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Abstract
Background: Computational models of cell signaling networks typically are aimed at capturing
dynamics of molecular components to derive quantitative insights from prior experimental data,
and to make predictions concerning altered dynamics under different conditions. However,
signaling network models have rarely been used to predict how cell phenotypic behaviors result
from the integrated operation of these networks. We recently developed a decision tree model
for how EGF-induced fibroblast cell motility across two-dimensional fibronectin-coated surfaces
depends on the integrated activation status of five key signaling nodes, including a proximal
regulator of transcellular contractile force generation, MLC (myosin light chain) [Hautaniemi et al,
Bioinformatics 21: 2027 {2005}], but we have not previously attempted predictions of new
experimental effects from this model.

Results: In this new work, we construct an improved decision tree model for the combined
influence of EGF and fibronectin on fibroblast cell migration based on a wider spectrum of
experimental protein signaling and cell motility measurements, and directly test a significant and
non-intuitive a priori prediction for the outcome of a targeted molecular intervention into the
signaling network: that partially reducing activation of MLC would increase cell motility on
moderately adhesive surfaces. This prediction was indeed confirmed experimentally: partial
inhibition of the activating MLC kinase (MLCK) upstream using the pharmacologic agent ML-7
resulted in increased motility of NR6 fibroblasts. We further extended this exciting finding by
showing that partial reduction of MLC activation similarly enhanced the transmigration of the
human breast carcinoma cell line MDA-213 through a Matrigel barrier.

Conclusion: These findings specifically highlight a central regulatory role for transcellular
contractility in governing cell motility, while at the same time demonstrating the value of a decision
tree approach to a systems "signal-response" model in discerning non-intuitive behavior arising
from integrated operation a cell signaling network.
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Background
Phenotypic cell behaviors are strongly governed by vari-
ous extracellular cues, such as binding of cell surface
receptors to soluble (e.g., growth factor, cytokine) and
insoluble (e.g., extracellular matrix) ligands. Cue combi-
nations can generate distinct cell behavioral responses by
selectively inducing signal transduction pathway activa-
tion. It is rare, however, that a particular signal actuates
only a single pathway; rather, the rule is for the activation
of multiple divergent pathways that together hold poten-
tial to elicit numerous, often mutually exclusive, cellular
responses. The cell phenotypic outcome may be consid-
ered to derive from a governing pattern of activation
across the network comprising particular pathways in
interconnected fashion. While the simplest hope might be
to understand and manipulate cell behavior in terms of
targeting an intervention at some "most important"
molecular "switch", in reality there is a greater likelihood
that such an intervention will impact the network as a
whole much more broadly – and quite possibly with
unexpected phenotypic outcome effects. Thus, systems
biology approaches are now being conceived for applica-
tion to signaling network control of complex cell
responses, in order to gain rationale capability for predict-
ing the effects of targeted interventions [1,2].

One vital cell functional behavior is that of motility
induced by growth factors. This plays a key physiological
role during organogenesis and wound healing. Further,
induced cell motility is dysregulated in cancers leading to
cancer progression and metastasis [3]. Thus targeting
motility can be employed in the hope of limiting tumor
dissemination [4]. But such targeting is a challenge as a
ramifying network of signaling pathways lead to motility.
While total inhibition of individual pathways leading to
motility and subsequent invasiveness can be attained in
vitro, this cannot be readily applied to the in vivo milieu,
as inhibitor levels fluctuate due to pharmacodynamics.
Furthermore, as these signaling networks are interrelated,
alterations in one will lead to changes in many others.
Thus, a clear delineation of the interplay of key proteins
mediating cellular properties is crucial to future efforts
aimed at drug discovery and individualized treatment
[5,6].

Targeting growth factor-induced cell motility that drives
tumor invasion is a challenge given its complexity. One
approach towards understanding motility is to break it
down into discrete and individual biophysical compo-
nents [7,8]. The principal processes that are well studied
include acquisition of cell directionality with a front and
a rear end with lamellipodal protrusion (with PLCγ as the
key signaling nexus) at the front, transcellular contractility
(with PKCδ and MLC as molecular switches), and detach-
ment of cell membrane at the rear (with m-calpain being

the main regulator) [4]. Hence, productive migration
ensues due to the repetitive cycling of these complex bio-
physical events in a temporally organized manner. It is
evident that such a complex event is exhibited by a coor-
dinated signal propagation and amplification/attenua-
tion within existing intracellular proteomic networks. Our
goal is to define how these key signaling switches govern-
ing cell migration can be targeted for modifying this cellu-
lar behavior, all the while recognizing the quantitative
adaptations of the other pathways that will compensate
for the subtotal interventions of a single pathway.

Computational modeling can compile and classify data
sets in a quantitative manner and consequently provide
testable predictions to extract vital information not read-
ily apparent by conventional analytical techniques. In
addition, mathematical models can expand data sets to
proportions that can be used to make non-intuitive pre-
dictions related to biological responses [9]. We have pre-
viously offered [1] a decision tree modeling approach for
understanding cell migratory events based on measure-
ments of activation status of key intracellular signaling
proteins. This study was inspired by earlier observations
from Maheshwari et al [10] that elucidated the biophysi-
cal components of fibroblast migration across a range of
different extracellular cues. Individual cellular biophysical
processes including cell speed were measured across 8 dif-
ferent experimental conditions (4 different surface
fibronectin (FN) concentrations and presence or absence
of EGF). The observations indicated that cells move fastest
upon EGF stimulation when the surface fibronectin con-
centration (or cell-substratum adhesiveness) is in the
intermediate range whereas minimal motility was
observed at the two extreme conditions. However, sub-
stratum fibronectin concentration (and also the extracel-
lular matrix) alters motility not just by altering surface
adhesiveness but also by actively signaling through the
integrins towards downstream intracellular cascades [11].
Here, we have applied the methodology suggested in [1]
to new signaling protein data sets at 1 h and 16 h in addi-
tion to 5 min, in order to construct a more powerful deci-
sion tree model capable of a priori prediction. The
computational analysis suggested that the activation sta-
tus of the contractility-related molecular switch, myosin
light chain (MLC), as key to migration speed. Further, our
results predicted that maximal speed would be achieved at
intermediate levels of MLC activity. We test this prediction
explicitly by modulating MLC activation status directly,
finding successful experimental confirmation of a non-
intuitive effect that an inhibitory pharmacological agent
enhances migration speed – not only for the original
model-foundation fibroblasts but also for an additional
test case, breast tumor cells.
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Results
Signaling protein data set across different surface 
fibronectin concentration in the presence of EGF
We aimed to elucidate the relative contributions of differ-
ent signaling proteins in mediating biophysical migratory
processes of adherent cells across different extracellular
conditions. As a model system, we chose a mouse fibro-
blast line for which biophysical data included cell speed,
membrane protrusion activity, cell spread area, surface
adhesion, and membrane retraction (previously meas-
ured by Maheshwari et al [10]). Our new study employed
10 nM of EGF whereas the earlier Maheshwari study used
25 nM, but both of these concentrations are saturating for
the EGF receptor level on these cells so can be assumed to
be similar in their cellular effects. In addition, EGF was
added to the cells for periods of 5 minutes, 1 hour and 16
hours to capture the entire (temporal) activation spec-
trum of signaling proteins, during the phases of acute
effects, the transition to productive motility, and during
sustained motility [10,12].

