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We present a protocol to evaluate the expectation value of the correlations of measurement outcomes

for ensembles of quantum systems, and use it to experimentally demonstrate—under an assumption of fair

sampling—the violation of an inequality that is satisfied by any noncontextual hidden-variables theory.

The experiment is performed on an ensemble of molecular nuclear spins in the solid state, using

established nuclear magnetic resonance techniques for quantum-information processing.
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The Bell-Kochen-Specker theorem [1–4] states that no
noncontextual hidden-variables (NCHV) theory can re-
produce the predictions of quantum mechanics for corre-
lations between measurement outcomes of some sets of
observables. Any such set of observables constitutes a
proof of the theorem. Recently, Cabello [5] and others
[6] used Bell-Kochen-Specker proofs to derive a set of
inequalities that are satisfied by any NCHV theory but
are violated by quantum mechanics for any quantum state.
These inequalities bound certain linear combinations of
ensemble averages of correlations between measure-
ment outcomes of compatible observables, thus creating
a separation between the predicted outcomes of quantum
mechanics, and the bound that is satisfied by NCHV
theories.

This provides an opportunity to test noncontextuality
with finite-precision experiments—which has been the
subject of contention for many years [7–9]—and without
the need for the creation of special quantum states [10–12].
Already, two experiments, on a pair of trapped 40Caþ ions
[13], and with single photons [14], have demonstrated this
state-independent conflict with noncontextuality. In this
Letter, we examine testing contextuality on quantum
ensembles.

This Letter is organized as follows. First, we sketch the
arguments leading to one of the inequalities derived in [5].
Then we present an algorithm to estimate the expectation
value of the correlations of measurement outcomes for
ensembles of quantum systems. And lastly, we report and
discuss the result of experimentally implementing the al-
gorithm on a three-qubit ensemble of molecular nuclear
spins in the solid state.

Inequality.—For a quantum system prepared according
to some state, �, one can assign simultaneous outcomes
f�ðSkÞg of measurements of a set fSkg of coobservables
(i.e., comeasureable; mutually compatible; commuting). In
this case, the correlation between the measurement out-
comes is given by

�fSkg ¼
Y
k

�ðSkÞ ¼ �

�Y
k

Sk

�
; (1)

irrespective of the product ordering. Repeating the prepa-
ration and measurement many times, and averaging over
the outcomes, one obtains an estimate of the ensemble
average of the correlation h�fSkgi� ¼ hQk�ðSkÞi�.
For the case where the coobservables fSkg are also

dichotomic, with possible outcomes f�ðSkÞ ¼ �1g, the
correlation (1) also takes on the possible values �1, and
the ensemble average satisfies�1 � h�fSkgi� � þ1. Note,

that in this case, these operators are Hermitian and unitary
(also known as quantum Boolean functions).
Consider any set of observables with possible outcomes

�1 arranged in a 3� 3 table such that the observables in
each column and each row are coobservable. It has been
shown [5] that, for any NCHV theory,

� ¼ h�r1i þ h�r2i þ h�r3i þ h�c1i þ h�c2i � h�c3i � 4;

(2)

where h�r1i is the ensemble average of the correlation

between outcomes of the observables listed in the first
row, and so forth. The above inequality is independent of
the preparation of the ensemble, provided all terms are
estimated for the same preparation.
Now, consider a two-qubit system (e.g., 2 spin- 12 parti-

cles), and the set of observables listed in Table I. For any
NCHV theory, the inequality (2) holds for the correlations
between measurement outcomes of the coobservables
listed in each row and column, where, e.g., h�r1i ¼h�fZ1;1Z;ZZgi ¼ hZ1 � 1Z � ZZi, and so forth.

On the other hand, according to quantum mechanics, the
ensemble average h�fSkgi� is given by trð�QkSkÞ. Thus, for
a set of coobservables whose product is proportional to the
unit operator—as is the case for all rows and columns of
Table I—the quantum mechanical prediction of the en-
semble average of the correlation is equal to the propor-
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tionality constant, independent of the initial preparation of
the system. Hence, the quantum mechanical prediction for
� is 6, which violates inequality (2).

