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We introduce a family of two-dimensional (2D) topological subsystem quantum error-correcting codes. The
gauge group is generated by two-local Pauli operators, so that two-local measurements are enough to recover
the error syndrome. We study the computational power of code deformation in these codes and show that
boundaries cannot be introduced in the usual way. In addition, we give a general mapping connecting suitable
classical statistical mechanical models to optimal error correction in subsystem stabilizer codes that suffer from
depolarizing noise.
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I. INTRODUCTION

Quantum error correction [1–4] and fault-tolerant quantum
computation [5–9] promise to allow almost perfect storage,
transmission, and manipulation of quantum information. With-
out them, quantum information processing will be doomed to
failure due to the decoherence produced by interactions with
the environment and the unavoidable inaccuracies of quantum
operations.

The key concept in quantum error correction is the notion of
quantum code. This is a subspace of a given quantum system
where quantum information can be safely encoded in the sense
that the adverse effects of noise can be erased through an
error correction procedure. In practice this procedure is also
subject to errors and thus it should be as simple as possible
to minimize them. Naturally, the meaning of “simple” will
depend on particular implementations. A common situation is
that interactions are restricted to quantum subsystems that are
close to each other in space. In those cases, the locality of the
operations involved in error correction becomes crucial.

The stabilizer formalism [10,11] provides a unified frame-
work for many quantum codes. In stabilizer codes, the
main step for error correction is the measurement of certain
operators, which may be local or not. A class of codes
where these measurements are intrinsically local is that of
topological stabilizer codes [12–15]. In a different direction,
locality can also be enhanced by considering more generally
stabilizer subsystem codes [16,17]. The present work provides
an example of a family of codes that can be labeled both as
“topological” and “subsystem.”

Topological codes were originally introduced with the
goal of obtaining a self-protecting quantum computer [12].
This idea faces important difficulties in low dimensions since
thermal instabilities are known to occur [13,18,19]. On the
other hand, topological codes are local in a natural way
and have very interesting features in the context of active
error correction. For example, they do not only allow us to
perform operations transversally [14,15], but also through
code deformations [13,20]. Moreover, there exists a useful
connection between error correction in topological codes and
certain classical statistical models [13,21,22].

Stabilizer subsystem codes are the result of applying the
stabilizer formalism to operator quantum error correction [23].
In subsystem codes, part of the logical qubits that form the

code subspace are no longer considered as such, but rather
as gauge qubits where no information is encoded. This not
only allows the gauge qubits to absorb the effect of errors, but
has interesting consequences for error correction. It may allow
us to break up each of the needed measurements into several
different ones that involve a smaller number of qubits [16,17].
An example of this is offered by the Bacon-Shor codes [16] in
which the basic operators to be measured can have support on
an arbitrarily large number of qubits, yet their eigenvalues can
be recovered from two-local measurements that do not damage
the encoded information. Moreover, the pairs of qubits to be
measured together are always neighbors in a two-dimensional
(2D) lattice. Thus, subsystem codes can have very nice locality
properties.

The 2D topological subsystem codes introduced here show
all the characteristic properties of topological codes and at the
same time take profit from the advantages of subsystem codes.
Some of them are:

• The codes are local in a 2D setting, which can be flat.
• The measurements needed for error correction only

involve two neighboring qubits at a time, as in the
Bacon-Shor codes. This is an important advantage with
respect to other topological codes, such as surface codes
that require measuring groups of at least four qubits.

• Most errors with a length up to cn are correctable, where
c is some constant and n the number of physical qubits.
This feature, common to topological codes, follows
from the fact that logical operators are related to strings
that wind nontrivially around the surface where the code
is defined.

• Error correction must be done only “up to homology,”
an important simplification that allows the introduction
of specific tools.

• One can naturally perform certain logical gates through
“deformations” of the code. This feature, however,
is less powerful than that in other topological codes
because boundaries cannot be introduced in the usual
way.

Since these codes are topological, it is natural to expect a
connection between their correction procedures and suitable
classical statistical models. However, the mapping between
surface codes and random Ising models [13] makes strong use
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of their CSS structure [24,25] and the same is true for the one
between color codes and three-body random Ising models [22].
The CSS structure makes it possible to completely separate the
correction of phase-flip and bit-flip errors, making the problem
classical and enabling the connection. Indeed there exist
similar mappings from classical codes to statistical models
[26]. Fortunately, as explained in Sec. VI, the approach can be
generalized even in the absence of this separation. Moreover,
the subsystem structure is also compatible with the approach
so that it can be applied to the family of codes of interest.

The article is organized as follows. Sections II and III review
several aspects of quantum error correction and topological
codes, respectively, setting up a framework for the rest of the
article. Section IV introduces the family of topological sub-
system codes and presents a thorough study of their properties.
Section V offers the construction of a general mapping between
error correction in subsystem codes and classical statistical
models. Section VI is devoted to conclusions.

II. STABILIZER QUANTUM ERROR-CORRECTING
CODES

This section summarizes the notions of quantum error
correction that will be needed in the rest of the article. It
mainly reviews stabilizer codes both in the subspace and the
more general subsystem formulation. Ideal error correction
procedures and their success probability are also considered.

A. Quantum error correction

Quantum error correction deals with the preservation of
quantum information in the presence of noise. Both the noise
E and the error recovery R are modeled as quantum operations
or channels E,R : L(H ) −→ L(H ), where L(H ) is the space
of linear operators on H , the Hilbert space associated to the
quantum system under consideration. Such maps can always
be expressed in the operator-sum representation. For example,
the noise is E(ρ) = ∑

i EiρE
†
i for some Ei ∈ L(H ), which

will be denoted by E = {Ei}.
In the original formulation of quantum error correction

[1–4], quantum information is encoded in a subspace of H

and the code subspace C ⊂ H . The system undergoes a noisy
process E and afterward an error recovery operation R is
performed. Then, given a code C, a noise source E is said
to be correctable if there exists a recovery operation R such
that R ◦ E(ρ) = ρ for any state ρ ∈ L(C).

More generally, in the operator quantum error correction
formalism [23], information is encoded in a subsystem A, with
C = A ⊗ B. Whatever happens to subsystem B is irrelevant.
That is, error recovery is possible for a quantum channel E
if there exists a recovery operation R such that for any ρA ∈
L(A) and ρB ∈ L(B), it gives R ◦ E(ρA ⊗ ρB) = ρA ⊗ ρ ′B
for some arbitrary ρ ′B .

The sufficient and necessary condition for the noise process
E = {Ei} to be correctable [3,4,23] is that PE

†
i EjP = 1A ⊗

gB
ij for every i and j , with P the projector onto the code

subspace. When this condition holds, the set of errors {Ei} is
said to be correctable. Since adding a linear combination of
the Ea to the set does not change correctability, it is natural
to consider correctable sets of errors as linear subspaces and

to choose the most convenient operator basis. Generally the
quantum system is composed of n qubits, H � (C2)⊗n, and
error operators are chosen to be Pauli operators; elements of
the Pauli group Pn := 〈i1, X1, Z1, . . . , Xn, Zn〉. Here Xi , Zi

are, as usual, the Pauli operators on the ith qubit X = |0〉〈1| +
|1〉〈0|, Z = |0〉〈0| − |1〉〈1| in the orthonormal basis {|0〉, |1〉}.

Usually error models are such that errors that affect more
qubits are less likely to happen. Then it makes sense to correct
as many errors as possible among those that have support on
(act nontrivially on) a smaller number of qubits. The weight
|E| of a Pauli operator E ∈ Pn is defined as the number of
qubits that form its support. When a code can correct all Pauli
errors E with |E| � r it is said to correct r errors.

B. Stabilizer subspace codes

A formalism that was particularly successful for the devel-
opment of quantum codes is the stabilizer formalism [10,11] in
which the code C is described in terms of an Abelian subgroup
S = 〈Sj 〉 ⊂ Pn such that −1 
∈ S. Take the generators Sj to
be independent and let s be the rank of S. The n-qubit Hilbert
space H can be partitioned according to the eigenvalues of the
Sj into 2s isomorphic orthogonal subspaces H = ⊕

s Cs. Here
s = (sj ) is the error syndrome, with sj = ±1 the eigenvalue
of Sj . By convention, the code subspace C is that with sj = 1
for all j . It has dimension 2k , with k = n − s the number
of encoded or logical qubits. The reason to call s the error
syndrome is that in can be obtained by measuring the Sj and
then used to infer which errors were produced.

