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Is a color superconductor topological?

Yusuke Nishida

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 18 January 2010; published 5 April 2010)

A fully gapped state of matter, whether insulator or superconductor, can be asked if it is topologically

trivial or nontrivial. Here we investigate topological properties of superconducting Dirac fermions in 3D

having a color superconductor as an application. In the chiral limit, when the pairing gap is parity even,

the right-handed and left-handed sectors of the free space Hamiltonian have nontrivial topological charges

with opposite signs. Accordingly, a vortex line in the superconductor supports localized gapless right-

handed and left-handed fermions with the dispersion relations E ¼ �vpz (v is a parameter dependent

velocity) and thus propagating in opposite directions along the vortex line. However, the presence of the

fermion mass immediately opens up a mass gap for such localized fermions and the dispersion relations

become E ¼ �v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z

q
. When the pairing gap is parity odd, the situation is qualitatively different. The

right-handed and left-handed sectors of the free space Hamiltonian in the chiral limit have nontrivial

topological charges with the same sign and therefore the presence of the small fermion mass does not open

up a mass gap for the fermions localized around the vortex line. When the fermion mass is increased

further, there is a topological phase transition at m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2

p
and the localized gapless fermions

disappear. We also elucidate the existence of gapless surface fermions localized at a boundary when two

phases with different topological charges are connected. A part of our results is relevant to the color

superconductivity of quarks.

DOI: 10.1103/PhysRevD.81.074004 PACS numbers: 21.65.Qr, 12.38.�t

I. INTRODUCTION

A fully gapped state of matter can be asked if it is
topologically trivial or nontrivial. The most well-known
topological state of matter is the quantumHall effect in two
dimensions (2D) [1–3], in which the time reversal symme-
try is explicitly broken. Recently the time reversal sym-
metric extensions of the quantum Hall effect have been
theoretically proposed and experimentally observed both
in 2D [4–7] and 3D [8–15], which are referred to as
topological insulators (the 2D topological insulator is
also known as the quantum spin Hall effect). Generally
the topological state of matter is characterized by the
nontrivial topological charge of the single-particle
Hamiltonian and accompanied by topologically protected
gapless edge/surface states with linear dispersions (Dirac
fermions).

Another class of topological states of matter arises in
superconductors. Although the ordinary nonrelativistic
s-wave superconductor is topologically trivial, the weakly
paired phase of the px þ ipy superconductor in 2D is

topologically nontrivial [16] and Sr2RuO4 is its candidate
material [17]. In addition to the gapless edge/surface states,
the vortex in the topological superconductor supports gap-
less fermions localized around the vortex core. It is also
known from the pioneering work by Jackiw and Rossi that
the relativistic s-wave superconductor in 2D has the similar
properties [18]. Such a system has recently received re-
newed interest because it can be realized on the surface of
the 3D topological insulator in contact with the s-wave

superconductor [19]. It is pointed out that the Balian-
Werthamer state realized in the B phase of the superfluid
3He is also topological [20–23].
Such progress on the discoveries of the topological

insulators and superconductors motivates us to ask the
following question: Is a color superconductor topological?
In order to shed light on this question, we investigate in this
paper the topological properties of superconducting Dirac

fermions in 3D. In Sec. II, we start with the mean-field
model Hamiltonian of the color superconductivity of
quarks and point it out that the free space Hamiltonian
can be characterized by a Z valued topological charge. In
Sec. III, we compute the topological charge of the free
space Hamiltonian when the pairing gap is parity even as a
function of the fermion mass and show that its value is
closely linked to the existence of gapless fermions local-
ized around a vortex line. The low-energy spectrum of such
fermions is also determined in this section.
In Sec. IV, we turn to the case where the pairing gap is

parity odd. By studying the topological charge of the free
space Hamiltonian, we show that there is a topological
phase transition as a function of the fermion mass, which
is also reflected in the existence of gapless fermions local-
ized around a vortex line. In Sec. V, we elucidate the
existence of gapless surface fermions localized at a bound-
ary when two phases with different topological charges are
connected. Finally, Sec. VI is devoted to the summary of
this paper and implications of our results for the color
superconductor are discussed.
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II. PREPARATIONS

A. Model Hamiltonian for the color superconductor

We start with the following mean-field model
Hamiltonian for the color superconductivity of quarks
[24]:

HCSC ¼
Z

dx

�
c y

a;fð�i� � @þ �m��Þ�ab�fgc b;g

þ 1

2
c y

a;f�ab;fgðxÞC�5c �
b;g

� 1

2
c T

a;f�
y
ab;fgðxÞC�5c b;g

�
: (1)

Here C � i�2�0 is the charge conjugation matrix and we
assumed the same massm and the same chemical potential
� for all three colors ða; bÞ and all three flavors ðf; gÞ.
�ab;fg is the pairing gap in the Lorentz singlet and even

parity (JP ¼ 0þ) channel and its color and flavor structure
is specified by

�ab;fgðxÞ ¼
X

i¼1;2;3

�iðxÞ�iab�ifg: (2)

�1 ¼ �2 ¼ �3 � 0 corresponds to the fully gapped color-
flavor-locked (CFL) phase and �1 ¼ �2 ¼ 0, �3 � 0 cor-
responds to the two flavor pairing phase where only four
quarks are gapped. In either case, an appropriate trans-
formation of c a;f by a real and orthogonal matrix in the

color and flavor space can bring the Hamiltonian (1) into
the decoupled form HCSC ¼ P9

j¼1 Hj, where

Hj ¼
Z

dx

�
c y

j ð�i� � @þ �m��Þc j

þ 1

2
c y

j�jðxÞC�5c �
j �

1

2
c T

j�
�
j ðxÞC�5c j

�

¼ 1

2

Z
dx c y

j �c T
j C�

5
� �

� �i� � @þ �m�� �jðxÞ
��

j ðxÞ i� � @� �mþ�

 !

�
c j

C�5c �
j

 !

� 1

2

Z
dx�y

jH j�j: (3)

For example, in the CFL phase, we have �1;2;3 ¼
��4;...;8 ¼ 1

2 �9. Below we concentrate on one sector

with the nonzero gap �j � 0 and suppress the index of j.

