immediate, while the one for the temperature, taking it as a a function of

depth only, is
[/z if 473) +02

T ()(z) = C1 + dz'ef~"+ . (4.21)

The free coefficients should be determined by the condition that the profile should join

smoothly with Ta, along z = -D (because this is the temperature along the northern

wall as well as the bottom), and with T P at (y., -h(y,)). Thus, we have demonstrated

that given an interior dynamic balance, it is sufficient to specify the stream function or

the temperature along the southern boundary, and if the interior dynamics is simple

enough-as assumed here-the other unknown can be determined.
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A more complicated constraint that couples the upper, lower and interior together

can be derived by heat budget considerations. The total amount of heat crossing

z = -h(y) in the layered system is (wT + cT2)C. We already related w to b.), and

argued that T = T(), but now we can equate this value to the heat flux between the

upper and lower regions through the interface, emphasizing the coupling between the

solutions in both regions.

Conclusions

In this section several unique features of the axially symmetric fluid were established.

First we showed that conservation of angular momentum and temperature are equiv-

alent to conserving potential vorticity. This is important because no information on

the y momentum equation is used, so the fluid can obey the thermal wind balance or

not, and still conserve vorticity. Then we went further and proved that if in addition

one assumes the thermal wind balance, the fluid trajectories as well as the isotherms

are straight lines. It is also apparent that the conservation of angular momentum con-

strains the north south extent of the vertical gyre. Extending the treatment to a large

scale # plane approximation or letting the depth of the interface be a strong function

of latitude does not change the character of the results.

Without touching upon the conservation of potential vorticity, it is possible to

affect the results by adding horizontal (y) and vertical (z) dissipation. The behavior

of the new system shows that information flow is propagating downstream and fluid

trajectories are no longer straight. These conclusions are not changed when the shape

of the interface is altered to suit a different geometry imposed by the forcing.

Solutions to the problem where the value of the stream function along the interface

was not specified a priori are made possible by constraining the circulation to merge

into a southern domain outside our model. The virtue of this approach is in keeping
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the boundary conditions as physically plausible as possible, so that both the outgoing

flow and the heat flux are determined as part of the solution.
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Chapter 5

Effects of mixing and seasonal cycle on
differentially heated flows

Introduction

In many references in oceanography it is customary to divide the circulation into several

parts, each one depending on different forcing. The part where the surface buoyancy

flux determines the circulation and stratification is generally referred to as the thermo-

haline circulation. It is usually envisioned as an asymmetric vertical cell with cold water

sinking in a narrow northern branch, and weak upwelling in the rest of the domain.

The vertical circulation plays an important role in equilibrating the earth climate

by transporting the excess heat radiated into the equatorial regions poleward. In

this process, atmospheric circulation is also an important factor. More so, there is

a relationship between the thermohaline circulation and changes in the global carbon

cycle, [Sarmiento and Toggweiler (1984)] while the amount of CO 2 in the atmosphere

is related to the climatic changes in the earth.

For these reasons, it is important to study the variability of the thermohaline

circulation. Variations on time scale shorter than implied by the conventional Tvc, /D 2

scale were observed by Brewer et al. (1983), and Roemmich and Wunsch (1984). They

reported changes in deep water properties in the North Atlantic over periods of 20

years, but it is not clear how these perturbations affect the surface buoyancy fluxes.

Obviously, much larger fluctuations are assumed to have happened in the deglaciation

126



periods, for example, Ruddiman and McIntyre (1981), Schnitker (1980), and Boyle and

Keigwin (1982).

But these are not the only time scales affecting the circulation. Recent numerical

studies by Bryan (1986) suggest that high-latitude small salinity perturbations-as

those that probably had happened in glaciation periods-can control deep water for-

mation and interhemispheric circulation, with negative salinity anomaly in one of the

hemispheres leading to a fast (order 50 years) decrease in deep water formation at

the same hemisphere, and strong asymmetric circulation. Positive perturbation leads

to a much slower (order many hundreds of years) asymmetry with weakening of the

circulation in the opposite hemisphere resulting in a pole to pole circulation mode.

The thermohaline circulation problem was treated in the past in many analytic

and numerical ways, including several laboratory experiments. Some of the work where

differential heating was applied over a single horizontal plane, or over two planes sep-

arated in the vertical is referenced in the first chapter. To name a few more analytic

approaches we can mention the solutions to the thermocline equations (geostrophy with

variable stratification and nonlinear heat equation) starting with Robinson and Stom-

mel (1959), and Welander (1959), and reviewed by Veronis (1969); continuing to date

with Huang (1984), and Luyten et al. (1983) using layered models.

In this chapter we would like to extend the particular approach dealing with the

axially symmetric non-rotating circulation reviewed in the first chapter in two ways.

Initially we look at the effects of turbulent mixing in a steady state, thereby applying the

ideas developed in the second and third chapters in a model that includes circulation.

The same model will then be used to investigate the behavior of the fluid forced by a

yearly seasonal cycle. Yearly changes in the ocean are probably one of the more basic

features observed, where evolutions that have longer time scales can perhaps be treated

as accumulative perturbations of yearly events.
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Circulation in the absence of rotation

For a non-rotating fluid in an annulus, the governing equations are written by substi-

tuting f = 0 in (1.6), resulting in

bj(O U) 1 a2 192
6J(#b,u) = + 2)u

V By2 +B Z2

bjlp VV) , 21 TY+ 1 a2 92 26J(, V2) RaA2-Ty + + v2 @t (5.1)
6u ~' vdy 2  8z 2
1 82 + 52Z

beJ($, T)= + 2 a T- 5By2 +z2

with A = D/L, denoting the aspect ratio, RA 2 /U = aTo/FE2 , and Ra = TD3, the
/V XV

Rayleigh number.

Because of the lack of rotation, the u velocity appears in the x momentum equation

only. If u vanishes on all boundaries, it is zero everywhere, otherwise, (say u : 0 at

the surface) after the stream function field is found, the zonal velocity is computed by

balancing the advection and diffusion in (5.1a).

To simplify the equations further, we make two additional choices. We assume a

scale for the stream function 4 = Li, /D, and ignore the nonlinear advection term

in the vorticity equation. This last assumption turns out to be quite a good one,

because the scale for 4 implies that 6a = 1, and b = 1/o is usually much smaller

than the Rayleigh number. (a is the Prandtl number which for the ocean is usually

one or larger.) Previous works cited before all kept this Jacobian term-even though

their scaling arguments for the width of the boundary layers did not include it. In the

following sections we will show that it is possible to duplicate previous results even

when the nonlinear advection in the vorticity equation is neglected. This observation

was also acknowledged a posteriori by Beardsley and Festa (1972); their results show

that the nonlinear advection terms contribute only about 5% for Rayleigh numbers
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larger than 10'. With these simplifications, the equations are reduced to the coupled

set

-Ra, 2 T = + a2) V2 b (5.2)

(1 a2 a2
J(bjT) (5.2)

K By2 z

where as before V 2  2 2 The boundary conditions used in solving the

equations are no flux through the walls, except at the top where the flux is specified.

No other forcing is used to drive the flow, # = 0 along all the walls, and no stress

conditions for the velocity components are employed; #zz = 0 along the top and bottom

walls and @y, = 0 on the southern and northern walls. These conditions are equivalent

to assuming that V) = 0 = V 2 b on all walls.

The Rayleigh number was defined before in terms of the horizontal surface temper-

ature gradient. Unlike other works that impose this value, we specify the surface flux,

Q = pCpKTz, so the AT in Ra should be replaced by p, and the Rayleigh number

now is defined in terms of flux. The last substitution makes it obvious that changing

the heat flux by a factor c is equivalent to multiplying the Rayleigh number by the

same factor.

