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We investigate the electromagnetic Casimir interactions of an object contained within an otherwise empty,
perfectly conducting spherical shell. For a small object we present analytical calculations of the force, which
is directed away from the center of the cavity, and the torque, which tends to align the object opposite to the
preferred alignment outside the cavity. For a perfectly conducting sphere as the interior object, we compute the
corrections to the proximity force approximation (PFA) numerically. In both cases the results for the interior
configuration match smoothly onto those for the corresponding exterior configuration.
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The development of methods to measure Casimir forces
with a high precision1 [1] and the advent of microelectrome-
chanical devices, for which Casimir forces are important [2,3],
have stimulated the development of new theoretical tools for
analyzing these forces for geometries beyond parallel plates
[4]. In particular, methods based on scattering theory [5–7]
have been used to precisely compute Casimir forces and
torques for a wide variety of configurations of both perfect
conductors and dielectrics. We have applied these methods to
find the electrodynamic Casimir interaction of a conducting
or dielectric object inside a perfectly conducting spherical
cavity [8]. Earlier studies of Casimir forces exerted on one
object contained within another have been limited to infinitely
long cylinders [9,10].

In this paper we report two sets of results. First, we
determine the forces and torques on a small object, dielectric
or conducting, well separated from the cavity walls. This is
the interior analog of the famous Casimir-Polder force on a
polarizable molecule near a perfectly conducting plate [11].
Second, we compute the interaction energy of a finite-size
metal sphere with the cavity walls when the separation d

between their surfaces tends to zero. The leading term in d is
known to be given by the PFA [12]. By evaluating our closed-
form expressions numerically, we find the next-to-leading term
in an expansion in d. The main achievements of our analysis
are: (i) the first exact results for the electromagnetic interaction
of an interior macroscopic object with a confining cavity;
(ii) the determination of the corrections to the PFA for two
spheres for all values of their radii, both positive (exterior)
and negative (interior); (iii) a physical understanding of the
absence of an orientation dependence of the Casimir-Polder
(CP) force between an object and a plane mirror; and (iv)
the generalization of the CP force to concave mirrors. The
last follows from our analysis when the cavity radius is much
larger than d and the size of the interior object. Then the
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1For a recent overview on experimental work, see http://online
.itp.ucsb.edu/online/fluctuate08/.

interaction is determined only by a concave segment of the
shell that is closest to the object and our results are expected to
apply also to this open geometry. Our work suggests that the
orientation dependence of Casimir forces near curved surfaces
might prove to be an interesting area for future experiments.
Furthermore, the interactions described here are relevant for
trapped atoms in spherical optical resonators [13].

An understanding of the corrections to the PFA has been
sought for some time [14]. Our work extends beyond previous
attempts, many of which have treated hypothetical scalar fields,
by considering electromagnetic fields for two objects with
different curvatures and relative positions. For the sphere-plane
geometry [15,16] and two spheres of equal radii facing each
other [5], the corrections have recently been computed. We
repeat these computations for other ratios of radii of two
spheres outside one another and find that the inside and
outside results connect smoothly. This is of direct experimental
significance because Casimir force measurements are usually
performed with spherical rather than perfectly planar surfaces.

Our analysis is facilitated by a recently developed formal-
ism that combines path integral and scattering theory tech-
niques and is applicable to general shapes and configurations,
including objects inside each other [5,6,17]. In the case where
an object, �i , lies inside a perfectly conducting cavity with
inner surface �o, the Casimir energy is given by [8,17]

E = h̄c

2π

∫ ∞

0
dκ ln

det
(
I − F−1

o W ioFiV io
)

det
(
I − F−1

o Fi

) . (1)

Fi is the scattering amplitude for electromagnetic waves off the
interior object; F−1

o is the inverse scattering amplitude for the
conducting cavity, a sphere in our case. The appearance of
the inverse ofFo is a result of the interior geometry [17]. These
scattering amplitudes are matrices evaluated on a spherical
vector wave basis with respect to appropriately chosen origins
within each object. The translation matrices W io and V io

relate regular wave functions between the coordinate systems
of the interior object and the spherical cavity. (W io ∼ V io†

up to multiplication by (−1) of some matrix elements; see
Ref. [17] for details.) All of these matrices are functions
of the imaginary frequency ω = iκ . The determinant in the
denominator subtracts the Casimir energy when the origins of
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the two objects coincide. This way of normalizing the Casimir
energy differs from the exterior case, where the objects are
removed to infinite separation: a choice that would be unnatural
in the interior case.