The single-particle Hamiltonian H in the Nambu-
Gor’kov representation has the charge conjugation sym-
metry:

C �1HC ¼ �H � with C � 0 �C�5

C�5 0

� �
: (4)

Because H� ¼ E� leads to H ðC��Þ ¼ �EðC��Þ, the

spectrum is symmetric under E $ �E. Furthermore, when
the phase of �ðxÞ is uniform over the space (i.e. no super-
current), one can choose �ðxÞ to be a real function.1 Then
H has the time reversal symmetry:

T �1HT ¼ H � with T � �1�3 0
0 �1�3

� �
: (5)

Because H� ¼ E� leads to H ðT��Þ ¼ EðT��Þ and
�yT�� ¼ 0, the spectrum is at least doubly degenerate.
Therefore, we find that our HamiltonianH belongs to the
symmetry class DIII in the terminology of Refs. [25,26].2

In Sec. IV, we will also consider the case where the
pairing takes place in the odd parity channel (JP ¼ 0�).
Such a case is described by simply replacing �ðxÞ in
Eqs. (1) and (3) with �5�ðxÞ. The resulting Hamiltonian
has the same charge conjugation and time reversal symme-
tries and thus belongs to the symmetry class DIII again.

B. Topological charge for class DIII Hamiltonians in 3D

According to Ref. [20], fully gapped 3D Hamiltonians
belonging to the symmetry class DIII can be classified by a
Z valued topological charge. The topological charge is
defined for the free space Hamiltonian where �ðxÞ ¼
��ðxÞ ¼ �0 is a constant. Suppose the single-particle
Hamiltonian in the momentum space H p �
e�ip�xH eip�x is diagonalized as

H p ¼ Up
Dp 0
0 �Dp

� �
Uy

p ; (6)

where Up is a unitary matrix and Dp is a diagonal matrix

with positive elements. For the fully gapped Hamiltonian,
we can adiabatically deform Dp into the identity matrix,

which continuously deforms the Hamiltonian into a ‘‘new
Hamiltonian’’ Qp defined by

Qp � Up
1 0
0 �1

� �
Uy

p (7)

with properties Qp ¼ Qy
p and Q2

p ¼ 1. Because of the

charge conjugation and time reversal symmetries, a unitary
transformation can bring the Hermitian matrix Qp into a

block off-diagonal form [27]:

Qp ! 0 qp
qyp 0

 !
: (8)

Q2
p ¼ 1 leads to qpq

y
p ¼ 1 and thus qp is a unitary matrix

[U(4) in our case]. The topological charge is provided by
the winding number of qp associated with the homotopy

group �3½Uðn � 2Þ� ¼ Z:

1If we did not make this choice, we need to modify the
definition of T .

2Class DIII Hamiltonians are meant to have the charge con-
jugation and time reversal symmetries with properties CT ¼ C
and T T ¼ �T [20].
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N � 1

24�2

Z
dp�ijk Tr½ðq�1

p @iqpÞðq�1
p @jqpÞðq�1

p @kqpÞ�:
(9)

When a given Hamiltonian has a nonzero topological
charge, such a system is said to be topological. Because
Hamiltonians having different topological charges can not
be continuously deformed into each other without closing
energy gaps in their spectrum, the topological charge de-
fined in Eq. (9) classifies 3D Hamiltonians belonging to the
symmetry class DIII [20].

It is known in the case of the px þ ipy superconductor in

2D that a nontrivial topological charge of the free space
Hamiltonian has a close connection to the existence of a
localized zero energy state in the presence of a vortex
[16,28]. We will see in the subsequent sections that the
same correspondence is true in our Hamiltonian (3) de-
scribing superconducting Dirac fermions in 3D. We shall
work in the chiral representation:

� ¼ �0� ¼ � 0
0 ��

� �
; � ¼ �0 ¼ 0 1

1 0

� �
;

(10)

and

�5 ¼ 1 0
0 �1

� �
: (11)

III. EVEN PARITY PAIRING

We first consider the case where the pairing takes place
in the even parity channel, which is relevant to the color
superconductivity of quarks [29,30].

A. Topological charge of a free space Hamiltonian

When the pairing gap is a constant, we can choose it to
be real; �ðxÞ ¼ ��ðxÞ ¼ �0. From Eq. (3), the free space
Hamiltonian in the momentum space is given by

H p ¼ � � pþ �m�� �0
�0 �� � p� �mþ�

� �
:

(12)

Its energy eigenvalues have the usual form

Ep ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
��Þ2 þ �2

0

r
(13)

and each of them are doubly degenerate (signs are not
correlated). Note that the spectrum is fully gapped as
long as �0 � 0. The computation of its topological charge
is lengthy but straightforward.3 In order to elucidate the

effect of the fermion mass, we shall present the results for
the m ¼ 0 case and the m � 0 case separately.

1. Chiral limit m ¼ 0

In the chiral limit m ¼ 0, because the right-handed
sector and the left-handed sector of the Hamiltonian (12)
are decoupled, the unitary matrix qp in Eq. (8) has the

block diagonal form:

qp ¼ qRp 0
0 qLp

� �
: (14)

Accordingly, we can define the topological charges for the
right-handed sector and for the left-handed sector indepen-
dently. The results are4

NR � 1

24�2

Z
dp�ijk Tr½ðq�1

Rp@iqRpÞðq�1
Rp@jqRpÞ

� ðq�1
Rp@kqRpÞ�

¼ �0

2j�0j (15)

and

NL � 1

24�2

Z
dp�ijk Tr½ðq�1

Lp@iqLpÞðq�1
Lp@jqLpÞ

� ðq�1
Lp@kqLpÞ�

¼ � �0

2j�0j : (16)

We find that each sector is topologically nontrivial having
the nonzero topological charge.5 This implies the existence
of a localized zero energy state for each sector in the
presence of a vortex. However, their signs are opposite
and the total topological charge of the Hamiltonian (12) is
vanishing; N ¼ NR þ NL ¼ 0.