Before we continue exploring these two equations, we review the physical essence

of the Rayleigh number. From the hydrostatic balance and the equation of state, the

destabilizing gravitational force is -agTo. The opposing viscous convection motion

per unit volume vVwzz (acceleration) is scaled by vvw/D 2 = vv r/D', where the

scale for the vertical motion is deduced from the simplified form of the heat equation

wTz = Kv T2,. With these interpretations, the Rayleigh number is

agTo destabilizing gravitational force

vy , /D3  stabilizing viscous force

In our equations, we follow the common procedure of defining the number without the

minus sign. This way the dimensionless quantities are positive, and the correct sign is
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retained in the equation. Note also, that it is possible to define a horizontal Rayleigh

number with L, VH and r., instead of D, v,, and r,. Nonetheless, because of the

physical interpretation above, it makes more sense to stick to the definition with the

vertical quantities.

For oceanic scales, the Rayleigh number is very large. Typical values of To = 20*C,

ag = O.1cm/sec 2 /*C, D = 5 - 105cm, yv = 1cm 2 /sec = te, and A = 10-3, yield

Ra = 2.5 -.10 7 and RaA 2 = 2.5- 10". Nonetheless, because of resolution problems

that will be shortly discussed, numerical simulations rarely explore this range of high

Rayleigh number. For example, note that the highest value of RaA 2 used by Beardsley

and Festa (1972) was 3 - 105 (they used A = 1), whereas several of the laboratory

experiments reviewed in their article had Ra 1010, including Rossby (1965) whose

maximum value was Ra = 1.6- 1010.

Simple analysis of the governing equations

We know from the temperature and stream function fields [for instance figure (5.2)a-

b] that the solution to (5.2) has a boundary layer character. There are actually two

boundary layers in the solution; one next to the coldest wall (warmest when one heats

at the bottom), and one next to the non-insulating wall through which we heat and

cool the system. We will refer to these boundary layers as the northern boundary layer

or jet, and the thermocline.

The first basic questions about this boundary layer character of the solution are

why is this so, where are the layers, why are they occupying that particular location,

and what is their typical extent. Because only the last of these questions is treated in

the literature, [Rossby (1965), Stern (1975), pp. 216-233] we will bring here a brief

answer to these problems.

The existence of the northern boundary layer is a result of the large Rayleigh

number. For large values, (5.2a) is approximately RaA 2 Ty = 0 in the interior, thus,
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T = T(z). This means that the heat equation (5.2b) is now written as wT, = nT,

yielding w = w(z). If the vertical velocity is independent of latitude, we must have a

boundary layer somewhere, because continuity requires that f-", w(z) dy = 0 for all

z. Thus, if everywhere we bring the fluid up, in the boundary layer it must go down,

and vice-versa.

The location of the boundary layer and the physical reason behind it are questions

that are harder to address. The first usually involves solving for the boundary layer

and matching to the interior solution. The procedure usually eliminates all but one

of the possible locations of that layer. For example, in this way one finds out that a

western and not an eastern boundary layer is the possible solution for Sverdrup flow.

The problem with our set is that matching to the interior is not sufficient, and one

should match the side wall boundary layer to the thermocline. This is needed because

the value of the stream function in the northern jet is by and large determined by its

value in the thermocline, since it is this upper flow that turns into the downward jet.

Solving analytically for the thermocline is in many respects as hard as solving the full

set, because as it turns out from scaling arguments, one should use the full nonlinear

heat equation (5.2b). The physics of preferring a northern or southern boundary layer

reflects this difficulty. Wave analysis and group velocity arguments are not very fruitful

because all waves are suppressed in (5.2). One must conclude that the location is a

result of the nonlinear interaction between the flow and the density fields.

In his contribution from (1965) Rossby put forward the proposition that the asym-

metry of the circulation is a manifestation of the efficiency of advection as heat transport

relative to convection. The interior is being cooled by the downward jet, and is being

heated by conduction through one of the boundaries. Because these two effects are of

different efficiencies, the thermocline-whose depth is determined by a balance between

upward advection and downward diffusion-is shallow, indicating that upward motion
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in the interior is strong enough to force the downward diffusion of heat to be localized

next to the non-insulating boundary.

Still, there are some simple arguments to suggest why the downward jet is at the

north. The first thing to show is that the interior flow is upward which will lead to a

downward jet. The idea behind it is that because diffusion is down-gradient, convection

should be upward. Specifically, we already argued that w = w(z) = xTz/T. At the

bottom of the basin, T. = 0, (so temperature contours are perpendicular to that

boundary) while at the top the flux is specified. If we assume the simplest possible

circulation pattern, with no vertical cells, where the temperature is a smooth decreasing

function of depth, (T oc e", a > 0) we get w > 0 in the interior, and as a result there

should be a downward jet in the north or south. The southern possibility has to be

excluded because the surface temperature at that location is the warmest of all points,

and a jet there would have to be maintained against the density gradients. The opposite

is true for a northern boundary layer. There, the fluid at the surface is the coldest, and

thus can easily sink next to the wall. Although these arguments might not seem very

rigorous, they convey the essence of the process, utilizing all the information available

in the equations and boundary conditions.

Expressions for the width of the thermocline and the northern jet for the case

where x, $ 0, can be found in Rossby (1965), Stern (1975), and Sommerville (1967).

The important point in those scaling arguments is that one should solve for the stream

function in the thermocline before the northern jet. The scale for the stream function

in the thermocline is different than that of the interior, and because it is the fluid in

the thermocline that turns into the jet, it is that scale for # that should be employed.

The scaling relates the maximum value of the stream function and the thickness

of the two boundary layers to the Rayleigh number by a power law. For example, in
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the thermocline, the z coordinate is replaced by a stretched boundary layer coordinate

z = dC with d < 1. The scaling balance from (5.2) is

Ra A2 AT = 4d-4

4AT AT (5.3)
d d2

where V) and T are re-scaled by 4 and AT to note that in the thermocline they no

longer need to have the same scale as in the interior. It is of course possible to use the

dimensional balance from equation (1.6), which in the thermocline is written as

-agTy = V ZZZZ

J(#, T) = nc T,

and to get the same result as above.

In all previous works the system was forced by imposing an order one horizon-

tal temperature gradient at the top. When driving the circulation by this impressed

temperature, the scale for horizontal temperature gradients in the interior is absorbed

in the Rayleigh number and AT = 1 in the above set. This leads to 4 oc (RaA 2 )1/5 ,

and d oc (Ra 2 )'/ 5 . But in this work the flux at the top is specified rather than the

temperature. Because this flux is order one, AT/d = 1 so AT has the same scale as

the thermocline depth, and is no longer order unity. The addition of (5.3) now leads

to a different power law, 4 oc (RaA2 )1/, d oc (RaA2)-1/ 6 , and AT C (RaA2 )-1/ 6 .

In the northern jet a set similar to (5.3) is valid

2AT 4RaA2A24 T J4 (5.4)
OAT _AT

with f as the horizontal extent of the layer. The scale AT for the temperature in the

downward jet is still unknown, but that for the stream function 4 is the same as the

one derived for the thermocline because it is the same flow that turn into the downward

jet. It turns out that the width of the layer is the same as the depth of the thermocline
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f C (RA 2)-1/ 6 , so the transports in the two boundary layers are equal. The scale

for AT in the jet is determined from (5.4a) to be AT oc (RaA4 )- 1 3 , compared to

AT oc (RaA2 )"/ 6 for the full basin width. For the typical values assumed before,

the temperature gradient in the northern jet is very small, 1.3 -10-8 compared to the

interior temperature changes, indicating that there is no thermal boundary layer along

the northern wall.

We conclude, that when the Rayleigh number is given in terms of flux, the hori-

zontal temperature gradient is an external parameter, and the boundary layer is deeper

while the circulation is weaker for the same value of Ra. Our numerical results will be

in agreement with this power law.

These scales above are the reason why it is hard to realize numerically a circulation

with large (RaA 2), say 1012. For a case like that, the boundary width is 1/100 of the

extent of the basin when the upper temperature is specified, so using conventional grid

approximations will lead to large grids and prohibitive amount of computer time.

These results can also be verified while looking at the conservation of heat in the

system. Equation (5.2b) is integrated over an area dA* bounded between the top and

bottom surfaces, the southern boundary, and in the north by a latitude line y = y*.