It is easy to introduce a Pauli group for the k logical qubits.
Let N (S) be the normalizer of S in Pn. Its elements are the
Pauli operators that map the subspaces Cs onto themselves and
the quotient group N (S)/S is isomorphic to Pk . The logical
Pauli operators are then generated by X̂1, Ẑ1, . . . , X̂k, Ẑk ∈
N (S), some chosen representatives of the images of
X1, Z1, . . . , Xk, Zk ∈ Pk under a given isomorphism.

It is also possible to characterize a stabilizer code with a pair
(U, s), where U is an automorphism of Pn and s an integer
0 � s � n. Let X̃i , Z̃i denote the images of Xi , Zi through
U . Then the stabilizer is S = 〈Z̃1, . . . , Z̃s〉. This approach
directly provides a choice for encoded Pauli operators X̂1 :=
X̃s+1, Ẑ1 := Z̃s+1, . . . , X̂k := X̃n, Ẑk := Z̃n.

Pauli errors E have a specially simple effect on the encoded
states, as they map the subspaces Cs one onto another. Set
sE = s when ESjE

† = sjSj . Then a Pauli error E maps C

onto CsE
. Pauli operators are divided into three categories. The

elements of Pn − N (S) map the code to other subspaces and
are termed detectable errors, as their effect can be detected by
measuring the operators {Sj }. The elements of N (S) − S ′, with
S ′ := 〈i1〉S, map, in a nontrivial way, the code to itself and are
thus called undetectable errors. Finally, the elements ofS ′ have
no effect on the encoded states ρ ∈ L(C). The distance d of the
code is defined as the minimum weight among undetectable
errors. It determines the number of corrected errors, which is
�(d − 1)/2�. A code of n qubits that encodes k qubits and has
distance d is denoted [[n, k, d]].

C. Stabilizer subsystem codes

The stabilizer formalism can also be used in the context
of operator quantum error correction [16,17]. Instead of being
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characterized by a stabilizer group, subsystem stabilizer codes
are almost determined by a subgroup G ⊂ Pn, called the gauge
group, such that i1 ∈ G. In addition, a stabilizer group S has
to be chosen such that S ′, as defined earlier, is the center of G.
There are different choices for S because the sign of some of
its generators can always be flipped. This amounts to different
choices for C in the decomposition H = ⊕

s Cs.
The idea after the introduction of the gauge group is that

gauge operations should not affect the encoded information.
This forces us to identify states such as ρ and GjρG

†
j as

equivalent, giving rise to a subsystem structure Cs = As ⊗ Bs.
The decomposition is such that the gauge operators Gj act
trivially in the As subsystems and generate the full algebra of
operators of the Bs subsystems. Set C = A ⊗ B, with A the
logical subsystem where information is encoded and B the
gauge subsystem that absorbs the effect of gauge operations.
Since G/S � Pr for some r , B consists of r qubits. Similarly,
the Pauli operators for the k logical qubits are recovered from
the isomorphism N (G)/S � Pk and k + r + s = n.

It is also possible to characterize a stabilizer subsystem
code as a triplet (U, s, r), where U is an automorphism of
Pn and s, r � 0 are integers with r + s � n. Using the same
notation as earlier, the stabilizer and gauge groups are S =
〈Z̃1, . . . , Z̃s〉 and G = 〈i1, Z̃1, . . . , Z̃s+r , X̃s+1, . . . , X̃r〉. The
chosen logical Pauli operators are X̂1 := X̃s+r+1, Ẑ1 :=
Z̃s+r+1, . . . , X̂k := X̃n, Ẑk := Z̃n.

In subsystem codes, detectable Pauli errors are the elements
of Pn − N (S) and undetectable ones are those in N (S) −
G. Undetectable errors are directly related to logical Pauli
operators. Indeed N (S)/G � N (G)/S ′, as the following one-
to-one correspondence shows. For any E ∈ N (S) there exists
a G ∈ G such that EG ∈ N (G) and if G′ ∈ G is such that
EG′ ∈ N (G) then GG′ ∈ S ′ = G ∩ N (G). The distance d of
the code is defined as for subspace codes and has the same
implications regarding error correction. A subsystem code of
n qubits that encodes k qubits and has r gauge qubits and
distance d is denoted [[n, k, r, d]].

D. Syndrome measurement

An interesting property of stabilizer subsystem codes is
that they may allow an easier measurement of the stabilizer
generators. This is so because it is possible to substitute the
direct measurement of a stabilizer element S by an indirect
one, in which t self-adjoint gauge operators Gi such that S =
G1 · · · Gt are measured. It may be the case that the Gi has a
smaller weight than S. For example, in the family of Bacon-
Shor codes the gauge generators Gi always have weight |Gi | =
2, but the smallest stabilizer generators have an arbitrarily large
weight. Such cases offer two important advantages. On the one
hand, the smaller the weight of a Pauli operator, the simpler
the operations needed to measure it. This is especially relevant
in fault-tolerant quantum computing where error correction is
considered a faulty process in itself because simpler operations
imply less errors. On the other hand, it may be possible to
measure the Gi in parallel, with the subsequent saving of time.
This is again relevant for fault tolerance, where the ability to
perform measurements faster entails less errors.

Since the Gi need not commute, the ordering of the
measurements is relevant. In general, the ordered measurement

of a collection of t operators E1, . . . , Et ∈ P†
n yields the ef-

fective measurement of an Abelian group of self-adjoint Pauli
operators M ⊂ Z , with Z the center of 〈−1, E1, . . . , Et 〉.
In particular, M = N ∩ Z with N the Abelian group of
those self-adjoint Pauli operators with eigenvalues fixed by
the sequence of measurements. N can be computed iteratively
since adding an additional measurement Et+1 changes N to
N ′ = 〈Et+1〉[N ∩ N (Et+1)].

E. Error correction

Even if a noisy channel E is not correctable for a given
subsystem code, there exists some probability of performing a
successful error recovery. For example, if each of the physical
qubits that compose a code undergoes a depolarizing channel
{(1 − 3p)

1
2 1, p

1
2 X,p

1
2 Y, p

1
2 Z}, then the noise is certainly not

correctable, but the success probability can still be close to 1.
This section quantifies this probability, which is of primary
importance for topological codes [13].

Some notation is needed here. Set as equivalent E ∼ E′
those operators E,E′ ∈ L(H ) that have the same action up to
gauge elements E = E′G for some G ∈ G. The corresponding
equivalence classes will be denoted Ē. Let {Di}4k

i=1 ⊂ N (S)
be a particular set of representatives for N (S)/G, taking in
particular D1 = 1. The Di with i > 1 will represent the ways
in which error correction can fail. For example, if there is one
encoded qubit a choice is {1, X̂1, Ẑ1, X̂1Ẑ1}. To extend the
equivalence of operators to channels, we choose the minimal
equivalence relation such that {Ei} ∼ {E′

i} whenever Ei ∼ E′
i

for all i.
Assume an error model in which Pauli errors E ∈ Pn occur

with a given probability p(E). That is, E = {p(E)
1
2 E}E∈Pn

.
Errors with different phases will not be distinguished when dis-
cussing p(E) because phases are irrelevant. Up to gauge oper-
ations the error channel is E ∼ {p(Ē)

1
2 E}Ē∈Pn/G , where E de-

notes any chosen element of Ē and p(Ē) = ∑
G∈G/〈i1〉 p(EG)

is the probability for a given class of errors to happen. This
makes it already apparent that class probabilities p(Ē) are
more important than individual error probabilities p(E).

Error recovery starts with the measurement of the stabilizer
generators Sj . This yields the error syndrome s, which limits
the errors E that possibly happened to those with sE = s.
These possible errors are arranged into different classes, which
may be labeled by choosing any possible error E and taking
as representatives the elements {EDi}. Then the conditional
probability for the class of errors Ē to have happened given
the syndrome outcome s is

p(Ē|s) = p(Ē)∑
i p(ĒD̄i)

. (1)

Suppose that these conditional probabilities can be computed,
which may be potentially difficult due to the combinatorics.
Then the class Ē = Ēs that maximizes p(Ē|s) is known and
the optimal recovery operation isR = {EsPs}s, where Ps is the
projector onto the subspace Cs. The combined effect of errors

and recovery is R ◦ E ∼ {p
1
2
i Di}i for some probabilities pi

that only depend on the error distribution p(Ē). This gives a
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success probability for the error recovery

p0 =
∑

s

p(Ēs). (2)

An inadequate feature of expression (2) is that it depends on
Es. Consider an alternative error correction procedure where
the class of errors with the maximum probability Ēs is not
always chosen. Instead, an operator from a class Ē is applied
with probability p(Ē|s), so that R′ = {p(Ē|s)

1
2 EPs}s,Ē . The

success probability for this randomized correction procedure
is

p′
0 =

∑
Ē

p(Ē)p(Ē|sE) =
∑
E

p(E)p(Ē|sE) . (3)

This procedure is, at best, as successful as the original one,
giving the bound p′

0 � p0. Notice that p0 = 1 if and only
if p′

0 = 1. It follows that p0 = 1 if and only if for any D ∈
N (S) − G ∑

E

p(E)p(ĒD̄|sE) = 0. (4)

This was the condition used in Ref. [13] to characterize
successful recovery.