Let us first consider the limit, in which the interior object
is much smaller than the radius of the spherical cavity. Using
the matrix identity ln detM = Tr lnM, the integrand in
Eq. (1) can be expanded as E = −h̄c/(2π )

∫ ∞
0 dκTr[N +

(N 2/2) + · · ·], where N = F−1
o W ioFiV io describes a

reflection event where a wave travels from one object to the
other and back [5]. In general, all terms in the series expansion
are important, illustrating the fundamentally non-two-body
nature of the Casimir force. The rate of convergence of this
series depends on the size of �i relative to the separation of
its surface from that of �o.

If the inner object is small compared to the size of the
cavity, the first term in the series, Tr N , already gives an
excellent approximation to the energy. In the small-size limit,
the scattering amplitude Fi,lmP,l′m′P ′ (where l and m are
angular momentum indices and P labels M or E polarization)
can be expanded in powers of κ . Only the following terms
contribute to lowest order: Fi,1mP,1m′P (κ) = (2κ3αP

mm′/3) +
O(κ4), where αP

mm′ is the static electric (P = E) or magnetic
(P = M) polarizability of the inner object, the same tensor
that determines the Casimir-Polder interaction [11,18,19].

We fix �o to be a spherical shell of radius R and define a to
be the displacement of the center of the interior object from the
center of the sphere. For a small interior object it is sufficient
to consider only its dipole fluctuations. To linear order in the
static polarizability the Casimir energy is given by the linear
TrN term of Eq. (1). By including all multipoles of the exterior
shell, we find, for the Casimir energy to leading order in r/R

(where r is the typical length scale of the interior object), the
interior analog of the Casimir-Polder interaction [8],

3πR4

h̄c
E(a/R)

= [f E(a/R) − f E(0)]TrαE

+ gE(a/R)
(
2αE

zz − αE
xx − αE

yy

) + (E ↔ M). (2)

The z axis is oriented from the center of �o to �i , and αP
ij

represent the interior object’s static polarizability tensors in a
Cartesian basis. Corrections to this energy come from dynamic
(frequency dependent) dipole polarizabilities and higher-order
multipoles [20]. The coefficient functions f P and gP , plotted
in Fig. 1, can be expressed in terms of modified Bessel func-
tions Iν and Kν as (with λ = l − 1

2 , µ = l + 3
2 , for brevity),

f E(y) =
∫ ∞

0
dxx3

∞∑
l=1

{
ζE
l (x)

2xy

[
(l + 1)I 2

λ (xy) + lI 2
µ(xy)

]

− ζM
l (x)

xy

2(2l + 1)
[Iλ(xy) − Iµ(xy)]2

}
, (3)

gE(y) =
∫ ∞

0
dxx3

∞∑
l=1

{
ζE
l (x)

2xy(2l + 1)

[
l2 − 1

2
I 2
λ (xy)

+ l(l + 2)

2
I 2
µ(xy) − 3l(l + 1)Iλ(xy)Iµ(xy)

]

+ ζM
l (x)

xy

4(2l + 1)
[Iλ(xy) − Iµ(xy)]2

}
, (4)

FIG. 1. Plot of the functions f M/E(a/R) and gM/E(a/R), defined
in Eqs. (3) and (4), respectively.

and f M and gM are obtained by substituting (E ↔ M) in
Eqs. (3) and (4). The functions ζ

M/E

l are given by (with η =
l + 1

2 )

ζM
l (x) = Kη(x)

Iη(x)
, ζE

l (x) = Kη(x) + 2xK ′
η(x)

Iη(x) + 2xI ′
η(x)

. (5)

f E is negative and decreasing with a/R, while f M is posi-
tive and increasing. Note that the gP are about an order of mag-
nitude smaller than the f P . Therefore, it is safe to conclude that
an interior object will always be attracted to the spherical cavity
walls if αM � αE . If one could make a material for which αM

was large and dominant, the interior object could float inside
the spherical shell instead of being attracted to its walls.

There are important differences between Eq. (2) and the
classic Casimir-Polder result: first, the energy depends in a
nontrivial way on a/R; second, at any nonzero distance from
the center, the interior object experiences a torque; and third,
the force between the two bodies depends on the interior
object’s orientation.

