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Optimizing Deep Brain Stimulation Settings Using Wearable Sensing 
Technology 

 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract— Parkinson’s disease is a neurodegenerative 
movement disorder resulting in rigidity, bradykinesia 
(slowness), tremor and gait disorder. Deep brain stimulation 
(DBS) of the subthalamic nucleus has been shown to be 
effective in managing symptoms, but quantitative methods to 
facilitate the adjustment of the stimulator settings are needed. 
In this paper, we present preliminary results from a study 
aimed at investigating the use of wearable sensors to 
quantitatively track changes in the severity of symptoms in 
patients with Parkinson’s disease undergoing programming of 
the stimulator. We developed a technique that relies upon 
features derived from wearable sensors to track changes in the 
severity of symptoms over a period during which patient’s 
motor activities are monitored. Preliminary results indicate 
that wearable sensors could be utilized to help clinicians 
achieve optimal settings of the stimulator by providing 
quantitative feedback concerning the impact of different 
settings on the severity of Parkinsonian symptoms. 
 

Keywords- Parkinson’s Disease; Wearable Technology; Deep 
Brain Stimulation  

I. INTRODUCTION 
Parkinson’s disease (PD) is the second most common 

neurodegenerative disease, affecting about 3% of the 
population over the age of 65 years and more than 500,000 
US residents. The characteristic motor features of PD are 
development of rest tremor, bradykinesia, rigidity, and 
impairment of postural balance. The primary biochemical 
abnormality in PD is deficiency of dopamine due to the 
degeneration of neurons in the substantia nigra pars 
compacta. As a result, abnormal patterns of neural activity 
are present within the basal ganglia, including overactivation 
of the subthalamic nucleus, which contributes to 
development of tremor and other typical motor features. 

Current therapy of PD is based on augmentation or 
replacement of dopamine, using levodopa or other drugs, 
which activate dopamine receptors. These therapies are often 
successful for some time, but in late stage PD most patients 
develop motor complications such as wearing off and 
dyskinesias. STN DBS is an effective way to manage late 
stage PD motor complications that develop over time in this 

patient population. 
While STN DBS has shown dramatic results both in the 

short and the long term, several hypotheses have been put 
forth as possible causes of symptom reduction, but none of 
them is universally accepted. Although some attempts to 
systematically explore the DBS settings have been pursued 
[1][2], postoperative management in patients undergoing 
DBS for treating PD does not rely on methods that are 
grounded on proven models of the underlying mechanisms. 
The complex process of adjusting the neurostimulator 
parameters is rather driven by empirical observations that do 
not guarantee an optimal choice of the neurostimulator 
setting. 

 

In earlier work by Ushe et al [3], the authors reported on 
the use of a single accelerometer to monitor tremor 
suppression in patients with essential tremor with changing 
DBS parameters. Our research team [4] used wearable 
sensors to monitor motor fluctuations in PD patients 
undergoing medication treatment. In a pilot study [5] on 5 
patients, we tracked changes in the severity of symptoms as 
the DBS was turned from ON to OFF and back ON. In this 
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Figure 1 Schematic representation of the decision support system we 
envision to choose optimal DBS settings. 
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paper, we present preliminary results from a new study in 
which we used wearable sensors to record data from patients 
undergoing DBS programming. The long-term objective of 
this study is to develop a decision support system (Figure 1) 
to provide feedback to clinicians regarding the efficacy of 
the stimulator settings thus reducing the time and effort 
required to achieve optimal outcomes. 

II. DBS PROGRAMMING 
DBS systems consist of a quadripolar electrode with an 

inter-contact distance of 1.5 or 0.5 mm, an extension cable 
and an internal pulse generator (IPG) either controlling one 
(SOLETRATM, Medtronic) or two (KINETRATM, 
Medtronic) DBS electrodes. Current is delivered through 
cylindrical electrode contacts of 1.27 mm diameter and 
1.5 mm length. The relevant stimulation parameters, which 
can be controlled by means of an external console after 
implantation of the IPG, are electrode polarity and 
amplitude, duration, and frequency of the pulses. Each 
electrode contact can be programmed as anode or cathode in 
bipolar settings or as cathode for monopolar stimulation. 
Bipolar stimulation creates a more focused current field thus 
providing specificity. However, physicians often favor 
monopolar stimulation because it typically requires lower 
stimulation intensity than bipolar stimulation to achieve the 
same clinical benefit. Therapeutic amplitudes for DBS 
normally range between 1 and 3.5 V. The commercial IPGs 
by Medtronic allow one to vary voltage in 0.1 V steps 
between 0 and 10.5 V. However, current consumption of the 
neurostimulators by Medtronic is linear up to 3.6 V and rises 
abruptly above this value because a voltage doubler circuit is 
activated. The increase in amplitude raises significantly the 
current requirement and shortens battery life. Pulse width 
can be varied in steps between 60 and 450 μs however the 
typical values are between 60 and 90 μs. The pulse 
frequency can be set between 2 and 185 Hz. However, the 
beneficial effects of stimulation are only observed at high 
frequencies, i.e. above 100 Hz. 