III. TOPOLOGICAL STABILIZER CODES

This section gathers together several aspects of topological
stabilizer codes to provide a reference for Sec. IV. The goal
is to put the subsystem codes introduced there in a broader
context, making apparent the similarities and differences with
previously known local and topological codes.

A. Local codes

In the context of fault-tolerant quantum computing it is ad-
vantageous to be able to perform the syndrome measurements
in a simple way. It may be desirable, for example, that the
number of qubits that form the support of the operators to be
measured is small. Similarly, it may be convenient that the
qubits that form the code only belong to the support of a small
number of such operators. This idea can be formalized to give
rise to the notion of local families of codes [12]. In particular,
a family of stabilizer subspace codes {Ci} is local when (i)
it contains codes of arbitrary distance and (ii) there exist two
positive integers µ, ν such that for each Ci there exists a family
of generators of the stabilizer Sj such that (ii.a) |Sj | � µ and
(ii.b) the number of Sj -s with support on any given qubit is
smaller than ν.

The drawback of such an abstract notion of locality is that
it is not related in any way to a particular geometry. Many
physical settings have qubits disposed in 1, 2, or 3 spatial
dimensions and only allow the direct interaction of nearby
qubits. To reflect this fact and without loss of generality
regarding the nature of the lattices, the previous definition
may be modified as follows [27]. First, the qubits of each code
Ci are considered to be disposed in the vertices of some finite,
periodic, cubic lattice of a given dimension D. Second, instead
of (ii) there must exist a positive number d, independent of Ci ,
such that the support of all the Sj is contained in some cube
containing dD vertices. A family of codes that is local in D

dimensions is always local in the previous sense.

A similar notion of local stabilizer subsystem codes may
be defined by substituting the stabilizer with the gauge group.
Notice that a family of subsystem codes might have local gauge
generators but nonlocal stabilizer generators, as the Bacon-
Shor codes exemplify.

B. Topological codes

Topological stabilizer codes are constructed from lattices
on a given manifold, in such a way that the generators of
the stabilizer are local with respect to the lattice [12,14,15,28].
Typically the set of qubits and the set of generators are directly
related to sets of geometric objects such as the vertices, links,
or faces of the lattice. To distinguish truly topological codes
from merely local ones we propose the following criterium.
In a topological stabilizer code, any operator O ∈ N (S) with
support in a subset of a region composed of disconnected
pieces, each of them simply connected, has trivial action on
logical qubits. Stated this way, it is a rather vague criterium
since no formal definition of region or connectedness is given.
However, it will be enough for our purposes by adopting a
reasonable interpretation when needed. Figure 1 shows an
example of a region in a torus that cannot be the support
of an undetectable error.

An enumeration of the common properties of known topo-
logical codes will be useful. First, the support of undetectable
errors is topologically nontrivial in some well-defined way. In-
deed, both in surface codes [12,13,28] and color codes [14,15]
undetectable errors are related to homologically nontrivial
cycles. Second and closely related, the number of encoded
qubits k depends only upon the manifold in which the lattice is
defined and not the lattice itself. For example, for 2D surface
and color codes the number of logical qubits is, respectively,
k = 2 − χ and k = 4 − 2χ , with χ the Euler characteristic of
the two-manifold. Finally, an important property of topological
codes is that their nature makes it possible to define them

FIG. 1. (Color online) In this figure the geometry is that of a
torus, with opposite sides of the square identified. The dark region
can be contained in a disconnected collection of simply connected
regions and thus cannot be the support of a nondetectable error in a
topological code.
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in many different lattices, typically rather arbitrary ones as
long as some code-dependent constraints are satisfied. In other
words, topological codes display a huge flexibility. This is to
be expected from constructions that only see the topology, not
the geometry, of the manifolds to which they are related.

Notice that the locality of the stabilizer generators was
emphasized with no mention to gauge generators. The reason
for this is that, up to now, no genuinely subsystem topological
codes were known. This article introduces a family of such
codes. They have both local gauge and local stabilizer
generators. Such locality properties should be expected from
any topological subsystem code.

The family of Bacon-Shor codes [16] provides an example
of nontopological local gauge codes. These codes certainly
do not satisfy the previous criterium for any interpretation
of connectedness that agrees with their 2D lattice geometry.
Moreover, their geometry is completely rigid in the sense that
there is no clear way to generalize them to other lattices and
manifolds.

It is interesting to observe that topological codes do not
offer good d/n ratios, which go to zero as larger codes are
considered. For example, in 2D surface or color codes d =
O(

√
n) holds (which is optimal among 2D local codes [27]).

But, as remarked in Ref. [12], this is a misleading point because
topological codes can correct most errors of order O(n).

Finally, classical topological codes also exist [28]. Unlike
quantum ones they can be obtained from mere graphs, that is,
one-dimensional (1D) objects.

C. Topological quantum memories

In Ref. [13] an interesting approach to the problem of
indefinite preservation of quantum information was presented
that makes use of topological codes. Since it will underly
several discussions, a brief summary is in order. The main idea
is that information is encoded in a surface code and preserved
by keeping track of errors. To this end, round after round
of syndrome extractions must be performed. There are thus
two sources of errors since not only will the code suffer from
storage errors, but the stabilizer measurements themselves are
also faulty. When the error rate is below a certain threshold the
storage time can be made as long as desired by making the code
larger, a feature that is only available in topological codes (for
other codes one will have to use concatenation). Interestingly,
this error threshold can be connected to a phase transition in
a classical statistical model, a random three-dimensional (3D)
gauge model [13,21].

D. Code deformation

The flexibility of topological codes implies that they can be
defined in many lattices. This feature makes the introduction
of code deformations natural [13,20,29], which are briefly
described next.

When two codes are very similar, in the sense that they differ
only by a few qubits, it is possible to transform one into another
by manipulating these few qubits. This is specially natural
for local codes that only differ locally. In particular, such
local code deformations will not compromise the protection
of the encoded information. These ideas were first explored in

Ref. [13] where the geometry of a surface code is transformed
step by step to compensate a change in the lattice geometry
provoked by a transversal gate. In Ref. [13] code deformations
are also used to initialize the code with an arbitrary state. This
is done by “growing” the code from a single qubit encoding the
desired state. Notice that, in this case, encoded information is
not protected in the early stages of the code deformation when
the code is still small.

In general [20], two main kinds of deformations may
be distinguished: those that change the number of encoded
qubits and those that do not. The former can be used to
initialize and measure encoded qubits and the latter to perform
operations on encoded qubits. In the case of topological codes,
code deformations amount to changes in the geometry of
a lattice, which may ultimately be understood as changes
in the geometry of a manifold. When the topology of the
manifold changes, initialization or measurement of encoded
qubits will happen in a well-defined way [20]. When the
manifold undergoes a continuous transformation that maps
it to itself a unitary operation is performed on the encoded
qubits [20]. This unitary operation only depends on the isotopy
class of the mapping.

Code deformation can be naturally integrated with the
successive rounds of stabilizer measurements mentioned in the
previous section. In particular, as long as the deformations are
local, one can perform them simply by changing the stabilizers
to be measured at each stage of error detection [20].

E. String operators

In this and subsequent sections we only consider 2D
topological codes with qubits as their basic elements because
the topological subsystem codes introduced in Sec. IV fall into
this category. For the same reason, subsystem code language,
as opposed to subspace, will be used.

In known 2D topological codes the logical Pauli operators
X̂1, . . . , Ẑk ∈ N(G) can be chosen to be string operators [12,
14]. These are operators Os with support along a set of qubits s

that resemble a closed string. There are several types of strings,
labeled as {li}. Two strings s and s ′ of the same type that enclose
a given region, as in a and b in Fig. 2, give equivalent operators
OsO

′
s ∈ S ′. In other words, only the homology of the strings

is relevant. In particular, boundary strings, those that enclose
a region as in c in Fig. 2, produce operators in S ′. Moreover,
S ′ is generated by boundary strings of some minimal regions.
When two strings s and s ′ cross once, like a and d in Fig. 2, Os

and Os ′ commute or not depending only on the labels of the
strings. Finally, two strings s and s ′ with a common homology
class can be combined in a single string s ′′ of a suitable type in
the sense that OsOs ′Os ′′ ∈ S ′. For example, d and e in Fig. 2
can be combined in a string f of a suitable type.