2. Nonzero fermion mass m � 0

When the fermion mass is nonzero m � 0, the right-
handed and left-handed sectors are coupled and thus the
only total topological chargeN is well defined. Because the
spectrum is fully gapped for �0 � 0, the inclusion of the
fermion mass can not change the topological charge.
Therefore we find

N ¼ 0 (17)

for arbitrary m, which means that the system is topologi-
cally trivial. In the following subsection, we will see how
these observations in the free space are reflected in the
spectrum of fermions localized around a vortex line.

3Note that the topological charge is invariant as long as the
spectrum is fully gapped. Therefore one can set � ! 0 to reduce
the computational complication.

4The topological charge for the full Hamiltonian (1) can be
obtained by simply summing contributions from all gapped
sectors.

5The half-integer value of N is common to relativistic fermi-
ons because qp is noncompact at jpj ! 1. See, e.g., Ref. [20].
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B. Spectrum of fermions localized around a vortex line

The spectrum of fermions in the presence of a singly
quantized vortex line is obtained by solving the
Bogoliubov–de Genne equation:

�i� � @þ �m�� ei�j�ðrÞj
e�i�j�ðrÞj i� � @� �mþ�

� �
�ðxÞ

¼ E�ðxÞ: (18)

Here we assumed that the vortex line extends in the z
direction and �ðxÞ does not depend on z; �ðxÞ ¼
ei�j�ðrÞj where ðr; �; zÞ are cylindrical polar coordinates.
Note that we do not make any assumptions on the form of
j�ðrÞj except that it has a nonvanishing asymptotic value;
j�ðr ! 1Þj> 0. Therefore the existence of localized fer-
mions that we will find below is independent of the vortex
profile and thus in this sense they are universal. This would
be because these solutions have topological origins and, in
particular, the zero energy solutions are guaranteed by the
index theorem [18,31]. In contrast, there will be other
Caroli–de Gennes–Matricon-type bound fermions on the
vortex line which typically have the energy gap
	j�ð1Þj2=� [32]. Because their spectrum depends on
the vortex profile, we shall not investigate such nonuniver-
sal solutions in this paper.

Because of the translational invariance in the z direction,
we look for solutions of the form

�ðr; �; zÞ ¼ eipzz�pz
ðr; �Þ: (19)

We rewrite the Hamiltonian in Eq. (18) as

e�ipzzH eipzz ¼ H jm¼pz¼0

þ 	zpz þ �m 0
0 �	zpz � �m

� �
� H 0 þ �H : (20)

We first construct zero energy solutions for H 0 at m ¼
pz ¼ 0 and then determine their dispersion relations with
treating �H (m, pz � 0) as a perturbation.

1. Zero energy solutions at m ¼ pz ¼ 0

Consider the zero energy Bogoliubov–de Genne equa-
tion at m ¼ pz ¼ 0; H 0�0 ¼ 0. We can find two expo-
nentially localized solutions (see Appendix A):

�R � eið�=4Þffiffiffiffi



p

J0ð�rÞ
iei�J1ð�rÞ

0
0

e�i�J1ð�rÞ
�iJ0ð�rÞ

0
0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
e�
R

r

0
j�ðr0Þjdr0

(21)

and

�L � e�ið�=4Þffiffiffiffi



p

0
0

J0ð�rÞ
�iei�J1ð�rÞ

0
0

e�i�J1ð�rÞ
iJ0ð�rÞ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
e�
R

r

0
j�ðr0Þjdr0 ; (22)

where 
 is a normalization constant:


 ¼ 2�
Z 1

0
drr½2J20ð�rÞ þ 2J21ð�rÞ�e�2

R
r

0
j�ðr0Þjdr0 : (23)

These two solutions have definite chirality; �5�R=L ¼
��R=L, and hence their index.

2. Perturbations in terms of m and pz

We now evaluate matrix elements of �H with respect to
�R and �L. It is easy to find

Z 2�

0
d�

Z 1

0
drr

�y
R�H�R �y

R�H�L

�y
L�H�R �y

L�H�L

 !

¼ v
pz �im
im �pz

� �
; (24)

where we defined the parameter dependent velocity jvj 

1 in units of the speed of light:

v �
R1
0 drr½J20ð�rÞ � J21ð�rÞ�e�2

R
r

0
j�ðr0Þjdr0R1

0 drr½J20ð�rÞ þ J21ð�rÞ�e�2
R

r

0
j�ðr0Þjdr0 : (25)

Therefore, when m ¼ 0, the right-handed and left-handed
fermions localized around the vortex line have the gapless
dispersion relations:

E ¼ vpz and E ¼ �vpz; (26)

respectively. They have opposite velocities and thus propa-
gate in opposite directions along the vortex line (Fig. 1). In
the simple case where j�ðrÞj ¼ �> 0 is a constant, the
velocity v in Eq. (25) can be evaluated as

FIG. 1 (color online). Low-energy spectrum of fermions local-
ized around the vortex line in the chiral limit (left panel) and
with the nonzero fermion mass for the even parity pairing (right
panel). The E < 0 part of the spectrum is redundant in the
superconductor and thus shown by the dashed line.
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v ¼ �2

�2 þ �2

Eð��2=�2Þ
Eð��2=�2Þ �Kð��2=�2Þ � 1

!
� ðln4�� � 1Þð��Þ2 þ � � � ð�� ! 0Þ
1� 3

4 ð��Þ2 þ � � � ð�� ! 1Þ ; (27)

which is plotted in Fig. 2 as a function of �=�. HereKðEÞ
is the complete elliptic integral of the first (second) kind.

On the other hand, when m � 0, the right-handed and
left-handed fermions are mixed and their spectrum exhibits
the mass gap provided by vm (Fig. 1):

E ¼ �v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z

q
: (28)

This is closely linked to our previous observations on the
topological charge of the free space Hamiltonian. In the
chiral limit m ¼ 0, each of the right-handed and left-
handed sectors is topologically nontrivial (NR ¼ �NL �
0) and thus the vortex line supports the localized gapless
fermions. However, once the fermion mass m � 0 is in-
troduced, the total Hamiltonian is topologically trivial
(N ¼ 0) and thus the vortex line no longer supports the
gapless fermions. Nevertheless, as long as vm � �ðr !
1Þ is satisfied, the mass gap of such localized fermions is
much smaller than the energy gap of bulk fermions and
thus they can be important low-energy degrees of freedom.