J [U -VT -V(cVT)] dA* =fuT.nd - iVT -n^d

with the conventional notation of U' = (v, w), h the outward normal unit vector, and

df a perimeter element. The only integration boundary that is not rigid is at our arbi-

trary latitude y*, and the only non-insulating wall through which the net temperature

gradient does not vanish is the top one. With these observations the integral above

collapses to

f 0 

Y*

] vTdz = Q(y) dy (5.5)

where the domain varies in the vertical between z = -1 (bottom) and z = 0 (top)

and Q(y) is the specified flux at the top. It is useful to split the temperature into
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two T = T* + T, where T(y) is the vertically average temperature in any latitudinal

cross section. This depth independent part of the temperature does not contribute to

the heat transport because Tf 0 v dz = 0. The integral on the L.h.s. of (5.5) has two

contributions; one from the heat transport in the interior, and one from that in the

thermocline:

I 1v(T -T) dz=-fI v(T -T) dz +]fv(T -T) dz (5.6)
i-1 -1 Jd

where the asterisks were dropped. To show that the contribution of the second is much

larger than the first, it is convenient to write two approximate conservation statements

dVb + (1 - d)vi = 0

d(Tb - T) + (1 - d)(T - T) = 0

with the subscripts b and i for boundary (thermocline) and interior values. The first

equation above states that the mass transport through any latitude line is zero, while

the second represent the fact that the total heat content in the column is fixed, and is

equal to T(y) at any given latitude. When the values of vi and T are substituted in

(5.6) the result is

J v(T -T) dz = dvb(Tb-T) (1+ 1 d ~ dvb(Tb -)

which is the contribution from the transport in the thermocline [the second integral

on the r.h.s. of (5.6)] when d is small, or equivalently, when the Rayleigh number

is large. Using the scales found before [v = O/d oc (RA 2 )1/3 , d oc (R.A 2 )-1/ 6 , and

A T oc (RA 2 )-1/6 ] the l.h.s. of (5.5) is order one, as it has to be in order to balance

the flux on the r.h.s.

Different possible balances than those of (5.3)-(5.4) are also possible. For instance,

in the absence of horizontal temperature diffusion (c., = 0) the two terms in the

Jacobian in (5.2b) balance each other. If the top temperature is specified, it turns out

135



that d oc R_11 5 while f oc Ra , resulting in a northern jet that is thinner than the

thermocline.

It is important to note that in the limit of a small aspect ratio, (when the horizontal

diffusion is weak or even completely absent) there is a thermocline structure whose

balance is the same as with large n.. This is in contrast to the analytic solution

derived in chapter 2 when no flow field was present. Our results showed that the

temperature field was depth independent if the fluid was isotropic or when only across-

isopycnal mixing was assumed in density coordinates. The conclusion is of course that

the circulation is a crucial dynamical constraint in determining the final shape of the

isotherms. In particular, we know that the thermocline structure is determined from

upward advection and downward diffusion, a balance that can still be maintained in

the small aspect ratio limit.

The scaling argument shows that the horizontal oceanic temperature gradient,

which is ATRa is proportional to R,, . On the other hand, the heat flux is proportional

to Ra. Thus, if the flux is represented as KT. oc T - Tair the orders of magnitude above

suggests that for large Rayleigh numbers one could possibly approximate the heat flux

by T, oc Ta" . This is equivalent to specifying the flux with no knowledge of the sea

surface temperature. However, it is not clear that even if ||KT I| > |ITi|, the possibility

of T = Tair is not a better approximation than KT, oc Tai,. In any case, it is important

to note that as the Rayleigh number increases the flow becomes more and more rapid,

and the nondimensional oceanic surface temperature gradient decreases. This would

have an effect on flux conditions for atmosphere-ocean models.
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Parameter range

One of the underlying assumptions in (1.6), and hence in (5.2) is that the viscosity

and thermal conductivity used in parameterizing the stress terms are independent

of location, so a term like V(KVT) was approximated by KV 2 T. When the idea of

convective overturning was introduced in chapter 2, this assumption was broken, and

we let r. depend on the local stratification (2.4). The same method is used here so the

new equations are written
RA2T~i~-Ra, = V p

(5.7)
J(O,T) = V(xVT).

[It is possible to write equations (1.6) with K and v in front of the 2 derivative and not

5y. Apart from this change the equations will look the same if we redefine E = ,

o = , and 6= ]. The distinction between the two cases investigated in this
H )VHD

work can be made using the diffusivity r.

Standard case, no mixing

All the works cited in the introduction assumed that in (5.7) v = 1 = K everywhere,

so that a is fixed. This of course allows the final solution to include regions where

the stratification is unstable. We refer to this case study as the standard, or the no

mixing case, and use it as a reference with which our results are compared. We adopt

the notation where the values of any parameter in the stable and unstable regions are

given as two numbers inside brackets, so for this standard case r. = a = (1, 1).
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Mixing case

As implied by the name, the assumption is that K depends on the local vertical gradient

of T, thus, when the stratification is unstable the density field is adjusted. The value

used was x = (1, 100) so a = (1, 1/100).

When mixing is present the effective Rayleigh number is no longer constant but

varies locally, because it depends on ,. For example, if we use the previous values

of r, = 1 = V, and we increase them a hundred fold in the unstable regions; then

Ra = (R', R') in the standard case, and Ra = (R', R'/100) when density is mixed.

Forcing

Three types of surface heat fluxes are used to drive the circulation in the domain,

normalized to a box with a unit dimension in each direction. The aspect ratio A is

equal to one throughout this chapter. The same value was also used in other works,

like Beardsley and Festa (1972). It is usually absorbed in the Rayleigh number, and

its only influence will be through the operator on the right hand side of (5.2a), having

small effects on the flow field.

1) A forcing that is fixed in time and taken as the canonical cosine. With this

boundary condition the net flux into the system is zero at any given time.

2) A seasonal forcing that varies with time, but has a yearly cycle through which

the net flux vanishes. This forcing is represented by a cosine whose amplitude is

shifted four times a year to represent the four seasons. The values that are added

to cos(iry) are 0.80, -0.19, -0.75, and 0.14 corresponding to summer, autumn,

winter, and spring respectively. The reason that the seasons are only almost

symmetric, and the maximum amplitude in the summer is not the negative of

the winter is to indicate that although the yearly net input is zero, the heating in

the summer is a touch stronger than the cooling in the winter [Oort and Vonder

Haar (1976)]. For this time dependent case, the parameter Trv/D 2 = 0.02 when
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v = 1. The time step is small enough to ensure hundreds of steps per season, so

the cycle is very well resolved.

The results will be presented at the end of each season, so a figure that will be

labeled summer, is actually a realization right before autumn conditions prevail.

3) Surface flux that is fixed in time but corresponds to permanent cooling or heating.

Two heat fluxes are employed from the values given above; continuous summer

conditions, and continuous winter conditions. It will be shown that even though

the total heat content of the system is time dependent, the flow field and the

stratification reaches a steady state.

Note, that the value specified for the heat flux is x, T, with ., as the vertical

diffusivity in the stably stratified region. This way the flux is not increased a hundred

fold at the unstable regions where and when K, increases.
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Numerical scheme

Equations (5.7) were solved numerically using a regular uniform finite difference grid

with a resolution of 17 x 17 in y and z. This turns out to be sufficient in resolving

the boundary layer character of the solution even for our highest Rayleigh number of

2 -10 5 . The diffusive terms in the heat equation were approximated using a second

order finite difference given in (2.7). The Jacobian term was estimated by the Arakawa

scheme [Arakawa (1966)]. Detailed information on this approximation in the interior

and along all the boundaries is presented in appendix A. Given a stream function field,

(5.7b) was stepped forward in time to find the new temperature field

T ("+ = T(") + At [T (") + T (n) - J((n), T (n))] (5.8)

where At is the time step, and A(") corresponds to evaluating A at time nAt. For this

equation only, the derivatives and the Jacobian notation stands for the finite difference

approximation explained before. The time step can be computed using the Von Neu-

mann stability as explained in the section devoted to numerical implementation in the

second chapter. It is the same as (2.8) but with an added term in the denominator to

account for the advection of the density field; thus, it is always smaller than the purely

diffusive limit. The extra term when evaluating the Jacobian in the Arakawa scheme

is simply oja, with Ay and Az as the grid spacing, and Tkmax is the maximum value

of the stream function.