All these properties can be captured in a group L′ � Pt , for
some t that depends on the code. For example, t = 1 for surface
codes and t = 2 for color codes. The group L := L′/〈i1〉
has, as its elements, the string types {li} and the product
corresponds to string combination. The commutation rules are
recovered from L′: crossing strings commute or not depending
on whether their labels commute in L′. There are 2t labels
l̄1, . . . , l̄t that generate L. In a given manifold 2 − χ nontrivial
cycles that generate the homology group can be chosen. Each
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a b c

d

f

e

FIG. 2. (Color online) In this figure the geometry is that of a
torus, with opposite sides of the square identified. The colored curves
represent the support of string operators, with color standing for string
labels. Strings a and b enclose a region and thus are homologically
equivalent, producing equivalent operators. String c encloses a region
and thus is homologically trivial, producing a stabilizer element.
Strings d , e, and f are homologically equivalent but have different
labels, producing inequivalent operators.

of them gives rise to 2t string operators with labels li , and the
total 2t(2 − χ ) string operators generate N (G)/S ′, so that the
number of encoded qubits is k = t(2 − χ ).

Instead of strings, in general one can consider string-nets,
where the strings meet at branching points [14]. The allowed
branchings are those in which the product of all the labels
involved is trivial. String-nets do not play a significant role in
closed manifolds, but can be essential when the manifold has
boundaries [14].

Let us check the criterium for topological codes of Sec.
III B using the string operator structure. To this end a notion
of connectedness is needed, but this can be obtained from
the local generators of S ′: two regions or sets of qubits are
disconnected from each other if no local generator has support
on both of them at the same time. Let QO denote the support
of an operator O. Then if O ∈ N (S) and QO = Q1 � Q2

with Q1 and Q2 disconnected it follows that O = O1O2

and Q1 = QO1 , Q2 = QO2 for some O1,O2 ∈ N (S). As for
simple connectedness, it is easier to introduce a wider notion
of the “trivial” region. A set of qubits Q forms a trivial region
when there exist string operators Oi that generate N (G)/S ′
and such that QOi

∩ Q = ∅. If O ∈ N (S) is such that QO is
a trivial region then [O,Oi] = 0 for the corresponding string
generators Oi and thus O ∈ G. The criterium is satisfied within
this language: if O ∈ N (S) and QO = Q1 � . . . � Qt with the
Qi pairwise disconnected and each of the Qi a trivial region,
then O ∈ G.

F. Anyons

Topological codes can be described in terms of string
operators because they describe ground states of topologically
ordered quantum models, that is, systems with emergent

Abelian anyons [12]. Anyons are localized quasiparticles
with unusual statistics. String operators represent quasiparticle
processes and their commutation rules are directly related to
the topological interactions of the anyons. Moreover, when an
open-ended string operator is applied to the ground state, a pair
of anyons is created on the ends of the string. The labels of the
created anyons are those of the string so that string labels are
also quasiparticle labels.

From the perspective of the code quasiparticles, they
correspond to error syndromes, signaling a chain of errors
along the string [13]. Thus, keeping track of errors in a
topological code, recall Sec. III C, amounts to keeping track
of the word lines of these quasiparticles. Error correction
will succeed if the word lines are correctly guessed up to
homology [13].

G. Boundaries

From a practical perspective, codes that are local in a closed
two-manifold like a torus are not very convenient. Instead, one
prefers to have planar codes. Thus, a way to create nontrivial
topologies in the plane is needed and this is exactly what is
gained by introducing boundaries.

In a given code different types of boundaries are possible.
To start with, one can always consider random, structureless
boundaries. The introduction of such boundaries will typically
produce many local encoded qubits along the boundary.
However, these qubits are unprotected and thus essentially
useless.

More interestingly, boundaries with well-defined properties
and nonlocal encoded qubits are also possible [13,14]. The
defining property of such boundaries is that strings s with
labels from a certain subset M ⊂ L are allowed to end in them
(see Fig. 3) in the sense that Os belongs to the normalizer
N (S). In other words, the introduction of the boundary changes
the notion of a closed string by allowing on the boundary
loose ends of strings of suitable types. The notion of boundary
strings also changes. Two strings s and s ′ of the same type
that, together with the boundaries in which they can end, form

a

e

d
b

fc

FIG. 3. (Color online) This figure illustrates boundaries on 2D
topological codes, which are displayed as dashed thick lines. Strings a

and b, together with the boundaries, enclose a region and thus produce
equivalent operators. String c can end in the boundary because it
can be decomposed in two strings that can end on it. Strings d and
e enclose regions and thus produce stabilizer operators. String f

produces a stabilizer element or an undetectable error, depending on
whether its label is allowed in the boundary.
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the the boundary of a given region (such as a and b in Fig. 3)
produce equivalent operators so that OsO

′
s ∈ S ′.

Notice that M should be a subgroup of L because if strings
with labels l, l′ ∈ M can end in the boundary then so can
strings with the label ll′ by splitting before reaching the
boundary, such as string c in Fig. 3. Also, any two labels
l, l′ ∈ M must commute in L′. In another case, the stabilizer
will contain anticommuting elements, which is not possible.
This is illustrated by strings d and e of Fig. 3, which must
produce commuting operators. Finally, L′ should be maximal
in the sense that, for any l 
∈ M , there exist some l′ ∈ M such
that l and l′ anticommute in L′. In another case, according
to the rules stated previously, an l-string s that surrounds
an M hole, as in f in Fig. 3, produces an operator Os that
has to belong to N (S) − S ′ because it is not a boundary, but
for which there is no other string s ′ such that {Os,O

′
s} = 0.

This is a contradiction. It is, in fact, possible to relax this last
maximality condition, but at the cost of getting a boundary
between two topological codes rather than a boundary between
a code and the “vacuum.”

Remarkably, boundaries in topological codes are directly
related to anyon condensation in the corresponding topologi-
cally ordered models [30]. It will become apparent in Sec. IV E
that this has important consequences because only bosons can
condense and this forbids certain types of boundaries.

IV. A FAMILY OF TOPOLOGICAL SUBSYSTEM CODES

The subsystem codes introduced in this section have their
origin in a spin-1/2 quantum model that shows topological
order [31]. The Hamiltonian of the model is a sum of two-local
Pauli terms that here will become the gauge generators. The
Pauli symmetries of this Hamiltonian were already described
in Ref. [31] and thus, to some extent, the codes were already
implicitly considered in that work. Here we explicitly work out
all the details from the code perspective. In addition, diverse
aspects that are important in practice are explored, such as the
possibility of introducing boundaries and the computational
power of code deformations.

A. Lattice and gauge group

The family of codes C� of interest is parametrized
by tripartite triangulations � of closed two-manifolds, not
necessarily orientable. That is, each code C� is obtained from
a 2D lattice � such that (i) all faces f ∈ F are triangular and
(ii) the set of vertices V can be separated in three disjoint sets,
in such a way that no edge e ∈ E connects two vertices from
the same set. Figure 4(a) shows an example. Alternatively, �

is the dual of a two-colex [32]. Following the notation used
in previous work, the three sets of vertices are colored as red,
green, and blue. The faces of � will be simply called triangles.

The first step in the construction of C� is to derive a new
lattice �̄ from �, as exemplified in Fig. 4(b). In going from �

to �̄, the triangles of � separate from each other giving rise
to new faces. In particular, each of the edges and vertices of �

contributes a face to �̄. The edges of � are divided into three
subsets, Ē = ĒX � ĒY � ĒZ . In Fig. 4(b), X edges are dotted,
Y edges are dashed, and Z edges are solid. The Z edges form
the triangles of �̄. Each edge in � contributes an X edge and

(a) (b)

FIG. 4. (Color online) (a) Part of a 2D lattice � with triangular
faces and three-colorable vertices. (b) The lattice �̄ derived from �.
It is obtained by separating the triangles of � and adding one face
per edge and vertex of �. Its edges are classified in three types. Solid
edges are Z edges, dashed edges are Y edges, and dotted edges are X

edges. There is one qubit per vertex and the generators of the gauge
group are related to edges. They are two-local operators of the form
XX, YY , or ZZ, depending on the edge type.

a Y edge in such a way that no two X edges or two Y edges
meet. There are thus two ways to choose the sets of X and Y

edges.
The definition of C� is now at hand. First, physical qubits

correspond to the vertices of �̄. Second, the gauge group is
G� := 〈i1〉〈Ge〉e∈E , with generators Ge related to the edges
e of �̄. These take the form Ge := σvσv′ for e ∈ Ēσ , σ =
X, Y,Z, where v, v′ are the vertices connected by e. Thus, the
generators are two-local. This is an improvement with respect
to previously known topological stabilizer codes, which have
generators of weight of at least 4.