3. Nonperturbative solutions at � ¼ 0

The above results rely on the perturbations in terms ofm
and pz. In the special case where � ¼ 0, we can obtain the
exact dispersion relations of the localized fermions and
their eigenfunctions with arbitrary m and pz (see
Appendix A). The two solutions to the Bogoliubov–
de Genne equation (18) at � ¼ 0 are found to be

��ðr; �; zÞ ¼ e�ið�=4Þffiffiffiffiffiffiffi

0�

p

pz þ E�
0
m
0
0

�iðpz þ E�Þ
0
im

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
eipzz�

R
r

0
j�ðr0Þjdr0

(29)

with E� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z

q
. The discussions given above are

valid in this special case too.

C. Effective 1D Hamiltonian along a vortex line

Because the bulk fermions are gapped, the low-energy
effective Hamiltonian of the system in the chiral limitm ¼
0 should involve the gapless fermions existing along the
vortex line. In order to write down the effective 1D
Hamiltonian, we expand the fermion operator � in
Eq. (3) in terms of the eigenfunctions of H :

�ðxÞ ¼
Z dpz

2�
ðapz

eipzz�R þ bpz
eipzz�L þ � � �Þ; (30)

where apz
and bpz

are quasiparticle operators associated

with the gapless right-handed and left-handed fermions,
respectively. Because of the pseudoreality condition � ¼
C�� and the property of the solutions C��

R=L ¼ �R=L, we

have aypz
¼ a�pz

and bypz
¼ b�pz

. The quasiparticle opera-

tors obeying such conditions are called as Majorana fer-
mions in condensed matter literatures [16,19–22]. From the
Hamiltonian H ¼ 1

2

R
dx�yH�, the effective 1D

Hamiltonian becomes

H1D ¼ v

2

Z dpz

2�
ðpza

y
pz
apz

� pzb
y
pz
bpz

Þ: (31)

When the nonzero fermion mass m � 0 is present, there
are additional terms mixing apz

and bpz
:

H1D ¼ v

2

Z dpz

2�
ðpza

y
pz
apz

� pzb
y
pz
bpz

þ imbypz
apz

� imaypz
bpz

Þ: (32)

IV. ODD PARITY PAIRING

So far we have discussed the case where the pairing
takes place in the even parity channel. The situation is
qualitatively different when the pairing takes place in the
odd parity channel [�ðxÞ ! �5�ðxÞ].

A. Topological charge of a free space Hamiltonian

When the pairing gap is a constant �ðxÞ ¼ ��ðxÞ ¼ �0,
the free space Hamiltonian in the momentum space is
given by

0 1 2 3 4 5

µ

0.0

0.2

0.4

0.6

0.8

1.0

v

FIG. 2 (color online). The velocity v in Eq. (27) as a function
of �=�.
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H p ¼ � � pþ �m�� �5�0

�5�0 �� � p� �mþ�

� �
:

(33)

Its energy eigenvalues have the form

Ep ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2 þ�2 þ�2

0 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ð�2 þ�2

0Þ þ p2�2
qr

(34)

and each of them are doubly degenerate (signs are not
correlated). Note that even if �0 � 0, the energy gap in
the spectrum is closed at m2 ¼ �2 þ �2

0. This fact will

have important consequences on the topological charge of
the free space Hamiltonian and thus on the existence of
localized zero energy states in the presence of a vortex.

1. Chiral limit m ¼ 0

In the chiral limit m ¼ 0, we can define the topological
charges for the right-handed sector and for the left-handed
sector independently. Compared to the even parity pairing,
�5 in front of�0 flips the sign of the pairing gap only in the
left-handed sector. Therefore, from Eqs. (15) and (16), we
easily obtain

NR ¼ �0

2j�0j and NL ¼ �0

2j�0j : (35)

We find that each sector is topologically nontrivial having
the nonzero topological charge. The striking difference of
the odd parity pairing from the even parity pairing is that
their signs are the same and thus the total topological
charge of the Hamiltonian (33) is nonvanishing;

N ¼ NR þ NL ¼ �0

j�0j : (36)

This implies, unlike the even parity pairing, that the ex-
istence of localized zero energy states in the presence of a
vortex is robust against the inclusion of the small fermion
mass.

2. Nonzero fermion mass m � 0

When the fermion mass is nonzerom � 0, the only total
topological chargeN is well defined. Because the spectrum
remains gapped as long as m2 <�2 þ �2

0, the topological

charge remains the same; N ¼ �0=j�0j. However, when
the fermion mass exceeds the critical valuem2 ¼ �2 þ �2

0

at which the energy gap in the spectrum closes, there is a
quantum phase transition to another fully gapped phase
characterized by its vanishing topological charge6:

N ¼
� �0

j�0j for m2 <�2 þ �2
0

0 for m2 >�2 þ �2
0:

(37)

Because these two phases can not be distinguished by
symmetries, the phase transition between them is a topo-
logical phase transition. This is exactly the same type of
the topological phase transition occurring in the 2D px þ
ipy superconductor at � ¼ 0 as a function of the chemical

potential [16,28]. Other quantum phase transitions result-
ing from the momentum space topology are extensively
discussed in Ref. [33]. In the following subsection, we will
see how these observations in the free space are reflected in
the existence of gapless fermions localized around a vortex
line.

B. Spectrum of fermions localized around a vortex line

The spectrum of fermions in the presence of a singly
quantized vortex line is obtained by solving the
Bogoliubov–de Genne equation:

�i� � @þ �m�� �5ei�j�ðrÞj
�5e�i�j�ðrÞj i� � @� �mþ�

� �
�ðxÞ

¼ E�ðxÞ: (38)

As we stated in Sec. III B, we do not make any assumptions
on the form of j�ðrÞj except that it has a nonvanishing
asymptotic value; j�ðr ! 1Þj> 0. Because of the trans-
lational invariance in the z direction, we look for solutions
of the form

�ðr; �; zÞ ¼ eipzz�pz
ðr; �Þ: (39)

We rewrite the Hamiltonian in Eq. (38) as

e�ipzzH eipzz ¼ H jpz¼0 þ 	zpz 0
0 �	zpz

� �
� H 0 þ �H : (40)

We first construct zero energy solutions for H 0 at pz ¼ 0
and then determine their dispersion relations with treating
�H (pz � 0) as a perturbation.

