
MIT Open Access Articles

Feedback schemes for radiation damping 
suppression in NMR: a control-theoretical perspective

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Altafini, C., P. Cappellaro, and D. Cory. “Feedback schemes for radiation damping 
suppression in NMR: a control-theoretical perspective.” Decision and Control, 2009 held jointly 
with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE 
Conference on. 2009. 1445-1450. © 2009 IEEE

As Published: http://dx.doi.org/10.1109/CDC.2009.5400761

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/58824

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/58824


Feedback schemes for radiation damping suppression in NMR: a

control-theoretical perspective

C. Altafini, P. Cappellaro, and D. Cory

Abstract— In NMR spectroscopy, the collective measurement
is weakly invasive and its back-action is called radiation
damping. The aim of this paper is to provide a control-
theoretical analysis of the problem of suppressing this radiation
damping. It is shown that the two feedback schemes commonly
used in the NMR practice correspond one to a high gain oputput
feedback for the simple case of maintaining the spin 1/2 in its
inverted state, and the second to a 2-degree of freedom control
design with a prefeedback that exactly cancels the radiation
damping field. A general high gain feedback stabilization design
not requiring the knowledge of the radiation damping time
constant is also investigated.

I. INTRODUCTION

In recent years, the theory [23], [12], [15], [19], [21] and

practice [17] of (real-time) feedback for quantum mechanical

systems has gained momentum especially in contexts such as

quantum optics [23]. In order to avoid wavefunction collapse,

the measurement is assumed weak and the feedback is seen

as a way to influence the resulting dynamics conditioned by

the measurement back-action. This conditioning is stochastic

for a single isolated quantum system [21], but can assume

the form of a deterministic back-action when considering the

expectation values for an ensemble of systems [19], [20],

[13]. In this last setting, the effect of a weak measurement is

described by a term in a Markovian master equation which

can be conservative (when the measurement is perfect, i.e.,

lossless) or dissipative (imperfect measurement).

In NMR spectroscopy, in presence of a collective spin

measurement the phenomenon occurring is called radiation

damping [8], [9], [6], and it is due to the electromagnetic

field induced by the current passing through the detection

coil while doing a measurement. This field in turn interacts

with the spins in the sample, hence it induces a back-action

on the system observed. If back-actions are hallmarks of

quantum measurement, magnetic resonance is no exception

in this respect.

In high field and probes of high quality factor, radiation

damping is typically an important effect only at certain

frequency ranges, for example that of the abundant spin of

the solvent. For these, it behaves much like a soft pulse,

steering the magnetization vector back to its equilibrium

value. For other bandwidths, the back-action signal is so

weak it is dominated by the relaxation effects, and hence it
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is negligible. In this work we assume to be dealing with one

of those situations in which radiation damping is of interest

and relaxation is negligible.

A model of radiation damping exists since the fifties [8],

[9], and assumes that the back-action is conservative, i.e., it

preserves the norm of the Bloch vector. Efforts to engineer

the NMR receiving/transmitting system in order to reject this

form of back-action have been going on for more than a

decade and by now there are many ways to compensate for

it, such as electronic feedback [10], [16], [2], [14], rf pulse

compensation [11], gradient field, Q-switches, and composite

pulse sequences, see [6], [14] for a more detailed survey. We

are here interested only in the first two methods.

The aim of this paper is threefold. First, we provide a

rigorous convergence analysis of the behavior induced by

the radiation damping effect and described qualitatively in

several papers [1], [3], [6], [7], [18]. Second, we aim to give

a system-theoretic interpretation of the electronic feedback

and pulse compensation control designs. We will show that

the first scheme suppresses the radiation damping field by

canceling the current in the coil. In its so-called “École

Polytechnique design”, [14], this can be thought of as an

exact feedback matching problem, i.e., a precompensator

based on an internal model of the radiation damping field.

While this requires the exact knowledge of the radiation

damping time constant, a high gain variant of the same

problem can be set up in order to maintain the spin 1/2 in

the “fully inverted” state, although it works only for this

particular state. For generic states, the exact cancellation

of the radiation damping dynamics alone does not achieve

asymptotic stabilization. However, it can be intended as a

prefeedback to which a second active field can be linearly

superimposed, in order to produce desired control actions. In

control terms, this design is called a 2-degrees of freedom

(DOF) control design, and resembles the schemes described

in [11], [14].