Once the temperature field is known, the l.h.s. of (5.7a) is evaluated, and treated

as forcing for the Laplace equation. It is more convenient numerically to solve for a V2

operator instead of V4 one, hence the last equation is written as the set

q = V 2 0

Ra ATy =V2,(5.9)
A2 T -V 2 'I'

with the boundary conditions as explained before; @I4 = 0 along the top and bottom

boundaries, and Oyy = 0 along the side walls. These boundary conditions follow
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immediately from our assumption that V) = 0 = T on all boundaries. The scheme for

solving each of equation (5.9) follows Buneman (1969). Once T is known everywhere

from (5.9b), we use the same Poisson solver again to get @ from (5.9a). The new stream

function field is used in (5.8) to evaluate the Jacobian needed for the new temperature.

This new temperature is now employed in (5.9b) and the procedure is repeated until a

steady state is reached.

Results

Equations (5.7) were solved numerically for the parameter range described before, and

insulating boundaries except for the specified heat flux at the top. Steady state or

periodic steady state results for Rayleigh numbers of 2- 10 4 and 2 -105 are presented.

Where appropriate, contour plots are included to visualize information on the tempera-

ture (T), stream function (V)), thermocline (T,), and forcing (T,). For these figures the

abscissa and the ordinate are latitude and depth. At other instances, the development

of the maximum value of the stream function (?Pmax) is traced with time. The heavy

line on the contouring marks the difference between the region where T, > 0 (to its

left) and that with T, < 0.
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Constant heat flux

No mixing

In this reference case represented in figures (5.1)a-c and (5.2)a-c, one can detect the

usual features reported in other works, including the strong dependence on the Rayleigh

number in the intensification of the northern boundary layer, the shallowing of the

thermocline and the increase in value of bmax. As in Beardsley and Festa (1972), the

power law that relates /max to Ra converges slowly to the desired value which for our

case is 1/6 and not 1/5. The transition from proportionality (for very small Rayleigh

numbers not documented here) to a power law in the relationship between Vbmax and

Ra is smooth but slow. With increasing Ra, the eye of the gyre moves towards the

top northern corner of the domain. Because # = cR~1 6 where c is unknown, it is

possible to check the power law by evaluating axwhere a is to be
'kmx(R R.

determined. The values of bmax at our disposal are 3.56, 6.05, 7.37, and 8.05 for the

Rayleigh numbers of 2 -10 4 , 1 - 105, 2 -105, and 3 - 105 (the 1 - 105 and 3- 105 are not

represented in the figures). These numbers lead to a = 0.33 for the first two Rayleigh

numbers, a = 0.28 from the third and second, and a = 0.22 from the last two. The

convergence to 1/6 is rather slow. For example, Beardsley and Festa (1972) reported

that in their experiments a value of 0.36 was reached for the higher Rayleigh numbers,

where the final value should be 1/5.
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Figure (5.1). The steady state for cosine heat flux and Ra = 2 - 104 . Standard case
shown in the left column, density mixing in the right. (a), (d) T. (b), (e) 0p. (c), (f)

TZ.
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Figure (5.2). The same as (5.1) but for Ra = 2 - 105 .
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Mixing

Compared to the non-mixing case, 0//mx decreases as presented in figures (5.1)d-f

and (5.2)d-f, (because the effective Rayleigh number is now smaller in the unstable

region) but the temperature is warmer next to the surface. Compare for instance the

1.00 contour in figure (5.1)a to (5.1)c, and in figure (5.2)a to (5.2)c. At first glance

this would suggest that although the flow field is weaker, the thermocline is shallower.

This opposes the hypothesis that the thermocline depth is determined by and large

by a balance between upward flow and downward diffusion (wT, = icT,.); resulting

in a deeper thermocline when the flow field weakens. Here, the T_ contours in figures

(5.1)a,f,i and (5.2)a,f,i prove very useful, and show that actually the thermocline is now

deeper as one would expect. When there is convective overturning, the interior fluid is

colder because of vigorous vertical mixing in the northern regions. But since the total

amount of heat in the system is fixed, the surface temperature in the southern region

is higher, a phenomenon not connected to the thermocline depth.

The shape of the interface changed with respect to the standard case. It is more

curved and does not go north next to the surface and then straight down, because the

overturning is effective in bringing cold water down.
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Discussion

Whether there is mixing or not, the geometry of the cell becomes successively asymmet-

ric as the Rayleigh number increases. The center of the cell (where # = m.ax) moves

towards the top north corner with increase in Ra. The deep fluid is nearly isothermal,

and a distinct thermocline feature, where the isotherms are closely packed, is observed

next to the top non-insulating boundary.

These features are related to the increase in the importance of the heat convection

as the Rayleigh number increases. Heat is advected downward in the northern boundary

layer, and upward and to the south in the weakly stratified interior. The conduction

is important in the thermocline region where diffusion heats and cools the upper layer.

The description above is examined in the next section where we show that to a large

extent, wT, = T is a very good approximation to (5.2b) over most of the domain,

with the exception of the northern jet where the Ty, term is important.

The mixing process makes the effective Rayleigh number a local variable, depend-

ing on the stratification. The main patterns discussed above are kept intact whether

there is mixing or not, but when there is, the fluid gets colder, the overturning region

broader, and the circulation less intense. In this respect the mixing is very helpful when

dealing with realistically large Rayleigh numbers, because its moderating effect helps

in reducing the otherwise very intense boundary layer character of the circulation.

It is important to note that even if we were to increase the turbulent mixing by

a value which is different than our choice of a hundred [say, x = (1, 1000) instead of

r, = (1, 100)] the final result will not be affected. In the second chapter it was proved

that the solution in the unstable region is to first order independent of r". The same

result holds here (and was also verified by a set of numerical experiments) even though

the effective Rayleigh number depends on this parameter.

The horizontal surface temperature gradient is sensitive to the mixing and the

Rayleigh number. By scaling argument we showed that were the surface heat flux
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is proportional to Ra, the horizontal surface temperature gradient, RaAT, decreases

with increasing Rayleigh number, following a R. 6 power law. This result is verified

by drawing [T(1) - T(o)] Ra versus Ra on a log-log scale. It turns out that indeed one

gets a straight line with a slope of 5/6, which is in agreement to the theory. The values

we get for AT are 0.376, 0.286, 0.254, and 0.238 when the Rayleigh numbers are 2. 10 4 ,

1 - 105, 2 - 10s and 3 - 105 respectively. When turbulent mixing is parameterized, the

corresponding values are 0.258, and 0.177 for Ra = 2 -10 4 , 2- 10', both lying on the

same 5/6 slope. It is apparent that the dimensionless AT decreases with the Rayleigh

number, and that it is smaller when mixing is present. The fact that we get the same

slope with or without mixing might indicate that the power law is the same but the

proportionality constant is different. For modeling purposes, even if the total gradient

is unchanged, the local air to sea temperature gradient is different in the two cases,

and so might be the heat flux.

In Summary, compared with the standard case, mixing has the following effects.

" The intensity of the circulation is reduced, the thermocline is deeper and the

northern jet is wider, while the center of the gyre moves down and to the north.

* The interior of the fluid is colder, and the isotherms are more crowded next to the

surface.

* The temperature structure in the cooled region is vertical next to the surface.

" The stream function contours are more rounded and the transition from a north-

ward flow in the thermocline to the downward jet is less sharp.

" In both cases the horizontal sea surface temperature gradients decrease with the

Rayleigh number following the same power law.
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The heat equation and its leading order balance

The numerical solutions of equations (5.7) presented in this chapter show that the

interior fluid is to a large extent isothermal. The circulation is characterized by two

boundary layers; a thermocline where the flow is northward, and a downward jet next

to the coldest wall. The interior fluid has an upwelling motion everywhere.

