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We provide a simple example that illustrates the advantage of adaptive over nonadaptive strategies for quantum
channel discrimination. In particular, we give a pair of entanglement-breaking channels that can be perfectly
discriminated by means of an adaptive strategy that requires just two channel evaluations, but for which no
nonadaptive strategy can give a perfect discrimination using any finite number of channel evaluations.
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I. INTRODUCTION

This article concerns the problem of quantum channel
discrimination. In this problem, two quantum channels �0

and �1 are fixed and access to one of the two channels is
made available. It is not known which of the two channels
has been made available, however, and the goal is to correctly
identify which of �0 and �1 it is. Several articles, including
Refs. [1–13], discovered many interesting aspects of quantum
channel discrimination. There exist related topics in the study
of quantum information theory, including quantum parameter
estimation (see, for instance Refs. [14–16] and the references
therein), but this article will focus just on the specific problem
of channel discrimination.

A discrimination strategy for a quantum channel discrim-
ination problem is a step-by-step procedure consisting of
channel evaluations, along with quantum state preparations,
operations, and measurements that attempts to output the
identity of the given channel. Generally speaking, one is typi-
cally interested in discrimination strategies that satisfy certain
natural constraints; with one well-studied example being the
discrimination strategies allowing a single evaluation of the
unknown channel. An optimal discrimination strategy, among
those satisfying a given collection of constraints, is simply
one that maximizes the probability that the unknown channel
is correctly identified, assuming it is selected according to a
fixed distribution that is known ahead of time.

One interesting aspect of quantum channel discrimination
is that the use of an ancillary system is generally necessary
for the optimal discrimination of two quantum channels,
assuming just a single evaluation of the unknown channel is
made available [2,6,8,17]. In more precise terms, the optimal
strategy to discriminate two channels may require that one
first prepares the input system to the unknown channel in
an entangled state with an ancillary system, followed by
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a joint measurement of that channel’s output together with
the ancillary system. Even entanglement-breaking channels
are sometimes better discriminated through the use of an
ancillary system, despite the fact that their output systems
must necessarily be unentangled with the ancillary system
after their evaluation [10]. There are two known special
classes of channels that require no ancillary system for optimal
discrimination: the unitary channels [2,4] and the classical
channels.

There is a striking possibility for quantum channel discrim-
ination problems that cannot occur in the classical setting.
If a pair of classical channels cannot be perfectly distin-
guished with one evaluation, then they cannot be perfectly
distinguished with any finite number of evaluations. (This
fact is easily proved and a simple proof may be found
later in the article.) In contrast, it is possible for a pair of
quantum channels to be discriminated perfectly when multiple
evaluations are available, but not in the single evaluation case.
For example, this generally happens in the case of unitary
channels [1].

Another interesting aspect of quantum channel discrimi-
nation is the distinction between adaptive and nonadaptive
strategies when multiple uses of the unknown channel are made
available. In an adaptive strategy, one may use the outputs
of previous uses of the channel when preparing the input to
subsequent uses, whereas a nonadaptive strategy requires that
the inputs to all uses of the given channel are chosen before
any of them is evaluated. It was found in Ref. [3] that unitary
channels are insensitive to this distinction; adaptive strategies
do not give any advantage over nonadaptive strategies for
unitary channel discrimination. In the same article, a pair of
memory channels was shown to require an adaptive scheme
for optimal discrimination, but the question of whether or
not there exist ordinary (memoryless) channels with a similar
property was stated as an open question. Although an example
of three channels that require adaptive strategies for an optimal
identification was presented in Ref. [13], we were not able to
find any example of a pair of (ordinary, memoryless) channels
in the literature that require adaptive strategies for optimal
discrimination; and so the question appears to have been
unresolved prior to this work.
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The purpose of the present article is to demonstrate the
necessity of adaptive schemes for optimal quantum channel
discrimination. We do this by presenting an example of
two quantum channels that can be perfectly discriminated
given two adaptive channel evaluations, but for which no
finite number of nonadaptive channel evaluations allows for
a perfect discrimination. The channels in our example are
entanglement-breaking channels, which provides further evi-
dence suggesting that entanglement-breaking channels share
similar properties to general quantum channels with respect to
channel discrimination tasks. We note that a recent article
of Duan, Feng, and Ying [5] provided a criterion for the
perfect discrimination of pairs of quantum channels, as well
as a general method to find adaptive strategies that allow for
perfect discrimination. While no explicit examples were given
in that article, the existence of pairs of channels with similar
properties to those in our example is implied. Our example
was, however, obtained independently from that article, and
we hope that it offers some insight into the problem of quantum
channel discrimination that is complementary to Ref. [5].