1. Zero energy solutions at pz ¼ 0

Consider the zero energy Bogoliubov–de Genne equa-
tion at pz ¼ 0; H 0�0 ¼ 0. We can find two potentially
normalizable solutions (see Appendix B):

�R � eið�=4Þffiffiffiffi



p

� �J0
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
ei� �J1

m �J0
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
p

e�i� �J1
�i� �J0

0
�im �J0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
e�
R

r

0
j�ðr0Þjdr0

(41)

6This phase is continuously connected to the Hamiltonian with
�, �0 ! 0 where the topological charge can be computed most
easily.
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and

�L � eið�=4Þffiffiffiffi



p

m �J0
0

� �J0
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
ei� �J1

0
�im �J0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
e�i� �J1

�i� �J0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
e�
R

r

0
j�ðr0Þjdr0 ; (42)

where we introduced shorthand notations; �J0 �
J0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
rÞ and �J1 � J1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
rÞ, and 
 is a nor-

malization constant:


 ¼ 2�
Z 1

0
drr½2ð�2 þm2Þ �J20

þ 2ð�2 �m2Þ �J21�e�2
R

r

0
j�ðr0Þjdr0 : (43)

These two solutions in the chiral limit m ¼ 0 have definite
chirality; �5�R=L ¼ ��R=L, and hence their index. Note

that, although the nonzero fermion mass m � 0 mixes the
right-handed and left-handed fermions, their gaplessness is
preserved.

We now examine if the above two solutions are normal-
izable or not. Whenm2 <�2, they are normalizable owing

to the exponentially decaying factor e�
R

r

0
j�ðr0Þjdr0 !

e�rj�ð1Þj at r ! 1. When m2 >�2, we note that �J0 ¼
I0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 ��2

p
rÞ and �J1 ¼ iI1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 ��2

p
rÞ exponentially

grow as �J0, �J1 ! e
ffiffiffiffiffiffiffiffiffiffiffiffi
m2��2

p
r. Nevertheless, as long asm2 <

�2 þ j�ð1Þj2 is satisfied, the exponentially decaying fac-
tor dominates and the solutions are still normalizable.
However, when the fermion mass exceeds the critical value
m2 ¼ �2 þ j�ð1Þj2, the two solutions exponentially grow
and thus they are no longer acceptable solutions. Therefore
we find that the gapless fermions localized around the
vortex line exist only when m2 <�2 þ j�ð1Þj2 and they
disappear when m2 >�2 þ j�ð1Þj2.

Of course this is closely linked to our previous observa-
tions on the topological charge of the free space
Hamiltonian; it is topologically nontrivial (N � 0) for
m2 <�2 þ j�0j2 and trivial (N ¼ 0) for m2 >�2 þ
j�0j2 and there is a topological phase transition in between.
Also note the striking difference of the odd parity pairing
from the even parity pairing where the presence of the
fermion mass immediately opened up a mass gap for the
fermions localized around the vortex line.

2. Perturbation in terms of pz

We now evaluate matrix elements of �H with respect to
�R and �L for m2 <�2 þ j�ð1Þj2. It is easy to find

Z 2�

0
d�

Z 1

0
drr

�y
R�H�R �y

R�H�L

�y
L�H�R �y

L�H�L

 !

¼ v
pz 0
0 �pz

� �
; (44)

where we defined the parameter dependent velocity jvj 

1 in units of the speed of light:

v �
R1
0 drr½ð�2 �m2Þ �J20 � ð�2 �m2Þ �J21�e�2

R
r

0
j�ðr0Þjdr0R1

0 drr½ð�2 þm2Þ �J20 þ ð�2 �m2Þ �J21�e�2
R

r

0
j�ðr0Þjdr0 :

(45)

Therefore the dispersion relations of the gapless fermions
localized around the vortex line are given by

E ¼ vpz and E ¼ �vpz: (46)

They have opposite velocities and thus propagate in oppo-
site directions along the vortex line. In the simple case
where j�ðrÞj ¼ �> 0 is a constant, the velocity v in
Eq. (45) can be evaluated as

v ¼ �2 �E

ð�2 þ �2Þ �E � ð�2 þ �2 �m2Þ �K� 1; (47)

where �K � Kððm2 ��2Þ=�2Þ and �E � Eððm2 �
�2Þ=�2Þ. When m ¼ 0, this is identical to Eq. (27) and
plotted in Fig. 2 as a function of �=�. The velocity
vanishes at m ¼ � and changes its sign for m>�.

3. Nonperturbative solutions at � ¼ 0

The above results rely on the perturbation in terms of pz.
In the special case where � ¼ 0, we can obtain the exact
dispersion relations of the localized fermions and their
eigenfunctions with arbitrary pz (see Appendix B). The
two solutions to the Bogoliubov–de Genne equation (38) at
� ¼ 0 are found to be

�ðr; �; zÞ ¼ eið�=4Þffiffiffiffiffi

0p

I0ðmrÞ
0
0

iei�I1ðmrÞ
0

�iI0ðmrÞ
e�i�I1ðmrÞ

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
eipzz�

R
r

0
j�ðr0Þjdr0

(48)

with E ¼ pz and
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�ðr; �; zÞ ¼ eið�=4Þffiffiffiffiffi

0p

0
�iei�I1ðmrÞ

I0ðmrÞ
0

�e�i�I1ðmrÞ
0
0

�iI0ðmrÞ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
eipzz�

R
r

0
j�ðr0Þjdr0

(49)

with E ¼ �pz. They are normalizable in the x-y plane as
long as m< �ð1Þ. The discussions given above are valid
in this special case too.