The magnitudes of the various terms in the heat equation are presented in figures

(5.3)a-d, where vT,, wT-, Tyy, and NT., (r. = 1) are plotted as a function of depth

at different latitudes. The appropriate dash pattern presenting each of the terms is

marked on the figures by the characters a-d, corresponding to vT,, wT, Ty,, and

KT,.. The profiles in the four figures (5.3)a-d are taken at latitudes 2/16, 5/16, 8/16,

and 11/16 respectively, where latitude 0 corresponds to the southern wall, and 1 to

the northern extent of the domain. For this particular simulation with Ra = 2 - 10',

latitude 13/16 is the approximate boundary between the downward jet and the rest of

the fluid. The vertical axis of each plot is depth, and varies from 0 at the bottom to

16 at the surface. The inner plot in each figure shows the full variations of each term

top to bottom, while the larger outer plot is an enlargement of the region below the

thermocline.

It is apparent that near the bottom all the terms are small, while the balance in

the thermocline is very different, with large velocities and spatial gradients. In the

region below the thermocline, the main balance is clearly between vertical advection

wT_, and vertical diffusion .T,,, with small horizontal advection and diffusion. At the

northernmost latitude presented in figure (5.3)d, because of the vicinity to the northern

jet, we start picking up contributions from the vT, and Ty, terms.

The same set of equations analyzed here was also studied by Roberts (1977) in

the limit of infinite Rayleigh number. The problem addressed by Roberts is that of an

infinite quadrant whose walls are insulating, with the exception of a small strip near

its vertex where heating (or cooling) is applied. In terms of our y-z coordinate system
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Figure (5.3). The variations with depth of the terms in the heat equation (5.7b). Line
(a), vT,; line (b), wT.; line (c), T,; line (d), cT, (c = 1). The profiles are taken at
four different latitudes with the inserted figure showing the full variation with depth,
while the outer one corresponding to the fluid below the thermocline. The Rayleigh
number is 2 - 105, and the south-north latitude values are normalized between 0 and
1. (a) Section computed at latitude 1/16. (b) Latitude 5/16. (c) Latitude 8/16. (d)
Latitude 11/16.
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we can think of a quarter plane with its vertex at (y, z) = (0,0), extending to (y, z) =

(-oo, -oo), and being cooled from the top along a small strip from (y, z) = (0,0) to

(y, z) = (-1,0).

Following Roberts, the buoyancy loss will cause fast viscous convection in narrow

boundary layers, one next to the z = 0 wall, and the other right by the y = 0 boundary.

The interior fluid is isothermal. The mathematical justification is as follows. In the limit

of Ra -+ oo, 0 will be very large from (5.7a), thus, the zero order balance in the heat

equation (5.7b) is J(b, T) = 0, leading to T = f($). The value of f(b) is determined

from the small diffusive correction. The equation is written as V - (itT - icVT) = 0,

and integrated using Gauss's theorem, fA (- - nT - 2) dA = 0, with A representing

an area, and n as the outward normal. If the area is closed by a stream line, the first

integral vanishes, thus, replacing dT/dn by fLPt leads to f4 = 0 implying that f()
is a constant, so the interior is isothermal.

The same arguments can be extended to our finite domain and would apply if

there are closed stream lines in the interior that do not pass through the boundary

layers, and if the thermal structure were to exhibit a strong boundary layer character

with narrow boundary layers next to the four walls. But it is evident that below the

thermocline our results are not in agreement with the balance proposed by Roberts,

where to a first approximation J(0, T) = 0.

One can argue that the root of the discrepancy is our finite Rayleigh number.

But this is probably not the case, because Roberts suggests that a Rayleigh number

as small as 100 would be a reasonable lower bound for his arguments, while in our

experiments the Rayleigh number was much higher. Moreover, our quantitative results

concerning the width of the boundary layers are different than his. Roberts predicts a

Ra 1/3 thickness law, whereas our solutions are much closer to the prediction of a Ra 1

power law when the flux is specified, and a R-" 5 dependence when the temperature
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is given. In addition, all our stream lines seems to pass through the boundary layers

and no closed stream lines are observed in the interior.

The strong boundary flow proposed by Roberts is a result of his assumption that as

Ra -- oo, so does the stream function. It seems reasonable to assume that the velocity

would increase, because the density gradients are scaled by the Rayleigh number in the

z momentum equation, so one needs to have large V2 w to balance them. But this does

not necessarily mean that b is infinitely large, but only that its gradients are strong,

as is the case in the boundary layers (the expression relating ?Pmax to Ra is different

in our work and that of Roberts). In the interior we would argue that as Ra -+ oo,

Ty - 0, so b is still small enough so that in the heat equation, a term like vT, can be

smaller than T,,.

The contrast between our model and that of Roberts can be visualized when dealing

with B6nard convection. In that case, the circulation is confined into a cell that is

differentially heated along the top and bottom. It now seems reasonable that the

motion will be in the boundary layers surrounding the cell. Following a fluid parcel

starting at the top left corner, the parcel is cooled until it reaches the right wall where

it sinks without temperature changes. Along the bottom boundary the fluid warms

up, and retrieves its initial temperature when reaching the bottom left corner. From

that point it advects upward next to the insulating left boundary, reaching the top

left corner and starting another cycle. Our problem is quite different from the Benard

convection because the differential heating is applied next to a single wall only. This

means that a parcel leaving the top north corner has to warm up while moving along

the insulating boundaries until it reaches the temperature of the top south corner. This

can perhaps be done if there are thermal boundary layers next to the walls, and the

heat is diffused from the interior to those layers. Because of the different nature of the

two problems, it is not very clear that even if one adopts Roberts heating configuration

in our finite domain-by fixing the temperature along most of our upper boundary,
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and applying local heating next to the northern corner-his results will be reproduced

numerically.

The previous arguments in this section neglect a fundamental difference between

our system and that of Roberts-and for that matter other works like Beardsley and

Festa (1972), and Sommerville (1967). In those works the surface temperature is spec-

ified, so the l.h.s. of equation (5.7a), which is proportional to Ty, is given along the

surface. On the other hand, the forcing, which is the actual heat flux, can only be

calculated once the solution is known. Our analysis is different, and is based on a

predetermined heat flux. We already showed that the two are not the same. For exam-

ple, when the flux is fixed, the horizontal surface temperature gradient decreases with

increasing Rayleigh number. Obviously, when the impressed temperature is specified,

Ty at the surface is fixed. These observations are related to the fact that when the flux

is specified the boundary layer character of the solution is more pronounced, and the

forcing is strongest next to the coldest point on the surface. We feel that this difference

is important, and even if Roberts results can be applied to the case where the surface

temperature is specified, they will not prove sufficient when the flux is given.
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Variable heat flux

A periodic steady state is reached by driving the circulation with a time dependent

forcing representing the four seasons. Realizations of the velocity and temperature

fields are produced at the end of the winter and summer seasons for the two Rayleigh

numbers, with and without mixing. These are summarized in figures (5.4)-(5.7).

The stream function contours in (5.4-7)a,d clearly show that @ is stronger in the

summer than in the winter, and that at least for the larger Rayleigh number, even

though the circulation is stronger, the eye of the gyre was pushed downward in the

summer time [figures (5.6-7)a,d]. As expected, the overturning region in the winter

is much broader than in the summer and is larger for the mixing case compared to

the standard one. When Ra = 2 - 10 4 the unstable region reaches the bottom in the

summer when no mixing is present, and is confined to the top right corner with mixing.

The last is an indication that the strong vertical mixing was successful in eliminating

the otherwise unstable stratification. A similar phenomenon can also be observed for

Ra = 2 - 105 . There, the unstable region in the bottom right corner, results from

advection of the unstable density field. This region erodes when turbulent mixing is

assumed.

Comparing the figures, it is also apparent that the unstable region is larger when

the Rayleigh number is smaller; a direct result of the effects of the circulation. If there

where no flow field, (Ra = 0, diffusive case of the second chapter), and there is no

turbulent mixing, the analytic solution (2.2) shows that the line separating the two

regions is vertical. When we start increasing the circulation, the line moves towards

the colder wall [figure (5.1-2)a, r. = 1]. The stronger the circulation, the more surface

trapped the unstable region is, and the narrower the strip it occupies next to the

northern boundary.