Algorithm.—To measure the correlation between a set of
coobservables, consider introducing an ancillary (probe)
qubit, and applying a transformation USk to the composite

system for each observable Sk, in a manner reminiscent of
coherent syndrome measurement in quantum error correc-
tion [17]. For an observable S with the spectral decom-
position S ¼ Pþ � P�, where Pþ and P� are the
projectors on the þ1 and �1 eigenspaces of S, the trans-
formation US is defined as US ¼ 12 � Pþ þ Z � P�. That
is to say, if the system is in a �1 eigenstate of S, apply a
phase flip (Pauli Z operator) to the probe qubit, and if it is
in a þ1 eigenstate, do nothing. This transformation can
also be expressed as a controlled operation dependent on
the state of the probe qubit,

US ¼ 12 � Pþ þ Z � P�
¼ 1

2ð12 þ ZÞ � ðPþ þ P�Þ þ 1
2ð12 � ZÞ � ðPþ � P�Þ

¼ j0ih0j � 1d þ j1ih1j � S;

which is unitary for S unitary. If the system, denoted by s,
is initially prepared according to �, and the probe qubit, a,

is in the þ1 eigenstate of the Pauli X operator, jþi ¼
ðj0i þ j1iÞ= ffiffiffi

2
p

, the possible outcomes of Pauli X measure-
ment on the probe qubit is �1, with probabilities pð�1Þ
given by

pð�1Þ ¼ traþs½USðjþihþj � �ÞUy
S ðj�ih�j � 1dÞ�

¼ trs½h�jð12 � Pþ þ Z � P�Þðjþihþj � �Þ
� ð. . .Þyj�i�

¼ trs½P���;
and the ensemble average

hX�1di¼þpðþ1Þ�pð�1Þ¼ trs½Pþ��� trs½P���
¼hSi�: (3)

Thus, to measure the ensemble average of the correlation
between a set of coobservables, one prepares a probe qubit
in the þ1 eigenstate of X, and the system according to �.

As shown in Fig. 1, one then applies the unitaries Sk in
succession to the system, controlled on the state of the
probe qubit. Since, by definition, all Sk mutually commute,
then the order of their application has no bearing on the
measurement outcome. Repeating this procedure, and
averaging the outcome of the measurement on the probe
system, produces the correlation between this set of ob-
servables. Alternatively, one could prepare an ensemble of
systems according to �, apply the transformations US in
parallel to each member of the ensemble, and perform a
bulk ensemble measurement to estimate h�fSkgi�. This

alleviates the need for isolation of single quantum systems,
and the repeated application of single shot, projective
measurement.
Since inequality (2) is valid for any preparation �, then

one is free to choose to prepare the system according to the
maximally mixed state. In which case, only one qubit—the
probe system—is not maximally mixed. This corresponds
to the model of computation known as deterministic quan-
tum computation with one clean qubit (DQC1) [18].
Two models.—Suppose the measurement process on the

probe qubit was �-efficient, i.e., returning a faithful answer
� fraction of the time, and otherwise a uniformly distrib-
uted random outcome. The probabilities pð�1Þ of obtain-
ing outcomes �1 will be modified to pð�1Þ ¼
1��
2 þ �trs½P���, and the ensemble average to hX � 1di ¼
�hSi�. One can then estimate the expectation value hSi�
under an assumption of fair sampling and knowing the
value of �, which can be established from �h1i�. This
model is equivalent to one where the probe system is

initially in the mixed state ð1� �Þ 12

2 þ �jþihþj, provided
the reduced dynamics on the probe qubit from preparation
to measurement is represented by a unital map, i.e., a map
that preserves the totally mixed state. To see this, suppose
we prepare the probe qubit in some state �a and then apply
some transformation to the composite system, whose re-
duced dynamics on the probe qubit is described by a unital
linear map �. An �-efficient measurement of X ¼ jþi�
hþj � j�ih�j has two possible outcomes �1 with proba-
bilities

FIG. 1. A quantum network to encode the correlation between
the outcomes of measurements fSkgk¼1...m on a d-dimensional
system, in the phase of a probe qubit state. Repeating this
procedure for the same preparation � and averaging the outcome
of the measurement on the probe qubit gives the ensemble
average hS1S2 � � �Smi�. Alternatively, for an ensemble of quan-

tum systems initially prepared according to �, on which opera-
tions are applied in parallel to the individual systems, an
ensemble measurement readily produces hS1S2 � � �Smi�.