The third and last aim of this paper is to explore possible

alternative/improved schemes inspired by control theory. In

the spirit of feedback control, we show that the 2-DOF

design mentioned above can be completed with an extra

feedback loop, allowing to achieve closed-loop asymptotic

stabilization, a more robust concept than just exact canceling

by matching. We will further see that also a high gain state

feedback can be designed in order to achieve tracking of

a desired trajectory up to a limited steady state tracking

error. Unlike the 2 DOF scheme based on exact radiation

damping cancellation, this last feedback controller does not

require the explicit knowledge of the radiation damping time
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constant. For “high gain” we mean a ratio of around an order

of magnitude between the actuation current and the current

produced by the spin precession. Hence the task of radiation

damping compensation can be performed in the soft pulse

regime, meaning that real-time feedback makes sense in this

context even with a single coil available. When strong pulses

are instead considered, the above transmitter/receiver ratio is

several orders of magnitude higher, hence alternative designs

such as, for example, an interleaved scheme of pulsing and

measuring, should be used instead.

II. THE MODEL FOR RADIATION DAMPING

In the following, we shall consider the model of radiation

damping described e.g. in [8], [9], [6], [3], [22], focusing

only on the spin 1/2 case. Further details concerning the

model formulation are available in the Appendix.

Disregarding relaxation effects (i.e., in the limit T1 =

T2 = ∞) and denoting with m =
[

mxmy mz

]T
the

normalized Bloch vector, (m = M/Mo where Mo is the

equilibrium magnetization), the nonlinear Bloch equations

for radiation damping in a frame rotating with the circuit

resonant frequency are

dmx

dt
=δmy − ℓmxmz

dmy

dt
= − δmx − ℓmymz

dmz

dt
=ℓ(m2

x +m2

y)

(1)

where δ = ω−ωo is the offset between the Larmor precession

frequency ωo and the circuit resonant frequency ω, ℓ is

the radiation damping rate ℓ = 1

TR
, with TR the radiation

damping time constant TR = γ
2πξMoQ

(γ = gyromagnetic

ratio, ξ = coil filling factor, Q = probe quality factor)

[9], [6], [3]. Denoting Ax, Ay and Az the real rotation

matrices around the x, y, and z axis, Lie(Ax, Ay, Az) =
span(Ax, Ay, Az) = so(3), then (1) can be written as

dm

dt
= −δAzm+ℓ〈〈mo, Axm〉〉Axm+ℓ〈〈mo, Aym〉〉Aym

(2)

where mo =
[

0 0 1
]T

is the north pole of the Bloch

sphere (aligned with the static magnetic field applied to the

ensemble) and 〈〈 · , · 〉〉 denotes an Euclidean inner product

in R
3.

Proposition 1: The system (2) has mo as an almost glob-

ally asymptotically stable equilibrium point, with region of

attraction S
2\{m1}, where m1 =

[

0 0 − 1
]T

is the inverted

state.

Proof: Consider the S
2-distance

V = ‖m‖ − 〈〈mo, m〉〉. (3)

Clearly V (m) > 0 ∀m ∈ S
2 \ {mo}, V (mo) = 0.

Differentiating along the trajectories of (2):

V̇ = −〈〈mo, ṁ〉〉

= δ〈〈mo, Azm〉〉 − ℓ〈〈mo, Axm〉〉〈〈mo, Axm〉〉

− ℓ〈〈mo, Aym〉〉〈〈mo, Aym〉〉.

Since Azmo =
[

0 0 0
]T

, the first term disappears and hence

V̇ = −ℓ〈〈mo, Axm〉〉2 − ℓ〈〈mo, Aym〉〉2 6 0.

Therefore V (·) is a Lyapunov function for the equilibrium

mo of (2). As V̇ = 0 only for m = mo or m = m1, mo is

an attractor for (2) with basin of attraction S
2 \ {m1}. �

It is straightforward to check that the inverted state m1 is

an unstable equilibrium of (2). In fact, in the literature, it is

known that a weak perturbation or even a noise disturbing

m can trigger the coherent radiation from m1 to the lower

energy state mo [18], [7].

III. FEEDBACK CONTROL STRATEGIES

For a coil aligned for instance with the laboratory x axis,

the measured NMR signal is a current which is generated

by the electromotive force (emf) induced in the coil by the

precessing magnetization m and which oscillates with the

spin resonance frequency ωo. This may be superimposed

with another emf due to the external driving, i.e., to the

control input (soft pulses regime only). These two oscillating

emfs (or, in the AC steady state, the two corresponding

oscillating currents, see Appendix for details) give rise to

two magnetic fields. In the rotating frame, denote with φ the

field due to the spin precession and with u the externally

driven field, respectively of components φx, φy and ux, uy .