Finally, we note that a related (but weaker) phenomenon
occurs in the context of classical channel discrimination.
That is, there exist classical channels that can be better
discriminated by adaptive strategies than by nonadaptive
strategies and we provide three simple examples illustrating
this phenomenon. While we suspect that similar examples
illustrating the advantages of adaptive discrimination strategies
may be known to some researchers, we did not find any in the
literature. That such examples exist is also interesting when
contrasted with the fact that adaptive strategies for classical
channel discrimination cannot improve the asymptotic rate
at which the error probability exponentially decays with the
number of channel uses [7].

II. PRELIMINARIES

We will begin by summarizing some of the notation and
terminology that is used in the subsequent sections of the
article. We will let X , Y , and W denote finite-dimensional
complex Hilbert spaces, which will typically correspond to
the input, output, and ancillary systems to be associated with
channel discrimination tasks. The notation L(X ,Y) refers to
the space of all linear operators fromX toY , L(X ) is shorthand
for L(X ,X ), and D(X ) refers to the set of all density operators
on X . A similar notation is used for other spaces in place of
X and Y . The identity operator on X is denoted 1lX .

For the example to be presented in the main part of the
article, we will let X and Y be the spaces associated with two
qubits and one qubit, respectively. The standard bases for these
spaces are therefore {|00〉, |01〉, |10〉, |11〉} and {|0〉, |1〉}. As
is common, we will also write

|+〉 = 1√
2

|0〉 + 1√
2

|1〉 and |−〉 = 1√
2

|0〉 − 1√
2

|1〉 ,

and we write tensor products of these states and standard basis
states in a self-explanatory way (e.g., |1+〉 = |1〉|+〉).

A quantum channel is a linear mapping of the form
� : L(X ) → L(Y) that is both completely positive and trace
preserving. Every such quantum channel � can be expressed

in Kraus form as

�(X) =
m∑

j=1

AjXA∗
j ,

for some choice of linear operators A1, . . . , Am ∈ L(X ,Y)
satisfying the constraint

m∑
j=1

A∗
jAj = 1lX .

The identity channel mapping L(W) to itself is denoted 1lL(W).
The distinguishability of two quantum states ρ, σ is quan-

tified by the trace norm, ‖ρ − σ‖1 = Tr|ρ − σ |, where |M| =√
M†M . The distinguishability of two quantum channels

�0,�1 : L(X ) → L(Y) may be quantified by the distance
induced by the diamond norm (or completely bounded trace
norm)

‖�0 − �1‖�
= max

ρ∈D(X⊗W)
‖(�0 ⊗ 1lL(W))(ρ) − (�1 ⊗ 1lL(W))(ρ)‖1, (1)

where here W is assumed to have dimension at least that of
X . This quantity represents the greatest possible degree of
distinguishability that can result by feeding an input state into
the two channels, allowing for the possibility that the input
system is entangled with an ancillary system. Assuming that a
bit a ∈ {0, 1} is uniformly chosen at random, the quantity

1
2 + 1

4 ‖�0 − �1‖� ,

represents the optimal probability to correctly determine the
value of a by means of a physical process involving just a
single evaluation of the channel �a . It therefore holds that �0

and �1 are perfectly distinguishable using a single evaluation
if and only if ‖�0 − �1‖� = 2.

III. SPECIFICATION OF THE EXAMPLE AND A PERFECT
DISCRIMINATION PROTOCOL

We now describe our example of two quantum channels
that are better discriminated using an adaptive strategy than
by any nonadaptive strategy. First, we will give an intuitive
description of the channels. The two channels �0 and �1 both
map two qubits to one and operate as follows.