To explore the orientation dependence of Eq. (2) assume, for
simplicity, that there is a single frame in which both αE and αM

are diagonal. In this body-fixed frame, write α0
xx − α0

yy = β

and α0
zz − 1

2 (α0
xx + α0

yy) = γ (where we have suppressed the
M/E label). The polarizability in the “lab frame” is obtained
by α = Rα0R−1, where R is a rotation matrix that orients the
principal axes of the inner object with respect to the laboratory
frame [19]. This procedure leaves Trα0 invariant and gives, for
the second line in Eq. (2),

∑
P=M,E

gP (a/R)

[
3βP

2
sin2 θ cos 2φ + γ P (3 cos2 θ − 1)

]
,

where φ corresponds to the azimuthal rotation of the object
about its principal z axis, and θ is the angle between the object’s
principal z axis and the laboratory z axis connecting the center
of the sphere to the origin of �i .

If β �= 0, then the object held at fixed inclination, θ ,
experiences a torque that causes it to rotate about the body-
fixed z axis. If, however, the object has axial symmetry
(β = 0), then the only torque on the object tries to align it
either parallel or perpendicular to the displacement axis.

A “cigar-shaped” object (γ > 0) prefers to orient so as to
point perpendicular to the z axis, and a “pancake” (γ < 0)
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FIG. 2. The ratio gP /f P , which determines the preferred orien-
tation of the interior object, plotted versus x = a/R, showing the
change in preferred orientation from interior (a/R < 1) to exterior
(a/R > 1) (displayed by two small ellipses as described in the text).
Data points were numerically computed from Eqs. (3) and (4). Solid
curves are fits of the form c1(1 − x) + c2(1 − x)2 to these data points.

tries to align its two large axes perpendicular to the z axis.
The small ellipse inside the sphere in Fig. 2 illustrates a side
view of both the cigar and the pancake in their preferred
orientation. It is interesting to note that gE and gM are
both positive. So, in contrast to the force, the contributions
to the torque from magnetic and electric polarizabilities are
in the same direction, if they have the same sign. More
complicated behavior is possible if, for example, the electric
and magnetic polarizabilities are not diagonal in the same
body-fixed coordinate system. Note that our results cannot be
compared to the PFA approximation since the the size of the
inner object, not the separation of surfaces d, has been assumed
to be the smallest scale in the analysis.

An identical analysis can be performed for a polarizable
object outside a metallic sphere where a/R > 1. The analo-
gous exterior functions f (a/R) and g(a/R) are obtained by
exchanging Iν and Kν in Eqs. (3), (4), and (5). It turns out that
g(a/R) < 0 for both polarizations. Therefore, the preferred
orientation of a polarizable object outside a metallic sphere is
opposite that in the interior case (see the small ellipse outside
the large sphere in Fig. 2). The continuation of the functions
f and g from “interior” to “exterior” is displayed in Fig. 2,
where the transition from one orientation to the other is clear.

In the limit x = a/R → 1, we find that the functions
f E/M (x) diverge like (1 − x)−4, while gE/M (x) diverge only
as (1 − x)−3. These reproduce the well-known Casimir-Polder
results for an object facing a plane: the object’s energy grows
like 1/d4 and does not depend on its orientation at leading
order.

The results, presented up to this point, are accurate in the
limit r/R → 0, where r is the typical length scale of the in-
terior object. For fixed r/R they become more accurate as the
separation from the center, a/R, vanishes. For example, for a
metallic sphere of radius r , at a/R = 0.2, Eq. (2) differs from
the exact result by 5% for r/R = 0.1 and 20% for r/R = 0.2.
A more detailed comparison is given in Ref. [8].

The opposite extreme from the small-object limit comes
when the interior object is nearly touching the cavity wall. In
this limit the Casimir force F between two conducting spheres,

which is attractive, is proportional in magnitude to d−3, where
d = R − r − a is the separation of surfaces. The coefficient
of d−3 is given by the PFA [12]:

lim
d→0

d3 F = −π3h̄c

360

rR

r + R
. (6)

This result holds for both the interior and the exterior configu-
ration of two spheres. For fixed r we formally distinguish the
cases: R > 0 for the exterior, R → ∞ for the plate-sphere,
and R < 0 for the interior configuration (see Fig. 3 for
reference). All possible configurations are taken into account
by considering −1 � r/R � 1.