B. String operators

This section describes N (G�) and its center S ′
� = G� ∩

N (G�) in terms of the string operator framework of Sec. III E,
which is valid for these codes. In particular, it turns out that
L′ � P1, as in surface codes. In Sec. IV E it will be apparent,
however, that there exist differences between the nature of
the strings of C� codes and those in surface codes. These
are not captured by L′, which indeed does not contain all the
information about the corresponding topological order. The
details of the statements made in this section can be found in
the Appendix.

We first seek a graphical representation of N (G�). Take any
subgraph γ of the graph of �̄, such as the one in Fig. 5(b) that
has at each of its vertices one of the configurations of Fig. 5(a).
This graph γ produces a Pauli operator Oγ = ⊗

v σv with
σv = 1, X, Y,Z according to the correspondence of Fig. 5(a).
Observe that such operators Oγ belong to N (G�). Up to a
phase, the correspondence between the elements of N (G�)
and graphs is one to one.

These graphs either contain all the edges of a triangle or
none of them. Thus, each graph γ determines a subset of
triangles Tγ of the original lattice �. In Figs. 5 through 7 this
subset appears shaded. Notice that the number of triangles
of Tγ meeting at each vertex is even. In fact, any subset of
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1

X

Y

Z

(a) (b)

FIG. 5. (Color online) (a) The four possible configurations at a
given vertex for allowed subgraphs of �̄. A different Pauli operator
corresponds to each of them. (b) A subgraph γ (thick lines) of a lattice
�̄ (thin lines), obtained from a regular triangular lattice � (lightest
lines).

triangles that meets this property can be realized as Tγ for
some γ .

String operators are obtained from string-like graphs such
as the one in Fig. 6. Notice in the figure how triangles can be
paired in a specific way. These pairs of triangles always connect
vertices of the same color from the original lattice �. This
allows us to classify strings accordingly with the labels r, g, and
b. It is a simple exercise to check that crossing strings operators
commute if they have the same color and anticommute in the
other case, in accordance with L′. String-nets can be formed by
introducing branching points where three strings of different
colors meet.

The group S ′
� is generated by small string operators related

to vertices v of the original lattice �. In particular, let us set
Sc

v = Oγ , c = r, g, b with γ the c-colored string going around
v, as shown in Fig. 7. ThenS ′

� = 〈i1〉〈Sc
v〉v,c. These generators

are only subject to the relations∏
c

Sc
v ∝ 1,

∏
v

Sc
v ∝ 1, (5)

where the first product runs over the three colors and the second
over the vertices of �. As a consequence, the rank of S� is s =
2|V | − 2. Since the number of encoded qubits is k = 2 − χ ,
it follows that the number of gauge qubits is r = n − k −
s = |3F | − 2|V | + χ = 2|F | − χ , showing that gauge qubits
“see” the global structure of the manifold.

FIG. 6. (Color online) A string operator as a subgraph γ of �̄,
displayed in thick lines. Its triangles come in pairs, each of them
connecting vertices of the same color in �.

a b

FIG. 7. (Color online) Two examples of string operators Sc
v

related to vertices v in �. The string b shares color with the vertex
that encloses, whereas for a the two colors differ producing a more
involved operator.

What can string operators tell us about the code distance
d? Given an operator Oγ ∈ N (G), consider the subset E′ of
the edges of γ with elements of all the X and Y edges of γ

and one of the three Z edges that correspond to each triangle
in Tγ . Then G = ∏

e∈L Ge ∈ G� and it is easy to check that
|Oγ G| = |Tγ |. Therefore d � dT , with dT the minimal length,
in terms of the number of triangles, among nontrivial closed
strings. A lower bound for d is given in the next section.

C. Homology of errors

This section offers a homological description of error
correction for C�. The main idea is that the error syndrome can
be identified with the boundary of errors, considered as paths
on the surface. Then error correction succeeds if this path can
be guessed up to homology. It is worth noting that the notation
and results in this section will not be used again.

To fix notation we recall first some basic notions. Let
� denote the additive group of Z2 one-chains in �. Its
elements are sets of edges δ ⊂ E and addition is given by
δ + δ′ = (δ ∪ δ′) − (δ ∩ δ′). The boundary ∂δ of δ ∈ � is the
set of vertices in which an odd number of edges from δ

meet. The elements δ ∈ � with ∂δ = 0 are called cycles and
form a subgroup Z ⊂ �. Boundaries form a subgroup B ⊂ Z,
generated by elements of the form δ = {e1, e2, e3} with ei

the three edges of a given triangle. The first Z2 homology
group of � is H1 := Z/B � Zh

2 with h = 2 − χ the number
of independent nontrivial cycles of the closed surface formed
by �. Two chains δ, δ′ ∈ � are said to be equivalent up to
homology, δ ∼ δ′ if δ + δ′ ∈ B.

Consider a morphism fr : Pn −→ � defined by fr(i) = ∅
and the following action on single qubit operators Xv̄ , Yv̄ ,
where v̄ ∈ V̄ . Xv̄ anticommutes exactly with two operators
of the form Sr

v , v ∈ V . The corresponding two vertices are
connected by an edge e ∈ E and fr(Xv̄) = {e}. fr(Yv̄) is
defined analogously. It is easy to check that fr[G�] = B and
that for any O ∈ Pn, the set ∂fr(O) contains those vertices
v ∈ V such that {O, Sr

v} = 0. Moreover, if γ is a string
then fr(Oγ ) ∈ Z and if γ is red fr(Oγ ) ∈ B. Indeed, if
{γi} is the set of red strings, then fr gives an isomorphism
N (S�)/(G�〈Oγi

〉i) � H1.
Consider, in addition, an analogous morphism fb with

blue color playing the same role as red in fr. Then for any
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O ∈ Pn, we have O ∈ G� if and only if fc(O) ∈ B for c = r, b.
Similarly, O ∈ N (S�) if and only if fc(O) ∈ Z for c = r, b.
This shows that error correction will succeed as long as errors
can be guessed up to homology. In detail, suppose that the code
suffers a Pauli error O. The error syndrome can be expressed
in terms of the two sets ∂fr(O), ∂fb(O) ⊂ V . Suppose that
an attempt is made to correct the errors by applying some
O ′ ∈ Pn such that ∂fc(O) = ∂fc(O ′) for c = r, b. Then error
correction succeeds if and only if O ′O ∈ G, that is, if and only
if fc(O) ∼ fc(O ′) for c = r, b.

Although error correction can be expressed in these
homological terms, this is really not the most natural thing
to do because it involves an arbitrary choice of two of the three
available colors. In this regard, notice that not any set of edges
δ ∈ � can be obtained from an operator O ∈ Pn as δ = fr(O)
and that the cardinalities of fr(O) and fb(O) by no means
are enough to compute |O|. This makes a direct translation of
the ideas used in Ref. [13] unfeasible for error correction in
surface codes.

To give a lower bound for the distance d of the code, the
definition of the mappings fc, c = r, b must be modified. We
set f ′

c(
⊗

v̄ σv̄) := ∑
v̄ f ′

c(σv̄), where σv̄ = 1v̄ , Xv̄, Yv̄, Zv̄ , and
we fix f ′

c(1v̄) := ∅, f ′
c(Xv̄) := fc(Xv̄), f ′

c(Yv̄) := fc(Yv̄) and
f ′

c(Zv̄) is defined in analogy with fc(Xv̄). The new mappings f ′
c

are not group morphisms, but they do keep the good properties
of the fc mappings listed previously. And they satisfy |O| �
|f ′

c(O)|, which immediately leads to the bound d � dL with
dL the minimal length, in terms of the number of edges, among
nontrivial closed loops in �.

D. Syndrome extraction

As indicated in Sec. III C, in a topological quantum memory
one has to keep track of errors by performing round after round
of syndrome extraction. This raises the question of how fast and
simply the stabilizer generators of a code C� can be measured.
The faster the measurements the less errors will be produced
in the meantime and the simpler they are the less faulty gates
they will involve. Of course, what fast and simple really mean
will depend on particular implementations; in other words, in
the basic operations at our disposal.