In addition to looking at snapshots of the various fields, it is also very instructive

to analyze the time development of bmax in a yearly cycle. This is done in figure (5.8)
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Figure (5.4). The periodic steady state when seasonal cycle is imposed. The first
column is for the situation at the end of summer, while the second is evaluated at the
end of winter. This is the standard case with Ra = 2 - 10 4 . (a), (d) 0b. (b), (e) T. (c),
(f) Tz.
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Figure (5.5). The same as (5.4) but with mixing.
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Figure (5.6). The same as (5.4) but with Ra = 2 -105.
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Figure (5.7). The same as (5.5) but with Ra = 2 -105.
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for the two Rayleigh numbers, with and without mixing. It is apparent from these

presentations that there are two time scales in the problem; a scale for the forcing, and

a scale for the response. The phase difference between the forcing and the response

is also evident. For example, in the standard case with Ra = 2 - 10', [figure (5.8)

line c] @bmax decreases throughout most of the summer and increases through most

of the winter. When the Rayleigh number is smaller by an order of magnitude, the

situation changes. In figure (5.8) line a 0@max increases through most of the summer,

and decreases in the last quarter of the heating period. @max starts increasing only

towards the end of the winter season.

In order to understand the relation between the stream function, the forcing, and

the Rayleigh number, it is beneficial to investigate the results of steady summer or

winter forcing. These correspond to permanent summer or winter conditions. The

heat content of the system will no longer be constant over any periodic cycle, but both

the temperature structure (not the absolute values, but Ty and T,) and the stream

function reach a steady state.

These experiments are motivated by simple questions arising from the previous

figures. For example, figure (5.8) suggest that @bmax attains its maximum value some-

where in the summer time, and minimum value in the winter time. But we just might

find out that the circulation is much more intense for persisting winter condition than

for permanent summer ones. This will hint that there is a possible lag of about half a

year between the forcing and the response. Other questions, relating the Rayleigh num-

ber and the difference in the time scale it takes to reach the quasi winter steady state

as opposed to the summer one, will also be addressed, helping in our understanding

why in figure (5.8) lines a and c are symmetric while lines b and d are not.

The results when permanent heating or cooling is applied are presented in figures

(5.9-11). They show several distinct features, the most prominent of which is that

indeed the circulation is much stronger in the winter than in the summer. In the
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same, but with Ra = 2 - 105.
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winter, a large portion of the basin is being cooled hence its effective Rayleigh number

is smaller; thus, kmax decreases going from the standard case to mixing one. The

location of the maximum value of the stream function moves down and to the south as

the effects of mixing becomes dominant because obviously V) cannot attain its maximum

value at the well-mixed region where the gradients are weak. For continuous summer

conditions, the results are unaffected by the degree of mixing because of the negligible

size of the unstable region. This is why only one realization from summer is presented

in figure (5.11). The circulation is confined to the upper domain, and is shallower for

larger Rayleigh numbers. The extent of the overturning region is broader in the winter

and is a touch larger for the small Rayleigh number, where the circulation is weaker.

As was mentioned before, the absolute magnitude of the temperature contours is not

important because of the constant heat source (or sink) in the system.

The next set of figures (5.12) represent the evolution of Ormax as permanent summer

or winter conditions are imposed. The two lines in each box correspond to the two

different mixing hypotheses. The idea behind these illustrations is to start from an

initial condition of the quasi steady state of a particular Rayleigh number, mixing

parameterization, and summer or winter forcing and to impose the opposite heating

function. By tracing the evolution of #bmax with time, an appropriate time scale for the

response to the onset of cooling and heating can be determined. It is important to note

the changes that Omax undergoes on its way to the its final value, and the dependence of

the process on the Rayleigh number. For example, when going from winter to summer

in figures (5.12)b,d the transition is monotonic for the standard case, but has a large

peak followed by a fast decay in the mixing case.

In summary, four sets of figures are available to investigate the response to a forced

seasonal cycle. They include contours of the fields at the end of the summer and winter

seasons [figures (5.4-7)], and after permanent winter or summer conditions [figures (5.9-

10)]. The time evolution of 0jbmax through a cycle [figure (5.8)],and from permanent
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Figure (5.9). Quasi steady state for permanent winter condition when Ra = 2 104 .
The first column represent the fields in the standard case while the second corresponds
to the mixing case. (a), (e) 4p. (b), (f) T. (c), (g) T,. (d), (h) T,.
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Figure (5.10). The same as (5.9) but for Ra = 2 -105 .
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Figure (5.11). Quasi steady state for permanent summer condition. In the first column
Ra = 2. 104 while in the second Ra - 2- 105 . The summer state is not affected by the
mixing hypothesis. (a), (e) 0. (b), (f) T. (c), (g) T,. (d), (h) T,.
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summer to winter and back [figures (5.12)] are also included. These figures are drawn

for two different Rayleigh numbers and the two mixing cases discussed before.

The last set of figures (5.13)-(5.14) are the mean of the four seasons, the first for

Ra = 2 -104 with and without mixing, and the second for the higher Rayleigh number.

As was done in chapter 2 figure (2.7), these presentations correspond to a sum over

four seasonal realizations, whereas (5.1-2) are the accompanying situations when the

fluid is forced by the mean forcing which has a simple cosine structure.

Discussion

The response of the ocean to a seasonally varying forcing is understood better if we

know what happens in a spin up problem when the forcing is fixed in time. For that

case, figures (5.9-12) illustrate the results when permanent winter or summer conditions

are imposed. In addition to the contouring the fields in the steady state, figure (5.12)

details the time scales associated with the spin up problem by following the values of

Omax . Several features are illustrated through the figures.

1) The results of summer conditions are approximately the same irrespective of mix-

ing. This is attributed to the very small region in which the stratification is

unstable, and is the reason only one permanent summer condition was presented

for each Rayleigh number [figure (5.11)].

2) There is the usual tendency in the winter to have larger #max with larger Rayleigh

numbers, and smaller when mixing is incorporated. This is apparent comparing

(5.9)a to (5.10)a and (5.9)e to (5.10)e.

3) mwa"xer mer as is evident from (5.9-10)a in comparison to (5.11)a and

(5.11)e.

4) The decay of # witer to #uamer is fast, is accomplished in order of a year [figure

(5.12)b,d], and when mixing is available, peaks strongly before its sharp decline.
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Figure (5.13). The mean fields from the four seasons with Ra = 2- 10 4 . Standard case
shown in the first column, density mixing in the second. (a), (d) b. (b), (e) T. (c), (f)
TZ.
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Figure (5.14). The same as (5.13) but for Ra = 2 -10 5 .
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5) The rise from #kmax toPmax r is slower, takes around six years [figure (5.12)a,c]

and is relatively steady.

The explanation of the items above is based on several simple arguments. From

previous experience-and opposite to what is suggested in the third point above-since

in the winter the effective Rayleigh number is smaller over a large portion of the domain,

the circulation should be weaker. This result was examined before for fixed forcing.

Compare for instance figures (5.1)a,d,g to (5.2)a,d,g and note that Omax decreases going

from the standard to the mixing case. A similar tendency is mentioned in the second

item above. But the same behavior is no longer true when comparing different forcing,

one with intense cooling, and one with heating. When summer conditions prevail, the

unstable region is almost nonexistent, and mixing or not, the effective Rayleigh number

is fixed apart from the top right corner. For our choice of geometry and forcing, this area

is too small to affect the quasi steady state solution. In the winter, the overturning

region is much broader and extends-at least next to the surface-to the southern

portion of the domain. As always, within the winter season, Imax decreases as the

effects of mixing reduce the effective Rayleigh number.

The reasoning for the observations leading to the third point above lies in the size

of Ty as seen in figures (5.9)d,h, (5.10)d,h, and (5.11)d,h. In the winter time this term is

much larger than in the summer, in particular next to the surface and along the northern

jet. Because in addition to the surface boundary condition this is what actually forces

the velocity field at all interior points, b increases considerably in the cooling period.