These general criteria for choosing the parameters of the 
neurostimulator result in a “decision space” defined by pulse 
amplitude ranging between 1 and 3.5 V, pulse width 
between 60 and 90 μs, frequency between 110 and 150 Hz, 
and a choice of monopolar or bipolar stimulation across the 
quadripolar electrode. To make this decision space more 
difficult to explore, responses related to different target 
symptoms are associated with different time constants. For 
instance, while tremor and rigidity respond within seconds, 
the effect of stimulation on bradykinesia and dystonia 
evolves over hours to days, and dyskinesia may show 
changes over weeks. Furthermore, a complex dynamic 
behavior marks postoperative management of medications. 
Levodopa therapy and dopamine agonist treatment need to 
be adjusted after implant of the neurostimulator. Cyclical 
variations of the response to STN stimulation are observed 
with medication intake. Fluctuations of the target symptoms 
are also observed over days and weeks. To accomplish the 

goals of adjusting the stimulator parameters, namely 1) to 
maximize symptom suppression, 2) to minimize side effects, 
and 3) to maximize neurostimulator battery life, becomes 
therefore a very challenging task. 

III. METHODS 

A. Data Collection 
We used the SHIMMER wireless system by Intel® 

(Figure 2) for data collection. This platform consists of a TI 
MSP430 microprocessor; a Chipcon CC2420 IEEE 802.15.4 
2.4 GHz radio; a MicroSD card slot; and a tri-axial MEMS 
accelerometer (Freescale MMA7260Q). Compared with 
other wireless sensors, SHIMMER achieves a smaller 
footprint using conventional board technology and integrates 
a lithium-polymer battery. 

So fat, in the ongoing study herein described, we have 
collected data from 4 patients. Tri-axial accelerometer data 
was recorded at 100 Hz while subjects performed 
standardized motor tasks from the Unified Parkinson’s 
Disease Rating Scale (UPDRS). Each motor task was 
performed for about 30 s or for a fixed number of 
repetitions. Each subject’s movements were recorded using 
9 accelerometers. The accelerometers were placed bilaterally 
at the midpoint of the forearm and the upper arm, on the 
shank approximately 10 cm above the ankle, on the thigh 
approximately 10 cm above the knee and on the upper back 
(see Figure 2). 

Figure 3 shows schematically the sequence of the testing 
sessions. Video recordings of each session were gathered for 
later review and UPDRS scoring. Data collection was 
performed before, during and after DBS programming on the 
day of clinical adjustment of DBS settings. During the 
clinical visit, data was collected before any adjustment was 
made, after testing each electrode contact, and at the end of 
the adjustment session before the patient was ready to leave 
the clinic. Also, two weeks after each session of DBS 
adjustments we gathered data for 3-4 hrs over 7 testing 

(a)

Figure 2 Sensor setup utilized for the data collection and 
(a) SHIMMER wireless sensor unit. 
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session. Each session was about 5-10 min long. Between 
each two testing sessions, patients were allowed to rest for 
about 20-25 min. During the course of the study, data was 
collected during 4 DBS adjustment visits and 3 times in 
between DBS programming visits.  

 
 

 

B. Data Analysis 
Before extracting features, the raw accelerometer data was 

high-pass filtered with a cutoff frequency of 1 Hz to 
attenuate components associated with gross changes in the 
orientation of body segments. Also the data was low-pass 
filtered with a cutoff frequency of 15 Hz to remove the high 
frequency noise. The data from the x-, y- and z-axis of each 
accelerometer was combined by taking the square root of the 
sum of squares of each axis. 

Sets of 30 epochs of 4 s were randomly selected from the 
sensor data recorded during performance of each motor task, 
for each trial. We chose features that represent 
characteristics of movements such as intensity, modulation, 
rate, periodicity, and coordination of movement. Intensity 
was measured as the root-mean-square (RMS) value of the 
detrended accelerometer signal. The modulation of the 
output of each sensor was used to represent dynamic 
characteristics of the tasks, and was calculated as the range 
of the auto-covariance function of each channel. Large 
values of this feature were indicative of intervals of rapid 
movements interspersed with intervals of slow movements. 
Rate of movement was represented by the dominant 
frequency component below 10 Hz. Periodicity was 
measured by computing the ratio of the energy of the 
dominant frequency component to the total energy below 
10 Hz. Coordination between body segments on the left and 
right side and proximal and distal segments was captured in 
three aspects: magnitude (obtained by calculating the 
correlation coefficient), delay (estimated as the time lag 
corresponding to the peak of the cross-correlation function) 
and similarity (measured by the value of the peak of the 
cross-correlation function). An estimate of entropy of the 
signal [7] was used as a measure of signal complexity. 

The results presented in this abstract are based on visual 
inspection of the data. First we correlated the changes in 
clinical scores of severity of symptoms with changes in 

feature value. Secondly we inspected the feature space using 
the Sammons mapping technique. Sammons mapping [6] is 
a nonlinear transformation technique that reduces data 
dimensionality by preserving the distance between points in 
lower dimensions. It is a useful method for achieving visual 
examination of the data structure. We utilized this technique 
to derive two-dimensional projections of the feature sets. 