Addition of EGF activated EGFR within minutes and this
signal was transmitted downstream to signaling cascades
measured (Figure 1A). Interestingly, the EGFR activation

profile mirrored that of ERK within early time periods of
EGF stimulation (5 minutes). ERK activation was robust
immediately after addition of EGF compared to quiesced
cells and remained significantly increased for over an
hour (of EGF stimulus) with minimal change over differ-
ent surface fibronectin concentrations (Figure 1B). Thus,
ERK functioned like a 'switch' turned on dependent
mainly on EGFR signaling. EGFR signaling also activated
PLCγ and PKCδ, with their activation increasing linearly
across increasing surface FN levels with resultant MLC
activation downstream of PKCδ [13]. However, fibronec-
tin does exert a significant influence on cell speed, as pre-
dicted [11], biphasic with surface adhesiveness (Figure
2A).

MLC activation begins within a few minutes of EGF stim-
ulation and reaches a plateau at about 2 hours; increases
were still appreciable up to 24 hours after EGF stimulus
(unpublished observations). Interestingly, after 1 hour
and longer exposure to EGF, MLC activity was inversely
biphasic across fibronectin, with lowest levels at interme-
diate FN concentration (0.3 and 1 μg/ml) (Figures 1B and
2B). Thus, using these experimental conditions, we cap-

Immunoblotting data for EGF treatment of 5 minutes (A) and 1 hour (B) across different fibronectin concentration of surfacesFigure 1
Immunoblotting data for EGF treatment of 5 minutes (A) and 1 hour (B) across different fibronectin concen-
tration of surfaces. Tissue culture plates were coated with different fibronectin (FN) concentrations. NR6WT cells were 
grown on these surfaces for 24 hours in complete growth medium and quiesced for another 24 hours in medium containing 
0.5% dialyzed FBS. EGF was added for a period of 1 hour, cells washed once with PBS and lysed. Cell lysates were resolved 
using SDS-PAGE and immunoblotted using specific antibodies for various phosphorylated proteins. At least 5 replicates for 
each signaling protein were created for polynomial modeling. Actin served as a loading control.
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Polynomial interpolation data for cell speed (A) and activated MLC (B) under EGF stimulationFigure 2
Polynomial interpolation data for cell speed (A) and activated MLC (B) under EGF stimulation. Crosses are 
actual measurements, upper and lower triangles are individual standard deviations, red lines denotes squared pooled standard 
deviation and the vast majority of the simulated cases fall between these lines. Cell speed is biphasic whereas activated MLC is 
inversely biphasic across fibronectin. Each variable is discretized into low, medium and high in accordance with the degree of 
polynomial.
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tured important quantitative and temporal trends of
molecular activations.

Decision tree model of signaling proteins predicts a critical 
role of myosin light chain (MLC) based cell contractility in 
mediating maximal cell migratory response
A complex and well-orchestrated cellular response such as
migration can only manifest from optimal quantitative
activation/involvement of tens and hundreds of signaling
proteins. Accordingly, it is important to address the rela-
tive contributions of such protein clusters in order to
define the most significant switches that can be altered for
therapeutic purposes. We constructed decision trees using
the above five key signaling proteins activated on different
levels of fibronectin by EGF that predicted the quantita-
tive contribution of signaling proteins in dictating cell
speed. The utility of decision trees is to identify prediction
rules from the data and then illustrate them as a binary
tree where each terminal node (leaf) corresponds to a
class and other nodes represent measured variables. The
decision trees obtained from three different EGF treat-
ments (5 minute, 1 hour, and 16 hour measurements)
yielded different classification efficiencies of observations
from the training data set. The 5-minute decision tree
accounted for approximately 70% of observations from
the 1000 independent validation data sets correctly (Fig-
ure 3A), whereas the 1-hour decision tree had an explana-
tory power of greater than 75% (Figure 3B). The 16-hour
decision tree could account for only less than 60% of the
observations from the validation data sets, however, so
was eliminated for further consideration; this result was
comforting given the expectation that signaling network
activity should be upstream of the longer-term cell behav-
ior. Lastly, generating a decision tree of similar simplicity
using data across the three time periods did not increase
the predictive accuracy above that of the 1-hour tree (data
not shown). For our purposes of testing capability for a
priori prediction of effects of signal inhibition, we focused
on the 1-hour model because of its superior performance
with the independent validation data sets.