Recently, there has been much interest in determining
the first correction to the leading PFA result to order d/r

[14,15]. The plate-sphere case and exterior problems of
spheres of equal radii have been computed in Refs. [5] and
[15], respectively. Since most experiments up to now have
considered spherical conductors separated by distances much
smaller than their radii, the first correction in d/r to the PFA
is the geometric correction of greatest practical interest.

Our numerical studies of the interior configuration for
conducting spheres [8] enable us to study the limit d/r → 0.
This is a difficult limit because no simplifying approximations
can be applied to Eq. (1). All powers of N contribute, and the
number of partial waves (l, l′) necessary to obtain convergence
grows as d/r → 0. Although we know of no derivation of the
functional form of the Casimir force beyond the leading term
in the PFA, our numerical data are well fit by a power series
in d/r:

F = − π3h̄c

360d3

rR

r + R

[
1 + θ1(r/R)

d

2r
− θ2(r/R)

d2

2r2
+ · · ·

]
.

(7)

We have used this functional form to extract the coefficient
θ1(r/R).

It is useful to have an estimate, however crude, of θ1(r/R)
over the whole range of r/R with which to compare our

−k1x− k2x/(1 + x) k3−

FIG. 3. PFA correction coefficients for spheres. r/R ranges from
−1 (interior, concentric), to 0 (sphere-plane), to +1 (exterior, equal
radii). Data points correspond to the exact values of θ1 calculated
numerically, while the solid curve is a fit (see text). Inset: “Interior”
and “exterior” geometrical configurations.
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results. Although the PFA is accurate only in the limit
d/r → 0, it can be extended in various ways to the whole
range of d, r , and R. The PFA is obtained by considering both
surfaces as made up of infinitesimal parallel mirrors. From
each point (ξ1, ξ2) on the surface of object O, one computes
the distance L(ξ1, ξ2) to the other object’s surface along the
surface normal n̂(ξ1, ξ2). By integrating the Casimir energy
per unit area for two parallel plates separated by L(ξ1, ξ2)
over the surface of object O, one obtains the “O-based”
PFA energy. Clearly, the result depends on which object one
chooses as O, but the various results do agree to leading order
in d/r . We can choose either of the two spheres to arrive at
the “r-based PFA” or the “R-based PFA”; see Fig. 3. Either
one yields a “correction” to the leading-order PFA,

θPFA
1,r (x) = −

(
x + x

1 + x
+ 3

)
, θPFA

1,R = −
(
3x + x

1 + x
+ 1

)
,

where x = r/R. Again, θPFA
1,r and θPFA

1,R are only used for com-
parison with the actual correction θ1. Note that the PFA predicts
a smooth continuation from the interior to the exterior problem.

In Fig. 3 we plot the values of θ1 extracted from a numerical
evaluation of the force from Eq. (1) for various values of
r/R < 0, along with the values for r/R = 0 and r/R = 1
from Refs. [5] and [15]. We have also repeated the exterior
analysis of Ref. [5] for other values of r/R > 0. For reference,
the two PFA estimates are also shown.

Equation (1) is numerically evaluated by truncating the
matrix N at finite multipole order l and extrapolating to obtain
the l → ∞ limit. For the data in Fig. 3, N was truncated at

l = l′ � 60 for the interior and at l = l′ � 35 for the exterior
configuration.

The numerical data in Fig. 3 show a smooth transition
from the interior to the exterior configuration. Although the
PFA estimates do not describe the data, the r-based PFA
has a similar functional form and divergence as x → −1.
Therefore, we fit the data in Fig. 3 to a function, θ1(x) =
−[k1x + k2x/(1 + x) + k3] and find, k1 = 1.05 ± 0.14, k2 =
1.08 ± 0.08, and k3 = 1.38 ± 0.06. This provides a simple
form for the leading PFA correction for metallic spheres, one
inside the other and both outside, which is relevant for many
experiments. Note, however, that the actual function θ1(x) is
not known analytically and that our fit represents a reasonable
choice which may not be unique. Our results show that the
correction to the PFA has a significant dependence on the
ratio of the curvatures of the two surfaces. The correction is
a factor of 2 larger for two spheres of equal radii than for
the sphere-plane setup; it vanishes near r/R = −0.5; and it
becomes large positive as r/R → −1. These effects should
be taken into account in future experimental searches for PFA
corrections.
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