From (2), we have
{

φx(m) = ℓ〈〈mo, Axm〉〉 = ℓmy

φy(m) = ℓ〈〈mo, Aym〉〉 = −ℓmx.
(4)

Including u in the model (2), we have

dm

dt
= −δAzm+(ux +φx(m))Axm+(uy +φy(m))Aym.

(5)

The following proposition is obvious at least in one

direction.

Proposition 2: For the system (5), the norm of the trans-

verse magnetization is constant ∀ t if and only if ui =
−φi(m), i = x, y.

Proof: The condition ui = −φi(m), i = x, y implies

that ṁ = −δAzm which leaves the transverse magnetization

invariant. For the other direction, m2

x+m2

y = 1−m2

z = const

∀ t implies that ṁz = 0. From (1) and (2), this yields

ℓ(m2

x +m2

y) + uxmy − uymx = 0

∀ mx, my such that m2

x +m2

y = const

i.e.,

(ℓmx − uy)mx + (ℓmy + ux)my = 0

∀ mx, my such that m2

x +m2

y = const.

This is satisfied only when ℓmx−uy = 0 and ℓmy +ux = 0
simultaneously. �

The electronic feedback suppression of radiation damping

of [10] (denoted “Brussels scheme” in [14], Fig. 1, middle)

works on the current induced by the spin precession in the

coil (Ispin in the notation of the Appendix) and suppresses
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Fig. 1. Cartoons of the electronic feedback compensation schemes for
radiation dampings. Left: non-compensated radiation damping. The arrow
represents the back-action field acting on the spin ensemble. Middle:
“Brussels scheme”. The radiation damping current is suppressed in the coil.
Right: “École Polytechnique scheme”. The current is compensated for in
the coil.

it through a suitable circuit, see [14]. From (11), suppressing

this current (or reducing it by 2-3 orders of magnitude)

means suppressing the corresponding field φ and hence the

radiation damping backaction, see (5). This is done in a

completely electronic manner, not requiring the use of u and

it is said in [14] that in the residual (small) current the signal-

to-noise ratio is essentially unaltered.

An alternative scheme, called “École Polytechnique

scheme” in [14] (Fig. 1, right), works by detecting, inverting

and suppressing φ through the rf generator and hence through

u, see [16], [2] for the original papers. In our formalism, this

corresponds to the feedback of Proposition 2. The need of

fine-tuning of the rf current Irf for this scheme corresponds

to the fact that the exact cancellation of Proposition 2

requires the knowledge of ℓ (and hence of the radiation

damping time constant TR).

A particular subtask, valid only for the inverted state m1,

can however be carried out without the explicit knowledge

of ℓ by means of a high gain feedback law.

Proposition 3: For the system (5), the feedback

ux = −kφx(m)

uy = −kφy(m)
(6)

k > 1, renders the inverted state m1 almost globally

asymptotically stable.

Proof: Consider the Lyapunov function of (3) with

respect to m1, V = ‖m‖ − 〈〈m1, m〉〉, and differentiate

it

V̇ = −〈〈m1, ṁ〉〉

= −(ux + φx(m))〈〈m1, Axm〉〉

− (uy + φy(m))〈〈m1, Aym〉〉

= −(1 − k)φx(m)〈〈m1, Axm〉〉

− (1 − k)φy(m)〈〈m1, Aym〉〉

= (1 − k)〈〈m1, Axm〉〉2 + (1 − k)〈〈m1, Aym〉〉2 6 0

since e.g. φx(m) = 〈〈mo, Axm〉〉 = −〈〈m1, Axm〉〉. �

This use of the “École Polytechnique scheme” for the

feedback stabilization of the inverted state is also mentioned

in [14]. Observe that when ux = uy = 0, one has V̇ > 0
i.e., the equilibrium m1 indeed becomes unstable, as already

mentioned after Proposition 1.

A. 2-DOF with feedback stabilization

From the proof of Proposition 3, if k = 1 then the

evolution is only stable but not an attractor (V̇ = 0 in absence

of external controls) and, from Proposition 2, this corre-

sponds to exact cancellation of the radiation damping. More

generally, we may be interested in manipulating the spin state

while suppressing at all times the effect of radiation damping.