Contractile force production is enabled through the actin-
myosin coupling upon activation of regulatory myosin
light chains [13,14]. While each of the 'crucial molecules'
that govern motility have been characterized, decision tree
analysis is useful in predicting which of these molecules,
and therefore which of the biophysical processes they
controlled, were hierarchically important in governing
motility. As such, since the 1-hour decision tree had the
maximum classification accuracy, we utilized it to extract
important predictions. Interestingly, after EGFR activa-
tion, MLC mediated contractility was the most crucial
ingredient in mediating maximal motility. According to
the predictions from the 1-hour decision tree (Figure 3B),
the cells move with highest speed when following EGFR

activation MLC phosphorylation is low; in training set
68% of the situations in which cells move with high speed
can be explained with this rule alone. In other words, low-
ering MLC activation and resultant contractility to a sub-
total level apparently leads to enhanced cell motility
whereas total MLC inhibition can abrogate cell motility.
While the effects of total MLC inhibition on cell motility
have been intuitive and published by Iwabu et al [13], the
biphasic dependence of cell migration (speed) upon sub-
total inhibition of MLC is non-intuitive and novel. More-
over, it is an especially significant prediction for targeted
therapeutics because it indicates that subtotal versus total
abrogation of a key signaling pathway node can have dras-
tically opposite cell responses.

Subtotal inhibition of MLC activation increases cell speed
Our model predicted that subtotal lowering of MLC acti-
vation would increase fibroblast cell speed. Our experi-
mental data set indicated that while cell speed showed a
biphasic response, MLC activation was inversely biphasic
across fibronectin concentration of the surfaces. Thus, at
the two extreme conditions, where surface fibronectin was
either too low (0.1 μg/ml) or too high (3 μg/ml), cell
migration speed was minimal. From our polynomial
model, these two conditions corroborated with surface FN
concentrations below 0.522 μg/ml or greater than 2.6 μg/
ml. At these two conditions there is apparent dysregula-
tion in the balance between the substratum adhesion
strength versus contractility; i.e., despite high MLC activa-
tion in both conditions, there is too little substratum
adhesion at 0.1 μg/ml while it is in excess at 3 μg/ml [10].
Thus, at 0.1 μg/ml, contractility supersedes adhesion
strength whereas this phenomenon is reversed at the con-
dition of 3 μg/ml of surface fibronectin.

To test the model predictions under such conditions, we
employed a well-characterized MLCK inhibitor, ML-7, to
measure fibroblast migration speed under the same extra-
cellular conditions (4 FN concentrations -/+ EGF). Such a
downstream inhibitor was chosen (over PKCδ inhibitor
Rottlerin) because it is MLC kinase-specific and hence the
resultant cellular responses can be attributed directly and
specifically to MLC inhibition since PKCδ is involved in
diverse cellular responses in addition to motility [15]. In
addition, fibronectin ligandation can activate MLC-based
contractility, likely independent of PKCδ. These consider-
ations are likely reflected in the decision tree analysis
wherein MLC lies hierarchically above PKCδ. We initially
measured cell migration on fibronectin using the 'scratch
assay' under a range of ML-7 concentrations within the
culture medium containing saturating levels of EGF. In
parallel, immunoblotting analysis of activated MLC (with
EGF treatment) showed a linear decrease in phosphor-
ylated MLC levels with increasing ML-7 concentration
(Figure 4). Under the same conditions and as predicted by
Page 5 of 13
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the decision tree model, lower ML-7 concentration (2–3
μM) increased fibroblast migration compared to EGF
alone at fibronectin concentration of 1 and 3 μg/ml (Fig-
ure 4). Greater inhibition led to the predicted decrease in
motility. We validated this fibroblast migration speed
using single cell tracking under the same experimental
conditions. Speed was measured as the distance traveled
by an individual cell over a given period of time (10
hours) [10]. We found that a partially inhibitory ML-7
concentration in the presence of EGF increased cell migra-
tion distance as well as speed relative to EGF alone (from
0.076 ± 0.014 microns/min to 0.118 ± 0.018 microns/
min, N = 14, P < 0.05, testing partial inhibition on 3 μg/
ml fibronectin). This greater than 50% increase in individ-

ual cell speed accords with earlier studies that show that in
vitro wound healing assays minimize increases in cell
speed. The outcomes of these experiments determining
the effect of partial reduction of MLC activation are in
accordance with the predictions from our decision tree
model.

Subtotal inhibition of myosin light chain activity increases 
migration of cancer cells
To assess whether our predictions of hierarchical control
could be extended to a different application of EGF-
induced cell motility behavior, we utilized the MDA-MB-
231 invasive human breast cancer cell lines and measured
their migratory response across a range of MLC kinase

Decision tree models from 5 minute (A) and 1 hour (B) EGF stimulation data set across fibronectinFigure 3
Decision tree models from 5 minute (A) and 1 hour (B) EGF stimulation data set across fibronectin. Round 
nodes denote (signaling proteins) whereas square nodes denote migration speed categories. Integers attached to the arc cor-
respond to the split of the parent nodes. Under each migration speed category the fraction of cases explained by that classifi-
cation rule is given. For example from (B), if EGFR is medium or high (1 or 2) and MLC is low (0), the migration speed category 
is 2 (high) and 68% of the observations (in the training set) for the high migration speed category can be explained by this rule.
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(and hence MLC) inhibition. These cells overexpress EGF
receptor and actively exhibit autocrine stimulatory loops
that drive their migration and invasiveness [16]. In
accordance with the findings in fibroblasts, migration of
MDA-MB-231 cells was substantially higher when the
medium contained low concentration (3 μM) of ML-7 as
compared to diluent alone (Figure 5). The term 'low' or

'medium' in relation to ML-7 concentration is obtained
from titrated inhibition of MLC under those concentra-
tions and varies within different cell types; i.e. for NR6WT
cells, 10 μM of ML-7 is high whereas the same is 'medium'
for MDA-MB-231 cells. In other words, the amount of
MLC downregulation that is achieved by 10 μM in
NR6WT cells is approximately similar to that achieved by