(i) Channel �0 measures the first input qubit with respect
to the standard basis. If the result is 0, it outputs the state |0〉.
If the result is 1, it measures the second qubit with respect to
the standard basis. If the result is 0, then it outputs 0, and if
the result is 1, then it outputs the completely mixed state 1l/2.

(ii) Channel �1 measures the first input qubit with respect
to the standard basis. If the result is 0, it outputs the state |+〉.
If the result is 1, it measures the second qubit with respect to
the {|+〉, |−〉} basis. If the result is +, then it outputs 1, and if
the result is −, then it outputs the completely mixed state 1l/2.

The intuition behind these channels is as follows. If the first
input qubit is set to 0, then the output is a “key” state: |0〉 for
channel �0 and |+〉 for the channel �1. If the first input is set
to 1 and the second input qubit is the channel’s “key” state,
then the channel identifies itself (i.e., �0 outputs 0 and �1

outputs 1). If, however, the first input qubit is set to 1 and the
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second qubit’s state is orthogonal to the channel’s “key” state,
then the channel outputs the completely mixed state. This
effectively means that the channel provides no information
about its identity in this case.

It is easy to discriminate these two channels with an adaptive
strategy that requires two uses of the unknown channel. The
following diagram describes such a strategy:

Here, the state ρ input as the second qubit of the first channel
evaluation is arbitrary, as it is effectively discarded by both of
the channels when the first input qubit is set to |0〉.

In the interest of precision, and because it will be useful for
the analysis of the next section, we note the following formal
specifications of these channels. It holds that

�0(X) =
5∑

j=1

AjXA∗
j and �1(X) =

5∑
j=1

BjXB∗
j ,

for

A1 = |0〉 〈00| , A2 = |0〉 〈01| , A3 = |0〉 〈10| ,
A4 = 1√

2
|0〉 〈11| , A5 = 1√

2
|1〉 〈11| ,

B1 = |+〉 〈00| , B2 = |+〉 〈01| , B3 = |1〉 〈1+| ,
B4 = 1√

2
|0〉 〈1−| , B5 = 1√

2
|1〉 〈1−| .

It is clear that �0 and �1 are both entanglement-breaking
channels, as all of these Kraus operators have rank one [18].

IV. SUBOPTIMALITY OF NONADAPTIVE STRATEGIES

We now prove that nonadaptive strategies cannot allow for
a perfect discrimination of the channels �0 and �1 defined in
the previous section, for any finite number n of channel uses.
In more precise terms, we have

∥∥�⊗n
0 − �⊗n

1

∥∥
� < 2

for all choices of n ∈ N.
We first prove a simpler mathematical fact, which is that

there does not exist a two-qubit density operator ρ for which
�0(ρ) and �1(ρ) are perfectly distinguishable. As we will
see, the proof is similar when taking the tensor product of the
channel with itself or with an identity channel that acts on an
auxiliary system. This handles the multiple-copy case with the
possible use of an ancillary space, thus establishing the more
general statement earlier.

Assume toward contradiction that there exists a density
operator ρ such that �0(ρ) and �1(ρ) are perfectly distin-
guishable. By a simple convexity argument, we may assume
that the same is true for a pure state |ψ〉〈ψ | in place of ρ. In
other words, there exists a unit vector |ψ〉 satisfying

Tr[�1(|ψ〉〈ψ |)�0(|ψ〉〈ψ |)] = 0. (2)

Expanding this equation in terms of the Kraus operators of �0

and �1 yields

5∑
j=1

5∑
k=1

|〈ψ | B∗
j Ak |ψ〉|2 = 0.