IV. RESULTS 
Analysis of the feature space shows that distinct patterns 

of feature values are associated with changes in the severity 
of Parkinsonian symptoms. In the following, we provide a 
detailed description of the results derived from the analysis 
of data from one patient. Similar results were obtained from 
other patients. Figure 4 shows changes in clinical scores for 
tremor, bradykinesia and dyskinesia over a period of several 
days. It also shows measures of the RMS value derived from 
the accelerometer time series recorded from the right 
forearm during the same sessions from which the clinical 
scores were derived. During the first session, we performed 
DBS adjustments. Data was gathered before and after 
adjusting the DBS settings. During the second session, we 
recorded multiple trials during a period of several hours to 
capture changes in the severity of symptoms that mark motor 
fluctuations. The second session was scheduled about 2 
weeks following the first DBS programming visit. The third 
session (the last for which results are shown in Figure 4) 
corresponded to the second DBS programming visit and was 
scheduled about one month after the first visit. Data is 
shown for the recordings performed before (pre-DBS) and 
after (post-DBS) the actual DBS programming during the 
first session, for the 7 trials performed during the second 

Figure 4 Plot of the RMS value, extracted from the right forearm, 
relative to the clinical score for (a) tremor (data recorded during steady 
holding of arms out front while seated), (b) dyskinesia (data recorded 
during the finger to nose task with left hand), and (c) bradykinesia 
(data recorded during finger to nose with right hand). RMS value is 
shown by the bold blue line and clinical scores are shown by the 
dashed green line. 
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session, and for the recordings performed before (pre-DBS) 
the DBS programming visit during the third session.  

Figure 4 suggests that changes in RMS value are highly 
correlated with changes in the clinical scores for all three 
symptoms we monitored during the experiments (i.e. tremor, 
bradykinesia and dyskinesia). Tremor and dyskinesia are 
symptoms related to involuntary movement; hence, as the 
clinical score goes down the intensity of movement 
(represented by the RMS value in figure 4(a) & 4(b)) goes 
down as well. Bradykinesia represents the rigidity or 
slowness of movement; hence, as the clinical score goes 
down the ability of a patient to perform a task improves 
(indicated by the increased RMS value in figure 4(c)). Also, 
it appears that the severity of tremor and bradykinesia 
changed significantly in response to the adjustment in DBS 
settings performed during the first session.  

It is worth emphasizing that, when patients undergo the 
first DBS programming visit, they are instructed to withdraw 
their medications for about 12 hours prior to the visit (this 
procedure is referred to as “practically-defined off”). 
Consequently, it is expected that patients show virtually no 
dyskinesia during the first session and therefore seeking 
correlation between dyskinesia scores and RMS values for 
this session is practically meaningless. During the second 
session, patients are observed during a period of normal 
medication intake. Therefore, a correlation between the 
clinical score for dyskinesia and the RMS values can be 
meaningfully sought. Figure 4 shows that clinical scores for 
dyskinesia and RMS values are highly correlated during the 
second recording session. Such correlation is maintained 
when data from all the sessions (including the pre-DBS 
observations during the third session) is considered. 
Although a visual correlation cannot be used to draw 
conclusions, it indicates the ability of features derived from 
accelerometer data to capture changes in severity of 
symptoms over a period of several days. 

A Sammons’ map for the data collected over the three 
visits is shown in Figure 5. The points in Figure 5 are 
labeled by clinical score for bradykinesia. By visual 
inspection, it is apparent that there is a good separation 
between clusters associated with different clinical scores. 
These results suggest that information extracted from 
accelerometer data can be used to build models that can 
provide an accurate prediction of clinical score values. 

V. DISCUSSION AND FUTURE WORK 
The results obtained so far provide preliminary evidence 

of the potential of wearable sensors for facilitating the 
process of seeking optimal stimulator settings in patients 
with Parkinson’s disease undergoing DBS. The observations 
performed over multiple visits allowed us to explore the 
hypothesis that features extracted from wearable sensor data 
change in a way that correlates with clinical scores. Our 
results suggest that the hypothesis we formulated holds, thus 
indicating that wearable sensors could be used to track 
changes in Parkinsonian symptoms over long periods 

therefore providing clinical feedback concerning the effect 
of different DBS settings. If future clinical studies confirm 
our preliminary results, we could envision utilizing a 
wearable system during the DBS programming period. 
Information gathered with such system could be of great 
help during the initial phases of the DBS programming 
period as clinicians could be provided with reliable 
quantitative information concerning the impact of 
exploratory adjustments in DBS settings. Availability of this 
information would be expected to facilitate the process 
aimed to achieve optimum outcomes. 
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Figure 5 Sammons mapping projection of the feature set. The patient 
is performing pronation-supination movements of the hand. The points 
are labeled by clinical score for bradykinesia. 
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