Subtotal inhibition of myosin light chain kinase increase cell migration via single-cell trackingFigure 4
Subtotal inhibition of myosin light chain kinase increase cell migration via single-cell tracking. NR6WT fibrob-
lasts were grown on fibronectin-coated surfaces coated and quiesced in serum-restricted conditions for 16 hours. After drug 
inhibition and/or EGF stimulation, single cells were tracked for up to 20 hours and their migration speeds analyzed using Visi-
ble, developed by Reify Corporation. Each experimental condition is the average ± SEM of 15–20 cells. (A) Four concentrations 
of fibronectin were used (0.1, 0.3, 1, 3 μg/ml) and the biphasic relationship between speed and fibronectin was indeed repro-
duced via our single-tracking setup and analysis. (B) Under higher fibronectin conditions (1 and 3 μg/ml), partially inhibitory ML-
7 concentrations increases migration speed while further inhibition reduces the closure of the in vitro wound. At low fibronec-
tion concentrations (0.1 μg/ml) further reduction of MLC activation reduced wound closure. Shown are mean ± SEM of four 
experiments performed in triplicate and normalized within run to no ML-7 control speeds. In comparison to no ML-7 treat-
ment, P < 0.05 for 2 μM ML-7 treatments on 1 and 3 μg/ml fibronectin; the decreases in speed were also statistically significant 
at higher ML-7 concentrations for all three surfaces. 0.1 μg/ml FN are triangles, 1 μg/ml FN are circles and 3 μg/ml FN are 
squares. (C) Attenuation of MLC activity using graded concentrations of MLCK inhibitor, ML-7. MLC activity is completely 
abrogated at concentrations greater than 15 μM. Three FN levels (low, medium and high concentrations) are shown for sim-
plicity. Shown is one of three representative experiments.
Page 7 of 13
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20 μM in MDA-MB-231 cells. Migration was completely
lowered when ML-7 concentration completely abrogated
MLC activity (20 μM).

Discussion and conclusion
The vast majority of diseases are now appreciated to be
"complex"; i.e., they arise from alterations within multiple
molecular regulatory pathways. Signaling pathways repre-
sent an especially critical domain for pathological dysreg-

ulation, as they contain forward- and reverse-feedback
cascades that can act as signal amplifiers, transmitters, or
distributors to a multitude of highly-connected protein
nodes across numerous pathways within a network. Thus,
multiple signaling proteins with interactive activity pro-
files govern phenotypic cell behavioral phenomena
underlying normal physiology and pathology. Altering
cell behaviors is difficult without a thorough understand-
ing of how these signaling switches work in relation to
each other. While enormous data sets are available for
biological conditions, such data sets have not been inte-
grated to provide information about the interlinked and
branched signaling networks. Therefore, targeted thera-
pies often fail because cells utilize parallel and alternative
pathways to mediate the necessary biological functions.
Identification and modulation of key signaling nexi from
such complex networks can alter cell behaviors and yield
favorable responses [17,18].

We utilized here decision tree analysis to identify the cru-
cial effectors of cell motility depending upon a set of extra-
cellular cues. Fibronectin was selected since NR6WT
fibroblast express α5β1 integrin receptors that are actively
involved in cell signaling during motility. Also, these
being adhesion receptors provide a counter-balance
against the motogenic EGF receptor that is overexpressed
in these cell lines. Such adhesion versus motility balance
is present in vivo environments, where motility of cells is
dictated by the cellular ecology, cell-substratum and cell-
cell adhesion profile, extracellular matrix components
along with a spectrum of soluble and matrix-embedded
extracellular stimuli [19,20]. Our model was based on the
quantitative measurements of five signaling proteins that
are activated downstream of the EGFR and are known to
mediate key biophysical events of motility. Arguably, such
a model could suffer from predictive power due to the
possible exclusion of other key signaling proteins (such as
FAK, calpain, etc). However, our model achieved 75%
accuracy for independent validation data sets, which is
more than twice expected by random association. Future
experiments are aimed at incorporating other key signal-
ing proteins within this foundational decision tree model.

Our decision tree model clearly identified MLC-mediated
contractility as a key regulatory biophysical event during
EGF induced motility. This does not mean, however, that
disrupting other cellular events, such as PLCγ-based
lamellipodal protrusion, will not abrogate motility. The
utility of a decision tree model is to predict the switches
that upon disruption can produce highly significant
responses and illustrate them as a hierarchical logic. Deci-
sion trees represent non-linear depictions of contributory
influencers and do not imply hierarchies or linkages
between the constituent molecules or events. A decision
tree model may also suggest molecules that need to be

Subtotal inhibition of myosin light chain activation increases migration of cancer cellsFigure 5
Subtotal inhibition of myosin light chain activation 
increases migration of cancer cells. (A) MDA-MB-231 
breast cancer cells were grown in complete medium, qui-
esced for 24 hours in serum deprived medium (with 0.5% 
dialyzed FBS) and incubated with varying concentrations of 
MLCKinase inhibitor, ML-7. Cells were lysed and immunob-
lotting of lysates was carried out using SDS-PAGE to detect 
activated levels of MLC. Shown are one of three similar 
blots.(B) MDA-MB-231 cells were grown in complete 
medium until they formed a confluent monolayer. The 
medium was then replaced by 0.5% dialyzed FBS containing 
quiescent medium for 24 hours. The monolayer was scraped 
using a sterile pipet tip, washed three times with PBS and 
migration of cells in the denuded area was assessed over a 
period of 24 hours in the presence of increasing doses of 
MLCKinase inhibitor, ML-7. Shown are mean ± SEM of three 
experiments each performed in triplicate. In comparison to 
no ML-7 treatment, P < 0.05 for 3 and 15 μM ML-7 treat-
ments.
Page 8 of 13
(page number not for citation purposes)



BMC Systems Biology 2007, 1:9 http://www.biomedcentral.com/1752-0509/1/9
inhibited together to alter the cell phenotypic behavioral
outcome. In our model that was based on 5-minute and
1-hour EGF stimulation data set (Figure 3), contribution
by ERK was masked by similar activation profile observed
with EGFR. This does not mean that ERK is not vital in
motility since disrupting ERK reduces migration [21] but
rather means that the contribution of ERK activation was
captured by measuring EGFR activation and did not pro-
vide further information to the prediction in itself. Fur-
ther, the model predicted is in accordance with Glading et
al [22] that motility requires functional ERK activation
since 90% of cells that migrated could be explained to
operate using this rule alone (Figure 3). Furthermore,
even the 5-minute data set resulted in a predictor with
70% accuracy, although maximum motility is observed at
least 4 to 8 hours after EGF addition [10,12]. This may
derive from the fact that 5-minute measurements can cap-
ture activation trends of important molecules such as ERK
that are indispensable for cell migration but are usually
attenuated at 1 to 2 hours after EGF stimulus when motil-
ity has started becoming a stable biophysical response.
Such transient activation is sufficient to elicit motility
since ERK transmits the signal downstream towards the
final effectors of motility before attenuation. Addition-
ally, the model indicates that ERK functions like an 'on-
off' switch during motility: if ERK (and/or the EGFR) is
active, the cells will move depending upon the profile of
other signaling proteins but if ERK is inactive, the motility
is practically negligible since 90% of cells with minimal
motility could be predicted by this rule alone (Figure 3).
This also points to a new proposition: targeting MLC and
ERK together to retard cell migration.