C. Effective 1D Hamiltonian along a vortex line

Because the bulk fermions are gapped, the low-energy
effective Hamiltonian of the system with m2 <�2 þ
j�ð1Þj2 should involve the gapless fermions existing along
the vortex line. In order to write down the effective 1D
Hamiltonian, we expand the fermion operator� in Eq. (3)
in terms of the eigenfunctions of H :

�ðxÞ ¼
Z dpz

2�
ðapz

eipzz�R þ bpz
eipzz�L þ � � �Þ; (50)

where apz
and bpz

are Majorana quasiparticle operators

obeying aypz
¼ a�pz

and bypz
¼ b�pz

and associated with

the two gapless fermions. From the Hamiltonian H ¼ 1
2 �R

dx�yH�, the effective 1D Hamiltonian becomes

H1D ¼ v

2

Z dpz

2�
ðpza

y
pz
apz

� pzb
y
pz
bpz

Þ: (51)

V. BOUNDARY PROBLEMS

In Secs. III and IV, we have discussed the connection
between the nonzero topological charge of the free space
Hamiltonian and the existence of localized gapless fermi-
ons in the presence of a vortex. Another characteristic of
the topological state of matter is the existence of gapless
edge/surface states when it is terminated by another
gapped state having a different topological charge. In this
section, we will investigate two types of boundary prob-
lems and elucidate the existence of gapless surface fermi-
ons localized at the boundary.

A. Boundary between �0 > 0 and �0 < 0

We first consider the boundary where the pairing gap
�ðxÞ ¼ �ðzÞ changes its sign as (�1 > 0):

�ðzÞ !
�þ�1 for z ! 1
��1 for z ! �1:

(52)

Because the topological charge of the free space
Hamiltonian, when it is nonzero, depends on the sign of
the pairing gap [see Eqs. (15), (16), and (35)], the above
boundary connects two gapped phases with different topo-

logical charges and thus we expect the gapless fermions
localized at the boundary. Here we present the low-energy
spectrum of such fermions and their effective 2D
Hamiltonian. Their derivations are analogous to those in
the vortex problems and some details are provided in
Appendix C.

1. Chiral limit m ¼ 0

In the chiral limit m ¼ 0, we can find gapless right-
handed and left-handed fermions localized at the boundary.
Their dispersion relations are given by

E ¼ �jvj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
; (53)

where p? � ðpx; pyÞ is the momentum parallel to the

boundary and jvj 
 1 is the parameter dependent velocity
in units of the speed of light:

v ¼
R1
�1 dze2i�z�2

R
z

0
�ðz0Þdz0R1

�1 dze�2
R

z

0
�ðz0Þdz0 : (54)

In the simple case with �ðzÞ ¼ �1sgnðzÞ, the velocity can
be evaluated as v ¼ �21=ð�21 þ�2Þ. The low-energy ef-
fective Hamiltonian involving the two gapless fermions
existing at the 2D boundary becomes

H2D ¼jvj
2

Z dp?
ð2�Þ2 ½a

y
p?ð�? �p?Þap? �byp?ð�? �p?Þbp?�

(55)

with�? � ð�1; �2Þ. Here ap? and bp? are two-component

Majorana quasiparticle operators obeying ayp? ¼ aT�p?�1

and byp? ¼ bT�p?�1.

2. Even parity pairing with m � 0

As we can expect from the topological charge of the free
space Hamiltonian [Eqs. (17) and (37)], the effect of the
nonzero fermion mass m � 0 is qualitatively different for
the even parity pairing and the odd parity pairing. When
the pairing gap is parity even, the presence of the fermion
mass immediately opens up a mass gap for the fermions
localized at the boundary and the dispersion relations
become

E ¼ �jvj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y

q
: (56)

This is linked to the fact that the two phases at both sides
z ! �1 have the same topological charge N ¼ 0. Now
the effective 2D Hamiltonian has additional terms mixing
ap? and bp? :

H2D ¼ jvj
2

Z dp?
ð2�Þ2 ½a

y
p?ð�? � p?Þap?

� byp?ð�? � p?Þbp? þ imbyp?ap? � imayp?bp?�:
(57)
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3. Odd parity pairing with m � 0

On the other hand, when the pairing gap is parity odd,
the two phases at both sides have different topological
charges N ¼ �1 even in the presence of the small fermion
mass. Accordingly, the boundary still supports the two
localized gapless fermions [Eqs. (53) and (55)] with the
modified velocity jvj 
 1:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
�

R1
�1 dze2i

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�m2

p
z�2

R
z

0
�ðz0Þdz0R1

�1 dze�2
R

z

0
�ðz0Þdz0 (58)

for m2 <�2 and

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 ��2

p
m

(59)

for �2 <m2 <�2 þ �21.
When the fermion mass is increased further and exceeds

the critical value m2 ¼ �2 þ�21, the resulting solutions
are no longer normalizable [see Eqs. (C3) and (C9)] and
the gapless surface fermions disappear. This is linked to the
fact that the two phases at both sides z ! �1 have the
same topological charge N ¼ 0 as a consequence of the
topological phase transition.

B. Boundary between superconductor and vacuum

We then consider the following boundary that models
the interface between the superconductor at z < 0 and the
chiral symmetry broken vacuum at z > 0:

�;�> 0; m ¼ 0 for z < 0

� ¼ � ¼ 0; m > 0 for z > 0:
(60)

For the even parity pairing, the two gapped phases at both
sides have the same topological charge N ¼ 0, while they
have different topological charges for the odd parity pair-
ing; N ¼ 1 at z < 0 and N ¼ 0 at z > 0.

Accordingly, when the pairing gap is parity odd, we can
find one gapless fermion localized at the boundary z ¼ 0.
The corresponding two zero energy solutions at px ¼
py ¼ 0 are given by

�ðxÞ /

ei�z

0
�ie�i�z

0
iei�z

0
e�i�z

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
e�z;

0
e�i�z

0
iei�z

0
�iei�z

0
ei�z

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
e�z (61)

for z < 0 and

�ðxÞ /

1
0
�i
0
i
0
1
0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
e�mz;

0
1
0
i
0
�i
0
1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
e�mz (62)

for z > 0. Its effective 2D Hamiltonian becomes

H2D ¼ jvj
2

Z dp?
ð2�Þ2 ½a

y
p?ð�? � p?Þap?� (63)

with the velocity v ¼ ð1þ m
�þi�Þ=ð1þ m

�Þ and the

Majorana condition ayp? ¼ aT�p?�1. However, when the

pairing gap is parity even, we cannot find such localized
zero energy solutions that are continuous at the boundary
z ¼ 0 and therefore gapless surface fermions do not exist.