Each of the terms in this sum is nonnegative and must
therefore be zero (i.e., 〈ψ |B∗

j Ak|ψ〉 = 0 for all choices of
j, k ∈ {1, . . . , 5}). It follows that

〈ψ |
5∑

j=1

5∑
k=1

αj,kB
∗
j Ak |ψ〉 = 0, (3)

for every choice of complex numbers {αj,k : 1 � j, k � 5}.
We will now obtain a contradiction by choosing the

coefficients {αj,k : 1 � j, k � 5} in such a way that Eq (3)
cannot hold. In particular, by letting

α1,1 = α2,2 =
√

2, α3,5 = α4,3 = 1, and α4,4 = −2
√

2,

and letting αj,k = 0 for all of the remaining values of j and k,
we find that

5∑
j=1

5∑
k=1

αj,kB
∗
j Ak = P,

for

P = |00〉〈00| + |01〉〈01| + |11〉〈11| + |1−〉〈1 −|

=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1/2 −1/2
0 0 −1/2 3/2

⎞
⎟⎟⎠ .

The operator P is positive-definite and therefore 〈ψ |P |ψ〉 > 0
for every nonzero vector |ψ〉, which is in contradiction with
(3). Having established a contradiction, we conclude that there
cannot exist a density operator ρ such that �0(ρ) and �1(ρ)
are perfectly distinguishable as claimed.

Now let us consider the general setting where an arbitrary
finite number n of (nonadaptive) channel uses, as well as
an ancillary system of arbitrary size, are permitted. We may
follow a similar proof to the one previous to show that there
cannot exist a unit vector |ψ〉 such that

Tr
[(

�⊗n
1 ⊗ 1lL(W)

)
(|ψ〉〈ψ |) (

�⊗n
0 ⊗ 1lL(W)

)
(|ψ〉〈ψ |)] = 0,

(4)

where W is the space (of arbitrary finite dimension) that is
to be associated with the ancillary system. We may express
the relevant mappings in this expression in terms of the Kraus
operators of �0 and �1 as follows

(
�⊗n

0 ⊗ 1lL(W)
)

(X) =
∑

1�j1,...,jn�5

(
Aj1 ⊗ · · · ⊗ Ajn

⊗ 1lW
)

×X
(
Aj1 ⊗ · · · ⊗ Ajn

⊗ 1lW
)∗

,(
�⊗n

1 ⊗ 1lL(W)
)

(X) =
∑

1�j1,...,jn�5

(
Bj1 ⊗ · · · ⊗ Bjn

⊗ 1lW
)

×X
(
Bj1 ⊗ · · · ⊗ Bjn

⊗ 1lW
)∗

.
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Now, for the same coefficients {αj,k : 1 � j, k � 5} that were
defined previously, we find that∑

1�j1 ,...,jn�5
1�k1 ,...,kn�5

αj1,k1 · · · αjn,kn
B∗

j1
Ak1

⊗ · · · ⊗ B∗
kn

Ajn
⊗ 1lW = P ⊗n ⊗ 1lW ,

which is again positive-definite. Therefore, there cannot exist
a nonzero vector |ψ〉 for which

〈ψ | B∗
j1
Ak1 ⊗ · · · ⊗ B∗

kn
Ajn

⊗ 1lW |ψ〉 = 0,

for all j1, . . . , jn, k1, . . . , kn. Consequently, Eq. (4) does not
hold for any nonzero vector |ψ〉, which implies that �0 and �1

cannot be perfectly discriminated by means of a nonadaptive
strategy.

When the number of evaluations n of the unknown channel
is small, one can efficiently compute the value ‖�⊗n

0 − �⊗n
1 ‖�

because it is the optimal value of a semidefinite programming
problem [19]. For instance, it holds that

‖�0 − �1‖� = 1 + 1√
2
,

and therefore the channels can be discriminated with a
probability

1
2 + 1

4 ‖�0 − �1‖� ≈ 0.9268,

of correctness with just a single channel evaluation. For
two nonadaptive queries, we used CVX [20,21], a package
for specifying and solving convex programs in Matlab, to
approximate the value

1
2 + 1

4 ‖�0 ⊗ �0 − �1 ⊗ �1‖� ≈ 0.9771.

One can also obtain an upper bound on the probability of
success using any feasible solution to the dual problem. In fact,
even obvious choices give fairly tight upper bounds. Thus, we
establish a small, but finite, advantage of an adaptive strategy
over a nonadaptive one for discriminating these channels.