Our model, non-intuitively predicted that lowering MLC
activation, but not totally abrogating it, can paradoxically
increase cell speed. These predictions held true in the pop-
ulation based 'scratch assay' that assessed cell migration
distance as well as single cell tracking that assessed migra-
tion speed, under different concentrations of MLCKinase
inhibitor, ML-7. An especially important consequence is
that of subtotal inhibition of MLCKinase under higher
fibronectin concentration of substratum increased cell
speed (Figure 4) whereas under lower substratum adhe-
sive conditions (0.1 μg/ml), further reduced it (data not
shown). Motility is a function of optimum balance
between cell-substratum adhesion versus cell contractility
that enables cells to break some cell-substratum adhe-
sions but form newer ones as the cell moves [23]. This is
evident at intermediate fibronectin concentration of sur-
faces in our experiments [10]. The adhesion-contractility
balance is impaired at the two extreme conditions where
too little adhesion precludes a cell from generating suffi-
cient adhesions for locomotion; hence further lowering of
contractility even by subtotal inhibition of MLC further
reduces motility. On the other hand, too much surface

adhesiveness (fibronectin of 3 μg/ml) maintains a cell in
an unproductive situation due its inability to detach. This
is because higher surface fibronectin promotes excessive
integrin receptor engagement evenly on the surface rather
than keeping it selective at focal adhesions. Cell-substra-
tum adhesiveness is governed by a combination of ligand
concentration, receptor number or ligand-receptor affin-
ity, with maximum motility (and cell speed) occurring at
intermediate level of cell-substratum adhesion strength
[11,23]. Thus, a higher FN concentration results in a cell
stuck to the surface with a high intrinsic contractile force.
In such situations, any decrease in contractility can be pre-
dicted to increase cell motility by reinstating the adhesion
versus contractility balance and enabling cell detachment,
breakage of focal adhesions with formation of new ones.
This was indeed confirmed by our initial experiments
using 'scratch assay' and observed in single cell tracking
experiments.

These findings have profound implications for therapy.
Identifying key nodes enables quantitative manipulations
using pharmacologic methods for specifically desired cel-
lular responses. It also points to the importance of how
these signaling proteins are regulated stoichiometrically.
Our predictions held true even when applied to breast
cancer cells, where subtotal inhibitory doses of ML-7 pro-
moted cell migration. While a complete abrogation of
MLC can be beneficial in limiting tumor cell motility and
hence invasion, partial inhibition using lower pharmaco-
logical doses can paradoxically increase tumor cell motil-
ity and invasion leading to devastating consequences. This
further points to the importance of applying newer mod-
eling approaches to fully characterize the role of signaling
cascades in mediating cellular behaviors. Such under-
standing will enable precise therapeutic targeting of key
signaling nodes and open the door to individualized
'patient-tailored therapy' [17].

Methods
Cell culture
NR6WT cells expressing human EGF receptor (EGFR)
were maintained in modified Eagle's medium-α contain-
ing (MEMα) 7.5% fetal bovine serum (FBS) and 1% of
each of the following: penicillin/streptomycin, L-
Glutamine, non-essential amino acids and sodium pyru-
vate (all from GIBCO). The medium contained 350 μg/ml
of G418 as a selection agent for human EGFR. Cells were
quiesced in a medium containing 0.5% dialyzed FBS for
24 hours before addition of EGF. The MDA-MB-231 inva-
sive human breast cancer cell line was maintained in
RPMI 1640 medium (GIBCO) containing 10% FBS and
1% penicillin/streptomycin. Migration and immunoblot-
ting assays were conducted by quiescing the cells in a
medium containing 0.5% dialyzed FBS for 24 hours prior
to experimentation.
Page 9 of 13
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Reagents and antibodies
Antibodies used to detect activated status of EGFR (phos-
phorylated Tyr1173), ERK (phosphorylated Thr202/
Tyr204), PKCδ (phosphorylated ser643), and myosin
light chain (phosphorylated ser19) were obtained from
Cell Signaling technology (Danvers, MA). Activated status
of phospholipase Cγ (PLCγ) was probed using a rabbit
polyclonal antibody against phosphorylated tyrosine 783
residue obtained from Santa Cruz Biotechnology (Santa
Cruz, CA). ML-7 was utilized as MLCKinase specific inhib-
itor and was purchased from Calbiochem, EMD Bio-
sciences (La Jolla, CA).

Preparation of fibronectin-coated surfaces
Fibronectin coating concentrations of the surfaces were
0.1, 0.3, 1 and 3 μg/ml. Tissue culture plates were incu-
bated with fibronectin at required concentrations diluted
in PBS at room temperature for a period of 2 hours. The
plates were washed once with PBS and incubated with 1%
bovine serum albumin for another 1 hour to block non-
specific protein binding during the course of the experi-
ment. The plates were washed three times with PBS and
cells plated directly in complete growth medium over
these surfaces.