In the “Brussels scheme”, this can be carried out by simply

setting φ = 0 in (5), and building a suitable feedback law

for u. In the “École Polytechnique scheme”, we can adopt

a 2-degrees of freedom (DOF) control design composed of

a prefeedback that cancels the unwanted dynamics linearly

superimposed with a controller that achieves the desired task,

e.g. stabilize the state to the desired orbit of the drift term

(i.e., a horizontal circle characterized by a desired value of

mz). The general scheme for such a 2-DOF control design

is given by
{

ux = −φx(m) + vx

uy = −φy(m) + vy

(7)

with vx, vy the new control variables. This 2 DOF controller

is the one proposed in [11] (similar arguments also appear

in [14]). The feedback design of vx, vy can for example

follow the theory developed in [4]. As in [4], we shall not

try to suppress the precession motion (which would introduce

singularities in the control law). Rather, we will formulate

the stabilization to the orbit given by the desired value of mz ,

call it md,z , as a state tracking problem for the dynamical

trajectory described by the following system

dmd

dt
= −δAzmd. (8)

The following proposition formalizes this result: a trajectory

stabilizing state feedback superimposed with the prefeedback

of Proposition 2 achieves asymptotic stabilization of m to

md.

Proposition 4: Consider the system (5). The 2 DOF feed-

back controller given by (7) and
{

vx = k〈〈md, Axm〉〉

vy = k〈〈md, Aym〉〉
(9)

k > 0, tracks the reference trajectory md given by (8) in

an asymptotically stable manner for all m(0) ∈ S
2 with the

exception of the antipodal point m(0) = −md(0) and of

m(0), md(0) both lying on great horizontal circles.

Proof: Consider the candidate Lyapunov function

V = ‖md‖
2 − 〈〈md, m〉〉

and differentiate it:

V̇ = −〈〈ṁd,m〉〉 − 〈〈md, ṁ〉〉

= δ〈〈Azmd, m〉〉 + δ〈〈md, Azm〉〉

− vx〈〈md, Axm〉〉 − vy〈〈md, Aym〉〉

= −k
(

〈〈md, Axm〉〉2 + 〈〈md, Aym〉〉2
)

6 0

where the cancellation of the two drift terms occurs since

AT
z = −Az . Hence the reference trajectory md(t) is at least
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stable. The proof of convergence and the analysis of the basin

of attraction is now formally identical to that carried out in

Proposition 1 of [4] (see also examples in [5]). �

B. Compensating without knowledge of ℓ

The feedback controller in Proposition 4 requires: i) full

state information (i.e., the on-line knowledge of the Bloch

vector, retrievable by numerical integration of (5)); ii) the

knowledge of ℓ (i.e., of the time constant TR of the radiation

damping). The interesting question is whether a high gain

feedback scheme (similar to Proposition 3) can be obtained

without the explicit knowledge of ℓ for the more general task

studied in Proposition 4.

Proposition 5: Consider the system (5) and the reference

trajectory (8). Assuming that the radiation damping rate ℓ is

unknown, the system with the state feedback
{

ux = k〈〈md, Axm〉〉

uy = k〈〈md, Aym〉〉
(10)

k > 0, converges to an orbit which approaches the reference

trajectory (8) when k is large. The steady state tracking

error (i.e., the S
2-distance between the two orbits) is 1 −

(k + ℓmd,z) /
√

k2 + ℓ2 + 2kℓmd,z .

Proof: Once again, the argument is based on

a Lyapunov function, but for a reference trajectory

Mf = kmd + ℓmo. From (8)
dMf

dt
= −kδAzmd,

but, since Azmo = 0, also
dMf

dt
= −kδAzMf .

Since, tipically, Mf /∈ S
2, consider mf =

Mf

‖Mf‖ ,

where ‖Mf‖ =
√

k2m2

d,x + k2m2

d,y + (kmd,z + ℓ)2 =
√

k2 + ℓ2 + 2kℓmd,z , and, consequently,
dmf

dt
= −δAzmf .

This expression implies that considering Vf = ‖m‖2 −
〈〈mf , m〉〉 and differentiating, the drift terms disappear and

we have

V̇f = −〈〈ṁf ,m〉〉 − 〈〈mf , ṁ〉〉

− 〈〈mf , (ux + φx)Axm〉〉 − 〈〈mf , (uy + φy)Aym〉〉

= −〈〈mf , Axm〉〉2 − 〈〈mf , Aym〉〉2 6 0

i.e., we have convergence to mf = (kmd + ℓmo)/‖Mf‖.