VI. SUMMARYAND CONCLUDING REMARKS

Motivated by the recent discoveries of the topological
insulators and superconductors, we have investigated the
topological properties of superconducting Dirac fermions
in 3D both for the even parity pairing and the odd parity
pairing. The results are summarized in Table I. In the chiral
limit m ¼ 0, we find that the system is topologically non-
trivial in the sense that each of the right-handed and left-
handed sectors of the free space Hamiltonian has the non-
zero topological charge; NR;L � 0. Accordingly, a vortex

line in the superconductor supports localized gapless right-
handed and left-handed fermions. Their dispersion rela-
tions are given by E ¼ �vpz, where jvj 
 1 defined in
Eq. (25) is the parameter dependent velocity, and thus they
propagate in opposite directions along the vortex line.
The effect of the nonzero fermion mass m � 0 is quali-

tatively different for the even parity pairing and the odd
parity pairing. When the pairing gap is parity even, the
presence of the fermion mass immediately opens up a mass
gap for the fermions localized around the vortex line and

the dispersion relations become E ¼ �v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z

q
. This

can be understood from the vanishing total topological
charge of the free space Hamiltonian for the even parity
pairing; Nð¼ NR þ NLÞ ¼ 0.
On the other hand, when the pairing gap is parity odd,

the total topological charge of the free space Hamiltonian
is nonvanishing N � 0 and thus the system remains topo-
logical even in the presence of the small fermion mass.
Accordingly, the vortex line still supports the localized
gapless fermions. When the fermion mass is increased

further, there is a topological phase transition at m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
, where the topological charge jumps from the

nonzero value to zero and consequently the gapless fermi-
ons localized around the vortex line disappear.
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Our results for the even parity pairing are relevant to the
color superconductivity of quarks. In the CFL phase where
all nine quarks are gapped, the mean-field model
Hamiltonian for the color superconductor (1) has the topo-

logical charge NR ¼ �NL ¼ P9
j¼1

�j

2j�jj in the chiral limit

m ¼ 0. Therefore the Uð1ÞB vortex line that arises when
the CFL quark matter is rotated [34,35] supports nine sets
of localized gapless right-handed and left-handed quarks.
In the presence of the small quark mass or chiral conden-
sate, such localized quarks become gapped but their mass
gap vm is much smaller than the energy gap of bulk quarks
�.7 Furthermore, the mass gap at high density vm	
mð�=�Þ2 lnð�=�Þ [see Eq. (27)] is parametrically smaller
than the masses of pseudo-Nambu-Goldstone bosons
	mð�=�Þ in the CFL phase [36], which are important to
the transport properties and neutrino emissivity of the CFL
quark matter [24]. Whether such new low-energy degrees
of freedom localized around the vortex line have some
impact on the physics of rotating neutron/quark stars is
an important problem and should be investigated in a
future work.

Our results for the odd parity pairing might be irrelevant
to the color superconductivity of quarks. Nevertheless it
would be interesting to consider if the topological phase
transition found in this paper can be realized in condensed
matter systems where the 2D Dirac fermions appear.

Finally, Table I reveals the intriguing connection be-
tween the nonzero topological charge of the free space
Hamiltonian and the existence of localized gapless fermi-
ons in the presence of a vortex. We also elucidated the
existence of gapless surface fermions localized at a bound-
ary when two phases with different topological charges are
connected. The mathematical proof of these correspond-
ences remains an open question.
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APPENDIX A: DERIVATIONS OF SOLUTIONS FOR
EVEN PARITY PAIRING

Here we outline how the solutions to the Bogoliubov–
de Genne equation (18) for the even parity pairing are
derived. We introduce notations

�ðr; �; zÞ ¼
FR

FL

GR

GL

0
BBB@

1
CCCAeipzz; (A1)

where FRðLÞ and GRðLÞ are right-handed (left-handed) two-

component fields. We first make an ansatz

FRðr; �Þ ¼ fR"ðrÞ
ei�fR#ðrÞ

� �
e�
R

r

0
j�ðr0Þjdr0 (A2)

and

GRðr; �Þ ¼ e�i�gR"ðrÞ
gR#ðrÞ

� �
e�
R

r

0
j�ðr0Þjdr0

(A3)

and the same for R ! L so that they are exponentially
localized in the x-y plane. Then we look for fRðLÞ and gRðLÞ
that are regular at origin and independent of j�ðrÞj. j�ðrÞj
can be eliminated from the equations by imposing

gR ¼ �i�1fR and gL ¼ i�1fL: (A4)

Now fR and fL satisfy the following four sets of equations:

�� 1
i ð@r þ 1

rÞ
1
i @r ��

 !
fR ¼ 0 (A5a)

pz � E 0

0 �pz � E

 !
fR þmfL ¼ 0 (A5b)

� 1
i ð@r þ 1

rÞ
1
i @r �

 !
fL ¼ 0 (A5c)

�pz � E 0

0 pz � E

 !
fL þmfR ¼ 0: (A5d)

TABLE I. Summary of the topological charge of the free space Hamiltonian and the low-energy spectrum of fermions localized
around a vortex line (or a boundary where the pairing gap changes its sign). v is a parameter dependent velocity.

even parity pairing odd parity pairing

topological charge mid-gap state dispersion topological charge mid-gap state dispersion

m ¼ 0 NR ¼ �NL ¼ �0

2j�0j E ¼ �vpz NR ¼ NL ¼ �0

2j�0j E ¼ �vpz

m � 0 N ¼ 0 E ¼ �v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z

q
N ¼ �0

j�0j E ¼ �vpz (m2 <�2 þ�2
0)

N ¼ 0 none (m2 >�2 þ�2
0)

7Supposing �	 500 MeV, �	 50 MeV, and m	 10 MeV
and using Eq. (36), we can estimate the mass gap to be as small
as vm=�	 5� 10�3.
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We can find consistent solutions in two cases; m ¼ pz ¼
E ¼ 0 [Eqs. (21) and (22)] and � ¼ 0 [Eq. (29)].