TABLE I. List of the two-qubit observables used to show that
quantum mechanics violates inequality (2). This list has been
used by Peres [15] and Mermin [16] as a Bell-Kochen-Specker
proof for four-dimensional systems. f1; X; Z; Yg are the single-
qubit Pauli operators, and, e.g., ZX :¼ Z � X indicates a mea-
surement of the Pauli Z operator on the first qubit and Pauli X
operator on the second.

c1 c2 c3
Q

r1 Z1 1Z ZZ þ1
r2 1X X1 XX þ1
r3 ZX XZ YY þ1Q þ1 þ1 �1
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pð�1Þ ¼ 1� �

2
þ �tr½j�ih�j�ð�aÞ�

¼ 1� �

2
tr½j�ih�j� þ �tr½j�ih�j�ð�aÞ�

¼ 1� �

2
tr½j�ih�j�ð12Þ� þ �tr½j�ih�j�ð�aÞ�

¼ tr

�
j�ih�j�

�
ð1� �Þ12

2
þ ��a

��
;

which are precisely the statistics one obtains in case the

probe qubit is initially in the state ð1� �Þ 12

2 þ ��a, and the

measurement process is faithful.
Experiment.—We implement the algorithm described

above to perform an experimental measurement of the
correlations as described in inequality (2) on an ensemble
of nuclear spins in the solid state using established nuclear
magnetic resonance techniques for quantum information
processing [19,20]. Figure 2 shows the six experiments
required to estimate the six terms in (2). The pulse se-
quence implementing the measurement of some observ-
able is the same whether it is being measured with the
coobservables listed in its row or column.

The experiments were performed in a static field of 7.1 T
using a purpose-built probe. The sample is a macroscopic
single crystal of malonic acid (C3H4O4), where a small
fraction (�3%) of the molecules are triply labeled with 13C
to form an ensemble of processor molecules. During com-
putation, these processors are decoupled from the 100%
abundant protons in the crystal by applying a decoupling
pulse sequence [21] to the protons. Shown in Fig. 3 is a

proton-decoupled 13C spectrum, following polarization
transfer from the abundant protons, for the particular ori-
entation of the crystal used in this experiment. A precise
spectral fit gives the Hamiltonian parameters (listed in the
inset table in Fig. 3), as well as the free-induction dephas-
ing times, T	

2 , for the various transitions; these average at

�2 ms. The dominant contribution [19] to T	
2 is Zeeman-

shift dispersion, which is largely refocused by the control
pulses. Other contributions are from intermolecular
13C-13C dipolar coupling and, particularly for Cm, residual
interaction with neighboring protons. The carbon control
pulses are numerically optimized to implement the re-
quired unitary gates using the GRAPE [22] algorithm.
Each pulse is 1.5 ms long, and is designed [23] to have
an average Hilbert-Schmidt fidelity of 99.8% over appro-
priate distributions of Zeeman-shift dispersion and control-
fields inhomogeneity.
The two spin- 12 nuclei C1 and C2, constituting the system

on which the measurements are performed, are initially
prepared according to the totally mixed state. Cm, repre-
senting the probe qubit, is initially prepared according to
�� ¼ ð1� �Þ 12

2 þ �jþihþj. A spectrum is acquired for
this initial state, �� � 12

2 � 12

2 , to serve as a reference.