The physics behind this description is related to the different density layering observed

in (5.9)b,f, (5.10)b,f, and (5.11)b,f. In the summer time the temperature contours are

more flat so Ty is small, whereas in the winter the temperature next to the surface is

more uniform in the vertical so Ty increases.

When relaxing from winter to summer in the standard case, horizontal diffusion

acts upon the large T, gradients-which now have no support from the forcing-thus,
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1max decreases monotonically to its summer value described in figures (5.12)b,d line

a. If turbulent mixing is available, the situation is very different and the circulation is

intensified over a very short time to reach a maximum from which it decays fast to its

summer quasi steady state.

When starting with abrupt summer conditions after a winter quasi steady state,

there is a large increase in T values next to the surface in the northern region. The

particular location of this sudden change in forcing is important because this is the

location where small changes in forcing the elliptic problem have the most pronounced

effect on the circulation. Compare for instance the Ty contours in figure (5.9)h to those

of (5.11)d. The figures show that the T, values in the summer are larger than those

in the winter when mixing is present. On the other hand, where there no mixing as

in (5.9)d, the Ty values in the winter are large as well. When mixing is present, the

strong T, gradients causes a sudden increase in the flow field which gradually decays

to the permanent summer condition. In particular, when the Rayleigh number is large,

the circulation is stronger and decays faster. The last process is aided by horizontal

diffusion erasing the signature of the strong T,. For example, figure (5.12)b line b with

Ra = 2. 104 decays on a time scale that is four times longer than line b in figure (5.12)d

where Ra = 2 -105.

The transition from summer to winter [figure (5.12)a,c] is slower and takes around

six to seven years, again depending on the Rayleigh number. In the adjustment process,

0max overshoots its final winter value, and then decays back to it. When no mixing is

present the procedure is smooth, but otherwise is very wiggly. This bumpiness in the

figures is due to time stepping with low vertical resolution. Deepening the interface by

one grid point at a given latitude requires a certain number of time steps depending

on the amount of heat that need be removed from the water column, in order for its

density to be as heavy as the fluid a grid point below it. While this cooling occurs, the

interface does not change and the stream function has a short period in which to adjust
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to the density field. Then, in one step the interface all of a sudden moves, changing the

effective Rayleigh number. 'max will change abruptly and would go through a short

adjustment stage as before, until the interface moves no more. The picture described

above indicates that if a cycle on earth were to take around 10 years or more, then the

circulation would reach its maximum in the colder period, and minimum in the warmer

ones. In that case, the response to the forcing would look like a combination of the

corresponding lines in figures (5.12)a-b or (5.12)c-d, and would not be symmetric even

in the standard case, in contrast to the symmetry of line a in figure (5.8).

Knowledge of this permanent cooling and permanent heating condition is valuable

in evaluating the results from a cyclic forcing. It shows immediately that there is a

phase difference of several months between the forcing and the response, because for

permanent winter the circulation is at its maximum, whereas in the seasonal cycle it

reaches a minimum. This phase can be described by the difference in time between the

minimum and maximum of 4 max in figure (5.8), and the relationship between these

values and the season. As mentioned before, it is also apparent that the symmetry of

the response in figure (5.8) lines a and c is not something typical of the system, but is

rather an artifact of the very short time scale in which the differences between cooling

and heating do not have enough time to surface.

When there is no turbulent mixing as in figures (5.1)a-c, and (5.2)a-c, the cycle

looks symmetric (as the forcing) and it takes half a year to move between the two

extremes of /) max. But the phase of the response depends on the Rayleigh number.

The larger it is, the less into the summer season kmax decreases. When Ra = 2 - 10 4

[figure (5.8) line a] ?max peaks at about 2/3 of the summer and then falls off. For

Ra = 2 - 105 [figure (5.8) line c], the peak is less than a fifth into the season. Because

of the symmetry of the forcing, the same (replacing maximum by minimum) holds for

the winter period. There, the intensity of the circulation is increased more towards the

beginning of the season as the Rayleigh number increases.
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When mixing is introduced, the problem becomes inherently nonlinear (even if one

still wants to approximate the balance in the heat equation by vertical advection against

vertical diffusion) and in addition, the effective Rayleigh number varies. Although the

forcing is still symmetric in the sense that there is warming for half the period and

cooling for the other half, the response is not. In figure (5.8) line b 4 max decreases over

0.6 of a year for Ra = 2 105 , and 0.7 of a year in the same figure line b when Ra = 2-104.

For both Rayleigh numbers, the maximum of l'max is reached at the beginning of the

summer. The difference is in the shorter time span where tbmax decreases even though

there is cooling. For the larger Rayleigh number in figure (5.8) line d, the minimum

of ?/)max is reached 0.5 of a year into the cooling period, (end of winter, when actually

heating starts) but when Ra = 2-10 4 as in figure (5.8) line b, ,max starts gaining after

a shorter period of 0.4 of a year.

While following the response to a seasonal cycle, it is easier to look at the forcing

as two events, summer and winter, separated by two intermediate seasons autumn and

spring. At those two seasons the net heating is much smaller than in the main events.

The moderate periods allow the system to equilibrate slightly to previous changes before

imposing a new severe forcing, thereby smoothing the passage between seasons.

In a schematic cycle starting from the end of summer, /max decreases in value

into autumn (where there is slight cooling). The winter is successful in pointing #max

again in the right direction and it increases from the end of winter through spring

and the beginning of summer. The strong warming in the summer limits #bmax and

it starts decreasing to complete a cycle. The amount of time spent on the downward

motion while Pmax decreases depends on the type of mixing assumed. The vicinity of

the bending points where 8tOmax changes sign to the beginning of summer and winter

is related to the Rayleigh number.

The difference between mean realizations and mean forcing is seen comparing

(5.13)a-c to (5.1)a-c, (5.13)d-f to (5.1)d-f, (5.14)a-c to (5.2)a-c, and (5.14)d-f to
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(5.2)d-f. The changes are not as large as observed in the second chapter because of

two factors. The most important one is the efficiency of advection in transporting

heat. This process was not included in the chapter 2, and plays an important role in

balancing the system. Additionally, the forcing here is much more well behaved than

Oort and Vonder Haar data used before, and is a simple shifted cosine.

For the large Rayleigh number, there is a noticeable weakening of the flow field

when averaging the realizations with and without mixing. The thermal structure is

nearly unaffected and the temperature for the mean realizations is a bit colder ev-

erywhere compared to the mean forcing. Because of that, AT is comparable in both

averaging methods. It is 0.25 for the standard case, and 0.18 for the mixing one. Al-

though AT is not changed, the local air sea flux will change because the sea surface

temperature is not the same.

When averaging realizations with mixing the overturning region is smaller than the

average forcing picture, and is determined by its extent in the warmest period. As was

explained in the second chapter this is a result of the summer time stable stratification

that can easily overcome any marginally stable regions developed closer to the south

in the winter time.
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Conclusions

The parameterization of turbulent mixing introduced in this work has the desired effect

of reducing the effective Rayleigh number, weakening the flow field, and moderating

the boundary layer character of the solution. Using previous estimates of (R. A2 ) =

2.5. 10", our scaling arguments for a 5km ocean depth leads to a thermocline depth

of less than 50m, which is a bit on the shallow side. Because the Rayleigh number

in the ocean can probably be this large, the mixing process seems a reasonable way

to smooth some of the sharp gradients found otherwise. The addition of meridional

boundaries and rotation would presumably help in gaining a more realistic picture of

the thermohaline circulation.

Assuming that the total heat content in the ocean is fixed, the mixing parame-

terization leads to an interior which is somewhat colder than without it resulting in

warmer surface temperature in equatorial regions. The unstable stratification in the

northern region is eliminated, and the density there is nearly vertically homogeneous.

In addition, the mixing process forces the center of the gyre to migrate towards the

south and the bottom relative to an ocean without mixing, while the stream lines are

more bent.

The response of the ocean to a seasonal cycle follows the regular pattern where the

circulation gets stronger as the Rayleigh number increases, and weakens where mixing

is assumed.