APPENDIX B: DERIVATIONS OF SOLUTIONS FOR
ODD PARITY PAIRING

Here we outline how the solutions to the Bogoliubov–
de Genne equation (38) for the odd parity pairing are
derived. We use the same notations as in Appendix A. In
this case, j�ðrÞj can be eliminated from the equations by
imposing

gR ¼ �i�1fR and gL ¼ �i�1fL: (B1)

Now fR and fL satisfy the following four sets of equations:

�� 1
i ð@r þ 1

rÞ
1
i @r ��

 !
fR þmfL ¼ 0 (B2a)

pz � E 0

0 �pz � E

 !
fR ¼ 0 (B2b)

� 1
i ð@r þ 1

rÞ
1
i @r �

 !
fL �mfR ¼ 0 (B2c)

�pz � E 0

0 pz � E

 !
fL ¼ 0: (B2d)

We can find consistent solutions in two cases; pz ¼ E ¼ 0
[Eqs. (41) and (42)] and � ¼ 0 [Eqs. (48) and (49)].

APPENDIX C: DERIVATIONS OF SOLUTIONS FOR
BOUNDARY PROBLEMS

Here we outline how the spectrum of fermions in the
presence of the boundary (52) studied in Sec. VA is
obtained. The Bogoliubov–de Genne equation to be solved
is

�i� � @þ �m�� ð�5Þ�ðzÞ
ð�5Þ�ðzÞ i� � @� �mþ�

� �
�ðxÞ

¼ E�ðxÞ: (C1)

Because of the translational invariance in the x-y plane, we
look for solutions of the form

�ðxÞ ¼ eipxxþipyy�px;py
ðzÞ: (C2)

We first make an ansatz

�px;py
ðzÞ ¼

fRðzÞ
fLðzÞ
gRðzÞ
gLðzÞ

0
BBB@

1
CCCAe�

R
z

0
�ðz0Þdz0 (C3)

so that the solution is exponentially localized in the z
direction. Then we look for fRðLÞ and gRðLÞ that are inde-

pendent of�ðzÞ.�ðzÞ can be eliminated from the equations
by imposing

gR ¼ �i�3fR and gL ¼ �i�3fL; (C4)

where the upper (lower) sign corresponds to the even (odd)
parity pairing. Now fR and fL satisfy the following four
sets of equations:

@z
i ��� E p�

pþ � @z
i ��� E

0
@

1
AfR þmfL ¼ 0 (C5a)

� @z
i þ�� E p�
pþ

@z
i þ�� E

0
@

1
AfR �mfL ¼ 0 (C5b)

� @z
i ��� E �p�
�pþ

@z
i ��� E

0
@

1
AfL þmfR ¼ 0 (C5c)

@z
i þ�� E �p�

�pþ � @z
i þ�� E

0
@

1
AfL �mfR ¼ 0 (C5d)

with p� � px � ipy.

1. Even parity pairing

When the pairing gap is parity even (upper sign), we can
find the following four zero energy solutions at m ¼ px ¼
py ¼ 0:

fR
fL

� �
/

ei�z

0
0
0

0
BBB@

1
CCCA;

0
e�i�z

0
0

0
BBB@

1
CCCA;

0
0

e�i�z

0

0
BBB@

1
CCCA;

0
0
0

ei�z

0
BBB@

1
CCCA:

(C6)

By evaluating matrix elements of the perturbation
Hamiltonian

�H ¼ 	xpx þ 	ypy þ �m 0
0 �	xpx � 	ypy � �m

� �
(C7)

with respect to the corresponding four zero energy eigen-
functions �0;0ðzÞ in Eq. (C3), we obtain the following

effective 2D Hamiltonian:

H 2D ¼
0 v�p� v�m 0

vpþ 0 0 vm
vm 0 0 �vp�
0 v�m �v�pþ 0

0
BB@

1
CCA (C8)

with the velocity v defined in Eq. (54). Its energy eigen-

values are given by E¼�jvj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

xþp2
y

q
. This spec-

trum with v ¼ 1 becomes exact for arbitrary px, py, andm

in the special case where � ¼ 0.

2. Odd parity pairing

When the pairing gap is parity odd (lower sign), we can
find the following four zero energy solutions at px ¼ py ¼
0:
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fR
fL

� �
/

�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
0
m
0

0
BBB@

1
CCCAei

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�m2

p
z;

0
�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 �m2
p
0
m

0
BBB@

1
CCCAe�i

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�m2

p
z;

m
0

�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
0

0
BBB@

1
CCCAe�i

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�m2

p
z;

0
m
0

�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
0
BBB@

1
CCCAei

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�m2

p
z:

(C9)

Note that the corresponding four zero energy eigenfunc-
tions�0;0ðzÞ in Eq. (C3) are normalizable in the z direction
as long as m2 <�2 þ �21. By evaluating matrix elements
of the perturbation Hamiltonian

�H ¼ 	xpx þ 	ypy 0
0 �	xpx � 	ypy

� �
(C10)

with respect to the four zero energy eigenfunctions, we
obtain the following effective 2D Hamiltonian:

H 2D ¼
0 v�p� 0 0

vpþ 0 0 0
0 0 0 �vp�
0 0 �v�pþ 0

0
BB@

1
CCA (C11)

for m2 <�2 with the velocity v defined in Eq. (58) and

H 2D ¼
0 0 0 �ivp�
0 0 �ivpþ 0
0 ivp� 0 0

ivpþ 0 0 0

0
BBB@

1
CCCA (C12)

for �2 <m2 <�2 þ�21 with the velocity v defined in

Eq. (59). Their energy eigenvalues are given by E ¼
�jvj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
. This spectrum with v ¼ 1 becomes exact

for arbitrary px and py in the special case where � ¼ 0.
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