Quantitative immunoblotting for signaling protein data
NR6WT mouse fibroblasts engineered to express human
EGFR were utilized for our baseline modeling studies.
These cells are derived from the 3T3 lineage, are devoid of
an endogenous EGF receptor and serve as an excellent
model system to study EGFR mediated cell migratory
events. Equal number of NR6 WT cells were plated on
fibronectin coated surfaces and allowed to grow in MEMα
containing 7.5% fetal bovine serum (FBS) for 24 hours, by
which time cells reached about 90% confluence. Subse-
quently, cells were quiesced in media containing 0.5%
dialyzed FBS for another 24 hours, to minimize the effect
of exogenous growth factors present in the serum. Cells
were either lysed in the quiescent medium without any
exogenous human EGF or stimulated with 10 nM (saturat-
ing concentration) of human EGF for either five minutes,
one hour or 16 hours. Such time frames were selected to
capture the entire spectrum of signaling protein activation
during the motility response [12]. After stimulation, cells
were washed once with ice cold PBS, and then lysed in
lysis buffer containing 50 mM HEPES, pH 7.4, 150 mM
NaCl, 1% Triton X-100, 1 mM Na Vanadate and 10% glyc-
erol supplemented with protease inhibitors including 1
μg/ml Leupeptin, 1 μg/ml Aprotinin and 1 mM phenyl-
methylsulfonylfluoride (PMSF). Cell lysates were quanti-
fied using Biorad protein assay. Equal amount of total
proteins were mixed with the loading buffer containing
4% SDS (w/v), 0.1 M Tris-HCl, pH 6.8, 20% glycerol,
0.2% Bromophenol blue and 5% β-mercaptoethanol,
boiled for 5 minutes and then loaded on either 7.5% (for

analysis of pPKCδ, pERK, pEGFR, pPLCγ) or 15% (for
pMLC) SDS polyacrylamide gels. Cell lysates were
resolved by electrophoresis and subsequently transferred
onto nitrocellulose membranes, after which, membranes
were immunoblotted with specific antibodies to detect
the specific proteins or their activated phospho-protein
forms. Immunoblots were quantified with the NIH image
analysis densitometry software. The software generates an
area plot for each protein band, the density of which rep-
resents the amount of the protein in each lane. In the sig-
naling protein experiments, the quantitative values
generated represented the activated status of a protein
since the proteins detected were in their activated or phos-
phorylated state. At least 5 replicates were analyzed for
each protein at each timepoint; all immunoblots per-
formed were analyzed to capture the full extent of the
noise inherent in such measurements [1].

Data preprocessing
Prior to polynomial modeling and decision tree analysis,
the data were thoroughly preprocessed by normalization
and quality-control approaches described in [1]. First,
densities in each band were divided by the value of the
first lane (Fn = 0.1 and EGF = 0) for each immunoblot.
After this between-band normalization, the numbers
within an immunoblot become comparable to other
immunoblots since the experimental conditions in each
of the experiment were kept constant. For quality control
purposes, the bands were also within-band normalized:
all protein conditions in a band without exogenous EGF
were divided by the value with EGF = 0 and Fn = 0.1, while
all protein conditions in a band with exogenous EGF were
divided by the value with EGF = 1 and Fn = 0.1. The
within-band normalization ensures that proteins under
the same EGF condition within a band are comparable.
Prior to normalization all basal values below 250 were
converted to 250 in order to prevent division by a small
value that is likely due to noise. After normalization, all
the values were log2-transformed.

Normalization was followed by the ANOVA based quality
control approach and statistical outliers were discarded
[1]. Each variable (signaling protein) had at least five rep-
licate values (except PKCδ for 16 h that had four repli-
cates) after quality control for polynomial modeling.

Development of computational model
Our goal was to create a predictive model that is able to
predict migration speed as a function of signaling pro-
teins, and provide insight on what signaling proteins
could key elements governing migration. Accordingly, we
chose the decision tree methodology since decision trees
both show the predictive structure of the signaling pro-
teins and are fairly accurate classifiers [24]. As there are
eight observations across EGF and fibronectin concentra-
Page 10 of 13
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tions per variable, a classifier based on these data only
would be weak. Thus, we first used polynomial modeling
to find parametric models for the variables to capture pro-
tein activity as a function of fibronectin. These models
were then used to simulate data in an interpolative man-
ner across fibronectin concentrations and used in the clas-
sification.

Polynomial interpolation of signaling protein data set
Prediction algorithms in general require large training and
validation data sets to ensure that the resulting predictor
is reliable and the results reproducible. Therefore, we
developed mathematical models that capture signaling
protein activity and migration speed profiles as a function
of fibronectin concentrations. Variables (signaling pro-
teins and migration speed) were modeled using the poly-
nomial function family. Polynomial functions family was
chosen because it allows for modeling of a large spectrum
of different trends. To choose degree for a polynomial
model, we applied normalized maximum-likelihood
(NML) approach, which is an implementation of the min-
imum description length (MDL) principle and aims at
describing the data best without overfitting [25]. Techni-
cal details of the NML approach in estimating polynomial
degrees are derived and discussed in [25].

The polynomial models were constructed separately for
the values with or without exogenous EGF. As the first
value (no exogenous EGF and fibronectin concentration
of 0.1 μg/ml) in each immunoblot was used in normali-
zation, the polynomial modeling for data without exoge-
nous EGF was done with three data points, whereas data
with exogenous EGF was modeled with four values.
Accordingly, the maximum polynomial degree in the
NML modeling step was set to two. The resulting polyno-
mial estimates (β) and squared pooled standard errors
(spooled) used in the simulations are given in Additional
File 1.

We used the resulting polynomial models to create 10000
simulated training sets (58002 cases in each data set) and
1000 validation data sets (5802 cases in each data set).
Data for each signaling protein and migration speed were
then discretized using the Lloyds algorithm [26], which
minimizes the average quantization noise power and is
essentially the same as the k-means clustering method.
Thus the only parameter needed in the Lloyds discretiza-
tion method is the number of discrete categories. In this
study the number of discrete categories was chosen to be
the number of the polynomial estimates for 5 min data
set. For example, EGFR for 5 min has three parameters, so
EGFR is discretized to low (0), medium (1) and high (2)
phosphorylation levels. We have illustrated the discrete
regions for cell migration speed and MLC in Figure 2.