To keep the discussion general, take gauge generator
measurements to be the basic components of the syndrome
extraction. At each time step the measurement of any subset of
generators {Gi} is allowed as long as each physical qubit only
appears in one of the Gi . Then, in any code C� it is possible to
cyclically measure all the stabilizer generators by performing
six rounds of measurements. The time step at which each
generator is to be measured is indicated in Fig. 8. Notice that
Z edges are measured at even times and X and Y edges at odd
times. From time steps 1 through 3 the eigenvalue for operators
Sc

v at blue vertices are obtained, from steps 3 through 5 those
for red vertices, and from steps 5, 6, and 1 (this last one in
the subsequent cycle) those for green vertices. It is not clear
whether this number of time steps is optimal since, in principle,
four or five can be enough. As a comparison, the number of
steps needed for the Bacon-Shor codes is four. In this sense
the six steps are not bad, taking into account that the codes C�

do not benefit from the the separation of gauge and stabilizer
generators into X type and Z type as the Bacon-Shor codes do.

1

1

3

3
6 4

2

55

FIG. 8. (Color online) The proposed ordering for the measure-
ments of the edge operators. It does not depend on the particular
geometry of the lattice � because it is dictated by the coloring of its
vertices.

E. The problem of boundaries

This section shows why it is not possible to introduce
boundaries with the properties discussed in Sec. III G. This
has important practical consequences since there is no other
known way to introduce a nontrivial topology in a completely
planar code. Notice, however, that we can always flatten a
manifold to get a “planar” code at the price of doubling the
density of physical qubits in the surface. Also, the absence of
boundaries makes the use of code deformations less practical,
although they are still possible, as shown in Sec. IV F. In any
case, this leaves open the question of whether other kinds of
interesting boundaries can be introduced.

The existence of boundaries leads to the following contra-
diction. According to the properties listed in Sec. III G, there
are three potential kinds of boundaries, one per color. Each
of them only allows strings of its color to end on it. Clearly
either all the boundaries can be constructed or none of them.
Thus, suppose that the three of them are allowed and consider
a geometry like the one in Fig. 9, with three holes, one of each
color. Take a string-net γ that connects the three holes, as in
the figure, and deform it to another string-net γ ′. It follows
from the properties of string operators and boundaries that
Oγ Oγ ′ ∈ S ′, but also that {Oγ ,Oγ ′ } = 0 since they cross at
a single point where they have different colors. This is not
possible.

γ γ′

FIG. 9. (Color online) A hypothetical geometry for a C� code
with three holes of different colors. According to the properties of
boundaries, the string operators a and b are equivalent up to stabilizer
elements. This is a contradiction because, due to the way they cross,
they anticommute.
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In Sec. IV B it was noted that the string label group L′ is
the same in surface codes and the subsystem codes. Since,
according to Sec. III G, the set of allowed boundaries is
dictated by L′, it can be expected that surface codes will not
have boundaries. However, this is not the case: Two kinds
of boundaries can be constructed in surface codes [13]. The
point is that there is a key difference between the two families
of codes: In surface codes the three types of strings are not
equivalent in any sense so that the previous reasoning is not
valid.

At a deeper level, this difference between the codes has its
origin in the difference between the corresponding topological
orders. Indeed, L′ does not encode all the information about the
properties of anyons. In surface codes two of the quasiparticle
types are bosons and the third a fermion [12], whereas in the
subsystem codes all three are fermions [31]. The connection
between anyon condensation and boundaries is thus crucial:
Nice boundaries cannot be introduced in these topological
subsystem codes because all the string operators are related to
fermions, which cannot condense.

F. Code deformation

This section explores the potential of code deformations in
the topological subsystem codes C�. We show how initializa-
tions and measurements of individual logical qubits in the X

and Z basis are possible through certain topology-changing
processes on the manifold. We also show that controlled-NOT

and Hadamard gates can be, in principle, implemented through
continuous deformations of the manifold, but not in a practical
way.

To begin with, a manifold and a set of logical operators
X̂1, Ẑ1, · · · X̂k, Ẑk must be selected. We choose an h torus,
that is, a sphere with h holes. Codes C� on such a manifold
provide 2h logical qubits, but only h of them will be used with
the choice of logical operators indicated in Fig. 10(a). The rest
of the logical qubits are considered gauge qubits.

When a new handle is introduced, a logical qubit is created
and initialized in a definite way [see Fig. 10(b)]. In the figure
the two surfaces are supposed to be already connected so that a
handle is really created. There are two ways to introduce a new
handle in a surface such as that of Fig. 10(a), depending on

(b)(a)

FIG. 10. (Color online) (a) A sphere with h holes can encode 2h

qubits, but we choose to encode just h. The logical X̂i , Ẑi operators
correspond to the strings in the figure. Red strings give X’s and blue
strings Z’s. (b) When the topology of the surface changes as indicated
here two qubits are introduced in the code. They are initialized in a
fixed way. In particular, the string operator in the figure is a boundary
before the deformation takes place and thus has a fixed value. This
value is not changed by the deformation because it occurs in a different
part of the code.

whether the process of Fig. 10(b) occurs “inside” or “outside”
the surface. In the former case the new qubit is initialized in
a Ẑ eigenstate and in the latter in a X̂ eigenstate. Whether the
initialization occurs in the Z or X basis depends on which of the
two string operators of the new qubit was a boundary initially.
This operator has its eigenvalue fixed before the deformation
occurs and during the process it is topologically protected at
all times [20]. The particular sign of the eigenstate depends on
the arbitrary sign choices for the logical operators and S�. If
the initialization process is reverted it yields a measurement in
the corresponding basis [20].

It is always possible to detach a qubit or a torus from the rest
of the code. This does not involve any measurement because
the strings running along the cutting line are boundaries [20].
Similarly, there is no problem in attaching a torus to the code
to add a logical qubit. But once a logical qubit is isolated
it can undergo code deformations independently. Consider
a mapping that exchanges the two principal cycles of the
torus and shifts the lattice a bit, if necessary, to adjust the
color correspondence, for example, by rotating the torus.
Such a mapping can exchange X̂ and Ẑ operators, which
amounts to a Hadamard gate. There exists an important
drawback though. This deformation cannot be realized in 3D
without producing self-intersections of the surface. Still, it
is conceptually interesting that the Hadamard gate can be
obtained from purely geometric code deformations because
this is not possible in surface or color codes where X

and Z-type operators correspond to different types of string
operators and a transversal Hadamard gate must be added to
the picture [13]. Because color is just a matter of location in the
lattice, strings of different colors are equivalent up to lattice
translations. This is, in essence, what makes the geometric
implementation of the Hadamard gate possible.

A controlled phase gate 1 − 1
2 (1 − Zi)(1 − Zj ) on a pair of

logical qubits i, j can be implemented through a “continuous”
deformation of the code. The process is indicated in Fig. 11. It
follows from the way in which the logical operators evolve [20]
that the complete process amounts to a controlled phase gate,
up to some signs in the final logical operators that depend on
the choice of S�. A controlled-NOT gate can then be obtained
by composing this gate with Hadamard gates. But again, such
a code deformation requires the overlapping of the surface of
the code with itself, see Fig. 11(b).

(a) (c)(b)

FIG. 11. (Color online) The deformation that produces a con-
trolled phase gate. (a) The code before the deformation takes place and
a particular string. (b) The deformation moves one of the “holes” in the
top part around the other, as indicated by the solid line with an arrow.
To recover the original shape, as indicated by the dashed line, the
two “tubes” have to overlap unavoidably. (c) After the deformation,
the string operator was mapped to the product of these two string
operators.

032301-10



TOPOLOGICAL SUBSYSTEM CODES PHYSICAL REVIEW A 81, 032301 (2010)

V. STATISTICAL PHYSICS OF ERROR CORRECTION

In Ref. [13] an interesting connection between error correc-
tion thresholds for surface codes and phase transitions in 2D
random bond Ising models was developed. Similar mappings
exist also for color codes [22], in this case to 2D random
three-body Ising models. In both cases, the CSS structure of
these codes is an important ingredient in the constructions:
They are subspace codes with S = SXSZ in such a way that
Sσ is generated by products of σ operators, σ = X,Z. To take
full advantage of this the noise channel for each qubit must be a
composition of a bit-flip channel Ebf(p) := {(1 − p)

1
2 1, p

1
2 X}

and a phase-flip channel Epf(p) := {(1 − p)
1
2 1, p

1
2 Z}.

There are two main obstacles to constructing a similar
mapping for the codes C�. The first is that they are subsystem
codes rather than subspace codes. The second is that the gauge
group cannot be separated in an X and a Z part. As we show
in the following both can be overcome.