V. REMARKS ON CLASSICAL CHANNEL
DISCRIMINATION

The channels in our previous example are entanglement-
breaking channels, yet the optimal adaptive discriminating
strategy operates in a distinctively quantum way: One out
of two nonorthogonal key states is extracted from the first
channel evaluation and coherently input to the second. A
natural question arises, which is whether adaptive strategies
also help when discriminating classical channels. It turns
out that adaptive strategies indeed are better in the classical
setting, although in a more limited respect. This section
discusses a few basic facts and examples that illustrate this
claim.

A classical channel can, of course, be succinctly repre-
sented by a stochastic matrix M , where the vector M|k〉
represents the output distribution when the input is k.
Throughout this section, we will let M0 and M1 denote the
two possible channels in a classical channel discrimination
problem.

Advantages of adaptive classical strategies

We will present three examples illustrating that adaptive
strategies may give advantages over nonadaptive strategies
for classical channel discrimination, restricting our attention
to the special case where just two channel evaluations are
permitted and where one of two channels is given with equal
probability. We have the following expression for the optimal
success probability using an adaptive strategy in this setting

1

2
+ 1

4
max
k,f

∑
j

‖M0(j,k)M0 |f (j )〉 − M1(j,k)M1 |f (j )〉‖1 ,

(5)

where Mi(j ,k) is the probability that channel i outputs j given
input k. In this expression, j and k range over all outputs and
inputs, respectively, of the channels M0 and M1 (i.e., they are
row and column indices). The function f ranges over all maps
from outputs to inputs (or row indices to column indices).

An alternate expression for the optimal success probability
(5) is

1

2
+1

4
max

k

∑
j

q(j,k) max
l

‖p0(j,k)M0 |l〉−p1(j,k)M1 |l〉‖1,

where

q(j,k) = M0(j,k) + M1(j,k)

2
,

and where

pa(j,k) = Ma(j,k)

M0(j,k) + M1(j,k)
,

is the probability that the unknown channel is Ma , conditioned
on k being chosen as the input and j being obtained as the
output. This illustrates that, at least for strategies allowing
just two channel evaluations, the optimal adaptive strategy for
two uses of a classical channel can be readily found by first
finding the optimal input for each prior distribution over the
chosen channel (this may be the input in the second use).
We then compute the success probability given every prior
distribution and one use of the channel. Finally, to choose
an input to the first use of the channel, we choose an input
which maximizes the probability of getting each prior times
the success probability given that prior.

Example 1. This “minimal” example shows that adaptive
strategies are better than nonadaptive ones in some cases. The
two channels are given by

M0 =
(

1/3 8/9
2/3 1/9

)
, M1 =

(
0 1/3
1 2/3

)
.

One can verify that the best two-evaluation nonadaptive
strategy is to input 1 to both of the channel uses, which
leads to a correct identification with probability 7/9. The best
adaptive strategy is to take k = 2 and f (1) = 2, f (2) = 1
in the formula (5), which gives a correct identification with
probability 65/81. Similar examples are abundant.

Example 2. Here, the optimal one-shot input is never used
in the optimal nonadaptive scheme. The idea is to start with two
optimal one-shot inputs k, k′ such that using k′ becomes more
informative with two parallel uses. Then we perturb the kth
column slightly so that k becomes the unique optimal one-shot
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input. In this example, the optimal one-shot input k still serves
as the first input to the optimal adaptive scheme.

Let the two channels be given by

M0 =
⎛
⎝0.86 0.45 1 0.5

0.14 0.1 0 0.5
0 0.45 0 0

⎞
⎠ ,

M1 =
⎛
⎝0.15 0.1 0.5 0

0.85 0.8 0.5 1
0 0.1 0 0

⎞
⎠ .

The best one-shot input is k = 1 (probability of success is
0.855) (whereas k′ = 2). The best parallel input pairs are (2, 3)
and (3, 2) (probability of success is 0.9). Allowing adaptation
and using k = 1 as the first input, f (1) = 3, f (2) = 4, f (3) =
1, the probability of success is 0.9275.