Decision tree construction
Decision tree predictors aim to uncover the predictive
structure of a classification or prediction problem while
still maintaining good prediction accuracy. Here, we used
the classification and regression trees (CART) approach
[24]. A more detailed description of the use of the CART
in modeling migration speed using signaling proteins is
given in [1].

The CART results in a decision tree where interior nodes
represent signaling proteins and leaves migration speed
classes. Each interior node is actually a question that splits
the data into two subsets. For example, the first question
in the 1 h decision tree (see Figure 3) is whether activity of
EGFR is low (0). Accordingly, all cases where EGFR is low
go to left (29005 cases), while the rest (28995 cases) go
right. The rule "EGFR is low" results in 20790 cases having
slow migration speed of 22883 cases belonging to slow
migration category (91%). Further, as in the data set split
to the right there are only 8211 cases belonging to
medium speed and 4 to fast speed classes, the data are not
split further and the rule "EGFR is low" predicts slow
migration speed. If EGFR is medium or high, however, the
set of 22883 cases is split further until sufficiently good
prediction accuracy is achieved. The parameters for the
decision tree learning were as follows. Purity function was
the Gini-index, variables having more than five cases were
considered for a split and prior probability for ith class
was obtained by dividing the number of the cases of ith
class by the total amount of observations. The cost of a
misclassification from high to low speed was 2, medium
to high or low was 1, and the cost for correct classification
was 0. After constructing a decision tree, we applied the
cost-complexity pruning method [24] to avoid over-fit-
ting. All computations were performed using MATLAB
v6.5 with Statistics toolbox.

We simulated 10000 training data sets and used them to
learn decision tree predictors. These 10000 decision tree
predictors were then applied to 1000 independent valida-
tion data sets and the predictor giving the best classifica-
tion accuracy was chosen. For 5 min, 1 h and 16 h data
sets, the best decision tree predictors achieved 70%, 75%
and 57% accuracy, respectively.

In vitro migration assay
Cell migration was measured as the distance traveled by
the cells into a cellular area. Cells were seeded in 6-well
tissue culture plates for a period of 24 hours in growth
medium. Cells were quiesced for another 24 hours in
serum free medium at which time cells formed a conflu-
ent monolayer. A denuded area was created by scraping
with a pipet tip, washed three times with phosphate buff-
ered saline (PBS) to remove dead cells, and kept under
serum free conditions throughout the experiment. EGF at
Page 11 of 13
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10 nM (and inhibitors or diluent as indicated) was added
to the serum free medium. Cells were then photographed
using an inverted microscope immediately following
scraping (0-hour condition) and 24 hours later (24-hour
condition) in exactly same three different areas. The pho-
tographs were merged and analyzed using Adobe Pho-
toshop program to determine the average distance
traveled by the cells in 24 hours. All experiments were per-
formed in triplicate.

Single cell tracking for cell speed analysis
For final validation of cell migration, individual cell
speeds were measured using time-lapse videomicroscopy.
6,000 cells were plated on each fibronectin-coated DeltaT
imaging dish (Bioptechs) in 2 ml of assay medium con-
taining 0.5% dialyzed FBS and 1% BSA. 16 hours post-
seeding, the medium was replaced with 3.2 ml of fresh
assay medium. In migration versus fibronectin validation
studies, the replacement medium contained 10 nM EGF.
In MLC inhibition studies, the replacement medium con-
tained 0, 2, 4, or 10 μM ML-7 (MLCK inhibitor), and 10
nM EGF was added 45 minutes after ML-7 exposure. The
plates were then sealed with a vacuum grease-lined cover-
glass lid and placed in a heated stage insert for a Ludl
99S008 motorized stage on a Zeiss Axiovert 35 micro-
scope. Three fields of cells, with five to ten cells per field,
were tracked by recording an image for each field every 15
minutes for up to 20 hours. Individual cell speeds were
calculated using Visible (Reify Corporation, Cambridge,
MA), which determines speeds by generating instantane-
ous velocity vectors for each pixel of the image that is asso-
ciated with a cell. We found that cell speeds reach a steady-
state 4–6 hours after adding EGF as previously reported
[10], and as such the reported speed ± SEM for each con-
dition is an average of 15–20 cells' speeds at each time
point between 6 to 8 hours.

Authors' contributions
SK performed many of the final signal activation measure-
ments and the tumor cell motility experiments; he also
wrote the initial manuscript drafts. SH constructed the
decision trees as well as quality controlled the data; he
contributed to the initial ideations and writing. SW per-
formed the single cell tracking experiments and contrib-
uted experimental design and writing of the manuscript.
AI performed the initial signal activation measurements
in the fibroblasts, and shaped the origins of the project.
DAL and AW provided overall guidance, initial concep-
tion of the project, integrated the varied aspects, and final-
ized the communications. All authors reviewed the data
and contributed interpretations. All authors agree to the
submitted manuscript.

Additional material

Acknowledgements
We thank Chris Shepard and Ben Matta for technical assistance. These 
studies were supported by the NIGMS Cell Migration Consortium  grant 
U54-GM64346, the NIGMS grant R01-GM69668, the NCI Integrative  Can-
cer Biology Program grant U54-CA112967, and Biocentrum Helsinki.

References
1. Hautaniemi S, Kharait S, Iwabu A, Wells A, Lauffenburger DA: Mod-

eling and prediction of signal transduction cascades using
decision trees.  Bioinformatics 2005, 21:2027-2035.

2. Janes KA, Lauffenburger DA: A biological approach to computa-
tional models of proteomic networks.  Current Opinion in Chem-
ical Biology 2006, 10(1):73-80.

3. Wells A, Kassis J, Solava J, Turner T, Lauffenburger DA: Growth fac-
tor-induced cell motility in tumor invasion.  Acta Oncologica
2002, 41(2):124-130.

4. Wells A: Tumor invasion: role of growth factor-induced cell
motility.  Advances in Cancer Research 2000, 78:31-101.

5. Barrett JC, Bennett LM, Fleming LK, Linehan WM, Liotta LA, Rosen-
berg SA, Petricoin EF 3rd, Staudt LM, Thompson TE, Yang JC: Link-
ing laboratory and clinical research: the development of
molecularly targeted therapeutics inside the national cancer
institute center for cancer research.  Clin Adv Hematol Oncol
2003, 1(5):302-306.