A. Mapping to a statistical model

Rather than directly considering the codes C�, this
section deals with the general mapping from any given
stabilizer subsystem code to a suitable classical statistical
model. For simplicity, each qubit in the code is supposed
to be subject to a depolarizing channel Edep(p) := {(1 −
p)

1
2 1, (p/3)

1
2 X, (p/3)

1
2 Y, (p/3)

1
2 Z}, with p the error proba-

bility, but more general channels are possible within the same
framework.

To build the classical Hamiltonian model, the first step is
the choice of a set of generators {Gi}li=1 of G/〈i1〉. These
generators can be captured in a collection of numbers gσ

ij =
0, 1 defined by

Giσj = (−1)g
σ
ij σjGi, (6)

with σ = X, Y,Z, i = 1, . . . , l, and j = 1, . . . , n. Attach a
classical Ising spin si = ±1 to each of the generators Gi . The
family of Hamiltonians of interest is

Hτ (s) := −J
∑

σ=X,Y,Z

n∑
j=1

τσ
j

l∏
i=1

s
gσ

ij

i , (7)

with parameters τσ
j = ±1 such that τX

j τY
j τZ

j = 1. The cou-
pling J > 0 is introduced to follow conventions. Notice
that codes with local gauge generators give rise to local
Hamiltonian models. Since gX

ij + gY
ij + gZ

ij = 0 mod 2 the
Hamiltonian (7) can be rewritten as

Hτ (s) = n −
∑

j

(
1 + τX

j

∏
i

s
gX

ij

i

) (
1 + τY

j

∏
i

s
gY

ij

i

)
. (8)

The partition function for these Hamiltonians is

Z(K, τ ) =
∑

s

e−βHτ (s), (9)

with K := βJ and β the inverse temperature.
The goal is to express the class probabilities p(Ē), E ∈ Pn

in terms of the partition function (9) for a suitable τ . Let τ = τE

be such that

E ∝
⊗

j

X
1−τY

j

2 Y
1−τX

j

2 . (10)

Similarly, for each G ∈ G choose any s = sG such that

G ∝ G
1−s1

2
1 · · ·G

1−sl
2

l . (11)

We write s ′′ = s ′s if s ′′
j = s ′

j sj . Then sGsG′ = sGG′ and for any
spin configuration s, E ∈ Pn and G ∈ G it can be checked that

HτEG
(s) = HτE

(sGs). (12)

In the depolarizing channel the probability for a Pauli error E

is p(E) = (p/3)|E|(1 − p)n−|E|. It may be written as

p(E) = c−n
p e−βpHτE

(s1), (13)

where cp := e3Kp + 3e−Kp and βp := Kp/J with

e−4Kp := p

3(1 − p)
. (14)

The desired connection follows from Eqs. (12) and (13), which
give

p(Ē) =
∑
G∈G

p(EG) = 1

2wcn
p

Z(Kp, τE), (15)

where w is the number of redundant generators of G, that is,
w = l − l′ with l′ the rank of G/〈i1〉.

B. CSS-like codes

To connect the results of the previous section with the
work in Refs. [13,21,22] CSS codes must be considered.
These are codes with G = 〈i1〉GXGZ for some Gσ generated
by products of σ operators, σ = X,Z. And, instead of a
depolarizing channel, the noisy channel must take the form
E = Ebf(p) ◦ Epf(p′). This allows us to treat the X and Z errors
independently [13]. Here we consider the case of bit-flip errors;
phase-flip errors are analogous.

The construction is similar to the one in the previous section.
It starts with the choice of generators GX = 〈Gi〉li=1. The
relevant Hamiltonians read

H ′
τ := −J

n∑
j=1

τj

l∏
i=1

s
gij

i , (16)

where τj := τZ
j and gij := gZ

ij . The probability of an error E

that is a product of X operators is

p(Ẽ) :=
∑
G∈GX

p(EG) = 1

2w(2 cosh K ′
p)n

Z(K ′
p, τE), (17)

where w is the number of redundant generators of GX and

e−2K ′
p := p

1 − p
, (18)

defines the Nishimori temperature [26].
The Bacon-Shor codes provide an example of gauge CSS-

like codes. With the above procedure they yield models that
amount to several copies of the 1D Ising model.
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C. Symmetries

Interestingly, the redundancy of the generators of G is
directly connected to the symmetries of the Hamiltonian (7).
Suppose that the generators are subject to a constraint of the
form ∏

i∈I

Gi ∝ 1, (19)

for some set of indices I . Then Eq. (12) gives

Hτ (s) = Hτ

(
s
∏
i∈I

sGi

)
. (20)

In other words, making the most natural choice for the
sGi

it follows that the Hamiltonian is invariant under the
transformation

si −→ s ′
i =

{−si, i ∈ I,

si, i 
∈ I.
(21)

Thus, global constraints lead to global symmetries and local
constraints to local symmetries.

As a particular example, consider surface codes, which are
mapped to Ising models [13]. In these codes the product of all
X-type stabilizers equals the identity, producing a symmetry
that is simply the global Z2 symmetry of the Ising model.

D. Error correction and free energy

We now put Eq. (15) to use in the error correction
framework of Sec. II E. Recall that, after the syndrome has
been measured, one has to find the most probable class of
errors among several candidates Ēi := ĒD̄i . This amounts
to comparing the probabilities p(Ēi) or, alternatively, the
quantities Z(Kp, τEi

). To do this, it is enough to know the
free energy differences [13]

�i(Kp, τE) := βF (Kp, τEi
) − βF (Kp, τE), (22)

where F (K, τ ) = −T ln Z(K, τ ) is the free energy of a given
interaction configuration τ . For example, in the Ising models
that appear for 2D surface and color codes these are domain-
wall free energies.

In practice, the computation of Eq. (22) may be difficult.
In this regard, it was suggested in Ref. [13] in the context
of surface codes that, in the absence of glassy behavior, the
computation of Eq. (22) should be manageable and in Ref. [21]
a possible approach was sketched.

E. Error threshold and phase transition

In surfaces codes there exists an error probability pc, the
error threshold such that the asymptotic value of the success
probability p0, in the limit of large code instances, is one for
p < pc and 1/4k for p > pc [21]. This is directly connected
to an order-disorder phase transition in a model with random
interactions. An analogous transition is observed for the
random model that corresponds to color codes [22,33,34]. It is
then natural to expect a similar connection in other topological
codes, as we describe next.

Consider a random statistical model with Hamiltonian (7)
in which the parameter τ is a quenched random variable. That
is, τ is random but not subject to thermal fluctuations. The

probability distribution p(τ ) is such that the signs of τσ
i and

τσ ′
j are independent if i 
= j . For each i, the case τX

i = τY
i = 1

has probability 1 − p and the other cases have probability p/3
each. In other words, if τ = τE then p(τ ) = p(E) with p(E)
given by the depolarizing channel Edep(p).

In thermal equilibrium the model has two parameters, the
temperature T and the probability p. For mapping only a
particular line in the p-T plane is relevant, the Nishimori
line [26], given by the condition K = Kp that has its origin
in Eq. (13). The error correction success probability in Eq. (3)
can be written in terms of this statistical model as follows

p′
0 =

⎡
⎣(

1 +
4k∑
i=2

e−�i (Kp,τ )

)−1
⎤
⎦

Kp

, (23)

where [·]Kp
:= ∑

τ p(τ )· denotes the average over the
quenched variables.

Suppose that the code has a threshold probability pc below
which p′

0 → 1 in the limit of large codes. Then [35], in the
random model the average of the free energy difference (22)
diverges with the system size, [�i(K, τ )]Kp

→ ∞, for p < pc

along the Nishimori line. This is exemplified [13] by surface
codes and the corresponding random 2D Ising models, where
[�i(K, τ )]Kp

is the domain-wall free energy. It diverges with
the system size below p = pc and attains some finite limit over
the threshold, signaling an order-disorder phase transition at
pc. A similar behavior can be expected for other topological
codes. For 2D color codes this was shown in Ref. [22].

F. The Hamiltonian model for C� codes

The previous mapping can be immediately applied to the
subsystem codes C�. Choose as generators of the gauge group
the edge operators Oe so that there is an Ising spin se at each
edge e. The Hamiltonian takes the form

H�
τ (s) := −J

n∑
j=1

τX
j s2s3s4 + τY

j s1s3s4 + τZ
j s1s2, (24)

where the sum runs over vertices and for each of them the
Ising spins s1, s2, s3, and s4 correspond, respectively, to the X,
Y , and two Z edges meeting at the vertex.