Example 3. In this final example, the optimal one-shot
input is not the first input to the optimal adaptive scheme. The
idea is to have two optimal one-shot inputs in which one is
more informative than the other if given a second use. Then,
we perturb the column corresponding to the less informative
input to be slightly better for the one-shot case.

Let the two channels be given by

M0 =
⎛
⎝1 0.5 0.828 0.76

0 0.5 0.092 0.04
0 0 0.08 0.2

⎞
⎠ ,

M1 =
⎛
⎝0.5 0 0.092 0.04

0.5 1 0.828 0.76
0 0 0.08 0.2

⎞
⎠ .

The best one-shot input is 3 (probability of success is 0.868),
but the best parallel input pairs to two uses are (3, 4) and
(4, 3) (probability of success is 0.9336). The optimal adaptive
scheme uses k = 4 as the first input and f (j ) = j for j =
1, 2, 3, resulting in a probability of success of 0.9536.

Perfect classical strategies

Finally, we give a simple proof of a fact claimed in the
Introduction of this article, which is that if two classical
channels are not perfectly distinguishable with a single
evaluation, then they cannot be perfectly distinguished by any
finite number of evaluations, even using an adaptive strategy.
We will prove the contrapositive of this statement.

Suppose that two classical channels M0 and M1 are
perfectly discriminated by a discrimination strategy that uses n

channel evaluations. Without loss of generality we may assume
the strategy takes the general form suggested in Fig. 1.

FIG. 1. The structure of a general discrimination strategy for
classical channels. This example makes four channel evaluations,
each illustrated by a box labeled Ma , but in general any finite number
n of evaluations may be considered. Each arrow represents a register
that may be in a random mixture over some finite set of classical
states and the boxes labeled F0, F1, F2, and F3 represent arbitrary
functions (or random processes) that must be independent of the
value a ∈ {0, 1} that indicates which of the two channels is given.

The assumption that the strategy perfectly discriminates
M0 and M1 means that the final output distributions for the
cases a = 0 and a = 1 have disjoint support. Our goal is to
prove that M0 and M1 are perfectly discriminated with a single
evaluation.

The proof of this statement proceeds by induction on n. In
case n = 1 there is nothing to prove, so assume that n � 2.
Consider the two distributions q0 and q1 that are illustrated
in the figure. Each distribution qa represents the state of the
discrimination strategy immediately before the final channel
evaluation takes place, assuming the unknown channel is given
by Ma . There are two cases: q0 and q1 have disjoint support,
or they do not. If q0 and q1 do have disjoint support, then
terminating the discrimination strategy after n − 1 channel
evaluations allows for a perfect discrimination, so by the
induction hypothesis it is possible to discriminate the channels
with a single evaluation. In the other case, where q0 and q1 do
not have disjoint supports, there must exist a classical state x of
the strategy at the time under consideration for which q0(x) and
q1(x) are both positive. Given that the discrimination strategy
is perfect, and therefore has final distributions with disjoint
supports, it must hold that evaluating M0 and M1 on x results in
distributions with disjoint supports. Therefore, M0 and M1 can
be discriminated with a single channel evaluation as required.

VI. CONCLUSION

In this article, we presented a pair of quantum channels
that can be discriminated perfectly by a strategy making two
adaptive channel evaluations, but which cannot be perfectly
discriminated nonadaptively with any finite number of channel
evaluations.

One natural question that arises is whether our example can
be generalized to show a similar advantage of general adaptive
strategies making n channel evaluations versus strategies that
make channel evaluations with depth at most n − 1. Although
our example can be generalized in a natural way, we did not
prove that it has the required properties with respect to depth
n − 1 strategies.

Finally, for the example we present, we find that, although
strategiesr making two nonadaptive channel evaluationsrr
cannot be perfect, they can be correct with high rprobability
(about 97.7%). What is the largest possible gap between
optimal adaptive versus nonadaptive strategies making two
(or any other number of) channel evaluations? Ther only upper
bound we have on this gap is that channels �0 and �1 that
are perfectly discriminated by two (adaptive or nonadaptive)
evaluations must satisfy ‖�0 − �1‖� � 1 and can therefore
be discriminated (with a single evaluation) with probability at
least 3/4 of correctness.
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