When the flow is being forced by permanent cooling it is found that the forcing term

T, is large and the circulation is strong. This result is intuitively correct remembering

that in the winter, more deep water is formed thereby the intensity of the vertical

circulation has to increase. The transition from weak circulation (summer) to strong

(winter) is much slower than the reverse. The last (relaxation process) is being helped

by a positive feedback mechanism to reduce the local gradients everywhere, where in the

first (building the circulation) the forcing has to work to generate the conditions needed
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to support the large gradients. Because the seasonal cycle shows a near minimum in

the values of bmax during the winter time, and near maximum in the summer time, we

conclude that the response of the ocean lags the forcing by several months. This is to

say that the effects of water mass production in the winter will be observed in the large

scale circulation only at the summer time. Assuming the diffusivity and aspect ratio

are fixed, the parameters governing this behavior-including the steepness and sign of

the slope describing Omax during heating and cooling-are the Rayleigh number and

the turbulent mixing.

As Ra increases, so does the velocity field; this acts to speed up the process and

shortens the time required for temperature field to relax. The fact that the seasonal

cycle is not as symmetric as the driving force is another manifestation of the idea that

advection and diffusion have different efficiencies. The advection carries the density

field around fast, while the diffusion is more effective in local homogenization.

Although we were not able to come up with a general mathematical expression

for the lag between the forcing and the response, the patterns indicate clearly that

an appropriate time scale for a perturbation to decay in the ocean is larger than a

season. Otherwise, 0kmax would start increasing while cooling was imposed, and start

decreasing in the autumn.

Changes between different averaging procedures are apparent for large Rayleigh

number where the surface temperature is colder and the circulation is weaker when

mean seasonal picture is compared to mean forcing one. The changes are larger when

turbulent mixing is used.
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Concluding remarks

The climate of our planet has always proved fascinating to its inhabitants, and in

that respect, the physical oceanographer is no different. One of the possible angles of

approach adopted in oceanography in order to explain the climate is by attempting

to understand the thermohaline circulation. Towards that goal, this work investigates

several aspects of the axially symmetric circulation. In a time where it is possible to run

high resolution primitive equation general circulation models on large computers, this

simplification of the fluid's behavior seems to be less popular than twenty years ago.

But because the dynamics of the numerical experiments is complicated, their results

are hard to analyze and are also sensitive to a large number of parameters. This is

the reason why an axially symmetric configuration was chosen here, even though it is

obviously less suitable in describing the intricate details of the flow pattern.

Two aspects of our analysis are new for the configuration of the meridional circula-

tion. Those are the inclusion of turbulent mixing parameterization, which is now more

common in circulation experiments, and a strong emphasis on variability. In addition,

we replaced the boundary condition along the non-insulating wall from an impressed

temperature to a specified flux. Although this change seems to be rather minor, this

is not always the case because in many problems specifying the temperature results in

the actual heat flux forcing being formed as part of the problem, and need not be at

all realistic, whereas specifying a given flux is a direct statement of the forcing.

The question of variability is important because even small changes in a large

water mass like the ocean can have pronounced climatic effects. In general, there are

many scales associated with any particular problem, and because it is hard to account
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for all of them, one usually employs scaling arguments to justify neglecting some and

retaining others. In this work, annual variability is introduced through the boundary

condition, and the response of the fluid is analyzed.

In addition to numerical experiments, an analytic model is also presented. Com-

parisons between the two are not really possible because the underlying dynamics is

different in the two cases. With that in mind, the analytic model is used to enhance our

understanding of the consequences of conservation of potential vorticity in an axially

symmetric system.

A model was also developed to describe open water water mass formation in "chim-

neys". Given a surface buoyancy loss and the local initial stratification this model can

predict the penetration depth of the chimneys. We tried to relate the results of this

model to the MEDOC observations and to the water mass of the Levantine Intermediate

Water. The formation processes in the Eastern Mediterranean are not well understood,

in particular, because there are few measurements of the events themselves with no evi-

dence of intense upwelling and downwelling as would be expected if the process involves

advection. Our model is especially suitable for these region because the chimneys are

generated by vigorous mixing only.
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Appendix

Evaluation of the Arakawa Jacobian in a uniform grid

As suggested by Arakawa (1966), the Jacobian can be written in all interior points as

1
J(T, T) = 12

12d2
R ij1+ 4 'i+i,j-1 i '+ - j1)Ti1' + Ti,j)-

(V'j-i,1 -i + j - - bij+i)(Tij + Til~)

(?+1 + Obil+ i -l~ - '+1(i'+ + Ti,j)-

(4'i+i 1j-i + Vbi+i,5 -ji - 1)(i~ + Tij-)

-Vi~~ 1Pj+)(Ti+i+ + Ti,j)-

( - Oii)(i + Tilj-)

- 4'~j...11-i)(Ti....11 +1 + Ti,j)-

(O+1j- 0ij ) T~ + Ti+ 1 'j- 0.1 ]

where information from 8 points surrounding the point of interest is used to determine

the Jacobian, and the grid configuration stretches from 0 to n in the first coordinate,

and from 0 to m in the second. Along the boundaries, not all the information is

available (assuming one does not create artificial points outside the domain), and in

addition the grid box is smaller. It is half the area of an interior box at all boundary

points except the four corners where it is a quarter. It is still possible to utilize the

same scheme to get the following expressions for the boundary and corner terms.
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Bottom left corner

1
JT)= 12d2 [(4fo,o + #~b1 0 ,b f, 1 - #,1 ,1 )(To,o + T1 ,o)-

(201,o - 2Vo,1 + fpo,o - i, 1)(To,o + To,1)+ (a.6)

(P1,o - NPo,1)(To,o + T1 ,1)]

or
1

J(#,T) =12d2 [(1, + b1 ,1 - fko,o - fko,1) (To,i + T1,o)-

(2V)I,o - 2 0 1 + 4P1,1 - Oo,o)(Too + T1 ,o)+ (a.6)a

(01,o - o,1)(To,o + T 1,1)]

Bottom right corner

J(#,T) = 12d 2  ,+ n- 1,1 - n- .-1,o0)(Tn-1,0 + Tn,o)-

(2?, 1 - 21p-b 1,0 + On-1,1 - On,o)(Tn,o + Tn, 1 ) + (a.7)

(On, - On-1,o)(T.- 1 ,1 + Tn,o)]

or

J(, T) = 12d2 [(n,o + On,1 - Okn-1,0 - On- 1,1)(Tn, 1 + Tn,o)-

(2ikn,1 - 20n- 1,0,o + ,o - On- 1 ,1 )(Tn,o + Tn- 1 ,o)+ (a.7)a

(On,1 - n 1 ,o)(Tn-1,1 + Tn,o)]

Top left corner

J(, T) = 12d2 o,m-i + #1l,m-I - fPo,rn - 01,m) (Ti,m + T,m)-

(2I)o#,m-1 - 2Vb1,m + #P1,m -I - fIo,m)(To,m + To,m-1)- (a.8)

(1i,m - f)O,m-1)(T,m-1 + To,m)]

or

1
JT)=12d 2 I'o,m-1 + tPo,rn - 6P,mn-1 - #1~,m)(To,m + Tojm-1.)+

(24'i,m - 21Po,m-1 + 01,m-1 - /o,m)(Ti,m + To,m)- (a.8)a

(/1,m - 00o,m-I)(TI,m-I + To,m)]
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Top right corner

J(, T) =12d 2 [(In-1,m + lIn,1 m - krn-1,m-1 - in,m-1)(Tn-1,m + Tn,,)+

(2n,m-I - 2 ?kn-Im + On- 1,m-1 - In,m)(Tn,m-1 + Tn,m) (a-9)

(In,m-1 - n-1,m)(Tn-1,,-i + Tn,m)]

or

1

J(2, T) = 12d 2 [(n-1,n-1 + #,m - #n,-1 - i,m) (Tn,T + T ,m1)-
(20n-i,m - 2 vn,m-1 + On-I,m- 1 - kn,m) (Tn,m + Tn-,m) (a9)a

(Vn,m-1 - n-1,m)(Tn-1,m-1 + Tn,,n)]
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