The Hamiltonian (24) has a local symmetry at each
triangle. In particular, flipping the three Ising spins of
the triangle leaves H�

τ invariant. This is so because
the product of the three edge operators in the trian-
gle equals the identity. There exists also a global Z2 ×
Z2 symmetry that follows from the global constraints in
Eq. (5). The local constraints in Eq. (5) do not provide any
symmetry as they are trivial in terms of the gauge generators.

G. Faulty measurements

The mapping considered up to now is only suitable if
perfectly accurate quantum computations are allowed in error
correction. This section generalizes it to include errors in the
measurements of the stabilizer generators.

Following Ref. [13], take as a goal the “indefinite” preser-
vation of the content of a quantum memory. Time is divided
in discrete steps. At each time step, the memory suffers errors
and at the same time the stabilizer generators are imperfectly
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measured. Then, if from the history of measurements one can
correctly infer the actual history of errors up to a suitable
equivalence, the memory is safe.

The results in Refs. [13,21] show that, for surface codes,
there exists a noise threshold below which long time storage is
possible for sufficiently large codes. The same behavior can be
expected for other topological codes, but the construction of a
suitable random statistical model for each code is required first.
Here we generalize the construction of Ref. [13] to subsystem
codes and depolarizing channels.

1. Depolarizing channel

Consider first the case of a depolarizing channel Edep(p)
occurring for each physical qubit between each round of
measurements. We adopt the convention that, at a given
time t , first errors occur and then faulty measurements are
performed.

Recall that in the mapping of error correction to a statistical
model errors were mapped to interactions through the τσ

j

[see Eq. (10)]. The new elements here are time and faulty
measurements. Since errors can occur at different time steps t ,
a time label must be added to the τσ

j ’s to get the collection of
signs τ = (τσ

jt ), subject as before to the constraints τX
jt τ

Y
jt τ

Z
jt =

1. To represent errors in the measurements of stabilizers, first
a set {Sk}mk=1 of generators of S to be measured at each
time step t must be chosen. Attach to them a collection of
signs κkt = ±1. The correct (wrong) measurement of the kth
generator at time t corresponds to κkt = 1 (κkt = −1). In the
statistical model the τ and κ are quenched variables. τ follows
the same distribution as before, dependent on the probability
p and each κkt is independent and takes the value −1 with
probability q. For this to make sense under the mapping, errors
in the measurements must occur independently with a fixed
probability q. This will not be true in most settings. Still, it is a
useful assumption because knowing the correlations between
errors can only improve error correction. In analogy with the
gσ

ij defined earlier, the stabilizer generators are captured in a
collection of numbers hσ

kj = 0, 1 defined by

Skσj = (−1)h
σ
kj σjSk, (25)

with σ = X, Y,Z, k = 1, . . . , m, and j = 1, . . . , n.
Recall also that, in the original mapping, gauge generators

Gi were mapped to Ising spins si . The reason for this was that
gauge generators play the role of basic equivalences between
errors. Now for errors that occur at the same time t this kind
of equivalence happens again, represented by spins sit . In
addition there is an equivalence between errors that involves
errors at different time and measurement errors. If at times t

and t + 1 a given error occurs and the measurements at time
t of the stabilizers that will detect the error fail, then these
errors go unnoticed altogether but produce no harm. Thus,
two collections of errors that differ only by such an event
should be considered equivalent. Therefore, Ising spins that
represent this equivalence are necessary. This can be achieved
by attaching two Ising spins sX

jt , s
Y
jt to the t th time step and j th

qubit. The Hamiltonians are

Hτ,κ (s) := − J
∑

σ

∑
j

∑
t

τ σ
jt s

σ
j (t−1)s

σ
jt

∏
i

s
gσ

ij

it

− K
∑

k

∑
t

κkt

∏
j

∏
σ

(
sσ
jt

)hσ
kj , (26)

where sZ
jt := sX

jt s
Y
jt and the range of values of the different

indices should be clear from the context. To recover the
probability of a given set of errors from the partition function
the relations

e−4βJ = p

3(1 − p)
, e−2βK = q

1 − q
, (27)

must hold.
For each time step t , the Hamiltonians (26) keep the

symmetries (21). In addition, there is a symmetry for each
gauge generator Gi ′ and time t ′. Namely,

sσ
jt −→ s ′σ

jt =
{

(−1)g
σ
i′j sσ

jt , t = t ′,
sσ
jt , t 
= t ′,

sit −→ s ′
it =

{−sit , i = i ′, t = t ′, t ′ + 1,

sit , otherwise. (28)

Therefore, local gauge generators give rise to a (random) gauge
model.

2. Bit-flip channel

Finally, consider the simpler case of a bit-flip channel
Ebf(p) in a CSS-like code. As noted earlier, the case of a
phase-flip channel is analogous and if both channels happen
consecutively they can be treated independently.

The construction is an extension of the one in Sec. V B. The
τj ’s and si are, respectively, replaced by the signs τjt and the
Ising spins sit . Given a choice of generators SZ = 〈Sk〉 to be
measured at each time step, there is a corresponding collection
of signs κkj . The generators take the form Sk = ±⊗

j Z
hkj

j

for some hkj = 0, 1. There is also an Ising spin ŝj t for each
physical qubit j and time step t . The Hamiltonians read

H ′
τ,κ (s) := − J

∑
j

∑
t

τj t ŝj (t−1)ŝj t

∏
i

s
gij

it

− K
∑

k

∑
t

κkt

∏
j

ŝ
hkj

j t . (29)

Instead of Eq. (27), the right conditions are now

e−2βJ = p

1 − p
, e−2βK = q

1 − q
. (30)

The analog of Eq. (28) is

ŝj t −→ ŝ ′
j t =

{
(−1)gi′j sj t , t = t ′,
ŝj t , t 
= t ′,

sit −→ s ′
it =

{−sit , i = i ′, t = t ′, t ′ + 1,

sit , otherwise. (31)

VI. CONCLUSION

Topological codes are intrinsically local and gauge or
subsystem codes can have interesting locality properties. In
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this article we introduce a family of topological subsystem
codes, thus putting together the two concepts. The gauge
group of the code is generated by two-local operators, which
compares well with surface or color codes that have at least
four-local and six-local generators, respectively. In particular,
the measurement of these two-local operators is enough to
recover the error syndrome.

We argue that these codes do not allow the introduc-
tion of boundaries with nice properties, which motivates
further research. There are probably interesting topologi-
cal codes still to be discovered. For example, one can
look for subsystem codes with nice boundaries or with
interesting transversality properties as those found in color
codes.

We also explore a general connection between error
correction in subsystem codes and statistical physics. The
connection is especially meaningful in the case of topological
codes where the error threshold maps to a phase transition in
the corresponding statistical model. There is a lot of work
to do in this direction, for example, in the computation,
probably numerically, of the error threshold of the topological
subsystem codes presented here.
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APPENDIX: STRUCTURE OF N(G)

This Appendix is a complement to Sec. IV B and uses the
same notation.

A color code Cc
� [14] can be obtained from a lattice � with

the properties enumerated in Sec. IV A. The construction is
the following. First, there is one qubit per triangle so that the
relevant Pauli group is P|F |. Given a collection of triangles
T = {τi}, set XT := ⊗

i Xτi
, ZT := ⊗

i Zτi
. If each vertex

v ∈ V is identified with the set of triangles meeting at v, the
stabilizer for the color code is Sc

� := SXSZ with SX := 〈Xv〉v ,
SZ := 〈Zv〉v . Let {Ti} be the collection of those sets of triangles
that have an even number of triangles meeting at each vertex.
Then N (Sc

�) = 〈i1〉NXNZ with NX := 〈XTi
〉i , NZ := 〈ZTi

〉i .
Next, consider the morphism f : N (G�) −→ NX such that

f (O) = XTγ
for any subgraph γ of �̄ and O ∈ N (G�) such

that O ∝ Oγ . The kernel of f is formed by those operators that
only involve Z’s, not X’s or Y ’s. That is, ker f = 〈i1〉〈Ocv

v 〉v ⊂
S ′, where cv is the color of v in �. Since f (Oc

v ) = Xv for
c 
= cv , f [S ′

�] = SX and thus S ′
�/ ker f � SX. This implies

that there are no other constraints for the generators of S ′
�

apart from the ones in Eq. (5) because exactly two of the
generators {Xv} of SX are unnecessary [14]. Finally, it is easy
to check that for any string operator XT ∈ NX, as described in
Ref. [14], there exists a string-like graph γ such that f (Oγ ) =
XT , so that f is onto and N (G�)/S ′

� � NX/SX. Then the
properties of the string operators in C� are consequences of
those for string operators in Cc

�. This is, in particular, true
regarding the generating set and the composition rules, but not
for commutation rules, which have to be worked out separately.
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