Then, the same initial preparation is repeated six more
times, and the six experiments (shown in Fig. 2) represent-
ing the terms in � of inequality (2) are performed, produc-
ing six more spectra. These six spectra are then summed
with the appropriate signs (i.e., the spectrum from experi-
ment c3 in Fig. 2 is subtracted) to produce what we denote

FIG. 2. The quantum networks for the six experiments to
estimate � as given in (2). The ensemble is initially prepared
according to �� � 12

2 � 12

2 , where �� ¼ ð1� �Þ 12

2 þ �jþihþj,
and 12

2 is the single-qubit maximally mixed state.
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FIG. 3 (color). Malonic acid (C3H4O4) molecule and
Hamiltonian parameters (all values in kHz). Elements along
the diagonal represent chemical shifts, !i, with respect to the
transmitter frequency (with the Hamiltonian

P
i�!iZi). Above

the diagonal are dipolar coupling constants [
P

i<j�Di;jð2ZiZj �
XiXj � YiYjÞ], and below the diagonal are J coupling constants

[
P

i<j
�
2 Ji;jðZiZj þ XiXj þ YiYjÞ]. An accurate natural

Hamiltonian is necessary for high fidelity control and is obtained
from precise spectral fitting of (also shown) a proton-decoupled
13C spectrum following polarization transfer from the abundant
protons. The central peak in each quintuplet is due to natural
abundance 13C nuclei present in the crystal at �1%. (For more
details see [19,20] and references therein.)
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the final spectrum. Ideal closed-system quantum mechan-
ics predicts the final spectrum to be identical to the refer-
ence spectrum scaled by a factor of 6. Figure 4 shows the
reference spectrum, and the final spectrum scaled by 1=6
for comparison. Fitting the observable spectra, taking into
consideration the effects of strong coupling, we estimate
the value of� to be 5:2� 0:1, in violation of inequality (2).
The uncertainty on � is propagated from the goodness-of-
fit figure of merit ascribed to the spectral fitting process.

Decoherence, as it is wont to do, causes deviations from
the idealized closed-system dynamics. To examine its ef-
fect, we numerically simulate the dynamics of a simple
model (shown in Fig. 5) in which each ideal transformation
is followed by a symmetric error of a threefold tensor
product of a single-qubit dephasing map, �ð�Þ, given by

the operator sum representation � ! �ð�Þ ¼ P
�A��A

y
�,

where

A0 ¼ 1 0
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
� �

;

A1 ¼ 1 0
0

ffiffiffiffi
�

p
� �

;

and the parameter � ¼ 1� expð�t=T2Þ depends on the
ratio of the pulse length, t, to an effective dephasing time,
T2. Using appropriate estimates [19] of this dephasing
time, one is able to largely explain the deviation of the
experimental result from the prediction of quantum me-
chanics in ideal conditions.

Conclusion.—We have presented a protocol to directly
measure correlations between measurement outcomes,
utilizing an ancillary (probe) two-dimensional system,
with the purpose of testing quantum contextuality.
Conveniently, it can be used directly on ensembles of
quantum systems, without the need for repeated projective
measurement on single systems. Additionally, it can be
straightforwardly extended to test similar inequalities on
higher-dimensional systems. Our experimental results
demonstrate—under the assumption of fair sampling—
that a three-qubit deterministic quantum computer with
one clean qubit reveals correlations between measurement
outcomes that cannot be explained by any NCHV theory.

This work benefited from discussions with J. Emerson,
A. Cabello, M. Laforest, and J. Baugh. This research was
supported by NSERC, CIFAR, Industry Canada, Ontario
Ministry of Research and Innovation, and in part by the
National Security Agency (NSA) under Army Research
Office (ARO) Contract No. W911NF-05-1-0469.
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FIG. 4 (color). Summary of experimental results. Shown are
(in dashed blue) the spectrum produced by the initial preparation
procedure, �� � 12

2 � 12

2 , establishing a reference for �, and (in

solid red) the sum of the six spectra corresponding to the six
terms in � of inequality (2) with the appropriate signs, scaled by
1
6 for ease of comparison with the reference.
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FIG. 5 (color online). Numerical simulation results of a simple
model of decoherence (inset) showing the expected variation of
� as a function of the ratio of the pulse length, t, to an effective
dephasing time, T2. The dashed lines indicate bounds on the
expected performance of the current experiment; for pulse length
of 1.5 ms, and effective decoherence times of 2 ms (�T	

2) and

30 ms (� intrinsic coherence times [19]), the value of � is
expected to be 1.1 and 5.3, respectively.
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