6. Wulfkuhle J, Espina V, Liotta L, Petricoin E: Genomic and pro-
teomic technologies for individualisation and improvement
of cancer treatment.  Eur J Cancer 2004, 40(17):2623-2632.

7. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy
G, Parsons JT, Horwitz AR: Cell migration: integrating signals
from front to back.  Science 2003, 302(5651):1704-1709.

8. Lauffenburger DA, Horwitz AF: Cell migration: a physically inte-
grated molecular process.  Cell 1996, 84(3):359-369.

9. Asthagiri AR, Lauffenburger DA: Bioengineering models of cell
signaling.  Annu Rev Biomed Eng 2000, 2:31-53.

10. Maheshwari G, Wells A, Griffith LG, Lauffenburger DA: Biophysical
integration of effects of epidermal growth factor and
fibronectin on fibroblast migration.  Biophysical Journal 1999,
76:2814-2823.

11. DiMilla PA, Stone JA, Quinn JA, Albelda SM, Lauffenburger DA: Max-
imal migration of human smooth muscle cells on fibronectin
and type IV collagen occurs at an intermediate attachment
strength.  J Cell Biol 1993, 122(3):729-737.

12. Ware MF, Wells A, Lauffenburger DA: Epidermal growth factor
alters fibroblast migration speed and directional persistence
reciprocally and in matrix-dependent manner.  J Cell Sci 1998,
111:2423-2432.

13. Iwabu A, Smith K, Allen FD, Lauffenburger DA, Wells A: EGF
induces fibroblast contractility and motility via a PKCd-
dependent pathway.  J Biol Chem 2004, 279:14551-14560.

14. Komatsu S, Ikebe M: ZIP kinase is responsible for the phospho-
rylation of myosin II and necessary for cell motility in mam-
malian fibroblasts.  J Cell Biol 2004, 165(2):243-254.

15. Jackson DN, Foster DA: The enigmatic protein kinase Cd: com-
plex roles in cell proliferation and survival.  Faseb Journal 2004,
18(6):627-636.

16. Long BJ, Rose DP: Invasive capacity and regulation of uroki-
nase-type plasminogen activator in estrogen receptor (ER)-

Additional file 1
Polynomial estimates and pooled error calculations for model/data fits. 
Each of the experimental data sets (5 minutes, 1 hour, and 16 hours) 
involves interpolating polynomials; the polynomials corresponding to each 
set, and the associated error in model data-fitting, are listed here.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-1-9-S1.doc]
Page 12 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1752-0509-1-9-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15657095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15657095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15657095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16406679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16406679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12102155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12102155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16224427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16224427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16224427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14657486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14657486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8608589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8608589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10233097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10233097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10233097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8335696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8335696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8335696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9683636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9683636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9683636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14747473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14747473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14747473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15096528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15096528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15096528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15054085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15054085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8616826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8616826


BMC Systems Biology 2007, 1:9 http://www.biomedcentral.com/1752-0509/1/9
negative MDA-MB-231 human breast cancer cells, and a
transfectant (S30) stably expressing ER.  Cancer Letters 1996,
99(2):209-215.

17. Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA: Clinical pro-
teomics: translating benchside promise into bedside reality.
Nature Reviews - Drug Discovery 2002, 1(9):683-695.

18. Bichsel VE, Liotta LA, Petricoin EF: Cancer proteomics: from
biomarker discovery to signal pathway profiling.  Cancer Jour-
nal 2001, 7(1):69-78.

19. Tran KT, Griffith LG, Wells A: Extracellular matrix signaling
through growth factor receptors during wound healing.
Wound Repair and Regeneration 2004, 12:262-268.

20. Swindle CS, Tran K, Johnson TD, Banerjee P, Mayes AM, Griffith LG,
Wells A: Epidermal growth factor (EGF)-like repeats of
human tenascin-C as ligands for EGF receptor.  J Cell Biol 2001,
154(2):459-468.

21. Glading A, Uberall F, Keyse SM, Lauffenburger DA, Wells A: Mem-
brane proximal ERK signaling is required for M-calpain acti-
vation downstream of epidermal growth factor receptor
signaling.  J Biol Chem 2001, 276(26):23341-23348.

22. Glading A, Uberall F, Keyse SM, Lauffenburger DA, Wells A: Mem-
brane proximal ERK signaling is required for M-calpain acti-
vation downstream of EGF receptor signaling.  J Biol Chem
2001, 276:23341-23348.

23. Palecek SP, Loftus JC, Ginsburg MH, Lauffenburger DA, Horwitz AF:
Integrin-ligand binding properties govern cell migration
speed through cell-substratum adhesiveness.  Nature 1997,
385:537-540.

24. Breiman L, Friedman JH, Olshen RA, Stone CJ: Classification and
Regression Trees.   Wadsworth; 1984. 

25. Rissanen J: MDL denoising.  IEEE Transactions on Information Theory
2000, 46(7):2537-2543.

26. Lloyd S: Least square quantization in PCM.  IEEE Trans Informa-
tion Theory 1982, IT-28:129-137.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8616826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8616826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11470832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11470832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9020360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9020360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9020360

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Signaling protein data set across different surface fibronectin concentration in the presence of EGF
	Decision tree model of signaling proteins predicts a critical role of myosin light chain (MLC) based cell contractility in mediating maximal cell migratory response
	Subtotal inhibition of MLC activation increases cell speed
	Subtotal inhibition of myosin light chain activity increases migration of cancer cells

	Discussion and conclusion
	Methods
	Cell culture
	Reagents and antibodies
	Preparation of fibronectin-coated surfaces
	Quantitative immunoblotting for signaling protein data
	Data preprocessing
	Development of computational model
	Polynomial interpolation of signaling protein data set
	Decision tree construction
	In vitro migration assay
	Single cell tracking for cell speed analysis

	Authors' contributions
	Additional material
	Acknowledgements
	References