As md(t) is symmetrically distant from mo ∀ t, also mf (t)
is so, meaning that to compute the distance between the

attractor orbit mf and the desired one md a simple S
2-

distance can be used, regardless of the initial condition:

d(mf , md) = 1 − 〈〈mf , md〉〉

= 1 − 〈〈kmd + ℓmo, md〉〉/‖Mf‖

= 1 − (k + ℓ〈〈mo, md〉〉) /‖Mf‖

= 1 − (k + ℓmd,z) /
√

k2 + ℓ2 + 2kℓmd,z.

�

It is clear from Proposition 5 that when the feedback gain

k is high (say an order of magnitude higher than ℓ), the

steady state tracking error becomes negligible, in particular

near the equator. In Fig. 2 we show an example of how

this steady state tracking error shrinks when the gain k is
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Fig. 2. High gain state feedback stabilization without radiation damping
exact compensation. The two plots show each two curves of the system
(5) with the feedback (10) from different initial conditions (color on-line:
blue solid lines). Clearly both converge to a orbit that is different from the
desired one of (8) (color on-line: red dashed line). However, in the right
plot where a higher gain is used this orbit is closer to the desired one than
on the left plot (the ratio of the two gains is 4; the higher value of k is 10
times ℓ).

increased. Notice how this tracking error depends on the sign

of md,z and is larger for orbits on the lower hemisphere, see

Fig. 3.

IV. CONCLUSION

As for many other aspects of the NMR literature, we find

that also the methods developed for the purpose of suppress-

ing radiation damping admit nontrivial control theoretical

formulations. Part of the aim of this paper is to translate

this problem and its solutions into language and techniques

familiar to a control audience. In particular, we obtain that

feedback control strategies can be classified into two types

of methods: high gain feedback and 2 DOF controllers with

a prefeedback exactly canceling the radiation damping term.

We also show how to use the first type of controller for more

general tasks than considered in the literature, while still not

requiring exact knowledge of the time constant of radiation

damping (a necessary condition for the methods based on

exact cancellation). As for the 2 DOF control design, we

show how this can be completed to a true feedback stabilizer

that achieves a desired task in an asymptotically stable

manner.
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Fig. 3. Steady state tracking error depends on the sign of md,z . The two
figures show the same tracking problem as in Fig. 2, with the only difference
that now md,z has negative sign. Proposition 5 predicts that the steady state
tracking error is larger than in the case of Fig. 2. This is particularly visible
for the low gain situation (left plot).

APPENDIX

In this Section we follow essentially [6]. The collective

effect of the ensemble of spins precessing around the z axis

is to induce an electromotive force in the receiver coil. In the

laboratory frame, according to Faraday’s law, this oscillating

voltage can be expressed as

Vspin(t) = −4πξηA
dMx(t)

dt

where η is the number of turns in the coil, ξ is the filling

factor, A is the cross-sectional area of the coil, and Mx

is the component of the magnetization vector aligned with

the laboratory x-axis (conventionally the axis of the coil).

Applying Kirchhoff’s law to this coil

L
d2I(t)

dt2
+R

dI(t)

dt
+
I(t)

C
=

d

dt
(Vspin + Vrf )

where Vrf is the external voltage applied by the generator

(i.e., the control input). The natural frequency of the circuit

is ω = 1√
LC

and its quality factor Q = ωL/R. In the

low Q limit, we can assume (following e.g. [22]), that

the damping part of this damped harmonic oscillator is

quickly exhausted, and work at the resulting AC steady state,

assuming that also the external signal Vrf is a soft pulse

(i.e., slowly varying in the rotating frame). This leads to

Vspin+Vrf = ZI(t), where the impedance Z is a function of

ω, ωo, Q, and L [22]. Special devices, such as the directional

coupler circuit described in [14], allow to distinguish in

I(t) the two components due to the spin precession and

to the external generator: I(t) = Ispin(t) + Irf (t). Each

oscillating current induces a field. In the frame rotating with

the circuit frequency ω, the two fields are denoted u and φ.

For example,

Ispin(t) =

√

Vol

πL
φ cos(ωt+ ψ) (11)

where Vol is the coil volume and ψ is the phase of the

current. As the components of m are related to Mx by

Mx = mx cos(ωt) +my sin(ωt),

the components of the field φ correspond to the expressions

in (4).
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